WorldWideScience

Sample records for radiation safety design

  1. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  2. Radiation shielding and safety design

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Gil, C. S.; Cho, Y. S.; Kim, D. H.; Kim, H. I.; Kim, J. W.; Lee, C. W.; Kim, K. Y.; Kim, B. H. [KAERI, Daejeon (Korea, Republic of)

    2011-07-15

    A benchmarking for the test facility, evaluations of the prompt radiation fields, evaluation of the induced activities in the facility, and estimation of the radiological impact on the environment were performed in this study. and the radiation safety analysis report for nuclear licensing was written based on this study. In the benchmark calculation, the neutron spectra was measured in the 20 Mev test facility and the measurements were compared with the computational results to verify the calculation system. In the evaluation of the prompt radiation fields, the shielding design for 100 MeV target rooms, evaluations of the leakage doses from the accidents and skyshine analysis were performed. The evaluation of the induced activities were performed for the coolant, inside air, structural materials, soil and ground-water. At last, the radiation safety analysis report was written based on results from these studies

  3. Radiation protection aspects of design for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  4. Radiation protection aspects in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  5. Standards for radiation protection instrumentation: design of safety standards and testing procedures

    International Nuclear Information System (INIS)

    Meissner, Frank

    2008-01-01

    This paper describes by means of examples the role of safety standards for radiation protection and the testing and qualification procedures. The development and qualification of radiation protection instrumentation is a significant part of the work of TUV NORD SysTec, an independent expert organisation in Germany. The German Nuclear Safety Standards Commission (KTA) establishes regulations in the field of nuclear safety. The examples presented may be of importance for governments and nuclear safety authorities, for nuclear operators and for manufacturers worldwide. They demonstrate the advantage of standards in the design of radiation protection instrumentation for new power plants, in the upgrade of existing instrumentation to nuclear safety standards or in the application of safety standards to newly developed equipment. Furthermore, they show how authorities may proceed when safety standards for radiation protection instrumentation are not yet established or require actualization. (author)

  6. Radiation safety audit

    International Nuclear Information System (INIS)

    Kadadunna, K.P.I.K.; Mod Ali, Noriah

    2008-01-01

    Audit has been seen as one of the effective methods to ensure harmonization in radiation protection. A radiation safety audit is a formal safety performance examination of existing or future work activities by an independent team. Regular audit will assist the management in its mission to maintain the facilities environment that is inherently safe for its employees. The audits review the adequacy of facilities for the type of use, training, and competency of workers, supervision by authorized users, availability of survey instruments, security of radioactive materials, minimization of personnel exposure to radiation, safety equipment, and the required record keeping. All approved areas of use are included in these periodic audits. Any deficiency found in the audit shall be corrected as soon as possible after they are reported. Radiation safety audit is a proactive approach to improve radiation safety practices and identify and prevent any potential radiation accident. It is an excellent tool to identify potential problem to radiation users and to assure that safety measures to eliminate or reduce the problems are fully considered. Radiation safety audit will help to develop safety culture of the facility. It is intended to be the cornerstone of a safety program designed to aid the facility, staff and management in maintaining a safe environment in which activities are carried out. The initiative of this work is to evaluate the need of having a proper audit as one of the mechanism to manage the safety using ionizing radiation. This study is focused on the need of having a proper radiation safety audit to identify deviations and deficiencies of radiation protection programmes. It will be based on studies conducted on several institutes/radiation facilities in Malaysia in 2006. Steps will then be formulated towards strengthening radiation safety through proper audit. This will result in a better working situation and confidence in the radiation protection community

  7. RF radiation safety handbook

    International Nuclear Information System (INIS)

    Kitchen, Ronald.

    1993-01-01

    Radio frequency radiation can be dangerous in a number of ways. Hazards include electromagnetic compatibility and interference, electro-explosive vapours and devices, and direct effects on the human body. This book is a general introduction to the sources and nature of RF radiation. It describes the ways in which our current knowledge, based on relevant safety standards, can be used to safeguard people from any harmful effects of RF radiation. The book is designed for people responsible for, or concerned with, safety. This target audience will primarily be radio engineers, but includes those skilled in other disciplines including medicine, chemistry or mechanical engineering. The book covers the problems of RF safety management, including the use of measuring instruments and methods, and a review of current safety standards. The implications for RF design engineers are also examined. (Author)

  8. Radiation safety of Takasaki ion accelerators for advanced radiation in JAERI

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Tanaka, Susumu; Anazawa, Yutaka

    1991-01-01

    Building layout of Takasaki ion accelerator facility has been started since 1987, with the propulsion of research development of (1) cosmetic environment materials, (2) nuclear fusion reactors, (3) biotechnology, and (4) new functional materials. This paper deals with an AVF cyclotron and a tandem type accelerator, focusing on safety design, radiation safety management, and radioactive waste management. Safety design is discussed in view of radiation shielding and activation countermeasures. Radiation safety management covers radiation monitoring in the workplace, exhaust radioactivity, environment outside the facility, and the other equipments; personal monitoring; and protective management of exposure. For radiation waste management, basic concept and management methods are commented on. (N.K.)

  9. Radiation Safety (Qualifications) Regulations 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations, promulgated pursuant to the provisions of the Radiation Safety Act, 1975-1979, require persons engaged in activities involving radiation to pass a radiation safety examination or to possess an approved qualification in radiation. The National Health and Medical Research Council is authorised to exempt persons from compliance with these requirements or, conversely, to impose such requirements on persons other than those designated. (NEA) [fr

  10. Comparison of Design and Practices for Radiation Safety among Five Synchrotron Radiation Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; SLAC; Asano, Yoshihiro; JAERI-RIKEN, Hyogo; Casey, William R.; Brookhaven; Donahue, Richard J.

    2005-01-01

    There are more and more third-generation synchrotron radiation (SR) facilities in the world that utilize low emittance electron (or positron) beam circulating in a storage ring to generate synchrotron light for various types of experiments. A storage ring based SR facility consists of an injector, a storage ring, and many SR beamlines. When compared to other types of accelerator facilities, the design and practices for radiation safety of storage ring and SR beamlines are unique to SR facilities. Unlike many other accelerator facilities, the storage ring and beamlines of a SR facility are generally above ground with users and workers occupying the experimental floor frequently. The users are generally non-radiation workers and do not wear dosimeters, though basic facility safety training is required. Thus, the shielding design typically aims for an annual dose limit of 100 mrem over 2000 h without the need for administrative control for radiation hazards. On the other hand, for operational and cost considerations, the concrete ring wall (both lateral and ratchet walls) is often desired to be no more than a few feet thick (with an even thinner roof). Most SR facilities have similar operation modes and beam parameters (both injection and stored) for storage ring and SR beamlines. The facility typically operates almost full year with one-month start-up period, 10-month science program for experiments (with short accelerator physics studies and routine maintenance during the period of science program), and a month-long shutdown period. A typical operational mode for science program consists of long periods of circulating stored beam (which decays with a lifetime in tens of hours), interposed with short injection events (in minutes) to fill the stored current. The stored beam energy ranges from a few hundreds MeV to 10 GeV with a low injection beam power (generally less than 10 watts). The injection beam energy can be the same as, or lower than, the stored beam energy

  11. Nuclear safety and radiation protection consideration in the design of research and development facility

    International Nuclear Information System (INIS)

    Akbar, M.R.

    2010-01-01

    Nuclear safety is a critically important aspect that must be considered in the design of a nuclear facility in order to ensure the protection of the workers, public and environment. This paper looks at the methodology, approach and incorporation of this aspect, specifically into the design of a research and development facility. The Health, Safety and Environmental Basis of Design is an initial analysis of nuclear safety and radiation protection considerations that is performed during the conceptual design phase and sets the baseline for what the design of the facility must conform to. It consists of general nuclear safety design principles, such as defence in depth and optimisation considerations, and a hazard management strategy. Following the Health, Safety and Environmental Basis of Design, a Preliminary Safety Assessment Report is generated during the basic design phase in conjunction with various analyses in order to assess the impact of hazards on the workers and members of the public. This assessment follows a hazard graded approach where the depth of the analysis will be determined by the impact of the worst case accident scenario in the facility. The assessment also includes a waste management strategy which is an essential aspect to be considered in the design in order to minimize the generation of waste. The safety assessment also demonstrates compliance to dose limits and risk criteria for the workers and members of the public set by the regulatory body and supported by a legal framework. Measures are taken to keep risk as low as reasonably achievable and prevent transgression of the risk and dose limits. However, a balance needs to be maintained between 5 reducing these doses further and the cost of such a reduction, which is known as optimization. It is therefore imperative to have nuclear safety specialists analyse the design in order to protect the worker and member of the public from unwarranted exposure to nuclear radiation. (author)

  12. Radiation safety

    International Nuclear Information System (INIS)

    Jain, Priyanka

    2014-01-01

    The use of radiation sources is a privilege; in order to retain the privilege, all persons who use sources of radiation must follow policies and procedures for their safe and legal use. The purpose of this poster is to describe the policies and procedures of the Radiation Protection Program. Specific conditions of radiation safety require the establishment of peer committees to evaluate proposals for the use of radionuclides, the appointment of a radiation safety officer, and the implementation of a radiation safety program. In addition, the University and Medical Centre administrations have determined that the use of radiation producing machines and non-ionizing radiation sources shall be included in the radiation safety program. These Radiation Safety policies are intended to ensure that such use is in accordance with applicable State and Federal regulations and accepted standards as directed towards the protection of health and the minimization of hazard to life or property. It is the policy that all activities involving ionizing radiation or radiation emitting devices be conducted so as to keep hazards from radiation to a minimum. Persons involved in these activities are expected to comply fully with the Canadian Nuclear Safety Act and all it. The risk of prosecution by the Department of Health and Community Services exists if compliance with all applicable legislation is not fulfilled. (author)

  13. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDUR and ACRTM reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.; Boss, C. R.

    2006-01-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  14. Radiation safety and radiation protection problems on the TESLA Accelerator Installation

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.; Orlic, M.

    1997-01-01

    As we can see from the examples of many accelerator facilities installed throughout the world with ion beam energy, mass and charge characteristics and design similar to the TESLA Accelerator Installation, there is a great diversity among them, and each radiation protection and safety programme must be designed to facilitate the safe and effective operation of the accelerator according to the needs of the operating installation. Although there is no standard radiation protection and safety organization suitable for all institutions, experience suggests some general principles that should be integrated with all the disciplines involved in a comprehensive safety programme. (author)

  15. Radiation safety systems at the NSLS

    International Nuclear Information System (INIS)

    Dickinson, T.

    1987-04-01

    This report describes design principles that were used to establish the radiation safety systems at the National Synchrotron Light Source. The author described existing safety systems and the history of partial system failures. 1 fig

  16. Radiation and waste safety: Strengthening national capabilities

    International Nuclear Information System (INIS)

    Barretto, P.; Webb, G.; Mrabit, K.

    1997-01-01

    For many years, the IAEA has been collecting information on national infrastructures for assuring safety in applications of nuclear and radiation technologies. For more than a decade, from 1984-95, information relevant to radiation safety particularly was obtained through more than 60 expert missions undertaken by Radiation Protection Advisory Teams (RAPATs) and follow-up technical visits and expert missions. The RAPAT programme documented major weaknesses and the reports provided useful background for preparation of national requests for IAEA technical assistance. Building on this experience and subsequent policy reviews, the IAEA took steps to more systematically evaluate the needs for technical assistance in areas of nuclear and radiation safety. The outcome was the development of an integrated system designed to more closely assess national priorities and needs for upgrading their infrastructures for radiation and waste safety

  17. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  18. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  19. Safety considerations in the design of the fusion engineering device

    International Nuclear Information System (INIS)

    Barrett, R.J.

    1983-01-01

    Safety considerations play a significant role in the design of a near-term Fusion Engineering Device (FED). For the safety of the general public and the plant workers, the radiation environment caused by the reacting plasma and the potential release of tritium fuel are the dominant considerations. The U.S. Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris. The highly activated device components make it necessary to design many of the maintenance activities in the reactor building for totally remote operation. The hot cell facility has evolved as a totally remote maintenance facility due to the high radiation levels of the device components. Safety considerations have had substantial impacts on the design of FED. Several examples of safety-related design impacts are discussed in the paper. Feasible solutions have been identified for all outstanding safety-related items, and additional optimization of these solutions is anticipated in future design studies

  20. Safety guide data on radiation shielding in a reprocessing facility

    International Nuclear Information System (INIS)

    Sekiguchi, Noboru; Naito, Yoshitaka

    1986-04-01

    In a reprocessing facility, various radiation sources are handled and have many geometrical conditions. To aim drawing up a safety guidebook on radiation shielding in order to evaluate shielding safety in a reprocessing facility with high reliability and reasonableness, JAERI trusted investigation on safety evaluation techniques of radiation shielding in a reprocessing facility to Nuclear Safety Research Association. This report is the collection of investigation results, and describes concept of shielding safety design principle, radiation sources in reprocessing facility and estimation of its strength, techniques of shielding calculations, and definite examples of shielding calculation in reprocessing facility. (author)

  1. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  2. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  3. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  4. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  5. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  6. A preliminary study on the design in architecture of nuclear and radiation safety standard system

    International Nuclear Information System (INIS)

    Song Dahu; Zhang Chi; Yang Lili; Li Bin; Liu Yingwei; An Hongzhen; Gao Siyi; Liu Ting; Meng De

    2014-01-01

    The connotation and function of nuclear and radiation safety standards are analyzed, and their relationships with the relevant laws and regulations are discussed in the paper. Some suggestions and blue print of overall architecture to build nuclear and radiation safety standard system are proposed, on the basis of researching the application status quo, existing problems and needs for nuclear and radiation safety standards in China. This work is a beneficial exploration and attempt to establish China's nuclear and radiation safety standards. (authors)

  7. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  8. Promoting safety culture in radiation industry through radiation audit

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2007-01-01

    This paper illustrates the Malaysian experience in implementing and promoting effective radiation safety program. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. This program is known as radiation safety audit and is able to reveal where and when action is needed to make improvements to the systems of controls. A structured and proper radiation self-auditing system is seen as the sole requirement to meet the current and future needs in sustainability of radiation safety. As a result safety culture, which has been a vital element on safety in many industries can be improved and promote changes, leading to good safety performance and excellence. (author)

  9. Radiation safety management system in a radioactive facility

    International Nuclear Information System (INIS)

    Amador, Zayda H.

    2008-01-01

    Full text: This paper illustrates the Cuban experience in implementing and promoting an effective radiation safety system for the Centre of Isotopes, the biggest radioactive facility of our country. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. All those areas of the radiation protection program are considered (e.g. licensing and training of the staff, occupational exposure, authorization of the practices, control of the radioactive material, radiological occurrences, monitoring equipment, radioactive waste management, public exposure due to airborne effluents, audits and safety costs). A set of indicators designed to monitor key aspects of operational safety performance are used. Their trends over a period of time are analyzed with the modern information technologies, because this can provide an early warning to plant management for searching causes behind the observed changes. In addition to analyze the changes and trends, these indicators are compared against identified targets and goals to evaluate performance strengths and weaknesses. A structured and proper radiation self-auditing system is seen as a basic requirement to meet the current and future needs in sustainability of radiation safety. The integrated safety management system establishment has been identified as a goal and way for the continuous improvement. (author)

  10. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  11. The Radiation Safety Interlock System for Top-Up Mode Operation at NSRRC

    CERN Document Server

    Chen Chien Rong; Kao, Sheau-Ping; Liu, Joseph; Sheu, Rong-Jiun; Wang, Jau-Ping

    2005-01-01

    The radiation safety interlock systems of NSRRC have been operated for more than a decade. Some modification actions have been implemented in the past to perfect the safe operation. The machine and its interlock system were originally designed to operate at the decay mode. Recently some improvement programs to make the machine injection from original decay mode to top-up mode at NSRRC has initiated. For users at experimental area the radiation dose resulted from top-up re-fill injections where safety shutters of beam-lines are opened will dominate. In addition to radiation safety action plans such as upgrading the shielding, enlarging the exclusion zones and improving the injection efficiency, the interlock system for top-up operation is the most important to make sure that injection efficiency is acceptable. To ensure the personnel radiation safety during the top-up mode, the safety interlock upgrade and action plans will be implemented. This paper will summarize the original design logic of the safety inter...

  12. REPOSITORY RADIATION SHIELDING DESIGN GUIDE

    International Nuclear Information System (INIS)

    M. Haas; E.M. Fortsch

    1997-01-01

    The scope of this document includes radiation safety considerations used in the design of facilities for the Yucca Mountain Site Characterization Project (YMP). The purpose of the Repository Radiation Shielding Design Guide is to document the approach used in the radiological design of the Mined Geologic Disposal System (MGDS) surface and subsurface facilities for the protection of workers, the public, and the environment. This document is intended to ensure that a common methodology is used by all groups that may be involved with Radiological Design. This document will also assist in ensuring the long term survivability of the information basis used for radiological safety design and will assist in satisfying the documentation requirements of the licensing body, the Nuclear Regulatory Commission (NRC). This design guide provides referenceable information that is current and maintained under the YMP Quality Assurance (QA) Program. Furthermore, this approach is consistent with maintaining continuity in spite of a changing design environment. This approach also serves to ensure common inter-disciplinary interpretation and application of data

  13. REPOSITORY RADIATION SHIELDING DESIGN GUIDE

    Energy Technology Data Exchange (ETDEWEB)

    M. Haas; E.M. Fortsch

    1997-09-12

    The scope of this document includes radiation safety considerations used in the design of facilities for the Yucca Mountain Site Characterization Project (YMP). The purpose of the Repository Radiation Shielding Design Guide is to document the approach used in the radiological design of the Mined Geologic Disposal System (MGDS) surface and subsurface facilities for the protection of workers, the public, and the environment. This document is intended to ensure that a common methodology is used by all groups that may be involved with Radiological Design. This document will also assist in ensuring the long term survivability of the information basis used for radiological safety design and will assist in satisfying the documentation requirements of the licensing body, the Nuclear Regulatory Commission (NRC). This design guide provides referenceable information that is current and maintained under the YMP Quality Assurance (QA) Program. Furthermore, this approach is consistent with maintaining continuity in spite of a changing design environment. This approach also serves to ensure common inter-disciplinary interpretation and application of data.

  14. New ICRP recommendations and radiation safety of an NPP

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2007-01-01

    In March 2007 the fundamental radiation protection recommendations used world-widely in nuclear facilities were approved by the ICRP. Implementation of radiation safety standards in an NPP is a challenging issue related to all NPP phases from planning a site and its design to its decommissioning also because if neglected it could be very difficult if not impossible to implement improvement of radiation safety later during operation or decommissioning without a substantial cost. The standards are changing with a period of 15 years which is small regarding a prolonged lifetime of many NPPs and also foreseen lifetime of new NPPs, i.e. 60 years. The new recommendations are actually an upgrading of the ICRP 60. Among other changes new sets of wR and wT are given, as well as an update of around 50 different values related to doses. Two new concepts are also tackled i.e. terrorist attacks and protection of the environment. The influence of the new recommendations on the radiation safety of NPPs can be analysed by a selection of four renewed or new concepts: types of exposure situation, dose constraints, source-related approach and safety and security. Their implementation could lead to upgrading the radiation safety of future or existing NPPs as well as of decommissioning processes. Some of the concepts were already extensively and successfully used by designers of modifications or of new NPPs, as well as by operators. (author)

  15. The first symposium of Research Center for Radiation Safety, NIRS. Perspective of future studies of radiation safety

    International Nuclear Information System (INIS)

    Shimo, Michikuni

    2002-03-01

    This paper summarizes presentations given in the title symposium, held at the Conference Room of National Institute of Radiological Sciences (NIRS) on November 29 and 30, 2001. Contained are Introductory remarks: Basic presentations concerning exposure dose in man; Environmental levels of radiation and radioactivity, environmental radon level and exposure dose, and radiation levels in the specific environment (like in the aircraft): Special lecture (biological effects given by space environment) concerning various needs for studies of radiation safety; Requirement for open investigations, from the view of utilization, research and development of atomic energy, from the clinical aspect, and from the epidemiological aspect: Special lecture (safety in utilization of atomic energy and radiation-Activities of Nuclear Safety Commission of Japan) concerning present state and perspective of studies of radiation safety; Safety of radiation and studies of biological effects of radiation-perspective, and radiation protection and radiation safety studies: Studies in the Research Center for Radiation Safety; Summary of studies in the center, studies of the biological effects of neutron beam, carcinogenesis by radiation and living environmental factors-complicated effects, and studies of hereditary effects: Panel discussion (future direction of studies of radiation safety for the purpose of the center's direction): and concluding remarks. (N.I.)

  16. Radiation safety among cardiology fellows.

    Science.gov (United States)

    Kim, Candice; Vasaiwala, Samip; Haque, Faizul; Pratap, Kiran; Vidovich, Mladen I

    2010-07-01

    Cardiology fellows can be exposed to high radiation levels during procedures. Proper radiation training and implementation of safety procedures is of critical importance in lowering physician health risks associated with radiation exposure. Participants were cardiology fellows in the United States (n = 2,545) who were contacted by e-mail to complete an anonymous survey regarding the knowledge and practice of radiation protection during catheterization laboratory procedures. An on-line survey engine, SurveyMonkey, was used to distribute and collect the results of the 10-question survey. The response rate was 10.5%. Of the 267 respondents, 82% had undergone formal radiation safety training. Only 58% of the fellows were aware of their hospital's pregnancy radiation policy and 60% knew how to contact the hospital's radiation safety officer. Although 52% of the fellows always wore a dosimeter, 81% did not know their level of radiation exposure in the previous year and only 74% of fellows knew the safe levels of radiation exposure. The fellows who had received formal training were more likely to be aware of their pregnancy policy, to know the contact information of their radiation safety officer, to be aware of the safe levels of radiation exposure, to use dosimeters and RadPad consistently, and to know their own level of radiation exposure in the previous year. In conclusion, cardiology fellows have not been adequately educated about radiation safety. A concerted effort directed at physician safety in the workplace from the regulatory committees overseeing cardiology fellowships should be encouraged. Published by Elsevier Inc.

  17. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  18. Radiation safety in 'install and operate type' irradiator

    International Nuclear Information System (INIS)

    Sahoo, D.K.; Kohli, A.K.

    2003-01-01

    Install and operate type irradiator has been designed to carry out radiation processing of various food products as well as medical products. It is a category 1 type batch irradiator. This paper brings out the radiation safety aspects of this irradiator. Comparison has been made with conveyor type category IV irradiators, which are more common in use for commercial purposes. The design has many features that make it a very safe, convenient and economical method for processing of all items that are permitted and amenable for gamma radiation processing. (author)

  19. A Preliminary Study for Safety Shutter design to Protect Streaming of Residual Radiation Passing through Beamline in Pre-Separator Room of ISOL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Kim, Do Hyun; Kim, Song Hyun; Shin, Chang Ho; Nam, Shin Woo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    RAON is a heavy ion accelerator under construction by the Institute for Basic Science (IBS) in Korea. As one part of the RAON accelerator, ISOL is a facility to generate and separate rare isotopes for various experiments. In ISOL facility, isotopes generated from the reaction between 70 MeV proton beam and UC{sub 2} target are transferred to pre-separator room. Almost all isotopes accumulated in slit of pre-separator except specific isobars, which are set for experiments. Residual radiations are generated from accumulated isotopes because these isotopes are unstable. Streaming of residual radiation by the beamline is weak point for radiation shielding design. In this study, safety shutter was designed. Residual radiation generated from accumulated isotopes at slit of pre-separator was estimated using following conditions: (1) the isotopes generated by proton-target reactions are accumulated at slit with 10 % accumulation rate; (2) it was assumed that the radioactive isotopes are uniformly distributed in the cylindrical slit which have 1 cm height and 15 diameter. To design optimized safety shutter, following steps were performed: (1) thickness and diameter of the bulk shield material were evaluated to optimize safety shutter material; (2) additional shielding structure was proposed using dose contribution of each additional shielding wall.

  20. System Design and the Safety Basis

    International Nuclear Information System (INIS)

    Ellingson, Darrel

    2008-01-01

    The objective of this paper is to present the Bechtel Jacobs Company, LLC (BJC) Lessons Learned for system design as it relates to safety basis documentation. BJC has had to reconcile incomplete or outdated system description information with current facility safety basis for a number of situations in recent months. This paper has relevance in multiple topical areas including documented safety analysis, decontamination and decommissioning (D and D), safety basis (SB) implementation, safety and design integration, potential inadequacy of the safety analysis (PISA), technical safety requirements (TSR), and unreviewed safety questions. BJC learned that nuclear safety compliance relies on adequate and well documented system design information. A number of PIS As and TSR violations occurred due to inadequate or erroneous system design information. As a corrective action, BJC assessed the occurrences caused by systems design-safety basis interface problems. Safety systems reviewed included the Molten Salt Reactor Experiment (MSRE) Fluorination System, K-1065 fire alarm system, and the K-25 Radiation Criticality Accident Alarm System. The conclusion was that an inadequate knowledge of system design could result in continuous non-compliance issues relating to nuclear safety. This was especially true with older facilities that lacked current as-built drawings coupled with the loss of 'historical knowledge' as personnel retired or moved on in their careers. Walkdown of systems and the updating of drawings are imperative for nuclear safety compliance. System design integration with safety basis has relevance in the Department of Energy (DOE) complex. This paper presents the BJC Lessons Learned in this area. It will be of benefit to DOE contractors that manage and operate an aging population of nuclear facilities

  1. Radiation Safety for Sustainable Development

    International Nuclear Information System (INIS)

    2015-10-01

    The objective of radiation safety is Assessments of Natural Radioactivity and its Radiological. The following topics were discussed during the conference: AFROSAFE Championing Radiation Safety in Africa, Radiation Calibration, and Development and Validation of a Laser Induced Breakdown Spectrometry Method for Cancer Detection and Characterization. Young Generation in NUCLEAR Initiative to Promote Nuclear Science and Technology, Radiation Protection Safety Culture and Application of Nuclear Techniques in Industry and the Environment were discuss. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles. Fundamental role of medical physics in Radiation Therapy

  2. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.; Oldfather, D.; Lindner, A.

    1993-05-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 GeV synchrotron light source facility consisting of a 120 keV electron gun, 50 MeV linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  3. Radiation and waste safety

    International Nuclear Information System (INIS)

    1997-01-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  4. Design aspects of radiation protection for nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Safety Guide deals with the provisions to be made in the design of thermal neutron reactor power plants to protect site personnel and the public from undue exposure to ionizing radiation during operational states and accident conditions. The effective radiation protection is a combination of good design, high quality construction and proper operation. The document gives guidance on how to satisfy the objectives contained in Subsection 2.2 and Section 9 of the Code of Practice on Design for Safety of Nuclear Power Plants

  5. Construction of data base for radiation safety assessment of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Saigusa, Shin

    2001-01-01

    Data base with an electronic text on the safety assessment of low dose ionizing radiation have been constructed. The contents and the data base system were designed to provide useful information to Japanese citizens, radiation specialists, and decision makers for a scientific and reasonable understanding of radiation health effects, radiation risk assessment, and radiation protection. The data base consists of the following four essential parts, namely, ORIGINAL DESCRIPTION, DETAILED INFORMATION, TOPIC INFORMATION, and RELATED INFORMATION. The first two parts of the data base are further classified into following subbranches: Radiobiological effects, radiation risk assessment, and radiation exposure and protection. (author)

  6. Modernization of safety system for the radiation facility for industrial sterilization

    International Nuclear Information System (INIS)

    Drndarevic, V.; Djuric, D.; Koturovic, A.; Arandjelovic, M.; Mikic, R.

    1995-01-01

    Modernization of the existing safety system of the radiation facility for industrial sterilization at the Vinca Institute of nuclear science is done. In order to improve radiation safety of the facility, the latest recommendations and requirements of IAEA have been implemented. Concept and design of the modernized system are presented. The new elements of the safety system are described and the improvements achieved by means of this modernization are pointed out. (author)

  7. Test tools of physics radiography children as a support for safety radiation and safety patients

    International Nuclear Information System (INIS)

    Siti Masrochah; Yeti Kartikasari; Ardi Soesilo Wibowo

    2013-01-01

    Radiographic examination of the thorax children aged 1-3 years have a high sufficiently failure. This failure is caused by the movement and difficulty positioning the patient, resulting in the risk of repeat radiographs to patient safety particularly unnecessary radiation risks. It is therefore necessary to develop research on children design fixation devices. This research aims to create a design tool fixation on radiographs children to support radiation safety and patient safety. This research is a descriptive exploratory approach to tool design. The independent variables were the design tools, variable tool function test results, and radiographic variables controlled thorax. The procedure is done by designing data collection tools, further trials with 20 samples. Processing and analysis of data is done by calculating the performance assessment tool scores with range 1-3. The results showed that the design tool of fixation in the form of standard radiographic cassette equipped with chairs and some form of seat belt fixation. The procedure uses a tool fixation is routine radiographic follow thorax child in an upright position. Function test results aids fixation is to have an average score of 2.66, which means good. While the test results for each component, the majority of respondents stated that the reliability of the device is quite good with a score of 2.45 (60 %), convenience tool with a score of 2.60 (70 %), quality of the radiographs did not incontinence of the thorax radiograph with a score 2.55 (85 %), the child protection (security) with a score of 2.70 (70 %), good design aesthetic design with a score of 2.80 (80 %), addition of radiation from the others on the use of these tools do not need with a score of 2.80 (80 %), and there is no additional radiation due to repetitions with a score of 2.85 (90 %). (author)

  8. Ionising radiation safety training in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1998-01-01

    Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation. However, most are designated as radiation protection officers as a secondary duty. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A Training Course, responding to these requirements, has been developed to emphasize, basic radiation theory and protection, operation of radiation monitors available in the ADO, an understanding of the Ionising Radiation Safety Manual, day-to-day radiation safety in units and establishments, and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved successful, both for the students and the ADO generally. To seek national accreditation of the course through the Australian National Training Authority, as a first step, competency standards have been proposed. (authors)

  9. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  10. Development and design of a computer-assisted information management system for radiation safety management at the University of Washington

    International Nuclear Information System (INIS)

    Riches, C.G.; Riordan, F.J.; Robb, D.; Grieb, C.; Pence, G.; O'Brien, M.J.

    1984-01-01

    The Radiation Safety Office (RSO) at the University of Washington (UW) found that it needed a computerized information system to help manage the campus radiation safety program and to help provide the records necessary to show compliance with regulations and license requirements. The John L. Locke Computer Center at the UW had just developed the GLAMOR system to aid information entry and query for their computer when the RSO turned to them for assistance. The module that was developed provided a mechanism for controlling and monitoring radioactive materials on campus. This became one part of a multi-faceted system that registers users, employees, sealed sources and radiation-producing machines. The system is designed to be interactive, for immediate information recall, and powerful enough to provide routine and special reports on compliance status. The RSO information system is designed to be flexible and can easily incorporate additional features. Some future features include an interactive SNM control program, an interface to the information system currently being developed for the occupational safety and health program and an interface to the database provided by the commercial film badge service used by the University. Development of this program lead the RSO to appreciate the usefulness of having health physics professionals on the staff who were also knowledgeable about computers and who could develop programs and reports necessary to their activities

  11. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  12. Safety and radiation protection in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Ghadge, S.G.

    2008-01-01

    Full text: Nuclear energy, an important option for electricity generation is environment friendly, technologically proven, economically competitive and associated with the advantages of energy security and diversity. At present, India has an installed nuclear power generation capacity of 4120 M We with 6 more reactors are under construction/ commissioning at 4 sites. Nuclear power program, in India, as of now is primarily based on pressurized heavy water technology and these reactors are designed with safety features, such as, independent and diverse shut down systems, emergency core cooling system, double containment; pressure suppression pool etc. The principles of redundancy, diversity, fail-safe and passive systems are used in the design. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. In this regard the prime responsibility for safety rests with the organization responsible for facilities and activities that give rise to radiation risks and is achieved by establishing and maintaining the necessary competence, providing adequate training and information, establishing procedures and arrangements to maintain safety under all conditions; verifying appropriate design and the adequate quality of facilities and activities and of their associated equipment; ensuring the safe control of all radioactive material that is used, produced, stored or transported, ensuring the safe control of all radioactive waste that is generated. 'Radiation Protection for Nuclear Facilities', issued by Atomic Energy Regulatory Board (the regulatory authority for NPPs in India) is the basic document for following radiation protection procedures in NPPs. Approved work procedures for all radiation jobs exist. Pre job briefing and post job analysis are carried out. Radiation protection is integrated with plant operation. Radiation levels indicate the performance of several systems. Several measures are adopted in design and

  13. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  14. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  15. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  16. Occupational radiation safety in mining

    International Nuclear Information System (INIS)

    Stocker, H.

    1985-01-01

    The first International Conference on Occupational Radiation Safety in Mining was held three years ago in Golden, Colorado, U.S.A., and it provided an excellent forum for an exchange of information on the many scientific, technical and operational aspects of radiation safety in mining. I am aware of the broad spectrum of epidemiological, engineering and related studies which have been pursued during the past three years with a view to achieving further improvements in radiation protection and I expect that the information on these studies will contribute significantly to a wider understanding of subject, and in particular, the means by which radiation safety measures in mining can be optimized

  17. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  18. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  19. AFROSAFE Championing Radiation Safety in Africa

    International Nuclear Information System (INIS)

    Nyabanda, R.

    2015-01-01

    AFRASAFE is a campaign that was formed by Pan African congress of Radiology and imaging (PACOR) and other radiation health workers in Africa in Feb 2015. Its main objective is to unite with a common goal to identify and address issues arising from radiation protection in medicine in Africa. Through this campaign, we state that we shall promote adherence to policies, strategies and activities for the promotion of radiation safety and for maximization of benefits from radiological medical procedures. The campaign strengthens the overall radiation protection of patients, health workers and public. It promotes safe and appropriate use of ionizing radiation in medicine and enhances global information to help improve the benefit/risk dialogue with patients and the public. It enhances the safety and quality of radiological procedures in medicine, and encourages safety in diagnostic and therapeutic equipment and facilities. The issue of research in radiation protection and safety needs to be promoted. This presentation will outline the six strategic objectives and the implementation tools for radiation safety in medicine in Kenya, the challenges and way forward to achieve our goal. (Author)

  20. Ionising radiation safety training in the Australian defence organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.; Wood, W.B.

    1996-01-01

    Full text: Training personnel in ionising radiation safety within the Australian Defence Organisation (ADO) requires addressing some unique features of an organisation employing both military and civilian personnel. Activities may include those of a civil nature (such as industrial and medical radiography), specific military requirements (for training and emergency response) and scientific research and development. Some personnel may be assigned to full-time duties associated with radiation, while others may be designated as radiation protection officers in remote units with few duties to perform in this role. A further complication is that most military personnel are subjected to postings at regular intervals. The ADO's Directorate of Defence Occupational Health and Safety has established an Ionising Radiation Safety Subcommittee to monitor not only the adequacy of the internal Ionising Radiation Safety Manual but also the training requirements. A training course, responding to these requirements, has been developed to emphasise: basic radiation theory and protection; operation of radiation monitors available in the ADO; an understanding of the Safety Manual; day-to-day radiation safety in units and establishments; and appropriate responses to radiation accidents and emergencies. In addition, students are briefed on a limited number of peripheral topics and participate in some site visits. Currently, two Courses are held annually, each with about twenty students. Most of the material is presented by ADO personnel with external contractor support. The three Courses held to date have proved sufficiently successful, both for the students and the ADO generally, to seek national accreditation through the Australian National Training Authority and, as a first step, competency standards have been identified

  1. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  2. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  3. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  4. The personnel protection system for a Synchrotron Radiation Accelerator Facility: Radiation safety perspective

    International Nuclear Information System (INIS)

    Liu, J.C.

    1993-05-01

    The Personnel Protection System (PPS) at the Stanford Synchrotron Radiation Laboratory is summarized and reviewed from the radiation safety point of view. The PPS, which is designed to protect people from radiation exposure to beam operation, consists of the Access Control System (ACS) and the Beam Containment System (BCS), The ACS prevents people from being exposed to the very high radiation level inside the shielding housing (also called a PPS area). The ACS for a PPS area consists of the shielding housing and a standard entry module at every entrance. The BCS prevents people from being exposed to the radiation outside a PPS area due to normal and abnormal beam losses. The BCS consists of the shielding (shielding housing and metal shielding in local areas), beam stoppers, active current limiting devices, and an active radiation monitor system. The system elements for the ACS and BCS and the associated interlock network are described. The policies and practices in setting up the PPS are compared with some requirements in the US Department of Energy draft Order of Safety of Accelerator Facilities

  5. EVALUATION OF BRACHYTHERAPY FACILITY SHIELDING STATUS IN KOREA OBTAINED FROM RADIATION SAFETY REPORTS

    Directory of Open Access Journals (Sweden)

    MI HYUN KEUM

    2013-10-01

    Full Text Available Thirty-eight radiation safety reports for brachytherapy equipment were evaluated to determine the current status of brachytherapy units in Korea and to assess how radiation oncology departments in Korea complete radiation safety reports. The following data was collected: radiation safety report publication year, brachytherapy unit manufacturer, type and activity of the source that was used, affiliation of the drafter, exposure rate constant, the treatment time used to calculate workload and the HVL values used to calculate shielding design goal values. A significant number of the reports (47.4% included the personal information of the drafter. The treatment time estimates varied widely from 12 to 2,400 min/week. There was acceptable variation in the exposure rate constant values (ranging between 0.469 and 0.592 (R-m2/Ci·hr, as well as in the HVLs of concrete, steel and lead for Iridium-192 sources that were used to calculate shielding design goal values. There is a need for standard guidelines for completing radiation safety reports that realistically reflect the current clinical situation of radiation oncology departments in Korea. The present study may be useful for formulating these guidelines.

  6. Proceeding of Radiation Safety and Environment

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect

  7. Nuclear and radiation safety policy

    International Nuclear Information System (INIS)

    Mikus, T; Strycek, E.

    1998-01-01

    Slovenske elektrarne (SE) is a producer of electricity and heat, including from nuclear fuel source. The board of SE is ultimately responsible for nuclear and radiation safety matters. In this leaflet main principles of maintaining nuclear and radiation safety of the Company SE are explained

  8. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  9. Radiation safety aspects of high energy particle accelerators

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2007-01-01

    High-energy accelerators are widely used for various applications in industry, medicine and research. These accelerators are capable of accelerating both ions and electrons over a wide range of energy and subsequently are made to impinge on the target materials. Apart from generating intended reactions in the target, these projectiles can also generate highly penetrating radiations such as gamma rays and neutrons. Over exposure to these radiations will cause deleterious effects on the living beings. Various steps taken to protect workers and general public from these harmful radiations is called radiation safety. The primary objective in establishing permissible values for occupational workers is to keep the radiation worker well below a level at which adverse effects are likely to be observed during one's life time. Another objective is to minimize the incidence of genetic effects for the population as a whole. Today's presentation on radiation safety of accelerators will touch up on the following sub-topics: Types of particle accelerators and their applications; AERB directives on dose limits; Radiation Source term of accelerators; Shielding Design-Use of Transmission curves and Tenth Value layers; Challenges for accelerator health physicists

  10. Evaluation of safety, an unavoidable requirement in the applications of ionizing radiations

    International Nuclear Information System (INIS)

    Jova Sed, Luis Andres

    2013-01-01

    The safety assessments should be conducted as a means to evaluate compliance with safety requirements (and thus the application of fundamental safety principles) for all facilities and activities in order to determine the measures to be taken to ensure safety. It is an essential tool in decision making. For long time we have linked the safety assessment to nuclear facilities and not to all practices involving the use of ionizing radiation in daily life. However, the main purpose of the safety assessment is to determine if it has reached an appropriate level of safety for an installation or activity and if it has fulfilled the objectives of safety and basic safety criteria set by the designer, operating organization and the regulatory body under the protection and safety requirements set out in the International Basic safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. This paper presents some criteria and personal experiences with the new international recommendations on this subject and its practical application in the region and demonstrates the importance of this requirement. Reflects the need to train personnel of the operator and the regulatory body in the proportional application of this requirement in practice with ionizing radiation

  11. Radiation safety without borders initiative

    International Nuclear Information System (INIS)

    Dibblee, Martha; Dickson, Howard; Krieger, Ken; Lopez, Jose; Waite, David; Weaver, Ken

    2008-01-01

    The Radiation Safety Without Borders (RSWB) initiative provides peer support to radiation safety professionals in developing countries, which bolsters the country's infrastructure and may lead the way for IRPA Associate membership. The Health Physics Society (HPS) recognizes that many nations do not possess the infrastructure to adequately control and beneficially use ionizing radiation. In a substantial number of countries, organized radiation protection programs are minimal. The RSWB initiative relies on HPS volunteers to assist their counterparts in developing countries with emerging health physics and radiation safety programs, but whose resources are limited, to provide tools that promote and support infrastructure and help these professionals help themselves. RSWB experience to date has shown that by providing refurbished instruments, promoting visits to a HPS venue, or visiting a country just to look provide valuable technical and social infrastructure experiences often missing in the developing nation's cadre of radiation safety professionals. HPS/RSWB with the assistance of the International Atomic Energy Agency (IAEA) pairs chapters with a country, with the expectation that the country's professional radiation safety personnel will form a foreign HPS chapter, and the country eventually will become an IRPA Associate. Although still in its formative stage, RSWB nonetheless has gotten valuable information in spite of the small number of missions. The RSWB initiative continues to have significant beneficial impacts, including: Improving the radiation safety infrastructure of the countries that participate; Assisting those countries without professional radiation safety societies to form one; Strengthening the humanitarian efforts of the United States; Enhancing Homeland Security efforts through improved control of radioactive material internationally. Developing countries, including those in Latin America, underwritten by IAEA, may take advantage of resources

  12. Radiation Safety in Industrial Radiography. Specific Safety Guide

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  13. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  14. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  15. Implementation of radiation safety program in a medical institution

    International Nuclear Information System (INIS)

    Palanca, Elena D.

    1999-01-01

    A medical institution that utilizes radiation for the diagnosis and treatment of diseases of malignancies develops and implements a radiation safety program to keep occupational exposures of radiation workers and exposures of non-radiation workers and the public to the achievable and a more achievable minimum, to optimize the use of radiation, and to prevent misadministration. The hospital radiation safety program is established by a core medical radiation committee composed of trained radiation safety officers and head of authorized users of radioactive materials and radiation machines from the different departments. The radiation safety program sets up procedural guidelines of the safe use of radioactive material and of radiation equipment. It offers regular training to radiation workers and radiation safety awareness courses to hospital staff. The program has a comprehensive radiation safety information system or radsis that circularizes the radiation safety program in the hospital. The radsis keeps the drafted and updated records of safety guides and policies, radioactive material and equipment inventory, personnel dosimetry reports, administrative, regulatory and licensing activity document, laboratory procedures, emergency procedures, quality assurance and quality control program process, physics and dosimetry procedures and reports, personnel and hospital staff training program. The medical radiation protection committee is tasked to oversee the actual implementation of the radiation safety guidelines in the different radiation facilities in the hospital, to review personnel exposures, incident reports and ALARA actions, operating procedures, facility inspections and audit reports, to evaluate the existing radiation safety procedures, to make necessary changes to these procedures, and make modifications of course content of the training program. The effective implementation of the radiation safety program provides increased confidence that the physician and

  16. Radiation safety and gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Crawford, L.

    1985-01-01

    In 1983, the Radiation Control Section of the South Australian Health Commission conducted an investigation into radiation safety practices in gynaecological brachytherapy. Part of the investigation included a study of the transportation of radioactive sources between hospitals. Several deficiences in radiation safety were found in the way these sources were being transported. New transport regulations came into force in South Australia in July 1984 and since then there have been many changes in the transportation procedure

  17. Radiation safety. Handbook for laboratory workers in the USA

    International Nuclear Information System (INIS)

    Hotte, E.D.; Krueger, D.J.; Connor, K.

    2000-01-01

    The aim of the Handbook is to provide a source of information on radiation safety for those who are involved in the use of ionizing radiation in the laboratory. The potential reader may be a laboratory worker in the university or biomedical setting or the safety professional who desires a basic understanding of radiation protection within the research environment. The Handbook may be used as a reference by the radiation protection specialist or Radiation Safety Officer. To this end, liberal use is made of Appendices to make the Handbook a source of reference for a wide spectrum of readership while avoiding complicating the main body of the text. Each chapter or appendix is designed to stand alone. A complete reading of the Handbook will show that topics may be covered more than once. For example, one may read about the hazards and protective measures on handling radioiodine in Chapter 5 on Practical Radiation Protection as well as in Appendix 19 on Safe Handling of 125 I. Extensive use of figures, rather than tables has been made to present data, in the belief that these produce a good visual representation to a level of precision which is sufficient for most purposes of radiation protection in laboratories. The reader must remember that this Handbook should be taken as a guide only to the applicable regulations. You must consult the appropriate state or federal regulation directly or receive advice of a qualified radiation safety professional. Also, some information in the Appendices, such as commercially available training institutions or radioactive waste brokers, may change with time. Telephone numbers are given for the reader to call directly and check the services provided

  18. Radiation Safety Aspects of Nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, David; Cash, Leigh Jackson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guilmette, Raymond [Ray Guilmette & Associates, LLC, Perry, ME (United States); Kreyling, Wolfgang [Helmholtz-Zentrum Munchen, (Germany); Oberdorster, Gunter [Univ. of Rochester, NY (United States); Smith, Rachel [Public Health England, Oxfordshire (United Kingdom). Centre for Radiation, Chemical and Environmental Hazards

    2017-03-27

    This Report is intended primarily for operational health physicists, radiation safety officers, and internal dosimetrists who are responsible for establishing and implementing radiation safety programs involving radioactive nanomaterials. It should also provide useful information for workers, managers and regulators who are either working directly with or have other responsibilities related to work with radioactive nanomaterials.

  19. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    Persson, L.

    1993-01-01

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  20. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  1. Design considerations for the rotating electrostatic liquid-film radiator

    International Nuclear Information System (INIS)

    Bankoff, S.G.; Miksis, M.J.; Kim, H.; Gwinner, R.

    1994-01-01

    A lightweight, fully modular radiator design for heat rejection in space is proposed, which is estimated to weigh less than 2kg per square meter of the effective radiator area. The feature which makes this thin membrane radiator practical is the internal electrostatic field system, which can stop radiator leaks from punctures, sudden accelerations or accidental tears. Preliminary design calculations are presented for a rotating conical radiator, using liquid lithium at an inlet temperature of 800K. Remarkably low weights of less than 1kgkW -1 may be attained, with safety factors of two or more for stopping leaks. This is almost an order of magnitude less than the values for current heat pipe designs. ((orig.))

  2. Safety design

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Shiozawa, Shusaku

    2004-01-01

    JAERI established the safety design philosophy of the HTTR based on that of current reactors such as LWR in Japan, considering inherent safety features of the HTTR. The strategy of defense in depth was implemented so that the safety engineering functions such as control of reactivity, removal of residual heat and confinement of fission products shall be well performed to ensure safety. However, unlike the LWR, the inherent design features of the high-temperature gas-cooled reactor (HTGR) enables the HTTR meet stringent regulatory criteria without much dependence on active safety systems. On the other hand, the safety in an accident typical to the HTGR such as the depressurization accident initiated by a primary pipe rupture shall be ensured. The safety design philosophy of the HTTR considers these unique features appropriately and is expected to be the basis for future Japanese HTGRs. This paper describes the safety design philosophy and safety evaluation procedure of the HTTR especially focusing on unique considerations to the HTTR. Also, experiences obtained from an HTTR safety review and R and D needs for establishing the safety philosophy for the future HTGRs are reported

  3. Effective education in radiation safety for nurses

    International Nuclear Information System (INIS)

    Ohno, K.; Kaori, T.

    2011-01-01

    In order to establish an efficient training program of radiation safety for nurses, studies have been carried out on the basis of questionnaires. Collaboration of nurses, who are usually standing closest to the patient, is necessary in order to offer safe radiological diagnostics/treatment. The authors distributed the questionnaire to 134 nurses in five polyclinic hospitals in Japan. Important questions were: fear of radiation exposure, knowledge on the radiation treatment, understanding the impact on pregnancy, and so on. Most of the nurses feel themselves uneasy against exposure to radiation. They do not have enough knowledge of radiological treatment. They do not know exactly what is the impact of the radiation on pregnant women. Such tendency is more pronounced, when nurses spend less time working in the radiological department. Nurses play important roles in radiological diagnostics/treatment. Therefore, a well-developed education system for radiation safety is essential. The training for the radiation safety in medicine should be done in the context of general safety in medicine. Education programs in undergraduate school and at the working place should be coordinated efficiently in order to ensure that both nurses and patients are informed about the meaning of radiation safety. (authors)

  4. The increased use of radiation requires enhanced activities regarding radiation safety control

    International Nuclear Information System (INIS)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong

    2015-01-01

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience

  5. The increased use of radiation requires enhanced activities regarding radiation safety control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-05-15

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience.

  6. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  7. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  8. Improving patient safety in radiation oncology

    International Nuclear Information System (INIS)

    Hendee, William R.; Herman, Michael G.

    2011-01-01

    Beginning in the 1990s, and emphasized in 2000 with the release of an Institute of Medicine report, healthcare providers and institutions have dedicated time and resources to reducing errors that impact the safety and well-being of patients. But in January 2010 the first of a series of articles appeared in the New York Times that described errors in radiation oncology that grievously impacted patients. In response, the American Association of Physicists in Medicine and the American Society of Radiation Oncology sponsored a working meeting entitled ''Safety in Radiation Therapy: A Call to Action''. The meeting attracted 400 attendees, including medical physicists, radiation oncologists, medical dosimetrists, radiation therapists, hospital administrators, regulators, and representatives of equipment manufacturers. The meeting was cohosted by 14 organizations in the United States and Canada. The meeting yielded 20 recommendations that provide a pathway to reducing errors and improving patient safety in radiation therapy facilities everywhere.

  9. Promoting safety mindfulness: Recommendations for the design and use of simulation-based training in radiation therapy

    Directory of Open Access Journals (Sweden)

    Lukasz M. Mazur, PhD

    2018-04-01

    Full Text Available There is a need to better prepare radiation therapy (RT providers to safely operate within the health information technology (IT sociotechnical system. Simulation-based training has been preemptively used to yield meaningful improvements during providers' interactions with health IT, including RT settings. Therefore, on the basis of the available literature and our experience, we propose principles for the effective design and use of simulated scenarios and describe a conceptual framework for a debriefing approach to foster successful training that is focused on safety mindfulness during RT professionals' interactions with health IT.

  10. Radiation safety in aviation

    International Nuclear Information System (INIS)

    2005-06-01

    The guide presents the requirements governing radiation safety of aircrews exposed to cosmic radiation and monitoring of such exposure. It applies to enterprises engaged in aviation under a Finnish operating licence and to Finnish military aviation at altitudes exceeding 8,000 metres. The radiation exposure of aircrews at altitudes of less than 8,000 metres is so minimal that no special measures are generally required to investigate or limit exposure to radiation

  11. Safety considerations in the design of the Fusion Engineering Device

    International Nuclear Information System (INIS)

    Barrett, R.J.

    1983-01-01

    The US Department of Energy (DOE) regulations and guidelines for radiation protection have been reviewed and are being applied to the device design. Direct radiation protection is provided by the device shield and the reactor building walls. Radiation from the activated device components and the tritium fuel is to be controlled with shielding, contamination control, and ventilation. The potential release of tritium from the plant has influenced the selection of reactor building and plant designs and specifications. The safety of the plant workers is affected primarily by the radiation from the activated device components and from plasma chamber debris

  12. Radiation safety at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [CERN, Geneva (Switzerland)

    1995-09-01

    CERN, the European Laboratory for Particle Physics, operates proton accelerators up to an energy of 450 GeV and an electron-positron storage ring in the 50 GeV energy range for fundamental high-energy particle physics. A strong radiation protection group assures the radiation safety of these machines both during their operation and in periods of maintenance and repair. Particular radiation problems in an accelerator laboratory are presented and recent developments in radiation protection at CERN discussed. (author)

  13. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  14. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  15. Challenges in promoting radiation safety culture

    International Nuclear Information System (INIS)

    Mod Ali, Noriah

    2008-01-01

    Safety has quickly become an industry performance measure, and the emphasis on its reliability has always been part of a strategic commitment. This paper presents an approach taken by Malaysian Nuclear Agency (Nuclear Malaysia) and authority to develop and implement safety culture for industries that uses radioactive material and radiation sources. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. Proper safety audit will help to identify the non-compliance of safety culture as well as the deviation of management, individual and policy level commitment; review of radiation protection program and activities should be preceded. (author)

  16. Radiation safety in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun

    2017-01-01

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed

  17. Radiation safety in nuclear medicine procedures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Geon; Kim, Ja Hae; Song, Ho Chun [Dept. of Nuclear Medicine, Medical Radiation Safety Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-03-15

    Since the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant in 2011, radiation safety has become an important issue in nuclear medicine. Many structured guidelines or recommendations of various academic societies or international campaigns demonstrate important issues of radiation safety in nuclear medicine procedures. There are ongoing efforts to fulfill the basic principles of radiation protection in daily nuclear medicine practice. This article reviews important principles of radiation protection in nuclear medicine procedures. Useful references, important issues, future perspectives of the optimization of nuclear medicine procedures, and diagnostic reference level are also discussed.

  18. Radiation Safety of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2009-01-01

    The wide spread of Electromagnetic Waves (EMW) through the power lines, multimedia, communications, devices, appliances, etc., are well known. The probable health hazards associated with EMW and the radiation safety criteria are to be reviewed. However, the principles of the regulatory safety are based on radiation protection procedure, intervention to combat the relevant risk and to mitigate consequences. The oscillating electric magnetic fields (EMF) of the electromagnetic radiation (EMR) induce electrical hazards. The extremely high power EMR can cause fire hazards and explosions of pyrotechnic (Rad Haz). Biological hazards of EMF result as dielectric heat, severe burn, as well as the hazards of eyes. Shielding is among the technical protective measures against EMR hazards. Others are limitation of time of exposure and separation distance apart of the EMR source. Understanding and safe handling of the EMR sources are required to feel safety.

  19. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    International Nuclear Information System (INIS)

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-01-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely

  20. Architectural Design of a Nuclear Research Center with Radiation Safety Considerations, in North Western Coast of Egypt (Using Auto CAD and 3ds Max Programs)

    International Nuclear Information System (INIS)

    Farahat, M.A.Z.

    2016-01-01

    This research discusses the design of nuclear research centers to help architects and engineers who will design these centers. Also, the research covers the site characteristics which are used in site selection of nuclear research centers. It covers the principles and standards used in design and planning of nuclear research centers. The master plan of a nuclear research center should be designed based on the system of segregation according to the level of radioactivity. Radiation safety is an important aspect in the design of nuclear research centers. The Egyptian Atomic Energy Authority consists of three nuclear research centers, namely, the Nuclear Research Center in Inshas (Grid Planning Concept), the Hot Laboratories and Waste Management Center in Inshas (Grid Planning Concept) and The National Center for Radiation Research and Technology in Nasr City (Linear Planning Concept). The Radial Planning Concept is the best among all the Planning Concepts as regard radiation safety considerations. Therefore, an architectural design of a new nuclear research center was proposed in a suitable site in North Western Coast of Egypt (Radial Planning Concept) using Auto CAD and 3ds Max programs. This site is suitable and satisfies many of the site requirements. It is recommended that the architectural design of nuclear research centers should be supervised by an architectural engineer experienced in architectural design of nuclear facilities

  1. Safety in design and operation of low energy particle accelerators

    International Nuclear Information System (INIS)

    Badawy, I.

    1991-01-01

    This paper studies the safety in design and operation of low energy accelerators which produce beams of accelerated charged particles and radiations. As radiation sources, the accelerators are widely used in scientific research, industry, food and medical applications. The risks to human and environment are considered. The safety in accelerators is discussed-particularly-the shielding against ionizing radiations, overexposure to RF radiation fire hazards and power failures. Also the paper studies the emergency response at incidents. Emergency procedures are recommended for each type of emergency. Reporting to the competent Authority is also recommended to be prepared for each incident. The basic principles of regulatory control, licensing and inspections for accelerator facilities are discussed. The relation with the competent authority is pointed out. 4 fig

  2. Regulatory measures of BARC Safety Council to control radiation exposure in BARC Facilities

    International Nuclear Information System (INIS)

    Rajdeep; Jolly, V.M.; Jayarajan, K.

    2018-01-01

    Bhabha Atomic Research Centre is involved in multidisciplinary research and developmental activities, related to peaceful use of nuclear energy including societal benefits. BARC facilities at different parts of India include nuclear fuel fabrication facilities, research reactors, nuclear recycle facilities and various Physics, Chemistry and Biological laboratories. BARC Safety Council (BSC) is the regulatory body for BARC facilities and takes regulatory measures for radiation protection. BSC has many safety committees for radiation protection including Operating Plants Safety Review Committee (OPSRC), Committee to Review Applications for Authorization of Safe Disposal of Radioactive Wastes (CRAASDRW) and Design Safety Review Committees (DSRC) in 2 nd tier and Unit Level Safety Committees (ULSCs) in 3 rd tier under OPSRC

  3. Operational safety and radiation protection considerations in designing an HLW repository in Germany

    International Nuclear Information System (INIS)

    Filbert, W.; Kreienmeyer, M.; Poehler, M.; Niehues, N.

    2008-01-01

    In Germany the reference concept for disposal of heat generating radioactive waste considers emplacing canisters with vitrified waste in deep vertical boreholes drilled from the drifts of a repository mine in salt at a depth of 870 m. Spent fuel is to be disposed of in self-shielding POLLUX casks in horizontal drifts. An optimized disposal concept anticipates emplacing unshielded canisters with vitrified HLW and canisters containing the fuel rods of 3 PWR or 9 BWR fuel assemblies in boreholes with a diameter of 60 cm and a depth of up to 300 m.. In all cases the void space between POLLUX cask and drifts and canisters and borehole wall will be backfilled with crushed salt. (1) Operational Safety: Based on a detailed description of all underground disposal operation steps, the possible impacts on the disposal operations were analysed and the need for further studies determined. The disposal operation steps comprise e.g. rail bound transport from the shaft to the emplacement drift and emplacement process itself. As possible impacts the following occurrences were considered: ventilation failure, power supply failure, rock mechanics impact including cross-section convergence, irregular floor uplift and rock fall, brine and natural gas intrusion, derailing of transport carts and finally internal fire. (2) Radiation Protection: According to the German Atomic Energy Act (AtG), the design, construction and operation of a nuclear site like a final repository has to be licensed by the responsible authority. The Radiological Protection Ordinance and further guidelines i.e. concerning the emission and immission of released radioactive nuclides or the risk analysis of possible failure, build the basis for the licensing procedures. To ensure adequate protection against undue radiation exposure the repository is divided into different radiological protection areas. Generally, the handling of shielded waste packages above und under ground (including all the pathway of transport and

  4. Radiation safety in welding and testing

    International Nuclear Information System (INIS)

    King, B.E.; Malaxos, M.; Hartley, B.M.

    1985-01-01

    There are a number of ways of achieving radiation safety in the workplace. The first is by engineering radiation safety into the equipment, providing shielded rooms and safety interlocks. The second is by following safe working procedures. The National Health and Medical Research Council's Code of practice for the control and safe handling of sealed radioactive sources used in industrial radiography (1968) sets out the standards which must be met by equipment to be used in industrial radiography

  5. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2a, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Africa via the Regional project RAF/9/04 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. AFRA Regional Designated Centres, in Algeria, Ghana and Morocco, equivalent to the IAEA's Regional Training Centres (RTCs) present in all the other regions, are key partners in the African region.

  6. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  7. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The objective of this Safety Guide is to provide recommendations on how to meet the requirements of the BSS with regard to irradiation facilities. This Safety Guide provides specific, practical recommendations on the safe design and operation of gamma, electron and X ray irradiators for use by operating organizations and the designers of these facilities, and by regulatory bodies. SCOPE. The facilities considered in this publication include five types of irradiator, whether operated on a commercial basis or for research and development purposes. This publication is concerned with radiation safety issues and not with the uses of irradiators, nor does it cover the irradiation of product or its quality management. The five types of irradiator are: - Panoramic dry source storage irradiators; - Underwater irradiators, in which both the source and the product being irradiated are under water; - Panoramic wet source storage irradiators; - Electron beam irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process; - X ray irradiation facilities, in which irradiation is performed in an area that is potentially accessible to personnel, but that is kept inaccessible during the irradiation process. Consideration of non-radiation-related risks and of the benefits resulting from the operation of irradiators is outside the scope of this Safety Guide. The practices of radiotherapy and radiography are also outside the scope of this Safety Guide. Category I gamma irradiators (i.e. 'self-shielded' irradiators) are outside the scope of this Safety Guide

  8. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    2001-01-01

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  9. Radiation protection and safety culture for cyclotron workers

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    1998-01-01

    The main aim of the present study is to review radiation protection and safety culture measures to be applied to cyclotron workers. The radiation protection (measures are based on Basic Safety standards for the protection) of the health of workers and the general public against the dangers arising from ionizing radiation, while the safety culture are based on IAEA publications

  10. Radiation safety requirements for radionuclide laboratories

    International Nuclear Information System (INIS)

    1993-01-01

    In accordance with the section 26 of the Finnish Radiation Act (592/91) the safety requirements to be taken into account in planning laboratories and other premises, which affect safety in the use of radioactive materials, are confirmed by the Finnish Centre for Radiation and Nuclear Safety. The guide specifies the requirements for laboratories and storage rooms in which radioactive materials are used or stored as unsealed sources. There are also some general instructions concerning work procedures in a radionuclide laboratory

  11. Safety issues in the handling of radiation sources in category IV gamma radiation facilities

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    There is potential for incidents/accidents related to handling of radiation sources. This is increasing due to the fact that more number of plants that too with much larger levels of activity are now coming up. Such facilities produce very high levels of exposure rates during irradiation. A person accidentally present in the irradiation cell can receive a lethal dose within a very short time. Apart from safety requirements during operation and maintenance of these facilities, safety during loading and unloading of sources is important. Category IV type irradiators are the most common. Doubly encapsulated Co-60 slugs are employed to form the source pencils. These irradiators employ a water pool for safely storing the source pencils when irradiation of the products is not going on or when human access is needed into the irradiation cell for some maintenance or source loading/unloading operations. Safety during loading/unloading operations of source pencils is important. In design itself care needs to be taken such that all such operations are convenient and any incident will not lead to a situation where it becomes difficult to come out. Different situations, which can arise during handling of radiation sources and suggested designs to obviate such tight situations, are discussed. (Author)

  12. Use of information technologies to contribute for optimizing the safety radiation management in Cuba

    International Nuclear Information System (INIS)

    Valdes Ramos, M.; Prendes Alonso, M.; Hernandez Saiz, A.; Manzano de Armas, J.

    2013-01-01

    This paper presents the results achieved in Cuba, with the development of a group of information management tools to implement radiation safety systemic and proactive approaches to safety and ICT supported. These tools were designed for different organisms with responsibility for the security at the country level, to the regulatory authority, for user entities, for individual monitoring services and other radiation protection services. It describes the philosophy of information management model used, the characteristics of the developed tools and their integration, the work performed for the homogenization of information available and the ability to capture and deliver data at different levels in decision making. The tools developed are based on the use of variables and indicators of importance to the safety and the systemic approach adopted allows to facilitate the optimization process for supervision of safety practices as well as contribute to the management of knowledge in radiation safety, through a synergistic combination of process data, information, information management systems, and the creative and innovative radiation safety experts

  13. Key issues on safety design basis selection and safety assessment

    International Nuclear Information System (INIS)

    An, S.; Togo, Y.

    1976-01-01

    In current fast reactor design in Japan, four design accident conditions and four design seismic conditions are adopted as the design base classifications. These are classified by the considerations on both likelihood of occurrence and the severeness of the consequences. There are several major problem areas in safety design consideration such as core accident problems which include fuel sodium interaction, fuel failure propagation and residual decay heat removal, and decay heat removal systems problems which is more or less the problem of selection of appropriate system and of assurance of high reliability of the system. In view of licensing, two kinds of accidents are postulated in evaluating the adequacy of a reactor site. The one is the ''major accident'' which is the accident to give most severe radiation hazard to the public from technical point of view. The other is the ''hypothetical accident'', induced public accident of which is severer than that of major accident. While the concept of the former is rather unique to Japanese licensing, the latter is almost equivalent to design base hypothetical accident of the US practice. In this paper, design bases selections, key safety issues and some of the licensing considerations in Japan are described

  14. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    2012-01-01

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  15. A fail-safe design for X-ray safety shutters

    International Nuclear Information System (INIS)

    Cramer, W.E.; Port, E.A.

    1982-01-01

    The purpose of any safety shutter device is to help minimize radiation exposure to personnel. Many such devices for analytical X-ray work may fail in a mode with great potential for injury. The authors present a design that may be used to modify any existing mechanical or electro-mechanical system that utilizes a gate which blocks an aperture to control exposure. The system is of 'fail-safe' design, as defined in the National Bureau of Standards Handbook 111 (American National Standards Institute, 1972); One in which all reasonable anticipated failures of indicator or safety components will cause the equipment to respond in a mode ensuring that personnel are safe from exposure to radiation. The system has visible indicators that make the user aware that a particular failure has occurred; in addition, X-ray generation ceases. (Auth.)

  16. Integration of radiation and physical safety in large radiator facilities

    International Nuclear Information System (INIS)

    Lima, P.P.M.; Benedito, A.M.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    Growing international concern about radioactive sources after the Sept. 11, 2001 event has led to a strengthening of physical safety. There is evidence that the illicit use of radioactive sources is a real possibility and may result in harmful radiological consequences for the population and the environment. In Brazil there are about 2000 medical, industrial and research facilities with radioactive sources, of which 400 are Category 1 and 2 classified by the - International Atomic Energy Agency - AIEA, where large irradiators occupy a prominent position due to the very high cobalt-60 activities. The radiological safety is well established in these facilities, due to the intense work of the authorities in the Country. In the paper the main aspects on radiological and physical safety applied in the large radiators are presented, in order to integrate both concepts for the benefit of the safety as a whole. The research showed that the items related to radiation safety are well defined, for example, the tests on the access control devices to the irradiation room. On the other hand, items related to physical security, such as effective control of access to the company, use of safety cameras throughout the company, are not yet fully incorporated. Integration of radiation and physical safety is fundamental for total safety. The elaboration of a Brazilian regulation on the subject is of extreme importance

  17. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  18. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in … shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  19. Radiation Safety in Industrial Radiography. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  20. WE-F-209-02: Radiation Safety Surveys of Linear Accelerators

    International Nuclear Information System (INIS)

    Martin, M.

    2016-01-01

    Over the past few years, numerous Accreditation Bodies, Regulatory Agencies, and State Regulations have implemented requirements for Radiation Safety Surveys following installation or modification to x-ray rooms. The objective of this session is to review best practices in performing radiation safety surveys for both Therapy and Diagnostic installations, as well as a review of appropriate survey instruments. This session will be appropriate for both therapy and imaging physicists who are looking to increase their working knowledge of radiation safety surveys. Learning Objectives: Identify Appropriate Survey Meters for Radiation Safety Surveys Develop best practices for Radiation Safety Surveys for Therapy units that include common areas of concern. Develop best practices for Radiation Safety Surveys of Diagnostic and Nuclear Medicine rooms. Identify acceptable dose levels and the factors that affect the calculations associated with performing Radiation Safety Surveys.

  1. Nuclear Malaysia. Towards being a certification body for radiation safety auditors

    International Nuclear Information System (INIS)

    Nik Ali, Nik Arlina; Mudri, Nurul Huda; Mod Ali, Noriah

    2012-01-01

    Current management practice demands that an organisation inculcate safety culture in preventing radiation hazard. Radiation safety audit is known as a step in ensuring radiation safety compliance at all times. The purpose of Radiation Safety Auditing is to ensure that the radiation safety protection system is implemented in accordance to Malaysia Atomic Energy Licensing Act 1984, or Act 304, and International Standards. Competent radiation safety auditors are the main element that contributes to the effectiveness of the audit. To realise this need, Innovation Management Centre (IMC) is now in progress to be a certification body for safety auditor in collaboration with Nuclear Malaysia Training Centre (NMTC). NMTC will offer Radiation Safety Management Auditor (RSMA) course, which provide in depth knowledge and understanding on requirement on radiation safety audit that comply with the ISO/IEC 17024 General Requirements for Bodies Operating Certification Systems of Persons. Candidates who pass the exam will be certified as Radiation Safety Management Auditor, whose competency will be evaluated every three years. (author)

  2. Investigation of radiation safety and safety culture of medical sanitation vocation in Suzhou

    International Nuclear Information System (INIS)

    Tang Bo; Tu Yu; Zhang Yin

    2009-01-01

    Objective: To investigate the construction of radiation safety and safety culture of medical sanitation vocation in Suzhou. Methods: All medical units registered in administration center of Suzhou were included. The above selected medical units were completely investigated, district and county under the same condition of quality control. Results: The radiation safety and safety culture are existing differences among different property and grade hospitals of medicai sanitation vocation in Suzhou. Conclusion: The construction of radiation safety and safety culture is generally occupying in good level in suhzou, but there are obvious differences among different property and grade hospitals. The main reason for the differences in the importance attached to by the hospital decision-making and department management officials as well as the staff personal. (authors)

  3. Impact of New Radiation Safety Standards on Licensing Requirements of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Strohal, P.; Subasic, D.; Valcic, I.

    1996-01-01

    As the outcomes of the newly introduced safety philosophies, new and more strict safety design requirements for nuclear installation are expected to be introduced. New in-depth defence measures should be incorporated into the design and operation procedure for a nuclear installation, to compensate for potential failures in protection or safety measures. The new requirements will also apply to licensing of NPP's operation as well as to licensing of nuclear sites, especially for radioactive waste disposal sites. This paper intends to give an overview of possible impacts of new internationally agreed basic safety standards with respect to NPP and related technologies. Recently issued new basic safety standards for radiation protection are introducing some new safety principles which may have essential impact on future licensing requirements regarding nuclear power plants and radioactive waste installations. These new standards recognize exposures under normal conditions ('practices') and intervention conditions. The term interventions describes the human activities that seek to reduce the existing radiation exposure or existing likelihood of incurring exposure which is not part of a controlled practice. The other new development in safety standards is the introduction of so called potential exposure based on the experience gained from a number of radiation accidents. This exposure is not expected to be delivered with certainty but it may result from an accident at a source or owing to an event or sequence of events of a probabilistic nature, including equipment failures and operating errors. (author)

  4. Provision of radiation safety at the designing of the industrial complex of solid radwaste management (ICSRM)

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Sevastyuk, O.V.

    2003-01-01

    The article presents the basic principles and criteria of the radiation safety provision, organization of the radiation control system, and dose calculation for the staff irradiation at the construction and operation of the Industrial complex of solid radwaste management (ICSRM)

  5. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  6. Regulation on the organizatjon of radiation safety control bodies

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document on matters of structure, organization, objectives, rights, and responsibilities of agencies enforcing compliance with radiation safety standards set up in Bulgaria. Under Public Health Law and Ministerial Council Decree No. 117, the organization and management of radiation safety in Bulgaria is entrusted to the Ministry of Public Health (MPH). Within its agency, the State Sanitary Control, authorities specialized in the area of radiation safety are as follows: the Radiation Hygiene Division (RHD) of the MPH Hygiene-and Epidemiology Bureau (HEB); the Specialized Radiation Safety Inspectorate of the Research Institute of Radiobiology and Radiation Hygiene (RIRRH); the Radiation Hygiene Sections of country HEBs; and State sanitary Inspectors assigned to large establishments in the country. (G.G.)

  7. The Australian radiation protection and Nuclear Safety Agency

    International Nuclear Information System (INIS)

    Macnab, D.; Burn, P.; Rubendra, R.

    1998-01-01

    The author talks about the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the new regulatory authority which will combine the existing resources of the Australian Radiation Laboratory and the Nuclear Safety Bureau. Most uses of radiation in Australia are regulated by State or Territory authorities, but there is presently no regulatory authority for Commonwealth uses of radiation. To provide for regulation of the radiation practices of the Commonwealth, the Australian Government has decided to establish the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and a Bill has passed through the House of Representatives and will go to the Spring sitting of the Senate. The new agency will subsume the resources and functions of the Nuclear Safety Bureau and the Australian Radiation Laboratory, with additional functions including the regulation of radiation protection and nuclear safety of Commonwealth practices. Another function of ARPANSA will be the promotion of uniform regulatory requirements for radiation protection across Australia. This will be done by developing, in consultation with the States and Territories, radiation health policies and practices for adoption by the Commonwealth, States and Territories. ARPANSA will also provide research and services for radiation health, and in support of the regulatory and uniformity functions. The establishment of ARPANSA will ensure that the proposed replacement research reactor, the future low level radioactive waste repository and other Commonwealth nuclear facilities and radiation practices are subject to a regulatory regime which reflects the accumulated experience of the States and Territories and best international practice, and meets public expectations

  8. Radiation safety aspects at Indus accelerator complex

    International Nuclear Information System (INIS)

    Marathe, R.G.

    2011-01-01

    Indus Accelerator Complex at Raja Ramanna Center for Advanced Technology houses two synchrotron radiation sources Indus-1 and Indus-2 that are being operated round-the-clock to cater to the needs of the research community. Indus-1 is a 450 MeV electron storage ring and Indus-2 is presently being operated with electrons stored at 2 GeV. Bremsstrahlung radiation and photo-neutrons form the major radiation environment in Indus Accelerator Complex. They are produced due to loss of electron-beam occurring at different stages of operation of various accelerators located in the complex. The synchrotron radiation (SR) also contributes as a potential hazard. In order to ensure safety of synchrotron radiation users and operation and maintenance staff working in the complex from this radiation, an elaborate radiation safety system is in place. The system comprises a Personnel Protection System (PPS) and a Radiation Monitoring System (RMS). The PPS includes zoning, radiation shielding, door interlocks, a search and scram system and machine operation trip-interlocks. The RMS consists of area radiation monitors and beam loss monitors, whose data is available online in the Indus control room. Historical data of radiation levels is also available for data analysis. Synchrotron radiation beamlines at Indus-2 are handled in a special manner owing to the possibility of exposure to synchrotron radiation. Shielding hutches with SR monitors are installed at each beamline of Indus-2. Health Physics Unit also carries out regular radiological surveillance for photons and neutrons during various modes of operation and data is logged shift wise. The operation staff is appropriately trained and qualified as per the recommendations of Atomic Energy Regulatory Board (AERB). Safety training is also imparted to the beamline users. Safe operation procedures and operation checklists are being followed strictly. A radiation instrument calibration facility is also being set-up at RRCAT. The radiation

  9. Radiation safety standards and regulations

    International Nuclear Information System (INIS)

    Ermolina, E.P.; Ivanov, S.I.

    1993-01-01

    Radiation protection laws of Russia concerning medical application of ionizing radiation are considered. Main concepts of the documents and recommendations are presented. Attention was paid to the ALARA principle, safety standrds for paietients, personnel and population, radiation protection. Specific feature of the standardization of radiation factors is the establishment of two classes of norms: main dose limits and permissible levels. Maximum dose commitment is the main standard. Three groups of critical organs and three categories of the persons exposed to radiation are stated. Main requirements for radiation protection are shown

  10. 10 CFR 34.42 - Radiation Safety Officer for industrial radiography.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation Safety Officer for industrial radiography. 34.42 Section 34.42 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION... Radiation Safety Officer for industrial radiography. The RSO shall ensure that radiation safety activities...

  11. Interface between radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    Bengtsson, G.; Hoegberg, L.

    1991-01-01

    Interface issues concern the character and management of overlaps between radiation protection and nuclear safety in nuclear power plants. Typical examples include the selection of inspection and maintenance volumes in order to balance occupational radiation doses versus the safety status of the plant, and the intentional release to the environment in the course of an accident in order to secure better plant control. The paper discusses whether it is desirable and possible to employ a consistent management of interface issues with trade-offs between nuclear safety and radiation protection. Illustrative examples are quoted from a major Nordic research programme on risk analysis and safety rationale. These concern for instance in-service inspections, modifications of plant systems and constructions after the plant has been taken into operation, and studies on the limitations of probabilistic safety assessment. They indicate that in general there are no simple rules for such trade-offs

  12. Radiation Safety Culture in Medicine AFROSAFE_R_A_D

    International Nuclear Information System (INIS)

    Nyabanda, R.

    2017-01-01

    Ionizing radiation that include X-rays and Gamma rays Radio waves, infrared and visible light carries sufficient energy to free electrons from atoms or molecules. Becquerel first person to discover evidence of radioactivity, who shared a Nobel Prize for physics in 1903 with Marie and Pierre Curie. Prof Sievert and Louis Harold Gray are the Medical physicists who had major contribution in the study of the biological effects of radiation. Ionizing radiation causes displacement of an electron which can inflict damage on DNA either directly or indirectly. A radiation-safety campaign developed by the radiation health workers in Africa. Radiosensitive organs is highest in cells which are highly mitotic or undifferentiated. E.g basal epidermis, bone marrow, thymus, gonads, and lens cells. Relatively low radiosensitivity in muscle, bones, and nervous system tissues. A radiation-safety campaign developed by the radiation health workers in Africa. AFROSAFE Strategies Strengthen radiation protection of patients, health workers and public, Promote safe and appropriate use of ionizing radiation in medicine. Foster improvement of the benefit-risk dialogue with patients and the public. Enhance the safety and quality of radiological procedures in medicine, Promote safety in radiological equipment and facilities and Promote research in radiation protection and safety

  13. The radiation safety self-assessment program of Ontario Hydro

    International Nuclear Information System (INIS)

    Armitage, G.; Chase, W.J.

    1987-01-01

    Ontario Hydro has developed a self-assessment program to ensure that high quality in its radiation safety program is maintained. The self-assessment program has three major components: routine ongoing assessment, accident/incident investigation, and detailed assessments of particular radiation safety subsystems or of the total radiation safety program. The operation of each of these components is described

  14. The radiation safety standards programme

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the development of radiation safety standards by the IAEA which is a statutory function of the IAEA is presented. The latest editions of the basic safety standards published by the IAEA in cooperation with ICRP, FAO, ILO, NEA/OECD, PAHO and WHO are reviewed

  15. radiation safety culture for developing country: Basis for s minimum operational radiation protection programme

    International Nuclear Information System (INIS)

    Rozental, J. J.

    1997-01-01

    The purpose of this document is to present a methodology for an integrated strategy aiming at establishing an adequate radiation Safety infrastructure for developing countries, non major power reactor programme. Its implementation will allow these countries, about 50% of the IAEA's Member States, to improve marginal radiation safety, specially to those recipients of technical assistance and do not meet the Minimum radiation Safety Requirements of the IAEA's Basic Safety Standards for radiation protection Progress in the implementation of safety regulations depends on the priority of the government and its understanding and conviction about the basic requirements for protection against the risks associated with exposure to ionizing radiation. There is no doubt to conclude that the reasons for the deficiency of sources control and dose limitation are related to the lack of an appropriate legal and regulatory framework, specially considering the establishment of an adequate legislation; A minimum legal infrastructure; A minimum operational radiation safety programme; Alternatives for a Point of Optimum Contact, to avoid overlap and conflict, that is: A 'Memorandum of Understanding' among Regulatory Authorities in the Country, dealing with similar type of licensing and inspection

  16. Reduction of adult fingers visualized on pediatric intensive care unit (PICU) chest radiographs after radiation technologist and PICU staff radiation safety education

    International Nuclear Information System (INIS)

    Tynan, J.R.; Duncan, M.D.; Burbridge, B.E.

    2009-01-01

    A recent publication from our centre revealed a disturbing finding of a significant incidence of adult fingers seen on the pediatric intensive care unit (PICU) chest radiographs. This is inappropriate occupational exposure to diagnostic radiation. We hypothesized that the incidence of adult fingers on PICU chest radiographs would decline after radiation safety educational seminars were given to the medical radiation technologists and PICU staff. The present study's objectives were addressed by using a pretest-posttest design. Two cross-sectional PICU chest radiograph samples, taken before and after the administration of radiation safety education for our medical radiation technologists and PICU staff, were compared by using a χ 2 test. There was a 61.2% and 76.9% reduction in extraneous adult fingers, directly exposed to the x-ray beam and those seen in the coned regions of the film, respectively, on PICU chest radiographs (66.7% reduction overall). This reduction was statistically significant (χ2 = 20.613, P < .001). Limiting unnecessary occupational radiation exposure is a critical issue in radiology. There was a statistically and clinically significant association between radiation safety education and the decreased number of adult fingers seen on PICU chest radiographs. This study provides preliminary evidence in favour of the benefit of radiation safety seminars. (author)

  17. Recent trends in particle accelerator radiation safety

    International Nuclear Information System (INIS)

    Ohnesorge, W.F.; Butler, H.M.

    1974-01-01

    The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects

  18. The electron test accelerator safety in design and operation

    International Nuclear Information System (INIS)

    McKeown, J.

    1980-06-01

    The Electron Test Accelerator is being designed as an experiment in accelerator physics and technology. With an electron beam power of up to 200 kW the operation of the accelerator presents a severe radiation hazard as well as rf and electrical hazards. The design of the safety system provides fail-safe protection while permitting flexibility in the mode of operation and minimizing administrative controls. (auth)

  19. Measuring safety culture: Application of the Hospital Survey on Patient Safety Culture to radiation therapy departments worldwide.

    Science.gov (United States)

    Leonard, Sarah; O'Donovan, Anita

    Minimizing errors and improving patient safety has gained prominence worldwide in high-risk disciplines such as radiation therapy. Patient safety culture has been identified as an important factor in reducing the incidence of adverse events and improving patient safety in the health care setting. The aim of distributing the Hospital Survey on Patient Safety Culture (HSPSC) to radiation therapy departments worldwide was to assess the current status of safety culture, identify areas for improvement and areas that excel, examine factors that influence safety culture, and raise staff awareness. The safety culture in radiation therapy departments worldwide was evaluated by distributing the HSPSC. A total of 266 participants were recruited from radiation therapy departments and included radiation oncologists, radiation therapists, physicists, and dosimetrists. The positive percent scores for the 12 dimensions of the HSPSC varied from 50% to 79%. The highest composite score among the 12 dimensions was teamwork within units; the lowest composite score was handoffs and transitions. The results indicated that health care professionals in radiation therapy departments felt positively toward patient safety. The HSPSC was successfully applied to radiation therapy departments and provided valuable insight into areas of potential improvement such as teamwork across units, staffing, and handoffs and transitions. Managers and policy makers in radiation therapy may use this assessment tool for focused improvement efforts toward patient safety culture. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  20. A proposal for an international convention on radiation safety

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1998-01-01

    One century has passed since harmful effects of radiation on living tissues were recognized. Organized efforts to reduce radiation hazards began in early 1920s. Major efforts by the ICRP since 1928, aided by ICRU, greatly helped in formulating principles, policies and guidance for radiation protection. The WHO formally recognized ICRP in 1956 and began implementing ICRP recommendations and guidance throughout the world. The IAEA, after it took office in 1957, began to establish or adopt standards of safety based on ICRP recommendations and provide for application of these standards in the field of atomic energy. Later on, other pertinent international organizations joined IAEA in establishing the Basic Safety Standards on radiation safety. The IAEA has issued, until now, nearly couple of hundred safety related documents on radiation safety and waste management. However, in spite of all such international efforts for three quarter of a century, there has been no effective universal control in radiation safety. Problems exist at the user, national, international and manufacturers and suppliers levels. Other problems are management of spent sources and smuggling of sources across international borders. Although, radiation and radionuclides are used by all countries of the world, regulatory and technical control measures in many countries are either lacking or inadequate. The recommendations and technical guidance provided by the international organizations are only advisory and carry no mandatory force to oblige countries to apply them. Member States approve IAEA safety standards and guides at the technical meetings and General Conference, but many of them do not apply these. An International Convention is, therefore, essential to establish international instrument to ensure universal application of radiation safety. (author)

  1. A Study on Enhancement of Understanding of Radiation and Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations.

  2. A Study on Enhancement of Understanding of Radiation and Safety Management

    International Nuclear Information System (INIS)

    Yoo, Dong Han; Park, Ji Young; Lee, Jae Uk; Bae, Jun Woo; Kim, Hee Reyoung

    2014-01-01

    Concerns for radiation exposure have been increased from small and big radiation works or experiments with radiation generator (RG) or radiation isotopes (RI) at institutions using radiation in Korea. Actually, due to radiation exposure occurred on the process of handling RI, etc., The exposure should be maintained as low as reasonably possible. To do this, above all, suitable training and establishment of safety culture have to be preceded. In this respect, an education institution is a place where people learn first about handling radiations in various specialties with purposes including academic research, and the first learned habits and practices acts as the basis for safety management of radiation when they continue to do radiation work after going into the society. Hereford, it is needed to establish the right safety culture on radiation for its safe managing. In the present study, the direction for the right understandings and safety improvement are suggested through the radiation survey on education institutions and preparation of safety guidances for users. The basic guidance at the radiation experiment was prepared for the right understanding of the radiation to prevent radiation accidents from careless handling by workers based on the surveyed results for education institutions. It is expected to be used as fundamentals for improvement for radiation safety management of workers and researchers and, further, safety policy for national nuclear energy and radiations

  3. A survey of radiation safety training among South African interventionalists

    Directory of Open Access Journals (Sweden)

    A Rose

    2018-04-01

    Full Text Available Background. Ionising radiation is increasingly being used in modern medicine for diagnostic, interventional and therapeutic purposes. There has been an improvement in technology, resulting in lower doses being emitted. However, an increase in the number of procedures has led to a greater cumulative dose for patients and operators, which places them at increased risk of the effects of ionising radiation. Radiation safety training is key to optimising medical practice.Objective. To present the perceptions of South African interventionalists on the radiation safety training they received and to offer insights into the importance of developing and promoting such training programmes for all interventionalists.Methods. In this cross-sectional study, we collected data from interventionalists (N=108 using a structured questionnaire.Results. All groups indicated that radiation exposure in the workplace is important (97.2%. Of the participants, the radiologists received the most training (65.7%. Some participants (44.1% thought that their radiation safety training was adequate. Most participants (95.4% indicated that radiation safety should be part of their training curriculum. Few (34.3% had received instruction on radiation safety when they commenced work. Only 62% had been trained on how to protect patients from ionising radiation exposure.Conclusion. Radiation safety training should be formalised in the curriculum of interventionalists’ training programmes, as this will assist in stimulating a culture of radiation protection, which in turn will improve patient safety and improve quality of care.

  4. Establishment of radiation protection and safety programme in Nuclear Medicine

    International Nuclear Information System (INIS)

    Chene, E.

    2014-04-01

    Radiation is useful because of its ability to penetrate tissue, allowing imaging of internal structures. However radiation may produce harmful biological effects. Observations of exposed human populations and animal experimentation indicate that exposure to low levels of radiation over a period of time may lead to stochastic radiation effects. Exposures to high levels of radiation above threshold also leads to deterministic effects. Establishment of radiation protection and safety programme and implement it without fail may help prevent deterministic effect and limit chances of stochastic effects. This is achieved by assigning responsibilities to the proposed organizational structure, management commitment to safety culture by providing continuous education and training to employees, regular reviewing and auditing of radiation safety policies. Occupational, public and environmental radiation exposure is further achieved by implementation of set local rules and operational procedures, proper management of radioactive waste and safe transport of radioactive material. Medical radiation exposure is achieved by justified procedures, optimization of doses, guidance levels, quality assurance and quality control programme through image quality, radiopharmaceutical quality and records keeping of radiation doses, calibration certificates of equipment used, equipment service and test certificates. Diagnostic radiopharmaceuticals must deliver the minimum possible radiation dose to the patient while therapeutic radiopharmaceuticals must deliver the maximum dose to the target organ or tissue, while minimizing the dose to non-target tissues such as the bone marrow. Special considerations shall be given to pregnant and breast-feeding patients. The proper facility design and shielding of a nuclear medicine facility shall further provide for the radiation protection to the worker, the patient, public and the environment. Precautions should be given to radioactive patients as there

  5. Radiation Safety Professional Certification Process in a Multi-Disciplinary Association

    International Nuclear Information System (INIS)

    Wilson, G.; Jones, P.; Ilson, R.

    2004-01-01

    There is no one set of criteria that defines the radiation safety professional in Canada. The many varied positions, from university and medical to industry and mining, define different qualifications to manage radiation safety programs. The national regulatory body has to assess many different qualifications when determining if an individual is acceptable to be approved for the role of radiation safety officer under any given licence. Some professional organizations specify education requirements and work experience as a prerequisite to certification. The education component specifies a degree of some type but does not identify specific courses or competencies within that degree. This could result in individuals with varying levels of radiation safety experience and training. The Canadian Radiation Protection Association (CRPA), responding to a need identified by the membership of the association, has initiated a process where the varying levels of knowledge of radiation safety can be addressed for radiation safety professionals. By identifying a core level set of radiation safety competencies, the basic level of radiation safety officer for smaller organizations can be met. By adding specialty areas, education can be pursued to define the more complex needs of larger organizations. This competency based process meets the needs of licensees who do not require highly trained health physicists in order to meet the licensing requirements and at the same time provides a stepping stone for those who wish to pursue a more specialized health physics option. (Author) 8 refs

  6. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  7. Towards an international regime on radiation and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2000-01-01

    The 1990s have seen the de facto emergence of what might be called an 'international regime on nuclear and radiation safety'. It may be construed to encompass three key elements: legally binding international undertakings among States; globally agreed international safety standards; and provisions for facilitating the application of those standards. While nuclear and radiation safety are national responsibilities, governments have long been interested in formulating harmonised approaches to radiation and nuclear safety. A principal mechanism for achieving harmonisation has been the establishment of internationally agreed safety standards and the promotion of their global application. The development of nuclear and radiation safety standards is a statutory function of the IAEA, which is unique in the United Nations system. The IAEA Statute expressly authorises the Agency 'to establish standards of safety' and 'to provide for the application of these standards'. As the following articles and supplement in this edition of the IAEA Bulletin point out, facilitating international conventions; developing safety standards; and providing mechanisms for their application are high priorities for the IAEA. (author)

  8. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    International Nuclear Information System (INIS)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok; Sung, Dong Wook; Do, Kyung Hyun; Jung, Seung Eun; Kim, Hyung Soo

    2013-01-01

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012

  9. Report for spreading culture of medical radiation safety in Korea: Mainly the activities of the Korean alliance for radiation safety and culture in medicine (KARSM)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Su; Kim, Jung Min; Kim, Ji Hyun; Choi, In Seok [Dept. of Radiologic Science, Korea University, Seoul (Korea, Republic of); Sung, Dong Wook [Dept. of Radiology, Kyunghee University Hospital, Seoul (Korea, Republic of); Do, Kyung Hyun [Dept. of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jung, Seung Eun [Dept. of Radiology, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, Hyung Soo [Dept. of Radiation Safety, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2013-09-15

    There are many concerns about radiation exposure in Korea after Fukushima Nuclear Plant Accident on 2011 in Japan. As some isotope materials are detected in Korea, people get worried about the radioactive material. In addition, the mass media create an air of anxiety that jump on the people’s fear instead of scientific approach. Therefore, for curbing this flow, health, medical institute from the world provide a variety of information about medical radiation safety and hold the campaign which can give people the image that medical radiation is safe. At this, the Korean Food and Drug Administration(KFDA) suggested that make the alliance of medical radiation safety and culture on August, 2011. Seven societies and institutions related medical radiation started to research and advertise the culture of medical radiation safety in Korea. In this report, mainly introduce the activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM) for spreading culture of medical radiation safety from 2011 to 2012.

  10. New Radiation Safety Standards of the Russian Federation

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    2001-01-01

    Full text: The new Radiation Safety Standards of the Russian Federation are a first step in an implementation of the 1990 Recommendations of the ICRP into the existing national system of providing a radiation safety of the public. In new System the radiation source is examined as a source of harm and danger for the public. So the System shall include not only the measures for limitation of actual exposures, but also an assessment of efficiency of radiation protection in the practical activity, based on the analysis of a distribution of doses received and on the assessment of actions initiated to restrict the probability of potential exposures. The occupational and public exposure doses are only the indices of the quality of management of the source. In this System a radiation monitoring is a feedback for assessing the stability of the source and how it is controllable. It is a tool for predicting the levels of potential exposure and the relevant danger associated with the source. It is important to underline that the System of Providing a Radiation Safety is an interrelated system. None of its parts may be individually used. In particular, the mere conformity with dose limits is not yet a sufficient evidence of the successful operation of the safety system, because the normal exposure doses reflect only a source-related harm. The problems of implementation of this System of radiation protection and safety into the contemporary practice in the Russia is discussed. (author)

  11. Radiation safety and regulatory aspects in Medical Facilities

    International Nuclear Information System (INIS)

    Banerjee, Sharmila

    2017-01-01

    Radiation safety and regulatory aspect of medical facilities are relevant in the context where radiation is used in providing healthcare to human patients. These include facilities, which carry out radiological procedures in diagnostic radiology, including dentistry, image-guided interventional procedures, nuclear medicine, and radiation therapy. The safety regulations provide recommendations and guidance on meeting the requirements for the safe use of radiation in medicine. The different safety aspects which come under its purview are the personnel involved in medical facilities where radiological procedures are performed which include the medical practitioners, radiation technologists, medical physicists, radiopharmacists, radiation protection and over and above all the patients. Regulatory aspects cover the guidelines provided by ethics committees, which regulate the administration of radioactive formulation in human patients. Nuclear medicine is a modality that utilizes radiopharmaceuticals either for diagnosis of physiological disorders related to anatomy, physiology and patho-physiology and for diagnosis and treatment of cancer

  12. A National Institute of Radiation Protection and Nuclear Safety?

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    The practice of radiation protection within Australia is fragmented on a number of different levels. Each state has its own radiation protection organisation. Within the Commonwealth there is also a large number of bodies which deal with different aspects of radiation protection or nuclear safety. There is also an interest in occupational radiation protection by Departments responsible for Occupational Health and Safety. It is estimated that this fragmentation affects the practice of radiation protection at a State level and also the role which Australia can play internationally. The establishment of a National Institute of Radiation Protection and Nuclear Safety is therefore proposed. Possible structures and organizational arrangements for such an institute are discussed. 4 refs., 4 tabs., 3 figs

  13. Challenges in strengthening radiation safety and security programme in Malaysia

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2010-01-01

    This paper illustrates the Malaysian experience in implementing steps in strengthening radiation safety and security through certification of radiation safety personnel, which is dedicated to meet the current and future needs in sustainability of radiation safety and security systems. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important in implementing the radiation safety policy efficiently. Through this effort, we are able to create a basis for adequate protection of workers, the public and the environment and encourage licensees to manage radiation safety and security based on performance, and not on compliance culture, with the final objective of professing a safety culture through self regulation. This will certainly benefit an organisation with ultimate goals are to continuously strive for a healthy, accident free and environmentally sound workplace and community, while providing the technical support needed to meet the national mission. This will strengthen the radiation safety and security programme and could be used to assist in manpower development once Malaysia makes the decision to embark on a nuclear power programme. (author)

  14. INSAG's ongoing work on nuclear, radiation and waste safety

    International Nuclear Information System (INIS)

    Baer, A.J.

    1999-01-01

    The International Nuclear Safety Advisory Group (INSAG) is an advisory group to the Director General of the IAEA. It identifies current nuclear safety issues, draws conclusions from its analyses and gives advice on those issues. INSAG is currently working on four documents: a complete revision of INSAG-3, the classical paper on safety principles for nuclear plants, published in 1988; 'Safety Management', the effective system for the management of operational strategy; 'Safe Management of the Life Cycle of Nuclear Power Plants'; and the fourth document in preparation entitled 'The Safe Management of Sources of Radiation: Principles and Strategies'. The fourth document is aimed primarily at political decision makers who have no knowledge of radiation safety or of nuclear matters generally but are called upon to make important decisions in this field. INSAG has attempted to present them with a 'unified doctrine' of the management of all radiation sources, even though, for historical reasons radiation protection and nuclear safety have evolved largely independently of each other. The major conclusion to be drawn from the paper is that a systematic application of protection and safety principles, and of appropriate strategies, goes a long way towards ensuring the safe management of technologies involving radiation. Furthermore, the management of sources of radiation could benefit from the experience accumulated in other industries facing comparable challenges

  15. National training course on radiation safety, Its insertion in the cuban system of education and training

    International Nuclear Information System (INIS)

    Cornejo Diaz, Netor; Hernadez Saiz, Alejandro; Calli Fernadez, Ernesto; Perez Reyes, Yolanda

    2005-01-01

    The Center for Radiation Protection and Hygiene has been organizing, since more than ten years, the national training course on Radiation Safety, taking into account the particular needs of the Country in this area. The curriculum of the course, after some years of improvements, is showed and some aspects related to its design and insertion in the national system of education and training in Radiation Safety are discussed. The maintenance of an updated database of participants has demonstrated to be a very useful tool for dissemination of knowledge in Radiation Safety and for a continuously improvement of the imparted courses and offered services. The importance of the participation of the Regulatory Authority in the Course, from its organization phase, is also stressed

  16. The practice of safety culture construction in radiation processing enterprise

    International Nuclear Information System (INIS)

    Kong Xiangshan; Zhang Yue; Yang Bin; Xu Tao; Liu Wei; Hao Jiangang

    2014-01-01

    Security is an integral part of the process of business operations. The radiation processing enterprises due to their own particularity, more need to focus on the operation of the safety factors, the construction of corporate safety culture is of great significance in guiding carry out the work of the Radiation Protection. Radiation processing enterprises should proceed from their own characteristics, the common attitude of security systems and security construction, and constantly improved to ensure the personal safety of radiation workers in the area of safety performance. (authors)

  17. Radiation protection and safety in industrial radiography

    International Nuclear Information System (INIS)

    1999-01-01

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  18. Survey and analysis of radiation safety management systems at medical institutions. Initial report. Radiation protection supervisor, radiation safety organization, and education and training

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Aburano, Tamio

    2005-01-01

    In this study, a questionnaire survey was carried out to determine the actual situation of radiation safety management systems in Japanese medical institutions with nuclear medicine facilities. The questionnaire consisted of questions concerning the Radiation Protection Supervisor license, safety management organizations, and problems related to education and training in safety management. Analysis was conducted according to region, type of establishment, and number of beds. The overall response rate was 60%, and no significant difference in response rate was found among regions. Medical institutions that performed nuclear medicine practices without a radiologist participating accounted for 10% of the total. Medical institutions where nurses gave patients intravenous injections of radiopharmaceuticals as part of the nuclear medicine practices accounted for 28% of the total. Of these medical institutions, 59% provided education and training in safety management for nurses. The rate of acquisition of Radiation Protection Supervisor licenses was approximately 70% for radiological technologists and approximately 20% for physicians (regional difference, p=0.02). The rate of medical institutions with safety management organizations was 71% of the total. Among the medical institutions (n=208) without safety management organizations, approximately 56% had 300 beds or fewer. In addition, it became clear that 35% of quasi-public organizations and 44% of private organizations did not provide education and training in safety management (p<0.001, according to establishment). (author)

  19. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  20. International cooperation in the safety and environmental assessment for the ITER engineering design activities

    International Nuclear Information System (INIS)

    Gordon, C.; Baker, D.J.; Bartels, H-W.

    1998-01-01

    The ITER Project includes design and assessment activities to ensure the safety and environmental attractiveness of ITER and demonstrate that it can be sited in any of the sponsoring Parties with a minimum of site-specific redesign. This paper highlights some of the efforts to develop an international consensus approach for ITER safety design and assessment, including: development of general safety and environmental design criteria; development of quantitative dose-release assessment criteria; development of a radiation protection program; waste characterization; and development of safety analysis guidelines. The high level of interaction, cooperation and collaboration between the Joint Central Team and the Home Teams, and between the safety team and designers, and the spirit of consensus that has guided them have resulted in a safe design for ITER and a safety design and assessment that can meet the needs of the potential host countries. (author)

  1. Design of reactor containment systems for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  2. Design of reactor containment systems for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It is a revision of the Safety Guide on Design of the Reactor Containment Systems in Nuclear Power Plants (Safety Series No. 50-Sg-D1) issued in 1985 and supplements the Safety Requirements publication on Safety of Nuclear Power Plants: Design. The present Safety Guide was prepared on the basis of a systematic review of the relevant publications, including the Safety of Nuclear Power Plants: Design, the Safety fundamentals publication on The Safety of Nuclear Installations, Safety Guides, INSAG Reports, a Technical Report and other publications covering the safety of nuclear power plants. 1.2. The confinement of radioactive material in a nuclear plant, including the control of discharges and the minimization of releases, is a fundamental safety function to be ensured in normal operational modes, for anticipated operational occurrences, in design basis accidents and, to the extent practicable, in selected beyond design basis accidents. In accordance with the concept of defence in depth, this fundamental safety function is achieved by means of several barriers and levels of defence. In most designs, the third and fourth levels of defence are achieved mainly by means of a strong structure enveloping the nuclear reactor. This structure is called the 'containment structure' or simply the 'containment'. This definition also applies to double wall containments. 1.3. The containment structure also protects the reactor against external events and provides radiation shielding in operational states and accident conditions. The containment structure and its associated systems with the functions of isolation, energy management, and control of radionuclides and combustible gases are referred to as the containment systems

  3. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  4. Journey Toward High Reliability: A Comprehensive Safety Program to Improve Quality of Care and Safety Culture in a Large, Multisite Radiation Oncology Department.

    Science.gov (United States)

    Woodhouse, Kristina Demas; Volz, Edna; Maity, Amit; Gabriel, Peter E; Solberg, Timothy D; Bergendahl, Howard W; Hahn, Stephen M

    2016-05-01

    High-reliability organizations (HROs) focus on continuous identification and improvement of safety issues. We sought to advance a large, multisite radiation oncology department toward high reliability through the implementation of a comprehensive safety culture (SC) program at the University of Pennsylvania Department of Radiation Oncology. In 2011, with guidance from safety literature and experts in HROs, we designed an SC framework to reduce radiation errors. All state-reported medical events (SRMEs) from 2009 to 2016 were retrospectively reviewed and plotted on a control chart. Changes in SC grade were assessed using the Agency for Healthcare Research and Quality Hospital Survey. Outcomes measured included the number of radiation treatment fractions and days between SRMEs, as well as SC grade. Multifaceted safety initiatives were implemented at our main academic center and across all network sites. Postintervention results demonstrate increased staff fundamental safety knowledge, enhanced peer review with an electronic system, and special cause variation of SRMEs on control chart analysis. From 2009 to 2016, the number of days and fractions between SRMEs significantly increased, from a mean of 174 to 541 days (P safety framework. Our multifaceted initiatives, focusing on culture and system changes, can be successfully implemented in a large academic radiation oncology department to yield measurable improvements in SC and outcomes. Copyright © 2016 by American Society of Clinical Oncology.

  5. Nuclear safety and radiation protection in France in 2011

    International Nuclear Information System (INIS)

    2012-01-01

    The first part of this voluminous report describe the different ASN (Nuclear Safety Authority) actions: nuclear activities (ionising radiation and health and environmental risks), principles and stakeholders in nuclear safety regulation, radiation protection and protection of the environment, regulation, regulation of nuclear activities and exposure to ionizing radiation, radiological emergencies, public information and transparency, international relations. It also gives an overview of nuclear safety and radiation protection activities in the different French regions. The second part addresses activities regulated by the ASN: medical uses of ionizing radiation, non-medical uses of ionizing radiation, transport of radioactive materials, nuclear power plants, nuclear fuel cycle installations, nuclear research facilities and various nuclear installations, safe decommissioning of basic nuclear installations, radioactive waste and contaminated sites and soils

  6. Education of radiation safety specialists at Faculty of Medicine of Vilnius University

    International Nuclear Information System (INIS)

    Urbelis, A.; Surkiene, G.

    2004-01-01

    Vilnius University is the first institution of higher education in Lithuania that began to teach students on radiation safety. The special course of radiation hygiene was delivered to students in 1962-1992. In 1992 it was introduced residency of radiation hygiene and graduated students qualified for title of radiation hygiene specialist. The residency lasted one year and included six cycles: fundamentals of nuclear physics, statistics and noninfectious epidemiology, radiobiology, radiological research methods, controls of radiation safety and hygienic analysis of radiation safety. From 1994 Vilnius University has been educating and training professionals of public health. The specialists of radiation safety aren't been training as isolated branch. All courses is divided into two parts. The first one is included into bachelor, the second part - into master study. The bachelor study consists of 2 credits (16 hours for lectures and 32 hours for practical studies). The future bachelors study introduction of radiation safety, elements of nuclear physics, dose limit values, fundamentals of radiological protection, natural radiation. The master study consists of 2 credits (8 hours for lectures and 48 hours for practical studies). The future masters study specific problems of radiation safety in medicine and industry, the safety problems of nuclear power - stations, the problems of radioactive wastes, radiation biology, radiation risk. Radiation safety study model in Faculty of medicine of Vilnius University differs from study model in most European countries as it makes great play of radiation safety while usual model includes radiation safety as insignificant part of environmental health. (author)

  7. Radiation protection training of radiation safety officers in Finland in 2008

    International Nuclear Information System (INIS)

    Havukainen, R.; Bly, R.; Markkanen, M.

    2009-11-01

    The Radiation and Nuclear Safety Authority (STUK) carried out a survey on the radiation protection training of radiation safety officers (RSO) in Finland in 2008. The aim of the survey was to obtain information on the conformity and uniformity of the training provided in different training organisations. A previous survey concerning radiation protection training was carried out in 2003. That survey determined the training needs of radiation users and radiation safety officers as well the radiation protection training included in vocational training and supplementary training. This report presents the execution and results of the survey in 2008. According to the responses, the total amount of RSO training fulfilled the requirements presented in Guide ST 1.8 in the most fields of competence. The emphasis of the RSO training differed between organisations, even for training in the same field of competence. Certain issues in Guide ST 1.8 were dealt quite superficially or even not at all in some training programmes. In some fields of competence, certain matters were entirely left to individual study. No practical training with radiation equipment or sources was included in the RSO training programme of some organisations. Practical training also varied considerably between organisations, even within the same field of competence. The duties in the use of radiation were often considered as practical training with radiation equipment and sources. Practical training from the point of view of a radiation safety officer was brought up in the responses of only one organisation. The number of questions and criteria for passing RSO exams also varied between organisations. Trainers who provided RSO training for the use of radiation in health care sectors had reached a higher vocational training level and received more supplementary training in radiation protection in the previous 5 years than trainers who provided RSO training for the use of radiation in industry, research, and

  8. Main results and tasks in studies on radiation safety ensurance when using nuclear power and radiation sources in national economy

    International Nuclear Information System (INIS)

    Semenov, A.P.; Ivanov, V.I.

    1978-01-01

    The basic problems and the results of work in the field of ensuring radiation safety for personnel engaged in work related to the use of nuclear energy and sources of ionizing radiation are discussed. Long standing observation of labour hygiene and health conditions of people engaged at research nuclear reactors have shown that the irradiation levels under normal operating conditions do not exceed the established standards. Radiation conditions in radiological laboratories have been studied. Much attention is given to studies of internal irradiation due to inhalation of radioactive aerosols. New methods and apparatuses have been developed for analysis of aerosols and control of intake of radioactive substances by man. Work has been done to improve the methods of emergency dosimetry and design of individual emergency dosimeters. Investigations have been performed to determine the safety levels in working with rare-metal ores containing naturally occurring radioactive substances and industrial radiochemical processes. It is of interest to study small load doses. Different documents for providing safety in working with sources of ionizing radiation have been developed

  9. Progress report: 1996 Radiation Safety Systems Division

    International Nuclear Information System (INIS)

    Bhagwat, A.M.; Sharma, D.N.; Abani, M.C.; Mehta, S.K.

    1997-01-01

    The activities of Radiation Safety Systems Division include (i) development of specialised monitoring systems and radiation safety information network, (ii) radiation hazards control at the nuclear fuel cycle facilities, the radioisotope programmes at Bhabha Atomic Research Centre (BARC) and for the accelerators programme at BARC and Centre for Advanced Technology (CAT), Indore. The systems on which development and upgradation work was carried out during the year included aerial gamma spectrometer, automated environment monitor using railway network, radioisotope package monitor and air monitors for tritium and alpha active aerosols. Other R and D efforts at the division included assessment of risk for radiation exposures and evaluation of ICRP 60 recommendations in the Indian context, shielding evaluation and dosimetry for the new upcoming accelerator facilities and solid state nuclear track detector techniques for neutron measurements. The expertise of the divisional members was provided for 36 safety committees of BARC and Atomic Energy Regulatory Board (AERB). Twenty three publications were brought out during the year 1996. (author)

  10. Radiation safety in nuclear industry in retrospect and perspective

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1993-01-01

    More than 30 years have passed since the starting up of nuclear industry in China from the early 1950's. Over the past 30-odd years, nuclear industry has always kept a good record in China thanks to the policy of 'quality first, safety first' clearly put forward for nuclear industry from the outset and a lot of suitable effective measures taken over that period. Internationally, there is rapid progress in radiation protection and nuclear safety (hereafter refereed to as radiation safety) and a number of new concepts in the field of radiation protection have been advanced. Nuclear industry is developing based on the international standardization. To ensure the further development of nuclear utility, radiation safety needs to be further strengthened

  11. Towards a radiation safety culture at Universidad Nacional de Colombia

    International Nuclear Information System (INIS)

    Poveda, Jairo F.; Munera, Hector A.

    2008-01-01

    Full text: During the 20th century, nuclear and radiation techniques for research, teaching, and medical and engineering practice slowly appeared at the National University of Colombia, mainly at the Bogota, Medellin and Manizales branches. Each individual laboratory or researcher obtained the license for the use of the radioactive source, or radiation emitting apparatus. However, the University as a whole does not have as yet a Radiation Safety Manual, nor an inventory of laboratories using radiation. From the viewpoint of radiation safety and culture, this situation is undesirable, and may easily lead to inappropriate waste management practices, including the possibility of orphan sources (one such source has been already found). As part of the program of environmental management of dangerous wastes promoted by the National Division of Laboratories of our University, an office of radiation safety was created in the year 2006. This paper describes the situation that was found, the activities that have been carried out, some of the difficulties that we have met, and the plans that we have to help shape a safety culture at our institution. Currently we are pursuing an inventory of laboratories using radioactive sources and radiation emitting apparatuses, starting with the branches in Bogota and Manizales which are perceived as the most urgent to deal with. Fortunately, the branch in Medellin has been for about a decade under the care of a former radiation safety officer of our national Institute of Nuclear Affairs, who presently teaches there. During 2006 and 2007, 13 laboratories using radioactive sources were visited in the Bogota branch. Safety procedures and waste handling protocols were checked, safety manuals prepared and/or revised, and recommendations for safety culture provided. During 2008 we will visit Manizales, and will continue visiting a number of X-ray machines used in the Bogota branch for engineering, veterinary, and diagnostic, and surgery medical

  12. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  13. Provisional standards of radiation safety of flight personnel and passengers in air transport of the civil aviation

    Science.gov (United States)

    1977-01-01

    Provisional standards for radiation affecting passenger aircraft are considered. Agencies responsible for seeing that the regulations are enforced are designated while radiation sources and types of radiation are defined. Standard levels of permissible radiation are given and conditions for radiation safety are discussed. Dosimetric equipment on board aircraft is delineated and regulation effective dates are given.

  14. Provisional standards of radiation safety of flight personnel and passengers in air transport of the civil aviation

    International Nuclear Information System (INIS)

    Provisional standards for radiation affecting passenger aircraft are considered. Agencies responsible for seeing that the regulations are enforced are designated while radiation sources and types of radiation are defined. Standard levels of permissible radiation are given and conditions for radiation safety are discussed. Dosimetric equipment on board aircraft is delineated and regulation effective dates are given

  15. Radiation safety and inventory of sealed radiation sources in Pakistan

    International Nuclear Information System (INIS)

    Ali, M.; Mannan, A.

    2001-01-01

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  16. Radiation safety and control

    International Nuclear Information System (INIS)

    Kim, Jang Hee; Kim, Gi Sub.

    1996-12-01

    The principal objective of radiological safety control is intended for achievement and maintenance of appropriately safe condition in environmental control for activities involving exposure from the use of radiation. In order to establish these objective, we should be to prevent deterministic effects and to limit the occurrence stochastic effects to level deemed to be acceptable by the application of general principles of radiation protection and systems of dose limitation based on ICRP recommendations. (author). 22 tabs., 13 figs., 11 refs

  17. Ordinance on the Implementation of Atomic Safety and Radiation Protection

    International Nuclear Information System (INIS)

    1984-01-01

    In execution of the new Atomic Energy Act the Ordinance on the Implementation of Atomic Safety and Radiation Protection was put into force on 1 February 1985. It takes into account all forms of peaceful nuclear energy and ionizing radiation uses in nuclear installations, irradiation facilities and devices in research, industries, and health services, and in radioactive isotope production and laboratories. It covers all aspects of safety and protection and defines atomic safety as nuclear safety and nuclear safeguards and physical protection of nuclear materials and facilities, whereas radiation protection includes the total of requirements, measures, means and methods necessary to protect man and the environment from the detrimental effects of ionizing radiation. It has been based on ICRP Recommendation No. 26 and the IAEA's Basic Safety Standards and supersedes the Radiation Protection Ordinance of 1969

  18. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    International Nuclear Information System (INIS)

    Sheyn, David D.; Racadio, John M.; Patel, Manish N.; Racadio, Judy M.; Johnson, Neil D.; Ying, Jun

    2008-01-01

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  19. Radiological safety by design

    International Nuclear Information System (INIS)

    Gundaker, W.E.

    1977-01-01

    Under the Radiation Control for Health and Safety Act enacted by the U.S. Congress in 1968, the Food and Drug Administration's Bureau of Radiological Health may prescribe performance standards for products that emit radiation. A description is given of the development of these standards and outlines the administrative procedures by which they are enforced. (author)

  20. A management system integrating radiation protection and safety supporting safety culture in the hospital

    International Nuclear Information System (INIS)

    Almen, A.; Lundh, C.

    2015-01-01

    Quality assurance has been identified as an important part of radiation protection and safety for a considerable time period. A rational expansion and improvement of quality assurance is to integrate radiation protection and safety in a management system. The aim of this study was to explore factors influencing the implementing strategy when introducing a management system including radiation protection and safety in hospitals and to outline benefits of such a system. The main experience from developing a management system is that it is possible to create a vast number of common policies and routines for the whole hospital, resulting in a cost-efficient system. One of the key benefits is the involvement of management at all levels, including the hospital director. Furthermore, a transparent system will involve staff throughout the organisation as well. A management system supports a common view on what should be done, who should do it and how the activities are reviewed. An integrated management system for radiation protection and safety includes key elements supporting a safety culture. (authors)

  1. The micro-processor controlled process radiation monitoring system for reactor safety systems

    International Nuclear Information System (INIS)

    Mizuno, K.; Noguchi, A.; Kumagami, S.; Gotoh, Y.; Kumahara, T.; Arita, S.

    1986-01-01

    Digital computers are soon expected to be applied to various real-time safety and safety-related systems in nuclear power plants. Hitachi is now engaged in the development of a micro-processor controlled process radiation monitoring system, which operates on digital processing methods employed with a log ratemeter. A newly defined methodology of design and test procedures is being applied as a means of software program verification for these safety systems. Recently implemented micro-processor technology will help to achieve an advanced man-machine interface and highly reliable performance. (author)

  2. The safety of radiation sources and radioactive materials in China

    International Nuclear Information System (INIS)

    Liu, H.

    2001-01-01

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  3. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    Osaki, S.

    2000-01-01

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  4. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    International Nuclear Information System (INIS)

    1999-01-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  5. Australian Radiation Protection and Nuclear Safety Act 1998. Act No 133

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A set of legislation consisting of three Acts in the field of radiation protection and nuclear safety was passed by both Houses of Parliament on 10 December 1998 and was proclaimed on 5 February 1999. Act No. 133 - Australian Radiation Protection and Nuclear Safety Act, which is a framework Law, established the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) as the regulatory body for radiation protection and nuclear safety, in place of the Nuclear Safety Bureau. The Chief Executive Officer of ARPANSA, who is appointed by the Governor-General for a term of up to 5 years, is obliged to submit annual and quarterly reports to the Minister on the operations of the Chief Executive Officer, ARPANSA, the Council, the Radiation Health Committee and the Nuclear Safety Committee. The Council is a consultative body which examines issues relating to radiation protection and nuclear safety and advises the Chief Executive Officer on these issues as well as on the adoption of recommendations, policies and codes. The Radiation Health Committee and the Nuclear Safety Committee are to be established as advisory committees to the Chief Executive Officer or the Council. Both committees should draft national policies, codes and standards in their respective fields and review their effectiveness periodically. The second in this series of legislation, Act No. 134, Australian Radiation Protection and Nuclear Safety (License Charges) Act requires holders of both facility and source licenses to pay an annual charge, to be prescribed by the regulations. The third, Act No. 135 , Australian Radiation Protection and Nuclear Safety (Consequential Amendments) Act repeals those provisions of the 1987 Australian Nuclear Science and Technology Organisation Act which concern the Nuclear Safety Bureau, and the 1978 Environment Protection Act as a whole

  6. Radiation Protection, Safety and Security Issues in Ghana.

    Science.gov (United States)

    Boadu, Mary; Emi-Reynolds, Geoffrey; Amoako, Joseph Kwabena; Akrobortu, Emmanuel; Hasford, Francis

    2016-11-01

    Although the use of radioisotopes in Ghana began in 1952, the Radiation Protection Board of Ghana was established in 1993 and served as the national competent authority for authorization and inspection of practices and activities involving radiation sources until 2015. The law has been superseded by an Act of Parliament, Act 895 of 2015, mandating the Nuclear Regulatory Authority of Ghana to take charge of the regulation of radiation sources and their applications. The Radiation Protection Institute in Ghana provided technical support to the regulatory authority. Regulatory and service activities that were undertaken by the Institute include issuance of permits for handling of a radiation sources, authorization and inspection of radiation sources, radiation safety assessment, safety assessment of cellular signal towers, and calibration of radiation-emitting equipment. Practices and activities involving application of radiation are brought under regulatory control in the country through supervision by the national competent authority.

  7. Radiation protection and safety aspects in the use of radiation in medicine, industry and research

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    1998-01-01

    While ionizing radiations have significant and indispensable uses in several fields, it must be borne in mind that it may be harmful to the radiation workers and public if used indiscriminately and without due caution. Radiation doses received by these individuals should be kept well within the recommended limits through good work practices. It is therefore necessary to ensure safety of radiation workers, patients undergoing radiation diagnosis and treatment, public and environment so that maximum benefit is derived from the use of radiation with minimum and acceptable risk. General principles of radiation protection and safety in various applications of radiations are discussed

  8. Experience in safety review of design solutions of the state-of-the-art WWER-type NPPs

    International Nuclear Information System (INIS)

    Khamaza, A.A.

    2015-01-01

    The experience of the Federal Budget Institution of the Scientific and Technical Center for Nuclear and Radiation Safety in the field of expertise of the safety rationales for nuclear power plants with WWER-type reactors of new projects is disclosed. In determining the priority, in addition to the necessary time and financial resources, it also took into account the extent to which these activities significantly affect the completeness of the implementation of levels of defense in depth related to the management of beyond-design-basis accidents, including severe ones. And also, what impact does this or that measure have on reducing the likelihood of the onset of severe radiation effects. When examining the safety justification for new design solutions (including for nuclear power plants with a reactor type WWER), it is advisable to adhere to the following approach: during the examination it is necessary to study the experience in the country and the world related to the proposed new design solutions; It is preferable to take advantage of the differential approach to assessing various aspects related to nuclear and radiation safety. The result of the examination of the justification for new design solutions may be recommendations on the development of existing regulatory documents or development of the Regulatory Authority [ru

  9. Radiation safety research information database

    International Nuclear Information System (INIS)

    Yukawa, Masae; Miyamoto, Kiriko; Takeda, Hiroshi; Kuroda, Noriko; Yamamoto, Kazuhiko

    2004-01-01

    National Institute of Radiological Sciences in Japan began to construct Radiation Safety Research Information Database' in 2001. The research information database is of great service to evaluate the effects of radiation on people by estimating exposure dose by determining radiation and radioactive matters in the environment. The above database (DB) consists of seven DB such as Nirs Air Borne Dust Survey DB, Nirs Environmental Tritium Survey DB, Nirs Environmental Carbon Survey DB, Environmental Radiation Levels, Abe, Metabolic Database for Assessment of Internal Dose, Graphs of Predicted Monitoring Data, and Nirs nuclear installation environment water tritium survey DB. Outline of DB and each DB are explained. (S.Y.)

  10. Design and implementation of a radiotherapy programme: Clinical, medical physics, radiation protection and safety aspects

    International Nuclear Information System (INIS)

    1998-09-01

    It is widely acknowledged that the clinical aspects (diagnosis, decision, indication for treatment, follow-up) as well as the procedures related to the physical and technical aspects of patient treatment must be subjected to careful control and planning in order to ensure safe, high quality radiotherapy. Whilst it has long been recognized that the physical aspects of quality assurance in radiotherapy are vital to achieve and effective and safe treatment, it has been increasingly acknowledged only recently that a systematic approach is absolutely necessary to all steps within clinical and technical aspects of a radiotherapy programme as well. The need to establish general guidelines at the IAEA, taking into account clinical medical physics, radiation protection and safety considerations, for designing and implementing radiotherapy programmes in Member States has been identified through the Member States' increased interest in the efficient and safe application of radiation in health care. Several consultants and advisory group meetings were convened to prepare a report providing a basis for establishing a programme in radiotherapy. The present TECDOC is addressed to all professionals and administrators involved in the development, implementation and management of a radiotherapy programme in order to establish a common and consistent framework where all steps and procedures in radiotherapy are taken into account

  11. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  12. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  13. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  14. Sweden's Cooperation with Eastern Europe in Radiation Safety 2010

    International Nuclear Information System (INIS)

    Van Dassen, Lars; Andersson, Sarmite; Bejarano, Gabriela

    2011-09-01

    The Swedish Radiation Safety Authority implemented in 2010 cooperation projects in Russia, Ukraine, Georgia, Armenia, Lithuania and Moldova based on instructions from the Swedish Government and agreements with the European Union and the Swedish International Development Cooperation Agency, SIDA. The projects aim at achieving a net contribution to radiation safety (including nuclear safety, nuclear security and non-proliferation as well as radiation protection and emergency preparedness) for the benefit of the host country as well as Sweden. This report gives an overview of all the projects implemented in 2010

  15. The main goals and principles of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Huseynov, V.

    2015-01-01

    The use of modern radiation technology expands in various fields of human activity. The most advanced approach, methods and technologies and also radiation technologies are of great importance in industrial, medical, agricultural, construction, science, education, and etc. areas of the fastest growing Azerbaijan Republic. Ensuring of nuclear and radiation safety, safety standards, main principles and conception of safety play a crucial role. The following ten principles are taken as a basis to ensure safety measures. 1. Responsible for ensuring safety; 2. The role of government; 3. Leadership and management of security interests; 4. Devices and justification of activity; 5. Optimization of preservation; 6. Limiting of risks for physical persons; 7. The protection of present and future generations; 8. The prevention of accidents; 9. Emergency preparedness and response; 10. Reducing of risks of existing and unregulated radiation protection measures. The safety principles are applied together

  16. Radiation safety standards

    International Nuclear Information System (INIS)

    1975-01-01

    This is a basic document with which all rules and regulations, etc., concerning protection from ionizing radiations of workers and the general population have to conform. Basic concepts, dimensions, units, and terms used in the area of radiation safety are defined. Radiation exposures are sorted out into three categories: A, to personnel; B, to individual members of the popul;tion; and C, to the general population. Critical organs, furthermore, comprise four groups, the first of them being applicable to the whole-body gonads and bone marrow. Category A maximum permissible dose (MPD) to first group critical organs is 5 rem/year; to second group, 15 rem/year; to thrid group, 3O rem/year; and to fourth group, 75 rem/year. These rate figures include doses from both external and internal radiation exposure. Quality factors needed in computing doses from various types of radiation are provided. Permissible planned exposure levels are specified and guidelines given for accidental exposures. A radiation accident is considered to have occurred if the relevant critical organ dose is 5 times the annual MPD for that organ. For individual members of the population (category B), annual somatic doses to first group critical organs shall not exceed 0,5 rem. Population exposure is controlled in terms of genetically significant dose, which shall not exceed 5 rem/30 years. (G.G.)

  17. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  18. Building competence in radiation protection and the safe use of radiation sources. Safety guide (Arabic ed.)

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide makes recommendations concerning the building of competence in protection and safety within a national radiation protection infrastructure and provides guidance for setting up the structure for a national strategy. It relates to the training and assessment of qualification of new personnel and the retraining of existing personnel in order to develop and maintain appropriate levels of competence. It provides the necessary guidance to meet the requirements laid down in Safety Series No. 115, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. Contents: 1. Introduction; 2. Responsibilities for building competence in protection and safety; 3. Education, training and work experience; 4. A national strategy for building competence in protection and safety.

  19. Safety Analysis Report for Primary Capsule of Ir-192 Radiation Source

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Choi, W. S.; Seo, K. S.; Son, K. J.; Park, W. J.

    2008-12-01

    All of the source capsules to transport a special form radioactive material should be designed and fabricated in accordance with the design criteria prescribed in IAEA standards and domestic regulations. The objective of this project is to prove the safety of a primary capsule for Ir-192 radiation source which produced in the HANARO. The safety tests of primary capsules were carried out for the impact, percussion and heat conditions. And leakage tests were carried out before and after the each tests. The capsule showed slight scratches and their deformations were not found after each tests. It also met the allowable limits of leakage rate after each test. Therefore, it has been verified that the capsule was designed and fabricated to meet all requirements for the special form radioactive materials

  20. Design and Simulation of 5-DOF Vision-Based Manipulator to Increase Radiation Safety for Industrial Cobalt-60 Irradiators

    International Nuclear Information System (INIS)

    Solyman, A.E.; Keshk, A.B.; Sharshar, K.A.; Roman, M.R.

    2016-01-01

    Robotics has proved its efficiency in nuclear and radiation fields. Computer vision is one of the advanced approaches used to enhance robotic efficiency. The current work investigates the possibility of using a vision-based controlled arm robot to collect the fallen hot Cobalt-60 capsules inside wet storage pool of industrial irradiator. A 5-DOF arm robot is designed and vision algorithms are established to pick the fallen capsules on the bottom surface of the storage pool, read the information printed on its edge (cap) and move it to a safe storage place. Two object detection approaches are studied; RGB-based filter and background subtraction technique. Vision algorithms and camera calibration are done using MATLAB/SIMULINK program. Robot arm forward and inverse kinematics are developed and programmed using an embedded micro controller system. Experiments show the validity of the proposed system and prove its success. The collecting process will be done without interference of operators, hence radiation safety will be increased.

  1. Safety practices, perceptions, and behaviors in radiation oncology: A national survey of radiation therapists.

    Science.gov (United States)

    Woodhouse, Kristina Demas; Hashemi, David; Betcher, Kathryn; Doucette, Abigail; Weaver, Allison; Monzon, Brian; Rosenthal, Seth A; Vapiwala, Neha

    Radiation therapy is complex and demands high vigilance and precise coordination. Radiation therapists (RTTs) directly deliver radiation and are often the first to discover an error. Yet, few studies have examined the practices of RTTs regarding patient safety. We conducted a national survey to explore the perspectives of RTTs related to quality and safety. In 2016, an electronic survey was sent to a random sample of 1500 RTTs in the United States. The survey assessed department safety, error reporting, safety knowledge, and culture. Questions were multiple choice or recorded on a Likert scale. Results were summarized using descriptive statistics and analyzed using multivariate logistic regression. A total of 702 RTTs from 49 states (47% response rate) completed the survey. Respondents represented a broad distribution across practice settings. Most RTTs rated department patient safety as excellent (61%) or very good (32%), especially if they had an incident learning system (ILS) (odds ratio, 2.0). Only 21% reported using an ILS despite 58% reporting an accessible ILS in their department. RTTs felt errors were most likely to occur with longer shifts and poor multidisciplinary communication; 40% reported that burnout and anxiety negatively affected their ability to deliver care. Workplace bullying was also reported among 17%. Overall, there was interest (62%) in improving knowledge in patient safety. Although most RTTs reported excellent safety cultures within their facilities, overall, there was limited access to and utilization of ILSs by RTTs. Workplace issues identified may also represent barriers to delivering quality care. RTTs were also interested in additional resources regarding quality and safety. These results will further enhance safety initiatives and inform future innovative educational efforts in radiation oncology. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  2. Radiation Safety Analysis In The NFEC For Assessing Possible Implementation Of The ICRP-60 Standard

    International Nuclear Information System (INIS)

    Yowono, I.

    1998-01-01

    Radiation safety analysis of the 3 facilities in the nuclear fuel element center (NFEC) for assessing possible implementation of the ICRP-60 standard has been done. The analysis has covered the radiation dose received by workers, dose rate in the working area, surface contamination level, air contamination level and the level of radioactive gas release to the environment. The analysis has been based on BATAN regulation and ICRP-60 standard. The result of the analysis has showed that the highest radiation dose received has been found to be only around 15% of the set value in the ICRP-60 standard and only 6% of the set value in the BATAN regulation. Thus the ICRP-60 as radiation safety standard could be implemented without changing the laboratory design

  3. Review of radiation safety in the cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Johnson, L.W.; Moore, R.J.; Balter, S.

    1992-01-01

    With the increasing use of coronary arteriography and interventional procedures, radiation exposure to patients and personnel working in cardiac catheterization laboratories has increased. Proper technique to minimize both patient and operator exposure is necessary. A practical approach to radiation safety in the cardiac catheterization laboratory is presented. This discussion should be useful to facilities with well-established radiation safety programs as well as facilities that require restructuring to cope with the radiation environment in a modern cardiac catheterization laboratory

  4. Ukraine International cooperation in nuclear and radiation safety: public-administrative aspect

    Directory of Open Access Journals (Sweden)

    I. P. Krynychnay

    2017-03-01

    Full Text Available The article examines international cooperation of Ukraine with other States in the sphere of ensuring nuclear and radiation safety and highlights the main directions of development and improvement of nuclear and radiation safety in Ukraine based on international experience, with the aim of preventing the risks of accidents and contamination areas radiological substances. Illuminated that for more than half a century of experience in the use of nuclear energy by the international community under the auspices of the UN, IAEA and other international organizations initiated and monitored the implementation of key national and international programs on nuclear and radiation safety. Of the Convention in the field of nuclear safety and the related independent peer review, effective national regulatory infrastructures, current nuclear safety standards and policy documents, as well as mechanisms of evaluation in the framework of the IAEA constitute important prerequisites for the creation of a world community, the global regime of nuclear and radiation safety. For analysis of the state of international cooperation of Ukraine with other States in the sphere of nuclear and radiation safety, highlighted the legal substance of nuclear and radiation safety of Ukraine, which is enshrined in the domestic Law of Ukraine «On nuclear energy use and radiation safety». Considered the most relevant legal relations. It is established that, despite the current complex international instruments, existing domestic legislation on nuclear and radiation safety, partly there is a threat of emergency nuclear radiation nature, in connection with the failure of fixed rules and programs, lack of funding from the state is not always on time and in full allows you to perform fixed strategy for overcoming the consequences of radiation accidents, the prevention of the threat of environmental pollution. Found that to improve and further ensuring nuclear and radiation safety of

  5. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  6. Radiation protection databases of nuclear safety regulatory authority

    International Nuclear Information System (INIS)

    Janzekovic, H.; Vokal, B.; Krizman, M.

    2003-01-01

    Radiation protection and nuclear safety of nuclear installations have a common objective, protection against ionising radiation. The operational safety of a nuclear power plant is evaluated using performance indicators as for instance collective radiation exposure, unit capability factor, unplanned capability loss factor, etc. As stated by WANO (World Association of Nuclear Operators) the performance indicators are 'a management tool so each operator can monitor its own performance and progress, set challenging goals for improvement and consistently compare performance with that of other plants or industry'. In order to make the analysis of the performance indicators feasible to an operator as well as to regulatory authorities a suitable database should be created based on the data related to a facility or facilities. Moreover, the international bodies found out that the comparison of radiation protection in nuclear facilities in different countries could be feasible only if the databases with well defined parameters are established. The article will briefly describe the development of international databases regarding radiation protection related to nuclear facilities. The issues related to the possible development of the efficient radiation protection control of a nuclear facility based on experience of the Slovenian Nuclear Safety Administration will be presented. (author)

  7. Design safety limits in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Puthiyavinayagam, P.; Roychowdhury, D.G.; Govindarajan, S.; Chellapandi, P.; Singh, Om Pal; Chetal, S.C.

    2002-01-01

    Full text: PFBR is designed to operate at 450 W/cm peak linear heat rating to a peak burn up of 100,000 MWd/t which corresponds to a damage dose of 85 dpa. The targetted reliability is to restrict pin failure to 1 in 10,000. All the design basis events are classified into four categories. Design safety limits imposed for DBE are in terms of temperatures, radiation doses and structural design parameters. Radiation limits are imposed in relation to RCB from the plant personnel and public point of view. Fuel pin integrity is assured with a detailed damage analysis by adopting cumulative damage concept for fixing clad temperature limits. Fuel temperatures are limited to melting point to preclude fuel slumping for events up to category 3. Partial melting is allowed for events in category 4 and the results obtained from transients experiments show that partial melting up to 50% of pellet area does not result in clad failure. Coolant temperatures are limited to boiling point to avoid burnout and reactivity effects

  8. MO-AB-201-00: Radiation Safety Officer Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatory Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35

  9. MO-AB-201-00: Radiation Safety Officer Update

    International Nuclear Information System (INIS)

    2015-01-01

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatory Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35

  10. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  11. Radiation Safety System for SPIDER Neutral Beam Accelerator

    International Nuclear Information System (INIS)

    Sandri, S.; Poggi, C.; Coniglio, A.; D'Arienzo, M.

    2011-01-01

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports have been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.

  12. Radiation Safety Management Guidelines for PET-CT: Focus on Behavior and Environment

    International Nuclear Information System (INIS)

    Jung, Jin Wook; Han, Eun Ok

    2011-01-01

    Our purpose is to specify behavior and environmental factors aimed at reducing the exposed dosage caused by PET-CT and to develop radiation safety management guidelines adequate for domestic circumstances. We have used a multistep-multimethod as the methodological approach to design and to carry out the research both in quality and quantity, including an analysis on previous studies, professional consultations and a survey. The survey includes responses from 139 practitioners in charged of 109 PET-CTs installed throughout Korea(reported by the Korean Society of Nuclear Medicine, 2010). The research use 156 questions using Cronbach's α (alpha) coefficients which were: 0.818 for 'the necessity of setting and installing the radiation protective environment'; 0.916 for 'the necessity of radiation protection', 'setting and installing the radiation protective environment'; and 0.885 for 'radiation protection'. The check list, derived from the radiation safety management guidelines focused on behavior and environment, was composed of 20 items for the radiation protective environment: including 5 items for the patient; 4 items for the guardian; 3 items for the radiologist; and 8 items applied to everyone involved; for a total of 26 items for the radiation protective behavior including: 12 items for the patient; 1 item for the guardian, 7 items for the radiologist; and 6 items applied to everyone involved. The specific check list is shown in (Table 5-6). Since our country has no safety management guidelines of its own to reduce the exposed dosage caused by PET-CTs, we believe the guidelines developed through this study means great deal to the field as it is not only appropriate for domestic circumstances, but also contains specific check lists for each target who may be exposed to radiation in regards to behavior and environment.

  13. Radiation safety and vascular access: attitudes among cardiologists worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Khan, Asrar A. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States); Xie, Hui [Division of Epidemiology and Biostatistics and Cancer Center, University of Illinois at Chicago, Chicago, Illinois (United States); Shroff, Adhir R. [Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, Illinois (United States)

    2015-03-15

    Objectives: To determine opinions and perceptions of interventional cardiologists on the topic of radiation and vascular access choice. Background: Transradial approach for cardiac catheterization has been increasing in popularity worldwide. There is evidence that transradial access (TRA) may be associated with increasing radiation doses compared to transfemoral access (TFA). Methods: We distributed a questionnaire to collect opinions of interventional cardiologists around the world. Results: Interventional cardiologists (n = 5332) were contacted by email to complete an on-line survey from September to October 2013. The response rate was 20% (n = 1084). TRA was used in 54% of percutaneous coronary interventions (PCIs). Most TRAs (80%) were performed with right radial access (RRA). Interventionalists perceived that TRA was associated with higher radiation exposure compared to TFA and that RRA was associated with higher radiation exposure that left radial access (LRA). Older interventionalists were more likely to use radiation protection equipment and those who underwent radiation safety training gave more importance to ALARA (as low as reasonably achievable). Nearly half the respondents stated they would perform more TRA if the radiation exposure was similar to TFA. While interventionalists in the United States placed less importance to certain radiation protective equipment, European operators were more concerned with physician and patient radiation. Conclusions: Interventionalists worldwide reported higher perceived radiation doses with TRA compared to TFA and RRA compared to LRA. Efforts should be directed toward encouraging consistent radiation safety training. Major investment and application of novel radiation protection tools and radiation dose reduction strategies should be pursued. - Highlights: • We examined radiation safety and arterial access practices among 1000 cardiologists. • Radial access is perceived as having higher radiation dose compared to

  14. Conception and activity directions of journal ''Nuclear and radiation safety''

    International Nuclear Information System (INIS)

    Olena, M.; Volodymyr, S.

    2000-01-01

    In connection with the State Scientific and Technical Centre onr Nuclear and Radiation Safety (SSTC NRA) and Odessa State Polytechnic University the journal 'Nuclear and Radiation Safety' was established in 1998. In Ukraine many people are interested in nuclear energy problems. The accident in Chernobyl NPP unit 4 touches all Ukrainians and brings about strong and regular attention to nuclear and radiation safety of nuclear installations and nuclear technology, on the other side more than 50 per cent of electric power is produced in 5 NPPs and as following national power supply depends on stability of NPPs work. Main goals of the journal are: Support to Nuclear Regulatory Administration (NRA) of MEPNS of Ukraine, creation of information space for effective exchange of results of scientific, scientific and technical, scientific and analytical work in the field of Nuclear and Radiation Safety, assistance in integrated development of research for Nuclear and Radiation Safety by publication in a single issue of scientific articles, involvement of state scientific potential in resolving actual problems, participation in international collaboration in the framework of agreements, programs and plans. (orig.)

  15. SAFR: a marriage of safety and innovation in LMR design

    International Nuclear Information System (INIS)

    Lancet, R.T.; Mills, J.C.

    1985-01-01

    The Sodium Advanced Fast Reactor (SAFR) is a natural evolution of earlier designs, given the current economic and licensing environment. Stringent safety and economic goals have been established for the SAFR plant. This paper describes how these goals are being satisfied, with the primary emphasis being placed on safety. The top level safety goals are: (a) to provide inherently safe responses to all credible events (b) to minimize the potential for severe accidents, and (c) to eliminate the need for evacuation, (d) limited financial risk, (e) assured investment protection, (f) minimum development risk, (g) high capacity factor, (h) long plant life, and (i) low personnel radiation exposure

  16. Radiation Protection, Nuclear Safety and Security

    International Nuclear Information System (INIS)

    Faye, Ndeye Arame Boye; Ndao, Ababacar Sadikhe; Tall, Moustapha Sadibou

    2014-01-01

    Senegal has put in place a regulatory framework which allows to frame legally the use of radioactive sources. A regulatory authority has been established to ensure its application. It is in the process of carrying out its regulatory functions. It cooperates with appropriate national or international institutions operating in fields related to radiation protection, safety and nuclear safety.

  17. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework. 1. ed.

    International Nuclear Information System (INIS)

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  18. Australian Radiation Protection and Nuclear Safety Act 1998. Guide to the Australian radiation protection and nuclear safety licensing framework; 1. ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The purpose of this guide is to provide information to Commonwealth entities who may require a license under the Australian Radiation Protection and Nuclear Safety (ARPANS) Act 1998 to enable them to posses, have control of, use, operate or dispose of radiation sources. The guide describes to which agencies and what activities require licensing. It also addresses general administrative and legal matters such as appeal procedures, ongoing licensing requirements, monitoring and compliance. Applicants are advised to consult the Australian Radiation Protection and Nuclear Safety Act 1998 and accompanying Regulations when submitting applications

  19. Expanding the scope of practice for radiology managers: radiation safety duties.

    Science.gov (United States)

    Orders, Amy B; Wright, Donna

    2003-01-01

    In addition to financial responsibilities and patient care duties, many medical facilities also expect radiology department managers to wear "safety" hats and complete fundamental quality control/quality assurance, conduct routine safety surveillance in the department, and to meet regulatory demands in the workplace. All managers influence continuous quality improvement initiatives, from effective utilization of resource and staffing allocations, to efficacy of patient scheduling tactics. It is critically important to understand continuous quality improvement (CQI) and its relationship with the radiology manager, specifically quality assurance/quality control in routine work, as these are the fundamentals of institutional safety, including radiation safety. When an institution applies for a registration for radiation-producing devices or a license for the use of radioactive materials, the permit granting body has specific requirements, policies and procedures that must be satisfied in order to be granted a permit and to maintain it continuously. In the 32 U.S. Agreement states, which are states that have radiation safety programs equivalent to the Nuclear Regulatory Commission programs, individual facilities apply for permits through the local governing body of radiation protection. Other states are directly licensed by the Nuclear Regulatory Commission and associated regulatory entities. These regulatory agencies grant permits, set conditions for use in accordance with state and federal laws, monitor and enforce radiation safety activities, and audit facilities for compliance with their regulations. Every radiology department and associated areas of radiation use are subject to inspection and enforcement policies in order to ensure safety of equipment and personnel. In today's business practice, department managers or chief technologists may actively participate in the duties associated with institutional radiation safety, especially in smaller institutions, while

  20. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Chinese Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  1. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  2. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Ed.)

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  3. [RADIATION SAFETY DURING REMEDIATION OF THE "SEVRAO" FACILITIES].

    Science.gov (United States)

    Shandala, N K; Kiselev, S M; Titov, A V; Simakov, A V; Seregin, V A; Kryuchkov, V P; Bogdanova, L S; Grachev, M I

    2015-01-01

    Within a framework of national program on elimination of nuclear legacy, State Corporation "Rosatom" is working on rehabilitation at the temporary waste storage facility at Andreeva Bay (Northwest Center for radioactive waste "SEVRAO"--the branch of "RosRAO"), located in the North-West of Russia. In the article there is presented an analysis of the current state of supervision for radiation safety of personnel and population in the context of readiness of the regulator to the implementation of an effective oversight of radiation safety in the process of radiation-hazardous work. Presented in the article results of radiation-hygienic monitoring are an informative indicator of the effectiveness of realized rehabilitation measures and characterize the radiation environment in the surveillance zone as a normal, without the tendency to its deterioration.

  4. Communications on nuclear, radiation, transport and waste safety: a practical handbook

    International Nuclear Information System (INIS)

    1999-04-01

    Basic requirements to be met by national infrastructures for radiation protection and safety are stated in the International basic safety Standards for Protection against Ionizing radiation and for safety of radiation Sources. These include a requirement 'to set up appropriate means of informing the public, its representatives and the information media about the health and safety aspects of activities involving exposure to radiation and about regulatory processes.' This publication is intended for national regulatory authorities, to provide them with guidance on the principles and methods that can be applied in communicating nuclear safety to different audiences under different circumstances. This report presumes the existence of adequate national infrastructure including an independent regulatory authority with sufficient powers and resources to meet its responsibilities

  5. Investigation of status of safety management in radiation handle works

    International Nuclear Information System (INIS)

    Amauchi, Hiroshi; Nishimura, Kenji; Izumi, Kokichi

    2007-01-01

    This report describes the investigation in the title concerning the system for safety management and for accident prevention, which was done by a questionnaire in a period of 1.5 months in 2005. The questionnaire including 55 questions for safety management system, 33 for instruments and safety utilization of radiation and 57 for present status of safety management in high-risk radiation works, was performed in 780 hospitals, of which 313 answered. The first 55 questions concerned with the facility, patient identification, information exchange, management of private information, safety management activities, measures to prevent accident, manual preparation, personnel education and safety awareness; the second, with management of instruments, package insert, system for reporting the safety information, management of implants, re-imaging and radiation protection; and the third, with the systems for patients' emergency, in departments of CT/MR, of IVR, of nuclear diagnosis and of radiation therapy. Based on the results obtained, many problems, tasks and advices are presented to various items and further continuation of efforts to improve the present status is mentioned to be necessary. Details are given in the homepage of the Japanese Society of Radiological Technology. (T.I.)

  6. The Argentine Approach to Radiation Safety: Its Ethical Basis

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    The ethical bases of Argentina's radiation safety approach are reviewed. The applied principles are those recommended and established internationally, namely: the principle of justification of decisions that alters the radiation exposure situation; the principle of optimization of protection and safety; the principle of individual protection for restricting possible inequitable outcomes of optimized safety; and the implicit principle of inter generational prudence for protection future generations and the habitat. The principles are compared vis-a-vis the prevalent ethical doctrines: justification vis-a-vis teleology; optimization vis-a-vis utilitarianism; individual protection vis-a-vis de ontology; and, inter generational prudence vis-a-vis aretaicism (or virtuosity). The application of the principles and their ethics in Argentina is analysed. These principles are applied to All exposure to radiation harm; namely, to exposures to actual doses and to exposures to actual risk and potential doses, including those related to the safety of nuclear installations, and they are harmonized and applied in conjunction. It is concluded that building a bridge among all available ethical doctrines and applying it to radiation safety against actual doses and actual risk and potential doses is at the roots of the successful nuclear regulatory experience in Argentina.

  7. Supervisor's experiments on radiation safety trainings in school of engineering

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    2005-01-01

    Radiation safety training courses in School of Engineering, The University of Tokyo, were introduced. The number of radiation workers and the usage of radiation and radioisotopes have been surveyed for past 14 years. The number of radiation workers in School of Engineering has increased due to the treatment of X-ray analysis of materials, recently. It is important for workers to understand the present situation of School of Engineering before the treatment of radiation and radioisotopes. What the supervisor should tell to radiation workers were presented herewith. The basic questionnaires after the lecture are effective for radiation safety trainings. (author)

  8. Neuro-oncology update: radiation safety and nursing care during interstitial brachytherapy

    International Nuclear Information System (INIS)

    Randall, T.M.; Drake, D.K.; Sewchand, W.

    1987-01-01

    Radiation control and safety are major considerations for nursing personnel during the care of patients receiving brachytherapy. Since the theory and practice of radiation applications are not part of the routine curriculum of nursing programs, the education of nurses and other health care professionals in radiation safety procedures is important. Regulatory agencies recommend that an annual safety course be given to all persons frequenting, using, or associated with patients containing radioactive materials. This article presents pertinent aspects of the principles and procedures of radiation safety, the role of personnel dose-monitoring devices, and the value of additional radiation control features, such as a lead cubicle, during interstitial brain implants. One institution's protocol and procedures for the care of high-intensity iridium-192 brain implants are discussed. Preoperative teaching guidelines and nursing interventions included in the protocol focus on radiation control principles

  9. Radiation protection safety in Uganda -- Experience and prospects of the National Radiation Protection Service

    International Nuclear Information System (INIS)

    Kisolo, A.

    2001-01-01

    The Uganda National Radiation Protection Service (NRPS) is a technical body under the Atomic Energy Control Board, established by Law - the Atomic Energy Decree of 1972, Decree No. 12, to oversee and enforce safety of radiation sources, practices and workers; and to protect the patients, members of the public and the environment from the dangers of ionizing radiation and radioactive wastes. The Ionizing Radiation Regulations (Standards) - Statutory Instruments Supplement No. 21 of 1996 -- back up the Law. The Law requires all users, importers and operators of radiation sources and radioactive materials to notify the NRPS for registration and licensing. The NRPS is responsible for licensing and for the regulatory enforcement of compliance to the requirements for the safety of radiation sources and practices. There are about 200 diagnostic X-ray units, two radiotherapy centres, one nuclear medicine unit, several neutron probes, about three level gauges and two non-destructive testing sources and a number of small sealed sources in teaching and research institutions. About 50% of these sources have been entered in our inventory using the RAIS software provided by the IAEA. There are about 500 radiation workers and 250 underground miners. The NRPS covers about 50% of the radiation workers. It is planned that by June 2001, all occupational workers will be monitored, bringing coverage to 100%. The Government of Uganda is making the necessary legal, administrative and technical arrangements aimed at establishing the National Radiation Protection Commission as an autonomous regulatory authority. The Atomic Energy Decree of 1972 and Regulations of 1996 are being revised to provide for the National Radiation Protection Commission and to make it comply with the requirements of the International Basic Safety Standards Safety Series No. 115. (author)

  10. Development of a stand-alone microcomputer based DOE contractor generic radiation worker safety course

    International Nuclear Information System (INIS)

    Klos, D.B.; Gardner, P.R.

    1985-01-01

    Westinghouse Hanford Company (WHC) has developed Computer Based Training (CBT) materials for radiation and industrial safety. First released for general Fast Flux Test Facility in November, 1984. This course has now been taken by nearly 350 people. Completion times for new personnel average around eight hours. The next project undertaken was construction of a Radiation Worker Safety course generic enough for use by all contractors at the Hanford site. The design process of the Hanford site course indicated that the quantity of ''DOE common material'' may be sufficient to warrant consideration of a larger target population. Specifically, the course will be designed to run on an IBM-PC or compatible computer having 256K RAM, a standard IBM color graphics card or equivalent, a color graphics monitor, and two floppy disk drives or one hard disk. The target student population includes those who routinely work in Radiation Areas, especially crafts people. We are not targeting Health Physics personnel, except, possibly, for introductory training, nor are we directing the course toward ''casual'' or escorted workers

  11. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  12. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  13. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  14. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  15. New radiation protection concept as important safety factor of industrial radiography

    International Nuclear Information System (INIS)

    Pavlovic, R.; Pavlovic, S.

    1998-01-01

    Industrial radiography is a method for non destructive testing of homogeneity of various materials based on different absorption of radiation in different material. X and γ radiation are the most often used. Detrimental effects of radiation are observed since its discovery. In order to prevent harmful effects of radiation without unduly limitations of its use, International Commission on Radiological Protection in collaboration with International Atomic Energy Agency have developed International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, Safety Series No 115, adopted in 1996. based on ICRP recommendations from 1991. Besides a lot of changes in radiation protection concept and philosophy, decrement of annual dose limits for occupational exposure from 50 to 20 mSv. (author)

  16. Report on administrative work for radiation safety from April 2006 to March 2007

    Energy Technology Data Exchange (ETDEWEB)

    Komori, Akio; Kaneko, Osamu; Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2007-10-15

    The National Institute for Fusion Science (NIFS) is proceeding with the research on magnetic confining nuclear fusion both experimentally and theoretically. During the experiment with deals with very hot plasma, X ray is generated. Therefore the experimental devices with their surroundings are administrated in conformity with the Industrial Safety and Health Law to keep workplace safety. The Radiation Control Safety Office of Safety Hygiene Protection Bureau carries out measuring the radiation dose level regularly, registering the employees who are engaged in plasma experiments, and training them. Non-regulated small sealed sources are used in some detectors. The treating of these sources is controlled by the Safety and Environmental Research Center. This report is on administrative works for radiation safety in the last fiscal year 2006. It includes (1) report on the establishment of radiation safety management system, (2) report on the establishment of training and registration system for radiation workers, and (3) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE). The report has been published annually. We hope that these reports would be helpful for future safety management in NIFS. (author)

  17. Report on administrative work for radiation safety from April 2006 to March 2007

    International Nuclear Information System (INIS)

    Komori, Akio; Kaneko, Osamu; Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2007-10-01

    The National Institute for Fusion Science (NIFS) is proceeding with the research on magnetic confining nuclear fusion both experimentally and theoretically. During the experiment with deals with very hot plasma, X ray is generated. Therefore the experimental devices with their surroundings are administrated in conformity with the Industrial Safety and Health Law to keep workplace safety. The Radiation Control Safety Office of Safety Hygiene Protection Bureau carries out measuring the radiation dose level regularly, registering the employees who are engaged in plasma experiments, and training them. Non-regulated small sealed sources are used in some detectors. The treating of these sources is controlled by the Safety and Environmental Research Center. This report is on administrative works for radiation safety in the last fiscal year 2006. It includes (1) report on the establishment of radiation safety management system, (2) report on the establishment of training and registration system for radiation workers, and (3) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE). The report has been published annually. We hope that these reports would be helpful for future safety management in NIFS. (author)

  18. Legislation for radiation protection and nuclear safety in the Republic of Croatia

    International Nuclear Information System (INIS)

    Novosel, N.

    1994-01-01

    The main prerequisite of radiation protection and nuclear safety development and improvement in the Republic of Croatia are: national legislation for radiation protection and nuclear safety in accordance with international recommendations; and development of state infrastructure for organization and management of radiation protection and nuclear safety measures. In this paper I the following topics are present: inherited legislation for radiation protection and nuclear safety; modern trends in world nowadays; and what is done and has to be done in the Republic of Croatia to improve this situation

  19. Systematic approach to training for competence building in radiation safety

    International Nuclear Information System (INIS)

    Asiamah, S.D.; Schandorf, C.; Darko, E.O.

    2003-01-01

    Competence building involves four main attributes, namely, knowledge, skills, operating experience and attitude to radiation safety. These multi-attribute requirements demand a systematic approach to education and training of regulatory staff, licensees/registrants and service providers to ensure commensurate competence in performance of responsibilities and duties to specified standards. In order to address issues of competencies required in radiation safety a national programme for qualification and certification has been initiated for regulatory staff, operators, radiation safety officers and qualified experts. Since the inception of this programme in 1993, 40 training events have been organized involving 423 individuals. This programme is at various levels of implementation due to financial and human resource constraints. A department for Human Resource Development and Research was established in 2000 to enhance and ensure the sustainability of the effectiveness of capacity building in radiation safety. (author)

  20. Radiation protection and safety guide no. GRPB-G-4: inspection

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    The use of ionizing radiation and radiation sources in Ghana is on the increase due to national developmental efforts in Health Care, Food and Agriculture, Industry, Science and Technology. This regulatory Guide has been developed to assist both the Regulatory Body (Radiation Protection Board) and operating organizations to perform systematic inspections commensurate with the level of hazard associated with the application of radiation sources and radioactive materials. The present Guide applies to the Radiation Protection and Safety inspection and/or audit conducted by the Radiation Protection Board or Radiation Safety Officer. The present Guide is applicable in Ghana and to foreign suppliers of radiation sources. The present Guide applies to notifying person, licensee, or registrant and unauthorized practice

  1. Building competence in radiation protection and the safe use of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    An essential element of a national infrastructure for radiation protection and safety is the maintenance of an adequate number of competent personnel. This Safety Guide makes recommendations concerning the building of competence in protection and safety, which relate to the training and assessment of qualification of new personnel and retraining of existing personnel in order to develop and maintain appropriate levels of competence. This Safety Guide addresses training in protection and safety aspects in relation to all practices and intervention situations in nuclear and radiation related technologies. This document covers the following aspects: the categories of persons to be trained. The requirements for education, training and experience for each category. The processes of qualification and authorization of persons. A national strategy for building competence

  2. Promoting radiation protection and safety for X-ray inspection systems

    International Nuclear Information System (INIS)

    Maharaj, Harri P.

    2008-01-01

    This paper aims to present a regulatory perspective on radiation protection and safety relevant to facilities utilizing baggage X-ray inspection systems. Over the past several years there has been rapid growth in the acquisition and utilization of X-ray tube based inspection systems for security screening purposes worldwide. In addition to ensuring compliance with prescribed standards applicable to such X-ray systems, facilities subject to federal jurisdiction in Canada are required to comply with established codes of practice, which, not only are in accordance with occupational health and safety legislation but also are consistent with international guidance. Overall, these measures are aimed at reducing radiation risks and adverse health effects. Data, acquired in the past several years in a number of facilities through various instruments, namely, monitoring and surveillance, radiation safety audits, onsite evaluations, device registration processes and information developed, were considered in conjunction with detrimental traits. Changes are necessary to reduce radiation and safety risks from both an ALARA point of view and an accountability perspective. Establishing, developing, implementing and following a radiation protection program is warranted and advocated. Minimally, such a program shall be managed by a radiation safety officer. It shall promote and sustain a radiation safety culture in the workplace; shall ensure properly qualified individuals operate and service the X-ray systems in accordance with established and authorized procedures; and shall incorporate data recording and life cycle management principles. Such a program should be the norm for a facility that utilizes baggage X-ray inspection systems for security purposes, and it shall be subject to continuous regulatory oversight. (author)

  3. Proceedings of the 9th annual meeting of Japanese Society of Radiation Safety Management 2010 Hiroshima

    International Nuclear Information System (INIS)

    2010-12-01

    This is the entitled program and proceedings held from December 1st through 3rd of 2010. The sessions including poster, invited/special speeches etc. are exposure reduction and dose level evaluation, shielding design, radioactive waste handling and its effective use, radiation measurement, safety control of radiation source, radioactive waste management (aerosol, liquid), education on radiation, molecular imaging, image analysis, radioactivity in environment, contamination inspection. (J.P.N)

  4. A prediction model for the radiation safety management behavior of medical cyclotrons

    International Nuclear Information System (INIS)

    Jung, Ji Hye; Han, Eun Ok; Kim, Ssang Tae

    2008-01-01

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 ± 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in radiation safety managements, general

  5. Radioactivity in consumer products : radiation safety and regulatory appraisal

    International Nuclear Information System (INIS)

    Murthy, B.K.S.; Venkataraman, G.; Subrahmanym, P.

    1993-01-01

    Use of radioactive materials in consumer products is in vogue almost since the discovery of radioactivity. There has been a rapid growth in the use of radioactive material in various consumer products such as Ionization Chamber Smoke Detectors (ICSD), Static eliminators, etc. In addition, there are certain manufacturing processes wherein the Naturally Occurring Radioactive Material (NORM) get incorporated in the consumer products. Certain phosphatic fertilizers, titanium dioxide pigments, phospho gypsum plaster boards are some examples in this category. The manufacture and use of these products result in radiation dose to the public apart from radiation exposure to the personnel involved in the manufacturing process. Appropriate radiation control measures have to be taken in the design, manufacture and use of consumer products to ensure that the radiation doses to the public and the population at large do not exceed the relevant limits. While appropriate regulatory controls and surveillance are established for manufacture and use of certain products, these are still to be recognised and established in respect of certain other processes and products. The current status of radiation safety and regulatory control and the lack of these in respect of some products are discussed in this paper. (author). 5 refs

  6. Exemption of the use of radiation from the safety licence and reporting obligation

    International Nuclear Information System (INIS)

    1999-07-01

    The primary means of controlling the use of radiation is the safety licence procedure. The safety licence, and the granting of the licence, are regulated in the section 16 of the Finnish Radiation Act (592/1991). In section 17 of the act, certain practices are exempted from the safety licence. In addition to these practices, the Radiation and Nuclear Safety (STUK) may (on the basis of the same legal clause) exempt other types of radiation use from the safety licence, if it is possible to ascertain with sufficient reliability that the use of the radiation will not cause damage or danger to health. This guide presents the conditions applying to exemption from the safety licence for the use of radiation and reporting obligation, and also the exemption values for radioactive substances which, if exceeded, will entail the application of the safety licence and notification procedure for the use of radiation in question. The guide also presents exemptions in the use of exemption values, and requirements associated with the exemption of radiation appliances. However, the guide does not apply to the use of nuclear energy

  7. Exemption of the use of radiation from the safety licence and reporting obligation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The primary means of controlling the use of radiation is the safety licence procedure. The safety licence, and the granting of the licence, are regulated in the section 16 of the Finnish Radiation Act (592/1991). In section 17 of the act, certain practices are exempted from the safety licence. In addition to these practices, the Radiation and Nuclear Safety (STUK) may (on the basis of the same legal clause) exempt other types of radiation use from the safety licence, if it is possible to ascertain with sufficient reliability that the use of the radiation will not cause damage or danger to health. This guide presents the conditions applying to exemption from the safety licence for the use of radiation and reporting obligation, and also the exemption values for radioactive substances which, if exceeded, will entail the application of the safety licence and notification procedure for the use of radiation in question. The guide also presents exemptions in the use of exemption values, and requirements associated with the exemption of radiation appliances. However, the guide does not apply to the use of nuclear energy.

  8. Radiation safety handbook for ionizing and nonionizing radiation

    International Nuclear Information System (INIS)

    Kincaid, C.B.

    1976-10-01

    The Handbook is directed primarily to users of radiation sources throughout the Food and Drug Administration. Specific precautions regarding the possession and use of radiation sources in meeting the Agency's objectives are an inherent responsibility of all employees. In addition, the increased emphasis on occupational safety and health and the responsibilities placed on the Department by Public Law and Executive Order make it mandatory that all organizational levels and activities conform to the intent of this Handbook. The policies and procedures described in this document apply to all Agency operators and activities and are intended to protect employees and the general public

  9. Radiation protection as part of occupational health and safety in the regulation of uranium mines in Canada

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-02-01

    The Canadian Atomic Energy Control Board (AECB) is involved in the development of new uranium mines from the early planning stages through the development of the mine-mill facility. As a result, new facilities are designed and developed to a much higher standard of both conventional and radiation health and safety than previously. Radiation is not the most significant cause of injury to the uranium miner, and public attitudes toward radiation may result in overemphasizing these aspects to the detriment of conventional health and safety conditions in the mines. The AECB believes that one dead miner is one too many and bases its regulatory efforts on this belief

  10. Safety evaluation report related to the preliminary design of the Standard Reference System, RESAR-414

    International Nuclear Information System (INIS)

    1978-11-01

    The safety evaluation for the Westinghouse Standard Reactor includes information on general reactor characteristics; design criteria for systems and components; reactor coolant system; engineered safety systems; instrumentation and controls; electric power systems; auxiliary systems; steam and power conversion system; radioactive waste management; radiation protection; conduct of operations; accident analyses; and quality assurance

  11. Radiation safety design of super KEKB factory

    International Nuclear Information System (INIS)

    Sanami, Toshiya

    2015-01-01

    The SuperKEKB factory, which was scheduled to start operation early 2015, is an electron-positron collider designed to produce an 80x10"3"4-1/cm"2/s luminosity, which is 40 times greater than the KEKB factory. Built to investigate CP violation and 'new physics' beyond the Standard Model, the facility consists of a 7-GeV electron/3.5-GeV positron linac, a 1.1- GeV positron damping ring, beam transport, and a 7-GeV electron/4-GeV positron collider. To meet this level of luminosity, the collider will be operated with a small beam size and a large crossing angle at the interaction point. According to particle tracking simulations, beam losses under these conditions will be 35 times more than those previously operated. To help optimise shielding configurations, leakage radiation and induced activity are estimated through empirical equations and detailed Monte-Carlo simulations using MARS15 code for the interaction region, beam halo collimators, emergency pathways, ducts, forward direction tunnels, and positron production target. Examples of shielding strategies are presented to reduce both leakage dose and airborne activity for several locations in the facility. (authors)

  12. Radiological safety design considerations for fusion research experiments

    International Nuclear Information System (INIS)

    Crase, K.W.; Singh, M.S.

    1979-01-01

    A wide variety of fusion research experiments are in the planning or construction stages. Two such experiments, the Nova Laser Fusion Facility and the Mirror Fusion Test Facility (MFTF), are currently under construction at Lawrence Livermore Laboratory. Although the plasma chamber vault for MFTF and the Nova target room will have thick concrete walls and roofs, the radiation safety problems are made complex by the numerous requirements for shield wall penetrations. This paper addresses radiation safety considerations for the MFTF and Nova experiments, and the need for integrated safety considerations and safety technology development during the planning stages of fusion experiments

  13. A person having ability in radiation protection: an original measure in comparison with the common rights for work safety

    International Nuclear Information System (INIS)

    Pasquier, J.L.; Vidal, J.P.

    1998-01-01

    In accordance with the regulations, any factory using ionising radiations is obliged to designate a person having having ability in radiation protection and entrusted with specific missions regarding safety for professional risks. This represents an original measure in comparison with the common rights for work safety. The decree whose became operative on 2 october 1986, about ten years ago and just before the reform of radiation protection standards, it seems important to store in memory the genesis and the goals of this prescription and to present the results. (authors)

  14. Design and radiation tests on a LED based emergency evacuation directional lighting

    CERN Document Server

    Trikoupis, Nikolaos

    2017-01-01

    A LED (Light Emitting Diode) based directional lighting system has been designed to indicate the best evacuation direction for applications like the Large Hadron Collider (LHC) tunnel. The design includes constraints for redundancy required by safety systems and for components selection by radiation effects. Most of the literature for radiation effects on LEDs concern digital communications systems, although some recent reports do exist for visible spectrum power LEDs and the reduction in light output versus dose is coherent with the results presented in this paper. Prototype lighting units were irradiated in CERN’s CHARM facility up to a Total Integrated Dose (TID) of 870 Gy and no failures were observed. This paper describes the basic design, presents field tests and the effects of radiation on the LEDs luminance.

  15. Delivering a radiation protection dividend: systemic capacity-building for the radiation safety profession in Africa

    Directory of Open Access Journals (Sweden)

    Julian Hilton

    2014-12-01

    Full Text Available Many African countries planning to enter the nuclear energy “family” have little or no experience of meeting associated radiation safety demands, whether operational or regulatory. Uses of radiation in medicine in the continent, whether for diagnostic or clinical purposes, are rapidly growing while the costs of equipment, and hence of access to services, are falling fast. In consequence, many patients and healthcare workers are facing a wide array of unfamiliar challenges, both operational and ethical, without any formal regulatory or professional framework for managing them safely. This, combined with heighted awareness of safety issues post Fukushima, means the already intense pressure on radiation safety professionals in such domains as NORM industries and security threatens to reach breaking point. A systematic competency-based capacity-building programme for RP professionals in Africa is required (Resolution of the Third AFRIRPA13 Regional Conference, Nairobi, September 2010. The goal is to meet recruitment and HR needs in the rapidly emerging radiation safety sector, while also addressing stakeholder concerns in respect of promoting and meeting professional and ethical standards. The desired outcome is an RP “dividend” to society as a whole. A curriculum model is presented, aligned to safety procedures and best practices such as Safety Integrity Level and Layer of Protection analysis; it emphasizes proactive risk communication both with direct and indirect stakeholders; and it outlines disciplinary options and procedures for managers and responsible persons for dealing with unsafe or dangerous behavior at work. This paper reports on progress to date. It presents a five-tier development pathway starting from a generic foundation course, suitable for all RP professionals, accompanied by specialist courses by domain, activity or industry. Delivery options are discussed. Part of the content has already been developed and delivered as

  16. EC6 safety design improvements

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Lee, A.G.; Soulard, M. [Candu Energy Inc., Mississauga, ON (Canada)

    2014-07-01

    The Enhanced CANDU 6 (EC6) builds on the proven high performance design such as the Qinshan CANDU 6 reactor, and has made improvements to safety, operational performance, and has incorporated extensive operational feedback. Completion of all three phases of the pre-licensing design review by the Canadian Regulator - the Canadian Nuclear Safety Commission has provided a higher level of assurance that the EC6 reference design has taken modern regulatory requirements and expectations into account and further confirmed that there are no fundamental barriers to licensing the EC6 design in Canada. The EC6 design is based on the defence-in-depth principles in INSAG-10 and provides further safety features that address the lessons learned from Fukushima. With these safety features, the EC6 design has strengthened accident prevention as the first priority in the defence-in-depth strategy, as outlined in INSAG-10. As well, the EC6 design has incorporated further mitigation measures to provide additional protection of the public and the environment if the preventive measures fail. The EC6 design has an appropriate combination of inherent, passive safety characteristics, engineered features and administrative safety measures to effectively prevent and mitigate severe accident progressions. A strong contributor to the robustness and redundancy of CANDU design is the two-group separation philosophy. This ensures a high degree of independence between safety systems as well as physical separation and functional independence in how fundamental safety functions are provided. This paper will describe the following safety features based on the application of defence-in-depth and design approach to prevent beyond design basis events progressing to severe accidents and to mitigate the consequences if it occurs: Improved steam generator heat sink via a more reliable emergency heat removal system; Increased time before manual field actions are required via enhanced capacity of

  17. Growth of the Female Professional in the Radiation Safety Department

    International Nuclear Information System (INIS)

    Yoon, J.

    2015-01-01

    Currently in Korea’s Nuclear Power Plants (KHNP), the number of the female staffs has been increased as planned construction of new NPPs. However the role of the female staffs in NPPs is still limited as before. Because there is the prejudice which the operating and the maintenance work is unsuitable for female owing to the risk of the radiation exposure and the physical weakness. So female staffs mostly belong to the supporting departments. In particular, the proportion of the female staffs is significantly higher in the radiation safety department among those. The ratio is 15% and is twice higher, whereas the total percentage of the female workers in KHNP is 8%. In the past, the women staffs in the radiation safety department were usually charge of the non-technical duties like the radiation exposure dose management and the education for radiation workers. Although the ratio of the women about that is still higher, nowadays, the role of the female workers tends to diversify to technical supports like the radiation protection and the radioactive waste management while increased the proportion of female employees. This trend is expected to continue for many years to come. Thus, in Korea’s NPPs, it is expected that many women will demonstrate their professionalism especially in the radiation safety department than any other departments. This presentation contains the detailed duty and trend about female staffs in the radiation safety department in Korea’s NPPs. (author)

  18. Radiation safety and care of patients

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    The objective of this chapter is to acquaint the reader with radiation safety measures which can be pursued to minimize radiation load to the patient and staff. The basic principle is that all unnecessary administration should be avoided and a number of simple techniques be used to reduce radiation dose. For example, the kidney excretes many radionuclides. Drinking plenty of fluid and frequent bladder emptying can minimize absorbed dose to the bladder. Thyroid blocking agents must be used if radioactive iodine is being administered to avoid unnecessary radiation exposure to the thyroid gland. When it is necessary to administer radioactive substances to a female of childbearing age, the radiation exposure should be minimum and information whether the patient is pregnant or not must be obtained. Alternatives techniques, which do not involve ionizing radiation, should also be considered. (author)

  19. Radiation Safety of Accelerator Facility with Regard to Regulation

    International Nuclear Information System (INIS)

    Dedi Sunaryadi; Gloria Doloresa

    2003-01-01

    The radiation safety of accelerator facility and the status of the facilities according to licensee in Indonesia as well as lesson learned from the accidents are described. The atomic energy Act No. 10 of 1997 enacted by the Government of Indonesia which is implemented in Radiation Safety Government Regulation No. 63 and 64 as well as practice-specific model regulation for licensing request are discussed. (author)

  20. Monitoring System For Improving Radiation Safety Management

    International Nuclear Information System (INIS)

    Osovizky, A.; Paran, J.; Tal, N.; Ankry, N.; Ashkenazi, B.; Tirosh, D.; Marziano, R.; Chisin, R.

    1999-01-01

    Medi SMARTS (Medical Survey Mapping Automatic Radiation Tracing System), a gamma radiation monitoring system, was installed in a nuclear medicine department. In this paper the evaluation of the system's ability to improve radiation safety management is presented. The system is based on a state of the art software that continuously collects on line radiation measurements for display, analysis and logging. Radiation is measured by GM tubes; the signal is transferred to a data processing unit and then via an RS-485 communication line to a computer. The system automatically identifies the detector type and its calibration factor, thus providing compatibility, maintainability and versatility when changing detectors. Radiation levels are displayed on the nuclear medicine department map at six locations. The system has been operating continuously for more than one year, documenting abnormal events caused by routine operation or failure incidents. In cases where abnormal working conditions were encountered, an alarm message was sent automatically to the supervisor via his tele-pager. An interesting issue observed during the system evaluation, was the inability to distinguish between high radiation levels caused by proper routine operation and those caused by safety failure incidents. The solution included examination of two parameters, radiation levels as well as their duration period. A careful analysis of the historical data, applying the appropriated combined parameters determined for each location, verified that such a system can identify abnormal events, provide alarms to warn in case of incidents and improve standard operating procedures

  1. Nuclear and radiation safety in Mongolia

    International Nuclear Information System (INIS)

    Batjargala, Erdev

    2010-01-01

    The main purpose of the paper is to assess legal environment of Mongolia for development of nuclear and radiation safety and security. The Nuclear Energy Agency, regulatory agency of the Government of Mongolia, was founded in the beginning of 2009. Since then, it has formulated the State Policy for Utilization of Radioactive Minerals and Nuclear Energy and the Nuclear Energy Law, regulatory law of the field. The State Great Khural of Mongolia has enacted these acts. By adopting the State Policy and Nuclear Energy Law, which together imported the international standards for nuclear and radiation safety and security, it is possible to conclude that legal environment has formed in Mongolia to explore and process radioactive minerals and utilize nuclear energy and introduce technologies friendly to human health and environment. (author)

  2. A prediction model for the radiation safety management behavior of medical cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji Hye; Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of); Kim, Ssang Tae [CareCamp Inc., Seoul (Korea, Republic of)

    2008-06-15

    This study attempted to provide reference materials for improving the behavior level in radiation safety managements by drawing a prediction model that affects the radiation safety management behavior because the radiation safety management of medical Cyclotrons, which can be used to produce radioisotopes, is an important factor that protects radiation caused diseases not only for radiological operators but average users. In addition, this study obtained follows results through the investigation applied from January 2 to January 30, 2008 for the radiation safety managers employed in 24 authorized organizations, which have already installed Cyclotrons, through applying a specific form of questionnaire in which the validity was guaranteed by reference study, site investigation, and focus discussion by related experts. The radiation safety management were configured as seven steps: step 1 is a production preparation step, step 2 is an RI production step, step 3 is a synthesis step, step 4 is a distribution step, step 5 is a quality control step, step 6 is a carriage container packing step, and step 7 is a transportation step. It was recognized that the distribution step was the most exposed as 15 subjects (62.5%), the items of 'the sanction and permission related works' and 'the guarantee of installation facilities and production equipment' were the most difficult as 9 subjects (37.5%), and in the trouble steps in such exposure, the item of 'the synthesis and distribution' steps were 4 times, respectively (30.8%). In the score of the behavior level in radiation safety managements, the minimum and maximum scores were 2.42 and 4.00, respectively, and the average score was 3.46 {+-} 0.47 out of 4. Prosperity and well-being programs in the behavior and job in radiation safety managements (r=0.529) represented a significant correlation statistically. In the drawing of a prediction model based on the factors that affected the behavior in

  3. Law on protection against ionising radiation and nuclear safety in Slovenia

    International Nuclear Information System (INIS)

    Breznik, B.; Krizman, M.; Skrk, D.; Tavzes, R.

    2003-01-01

    The existing legislation related to nuclear and radiation safety in Slovenia was introduced in 80's. The necessity for the new law is based on the new radiation safety standards (ICRP 60) and the intention of Slovenia to harmonize the legislation with the European Union. The harmonization means adoption of the basic safety standards and other relevant directives and regulations of Euratom. The nuclear safety section of this law is based on the legally binding international conventions ratified by Slovenia. The general approach is similar to that of some members of Nuclear Energy Agency (OECD). The guidelines of the law were set by the Ministry of the Environment and Spatial Planning, Nuclear Safety Administration, and Ministry of Health. The expert group of the Ministry of Environment and Spatial Planning and the Ministry of Health together with the representatives of the users of the ionising sources and representatives of the nuclear sector, prepared the draft of the subject law. The emphasis in this paper is given to main topics and solutions related to the control of the occupationally exposed workers, radiation safety, licensing, nuclear and waste safety, and radiation protection of people and patients. (authors)

  4. IAEA Team Concludes Peer Review of Greece's Regulatory Framework for Radiation Safety

    International Nuclear Information System (INIS)

    2012-01-01

    ; and GEAC exhibits a strong commitment to education and training in radiation protection. The IRRS Review team identified issues warranting attention or in need of improvement, including: The Radiation Protection Regulations require updating to bring them in line with the current IAEA Safety Requirements. Consideration should be given to the adoption of a more flexible hierarchy of safety regulations; The nation's legal framework is dated, lacks the flexibility of a risk-based regulatory framework which provides for a graded approach to safety and has gaps particularly in respect of waste and decommissioning; A consolidated management system requires senior management commitment to allocate sufficient resources with the appropriate authority, and to actively involve all staff; and The prime responsibility for safety, the responsibilities of employers and workers with respect to occupational exposure, and responsibilities with respect to emergency preparedness and response need to be explicitly assigned in the legal and regulatory framework for safety. In a preliminary report, the IAEA has conveyed the team's main conclusions to GAEC, and a final report will be submitted to the commission in about three months. Background The IRRS team carried out a review of Greece's nuclear legal and regulatory framework for safety. The IRRS review addressed the facilities and activities regulated by GAEC which involve radiation sources in addition to the waste management facilities. The research reactor GRR-1 in the National Centre for Scientific Research ''Demokritos'' was out of the scope of this IRRS review but will be included in the follow-up mission. The mission took place from 20 to 30 May 2012 at the GAEC headquarters in Agia Paraskevi. A Press Conference was conducted at the end of the mission on 30 May. The IRRS team consisted of nine senior regulatory experts from nine IAEA Member States and five IAEA staff members. About IRRS Missions IRRS missions are designed to

  5. Evolution of Radiation Safety Culture in Africa: Impact of the Chernobyl Accident

    International Nuclear Information System (INIS)

    Elegba, S.

    2016-01-01

    The use of ionizing radiation in Africa is more than a century old but the awareness for radiation safety regulation is still a work in progress. The nuclear weapon tests carried out in the Sahara Desert during the early 1960’s and the resultant radiation fallout that drifted into West Africa with the northeasterly winds provided the first organized response to the hazards of ionizing radiation in Nigeria. The Nigerian Government in 1964 established the Federal Radiation Protection Service (FRPS) at the Physics Department of the University of Ibadan but without the force of law. In 1971, draft legislation on Nuclear Safety and Radiation Protection was submitted to Government for consideration and promulgation. It never went beyond a draft until June 1995 only after IAEA intervention! The April 1986 Chernobyl nuclear accident unfortunately did not provoke as much reaction from African countries, probably because of geography and climate: Africa is far from Ukraine and in April the winds blow from SW-NE, unlike if it had happened in December when the wind direction would have been NE-SW and Africa would have been greatly impacted with little or no radiation safety infrastructure to detect the radiation fallout or to respond to it; and weak economic infrastructure to mitigate the economic impact of such radioactive deposits on agriculture and human health. Africa was shielded by both geography and climate; but not for long. By 1988, some unscrupulous businessmen exported to Nigeria and to several African countries radiation contaminated beef and dairy products which were meant for destruction in Europe. This led to the establishment of laboratories in several African countries for the monitoring of radiation contamination of imported foods. Fortunately, the international response to the Chernobyl accident was swift and beneficial to Africa and largely spurred the establishment of radiation safety infrastructure in most if not all African Member States. Notably

  6. Safety and radiation protection at the Swedish nuclear power plants 2000

    International Nuclear Information System (INIS)

    2001-04-01

    During 2000 no events occurred, or discoveries were made, that seriously affected the reactor safety at the Swedish nuclear plants. The basic safety strategy is designed so that hidden faults and deficiencies shall not lead to any serious consequences for the plants. It is of outmost importance that the safety work at the plants is performed with the best effort and quality in order to realize this strategy. Especially in the new economic situation of the utilities after deregulation of the electricity market. The total radiation dose to the personnel and contracted workers at the plants was the lowest ever recorded with all NPPs running (8.1 man Sv). Corrosion damages led to a stand-still of two reactors during a long period, and thorough analyses were performed before the Inspectorate allowed a restart

  7. Nuclear and radiation safety of the centralized spent fuel storage facility in Ukraine

    International Nuclear Information System (INIS)

    Grigorash, O.V.; Dibach, O.M.; Panchenko, A.V.; Shugajlo, Ol-r P.; Kovbasenko, YU.P.; Vishemyirskij, M.P.; Bogorad, V.I.; Belykh, D.O.; Shendrovich, V.Ya.

    2017-01-01

    The paper presents the analysis of ensuring nuclear and radiation safety in the management of spent nuclear fuel at the Centralized SFSF and activities planned for Centralized SFSF life cycle stages. There are results of comparing requirements of U.S. regulatory documents used by the HOLTEC Company to design Centralized SFSF equipment staff with relevant requirements of Ukrainian regulations, results based on analysis of the most important factors of Centralized SFSF safety (strength and reliability, nuclear safety, thermal regimes and biological protection) and verified expert calculations of the SSTC NRS. The paper includes issues to be considered in further implementation of Centralized SFSF project.

  8. Radiation safety standards : an environmentalist's approach

    International Nuclear Information System (INIS)

    Murthy, M.S.S.S.

    1977-01-01

    An integrated approach to the problem of environmental mutagenic hazards leads to the recommendation of a single dose-limit to the exposure of human beings to all man-made mutagenic agents including chemicals and radiation. However, because of lack of : (1) adequate information on chemical mutagens, (2) sufficient data on their risk estimates and (3) universally accepted dose-limites, control of chemical mutagens in the environment has not reached that advanced stage as that of radiation. In this situation, the radiation safety standards currently in use should be retained at their present levels. (M.G.B.)

  9. Basic Safety Standards for Radiation Protection

    International Nuclear Information System (INIS)

    1962-01-01

    Pursuant to the provisions of its Statute relevant to the adoption and application of safety standards for protection against radiation, the Agency convened a panel of experts which formulated the Basic Safety Standards set forth in this publication. The panel met under the chairmanship of Professor L. Bugnard, Director of the French Institut National d'Hygiene, and representatives of the United Nations and of several of its specialized agencies participated in its work. The Basic Safety Standards thus represent the result of a most careful assessment of the variety of complex scientific and administrative problems involved. Nevertheless, of course, they will need to be revised from time to time in the light of advances in scientific knowledge, of comments received from Member States and of the work of other competent international organizations. The Agency's Board of Governors in June 1962 approved the Standards as a first edition, subject to later revision as mentioned above, and authorized Director General Sigvard Eklund to apply the Standards in Agency and Agency-assisted operations and to invite Governments of Member States to take them as a basis in formulating national regulations or recommendations on protection against the dangers arising from ionizing radiations. It is mainly for this last purpose that the Basic Safety Standards are now being published in the Safety Series; but it is hoped that this publication will also interest a much wider circle of readers.

  10. Management of a comprehensive radiation safety program in a major American University and affiliated academic medical center

    International Nuclear Information System (INIS)

    Yoshizumi, T.T.; Reiman, R.E.; Vylet, V.; Clapp, J.R.; Thomann, W.R.; Lyles, K.W.

    2000-01-01

    lectures, and instituting a seminar series. Progress made at the institutional level includes; (a) implementing training programs; (b) developing an in-house TLD program; (c) initiating in-house diagnostic x-ray machine testing for units outside the Radiology Department; (d) centralizing radioactive package distribution; (e) simplifying the radiation licensing application process; (f) implementing written lab operating procedures in individual labs; (g) developing radioactive package order and receipt software; (h) implementing special shielding design and radioiodine patient waste management projects. We conclude: (1) involvement of executive management is critical for radiation protection management in multidisciplinary institutions; (2) consultant review is useful in guiding management support of RSO initiatives; (3) increased visibility of the radiation safety program, through training sessions and grand rounds, increases cooperation from users and subsequently improves regulatory compliance; (4) radiation safety division quality assurance meetings help identify weaknesses and provide motivation for improvement; (5) a clear chain of authority is critical in program oversight; (6) open participation in division projects by staff members fosters an intellectually stimulating environment in the group; (7) participation of senior administrators from Occupational and Environmental Safety Office (OESO) in the radiation safety staff meetings helps maintain a professional working relationship between the Radiation Safety Officer and the Director of OESO. (author)

  11. EUMENES, a computer software for managing the radiation safety program information at an institutional level

    International Nuclear Information System (INIS)

    Hernandez Saiz, Alejandro; Cornejo Diaz, Nestor; Valdes Ramos, Maryzury; Martinez Gonzalez, Alina; Gonzalez Rodriguez, Niurka; Vergara Gil, Alex

    2008-01-01

    The correct application of national and international regulations in the field of Radiological Safety requires the implementation of Radiation Safety Programs appropriate to the developed practice. These Programs demand the preparation and keeping of an important number of records and data, the compliance with working schedules, systematic quality controls, audits, delivery of information to the Regulatory Authority, the execution of radiological assessments, etc. Therefore, it is unquestionable the necessity and importance of having a computer tool to support the management of the information related to the Radiation Safety Program in any institution. The present work describes a computer program that allows the efficient management of these data. Its design was based on the IAEA International Basic Safety Standards recommendations and on the requirements of the Cuban national standards, with the objective of being flexible enough to be applied in most of the institutions using ionizing radiations. The most important records of Radiation Safety Programs were incorporated and reports can be generated by the users. An additional tools-module allows the user to access to a radionuclide data library, and to carry out different calculations of interest in radiological protection. The program has been developed in Borland Delphi and manages Microsoft Access databases. It is a user friendly code that aims to support the optimization of Radiation Safety Programs. The program contributes to save resources and time, as the generated information is electronically kept and transmitted. The code has different security access levels according to the user responsibility at the institution and also provides for the analysis of the introduced data, in a quick and efficient way, as well as to notice deadlines, the exceeding of reference levels and situations that require attention. (author)

  12. Radiation Safety in Industrial Radiography. Specific Safety Guide (French Edition); Surete radiologique en radiographie industrielle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in Horizontal-Ellipsis shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  13. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  14. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  15. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  16. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  17. Basic safety standards for radiation protection. 1982 ed

    International Nuclear Information System (INIS)

    1982-01-01

    The International Atomic Energy Agency, the World Health Organization, the International Labour Organisation and the Nuclear Energy Agency of the OECD have undertaken to provide jointly a world-wide basis for harmonized and up-to-date radiation protection standards. The new Basic Safety Standards for Radiation Protection are based upon the latest recommendations by the International Commission on Radiological Protection (ICRP) which are essentially contained in its Publication No.26. These new Basic Safety Standards have been elaborated by an Advisory Group of Experts which met in Vienna from 10-14 October 1977, from 23-27 October 1978 and from 1-12 December 1980 under the joint auspices of the IAEA, ILO, WHO and the Nuclear Energy Agency of the OECD. Comments on the draft Basic Safety Standards received from Member States and relevant organizations were taken into account by the Advisory Group in the process of preparation of the revised Basic Safety Standards for Radiation Protection, which are published by the IAEA on behalf of the four sponsoring organizations. One of the main features of this revision is an increased emphasis on the recommendation to keep all exposures to ionizing radiation as low as reasonably achievable, economic and social factors being taken into account; consequently, radiation protection should not only apply the basic dose limits but also comply with this recommendation. Detailed guidance is given to assist those who have to decide on the implementation of this recommendation in particular cases. Another important feature is the recommendation of a more coherent method for achieving consistency in limiting risks to health, irrespective of whether the risk is of uniform or non-uniform exposure of the body.

  18. Safety of radiation sources and security of radioactive materials. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l`energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  19. Safety of radiation sources and security of radioactive materials. Contributed papers

    International Nuclear Information System (INIS)

    1998-09-01

    The International Atomic Energy Agency (IAEA) in co-operation with the European Commission (EC), International Criminal Police Organization (INTERPOL) and the World Customs Organization (WCO) organized an International Conference on the Safety of Radiation Sources and the Security of Radioactive Materials, in Dijon, France, from 14 to 18 September 1998. The Government of France hosted this Conference through the Commissariat a l'energie atomique, Direction des applications militaires (CEA/DAM). This TECDOC contains the contributed papers dealing with the topics of this Conference which were accepted by the Conference Programme Committee for presentation. The papers written in one of the two working languages of the Conference, English or French are presented here each by a separate abstract. Ten technical sessions covered the following subjects: the regulatory control of radiation sources, including systems for notification, authorization and inspection; safety assessment techniques applied to radiation sources and design and technological measures including defense in depth and good engineering practice; managerial measures, including safety culture, human factors, quality assurance, qualified experts, training and education; learning from operational experience; international co-operation, including reporting systems and databases; verification of compliance, monitoring of compliance and assessment of the effectiveness of national programmes for the safety of sources; measures to prevent breaches in the security of radioactive materials, experience with criminal acts involving radioactive materials; detection and identification technologies for illicitly trafficked radioactive materials; response to detected cases and seized radioactive materials, strengthening of the awareness, training and exchange of information. The IAEA plans to issue the proceedings of this Conference containing the invited presentations, rapporteurs and Chairpersons overviews and summaries

  20. Radiation in the human environment: health effects, safety and acceptability

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1990-01-01

    This paper reports selectively on three other aspects of radiation (used throughout to mean ionizing radiation) in the human environment: the human health effects of radiation, radiation safety policy and practices, and the acceptability of scientifically justified practices involving radiation exposures. Our argument is that the science of radiation biology, the judgemental techniques of radiation safety, and the social domain of radiation acceptability express different types of expertise that should complement - and not conflict with or substitute for - one another. Unfortunately, communication problems have arisen among these three communities and even between the various disciplines represented within a community. These problems have contributed greatly to the misperceptions many people have about radiation and which are frustrating a constructive dialogue on how radiation can be harnessed to benefit mankind. Our analysis seeks to assist those looking for a strategic perspective from which to reflect on their interaction with practices involving radiation exposures. (author)

  1. Radiation Safety (General) Regulations 1983 (Western Australia)

    International Nuclear Information System (INIS)

    1983-01-01

    The provisions of the Regulations cover, inter alia, the general precautions and requirements relating to radiation safety of the public and radiation workers and registration of irradiating apparatus or premises on which such apparatus is operated. In addition, the Regulations set forth requirements for the operation of such apparatus and for the premises involved. (NEA) [fr

  2. Radiation protection and radiation safety: CERN and its host states to sign a tripartite agreement.

    CERN Multimedia

    2010-01-01

    On 15 November CERN and its Host States will sign a tripartite agreement that replaces the existing bilateral agreements in matters of radiation protection and radiation safety at CERN. It will provide, for the first time, a single forum where the three parties will discuss how maximum overall safety can best be achieved in the specific CERN context.   CERN has always maintained close collaboration with its Host States in matters of safety. “The aim of this collaboration is especially to ensure best practice in the field of radiation protection and the safe operation of CERN’s facilities”, explains Ralf Trant, Head of the Occupational Health & Safety and Environmental Protection (HSE) Unit. Until today, CERN’s collaboration with its Host States was carried out under two sets of bilateral agreements: depending on which side of the French-Swiss border they were being carried out on, a different framework applied to the same activities. This approach has b...

  3. Safety consideration and economic advantage of a new underground nuclear power plant design

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Ching, J.T.

    1979-01-01

    A conceptual design of an underground nuclear power plant is proposed to make undergrounding of nuclear reactors not only environmentally desirable but also economically feasible. Expedient to the underground environment, this design capitalizes on the pressure-containing and radiation filtering characteristics of the new underground boundary conditions. Design emphasis is on the containment of a catastrophic accident - that of a reactor vessel rupture caused by external means. The High Capacity Rapid Energy Dissipation Underground Containment (HiC-REDUCE) system which efficiently contains loss-of-coolant accidents (LOCAs) and small break conditions is described. The end product is a radiation-release-proof plant which, in effect, divorces the public from the safety of the reactor. (Auth.)

  4. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  5. Winning public confidence in radiation safety standards

    International Nuclear Information System (INIS)

    Skelcher, B.W.

    1982-01-01

    Evaluations using cost/benefit analysis and the ALARA principle should take account of psychological as well as material considerations. Safety is a basic human need which has to be met. It is also subjective and therefore has to be understood by the individual. The professional health physicist has a duty to see that radiation safety is understood by the general public. (author)

  6. Integrated Safety in Design

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten

    2014-01-01

    An on-going research project investigates the inclusion of health and safety considerations in the design phase as a means to achieve a higher level of health and safety in the construction industry. Moreover, the approach is coupled to the overall quality efforts. Two architectural firms and two...... consulting engineering firms are project participants. The hypothesis is that health and safety problems in execution can be prevented through better planning in the early stages of the construction processes and that accidents are prevented by providing safety. In the first stage of the research project...... a theoretical framework is developed from a combination of existing literature on health and safety and a mapping of existing practices based on interviews in all four companies. The interviews revealed that the basic knowledge on OHS among architects and engineers is limited. Also currently designers typically...

  7. Radiation safety considerations and compliance within equine veterinary clinics: Results of an Australian survey

    International Nuclear Information System (INIS)

    Surjan, Y.; Ostwald, P.; Milross, C.; Warren-Forward, H.

    2015-01-01

    Objective: To examine current knowledge and the level of compliance of radiation safety principles in equine veterinary clinics within Australia. Method: Surveys were sent to equine veterinary surgeons working in Australia. The survey was delivered both online and in hardcopy format; it comprised 49 questions, 15 of these directly related to radiation safety. The participants were asked about their current and previous use of radiation-producing equipment. Information regarding their level of knowledge and application of radiation safety principles and practice standards was collected and analysed. Results: The use of radiation-producing equipment was evident in 94% of responding clinics (a combination of X-ray, CT and/or Nuclear Medicine Cameras). Of those with radiation-producing equipment, 94% indicated that they hold a radiation licence, 78% had never completed a certified radiation safety course and 19% of participants did not use a personal radiation monitor. In 14% of cases, radiation safety manuals or protocols were not available within clinics. Conclusions: The study has shown that knowledge and application of guidelines as provided by the Code of Practice for Radiation Protection in Veterinary Medicine (2009) is poorly adhered to. The importance of compliance with regulatory requirements is pivotal in minimising occupational exposure to ionising radiation in veterinary medicine, thus there is a need for increased education and training in the area. - Highlights: • Application of the Code of Practice for Veterinary Medicine is poorly adhered to. • Majority of veterinary clinics had not completed certified radiation safety course. • One-fifth of participants did not use personal radiation monitoring. • Increased education and training in area of radiation safety and protection required to generate compliance in clinics

  8. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA`s future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper. Refs, figs, tabs

  9. Topical issues in nuclear, radiation and radioactive waste safety. Contributed papers

    International Nuclear Information System (INIS)

    1998-08-01

    The IAEA International Conference on Topical Issues in Nuclear, Radiation and Radioactive Waste Safety was held in Vienna, Austria, 30 August - 4 September 1998 with the objective to foster the exchange of information on topical issues in nuclear, radiation and radioactive waste safety, with the aim of consolidating an international consensus on: the present status of these issues; priorities for future work; and needs for strengthening international co-operation, including recommendations for the IAEA's future activities. The document includes 43 papers presented at the Conference dealing with the following topical issues: Safety Management; Backfitting, Upgrading and Modernization of NPPs; Regulatory Strategies; Occupational Radiation Protection: Trends and Developments; Situations of Chronic Exposure to Residual Radioactive Materials: Decommissioning and Rehabilitation and Reclamation of Land; Radiation Safety in the Far Future: The Issue of Long Term Waste Disposal. A separate abstract and indexing were provided for each paper

  10. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    Disney, R.K.; Chan, T.C.; Gallo, F.G.; Hedgecock, L.R.; McGinnis, C.A.; Wrights, G.N.

    1978-11-01

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  11. Taking into account radiation protection for the EPR (European pressurized water reactor) design

    International Nuclear Information System (INIS)

    Michoux, X.

    2005-01-01

    For a designer, the taking into account of radiation protection for the EPR design is based on several thrusts which concern different scopes as choice of materials, checking of design's options, layout of components and systems able to contain radioactivity in different states of operation (i.e.: pressurizer, tanks, actives systems separated from non actives systems), or the optimization of shielding according to the estimated maintenance during outage or during power operation. The EPR method used for radiation protection studies is close to the safety method (use of dose gauge, demonstration of radiation protection, works with high stake regarding the radiation protection studied in priority, parametric studies with use of one field Radiation protection...). Results of this method place EPR in a satisfactory progress compared to the best existing nuclear plants, regarding collective doses and privileging the most exposed workers. This method has also induced on the EPR Project the choice of working during power operation in order to obtain shorts outages, scrupulously respecting security rules, radiation protection and human factor. (author)

  12. Radiation protection and safety in the Australian Defence Organisation (ADO)

    International Nuclear Information System (INIS)

    Jenks, G.J.; O'Donovan, E.J.B.

    1995-01-01

    Very few organisations have to address such a diverse and complex range of radiation safety matters as the Australian Defence Organisation. The Australian Defence Force and the Department of Defence (its military and civilian branches) have to comply with strict regulations in normal peace time activities. The Surgeon-General, to whom responsibility for policy in radiation protection and safety falls, has established a Defence Radiation Safety Committee, which in turn oversees four specialist subcommittees. Their tasks include recommending policy and doctrine in relation to radiation safety, overseeing the implementation of appropriate regulations, monitoring their compliance. generating the relevant documentation (particularly on procedures to be followed), developing and improving any necessary training courses, and providing sound technical advice whenever and to whomever required. The internal Defence regulations do not permit radiation doses to exceed those limits recommended by the Australian National Health and Medical Research Council and precautions are taken to ensure during normal peace time duties that these levels are not exceeded. At times of national emergency, the Surgeon-General provides guidance and advice to military commanders on the consequences of receiving dose levels that would not be permitted during normal peace time activities. The paper describes the methods adopted to implement such arrangements

  13. Regulatory Control of Radiation Sources. Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  14. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    International Nuclear Information System (INIS)

    Yunus, N A; Abdullah, M H R O; Said, M A; Ch'ng, P E

    2014-01-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia

  15. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study

    Science.gov (United States)

    Yunus, N. A.; Abdullah, M. H. R. O.; Said, M. A.; Ch'ng, P. E.

    2014-11-01

    All nuclear medicine nurses need to have some knowledge and awareness on radiation safety. At present, there is no study to address this issue in Malaysia. The aims of this study were (1) to determine the level of knowledge and awareness on radiation safety among nuclear medicine nurses at Putrajaya Hospital in Malaysia and (2) to assess the effectiveness of a training program provided by the hospital to increase the knowledge and awareness of the nuclear medicine nurses. A total of 27 respondents attending a training program on radiation safety were asked to complete a questionnaire. The questionnaire consists 16 items and were categorized into two main areas, namely general radiation knowledge and radiation safety. Survey data were collected before and after the training and were analyzed using descriptive statistics and paired sample t-test. Respondents were scored out of a total of 16 marks with 8 marks for each area. The findings showed that the range of total scores obtained by the nuclear medicine nurses before and after the training were 6-14 (with a mean score of 11.19) and 13-16 marks (with a mean score of 14.85), respectively. Findings also revealed that the mean score for the area of general radiation knowledge (7.59) was higher than that of the radiation safety (7.26). Currently, the knowledge and awareness on radiation safety among the nuclear medicine nurses are at the moderate level. It is recommended that a national study be conducted to assess and increase the level of knowledge and awareness among all nuclear medicine nurses in Malaysia.

  16. Radiation safety training for industrial irradiators: What are we trying to accomplish?

    International Nuclear Information System (INIS)

    Smith, M.A.

    1998-01-01

    Radiation safety training at an industrial irradiator facility takes a different approach than the traditional methods and topics used at other facilities. Where the more routine industrial radiation users focus on standard training topics of contamination control, area surveys, and the traditional dogma of time, distance, and shielding, radiation safety in an industrial irradiation facility must be centered on preventing accidents. Because the primary methods for accomplishing that goal are engineering approaches such as safety system interlocks, training provided to facility personnel should address system operation and emergency actions. This presents challenges in delivering radiation safety training to an audience of varied educational and technical background where little to no commercially available training material specific to this type of operation exists

  17. Internet applications in radiation safety

    International Nuclear Information System (INIS)

    Hill, P.; Geisse, C.; Wuest, E.

    1998-01-01

    As a means of effective communication the Internet is presently becoming more and more important in German speaking countries, too. Its possibilities to exchange and to obtain information efficiently and rapidly are excellent. Internet and email access are available now in most institutions for professional use. Internet services of importance to radiation safety professionals are described. (orig.) [de

  18. Nuclear safety and radiation protection report of the nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  19. Nuclear and radiation safety in Kazakhstan

    International Nuclear Information System (INIS)

    Kim, A.A.

    2001-01-01

    Major factors by which the radiation situation in Kazakhstan is formed are: enterprises of nuclear fuel cycle, including uranium mining and milling activity and geological exploration of uranium; nuclear power plant and research reactors; residues of atmospheric and underground nuclear explosions, which were conducted for military and peaceful purposes at different test sites; mining and milling of commercial minerals accompanied by radioactive substances; use of radioactive sources in industry, medicine, agriculture and scientific research. Since 1991, after getting sovereignty, creation was started of an own legislative basis of the country for the field of atomic energy use. It includes laws, regulations and standards for nuclear and radiation safety of nuclear installations, personnel, involved in the activity with using of atomic energy, population and environment. An applicable system of state regulation in this area (including a central regulatory body in the field of atomic energy use) and various ministries, agencies and committees, was created. As a result of these reforms, regulatory activities were improved in the country. This paper presents the current matters of nuclear and radiation safety in Kazakhstan and some difficulties which Kazakhstan encountered during the transition to an independent state. (author)

  20. A concept of radiation safety in radiodiagnosis and radiotherapy

    International Nuclear Information System (INIS)

    Stavitskij, R.V.; Vasil'ev, V.N.; Lebedev, L.A.; Blinov, N.N.

    1991-01-01

    Conceptual problems of up to date radiation safety dosimetric ensurance in radiation diagnostics and radiotherapy of nontumor diseases are as follows: selection of dosimetric criteria of nonequilibrium radiation influence with an account of probable remote radiation aftereffects; determination of dose-response dependence character by low radiation doses; development of optimal technological principles for radiation diagnostics and therapy; development of organizational and methodical approaches to decreasing dose loads by radiation diagnostics and therapy of nontumor diseases; optimization of studies by ALARA principle

  1. Operations report 1985 of the Department of Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.; Frenkler, K.L.

    1986-04-01

    Under the heading 'Licensing' the report deals with licensing procedures and the handling of nuclear-fuels and radioactive materials. Operational radiation protection is concerned with operational and personnel monitoring, mathematical methods and safety analyses. Environmental protection deals with emission control, immission monitoring and meteorological measurements, and safety technology with α/β-analysis, dosimetry, equipment servicing and mechanics, nuclear material safeguards. Other subdepartments take care of industrial safety, physical protection, emergency protection and training. Subjects dealt with, too, are dispersion pollutants in atmosphere and environment, further development of radiation protection methods, and the bibliography of radiation protection in KFA. (HK) [de

  2. Safety analysis and lay-out aspects of shieldings against particle radiation at the example of spallation facilities in the megawatt range

    International Nuclear Information System (INIS)

    Hanslik, R.

    2006-08-01

    This paper discusses the shielding of particle radiation from high current accelerators, spallation neutron sources and so called ADS-facilities (Accelerator Driven Systems). ADS-facilities are expected to gain importance in the future for transmutation of long-lived isotopes from fission reactors as well as for energy production. In this paper physical properties of the radiation as well as safety relevant requirements and corresponding shielding concepts are discussed. New concepts for the layout and design of such shielding are presented. Focal point of this work will be the fundamental difference between conventional fission reactor shielding and the safety relevant issues of shielding from high-energy radiation. Key point of this paper is the safety assessment of shielding issues of high current accelerators, spallation targets and ADS-blanket systems as well as neutron scattering instruments at spallation neutron sources. Safety relevant shielding requirements are presented and discussed. For the layout and design of the shielding for spallation sources computer base calculations methods are used. A discussion and comparison of the most important methods like semi-empirical, deterministic and stochastic codes are presented. Another key point within the presented paper is the discussion of shielding materials and their shielding efficiency concerning different types of radiation. The use of recycling material, as a cost efficient solution, is discussed. Based on the conducted analysis, flowcharts for a systematic layout and design of adequate shielding for targets and accelerators have been developed and are discussed in this paper. By use of these flowcharts layout and engineering design of future ADS-facilities can be performed. (orig.)

  3. Proceedings of the 5. Regional congress on radiation protection and safety; 2. Iberian and Latin American Congress on Radiological Protection Societies; Regional IRPA Congress

    International Nuclear Information System (INIS)

    2001-01-01

    The Fifth Regional Congress on Radiation Protection and Nuclear Safety has been held in Recife (Brazil), from 29th April to 4th May 2001. The congress was hosted by the Brazilian Radiation Protection Society, under the joint sponsorship of FRALC and UFPE-DEN Department of Nuclear Energy. Its designation as a Regional IRPA Congress has been requested. The main purpose of the meeting was to bring together professionals from the industry, universities and research laboratories to present and discuss the latest research results, and to review the state of the art on applied and fundamental aspects of the radiation protection. These specialists have talked about nuclear safety and radiological protection, radiation natural exposure, biological effect of radiation, radiotherapy and medical radiological safety, radiological safety in industry and research. In their discussions, also were included subjects related to radiological safety of nuclear and radioactive facilities, radioactive waste management, radioactive material transport, environmental radiological monitoring program, radiological emergency and accidents, instruments and dosimetry, basic safety standards of protection against radiation

  4. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  5. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    International Nuclear Information System (INIS)

    DAVIS, S.J.

    2000-01-01

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications

  6. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  7. Legal and governmental infrastructure for nuclear, radiation, radioactive waste and transport safety. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    This publication establishes requirements for legal and governmental responsibilities in respect of the safety of nuclear facilities, the safe use of sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material. Thus, it covers development of the legal framework for establishing a regulatory body and other actions to achieve effective regulatory control of facilities and activities. Other responsibilities are also covered, such as those for developing the necessary support for safety, involvement in securing third party liability and emergency preparedness

  8. Modeling Transients and Designing a Passive Safety System for a Nuclear Thermal Rocket Using Relap5

    Science.gov (United States)

    Khatry, Jivan

    Long-term high payload missions necessitate the need for nuclear space propulsion. Several nuclear reactor types were investigated by the Nuclear Engine for Rocket Vehicle Application (NERVA) program of National Aeronautics and Space Administration (NASA). Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. A NERVA design known as the Pewee I was selected for this purpose. The following transients were run: (i) modeling of corrosion-induced blockages on the peripheral fuel element coolant channels and their impact on radiation heat transfer in the core, and (ii) modeling of loss-of-flow-accidents (LOFAs) and their impact on radiation heat transfer in the core. For part (i), the radiation heat transfer rate of blocked channels increases while their neighbors' decreases. For part (ii), the core radiation heat transfer rate increases while the flow rate through the rocket system is decreased. However, the radiation heat transfer decreased while there was a complete LOFA. In this situation, the peripheral fuel element coolant channels handle the majority of the radiation heat transfer. Recognizing the LOFA as the most severe design basis accident, a passive safety system was designed in order to respond to such a transient. This design utilizes the already existing tie rod tubes and connects them to a radiator in a closed loop. Hence, this is basically a secondary loop. The size of the core is unchanged. During normal steady-state operation, this secondary loop keeps the moderator cool. Results show that the safety system is able to remove the decay heat and prevent the fuel elements from melting, in response to a LOFA and subsequent SCRAM.

  9. Hualong One's nuclear reactor core design and relative safety issues research

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H., E-mail: yuhong_xing@126.com [Nuclear Power Inst. of China, Design and Research Sub-Inst., Chengdu, Sichuan (China)

    2015-07-01

    'Full text:' Hualong One, a third generation 1000MWe-class pressurized water reactor, is developed by China National Nuclear Cooperation (CNNC), based on the self-reliant technologies and experiences from China 40 years designing, construction, operation and maintenance of NPPs. In China, it has been approved to construct at Fuqing 5&6 and Fangchenggang 3&4. The Hualong One adopts advanced design features to dramatically enhance plant safety, economic efficiency and convenience of operation and maintenance. It consists of three loops with nominal thermal power output 3060 MWt and a 60-year design life. Its reactor core has 177 fuel assemblies, 18 month refueling interval (after initial cycle), and more than 15% thermal margin. It adopts low leakage loading pattern which can achieve better economy of the neutron, higher reactivity and lower radiation damage of pressure vessel. For the safety design, incorporating the feedback of Fukushima accident, the Hualong One has a combination of active and passive safety systems, a single station layout, double containment structure, and comprehensive implementation of defence-in-depth design principles. The new design features has been successfully evaluated to ensure that they enhance the performance and safety of Hualong One. Several experimental activates have been conducted, such as cavity injection and cooling system testing, passive containment heat removal system testing, and passive residual heat removal system of secondary side testing. The future improvements of Hualong reactor will focus on better economic core design and more reliable safety system. (author)

  10. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  11. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition); Seguridad radiologica en la radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography.

  12. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  13. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-06-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  14. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  15. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    Ramli Jaya; Mohd Yusof Mohd Ali; Khoo Boo Huat; Khatijah Hashim

    1995-01-01

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  16. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  17. Radiation safety infrastructure in developing countries: a proactive approach for integrated and continuous improvement

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2008-01-01

    The International Atomic Energy Agency (the Agency) is authorized, by its statute, to establish or adopt safety standards for the protection of health and minimization of danger to life and property, and to provide for their application to its own operations as well as to operations under its control or supervision. The Agency has been assisting, since the mid 1960 's, its Member States through mainly its Technical Cooperation Programme (TCP) to improve their national radiation safety infrastructures. However up to the early nineties, assistance was specific and mostly ad hoc and did not systematically utilize an integrated and harmonized approach to achieving effective and sustainable national radiation safety infrastructures in Member States. An unprecedented and integrated international cooperative effort was launched by the Agency in 1994 to establish and/or upgrade the national radiation safety infrastructure in more than 90 countries within the framework of its TCP through the so-called Model project on upgrading radiation protection infrastructure. In this project proactive co-operation with Member States was used in striving towards achieving an effective and sustainable radiation safety infrastructure, compatible with the International basic safety standards for protection against ionizing radiation and for the safety of radiation sources (the BSS) and related standards. Extension to include compatibility with the guidance of the Code of Conduct on the Safety and Security of Radioactive Sources occurred towards the end of the Model Project in December 2004, and with the more recent ensuing follow up projects that started in 2005. The Model Project started with 5 countries in 1994 and finished with 91 countries in 2004. Up to the end of 2007 more than one hundred Member States had been participating in follow up projects covering six themes - namely: legislative and regulatory infrastructure; occupational radiation protection; radiation protection in

  18. Providing current radiation safety according to new version of 'Ukrytie' object regulation

    International Nuclear Information System (INIS)

    Borovoj, A.A.; Vysotskij, E.D.; Krinitsyn, A.P.; Bogatov, S.A.

    1999-01-01

    Main provisions are given of the 'Ukryttia' object's Regulation related to provision of radiation safety during the object's operation. The safety is provided due to the realization by the object's personnel of functions of global monitoring of current radiation conditions, as well as of the measures of operative or preventive suppression of radiation abnormalities sources

  19. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    International Nuclear Information System (INIS)

    1994-01-01

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs

  20. Radiation protection in dentistry. Recommended safety procedures for the use of dental x-ray equipment. Safety code 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Radiation Protection Bureau has prepared a series of documents on safety codes to set out requirements for the safe use of radiation-emitting equipment. This Safety Code has been prepared to provide specific guidance to the dentist, dental hygienist, dental assistant and other support personnel concerned with safety procedures and equipment performance. Dental radiography is one of the most valuable tools used in modern dental health care. It makes possible the diagnosis of physical conditions that would otherwise be difficult to identify. The use of dental radiological procedures must be carefully managed, because x-radiation has the potential for damaging healthy cells and tissues. Although no known occurrence of cancer or genetic damage has been observed from radiation doses delivered in modern dentistry, and until more evidence is available, one should practice radiation hygiene with the same care as would be dictated if a hazard were known to exist. The aim of radiation protection in dentistry is to obtain the desired clinical information with minimal radiation exposure to patients, dental personnel and the public. 15 tabs.

  1. Proceeding of Radiation Safety and Environment; Prosiding Presentasi Ilmiah Keselamatan Radiasi dan Lingkungan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Scientific Presentation of Radiation Safety and Environment was held on 20-21 august 1996 at Center of Research Atomic Energy Pasar Jum'at, Jakarta, Indonesia. Have presented 50 papers about Radiation Safety, dosimetry and standardization, environment protection and radiation effect.

  2. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    Science.gov (United States)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  3. Building competence in radiation and nuclear safety through education and training - the approach of a national regulatory authority

    International Nuclear Information System (INIS)

    Karfopoulos, K.L.; Carinou, E.; Kamenopoulou, V.; Dimitriou, P.; Housiadas, Ch.

    2015-01-01

    The Greek Atomic Energy Commission (EEAE) is the national competent authority for radiation and nuclear safety and security as well as for the radiation protection of ionizing and artificially produced non-ionizing radiation. The legal framework determines, inter alia, the responsibilities in education and training issues. The EEAE has a range of activities, in providing postgraduate and continuous education and training on radiation protection, and nuclear safety and security, at the national and international levels. At the national level, and particularly in the medical field, the EEAE is a participant in and a major contributor to the Inter-University Postgraduate Program on Medical Radiation Physics. Since 2003, the EEAE has been the Regional Training Center (RTC) for radiation, transport and waste safety of the International Atomic Energy Agency (IAEA) for the European Region in the English language. Moreover, the EEAE has also been recognized as the IAEA's Regional Training Center (RTC) in nuclear security in the English language since 2013. The EEAE recently proceeded to two significant initiatives: the design of a national program for education and training, and the certification of the Department of Education according to ISO 29990:2010. In this paper, the initiatives taken to enhance the radiation protection system in the country through education and training are presented. (authors)

  4. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  5. Safety culture in design. Final report

    International Nuclear Information System (INIS)

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M.; Kahlbom, U.; Rollenhagen, C.

    2013-04-01

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  6. Safety culture in design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kahlbom, U. [Risk Pilot AB, Stockholm (Sweden); Rollenhagen, C. [Vattenfall, Stockholm, (Sweden)

    2013-04-15

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  7. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  8. Anticipated development of radiation safety corresponding to utilization of nuclear technology in Vietnam

    International Nuclear Information System (INIS)

    Tran, Toan Ngoc; Le, Thiem Ngoc

    2010-01-01

    In the past, due to the limited application of radiation and radioisotope in the national economic branches, radiation safety was not paid much attention to in Vietnam. However, according to the Strategy for Peaceful Utilization of Atomic Energy up to 2020 approved by the Prime Minister on January 3, 2006 the application of radiation and radioisotopes as well as nuclear power in Vietnam is expected increasing strongly and widely, then radiation safety should be developed correspondingly. This paper presents the history of radiation protection, the current status and prospect of utilization of atomic energy and the anticipated development of the national radiation safety system to meet the demand of utilization of nuclear technology in Vietnam. (author)

  9. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2007-01-01

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76±11.20, 90.55±8.59, 80.58±11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55±9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in married

  10. Relationship between knowledge, attitude, behavior, and self-efficacy on the radiation safety management of radiation workers in medical institutions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Daegu Health College, Daegu (Korea, Republic of)

    2007-06-15

    Radiation safety managements in medical institutions are needed to protect certain radiation damages as a part of National Coalition. This study investigates the characteristics of self-efficacy that become the major factor on the knowledge, attitude, and behavior on the radiation safety management of radiation workers as an approach of educational aspects and analyzes the relationship between such factors to provide basic materials for improving the activity level of radiation safety managements. In order to implement the goal of this study, a survey was performed for 1,200 workers who were engaged in radiation treatments in medical centers, such as general hospital, university hospital, private hospital, and public health center for 42 days from July 23, 2006. Then, the results of the analysis can be summarized as follows: 1. Average scores on knowledge, attitude, and behavior in the radiation safety management were presented as 75.76{+-}11.20, 90.55{+-}8.59, 80.58{+-}11.70, respectively. Also, the average score of self-efficacy was recorded as 73.55{+-}9.82. 2. Knowledge levels in the radiation safety management showed significant differences according to the sex, age, marriage, education, and experience. Also, males of married, older, highly educated, and largely experienced represented high knowledge levels. Attitude levels in the radiation safety management showed certain significant differences according to the type of medical centers in which private hospitals showed a relatively low level compared to that of high levels in university hospitals. Behavior levels in the radiation safety management also represented significant differences according to the age, marriage, education, experience, and types of medical centers. Factors in married, general hospital, older, highly educated, and largely experienced showed high behavior levels. In addition, the self-efficacy showed certain differences according to the marriage and types of medical centers. Factors in

  11. Calculating the cost of research and Development in nuclear and radiation safety

    International Nuclear Information System (INIS)

    Matsulevich, N.Je.; Nosovs'ka, A.A.

    2010-01-01

    Methodological support assessing the cost of research and development in the area of nuclear and radiation safety regulation is considered. Basic methodological recommendations for determining labor expenditures for research and development in nuclear and radiation safety are provided.

  12. Nuclear safety and radiation protection report of Blayais nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  13. Nuclear safety and radiation protection report of Civaux nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  14. Nuclear safety and radiation protection report of Golfech nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  15. Nuclear safety and radiation protection report of Tricastin nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the Tricastin NPPs (INBs no. 87 and 88). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  16. Nuclear safety and radiation protection report of Penly nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  17. Nuclear safety and radiation protection report of Cattenom nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  18. Nuclear safety and radiation protection report of Chooz nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  19. Nuclear safety and radiation protection report of Flamanville nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  20. Nuclear safety and radiation protection report of Fessenheim nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  1. Design analysis of various transportation package options for BN-350 SNF in terms of nuclear radiation safety in planning for long-terms dry storage

    International Nuclear Information System (INIS)

    Aisabekov, A.Z.; Mukenova, S.A.; Tur, E.S.; Tsyngaev, V.M.

    2004-01-01

    Full text: This effort is performed under the BN-350 reactor facility decommissioning project. One of the project tasks - spent nuclear fuel handling - includes the following: fuel packaging into sealed canisters, transportation of the canisters in multi-seat metallo-concrete containers and placement of the containers for a long-term dry storage. The goal of this effort is to computationally validate nuclear and radiation safety of the SNF containers placed for storage both under normal storage conditions and probable accident situations. The basic unit structure and design configurations are presented: assemblies, canisters, transportation containers. The major factors influencing nuclear and radiation safety are presented: fuel burn-up, enrichment, fabrication tolerance, types of fuel assemblies, configuration of assemblies in the canister and canisters in the container, background of assemblies placed in the reactor and cooling pool. Conditions under which the SNF containers will be stored are described and probable accident situations are listed. Proceeding from the conservatism principle, selection of the assemblies posing the greatest nuclear hazard is validated. A neutron effective multiplication factor is calculated for the SNF containers under the normal storage conditions and for the case of emergency. The effective multiplication factor is shown to be within a standard value of 0.95 in any situation. Based on the experimental data on assembly and canister dose rates, canisters posing the highest radiation threat are selected. Activities of sources and gamma-radiation spectral composition are calculated. Distribution of the dose rate outside the containers both under the normal storage conditions and accident situations are calculated. The results obtained are analyzed

  2. Report on the Uranium Mine Radiation Safety Course

    International Nuclear Information System (INIS)

    1987-06-01

    Since 1981 the Canadian Institute for Radiation Safety (CAIRS) has administered a semi-annual course on radiation safety in uranium mines under contract to and in consultation with the Atomic Energy Control Board (AECB). The course is intended primarily for representatives from mining companies, regulatory agencies, unions, and mine and mill workers. By the terms of its contract with the AECB, CAIRS is required to submit a report on each course it conducts. This is the report on the June 1987 course. It lists the course objectives and the timetable, outlines for each lecture, the lecturers' resumes, and the participants. The students' evaluations of the course are included

  3. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  4. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2c, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Europe via the Regional Project RER/9/109 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Greece and Belarus are key partners in the European region.

  5. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2d, June 2013

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Latin America via the Regional Project RLA/9/070 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Argentina and Brazil are key partners in the Latin-American region.

  6. The nuclear safety authority (ASN) presents its report on the status of nuclear safety and radiation protection in France in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    After a presentation of the French nuclear safety authority (ASN) and of some events which occurred in 2010, this report present the actions performed by the ASN in different fields: nuclear activities (ionizing radiations and risks for health and for the environment), principles and actors of control of nuclear safety, radiation protection and environment protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency situations, public information and transparency, international relationship. It proposes a regional overview of nuclear safety and radiation protection in France. It addresses the activities controlled by the ASN: medical and non medical usages of ionizing radiations, transportation of radioactive materials, electronuclear power stations, installations involved in the nuclear fuel cycle, research nuclear installations and other nuclear installations, safety in basic nuclear installation dismantling, radioactive wastes and polluted sites

  7. Development of radiation safety monitoring system at gamma greenhouse gamma facility

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad, Ahmad Zaki Hussain; Ahmad Fairuz Mohd Nasir

    2009-01-01

    This paper is discussing about installation of radiation safety monitoring system at Gamma Greenhouse Gamma facility, Agrotechnology and Bioscience Division (BAB). This facility actually is an outdoor type irradiation facility, which first in Nuclear Malaysia and the only one in Malaysia. Source Cs-137 (801 Curie) was use as radiation source and it located at the centre of 30 metres diameter size of open irradiation area. The radiation measurement and monitoring system to be equipped in this facility were required the proper equipment and devices, specially purpose for application at outside of building. Research review, literature study and discussion with the equipment manufacturers was being carried out, in effort to identify the best system should be developed. Factors such as tropical climate, environment surrounding and security were considered during selecting the proper system. Since this facility involving with panoramic radiation type, several critical and strategic locations have been fixed with radiation detectors, up to the distance at 200 meter from the radiation source. Apart from that, this developed system also was built for capable to provide the online real-time reading (using internet). In general, it can be summarized that the radiation safety monitoring system for outdoor type irradiation facility was found much different and complex compared to the system for indoor type facility. Keyword: radiation monitoring, radiation safety, Gamma Greenhouse, outdoor irradiation facility, panoramic radiation. (Author)

  8. The nuclear safety and the radiation protection in France in 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Nine points are reviewed: the law project relative to the safety and openness in nuclear field, the safety of the European PWR type Reactor, the priorities in radiation protection, inspection of radiation protection, the surveillance of patients exposure to ionizing radiations, the hot days and dryness of summer 2003 and the functioning of nuclear power plant, the national planning of radioactive waste management, the becoming of high level and years living radioactive waste, the European nuclear policy. (N.C.)

  9. Safety of radiation sources in Slovenia

    International Nuclear Information System (INIS)

    Belicic-Kolsek, A.; Sutej, T.

    2001-01-01

    The Republic of Slovenia, a central European country which has been independent since 1991, has about 2 million inhabitants and an area of 20,256 km 2 . The Constitutional Law on Enforcement of the Basic Constitutional Charter on the Autonomy and Independence of the Republic of Slovenia, adopted on 23 June 1991 (Off. Gaz. of the R of Slovenia No. 1/91), provided that all the laws adopted by the Socialist Federal Republic (SFR) of Yugoslavia should remain in force in the Republic of Slovenia pending the adoption of appropriate legislation by the Slovene Parliament. Under the Slovene Constitution, all international treaties ratified by Slovenia constitute an integral part of Slovenia's legislation and can be applied directly. In Slovenia, all regular types of ionizing radiation source are being used for peaceful purposes and are covered by a system for their safe use and control. All radiation sources and radioactive materials are registered and under regulatory control. Inspections are carried out periodically by the Health Inspectorate of the Republic of Slovenia (HIRS) and, in the case of nuclear installations, the Slovene Nuclear Safety Administration (SNSA). Technical checks on radiation sources are carried out periodically by technical support organizations: the Jozef Stefan Institute and the Institute for Occupational Safety (IOS). (author)

  10. A collaborative effort of medical and educational facilities for radiation safety training of nurses

    International Nuclear Information System (INIS)

    Matsuda, Naoki; Yoshida, Masahiro; Takao, Hideaki

    2005-01-01

    The proper understanding of radiation safety by nursing staffs in hospitals are essential not only for radiation protection of themselves against occupational radiation exposure but for quality nursing for patients who receive medical radiation exposure. The education program on radiation in nursing schools in Japan is, however, rather limited, and is insufficient for nurses to acquire basic knowledge of radiation safety and protection. Therefore, the radiation safety training of working nurses is quite important. A hospital-based training needs assignment of radiation technologists and radiologists as instructors, which may result in temporary shortage of these staffs for patients' services. Additionally, the equipments and facilities for radiation training in a hospital might not be satisfactory. In order to provide an effective education regarding radiation for working nurses, the radiation safety training course has been conducted for nurse of the university hospital by the collaboration of medical and educational staffs in Nagasaki University. This course was given for 6 hours in Radioisotope Research Center, a research and education facility for radiation workers using radioisotopes. The curriculum of this course included basics of radiation, effects of radiation on human health, procedures in clinical settings for radiation protection and practical training by using survey meters, which were mainly based on the radiation safety training for beginners according to the Japanese law concerning radiation safety with a modification to focus on medical radiation exposure. This course has been given to approximately 25 nurses in a time, and held 13 times in May 2000 through October 2003 for 317 nurse overall. The pre-instruction questionnaire revealed that 60% of nurses felt fears about radiation diagnosis or therapy, which reduced to less than 15% in the post-instruction surveillance. The course also motivated nurses to give an answer to patients' questions about

  11. Safety design of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ouyang Yu; Zhang Lian; Du Shenghua; Zhao Jiayu

    1984-01-01

    Safety issues have been greatly emphasized through the design of the Qinshan Nuclear Power Plant. Reasonable safety margine has been taken into account in the plant design parameters, the design incorporated various safeguard systems, such as engineering safety feature systems, safety protection systems and the features to resist natural catastrophes, e. g. earthquake, hurricanes, tide and so on. Preliminary safety analysis and environmental effect assessment have been done and anti-accident provisions and emergency policy were carefully considered. Qinshan Nuclear Power Plant safety related systems are designed in accordance with the common international standards established in the late 70's, as well as the existing engineering standard of China

  12. Training in nuclear and radiation safety in Latin American and Caribbean

    International Nuclear Information System (INIS)

    Papadopulos, S.; Diaz, O.; Larcher, A.; Echenique, L.; Nicolas, R.; Lombardi, R.; Quintana, G.

    2013-01-01

    From thirty-three years, Argentina has taken the commitment to train professionals in the field of nuclear and radiation safety for the care and protection of workers and public in general. Sponsored by the IAEA and supported by the Faculty of Engineering of the University of Buenos Aires (FIUBA), an undertaking was made to encourage the training of scientists and experts in the countries of the region in order to establish a strong safety culture in radiation in individuals and maintaining high standards of safety practices using ionizing radiation. In 2012, the Graduate Course in Radiation Protection and Safety of Radiation Sources has acquired the status of 'Specialization' of the FIUBA, a category that further hierarchies skills training in the subject. This is a highly anticipated achievement by the implications for academic institutions, national and regional level, contributing to the strengthening of the Regional Training Center for Latin America and the Caribbean, acknowledged in a long-term agreement between the IAEA and Argentina in September 2008. Due to increased demand for nuclear activity, it is important to continue and deepen further training in radiological and nuclear areas. In order to satisfy both national and regional needs a process of increase on training offer training is being carried out, under the jurisdiction frame of the Nuclear Regulatory Authority. This paper presents the achievements of the country so far as regards training of human resource in radiation protection and nuclear safety in the region and highlights the challenges ahead for the extension of the offer in education and training. (author)

  13. Ordinance on the Finnish Centre of Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1990-01-01

    This Ordinance was adopted in implementation of the 1983 Act setting up the Finnish Centre for Radiation and Nuclear Safety and the 1987 Nuclear Energy Act and entered into force on 1 November 1990. The Ordinance specifies the tasks of the Centre, as provided under both Acts, and gives it several supplementary responsibilities. In addition to its overall competence in respect of radiation safety, the Centre will carry out research into and supervise the health effects of radiation and maintain a laboratory for national measurements in that field. The Ordinance also sets out the Centre's organisation chart and the staff duties [fr

  14. Radiation Protection, Safety and Security Issues in Ghana

    International Nuclear Information System (INIS)

    Boadu, M. B.; Emi-Reynolds, G.; Amoako, J. K.; Hasford, F.; Akrobortu, E.

    2015-01-01

    The Radiation Protection Board was established in 1993 by PNDC Law 308 as the National Competent Authority for the regulation of radiation sources and radioactive materials in Ghana. The mandate and responsibilities of RPB are prescribed in the legislative instrument, LI 1559 issued in 1993. The operational functions of the Board are carried out by the Radiation Protection Institute, which was established to provide technical support for the enforcement of the legislative instrument. The regulatory activities include among others: – Issuance permits for the import/export of any radiation producing device and radioactive materials into/out of the country. It therefore certifies the radioactivity levels in food and the environmental samples. – Authorization and Inspection of practices using radiation sources and radioactive materials in Ghana. – Undertakes safety assessment services and enforcement actions on practices using radiation sources and radioactive materials in line with regulations. – Provides guidance and technical support in fulfilling regulatory requirement to users of radiation producing devices and radioactive materials nationwide by monitoring of monthly radiation absorbed doses for personnel working at radiation facilities. – Provides support to the management of practices in respect of nuclear and radioactive waste programme. – Calibrates radiation emitting equipment and nuclear instrumentation to ensure the safety of patients, workers and the general public. – Establish guidelines for the mounting (non-ionizing) communication masts. – Environmental monitoring (non-ionizing) programmes for communication masts. With the establishment of the national competent authority, facilities using radioactive sources and radiation emitting devices have been brought under regulatory control. Effective regulatory control of radiation emitting devices are achieved through established legal framework, independent Regulatory Authority supported by

  15. Study on development of education model and its evaluation system for radiation safety

    CERN Document Server

    Seo, K W; Nam, Y M

    2002-01-01

    As one of the detailed action strategy of multi object preparedness for strengthening of radiation safety management by MOST, this project was performed, in order to promote the safety culture for user and radiation worker through effective education program. For the prevention of radiological accident and effective implementation of radiation safety education and training, this project has been carried out the development of education model and its evaluation system on radiation safety. In the development of new education model, education course was classified; new and old radiation worker, temporary worker, lecturer and manager. The education model includes the contents of expanding the education opportunity and workplace training. In the development of evaluation system, the recognition criteria for commission-education institute and inside-education institute which should establish by law were suggested for evaluation program. The recognition criteria contains classification, student, method, facilities, ...

  16. The European nuclear safety and radiation protection area: steps and prospects

    International Nuclear Information System (INIS)

    Gillet, G.

    2010-01-01

    Launched with enthusiasm and determination in 1957, The European Atomic Energy Community (EAEC - EURATOM), which aimed to promote the development of a 'powerful nuclear industry' in Europe, has not ultimately fulfilled the wishes of its founding fathers. Rapidly, and on a topic as strategic as the peaceful use of the atom, national reflexes prevailed. The Chernobyl disaster, in 1986, also substantially slowed down the use of nuclear energy in Europe. Nuclear safety and radiation protection have followed two different paths. Backed by Chapter III of the EURATOM treaty, over time the EAEC has developed a substantial legislative corpus on radiation protection. Meanwhile, and strange as it may seem, nuclear safety has remained the poor relation, on the grounds that the treaty does not grant EURATOM competence in the area. It is true that legislation was adopted in reaction to Chernobyl, but for a long time there was no specific regulation of nuclear safety in the EU. The European nuclear safety and radiation protection area owes its construction to Community mechanisms as well as to informal initiatives by safety authorities. Today, more than ever, this centre provides consistency, an overall balance which should both strengthen it and impose it as an international reference. Progress can now be expected on waste management, radiation protection and the safety objectives of new reactors. (author)

  17. Report on administrative work for radiation safety from April 2010 to March 2011

    International Nuclear Information System (INIS)

    Nishimura, Kiyohiko; Uda, Tatsuhiko; Asakura, Yamato; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi; Tanaka, Masahiro

    2011-12-01

    The National Institute for Fusion Science (NIFS) is proceeding with basic research on magnetic nuclear fusion which is expected to be a perpetual energy source for the future. Because the object of research is a hot plasma, high energy particles which are elements of the plasma generate X-rays. Therefore we administrate the devices and their surroundings in conformity with the Industrial Safety and Health Law to maintain workplace safety. We measure the radiation dose levels regularly, register the employees who are engaged in plasma experiments, and educate them. We also control the handling of non-regulated small sealed sources that are used in the detectors in some cases. This report is on administrative work for radiation safety in the last fiscal year 2010. It includes (1) a report on the establishment of a radiation safety management system, (2) results of radiation dose measurement and monitoring in the radiation controlled area and on the site by using Radiation Monitoring System Applicable to Fusion Experiment (RMSAFE), (3) a report on the establishment of an education and registration system for radiation workers. (author)

  18. Regulatory requirements for radiation safety in the design of a new Finish NPP

    Energy Technology Data Exchange (ETDEWEB)

    Alm-Lytz, Kirsi; Vilkamo, Olli [Radiation and Nuclear Safety Authority, STUK, PO Box 14, Laippatie 4, 00881 Helsinki (Finland)

    2004-07-01

    There are two operating nuclear power plants in Finland, two BWR units at Olkiluoto site and two PWR units at Loviisa site. These reactors were commissioned between 1977 and 1981. The total electricity capacity in Finland is about 15 GW. In 2003, nuclear power plants generated one fourth of Finland's electricity. Despite of the diversity of the electricity generation methods, Finland is highly dependent on imported energy. Electricity consumption is estimated to increase and the demand for extra capacity has been estimated at about 2500-3000 MW by 2010. It should also be taken into account that a considerable proportion of the production capacity constructed in the 1970's must be replaced with production capacity of new power plants in the near future. In practice, the climate politics commitments made by Finland exclude coal power. Therefore, the capacity can be increased significantly only by natural gas, nuclear power and biofuels. The paper presents the following issues: Licensing a new nuclear power plant in Finland; FIN5 Project at STUK; Work planning and a tool for requirement management; Radiation safety related YVL guides; Collective dose target; On-site habitability during accident situation. Habitability was evaluated on the basis of the calculated dose rate levels, the occupancy times and the dose limits. Radiation hazard was classified into three parts, i.e., possible direct radiation from the containment, air contamination and systems carrying radioactive air or water. The results showed that direct radiation from the containment is generally adequately shielded but penetrations and hatches have to be separately analysed and the radiation dose levels near them are usually rather high. Skyshine radiation from the reactor containment is a special feature at the Loviisa NPP and the nearby area outside the buildings might have very limited access for the first hours after the accident. The skyshine effect is not usually relevant hazard in

  19. The knowledge, attitude and behavior on the radiation safety management for dental hygiene major students

    International Nuclear Information System (INIS)

    Jeon, Yeo Reong; Cho, Pyong Kon; Kim, Yong Min; Han, Eun Ok; Jang, Hyon Chul; Ko, Jong Kyung

    2015-01-01

    This study tries to find the educational basis based on the radiation safety knowledge, attitudes and behaviors to check the level of radiation safety behavior in domestic students who study dental hygiene. The students of 3rd and 4th grades in 83 universities which have registered on the Korean University Education Council were involved, and they were given a questionnaire for this study. The questionnaire was provided via visit with 20 copies to each university (total 1660 copies), mail by post and e-mail. Among them, we analyzed only 723 copies that we can trust. The data were analyzed with frequency, percentage, mean, standard deviation and Pearson’s correlation using the SPSS/WIN 15.0. As a result, there are correlations in the students’ knowledge, attitudes and behaviors regarding the radiation safety management. It means that the education which can improve the knowledge and attitudes should be applied to increase the action level of the radiation safety. In addition, the physical environment is the most closely correlated with the individual behavior, so it will be limited to improve the behavioral levels of the radiation safety if the physical environment is not prepared. Therefore, the physical environment should be supported to enhance the level of the radiation safety activity, and to increase the individual attitude level of radiation safety. The knowledge level of the radiation safety management is relatively lower than the attitudes level, and the behavior level is the lowest. Therefore, the education policy of the safety behavior must be enhanced. For domestic students, the educational intervention is necessary to improve their behavioral level of radiation safety management because they will be able to reduce the amount of radiation exposure of their patients in dental care after getting a job

  20. The knowledge, attitude and behavior on the radiation safety management for dental hygiene major students

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yeo Reong; Cho, Pyong Kon; Kim, Yong Min [Dept. of Radiological Science, Daegu Catholic University, Daegu (Korea, Republic of); Han, Eun Ok [Korea Academy of Nuclear Safety, Seoul (Korea, Republic of); Jang, Hyon Chul [Dept. of Radiological Technology, Suseong College, Daegu (Korea, Republic of); Ko, Jong Kyung [Radiation Safety Management Commission, Daegu Health College, (Korea, Republic of)

    2015-12-15

    This study tries to find the educational basis based on the radiation safety knowledge, attitudes and behaviors to check the level of radiation safety behavior in domestic students who study dental hygiene. The students of 3rd and 4th grades in 83 universities which have registered on the Korean University Education Council were involved, and they were given a questionnaire for this study. The questionnaire was provided via visit with 20 copies to each university (total 1660 copies), mail by post and e-mail. Among them, we analyzed only 723 copies that we can trust. The data were analyzed with frequency, percentage, mean, standard deviation and Pearson’s correlation using the SPSS/WIN 15.0. As a result, there are correlations in the students’ knowledge, attitudes and behaviors regarding the radiation safety management. It means that the education which can improve the knowledge and attitudes should be applied to increase the action level of the radiation safety. In addition, the physical environment is the most closely correlated with the individual behavior, so it will be limited to improve the behavioral levels of the radiation safety if the physical environment is not prepared. Therefore, the physical environment should be supported to enhance the level of the radiation safety activity, and to increase the individual attitude level of radiation safety. The knowledge level of the radiation safety management is relatively lower than the attitudes level, and the behavior level is the lowest. Therefore, the education policy of the safety behavior must be enhanced. For domestic students, the educational intervention is necessary to improve their behavioral level of radiation safety management because they will be able to reduce the amount of radiation exposure of their patients in dental care after getting a job.

  1. Report on administrative work for radiation safety from April 2004 to March 2006

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Asakura, Yamato; Nishimura, Kiyohiko; Kawano, Takao; Yamanishi, Hirokuni; Miyake, Hitoshi

    2006-11-01

    The National Institute for Fusion Science (NIFS) constructed the Large Helical Device (LHD) which is the largest magnetic confinement plasma experimental device using a super conducting magnet coils system. The first plasma shot was carried out in March 1998 after eight years of construction. Since then high temperature plasmas and improved plasma confinement experiments have been achieved. On 1st April 2004, NIFS became one of the research institutes which constitute National Institute of Natural Sciences. Since then the regulation system of safety, health and environmental management has been minorly changed. This is a report on administrative work for radiation safety at the LHD and the Compact Helical System (CHS), and radiation measurement and monitoring on the site from 1st April 2004 to 31st March 2006. Major topics are as follows. (1) Establishment of a radiation safety management system based on the law of occupational safety, health and environment. (2) Radiation dose measurement and monitoring in the radiation controlled area and on the site using a particularly developed monitoring system named Radiation Monitoring System Applicable to Fusion Experiments (RMSAFE). (3) Establishment of an education and registration system for radiation workers, and accessing control system for the LHD controlled area. This report has been annually published from fiscal year 1999. We expect that these reports could be helpful for future radiation safety management in NIFS. (author)

  2. Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. Interim report for comment

    International Nuclear Information System (INIS)

    1999-02-01

    A number of IAEA Member States are undertaking to strengthen their radiation protection and safety infrastructures in order to facilitate the adoption of the requirements established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Standards). In this connection, the IAEA has developed a technical co-operation programme (Model Project on Upgrading Radiation Protection Infrastructure) to improve radiation protection and safety infrastructures in 51 Member States, taking into account national profiles and needs of the individual participating, countries. The present report deals with the elements of a regulatory infrastructure for radiation protection and safety and intends to facilitate the, implementation of the Basic Safety Standards in practice. It takes into account the proposals in an earlier report, IAEA-TECDOC-663, but it has been expanded to include enabling legislation and modified to be more attuned to infrastructure issues related to implementation of the Standards. The orientation is toward infrastructures concerned with protection and safety for radiation sources used in medicine, agriculture, research, industry and education rather than infrastructures for protection and safety for complex nuclear facilities. It also discusses options for enhancing the effectiveness and efficiency of the infrastructure in accordance with the size and scope of radiation practices and available regulatory resources within a country

  3. Radiation and ecological safety of nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    Barbasheva, S.V.

    1995-01-01

    Nuclear power plants (NPP) and radioactive waste facilities safety issues are discussed; Chernobyl NPP personnel radiation doses for 1986 are indicated; radiation contamination of environment by Am-241 is investigated; data on radioactive contamination in southern part of Kiev Poles'e are considered

  4. Safety assessment in plant layout design using indexing approach: Implementing inherent safety perspective

    International Nuclear Information System (INIS)

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-01-01

    Layout planning plays a key role in the inherent safety performance of process plants since this design feature controls the possibility of accidental chain-events and the magnitude of possible consequences. A lack of suitable methods to promote the effective implementation of inherent safety in layout design calls for the development of new techniques and methods. In the present paper, a safety assessment approach suitable for layout design in the critical early phase is proposed. The concept of inherent safety is implemented within this safety assessment; the approach is based on an integrated assessment of inherent safety guideword applicability within the constraints typically present in layout design. Application of these guidewords is evaluated along with unit hazards and control devices to quantitatively map the safety performance of different layout options. Moreover, the economic aspects related to safety and inherent safety are evaluated by the method. Specific sub-indices are developed within the integrated safety assessment system to analyze and quantify the hazard related to domino effects. The proposed approach is quick in application, auditable and shares a common framework applicable in other phases of the design lifecycle (e.g. process design). The present work is divided in two parts: Part 1 (current paper) presents the application of inherent safety guidelines in layout design and the index method for safety assessment; Part 2 (accompanying paper) describes the domino hazard sub-index and demonstrates the proposed approach with a case study, thus evidencing the introduction of inherent safety features in layout design

  5. Thermal Radiation for Structural Fire Safety Design

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    The lecture notes give a short introduction of the theory of thermal radiation. The most elementary concepts and methods are presented in order to give a fundamental knowledge for calculation of the load bearing capacities of fire exposed building constructions....

  6. Overview of a radiation safety program in a district style medical environment

    International Nuclear Information System (INIS)

    Wilson, G.

    2006-01-01

    This paper provides an overview of the eight components of a radiation safety program in a large health care facility spread out over several campuses in a large geographic area in Nova Scotia. The main focus is based on those areas that are regulated by the Canadian Nuclear Safety Commission and generally encompass nuclear medicine and radiation therapy operations. X-ray operations are regulated provincially, but the general operational principles of an effective radiation safety program can be applied in all these areas. The main components covered include the set up of an organizational structure that operates separately from individual departments, general items expected from reports to corporate management or regulators, and some examples of the front-line expectations for those in individual departments. The review is not all encompassing, but should give organizations some insight of the magnitude of a radiation safety program in a district style environment. (author)

  7. Radiation safety and quality control assurance in X-ray diagnostics 1998

    International Nuclear Information System (INIS)

    Servomaa, A.

    1998-03-01

    The report is based on a seminar course of lectures 'Radiation safety and quality assurance in X-ray diagnostics 1998' organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  8. Organization of nuclear safety and radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Pretre, S.

    1995-01-01

    In Switzerland an important distinction is made between radiation protection (in charge of the use of ionizing radiations for medical uses or non nuclear industry), and nuclear safety (in charge of nuclear industry, including prevention or limitation of any risk of nuclear accident). In the eighties, it has been decided to make two laws for these two topics. The law for radioprotection, voted in 1991 is enforced since 1994 by OFSP (Office Federal de la Sante Publique). It performs any radiation monitoring outside nuclear industry plants. The law for nuclear safety, that should be enforced by OFEN (Office Federal de l'ENergie), is still not voted. The only existing legislation is the 1959 atomic law. (D.L.). 1 fig., 1 map

  9. 1988 annual work report of the Department for Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.

    1989-03-01

    The Department for Safety and Radiation Protection continues to be responsible for coordinating radiation protection, safety and protection at the KFA. It supports the other institutes and departments in performing the safety tasks allotted to them. The principal tasks of the Department are in administrative and technical assistance to these organization units and in safeguards. Administrative assistance involves, for example, regulation of the radiation protection organization in the institutes, including the appointment of radiation protection officers (Strahlenschutzbeauftragte). Furthermore, this includes the central handling of the registration system with the authorities and dealing with outside firms thus considerably relieving the institutes of their administrative tasks. Handling licensing procedures and the central accountancy of radioactive materials is also to be mentioned in this context. Technical assistance largely consists of developing, maintaining and repairing radiation measuring instruments and in the monitoring of personnel by evaluating personnel dosimeters and incorporation controls for radioactive sources. The safeguards tasks of the Department concern the very staff-intensive physical protection, as well as environmental protection and industrial safety. (orig.) [de

  10. Handbook on radiation safety. Spravochnik po radiatsionnoj bezopasnosti

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V R

    1977-01-01

    The handbook reflects changes, in quotas, providing radiation safety in the Soviet Union, and in state standards. It includes the data, published in the soviet and foreign press up to 1975 on problems of ionizing radiation interaction with a substance, on terminology and units for measuring ionizing radiations and radioactivity, doses of background and admissible personnel irradiation in space, resulting from natural and artificial sources,from medical procedures. Given are the norms and sanitary rules of radiation protection when operating ionizing radiations sources at nuclear power plants, nuclear reactors, critical assemblies, placing and operating charged particle accelerators. Included is ample information on dosimetry of X-ray, gamma-, and neutron radiation, on dosimetry of charged particles, aerosols and gases, on radiometry and spectrometry of internal irradiation and radiation sources. Devices for ionizina radiation registration, model radiation sources, radionuclide solutions and their calibration are described.

  11. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 2b, May 2013

    International Nuclear Information System (INIS)

    2013-05-01

    The IAEA Strategic Approach to Education and Training in Radiation, Transport and Waste Safety (2011-2020) provides a framework for establishing a sustainable education and training infrastructure in Member States that addresses national needs for building and maintaining competence in radiation, transport and waste safety that is consistent with IAEA Safety Standards. For this purpose, IAEA's General Conference has encouraged Member States to develop a national strategy for education and training, underlining the fundamental importance of sustainable programmes for building competence in radiation, transport and waste safety, as a key component of safety infrastructure. Furthermore Member States that receive assistance from IAEA are obliged to apply IAEA Safety Standards which require, inter alia, governments to establish a national policy and strategy for safety, including provisions for acquiring and maintaining the necessary competence nationally for ensuring safety. IAEA's Division of Radiation, Transport and Waste Safety is assisting Member States to develop their own national strategies in Asia and the Pacific via the Regional project RAS/9/066 on ''Strengthening Education and training Infrastructure, and Building Competence in Radiation Safety'', which includes, inter alia, Regional Workshops on National Strategies for education and training in radiation transport and waste safety. IAEA's Regional Training Centres (RTCs) in Malaysia and Syrian Arabic Republic are key partners in the Asian and the Pacific region.

  12. Technical regulations on the general design and safety criteria for design and construction of nuclear reactors of May 1975

    International Nuclear Information System (INIS)

    1975-05-01

    These Technical Regulations published on 5th September 1975 were made in implementation of Section 33 of Decree No 7/9141 on the procedure for the licensing of nuclear installations. They serve as a guide to licensing authorities, project designers and operators in the nuclear field and therefore provide general criteria for safety standards, engineering codes, siting considerations, design bases for overall environmental radiation protection, and also deal with reactor core design, instrumentation, control, alarm systems, including an emergency core cooling system. Finally, the safe design of fuel elements must be ensured and fuel storage and handling techniques complied with. (NEA) [fr

  13. Safety verification of radiation shielding and heat transfer for a model for dry

    International Nuclear Information System (INIS)

    Yu, Haiyan; Tang, Xiaobin; Wang, Peng; Chen, Feida; Chai, Hao; Chen, Da

    2015-01-01

    Highlights: • New type of dry spent fuel storage was designed. • MC method and FEM were used to verify the reliability of new storage. • Radiation shield and heat transfer both meet IAEA standards: 2 mSv/h, 0.1 mSv/h and 190 °C, 85 °C. • Provided possibilities for future implementation of this type of dry storage. - Abstract: The goal of this research is to develop a type of dry spent fuel storage called CHN-24 container, which could contain an equivalent load of 45 GWD/MTU of spent fuel after 10 years cooling. Basically, radiation shielding performance and safe removal of decay heat, which play important roles in the safety performance, were checked and validated using the Monte Carlo method and finite element analysis to establish the radiation dose rate calculation model and three-dimensional heat transfer model for the CHN-24 container. The dose rates at the surface of the container and at a distance of 1 m from the surface were 0.42 mSv/h and 0.06 mSv/h, respectively. These conform to the International Atomic Energy Agency (IAEA) radioactive material transportation safety standards 2 mSv/h and 0.1 mSv/h. The results shows that the CHN-24 container maintains its structural and material integrity under the condition of normal thermal steady-state heat transfer as well as in case of extreme fire as evinced by transient-state analysis. The temperature inside and on the surface of the container were 150.91 °C and 80 °C under normal storage conditions, which indicated that the design also conform to IAEA heat transfer safety standards of 190 °C and 85 °C

  14. Regulatory control and safety of radiation and radioactive sources in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2001-01-01

    The application of ionizing radiation and radioactive sources in different fields such as, medicine, industry, agriculture, research and teaching is constantly increasing in Bangladesh. Any system enacted to control exposure to ionizing radiation has as primary objective the protection of health of people against the deleterious effects of radiation. Establishing the appropriate level of radiological protection and safety of radiation sources used in practice or intervention attains this objective. The regulatory program governing the safe use of radioactive and radiation sources in Bangladesh is based on the legislation enacted as Nuclear Safety and Radiation Control (NSRC) Act-93 and NSRC Rules-97 and its implementation by the competent authority. The radiation control infrastructures and procedure are described as well as their functioning for the implementation of relevant activities such as licensing, regular inspection, personal dose monitoring, emergency preparedness, etc. The issue of security of radiation source is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country

  15. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  16. Radiation safety in X-ray diagnostic installations

    International Nuclear Information System (INIS)

    Das, K.R.; Ambiger, T.Y.; Viswanathan, P.S.

    1977-01-01

    Safety measures to be strictly adhered to in handling X-ray equipment and exposing patients to X-radiation are described in detail. Hazards resulting from ignorance and careless handling are mentioned. Methods of shielding are indicated. (A.K.)

  17. Proceedings of the 6. Argentine congress on radiation protection and nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    The 6th Argentine Congress on Radiation Protection and Nuclear Safety was organized by the Radioprotection Argentine Society, in Buenos Aires, between the 22 and 24 of september of 1998. In this event, were presented almost 66 papers in the following sessions, about these subjects: 1.- Safety in nuclear installations. 2.- Control of nuclear material and physical protection of nuclear installations. 3.- Programs of quality assurance. 4.- Training, technical information and public information. 5.- Physical dosimetry. 6.- Physical dosimetry and occupational radiation protection. 7.- Exposure of the natural radiation. 8.- Environmental radiological safety. 9.- Biological effects of the ionizing radiations and biological dosimetry. 10.- Radiological protection of the medical practice and the radiological emergencies. 11.- Radioactive wastes management. 12.- Transport of radioactive materials

  18. Establishment of database for radiation exposure and safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G. S.; Kim, J. H. [Science Culture Research Institute, Seoul (Korea, Republic of)

    2005-12-15

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation.

  19. Establishment of database for radiation exposure and safety assessment

    International Nuclear Information System (INIS)

    Choi, G. S.; Kim, J. H.

    2005-12-01

    The nuclear electric energy in our country plays a major role for the national industrial development as well as for the secure living of the peoples. It is, however, considered as a socially dreadful elements because of the radiation materials exposed into the environment. In effect, the DB is intended to serve for the reference to the epidemical study upon the low-level radiation exposure involving the nuclear facilities, radio-isotope business enterprises, and the related workers at the radiation sites. In connection with the development of nuclear energy, the low-level radiation, associated with the radioisotope materials exposed into our environment out of nuclear facilities, is believed to possibly raise significant hazardous effects toward human persons. Therefor, it is necessary to take a positive counter measures by means of comprehensive quantitative estimates on its possibilities. In consequence, the low-level radiation effects do not bring about the immediate hazard cases, however, appear to possibly pose the lately caused diseases such as cancer cause, life reduction, and creation of mutation, etc. Therefore, it is intended to set up the social security with the secure safety, by conducting an advanced safety study on the low-level radiation

  20. Review of EU-APR Design for Selected Safety Issues of WERNA RHWG 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Kim, Ji Hwan [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Western European Nuclear Regulators' Association (WENRA) was established in 1999 to develop a harmonized approach to nuclear safety and radiation protection and their regulation. In 2013, the Reactor Harmonization Working Group (RHWG) of WENRA sets out the common positions on the seven selected key safety issues. This paper is to introduce the regulatory positions of WENRA RHWG 2013 and to review the compliance of the EU-APR with them. In this paper, we reviewed the compliance of the EUAPR regarding seven safety issues for new NPPs presented by WERNA RHWG in 2013. The EU-APR design fully complies with all WERNA RHWG safety issues since the following measures have been incorporated in it: - Successive five levels of DiD maintaining independence between different levels of DiD - Diverse design against multiple failure events such as ATWS, SBO, Loss of Ultimate Heat Sink, and Loss of Spent Fuel Pool Cooling - SAs dedicated mitigation systems to ensure the containment integrity during the SAs. - Practically eliminates accident sequences with a large or early release of radiological materials by diverse designs for multiple failure events, SAs dedicated mitigation system, and double containment design - Standard site parameters not lead to core melt accidents due to natural or man-made external hazards.

  1. The Radiation Safety Culture: Image Gently

    International Nuclear Information System (INIS)

    Applegate, E.K.

    2015-01-01

    Barriers to Implementing Safety include Silos of Knowledge, Time, training and Resources. Creating a Safety Culture in Healthcare include Decreased authority gradients, Checklists and audits (QA), Use of structured language (SBAR), Situation, Background, Assessment, Recommendation Team briefings and debriefings (immediate learning, team building tools), Lifelong learning (PQI). Use of Collective Learning Opportunities - QA and PQI that include Web sites: IG, WFPI, IAEA, ISR and Data Registries: ACR . The Key Principles of Radiation Protection: When do we learn them? For Occupational Workers:Time, Distance and Shielding while those of For Patients: Justification, Optimization and Dose Limits (dose reference levels)

  2. Nuclear safety and radiation protection in the German Democratic Republic

    International Nuclear Information System (INIS)

    Sitzlack, G.; Scheel, H.

    1976-01-01

    The radiation protection organization in the GDR is outlined laying emphasis on the tasks of the National Board of Nuclear Safety and Radiation Protection. In addition to the basic tasks, the various forms of radiation protection monitoring, the management of radioactive wastes, and international responsibilities are briefly explained. (author)

  3. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    Ylli, F.; Dollani, K.; Paci, R.

    2005-01-01

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  4. Assessment of radiation safety in well logging

    International Nuclear Information System (INIS)

    Alles, A.; Pérez, Y.; Duménigo, C.

    2015-01-01

    Radiation safety assessments required by current regulations are a means to verify compliance with the requirements. Different methods have been used for this purpose. In the paper the results of applying the method of risk matrices, applied for the first time in the practice of well logging are exposed. For each initiating event frequency of occurrence, the severity of its consequences and the probability of failure of the barriers identified were evaluated. Starting from these assumptions, the risk associated is determined for each of the identified accident sequences, using for this the SEVRRA code 'Risk Assessment System', originally designed for use in radiotherapy. As an result sequences increased risk associated with the practice of well logging were identified, which is the starting point for the further implementation of a coherent program of dose optimization in practice. [es

  5. Nuclear safety and radiation protection report of Chinon nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  6. PHWR safety: design, siting and construction

    International Nuclear Information System (INIS)

    Sharma, V.K.

    2002-01-01

    In all activities associated with NPPs viz. siting, design, construction, commissioning and operation, safety is given overriding importance. The safety design principles of PHWRs are based on defence-in-depth approach, physical and functional separation between process and safety systems and also among various safety systems, redundancy to meet single failure criteria and postulation of a number of design basis events for which the plant must be designed. Apart from engineered safety systems, PHWRs have inherent characteristics which contribute to safety. In siting of a NPP, it is required to ensure that the given site does not pose undue radiological hazard to public and the environment both during normal operation as well as during and following an accident condition. For this purpose, all site related external events, both natural and man induced, are assessed for their effect on the plant and are considered as part of the design basis. Possible radiological impact of the NPP on environment and surrounding population is assessed and ensured to be within acceptable limits. During construction phase, it is essential that the NPP be built in accordance with design intent and with required quality of workmanship to ensure that the NPP will remain safe during all states of operation. This is achieved through careful execution and QA activities encompassing all aspects of component fabrication at manufacturer works, civil construction, site erection, assembly, and commissioning. Future trends in nuclear safety will continue to be based on existing principles which have proved to be sound. These will be further strengthened by features such as increasing use of passive means of performing safety functions and a more explicit treatment of severe accidents. (author)

  7. Personnel radiation safety. A case of hand lesion in a radiologist

    International Nuclear Information System (INIS)

    Pilipenko, M.Yi.; Kulyinyich, G.V.; Stadnik, L.L.

    2012-01-01

    The work featured the questions of norma and rules of radiation safety at work with ionizing radiation. The history of the question about the permissible doses is dabbler's. The changes in the skin when exceeding the tolerant dose are described. A case of severe local lesions of the hand caused by chronic occupational over irradiation, when the safety rules were neglected, is described

  8. Radiation protection programmes for the transport of radioactive material. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide provides guidance on meeting the requirements for the establishment of radiation protection programmes (RPPs) for the transport of radioactive material, to optimize radiation protection in order to meet the requirements for radiation protection that underlie the Regulations for the Safe Transport of Radioactive Material. This Guide covers general aspects of meeting the requirements for radiation protection, but does not cover criticality safety or other possible hazardous properties of radioactive material. The annexes of this Guide include examples of RPPs, relevant excerpts from the Transport Regulations, examples of total dose per transport index handled, a checklist for road transport, specific segregation distances and emergency instructions for vehicle operators

  9. Radiation safety aspects pertaining to female patients and staff

    International Nuclear Information System (INIS)

    Patni, Nidhi

    2017-01-01

    Many organizations in the world are committed to gender parity. Increasing number of women is working in the fields of radiation medicine and in industries dealing with radiation. Women patients may be exposed to radiation in radiology, radiation oncology, nuclear medicine, interventional cardiology, dentistry etc. Radiation safety of women staff and women patients is different from their male counterparts because of conception and pregnancy. So, fetal health is a matter of concern in the above. Also, the excess relative risk of radiation induced cancers in females relates to higher risk of thyroid cancer and high radiosensitivity as compared to males

  10. Attitude and awareness of general dental practitioners toward radiation hazards and safety.

    Science.gov (United States)

    Aravind, B S; Joy, E Tatu; Kiran, M Shashi; Sherubin, J Eugenia; Sajesh, S; Manchil, P Redwin Dhas

    2016-10-01

    The aim and objective is to evaluate the level of awareness and attitude about radiation hazards and safety practices among general dental practitioners in Trivandrum District, Kerala, India. A questionnaire-based cross-sectional study was conducted among 300 general dental practitioners in Trivandrum District, Kerala, India. Postanswering the questions, a handout regarding radiation safety and related preventive measures was distributed to encourage radiation understanding and protection. Statistical analysis were done by assessing the results using Chi-square statistical test, t -test, and other software (Microsoft excel + SPSS 20.0 trail version). Among 300 general practitioners (247 females and 53 males), 80.3% of the practitioners were found to have a separate section for radiographic examination in their clinics. Intraoral radiographic machines were found to be the most commonly (63.3%) used radiographic equipment while osteoprotegerin was the least (2%). Regarding the practitioner's safety measures, only 11.7% of them were following all the necessary steps while 6.7% clinicians were not using any safety measure in their clinic, and with respect to patient safety, only 9.7% of practitioners were following the protocol. The level of awareness of practitioners regarding radiation hazards and safety was found to be acceptable. However, implementation of their knowledge with respect to patient and personnel safety was found wanting. Insisting that they follow the protocols and take necessary safety measures by means of continuing medical education programs, pamphlets, articles, and workshops is strongly recommended.

  11. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    Energy Technology Data Exchange (ETDEWEB)

    RYAN GW

    2007-09-24

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents.

  12. SAFETY BASIS DESIGN DEVELOPMENT CHALLENGES IMECE2007-42747

    International Nuclear Information System (INIS)

    RYAN GW

    2007-01-01

    'Designing in Safety' is a desired part of the development of any new potentially hazardous system, process, or facility. It is a required part of nuclear safety activities as specified in the U.S. Department of Energy (DOE) Order 420.B, Facility Safety. This order addresses the design of nuclear related facilities developed under federal regulation IOCFR830, Nuclear Safety Management. IOCFR830 requires that safety basis documentation be provided to identify how nuclear safety is being adequately addressed as a condition for system operation (e.g., the safety basis). To support the development of the safety basis, a safety analysis is performed. Although the concept of developing a design that addresses 'Safety is simple, the execution can be complex and challenging. This paper addresses those complexities and challenges for the design activity of a system to treat sludge, a corrosion product of spent nuclear fuel, at DOE's Hanford Site in Washington State. The system being developed is referred to as the Sludge Treatment Project (STP). This paper describes the portion of the safety analysis that addresses the selection of design basis events using the experience gained from the STP and the development of design requirements for safety features associated with those events. Specifically, the paper describes the safety design process and the application of the process for two types of potential design basis accidents associated with the operation of the system, (1) flashing spray leaks and (2) splash and splatter leaks. Also presented are the technical challenges that are being addressed to develop effective safety features to deal with these design basis accidents

  13. A Strategic Approach to Establishing and Strengthening National Infrastructure for Radiation, Transport and Waste Safety

    International Nuclear Information System (INIS)

    Mastauskas, A.

    2016-01-01

    In Lithuania, as in the other countries of the world, in various areas, such as medicine, industry, education and training, agriculture the different technologies with the radioactive substances or devices, which generate ionizing radiation, are used. The responsibilities of each party and concern is to ensure the safe use ensure the radiation protection of the population and the environment. For every IAEA Member State in order to ensure the radiation safety, it is necessary to create the States radiation safety infrastructure: legislation, Regulatory Authority, technical support organizations. The International Atomic Energy Agency (IAEA) develops safety standards and assists Member States to create radiation safety infrastructure according the IAEA safety standards requirements. Noting that many Member States would benefit from bringing their radiation safety infrastructure more in line with IAEA Safety Standards, the Secretariat organized a meeting in May of 2014 of senior radiation safety experts from Africa, Asia & the Pacific, Europe, Latin America and North America, with the aim of developing a model strategic approach to establishing and strengthening national radiation safety infrastructure, with a special focus on Member States receiving assistance from the Agency. This model approach was presented to a wider audience on the margins of the IAEA General Conference in September 2014, where it was well received. This paper describes how the key elements of the model strategic approach were applied in Lithuania. The outcome of which showed that there is an adequate radiation safety infrastructure in place covering more than 50 legal acts, the establishment and empowerment of a Regulatory Authority – Radiation Protection Centre, technical support organizations – metrology and dosimetry services, and training centres. In Lithuania there exists a State registry of sources of ionizing radiation and occupational doses of exposure, a strong system of the

  14. Conceptual design of a Moving Belt Radiator (MBR) shuttle-attached experiment

    Science.gov (United States)

    Aguilar, Jerry L.

    1990-01-01

    The conceptual design of a shuttle-attached Moving Belt Radiator (MBR) experiment is presented. The MBR is an advanced radiator concept in which a rotating belt is used to radiate thermal energy to space. The experiment is developed with the primary focus being the verification of the dynamic characteristics of a rotating belt with a secondary objective of proving the thermal and sealing aspects in a reduced gravity, vacuum environment. The mechanical design, selection of the belt material and working fluid, a preliminary test plan, and program plan are presented. The strategy used for selecting the basic sizes and materials of the components are discussed. Shuttle and crew member requirements are presented with some options for increasing or decreasing the demands on the STS. An STS carrier and the criteria used in the selection process are presented. The proposed carrier for the Moving Belt Radiator experiment is the Hitchhiker-M. Safety issues are also listed with possible results. This experiment is designed so that a belt can be deployed, run at steady state conditions, run with dynamic perturbations imposed, verify the operation of the interface heat exchanger and seals, and finally be retracted into a stowed position for transport back to earth.

  15. Practice specific model regulations: Radiation safety of non-medical irradiation facilities. Interim report for comment

    International Nuclear Information System (INIS)

    2003-08-01

    The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (Standards or BSS) were published as IAEA Safety Series No. 115 in 1996. This publication is the culmination of efforts over the past decades towards harmonization of radiation protection and safety standards internationally, and is jointly sponsored by the Food and Agriculture Organisation of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organisation (PAHO) and the World Health Organisation (WHO). The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure (hereinafter called 'radiation safety'). The requirements are based on the principles set out in the Safety Fundamentals, published as IAEA Safety Series Nos 110 and 120. The Standards can be implemented only through an effective radiation safety infrastructure that includes adequate laws and regulations, an efficient regulatory system, supporting experts and services, and a 'safety culture' shared by all those with responsibilities for protection, including both management and workers. IAEA-TECDOC-1067, Organization and Implementation of a National Regulatory Infrastructure Governing Protection against Ionizing Radiation and the Safety of Radiation Sources, provides detailed guidance on how to establish or improve national radiation safety infrastructure in order to implement the requirements of the Standards. The TECDOC covers the elements of a radiation safety infrastructure at the national level needed to apply the Standards to radiation sources such as those used in medicine, agriculture, research, industry and education. It also provides advice on approaches to the organization and operation of

  16. The present condition of the radiation safety control education in training schools for radiological technologists

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Saito, Kyoko; Hirai, Shoko; Igarashi, Hiroshi; Negishi, Tooru; Hirano, Kunihiro; Kawaharada, Yasuhiro

    2010-01-01

    We made a detailed study on the course of study in radiation safety control prescribed on March 28, 2003. Questionnaires were sent to 39 training schools for radiological technology, to which 66.7% replied (26/39). Subjects on radiation safety control must include knowledge and technology in both radiation control and medical safety. The contents for instruction of radiation control were in accordance with those given in the traditional program; however, some discrepancies were found in the contents of medical safety. As medical safety, emphasized by the revised Medical Service Law, is regarded as very important by many hospitals, safety control education that include medical ethics should be required as part of the curriculum in the training schools for radiological technologists. (author)

  17. Mitigating construction safety risks using prevention through design.

    Science.gov (United States)

    Gangolells, Marta; Casals, Miquel; Forcada, Núria; Roca, Xavier; Fuertes, Alba

    2010-04-01

    Research and practice have demonstrated that decisions made prior to work at construction sites can influence construction worker safety. However, it has also been argued that most architects and design engineers possess neither the knowledge of construction safety nor the knowledge of construction processes necessary to effectively perform Construction Hazards Prevention through Design (CHPtD). This paper introduces a quantitative methodology that supports designers by providing a way to evaluate the safety-related performance of residential construction designs using a risk analysis-based approach. The methodology compares the overall safety risk level of various construction designs and ranks the significance of the various safety risks of each of these designs. The methodology also compares the absolute importance of a particular safety risk in various construction designs. Because the methodology identifies the relevance of each safety risk at a particular site prior to the construction stage, significant risks are highlighted in advance. Thus, a range of measures for mitigating safety risks can then be implemented during on-site construction. The methodology is specially worthwhile for designers, who can compare construction techniques and systems during the design phase and determine the corresponding level of safety risk without their creative talents being restricted. By using this methodology, construction companies can improve their on-site safety performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Health (Radiation Safety) Act 1983 (Victoria) No. 9889 of 17 May 1983

    International Nuclear Information System (INIS)

    1983-01-01

    This Act amends the Health Act 1958 by adding a new Section entitled ''Radiation Safety''. In addition to establishing guidelines for the registration and licensing of certain radiation apparatus and sealed radioactive sources, this new Section authorises the Governor in Council to make regulations concerning, inter alia, transport and disposal of radioactive substances and public health and safety. The Act also sets up a Radiation Advisory Committee and a Radiographers and Radiation Technologists Registration Board of Victoria and amends the Nuclear Activities (Prohibitions) Act 1983 in respect of certain licensing provisions. (NEA) [fr

  19. Safety design philosophy of Mitsubishi PWRs

    International Nuclear Information System (INIS)

    Hakata, T.; Kitamura, T.

    1993-01-01

    The basic safety design philosophy of Mitsubishi pressurized water reactors (PWRs) is discussed and compared with the British PWR. PWR plants are designed in accordance with the Japanese regulatory guidelines which are similar to American and International Atomic Energy Agency (IAEA) safety criteria and are based on defence-in-depth principles. The high reliability of nuclear power plants is especially emphasized in Mitsubishi PWRs, and this has been demonstrated by the good operating experience of PWR plants in Japan. The safety system designs of six key items, which were discussed in the recent review of overseas designs by British utilities, are addressed to show the difference in the design philosophy between the United Kingdom and Japan. (Author)

  20. The Design of Diagnostic Medical Facilities where Ionising Radiation is used

    International Nuclear Information System (INIS)

    Malone, J.; O'Reilly, G.; O'Connor, U.; Gallagher, A.; Sheahan, N.; Fennell, S.

    2009-06-01

    The original Code of Practice on The Design of Diagnostic Medical Facilities Using Ionising Radiation was first published by the Nuclear Energy Board in 1988. In the intervening years the 'Blue Book' as it became known has served the medical community well as the sector has expanded and modernised and the late Dr Noel Nowlan, then Chief Executive of the Nuclear Energy Board, deserves much credit for initiating this pioneering contribution to radiation safety in Ireland. There have been significant developments since its publication in terms of the underlying radiation protection legislation, regulatory practice as well as developments in new technologies that have given rise to the need for a revision of the Code. This revised Code is based on a comprehensive draft document produced by the Haughton Institute under contract to the RPII and was finalised following extensive consultations with the relevant stakeholders. The revised Code includes a brief review of the current legislative framework and its specific impact on the management of building projects (Chapters 1 and 2), a presentation of the main types of radiological (Chapter 3) and nuclear medicine (Chapter 4) facilities, a treatment of the technical aspects of shielding calculations (Chapter 5) and a discussion of the practical aspects of implementing shielding solutions in a building context (Chapter 6). The primary purpose of the Code is to assist in the design of diagnostic facilities to the highest radiation protection standards in order to ensure the safety of workers and members of the public and the delivery of a safe service to patients. Diagnostic radiology is a dynamic environment and the Code is intended to be used in consultation with the current literature, an experienced Radiation Protection Advisor and a multidisciplinary project team

  1. Radiation safety during remediation of the SevRAO facilities: 10 years of regulatory experience.

    Science.gov (United States)

    Sneve, M K; Shandala, N; Kiselev, S; Simakov, A; Titov, A; Seregin, V; Kryuchkov, V; Shcheblanov, V; Bogdanova, L; Grachev, M; Smith, G M

    2015-09-01

    In compliance with the fundamentals of the government's policy in the field of nuclear and radiation safety approved by the President of the Russian Federation, Russia has developed a national program for decommissioning of its nuclear legacy. Under this program, the State Atomic Energy Corporation 'Rosatom' is carrying out remediation of a Site for Temporary Storage of spent nuclear fuel (SNF) and radioactive waste (RW) at Andreeva Bay located in Northwest Russia. The short term plan includes implementation of the most critical stage of remediation, which involves the recovery of SNF from what have historically been poorly maintained storage facilities. SNF and RW are stored in non-standard conditions in tanks designed in some cases for other purposes. It is planned to transport recovered SNF to PA 'Mayak' in the southern Urals. This article analyses the current state of the radiation safety supervision of workers and the public in terms of the regulatory preparedness to implement effective supervision of radiation safety during radiation-hazardous operations. It presents the results of long-term radiation monitoring, which serve as informative indicators of the effectiveness of the site remediation and describes the evolving radiation situation. The state of radiation protection and health care service support for emergency preparedness is characterized by the need to further study the issues of the regulator-operator interactions to prevent and mitigate consequences of a radiological accident at the facility. Having in mind the continuing intensification of practical management activities related to SNF and RW in the whole of northwest Russia, it is reasonable to coordinate the activities of the supervision bodies within a strategic master plan. Arrangements for this master plan are discussed, including a proposed programme of actions to enhance the regulatory supervision in order to support accelerated mitigation of threats related to the nuclear legacy in the

  2. 10. Latin American Regional Congress IRPA Protection and Radiation Safety

    International Nuclear Information System (INIS)

    2015-01-01

    The 10.Latin American Regional Congress IRPA Protection and Radiation Safety was organized by the Radioprotection Argentine Society, in Buenos Aires, between the april 12 and 17, 2015. In this event, were presented almost 400 papers about these subjects: radiation protection in medicine and industry; radiological and nuclear emergencies; NORM (Natural Occurring Radioactive Materials); reactors; radiation dosimetry; radiotherapy; non-ionizing radiations; policies and communications; etc.

  3. Progress report: nuclear safety and radiation protection in France in 2005

    International Nuclear Information System (INIS)

    2007-01-01

    The Asn (Nuclear safety authority) considers that 2005 was a satisfactory year in terms of nuclear safety and radiation protection. However, further progress can and must be made. 2005 was a year of great progress for the Asn as it consolidated its organisation and working methods, in accordance with the 2005-2007 strategic plan it set for itself. The Asn continued progress in the field of radiation protection has given rise to various new regulations to improve the legislative and regulatory framework in this area. 2005 was marked by significant progress in the process of harmonizing national nuclear safety policies Against a backdrop of the preparation of a bill on management of radioactive materials and waste, to be presented to Parliament in March 2006, 2005 was a year of important milestones. The Asn control activities encompass the following seven areas: development of general regulations for nuclear safety and radiation protection; management of individual authorization requests and receipt of declarations; inspection of nuclear activities; organisation of radiological surveillance of individuals and of the environment; preparation for management of emergency situations and implementation if necessary; contribution to public information on nuclear safety and radiation protection; determination of the French position within international community. Main topics in 2005: government bill on transparency and security in the nuclear field; the challenges and ambitions of the Asn; controlling exposure to radon; EPR Reactor Project Safety; working towards a law on radioactive waste in 2006; I.R.R.T.: an international audit of Asn in 2006; harmonization of nuclear safety in Europe; Chernobyl: what has been achieved over the past 20 years; informing the Public; internal authorizations. (N.C.)

  4. Hinkley Point 'C' power station public inquiry: proof of evidence on design and safety

    International Nuclear Information System (INIS)

    George, B.V.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. The policy is to replicate the Sizewell ''B'' PWR design. The Hinkley Point ''C'' design is described indicating where changes in the Sizewell ''B'' design have been made to accommodate site differences. These are associated with the civil engineering construction and some of the electrical systems and do not affect the safety case. External hazards differ from site to site and the effect on the safety case of those specific to Hinkley Point are examined. The Chernobyl accident and the assessment of the United Kingdom PWR which was carried out subsequently are reviewed. The assessment indicated that no changes in the Sizewell ''B'' design and safety case were called for as a result of this accident; accident management developments are also reviewed, however. The CEGB's approach to minimizing occupational radiation doses is described. (UK)

  5. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  6. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  7. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  8. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Fessenheim nuclear power plant (INB 75, Haut-Rhin, 68 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  9. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Tricastin power plant - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  12. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  13. Nuclear safety and radiation protection report of the Tricastin power plant - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Tricastin nuclear power plant (INB 87 and 88, Saint-Paul-Trois-Chateaux, Drome (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  14. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Penly nuclear power plant (INB 136 and 140, Seine-Maritime, 76 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  16. Nuclear safety and radiation protection report of the Gravelines nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Gravelines nuclear power plant (INB 96, 97 and 122, Nord (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Blayais nuclear power plant (INB 86 and 110, Gironde (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Civaux nuclear power plant (INB 158 and 159, Vienne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  20. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  1. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  2. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 103, 104, 114 and 115). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of Cruas-Meysse nuclear facilities - 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 111 and 112). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2012, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix. (J.S.)

  5. Nuclear safety and radiation protection report of the Penly nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 136 and 140). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Nuclear safety and radiation protection report of the Fessenheim nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INB no. 75). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  7. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 135 and 142). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  8. Nuclear safety and radiation protection report of the Civaux nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 158 and 159). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  9. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  10. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  11. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  12. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 139, 144 and 163 (under dismantling)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  13. Nuclear safety and radiation protection report of the Blayais nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 86 and 110). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  14. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 124, 125, 126 and 137). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  15. Nuclear safety and radiation protection report of the Flamanville nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the NPPs (INBs no. 108, 109 and 167 (under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  16. Appendix C: safety design rationale

    International Nuclear Information System (INIS)

    Ghose, S.

    1985-01-01

    A brief discussion of the rationale for safety design of fusion plants is presented in the main text. Further detail safety considerations are presented in this appendix in the form of charts and tables. The author present some of the major safety criteria and other criteria used in blanket selection here

  17. Proceedings of the First Seminar on Radiation Safety Technology and Nuclear Biomedicine

    International Nuclear Information System (INIS)

    Suprihadi, Topo

    2003-01-01

    The First Seminar on Radiation Safety Technology and Nuclear Biomedicine was held on 10-11 April 2001 at the Center for Research and Development of Radiation Safety and Nuclear Biomedicine have presented 19 papers about upgrading manpower resources, researcher, investigator, manager, and user of nuclear facilities, to go out against free market era

  18. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.) [de

  19. Design of a cylindrical LED substrate without radiator

    Science.gov (United States)

    Tang, Fan; Guo, Zhenning

    2017-12-01

    To reduce the weight and production costs of light-emitting diode (LED) lamps, we applied the principle of the chimney effect to design a cylindrical LED substrate without a radiator. We built a 3D model by using Solidworks software and applied the flow simulation plug-in to conduct model simulation, thereby optimizing the heat source distribution and substrate thickness. The results indicate that the design achieved optimal cooling with a substrate with an upper extension length of 35 mm, a lower extension length of 8 mm, and a thickness of 1 mm. For a substrate of those dimensions, the highest LED chip temperature was 64.78 °C, the weight of the substrate was 35.09 g, and R jb = 7.00 K/W. If the substrate is powered at 8, 10, and 12 W, its temperature meets LED safety requirements. In physical tests, the highest temperature for a physical 8 W cylindrical LED substrate was 66 °C, which differed by only 1.22 °C from the simulation results, verifying the validity of the simulation. The designed cylindrical LED substrate can be used in high-power LED lamps that do not require radiators. This design is not only excellent for heat dissipation, but also for its low weight, low cost, and simplicity of manufacture.

  20. Attitude of the Korean dentists towards radiation safety and selection criteria

    International Nuclear Information System (INIS)

    Lee, Byung Do; Ludlow, John B.

    2013-01-01

    X-ray exposure should be clinically justified and each exposure should be expected to give patients benefits. Since dental radiographic examination is one of the most frequent radiological procedures, radiation hazard becomes an important public health concern. The purpose of this study was to investigate the attitude of Korean dentists about radiation safety and use of criteria for selecting the frequency and type of radiographic examinations. The study included 267 Korean dentists. Five questions related to radiation safety were asked of each of them. These questions were about factors associated with radiation protection of patients and operators including the use of radiographic selection criteria for intraoral radiographic procedures. The frequency of prescription of routine radiographic examination (an example is a panoramic radiograph for screening process for occult disease) was 34.1%, while that of selective radiography was 64.0%. Dentists' discussion of radiation risk and benefit with patients was infrequent. More than half of the operators held the image receptor by themselves during intraoral radiographic examinations. Lead apron/thyroid collars for patient protection were used by fewer than 22% of dental offices. Rectangular collimation was utilized by fewer than 15% of dental offices. The majority of Korean dentists in the study did not practice radiation protection procedures which would be required to minimize exposure to unnecessary radiation for patients and dental professionals. Mandatory continuing professional education in radiation safety and development of Korean radiographic selection criteria is recommended.

  1. Attitude of the Korean dentists towards radiation safety and selection criteria

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Do [Dept. of Oral and Maxillofacial Radiology and Wonkwang Dental Research Institute, College of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Ludlow, John B. [Graduate Program in Oral and Maxillofacial Radiology, School of Dentistry, University of North Carolina, Chapel Hill (United States)

    2013-09-15

    X-ray exposure should be clinically justified and each exposure should be expected to give patients benefits. Since dental radiographic examination is one of the most frequent radiological procedures, radiation hazard becomes an important public health concern. The purpose of this study was to investigate the attitude of Korean dentists about radiation safety and use of criteria for selecting the frequency and type of radiographic examinations. The study included 267 Korean dentists. Five questions related to radiation safety were asked of each of them. These questions were about factors associated with radiation protection of patients and operators including the use of radiographic selection criteria for intraoral radiographic procedures. The frequency of prescription of routine radiographic examination (an example is a panoramic radiograph for screening process for occult disease) was 34.1%, while that of selective radiography was 64.0%. Dentists' discussion of radiation risk and benefit with patients was infrequent. More than half of the operators held the image receptor by themselves during intraoral radiographic examinations. Lead apron/thyroid collars for patient protection were used by fewer than 22% of dental offices. Rectangular collimation was utilized by fewer than 15% of dental offices. The majority of Korean dentists in the study did not practice radiation protection procedures which would be required to minimize exposure to unnecessary radiation for patients and dental professionals. Mandatory continuing professional education in radiation safety and development of Korean radiographic selection criteria is recommended.

  2. Design provisions for safety

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1983-01-01

    Design provisions for safety of nuclear power plants are based on a well balanced concept: the public is protected against a release of radioactive material by multiple barriers. These barriers are protected according to a 'defence-in-depth' principle. The reactor safety concept is primarily aimed at the prevention of accidents, especially fuel damage. Additionally, measures for consequence limitation are provided in order to prevent a severe release of radioactivity to the environment. However, it is difficult to judge the overall effectiveness of such devices. In a comprehensive safety analysis it has to be shown that the protection systems and safeguards work with sufficient reliability in the event of an accident. For the reliability assessment deterministic criteria (single failure, redundancy, fail-safe, demand for diversity) play an important role. Increasing efforts have been made to assess reliability quantitatively by means of probabilistic methods. It is now usual to perform reliability analyses of essential systems of nuclear power plants in the course of licensing procedures. As an additional level of emergency measures for a further reduction of hazards a reasonable amount of accident information has to be transferred. Operational experience may be considered as an important feedback to the design of plant safety features. Operator training has to include, besides skill in performing of operating procedures, the training of a flexible response to different accident situations. Experience has shown that the design provisions for safety could prevent dangerous release of the radioactive material to the environment after an accident has occurred. For future developments of reactor safety, extensive analyses of operating experience are of great importance. The main goal should be to enhance the reliability of measures for accident prevention, which prevent the core from meltdown or other damages

  3. The application of science communication modes in China's nuclear and radiation safety science popularization

    International Nuclear Information System (INIS)

    Cao Yali; Wang Erqi; Wang Xiaofeng; Zhang Ying

    2014-01-01

    The studies of the application of science communication theory in the nuclear and radiation safety will help to enhance the level of science popularization work in the field of nuclear and radiation safety. This paper firstly describes the definition and the evolvement process of science communication models, then analyzes the current status of the nuclear and radiation safety science popularization, finally discusses on the suitability of science communication mode of its application in the field of nuclear and radiation safety. (authors)

  4. Safety Analysis for Key Design Features of KALIMER-600 Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Jeong, H. Y.; Ha, K. S

    2007-02-15

    This report contains the safety analyses of the KALIMER-600 conceptual design which KAERI has been developing under the Long-term Nuclear R and D Program. The analyses have been performed reflecting the design developments during the second year of the 4th design phase in the program. The specific presentations are the key design features with the safety principles for achieving the safety objectives, the event categorization and safety criteria, and results on the safety analyses for the DBAs and ATWS events, the containment performance, and the channel blockages. The safety analyses for both the DBAs and ATWS events have been performed using SSC-K version 1.3., and the results have shown the fulfillment of the safety criteria for DBAs with conservative assumptions. The safety margins as well as the inherent safety also have been confirmed for the ATWS events. For the containment performance analysis, ORIGEN-2.1 and CONTAIN-LMR have been used. In results, the structural integrity has been acceptable and the evaluated exposure dose rate has been complied with 10 CFR 100 and PAG limits. The analysis results for flow blockages of 6-subchannels, 24-subchannels, and 54- subchannels with the MATRA-LMR-FB code, have assured the integrity of subassemblies.

  5. Design safety improvements of Kozloduy NPP

    International Nuclear Information System (INIS)

    Hinovski, I.

    1999-01-01

    Design safety improvements of Kozloduy NPP, discussed in detail, are concerned with: primary circuit integrity; reactor pressure vessel integrity; primary coolant piping integrity; primary coolant overpressure protection; leak before break status; design basis accidents and transients; severe accident analysis; improvements of safety and support systems; containment/confinement leak tightness and strength; seismic safety improvements; WWER-1000 control rod insertion; upgrading and modernization of Units 5 and 6; Year 2000 problem

  6. Safety in the design of production lines

    DEFF Research Database (Denmark)

    Dyhrberg, Mette Bang; Broberg, Ole; Jacobsen, Peter

    2006-01-01

    This paper is a case study report on how safety considerations were handled in the process of redesigning a production line. The design process was characterized as a specification and negotiation process between engineers from the company and the supplier organization. The new production line...... in the specification material nor in their face-to-face meetings with the supplier. Safety aspects were not part of their work practice. On this basis, it was suggested that formal guidelines or procedures for integrating safety in the design of production lines would have no effect. Instead, the researchers set up...... became safer, but not as a result of any intentional plan to integrate safety aspects into the design process. Instead, the supplier’s design of a new piece of equipment had a higher built-in safety level. The engineering team in the company was aware of the importance of safety aspects neither...

  7. Nuclear Safety and Radiation Protection in Europe - a common approach

    International Nuclear Information System (INIS)

    McGarry, Ann

    2010-01-01

    In Europe, the European Union has adopted directives and implemented other measures which form the basis of a common approach to nuclear safety and radiation protection across all Member States. In particular, there are EU directives setting out radiation protection standards and establishing a Community framework for the nuclear safety of nuclear installations. There are also arrangements in place to provide for an effective response to nuclear emergencies and to facilitate high quality research into nuclear and radiation protection related topics. Inevitably the stage of development in each area is somewhat different, but generally progress is ongoing in each area. From the point of view of a small country like Ireland, the development of common standards and arrangements across Europe is beneficial as they are based on the best available knowledge and expertise; they provide for greater transparency; they facilitate public confidence and make best use of the available resources. However, there are some areas in which common approaches could be further advanced. For example, the medical exposure of patients is increasingly of concern across Europe and the further development of common approaches in this area would be helpful. It would also be useful to develop a more integrated approach to nuclear safety and radiation protection regulation and to better integrate nuclear and radiation issues with other public health and environment concerns. (author)

  8. Radiation Safety Awareness Among Medical Staff

    International Nuclear Information System (INIS)

    Szarmach, Arkadiusz; Piskunowicz, Maciej; Świętoń, Dominik; Muc, Adam; Mockałło, Gabor; Dzierżanowski, Jarosław; Szurowska, Edyta

    2015-01-01

    The common access to imaging methods based on ionizing radiation requires also radiation protection. The knowledge of ionizing radiation exposure risks among the medical staff is essential for planning diagnostic procedures and therapy. Evaluation of the knowledge of radiation safety during diagnostic procedures among the medical staff. The study consisted of a questionnaire survey. The questionnaire consisted of seven closed-ended questions concerning the knowledge of the effects of exposure to ionizing radiation as well as questions related to responder’s profession and work experience. The study group included a total of 150 individuals from four professional groups: nurses, doctors, medical technicians, support staff. The study was carried out in the three largest hospitals in Gdańsk between July and October 2013. The highest rates of correct answers to questions related to the issue of radiation protection were provided by the staff of radiology facilities and emergency departments with 1–5 years of professional experience. The most vulnerable group in terms of the knowledge of these issues consisted of individuals working at surgical wards with 11–15 years of professional experience. Education in the field of radiological protection should be a subject of periodic training of medical personnel regardless of position and length of service

  9. Experience in the development and practical use of working control levels for radiation safety

    International Nuclear Information System (INIS)

    Epishin, A.V.

    1981-01-01

    The experience of development and practical use of working control levels (WCL) of radiation safety in the Gorky region, is discussed. WCL are introduced by ''Radiation Safety Guides'' (RSG-76) and have great practical importance. Regional control levels of radiation safety are determined for certain types of operations implying radioactive hazard and differentiated according to the types of sources applied and types of operation. Dose rates, radioactive contamination of operating surfaces, skin, air and waste water are subject to normalization. Limits of individual radiation doses specified according to operation categories are included. 10 tables of regional WCL indices are developed [ru

  10. 1989 annual work report of the KFA Department for Safety and Radiation Protection

    International Nuclear Information System (INIS)

    Hille, R.; Frenkler, K.L.

    1990-03-01

    The Department for Safety and Radiation Protection continues to be responsible for coordinating radiation protection, safety and protection at the KFA. It supports the other institutes and departments in performing the safety tasks allotted to them. The principal tasks of the Department are in administrative and technical assistance to these organization units and in safeguards. Administrative assistance involves, for example, regulation of the radiation protection organization in the institutes, including the appointment of radiation protection officers (Strahlenschutzbeauftrage). Furthermore, this includes the central handling of the registration system with the authorities and dealing with outside firms thus considerably relieving the institutes of their administrative tasks. Handling licensing procedures and the central accountancy of radioactive materials is also to be mentioned in this context. Technical assistance largely consists of developing, maintaining and repairing radiation measuring instruments and in the monitoring of personnel by evaluating personnel dosimeters and incorporation controls for radioactive sources. The safeguards tasks of the Department concern the very staff-intensive physical protection, as well as environmental protection and industrial safety. (orig.) [de

  11. Preliminary safety design analysis of KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Kwon, Y. M.; Kim, K. D. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This document first introduces a set of safety design requirements and accident evaluation criteria established for the conceptual design of KALIMER and then summarizes some of the preliminary results of engineering and design analyses performed for the safety of KALIMER. 19 refs., 19 figs., 6 tabs. (Author)

  12. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    International Nuclear Information System (INIS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-01-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date 'Program Supporting Y2K Readiness at Ukrainian NPPs' initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ('Improved Zirconium-Based Elements for Nuclear Reactors'), information technologies for nuclear industries ('Ukrainian Nuclear Data Bank in Slavutich'), and radiation health science ('Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers').

  13. Safety of radiation sources and security of radioactive materials. A Romanian approach

    International Nuclear Information System (INIS)

    Ghilea, S.; Coroianu, A.I.; Rodna, A.L.

    2001-01-01

    After a brief explanation on the scope of applications of nuclear energy and practices with ionizing radiation in Romania, the report explains the current national infrastructure for radiation safety making reference in particular to the National Commission for Nuclear Activities Control as the regulatory authority for the safety of radiation sources. The report also describes the existing legal framework, provides information on the list of normative acts in force, and on the system of authorization, inspection and enforcement, which operates effectively. (author)

  14. TIBER II/ETR final design report: Volume 3, 5.0 Radiation safety and environment; 6.0 Physics and technology R and D needs

    International Nuclear Information System (INIS)

    Lee, J.D.

    1987-09-01

    This paper discusses the design of the TIBER II Tokamak. This particular volume discusses: safety and environmental requirements and design targets; accident analyses; personnel safety and maintenance exposure; effluent control; waste management and decommissioning; safety considerations in building design; and safety and environmental conclusions and recommendations

  15. Education and Training in Radiation, Transport and Waste Safety Newsletter, No. 3, May 2014

    International Nuclear Information System (INIS)

    2014-05-01

    Building competence through education and training in radiation protection, radioactive waste safety, and safety in transport of radioactive material is fundamental to the establishment of a comprehensive and sustainable national infrastructure for radiation safety, which in turn is essential for the beneficial uses of radiation while ensuring appropriate protection of workers, patients, the public and the environment. IAEA’s Division of Radiation, Transport and Waste Safety provides direct assistance to Member States via a range of tools and mechanisms, such as by organizing educational and training events, developing standardized syllabi with supporting material and documents, and by fostering methodologies to build sustainable competence and enhance effectiveness in the provision of training. The main objective is to support Member States in the application of the IAEA Safety Standards. Seminars and additional activities are also promoted to broaden knowledge on relevant areas for an effective application of the standards

  16. Legal framework for a radiation safety infrastructure

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the legal framework for a radiation safety infrastructure are presented. The objective of this lecture are: Legal framework; Regulatory programme; Role of Regulatory Authority in emergency situations; Assessment of the effectiveness of the regulatory programme; Cost effectiveness of the regulatory framework; and Priority actions

  17. Nuclear safety and radiation protection report of the nuclear facility of Brennilis - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  18. Nuclear safety and radiation protection report of the nuclear facilities of Brennilis - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the partially dismantled facilities of the Monts d'Arree (EL4-D or Brennilis) site (INB 162 (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  19. Fire Safety Design of Wood Structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections.......Lecture Notes on Fire Safety Design of Wood Structures including charring of wood and load bearing capacity of beams, columns, and connections....

  20. General design safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide provides the safety principles and the approach that have been used to implement the Code in the Safety Guides. These safety principles and the approach are tied closely to the safety analyses needed to assist the design process, and are used to verify the adequacy of nuclear power plant designs. This Guide also provides a framework for the use of other design Safety Guides. However, although it explains the principles on which the other Safety Guides are based, the requirements for specific applications of these principles are mostly found in the other Guides

  1. Regulatory aspects of radiation sources safety in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Kushe, R.

    1998-01-01

    In this paper are presented the regulatory aspects of the radiation sources safety in Albania, based in the new Radiological Protection Act and Regulations. The radiation protection infrastructures and procedures are described as well as their functioning for the implementation of relevant activities such as licensing and regular inspection, personal dose monitoring, emergency preparedness which are developed in the frame of the IAEA Technical Co-operation Programme. The issue of the security of radiation sources is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country. A special attention is paid to the identification and location of lost sources for their finding and secure storage. (author)

  2. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  3. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  4. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This publication establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. A review of Safety Requirements publications was commenced in 2011 following the accident in the Fukushima Daiichi nuclear power plant in Japan. The review revealed no significant areas of weakness and resulted in just a small set of amendments to strengthen the requirements and facilitate their implementation, which are contained in the present publication.

  5. Safety analysis for key design features of KALIMER-600 design concept

    International Nuclear Information System (INIS)

    Lee, Yong-Bum; Kwon, Y. M.; Kim, E. K.; Suk, S. D.; Chang, W. P.; Joeng, H. Y.; Ha, K. S.; Heo, S.

    2005-03-01

    KAERI is developing the conceptual design of a Liquid Metal Reactor, KALIMER-600 (Korea Advanced LIquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER-600 addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, key safety design features are described and safety analyses results for typical ATWS accidents, containment design basis accidents, and flow blockages in the KALIMER design are presented. First, the basic approach to achieve the safety goal and main design features of KALIMER-600 are introduced in Chapter 1, and the event categorization and acceptance criteria for the KALIMER-600 safety analysis are described in Chapter 2, In Chapter 3, results of inherent safety evaluations for the KALIMER-600 conceptual design are presented. The KALIMER-600 core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed using the SSC-K code to investigate the KALIMER-600 system response to the events. The objectives of Chapter 4, are to assess the response of KALIMER-600 containment to the design basis accidents and to evaluate whether the consequences are acceptable or not in the aspect of structural integrity and the exposure dose rate. In Chapter 5, the analysis of flow blockage for KALIMER-600 with the MATRA-LMR-FB code, which has been developed for the internal flow blockage in a LMR subassembly, are described. The cases with a blockage of 6-subchannel, 24-subchannel, and 54-subchannel are analyzed

  6. Assessment of radiation safety awareness and attitude toward biological effect of radiation for employees in nuclear workplace

    International Nuclear Information System (INIS)

    Youngchuay, U.; Jetawattana, S.; Toeypho, V.; Eso, J.

    2016-01-01

    This study demonstrated a potential relevance of data pertaining to the interaction of awareness in radiation biology and their attitude towards radiation hazards. The obtained information is useful in ascertaining the effectiveness of the ongoing radiation safety program and will be further used to determine the relationships between the radiation effective dose and cytogenetic approach in these groups of workers. (author)

  7. Enhanced safety of radiation workers: a regulatory approach

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, A [Atomic Energy Regulatory Board, Bombay (India)

    1994-04-01

    Radiation safety should not only be strictly implemented, but also believed and understood by the workers, the unions, the media and the general public as being fairly and adequately enforced. It is not at all sufficient that only those in the operational management levels satisfy themselves that workers` safety is properly taken care of, but it is necessary that the workers and their unions are also convinced about it and share this management view.

  8. Enhanced safety of radiation workers: a regulatory approach

    International Nuclear Information System (INIS)

    Gopalakrishnan, A.

    1994-01-01

    Radiation safety should not only be strictly implemented, but also believed and understood by the workers, the unions, the media and the general public as being fairly and adequately enforced. It is not at all sufficient that only those in the operational management levels satisfy themselves that workers' safety is properly taken care of, but it is necessary that the workers and their unions are also convinced about it and share this management view

  9. Nuclear safety and radiation protection report of the Chooz nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Chooz nuclear power plant (Ardennes (FR)): 2 PWR reactors in operation (Chooz B, INB 139 and 144) and one partially dismantled PWR reactor (Chooz A, INB 163). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary followed by the viewpoint of the Committees for health, safety and working conditions. (J.S.)

  10. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document ends with a glossary and no recommendation from the Committees for health, safety and working conditions. (J.S.)

  11. Nuclear safety and radiation protection report of the Paluel nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Paluel nuclear power plant (INB no. 103 - Paluel 1, no. 104 - Paluel 2, no. 114 - Paluel 3 and no. 115 - Paluel 4, Cany-Barville - Seine-Maritime (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  12. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  13. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2011, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  14. Nuclear safety and radiation protection report of the Cattenom nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Cattenom nuclear power plant (INB 124, 125, 126 and 137, Moselle (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  15. Nuclear safety and radiation protection report of the Golfech nuclear facilities - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the facilities of the Golfech nuclear power plant (INB 135 and 142, Tarn-et-Garonne (FR)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, are reported as well as the radioactive and non-radioactive (chemical, thermal) effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facilities are presented and sorted by type of waste, quantities and type of conditioning. Other environmental impacts (noise, microbial proliferation in cooling towers) are presented with their mitigation measures. Actions in favour of transparency and public information are presented as well. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  16. A study on enforcement effects of radiation safety control regulations for diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Sung, Mo IL; Park, Myeong Hwan; Kwon, Duk Moon; Lee, Joon IL

    1999-01-01

    The purposes of this study are to analyze the realities after enforcements of safety control regulations for diagnostic X-ray equipment and to suggest means for an improvement of low radiation safety control. A questionnaire survey for medical radiologic technologists was carried out to determine enforcement effects of the safety control regulations. The results of analysis from the survey are as follows. That is, most of he respondents realized the importance of the radiation safety control system, but about a half of them revealed that regulations were not well observed in accordance with their purposes. Only 43.9 percent of the respondents took an active part in quality control of radiation. And responsibility, sex, age, and knowledge for safety control were important indicators for observations of the regulations. Training for the safety control regulations are needed to ensure safety control and proper usage of diagnostic X-ray equipment. And management of organizations using diagnostic X-ray equipment have to understand and stress the importance of radiation safety control system. (author)

  17. Integration of radiation protection in safety management: sharing best practices between radiation protection and other safety areas

    International Nuclear Information System (INIS)

    Kockerols, Pierre; Fessler, Andreas

    2008-01-01

    Full text: The Institute for Reference Materials and Measurements (IRMM) located in Geel is one of the seven institutes of the Joint Research Centre of the European Commission (EC, DG JRC). The institute was founded in 1960 as a nuclear research centre, but has gradually shifted its activities to also include 'non-nuclear' domains, mainly in the areas of food safety and environmental surveillance. As the activities on the IRMM site are currently quite diversified, they necessitate the operation of nuclear controlled areas, accelerators, as well as bio safety restricted areas and chemical laboratories. Therefore, the care for occupational health and safety and for environmental protection has to take into consideration various types of hazards and threats. Recently an integrated management system according to ISO-9001, ISO-14001 and OHSAS-18001 was implemented. The integrated system combines 'vertically' quality, occupational health and safety and environmental issues and covers 'horizontally' the nuclear, biological and chemical fields. The paper outlines how the radiation protection can be included in an overall health, safety and environmental management system. It will give various practical examples where synergies can be applied: 1-) the overall policy; 2-) The assessment and ranking of all risks and the identification, in a combined way, of the appropriate prevention measures; 3-) The planning and review of related actions; 4-) The monitoring, auditing and registration of anomalies and incidents and the definition of corrective actions; 5-) The training of personnel based on lessons learned from past experiences; 6-) The organisation of an internal emergency plan dealing with nuclear and non-nuclear hazards. Based on these examples, the benefits of having an integrated approach are commented. In addition, the paper will illustrate how the recent ICRP fundamental recommendations and more particularly some of the principles of radiation protection such as

  18. Report on nuclear and radiation safety in Slovenia in 1999

    International Nuclear Information System (INIS)

    Lovincic, D.

    2000-09-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared Report on Nuclear and Radiation Safety in Slovenia in 1999. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  19. A bioethical perspective on radiation protection and ''safety''

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1980-01-01

    Three problems of major concern to policymakers whose task it is to protect public health by setting standards for ''safe'' radiation management are reviewed. The first problem is to decide if current conceptual tools for assessing basic harms to valued living systems are ethically adequate. The second is how to set safety standards on the basis of informed consent to scientific evidence presented by experts who disagree in interpreting that evidence. The third problem is how to resolve conflicting philosophies about radiation protection. Principles which might serve as guidance in the formulation of social policies for radiation health protection are suggested. (H.K.)

  20. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    1997-01-01

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  1. Safety instruction for execution tasks involving ionizing radiations

    International Nuclear Information System (INIS)

    Fonseca, G.

    1985-01-01

    Basic directives are presented allow operations with ionizing radiations in industrial areas with high levels of safety. Contractual, technical, operational and administrative criteria are established for the safe performance of x-rays and gamographies and the use of fixed radiation based equipment (indicators of level, density, flow, etc) as well as precautions to be taken during project, procurement, transportation, assembly and maintenance of such equipment. Finally procedures are suggested for emergencies involving radioactive sources. (author)

  2. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  3. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  4. Nuclear safety and radiation protection report of the Bugey nuclear facilities - 2014

    International Nuclear Information System (INIS)

    2015-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 78, 89 (NPPs in operation), 465 (NPP under deconstruction), 102 (fuel storage facility), and 173 (radioactive waste conditioning and storage facility under construction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2014, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  5. Nuclear safety and radiation protection report of the Chinon nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established in accordance with articles L. 125-15 and L. 125-16 of the French environmental code. It presents, first, the facilities (INBs no. 94 (irradiated materials workshop), 99 (fuel storage facility), 107 and 132 (NPPs in operation), 133, 153 and 161 (NPPs under deconstruction)). Then, the nuclear safety and radiation protection measures taken regarding the facilities are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if any, are reported as well as the radioactive and non-radioactive effluents discharge in the environment. Finally, the radioactive materials and wastes generated by the facility are presented (type of waste, quantities, conditioning process). The document concludes with a presentation of the actions of communication and public information made by the direction of the facility. A glossary and the list of recommendations from the Committees for health, safety and working conditions are given in appendix

  6. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  7. EDF - The Inspector General's report on Nuclear Safety and Radiation Protection 2012

    International Nuclear Information System (INIS)

    2013-01-01

    After a first chapter in which the Inspector General states his own vision of facts and results regarding nuclear safety and radiation protection for 2012, the next chapters address the following topics: the contrasted results of nuclear operating safety, the need to remain vigilant in nuclear safety management, the challenge of occupational safety, the need of new ambitious goals for radiation protection, an updated training which must be better led by line management, maintenance as a strategic issue, the long road ahead for nuclear technical information system (SDIN), the need of better attention to chemistry in operations, the new impetus of EPRs, plant life extension conditioned by nuclear safety, the mobilization of nuclear operators after Fukushima, and noteworthy operating events

  8. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics

    International Nuclear Information System (INIS)

    Alemberti, Alessandro

    2012-01-01

    • In the framework of the LEADER project, the safety approach for a Lead cooled fast reactor has been defined and, in particular, all the possible challenges to the main safety functions and their mechanisms have been specified, in order to better define the needed provisions. • On the basis of the above and taking into account the results of the safety analyses performed during previous project (ELSY), a reference configuration of the ELFR plant has been consolidated, by improving and updating the plant design features. In particular, the emerged safety concerns have been analyzed in the LEADER project and a new set of design options and safety provisions have been proposed. • The combination of favourable Lead coolant inherent characteristics and plant design features, specifically developed to face identified challenges, resulted in a very robust and forgiving design, even in very extreme conditions, as a Fukushima-like scenario

  9. Developing the radiation protection safety culture in the UK.

    Science.gov (United States)

    Cole, P; Hallard, R; Broughton, J; Coates, R; Croft, J; Davies, K; Devine, I; Lewis, C; Marsden, P; Marsh, A; McGeary, R; Riley, P; Rogers, A; Rycraft, H; Shaw, A

    2014-06-01

    In the UK, as elsewhere, there is potential to improve how radiological challenges are addressed through improvement in, or development of, a strong radiation protection (RP) safety culture. In preliminary work in the UK, two areas have been identified as having a strong influence on UK society: the healthcare and nuclear industry sectors. Each has specific challenges, but with many overlapping common factors. Other sectors will benefit from further consideration.In order to make meaningful comparisons between these two principal sectors, this paper is primarily concerned with cultural aspects of RP in the working environment and occupational exposures rather than patient doses.The healthcare sector delivers a large collective dose to patients each year, particularly for diagnostic purposes, which continues to increase. Although patient dose is not the focus, it must be recognised that collective patient dose is inevitably linked to collective occupational exposure, especially in interventional procedures.The nuclear industry faces major challenges as work moves from operations to decommissioning on many sites. This involves restarting work in the plants responsible for the much higher radiation doses of the 1960/70s, but also performing tasks that are considerably more difficult and hazardous than those original performed in these plants.Factors which influence RP safety culture in the workplace are examined, and proposals are considered for a series of actions that may lead to an improvement in RP culture with an associated reduction in dose in many work areas. These actions include methods to improve knowledge and awareness of radiation safety, plus ways to influence management and colleagues in the workplace. The exchange of knowledge about safety culture between the nuclear industry and medical areas may act to develop RP culture in both sectors, and have a wider impact in other sectors where exposures to ionising radiations can occur.

  10. Developing the radiation protection safety culture in the UK

    International Nuclear Information System (INIS)

    Cole, P; Marsh, A; Hallard, R; Broughton, J; Coates, R; Croft, J; Davies, K; Devine, I; Lewis, C; Marsden, P; McGeary, R; Riley, P; Rogers, A; Rycraft, H; Shaw, A

    2014-01-01

    In the UK, as elsewhere, there is potential to improve how radiological challenges are addressed through improvement in, or development of, a strong radiation protection (RP) safety culture. In preliminary work in the UK, two areas have been identified as having a strong influence on UK society: the healthcare and nuclear industry sectors. Each has specific challenges, but with many overlapping common factors. Other sectors will benefit from further consideration. In order to make meaningful comparisons between these two principal sectors, this paper is primarily concerned with cultural aspects of RP in the working environment and occupational exposures rather than patient doses. The healthcare sector delivers a large collective dose to patients each year, particularly for diagnostic purposes, which continues to increase. Although patient dose is not the focus, it must be recognised that collective patient dose is inevitably linked to collective occupational exposure, especially in interventional procedures. The nuclear industry faces major challenges as work moves from operations to decommissioning on many sites. This involves restarting work in the plants responsible for the much higher radiation doses of the 1960/70s, but also performing tasks that are considerably more difficult and hazardous than those original performed in these plants. Factors which influence RP safety culture in the workplace are examined, and proposals are considered for a series of actions that may lead to an improvement in RP culture with an associated reduction in dose in many work areas. These actions include methods to improve knowledge and awareness of radiation safety, plus ways to influence management and colleagues in the workplace. The exchange of knowledge about safety culture between the nuclear industry and medical areas may act to develop RP culture in both sectors, and have a wider impact in other sectors where exposures to ionising radiations can occur. (memorandum)

  11. Development of ABWR-2 and its safety design

    International Nuclear Information System (INIS)

    Takafumi, Anegawa; Kenji, Tateiwa

    2002-01-01

    This paper reports the current status of development project on ABWR-II, a next generation reactor design based on ABWR, and its safety design. This project was initiated over a decade ago and has completed three phases to date. In Phase I (1991-92), basic design requirements were discussed and several plant concepts were studied. In Phase II (1993-95), key design features were selected in order to establish a reference reactor concept. In Phase III (1996-2000), based on the reference reactor concept, modifications and improvements were made to fulfill the design requirements. By adopting large electric output (1 700 MW), large fuel bundle, modified ECCS, and passive heat removal systems, among other design features, we achieved a design concept capable of increasing both economic competitiveness and safety performance. Main focus of this paper will be on the safety design, safety performance, and further research needs related to safety. (authors)

  12. Study of radiation safety education practices in acute care Texas hospitals

    International Nuclear Information System (INIS)

    Lemley, A.A.; Hedl, J.J. Jr.; Griffin, E.E.

    1987-01-01

    A survey study was performed to assess the extent of radiation safety education and training in acute care Texas hospitals for radiologic technologists and other hospital personnel. The findings revealed a self-perceived need by hospital administrative personnel and were interpreted to suggest a quantitative need for increased radiation safety education for several classes of hospital personnel. The findings are discussed relative to potential certification requirements for technologists and implications for the training of other personnel

  13. Recent developments in the IAEA safety standards: design and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Saito, Takehiko

    2004-01-01

    The IAEA has been publishing a wide variety of safety standards for nuclear and radiation related facilities and activities since 1978. In 1996, a more rigorously structured approach for the preparation and review of its safety standards was introduced. Currently, based on the approach, revision of most of the standards is in completion or near completion. The latest versions of the Safety Requirements for ''Design'' and ''Operation'' of nuclear power plants were respectively published in 2000. Currently, along with this revision of the Safety Requirements, many Safety Guides have been revised. In order to clarify the complicated revision procedure, an example of the entire revision process for a Safety Guide is provided. Through actual example of the revision process, enormous amount of work involved in the revision work is clearly indicated. The current status of all of the Safety Standards for Design and that for Operation of nuclear power plants are summarized. Summary of other IAEA safety standards currently revised and available related IAEA publications, together with information on the IAEA Web Site from where these documents can be downloaded, is also provided. The standards are reviewed to determine whether revision (or new issue) is necessary in five years following publication. The IAEA safety standards will continue to be updated through comprehensive and structured approach, collaboration of many experts of the world, and reflecting good practices of the world. The IAEA safety standards will serve to provide high level of safety assurance. (author)

  14. to control the nuclear safety and the radiation protection

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Bordarier, Ph.; Saint-Raymond, Ph.; Repussard, J.; Gouze, J.R.; Degos, L.; Massart, S.; Wiroth, P.; Thezee, Ch.; Petit, G.; Cahen, B.; Hubert, I.; Wiroth, P.; Thezee, Ch.; Petit, G.; Kaufer, B.; Taniguchi, T.; Revol, H.

    2005-01-01

    Publishing this dossier, the aim is to present the principles and the variety of issues linked to nuclear safety and radiation protection supervision, and the main strategic choices made to use efficiently and effectively A.S.N. supervision means. A.S.N. is responsible for nuclear safety and radiation protection supervision. A.S.N. has to be itself evaluated and supervised by external bodies. The Parliament Office for Evaluation of Scientific and Technological Options (O.P.E.C.S.T.) supervises it; the foreign peers watch and A.S.N. has to be the object of an international audit conducted by its peers under the leadership of I.A.E.A. by the beginning of 2007. (N.C.)

  15. Radiation safety of gamma and electron irradiation facilities

    International Nuclear Information System (INIS)

    1992-01-01

    There are currently some 160 gamma irradiation facilities and over 600 electron beam facilities in operation throughout virtually all Member States of the IAEA. The most widespread uses of these facilities are for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, and the eradication of insect infestation. The safety record of this industry has been very good. Nevertheless, there is a potential for accidents with serious consequences. Gamma and electron beam facilities produce very high dose rates during irradiation, so that a person accidentally present in the irradiation chamber can receive a lethal dose within minutes or seconds. Precautions against uncontrolled entry must therefore be taken. Furthermore, gamma irradiation facilities contain large amounts of radioactivity and if the mechanism for retracting the source is damaged, the source may remain exposed, inhibiting direct access to carry out remedial work. Contamination can result from corroded or damaged sources, and decontamination can be very expensive. These aspects clearly indicate the need to achieve a high degree of safety and reliability in the facilities. This can be accomplished by effective quality control together with careful design, manufacture, installation, operation and decommissioning. The guidance in this Safety Series publication is intended for competent authorities responsible for regulating the use of radiation sources as well as the manufacturers, suppliers, installers and users of gamma and electron beam facilities. 20 refs, 6 figs

  16. Training Programs on Radiological Safety for users of Ionizing Radiations in Peru

    International Nuclear Information System (INIS)

    Medina Gironzini, E.

    2003-01-01

    In Peru, people who work with ionizing radiations must have an authorization (Individual License) as established in the Radiological Safety Regulations, which are the mandatory rules. The Technical Office of the National Authority (OTAN), which is the technical organ of the Peruvian Institute of Nuclear Energy (IPEN) in charge of controlling radiations within the country , grants the authorization after the candidate demonstrates that he/she knows the specific use of the technique using radiations, as well a s the aspects related to safety and radiological protection. Since it was created in 1972, the Superior Center of Nuclear Studies (VSEN) from IPEN has carried out different training courses so that people can work safety with ionizing radiations in medicine, industry and investigation. The analysis of the radiological safety programs carried out by CSEN during the last 30 years, which allowed the training of more than 2200 people in the country and, at the same time, made possible the securing of the respective Individual License, is presented in this work. The courses, nuclear medicine, radiotherapy, industrial radiography, nuclear gauges gamma irradiator, etc...) and are part of the continuous education program of CSEN. (Author)

  17. DOE contractor radiation safety CBT [computer based training] course

    International Nuclear Information System (INIS)

    Gardner, P.R.

    1986-01-01

    Westinghouse Hanford Company developed a generic Radiation Worker safety CBT course for Department of Energy contractors. Task analysis concentrated on actual and potential tasks and included visits to fourteen different contractor sites. Team Design and Prototype verification formed the major portion of the development phase. Lesson entry was accomplished using the WISE author system from WICAT Systems, Inc. The course features graded task simulations for both Pretest and Final; fourteen Topics in five Lessons, each Topic keyed to ''Critical Acts'' and Questions in the Pretest and Final; Automatic, Intensive, and Manual modes of instruction available for each Lesson; Practical Problems and Sample Questions associated with each Topic; and provisions for local configuration in several areas. The course is deliverable on IBM PC compatible equipment. 2 refs

  18. Nuclear safety cooperation for Soviet designed reactors

    International Nuclear Information System (INIS)

    Reisman, A.W.; Horak, W.C.

    1995-01-01

    The nuclear accident at the Chernobyl nuclear power plant in 1986 first alerted the West to the significant safety risks of Soviet designed reactors. Five years later, this concern was reaffirmed when the IAEA, as a result of a review by an international team of nuclear safety experts, announced that it did not believe the Kozloduy nuclear power plants in Bulgaria could be operated safely. To address these safety concerns, the G-7 summit in Munich in July 1992 outlined a five point program to address the safety problems of Soviet Designed Reactors: operational safety improvement; near-term technical improvements to plants based on safety assessment; enhancing regulatory regimes; examination of the scope for replacing less safe plants by the development of alternative energy sources and the more efficient use of energy; and upgrading of the plants of more recent design. As of early 1994, over 20 countries and international organizations have pledged hundreds of millions of dollars in financial assistance to improve safety. This paper summarizes these assistance efforts for Soviet designed reactors, draws lessons learned from these activities, and offers some options for better addressing these concerns

  19. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas

  20. A study on radiation shielding and safety analysis for a synchrotron radiation beamline

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Synchrotron Radiation Research Center, Mikazuhi, Hyogo (Japan)

    2001-03-01

    Methods of shielding design and safety analysis are presented for a beam-line of synchrotron radiation. This paper consists of the shielding and safety study of synchrotron radiation with extremely intense and low energy photon below several hundreds keV, and the study for the behavior of remarkable high-energy photons up to 8 GeV, which can creep into beam-lines. A new shielding design code, STAC8 was developed to estimate the leakage dose outside the beam line hutch (an enclosure of the beam, optical elements or experimental instruments) easily and quickly with satisfactory accuracy. The code can calculate consistently from sources of synchrotron radiation to dose equivalent outside hutches with considering the build up effect and polarization effect. Validity of the code was verified by comparing its calculations with those of Monte Carlo simulations and measurement results of the doses inside the hutch of the BL14C of Photon Factory in the High Energy Accelerator Research Organization (KEK), showing good agreements. The shielding design calculations using STAC8 were carried out to apply to the practical beam-lines with the considering polarization effect and clarified the characteristics of the typical beam-line of the third generation synchrotron radiation facility, SPring-8. In addition, the shielding calculations were compared with the measurement outside the shield wall of the bending magnet beam-line of SPring-8, and showed fairly good agreement. The new shielding problems, which have usually been neglected in shielding designs for existing synchrotron radiation facilities, are clarified through the analysis of the beam-line shielding of SPring-8. The synchrotron radiation from the SPring-8 has such extremely high-intensity involving high energy photons that the scattered synchrotron radiation from the concrete floor of the hutch, the ground shine, causes a seriously high dose. The method of effective shielding is presented. For the estimation of the gas