WorldWideScience

Sample records for radiation processed food

  1. Radiation processing of food

    International Nuclear Information System (INIS)

    Saint-Lebe, L.; Raffi, J.

    1983-06-01

    The ionizing radiations available for food processing are defined, their mode of action and principal effects are described. Toxicological studies (animal tests, radiochemistry) concerning irradiated food are reviewed. The characteristics of the irradiation procedure and the prospects of its industrial development in France are presented [fr

  2. Radiation processing of food

    International Nuclear Information System (INIS)

    Saint-Lebe, L.; Raffi, J.

    1986-01-01

    Food treatment by stream of electrons, X or gamma photons, induces an ionization in the medium whom consequences are very more important for contaminants than for food components. Effects upon insects are spectacular at very low doses of about 0.15 kGy and so it is for microoganisms at doses of some 1 kGy. Products consecutive to this radiolysis are of the same nature that the one induced by thermolysis. Ionizing treatments are the only ones allowing an efficacious sterilization of foods without any cooking. Irradiation plants are yet ready and of two types: large for multiple applications, small for single product. Small gamma irradiators and electron accelerators allow line treatment [fr

  3. Radiation processing of food and agricultural commodities

    International Nuclear Information System (INIS)

    Sharma, Arun

    2014-01-01

    Reducing post-harvest food losses is becoming increasingly important for sustaining food supplies. Appropriate post-harvest processing, handling, storage and distribution practices are as important as the efforts to increase productivity for improving food security, food safety and international trade in agricultural commodities. Preservation of food by ionizing radiation involves controlled application of energy of ionizing radiation such as gamma rays, X-rays, and accelerated electrons to agricultural commodities, food products and ingredients, for improving their storage life, hygiene and safety. The process employs either gamma rays emitted by radioisotopes such as cobalt-60 or high-energy electrons or X-rays generated from machine sources

  4. Radiation processing of food to ensure food safety and security

    International Nuclear Information System (INIS)

    Gautam, Satyendra

    2016-01-01

    Radiation processing of food utilizes the controlled application of energy from ionizing radiations such as γ-rays , electrons and X-rays on food. Gamma-rays and X-rays are short wavelength radiations of the electromagnetic spectrum. The approved sources of gamma radiation for food processing are radioisotopes (Cobalt-60 and Caesium-137), electron beam (up to 10 MeV) and X-rays (up to 5 MeV) wherein the latter two are generated by machines using electricity. γ-radiation can penetrate deep into the food materials causing the desired effects. Irradiation works by disrupting the biological processes that lead to decay. While interacting with water and other biomolecules that constitute the food and living organisms, radiation energy is absorbed by these molecules. The interactions of radiation and radiolytic products of water with DNA impair the reproduction of microorganism and insects, and thus help in achieving the desired objectives pertaining to food safety and security

  5. Flavor profile of radiation processed food commodities

    International Nuclear Information System (INIS)

    Chatterjee, S.; Variyar, Prasad S.; Sharma, Arun

    2006-01-01

    Full text: Flavor is one of the major quality attributes that play an important role in driving consumer choices and preferences for food. Among the several attributes that decide the flavor quality of any food, aroma and taste are the most important. While volatile constituents contribute to aroma, taste is a perception stimulated by non-volatile principles of food. Radiation processing of food has in recent years assumed increasing importance as a method for hygenization. At the doses employed for food irradiation no significant qualitative changes in the aroma constituents have been reported in most cases. An increase in perceived aroma has however been observed in several radiation processed foods. Besides volatile aroma compounds non-volatile aroma precursors are ubiquitous in plant kingdom. These compounds have been reported to exist largely as bound glycosidic conjugates and are known to undergo breakdown during processing and storage. This results in release of free aroma, thereby, modifying the flavor quality of the product. No report, however, exists on the effect of radiation processing on these bound aroma precursors. Four major class of food namely spices, oil seeds, fruits and beverages were therefore taken up for a detailed study. With respect to aroma, an enhanced breakdown of aroma precursors namely isoeugenol and 4-vinyl guaiacol glycosides and release of free aglycones was demonstrated to result in an increased aroma quality of radiation processed monsooned coffee. Breakdown of phenyl ethanol glucoside resulted in a fruitier note to pomegranate while enhanced spicy note of irradiated nutmeg arise as a result of radiolytic break down p-cymene-7-ol rutinoside precursor and release of free p-cymene-7-ol. An increased color quality of irradiated saffron was a result of the formation of free carotene aglycones namely crocetin from its glycosidic precursors while changes in perceived taste quality of radiation processed soybean could be attributed to

  6. An industrial radiation source for food processing

    International Nuclear Information System (INIS)

    Sadat, R.

    1986-01-01

    The scientific linacs realized by CGR MeV in France have been installed in several research centers, the medical accelerators of CGR MeV have been installed in radiotherapy centers all over the world, and the industrial linacs have been used for radiography in heavy industries. Based on the experience for 30 years, CGR MeV has realized a new industrial radiation source for food processing. CARIC is going to install a new machine of CGR MeV, CASSITRON, as the demand for radiation increased. This machine has been devised specially for industrial irradiation purpose. Its main features are security, simplicity and reliability, and it is easy to incorporate it into a production line. The use of CASSITRON for food industry, the ionizing effect on mechanically separated poultry meat, the capital and processing cost and others are explained. Only 10 % of medical disposable supplies is treated by ionizing energy in France. The irradiation for food decontamination, and that for industrial treatment are demanded. Therefore, CARIC is going to increase the capacity by installing a CASSITRON for sterilization. The capital and processing cost are shown. The start of operation is expected in March, 1986. At present, a CASSITRON is being installed in the SPI food processing factory, and starts operation in a few weeks. (Kako, I.)

  7. Recent advances in radiation processing of food

    International Nuclear Information System (INIS)

    Sharma, Arun

    2013-01-01

    Commercial application of radiation technology for food processing started in the nineties after it was approved by FAO/IAEA/WHO and Codex Alimentarius Commission in the eighties. Sanitary applications were initially explored commercially with microbial decontamination of spices and dry ingredients as the primary commodities to be processed on a large scale. Subsequently, with the emergence of E.coli O157:H7 as the potential food poisoning risk in ground beef, irradiation of meat was initiated in the late nineties in the USA. Since then irradiation, has become a very useful food safety tool and the technology has been approved for addressing food safety risks in moluscan shellfish and vegetables like lettuce, spinach, and more recently for raw uncooked meat by USFDA. Phytosanitary applications assumed importance after USFDA approved irradiation as a method of phytosanitary treatment and subsequent endorsement of the process by International Plant Protection Convention (IPPC) in 2003. These approvals were responsible for development of international trade in agricultural commodities. The first to demonstrate the feasibility of the process were India and Australia, the countries that exported mangoes to New Zealand and USA, respectively. As far as the source of radiation is concerned, the world is slowly moving towards deployment of machine sources, thereby reducing its dependence on radioisotopes for commercial irradiation. (author)

  8. Use of ionising radiation for food processing applications

    International Nuclear Information System (INIS)

    Ninjoor, V.

    1989-01-01

    Food irradiation is a recently developed technique used to sterilize and preserve food. Food products are exposed to ionising radiations such as X-rays, gamma rays or high energy electrons which destroy food borne pathogens and parasites and inhibit sprouting. Shelf life of food is extended. The following aspects of radiation processing of food are discussed in the monograph: radiation sources, choice of dose for specific results, safety and nutritional quality of radiation processed food, international status of acceptance of food irradiation, and cost. (M.G.B.). 6 tabs

  9. Recent developments in analytical detection methods for radiation processed foods

    International Nuclear Information System (INIS)

    Wu Jilan

    1993-01-01

    A short summary of the programmes of 'ADMIT' (FAO/IAEA) and the developments in analytical detection methods for radiation processed foods has been given. It is suggested that for promoting the commercialization of radiation processed foods and controlling its quality, one must pay more attention to the study of analytical detection methods of irradiated food

  10. Radiation processing of food and allied products

    International Nuclear Information System (INIS)

    Sharma, Arun

    2009-01-01

    Assuring adequate food security to citizens of the country requires deployment of strategies for augmenting agricultural production while reducing post-harvest losses. Appropriate post-harvest processing, handling, storage and distribution practices are as important as the efforts to increase productivity for sustained food security, food safety and international trade in agricultural commodities. Nuclear energy has played a significant role both in the improvement of crop productivity, as well as, in the preservation and hygienization of agricultural produce

  11. Prospects of using natural antioxidants in radiation processed food

    International Nuclear Information System (INIS)

    Kanatt, S.R.; Chander, Ramesh; Sharma, Arun

    2006-01-01

    Full text: Microbial contamination of food is a serious concern both for food producer and consumer. Radiation processing of food is one of the most effective technologies that can extend the shelf-life and eliminate pathogenic bacteria in food. However, wide acceptability of radiation processed food products will depend upon quality parameters such as oxidative changes, color stability and organoleptic attributes. Any food processing technique is known to accelerate lipid peroxidation and radiation processing is no exception. Irradiation does not adversely affect the overall nutritive value of food and the oxidative changes induced by irradiation are similar to those observed using conventional food processing methods. Combination of various processing conditions such as storage and cooking, results in accelerated oxidative deterioration. The growing demand for convenience foods and the evolving markets for pre cooked food, call for techniques to prevent lipid oxidation in prepared stored food. Products of lipid peroxidation adversely affect the color, flavor and texture of the food. It is therefore necessary to control these changes for better product development. Methods commonly employed by the food industry include the use of antioxidants. Presently, most of the antioxidants used are synthetic but consumer concern has become a driving force for exploring the use of natural antioxidants. The increase interest in substitution of synthetic antioxidants with natural antioxidants has fostered research on screening of plant materials in order to identify new compounds. We have investigated the antioxidant potential of several plant extracts, herbs and waste generated by the food industry, such as potato peel, banana peel, mango peel, mint, cinnamon extracts and chitosan. Mint extract was found to have the maximum antioxidant activity as tested by several in vitro antioxidant assays. The antioxidant activity of mint extract was comparable to that of BHT the commonly

  12. Packaging materials for use in radiation processing of foods

    International Nuclear Information System (INIS)

    Dragusin, M.; Rotaru, P.R.

    1999-01-01

    In radiation processing of food, the product often has to be prepackaged to prevent microbial recontamination during and after irradiation. The packaging material is exposed to radiation during radiation processing and radiation stability is a key consideration in the selection of packaging materials. The effects of ionizing radiation on many food packaging materials at the dose levels recommended for food precessing can be minimized by selecting appropriate radiation resistant materials. It is important to select materials in which chemicals formed as a result of the radiation treatment do not migrate and interact with the food, affecting its organoleptic and toxicological aspects. It is also important to select materials in which the physical properties are not altered to the extent they cannot resist damage during commercial production, shipment and storage. Radiation treatment of food may be classified broadly into two categories: 1. Processes requiring doses less than 10 kGy; 2. Processes requiring doses from 25 to 40 kGy for production of commercial sterility. In radiation processing of foods, gamma radiation from radioisotopes Co-60 and Cs-137 is most widely used because of its high penetrating power. Electron beam irradiation (E<10 MeV) and X-rays (E<5 MeV) can also be used for certain speciality food and packaging to the food. Because the public acceptance of irradiated foods is a major problem in marketing such products, we have developed in our laboratory an alternative techniques. These techniques are based on applying films on the surfaces of foods. The films are edible, i.e. they are an aqueous solution based on caseine, glycerine, poly-etilene-glycol (PEG), crosslinked by radiation processing. So, our techniques implies no longer the food irradiation but instead its isolation from the environmental biological attacks by means of edible films obtained by irradiation. The protective properties of films, as special humidity, oxygen and fat barriers, are

  13. Radiation processing of food - safety and quality

    International Nuclear Information System (INIS)

    Chakraborty, Pratap

    2007-01-01

    Food is vital for human existence. Conservation and preservation of food is a prerequisite for food security and it provides economic stability and self-reliance to a nation. The need to preserve food has been felt by mankind since time immemorial. The seasonal nature of production, long distances between production and consumption centres and rising gap between demand and supply have made this need even more relevant today

  14. Radiation chemistry - extravaganza or an integral component of radiation processing of food

    International Nuclear Information System (INIS)

    Simic, M.G.; DeGraff, E.

    1983-01-01

    The role of radiation chemistry in radiation processing of foods is discussed in detail. A few examples demonstrating the relevance of the radiation chemistry of model systems to food-irradiation technology are given. The importance of irradiation parameters such as dose, dose rate, temperature, atmosphere, physical state and additives in achieving acceptable and high quality of irradiated foods are emphasized. A few examples of radiation-induced free radical reactions in model compounds relevant to foods are also discussed. (author)

  15. 21 CFR 179.39 - Ultraviolet radiation for the processing and treatment of food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultraviolet radiation for the processing and..., PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.39 Ultraviolet radiation for the processing and treatment of food. Ultraviolet radiation for the processing and treatment of food may be...

  16. Development of Food Preservation and Processing Technologies by Radiation Technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun

    2007-07-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  17. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun [and others

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  18. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun (and others)

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  19. Organoleptic quality and antioxidant status of radiation processed food commodities

    International Nuclear Information System (INIS)

    Chatterjee, S.; Sharma, J.; Arul, A.K.; Variyar, P.S.; Sharma, A.

    2009-01-01

    Effect of radiation processing on the organoleptic qualities such as aroma, taste and colour as well as antioxidant status of various food classes such as beverages (monsooned coffee), spices (nutmeg), fruits (pomegranate), oil seeds (soybean) and vegetables (guar beans) was investigated. The factors responsible for these attributes were shown to be liberated from their glycosidic precursors during radiation processing, thus resulted in an enhancement of organoleptic quality and antioxidant status. (author)

  20. Dosimetric aspects of radiation processing of food and allied products

    International Nuclear Information System (INIS)

    Sharma, G.; Bhat, R.M.; Bhatt, B.C.

    2010-01-01

    Full text: Gamma radiation processing in the last 4-5 decades is continuously gaining importance in processing of a wide variety of products, as it can modify physical, chemical and biological properties of the materials, including food and allied products on industrial scale due its inherent qualities like ease of processing in finally packaged form, eco-friendly nature and other obvious reasons over conventional means of processing. Food and allied products are either from agricultural produce or animal origin; they get easily contaminated from soil during harvesting, handling, processing, environment conditions, storage and transport from various types of micro-organisms including pathogens. In many countries it is mandatory to bring down the population of micro-organisms to an acceptable level and complete elimination of pathogens before such products are accepted for human or animal consumption. Processing of food and allied products by radiation has its own challenges due to wider public acceptance of irradiated food, a wide range, 0.25-50kGy, of absorbed dose requirements for different category of such products and purposes, use of a variety of packaging materials in different shapes and sizes and because of its perishable nature. More than 50 countries including India in the world have accepted radiation processing of food and allied products by radiation. Dosimetry is an important aspect of radiation processing, whether it is food or allied product. Uniformity in dose delivered to these products depends on several factors such as product carrier to source frame alignment, product carrier and product/tote box design, product loading pattern, attenuation due to product thickness, product bulk density that varies from 0.1-1.0 kg/l and the plant design whether during processing product overlaps the source or otherwise. In this presentation dosimetric aspects of radiation processing of food and allied products and problems associated with dosimetry of such

  1. Induction-linear accelerators for food processing with ionizing radiation

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.

    1985-01-01

    Electron accelerators with sufficient beam power and reliability of operation will be required for applications in the large-scale radiation processing of food. Electron beams can be converted to the more penetrating bremsstrahlung radiation (X-rays), although at a great expense in useful X-ray power due to small conversion efficiencies. Recent advances in the technology of pulse-power accelerators indicates that Linear Induction Electron Accelerators (LIEA) are capable of sufficiently high-beam current and pulse repetition rate, while delivering ultra-short pulses of high voltage. The application of LIEA systems in food irradiation provides the potential for high product output and compact, modular-type systems readily adaptable to food processing facilities. (orig.)

  2. Possible implications of large scale radiation processing of food

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1990-01-01

    Large scale irradiation has been discussed in terms of the participation of processing cost in the final value of the improved product. Another factor has been taken into account and that is the saturation of the market with the new product. In the case of successful projects the participation of irradiation cost is low, and the demand for the better product is covered. A limited availability of sources makes the modest saturation of the market difficult with all food subjected to correct radiation treatment. The implementation of the preservation of food needs a decided selection of these kinds of food which comply to all conditions i.e. of acceptance by regulatory bodies, real improvement of quality and economy. The last condition prefers the possibility of use of electron beams of low energy. The best fulfilment of conditions for successful processing is observed in the group of dry food, in expensive spices in particular. (author)

  3. Possible implications of large scale radiation processing of food

    Science.gov (United States)

    Zagórski, Z. P.

    Large scale irradiation has been discussed in terms of the participation of processing cost in the final value of the improved product. Another factor has been taken into account and that is the saturation of the market with the new product. In the case of succesful projects the participation of irradiation cost is low, and the demand for the better product is covered. A limited availability of sources makes the modest saturation of the market difficult with all food subjected to correct radiation treatment. The implementation of the preservation of food needs a decided selection of these kinds of food which comply to all conditions i.e. of acceptance by regulatory bodies, real improvement of quality and economy. The last condition prefers the possibility of use of electron beams of low energy. The best fullfilment of conditions for succesful processing is observed in the group of dry food, in expensive spices in particular.

  4. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P. [All-Russia Research Institute of Preservation Technology (Russian Federation); Egorkin, A. V.; Chasovskikh, A. V. [Research Institute of Technical Physics and Automation (Russian Federation); Pavlov, Yu. S., E-mail: rad05@bk.ru [Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (Russian Federation); Prokopenko, A. V., E-mail: pav14@mail.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation); Strokova, N. E. [Moscow State University (Russian Federation); Artem’ev, S. A. [Russian Research Institute of Baking Industry (Russian Federation); Polyakova, S. P. [Russian Research Institute of Confectionery Industry (Russian Federation)

    2016-12-15

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  5. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    International Nuclear Information System (INIS)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P.; Egorkin, A. V.; Chasovskikh, A. V.; Pavlov, Yu. S.; Prokopenko, A. V.; Strokova, N. E.; Artem’ev, S. A.; Polyakova, S. P.

    2016-01-01

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  6. Radiation processing of dry food ingredients - a review

    International Nuclear Information System (INIS)

    Farkas, J.

    1985-01-01

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives, does not leave residues and is highly efficient. Its dose requirement is moderate. Radiation doses of 3 to 10 kGy proved to be sufficient to reduce the viable cell counts to a satisfactory level. Ionizing radiations do not cause any significant rise in temperature and the flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for a satisfactory decontamination. The microflora surviving the cell-count reduction by irradiation is more sensitive to subsequent food processing treatments than the microflora of untreated ingredients. Recontamination can be prevented since the product can be irradiated in its final packaging. Irradiation can be carried out in commercial containers and it results in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of dry ingredients is an emerging technology in several countries and more and more clearances on irradiated foods are issued or expected to be granted in the near future. (author)

  7. Radiation processing of dry food ingredients - a review

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J

    1985-01-01

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives, does not leave residues and is highly efficient. Its dose requirement is moderate. Radiation doses of 3 to 10 kGy proved to be sufficient to reduce the viable cell counts to a satisfactory level. Ionizing radiations do not cause any significant rise in temperature and the flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for a satisfactory decontamination. The microflora surviving the cell-count reduction by irradiation is more sensitive to subsequent food processing treatments than the microflora of untreated ingredients. Recontamination can be prevented since the product can be irradiated in its final packaging. Irradiation can be carried out in commercial containers and it results in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of dry ingredients is an emerging technology in several countries and more and more clearances on irradiated foods are issued or expected to be granted in the near future.

  8. EPR-dosimetry for radiation processing of food

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Z.; Fabisiak, S.

    2002-01-01

    The usefulness of two, easy accessible alanine-polymer dosimeters to low (D ≤ 10 kGy) ionizing radiation dose measurements, were investigated. In both cases (ALANPOL from IChTJ and foil dosemeters from Gamma Service, Radeberg, Germany) the results were positive. EPR-alanine method based on the described dosimeters meets the requirements to use it in radiation processing of food. Thin foil dosemeters from Gamma Service are recommended mainly for dose distribution measurements. ALANPOL - for routine use. The advantage of ALANPOL is lower price, higher sensitivity and high resistance to unfavourable environmental conditions, including water. (author)

  9. Radiation processing of food: a promising technology to ensure food safety and security

    International Nuclear Information System (INIS)

    Gautam, S.

    2016-01-01

    Radiation processing of food involves controlled application of energy from ionizing radiations. Approved sources of radiation for food processing are radioisotopes (Cobalt-60 and Caesium-137), electron beam (up to 10 MeV) and X-rays (up to 5 MeV). Radiation processing of food is carried out in an irradiation chamber shielded by 1.5 - 1.8 m thick concrete walls. Food, either pre-packed or in-bulk, placed in suitable containers is sent into the irradiation chamber with the help of an automatic conveyor. Major benefits achieved by radiation processing of food are: (i) inhibition of sprouting of tubers and bulbs; (ii) disinfestations of insect pests in agricultural commodities; (iii) delay in ripening and senescence of fruits and vegetables; (iv) destruction of microbes responsible for spoilage, and (v) elimination of pathogens and parasites of public health importance. Irradiation produces very little chemical changes in food. The majority of changes are similar to those by other preservation methods like heat. The radiolytic products and free radicals produced are identical to those present in foods subjected to treatment such as cooking and canning. None of the changes known to occur have been found to be harmful. Twelve food irradiation plants have been commissioned till date in the private sector in India. Two plants set by Government of India (Radiation Processing Plant, Vashi, Navi Mumbai; and KRUSHAK, Lasalgaon, Nashik) are also operational. Volume of food irradiated in India has been steadily increasing. Recent development in the area of food irradiation in India include harmonization of food irradiation rules with international regulation

  10. Radiation decontamination of dry food ingredients and processing aids

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J

    1984-01-01

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives and is highly efficient. Its dose requirement is moderate. Radiation doses of 3-10 kGy (0.3-1 mrad) have proved sufficient to reduce the viable counts to a satisfactory level. Ionising radiations do not cause any significant rise in temperature. The flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for satisfactory decontamination, and radiation obviates the chemical residue problem. The microflora surviving radiation decontamination of dry ingredients are more susceptible to subsequent antimicrobial treatments. Recontamination can be prevented as the product can be irradiated in its final packaging. Irradiation could be carried out in commercial containers and would result in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of these commodities is an established technology in several countries and more clearances on irradiated foods are expected to be granted in the near future.

  11. Food safety through the training of 2-alcilciclobutanonas in processed foods by ionizing radiation

    International Nuclear Information System (INIS)

    Alves, Rodrigo Mendes

    2016-01-01

    Food irradiation is a means of preserving food which uses a processing technique that exposes the foods at a controlled high energy ionizing radiation. The treatment with the use of ionizing radiation in foods has many applications technologically and technically feasible, including the ability to improve the microbiological safety and reducing levels of pathogenic bacteria, inhibiting the germination of tubers plant application, preserving stored foods or the stability of storage and is also used to increase the shelf life of certain products due to the reduction of contamination by microorganisms. Due to the increase of international trade in food and the growing regulatory requirements of consumer markets increasingly importing and exporting countries have shown interest in food irradiation and conducted research in the practical application of this technology and detection methods of treatment. Numerous surveys were conducted worldwide, resulting in efficient protocols to identify which foods were irradiated or not. Until then, the 'myth' that irradiated food could not be detected and they were not formed any single radiation products has been replaced by the knowledge that many changes can occur in irradiated foods and these changes could be used as tools to identify this technology. The radiation processing resulting in characteristic patterns formations of saturated hydrocarbons, aldehydes, methyl and ethyl esters and 2-alcilciclobutanonas, depending on the fatty acid composition of the lipid that composes the food. Thus the purpose of this study was to collect data to compare the effects of different doses of gamma radiation and electron in foods that have fat to determine possible changes resulting from the use of irradiation, as the presence of 2-Alcilciclobutanonas and also show main equipment used for food irradiation and its categories, with the aim of informing the general public. (author)

  12. Food packaging materials and radiation processing of food: a brief review

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1989-01-01

    Food is usually packaged to prevent microbial contamination and spoilage. Ionizing radiation can be applied to food-packaging materials in two ways: (i) sterilization of packaging materials for aseptic packaging, and (ii) radiation processing of prepackaged food. In aseptic packaging, a sterile package is filled with a sterile product in a microbiologically controlled environment. In irradiation of prepackaged food, the food and the packaging material are irradiated simultaneously. For both applications, the radiation stability of the packaging material is a key consideration if the technology is to be used successfully. To demonstrate the radiation stability of the packaging material, it must be shown that irradiation does not significantly alter the physical and chemical properties of the material. The irradiated material must protect the food from environmental contamination while maintaining its organoleptic and toxicological properties. Single-layer plastics cannot meet the requirements of either application. Multilayered structures produced by coextrusion would likely satisfy the demands of radiation processing prepackaged food. In aseptic packaging, the package is irradiated prior to filling, making demands on toxicological safety less stringent. Therefore, multilayered structures produced by coextrusion, lamination or co-injection moulding could satisfy the requirements. (author)

  13. Development of food preservation and processing techniques by radiation

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Yook, Hong Sun; Lee, Ju Woon and others

    2000-03-01

    Development of food preservation and processing techniques by radiation was performed. Gamm irradiation at 5 kGy completely eliminated pathogenic bacteria in pork and chicken meats. Gamma irradiation at such doses and subsequent storage at less than 4 deg C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Pork loin ham with desirable color was also developed without using of sodium nitrite that is known as a carcinogen. Safety tests of gamma-irradiated meats in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepatocarcinogenesis and the antioxidative defense system, were not affected by gamma irradiation. Gamma irradiation at about 1 kGy completely eliminated the parasites in foods and drinking water. In the study of quarantine treatment of apple and pear for export by gamma irradiation, current fumigation(MBr) was perfect in its disinfesting capability, but it caused detrimental effects on the physical quality of apple and pear. However, irradiation doses at 1-3 kGy was suitable for controlling pests and did not induce any significant changes in the quality of the products. The result of the survey to assess the public understanding indicated that the irradiated food had somewhat negative impression to general public. Therefore, it is necessary to establish a public education and information program by using mass communication and by constructing communication system to obtain the enhanced impression from the general public

  14. Development of food preservation and processing techniques by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Yook, Hong Sun; Lee, Ju Woon and others

    2000-03-01

    Development of food preservation and processing techniques by radiation was performed. Gamm irradiation at 5 kGy completely eliminated pathogenic bacteria in pork and chicken meats. Gamma irradiation at such doses and subsequent storage at less than 4 deg C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Pork loin ham with desirable color was also developed without using of sodium nitrite that is known as a carcinogen. Safety tests of gamma-irradiated meats in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepatocarcinogenesis and the antioxidative defense system, were not affected by gamma irradiation. Gamma irradiation at about 1 kGy completely eliminated the parasites in foods and drinking water. In the study of quarantine treatment of apple and pear for export by gamma irradiation, current fumigation(MBr) was perfect in its disinfesting capability, but it caused detrimental effects on the physical quality of apple and pear. However, irradiation doses at 1-3 kGy was suitable for controlling pests and did not induce any significant changes in the quality of the products. The result of the survey to assess the public understanding indicated that the irradiated food had somewhat negative impression to general public. Therefore, it is necessary to establish a public education and information program by using mass communication and by constructing communication system to obtain the enhanced impression from the general public.

  15. Development of food preservation and processing techniques by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Woon; Kim, Dong Ho [KAERI, Taejon (Korea, Republic of); Yook, Hong Sun [Chungnam National Univ., Taejon (Korea, Republic of); Kim, Hak Soo [Sogang Univ., Seoul (Korea, Republic of); Lee, Cherl Ho; Park, Hyun Jin [Korea Univ., Seoul (Korea, Republic of); Kang, Il Jun [Hallym Univ., Chuncheon (Korea, Republic of); Kwon, Jung Ho [Kyungbook National Univ., Taegu (Korea, Republic of)

    2002-05-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following; Processing techniques of low salted and fermented fish using gamma irradiation were developed and superiority of using irradiation to conventional food processing methods was established. Processing technique of value-added functional materials for the manufacture of food or public health products using RT/BT/NT combination technology was developed. The basic theories for the technology development to reduce toxic or undesirable compounds in food such as allergy or carcinogens were established. Exterminating methods of quarantine organisms in herbs/spices was established and the quality evaluation and detection conditions in quarantine treatment were set. From the studies on 'program of public understanding' based on safety of the gamma irradiated food, the information for public relation in enlargement of consumer acceptance/implementation and the peaceful use of nuclear energy were secured. Results from the research project will contribute on improvement of competency of domestic food industry and export market. The results also expect the improvement of public health by prevention of food borne diseases and enhancement of national economy and industry by increase of direct/indirect productivity.

  16. Development of food preservation and processing techniques by radiation

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Woon; Kim, Dong Ho; Yook, Hong Sun; Kim, Hak Soo; Lee, Cherl Ho; Park, Hyun Jin; Kang, Il Jun; Kwon, Jung Ho

    2002-05-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following; Processing techniques of low salted and fermented fish using gamma irradiation were developed and superiority of using irradiation to conventional food processing methods was established. Processing technique of value-added functional materials for the manufacture of food or public health products using RT/BT/NT combination technology was developed. The basic theories for the technology development to reduce toxic or undesirable compounds in food such as allergy or carcinogens were established. Exterminating methods of quarantine organisms in herbs/spices was established and the quality evaluation and detection conditions in quarantine treatment were set. From the studies on 'program of public understanding' based on safety of the gamma irradiated food, the information for public relation in enlargement of consumer acceptance/implementation and the peaceful use of nuclear energy were secured. Results from the research project will contribute on improvement of competency of domestic food industry and export market. The results also expect the improvement of public health by prevention of food borne diseases and enhancement of national economy and industry by increase of direct/indirect productivity

  17. Development of food preservation and processing techniques by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Woon; Kim, Dong Ho [KAERI, Taejon (Korea, Republic of); Yook, Hong Sun [Chungnam National Univ., Taejon (Korea, Republic of); Kim, Hak Soo [Sogang Univ., Seoul (Korea, Republic of); Lee, Cherl Ho; Park, Hyun Jin [Korea Univ., Seoul (Korea, Republic of); Kang, Il Jun [Hallym Univ., Chuncheon (Korea, Republic of); Kwon, Jung Ho [Kyungbook National Univ., Taegu (Korea, Republic of)

    2002-05-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following; Processing techniques of low salted and fermented fish using gamma irradiation were developed and superiority of using irradiation to conventional food processing methods was established. Processing technique of value-added functional materials for the manufacture of food or public health products using RT/BT/NT combination technology was developed. The basic theories for the technology development to reduce toxic or undesirable compounds in food such as allergy or carcinogens were established. Exterminating methods of quarantine organisms in herbs/spices was established and the quality evaluation and detection conditions in quarantine treatment were set. From the studies on 'program of public understanding' based on safety of the gamma irradiated food, the information for public relation in enlargement of consumer acceptance/implementation and the peaceful use of nuclear energy were secured. Results from the research project will contribute on improvement of competency of domestic food industry and export market. The results also expect the improvement of public health by prevention of food borne diseases and enhancement of national economy and industry by increase of direct/indirect productivity.

  18. Radiation processing of food and agricultural commodities: opportunities and challenges

    International Nuclear Information System (INIS)

    Sharma, Arun

    2009-01-01

    Assuring adequate food security to citizens of the country requires deployment of strategies for augmenting agricultural production while eliminating post-harvest losses. Appropriate post-harvest processing, handling, storage and distribution practices are as important as the efforts to increase productivity for sustained food security, food safety and international trade in agricultural commodities. Nuclear energy can play a significant role both in the improvement of crop productivity, as well as, in the preservation and hygienization of agricultural produce

  19. Development of food preservation and processing techniques by radiation

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Yook, Hong Sun; Lee, Ju Woon and others

    1999-03-01

    Development of food preservation and processing techniques by radiation was performed. Gamma irradiation at 2-10 kGy is considered to be an effective method to control pathogenic bacteria in species including Escherichia coli O157:H7. Gamma irradiation at 5 kGy completely eliminated pathogenic bacteria in beef. Gamma irradiation at such doses and subsequent storage at less than 4 deg C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Gamma irradiation on pre-rigor beef shortens the aging-period, improves tenderness and enhances the beef quality. And, a new beef processing method using gamma irradiation, such as in the low salt sausage and hygienic beef patty was developed. Safety tests of gamma-irradiated meats(beefs: 0-5 kGy; porks: 0-30 kGy) in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepato carcinogenesis and the anti oxidative defense system, were not affected by gamma irradiation. To pre-establish an alternative technique to the toxic fumigant, methyl bromide, which is the current quarantine measure of agricultural products for export and import, some selected agricultural products, such as chestnuts, acorns, red beans and mung beans, were subjected to a preliminary study to confirm the comparative effects of gamma irradiation and MBr fumigant on their disinfestation and quality, thereby preparing the basic data for the practical approach.Current fumigation(MBr) was perfect in its disinfecting capability, but it caused detrimental effects on the physical quality of agricultural produce. However, irradiation doses suitable for controlling pests did not induce any significant changes in the quality of the products. (author)

  20. Effectiveness of radiation processing in elimination of Aeromonas from food

    International Nuclear Information System (INIS)

    Nagar, Vandan; Bandekar, Jayant R.

    2011-01-01

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Contaminated water, sprouts, vegetables, seafood and food of animal origin have been considered to be the important sources of Aeromonas infection. In the present study, radiation sensitivity of indigenous strains of Aeromonas spp. from different food samples was evaluated. The decimal reduction dose (D 10 ) values of different Aeromonas isolates in saline at 0-4 o C were in the range of 0.031-0.046 kGy. The mixed sprouts, chicken and fish samples were inoculated with a cocktail of five most resistant isolates (A. salmonicida Y567, A. caviae A85, A. jandaei A514A, A. hydrophila CECT 839 T and A. veronii Y47) and exposed to γ radiation to study the effectiveness of radiation treatment in elimination of Aeromonas. D 10 values of Aeromonas cocktail in mixed sprouts, chicken and fish samples were found to be 0.081±0.001, 0.089±0.003 and 0.091±0.003 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in complete elimination of 10 5 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples. No recovery of Aeromonas was observed in the 1.5 kGy treated samples stored at 4 o C up to 12 (mixed sprouts) and 7 days (chicken and fish samples), even after enrichment and selective plating. This study demonstrates that a 1.5 kGy dose of irradiation treatment could result in complete elimination of 10 5 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples.

  1. Effectiveness of radiation processing in elimination of Aeromonas from food

    Science.gov (United States)

    Nagar, Vandan; Bandekar, Jayant R.

    2011-08-01

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Contaminated water, sprouts, vegetables, seafood and food of animal origin have been considered to be the important sources of Aeromonas infection. In the present study, radiation sensitivity of indigenous strains of Aeromonas spp. from different food samples was evaluated. The decimal reduction dose (D10) values of different Aeromonas isolates in saline at 0-4 °C were in the range of 0.031-0.046 kGy. The mixed sprouts, chicken and fish samples were inoculated with a cocktail of five most resistant isolates (A. salmonicida Y567, A. caviae A85, A. jandaei A514A, A. hydrophila CECT 839T and A. veronii Y47) and exposed to γ radiation to study the effectiveness of radiation treatment in elimination of Aeromonas. D10 values of Aeromonas cocktail in mixed sprouts, chicken and fish samples were found to be 0.081±0.001, 0.089±0.003 and 0.091±0.003 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in complete elimination of 105 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples. No recovery of Aeromonas was observed in the 1.5 kGy treated samples stored at 4 °C up to 12 (mixed sprouts) and 7 days (chicken and fish samples), even after enrichment and selective plating. This study demonstrates that a 1.5 kGy dose of irradiation treatment could result in complete elimination of 105 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples.

  2. Effectiveness of radiation processing in elimination of Aeromonas from food

    Energy Technology Data Exchange (ETDEWEB)

    Nagar, Vandan [Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bandekar, Jayant R., E-mail: jrb@barc.gov.i [Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2011-08-15

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Contaminated water, sprouts, vegetables, seafood and food of animal origin have been considered to be the important sources of Aeromonas infection. In the present study, radiation sensitivity of indigenous strains of Aeromonas spp. from different food samples was evaluated. The decimal reduction dose (D{sub 10}) values of different Aeromonas isolates in saline at 0-4 {sup o}C were in the range of 0.031-0.046 kGy. The mixed sprouts, chicken and fish samples were inoculated with a cocktail of five most resistant isolates (A. salmonicida Y567, A. caviae A85, A. jandaei A514A, A. hydrophila CECT 839{sup T} and A. veronii Y47) and exposed to {gamma} radiation to study the effectiveness of radiation treatment in elimination of Aeromonas. D{sub 10} values of Aeromonas cocktail in mixed sprouts, chicken and fish samples were found to be 0.081{+-}0.001, 0.089{+-}0.003 and 0.091{+-}0.003 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in complete elimination of 10{sup 5} CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples. No recovery of Aeromonas was observed in the 1.5 kGy treated samples stored at 4 {sup o}C up to 12 (mixed sprouts) and 7 days (chicken and fish samples), even after enrichment and selective plating. This study demonstrates that a 1.5 kGy dose of irradiation treatment could result in complete elimination of 10{sup 5} CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples.

  3. Radiation processing of food: role in national development

    International Nuclear Information System (INIS)

    Sharma, Arun

    2002-01-01

    Radiation technology can be harnessed in several ways depending on the needs. With adequate storage and packaging regimes it increases the possibilities of handling and distribution of farm produce, thereby improving its supply and management. It can add value to the product by improving its hygiene and quarantine. This is becoming increasingly important for ensuring biosecurity in international trade. Being a newly emerging technology from laboratory to market place, it may face several hurdles. These hurdles may involve engineering or technological challenges during scale-up, post-processing handling and management, problems of security of facilities, consumer attitudes and other unforeseen factors. A small beginning has been made in this direction with a setting up of two technology demonstration units, one for spices and other for onion, by the department. The experience of running these two units and a few more that are contemplated the private sector would probably determine the role the technology would play in future in the national development

  4. Radiation processing

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2005-01-01

    This chapter covers the basic principle and application of radiation technology. The topic titled specific application discussed briefly the following subtopics: 1) Polymer modification - crosslinking, polymerisation, degradation, grafting; 2) Medical sterilisation; 3) Food irradiation; 4) Environmental protection - waste processing, pollutants treatment

  5. Preserving food with radiation

    International Nuclear Information System (INIS)

    Thomas, A.C

    1978-01-01

    Food irradiation is becoming an increasingly more important method of food preservataion. The irradiation process and its advangages are briefly described, and its use in the preservation of poultry and various kinds of fruits is discussed. Fruit export is hampered by restrictions due to infestation. Radiation disinfestation will therefore be of great advantage and may lead to a growth in export markets

  6. Radiation processing of food products with 5 MV Bremsstrahlung x-rays

    International Nuclear Information System (INIS)

    Petwal, V.C.; Soni, H.C.

    2004-01-01

    Foods and agricultural products are treated with ionizing radiation to accomplish many different goals. The desired goals may be the reduction of pathogenic bacteria, other microorganisms and parasites that cause food borne diseases; or inactivation of food spoilage organisms, including bacteria, molds, and yeasts; or lengthening the shelf-life of fresh fruits and vegetables by decreasing the normal biological changes associated with growth and maturation processes, such as ripening or sprouting. It has become more important due to mounting concern over food born diseases, and growing international trade in food products that must meet stiff import standards of quality and quarantine. A 10 MeV 10 kW LINAC based multi-product EB radiation processing facility is being established at CAT to meet the processing requirement of various food, agricultural and medical products. The facility will be operated in two modes: (a) Electron: 10 MeV, 10 kW (b) Photon: 5 MeV, 10 kW Treatment with electron beam provides the highest processing rate and lowest unit cost. But the electrons have relatively short range in the solid product, hence the maximum product areal density (density times depth) that can be processed using direct 10 MeV electron beam is limited to about 8.5 gm/cm 2 (double sided irradiation). On the other hand x-rays are more penetrating, hence can be used to process the products having larger areal densities e.g. onions and potatoes packed in gunny bags. In order to address various issues related to food irradiation using 5 MV X-ray beam, a mathematical model is developed on the basis of the analytical calculations and experimental data presented by R.B.Miller, 2003, and J. Meissner et.al, 2000. (author)

  7. Food processing

    NARCIS (Netherlands)

    Teodorowicz, Malgorzata; Neerven, Van Joost; Savelkoul, Huub

    2017-01-01

    The majority of foods that are consumed in our developed society have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars, the Maillard reaction (MR). Maillard reaction products (MRPs) contribute to the taste, smell and color of many food products, and thus

  8. Perspective of radiation processing

    International Nuclear Information System (INIS)

    Zhang Manwei

    1987-01-01

    The area of the applications of radiation techniques is very wide. This paper only relates to the applications of radiation techniques in industries including radiation chemical industry, radiation processing of foods and environmental protection by radiation, but the nuclear instruments and the instrumentations of radiation are out-side of our study. (author)

  9. Post-factum detection of radiation treatment in processed food by analysis of radiation-induced hydrocarbons. Pt. 1. Applying the method L 06.00-37 defined in Para. 35 LMBG (German Act on Food Irradiation) to processed food

    International Nuclear Information System (INIS)

    Hartmann, M.; Ammon, J.; Berg, H.

    1995-01-01

    The German official method L 06.00-37 (Para. 35 German Act on Food Irradiation) is used for the identification of irradiated fat-containing food by GC-analysis of radiation-induced hydrocarbons. Simple modifications in sample preparation allow a distinctive improvement in detection possibilities and detection limits as well. The applicability of the modified method for the detection of irradiated ingredients in model-like processed food is shown. An identification of only 3% (irradiated fat to total fat ratio) irradiated ingredient (1,5 kGy) in processed food was possible. Additionally, the kind of irradiated ingredient could be identified by the pattern of radiation induced hydrocarbons. Their concentrations are corresponding with the fatty acid composition of the irradiated compound. (orig.) [de

  10. Feasibility of using cling-wrap films as a packaging material for radiation processed foods

    International Nuclear Information System (INIS)

    Choudhari, Vilendra V.; Chatterjee, Suchandra; Variyar, Prasad S.; Sharma, Arun

    2005-01-01

    Effect of gamma radiation (2 and 10 kgGy) on the stability of commercially available cling-wrap films for minimally processed foods was investigated. Migration of additives from the films into diethyl ether and water was monitored by TLC and by GC/MS analysis of their acetylated derivatives. Diocytyl phthalate was identified in the ether extract as the major migrant accounting for 98% of the total constituents detected. Other migrants identified in the minor amounts ( t 32.29 min corresponding to 1,3- dichloro-2-propanol. These changes, however, had no significant effect of the sensory and physical quality of the film. Thus feasibility of the using cling-wrap films as a packaging material for radiation processed food has been established. (author)

  11. Experiments on the identification of radiation processed foods. Untersuchungen zum Nachweis bestrahlter Lebensmittel

    Energy Technology Data Exchange (ETDEWEB)

    Delincee, H [Inst. fuer Ernaehrungsphysiologie, Bundesforschungsanstalt fuer Ernaehrung, Karlsruhe (Germany)

    1992-01-01

    The availability of reliable detection methods allowing to show directly in the traded food product whether it has been irradiated or not, will help to assure consumers that the inspection authorities are able to check the compliance with existing regulations effectively. Numerous analytical methods for the identification of radiation processed foods were investigated at the Federal Research Centre for Nutrition in Karlsruhe over the years. This report will mainly consider the measurement of chemi- and thermoluminescence of herbs and spices, since in many countries these products are most frequently irradiated food items. Following radiation processing, herbs and spices mostly increase their luminescence intensities. The luminescence response, however, varies considerably from one spice to another, and even among several batches of the same spice. Since nonirradiated products may also exhibit luminescence, the discrimination irradiated - non-irradiated is not that simple. Isolation of mineral dusts associated with the food and measurement of the thermoluminescence of these mineral fractions improves the identification of irradiated food. International collaboration will help to establish standardized and reliable analytical detection methods in the near future. (orig.)

  12. Agriculture and food processing

    International Nuclear Information System (INIS)

    Muhammad Lebai Juri

    2003-01-01

    This chapter discuss the application of nuclear technology in agriculture sector. Nuclear Technology has help agriculture and food processing to develop tremendously. Two techniques widely use in both clusters are ionization radiation and radioisotopes. Among techniques for ionizing radiation are plant mutation breeding, SIT and food preservation. Meanwhile radioisotopes use as a tracer for animal research, plant soil relations water sedimentology

  13. Radiation treatment of food

    International Nuclear Information System (INIS)

    Wills, P.A.

    1986-01-01

    The techniques involved in the treatment of food by ionising radiation are explained. Radiation plant design, nutrition, microbiology and standards for irradiated foods are discussed. The potential applications for food irradiation in Australia are in the fields of quarantine control to disinfest fruit from fruit fly or mangoes from seed weevil, and decontamination of dried foods such as spices

  14. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  15. The application of irradiation techniques for food preservation and process improvement -Studies on application of radiation and radioisotopes-

    International Nuclear Information System (INIS)

    Byeon, Myeong Uh; Cho, Han Ok; Yang, Jae Seung; Cho, Seong Ki; Kang, Il Joon

    1994-07-01

    With the increased consumption of processed food, quality control techniques are inevitably required in the food industry for its mass production and distribution. Recently, there has been a growing interest in the use of irradiation for solving the infrastructural problems in the food industry by developing viable alternatives to conventional technology and by improving the quality of processed foods. Even though food irradiation technology has been commercialized in 25 countries, and 18 items of irradiated foods have been approved for human consumption domestically, infrastructural studies are needed for the practical application of this technology. In order to enlarge the utilization of irradiation technology in solving the infrastructural problems of the food industry, this project was designed to investigate the efficacy of gamma irradiation for improving the process and physical properties of dried foods (corn and soybean), for preserving the reserved foods for emergency (red pepper) and for producing natural products (red polyketied pigment) using microbial immobilization with radiation-induced polymer

  16. Effect of radiation on food

    Energy Technology Data Exchange (ETDEWEB)

    Sofyan, R [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1983-07-01

    Research reports on the effect on radiation on food are reviewed. Irradiation processing inhibits the sprouting of vegetables, delays ripening, reduces the number of microorganisms that spoil food, controls patrogenic organisms and parasites found in food, disinfests food of insects, and disinfects spices of microbes. So far there has been no evidence that food irradiaton introduces nutritional or microbiological problems. The FAO/WHO/IAEA expert committee on the wholesomeness of irradiated food recommend the acceptability from a toxicological stand-point of any food commodity irradiated up to an overall average dose of 10 kilograys.

  17. Effect of radiation on food

    International Nuclear Information System (INIS)

    Sofyan, Rochestri

    1983-01-01

    Research reports on the effect on radiation on food are reviewed. Irradiation processing inhibits the sprouting of vegetables, delays ripening, reduces the number of microorganisms that spoil food, controls patrogenic organisms and parasites found in food, disinfests food of insects, and disinfects spices of microbes. So far there has been no evidence that food irradiaton introduces nutritional or microbiological problems. The FAO/WHO/IAEA expert committee on the wholesomeness of irradiated food recommend the acceptability from a toxicological stand-point of any food commodity irradiated up to an overall average dose of 10 kilograys. (RUW)

  18. Possibility of using gamma radiation from HTR reactors for the processing of food and medical products

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2004-01-01

    During the fission process in most of the presently operating nuclear reactors nuclear energy is converted into thermal energy and transferred to common steam cycles for power generation. As part of the fission process also α, β and neutrons particles are released from the nucleus; the release of gamma-rays is also a part of the fission process. In present nuclear reactors α, β, neutrons particles and particularly gamma-rays are not gainfully used as a result of the reactor design and of the containment. These plants are built as required by regulations and international standards for safety. The inherently safe HTR reactor, by its physics and design, does not need a special reinforced containment and it is worth looking into the possibilities of this design feature to use the by-products, such as Gamma-rays, from nuclear fission. In the HTR Pebble Bed Reactors the α, and β particles will remain in the kernels of the pebbles. This means that only the neutron particles and gamma-rays will be available outside the reactor pressure vessel. In this report a proposal is presented to use the gamma-rays of the HTR reactor for irradiation of food and agricultural produce. For neutron shielding a reflector is placed inside the reactor while outside the reactor neutron- and thermal-shielding will be accomplished with water. The high energy gamma-rays will pass through the water-shield and could be harnessed for radiation processing of food and medical products. (author)

  19. Present state and prospects of authorized radiation processing of food in Hungary

    International Nuclear Information System (INIS)

    Farkas, J.

    1974-01-01

    The results yielded by the radiation processing of potatoe, onion and champignon being stored have been given. The irradiations were made by a laboratory 60 Co γ-source of 15 kCi in the experimental plant of the Central Research Institute of Food Industry (Budapest). The irradiated products were well-saleable. The rentability of the applied methods is treated fully. A model program has been given for the irradiation process. The production costs of a plant with a 60 Co source of 200 kCi activity have been calculated and the economic results obtainable by the program above have been also estimated. If a capacity use of 30% is considered and 22,000 t of potatoe and 5,520 t of onion are treated by the given program, the index of return is 5.1 years. (K.A.)

  20. Food safety through the training of 2-alcilciclobutanonas in processed foods by ionizing radiation; Seguranca alimentar atraves da formacao de 2-alcilciclobutanonas em alimentos processados por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rodrigo Mendes

    2016-11-01

    Food irradiation is a means of preserving food which uses a processing technique that exposes the foods at a controlled high energy ionizing radiation. The treatment with the use of ionizing radiation in foods has many applications technologically and technically feasible, including the ability to improve the microbiological safety and reducing levels of pathogenic bacteria, inhibiting the germination of tubers plant application, preserving stored foods or the stability of storage and is also used to increase the shelf life of certain products due to the reduction of contamination by microorganisms. Due to the increase of international trade in food and the growing regulatory requirements of consumer markets increasingly importing and exporting countries have shown interest in food irradiation and conducted research in the practical application of this technology and detection methods of treatment. Numerous surveys were conducted worldwide, resulting in efficient protocols to identify which foods were irradiated or not. Until then, the 'myth' that irradiated food could not be detected and they were not formed any single radiation products has been replaced by the knowledge that many changes can occur in irradiated foods and these changes could be used as tools to identify this technology. The radiation processing resulting in characteristic patterns formations of saturated hydrocarbons, aldehydes, methyl and ethyl esters and 2-alcilciclobutanonas, depending on the fatty acid composition of the lipid that composes the food. Thus the purpose of this study was to collect data to compare the effects of different doses of gamma radiation and electron in foods that have fat to determine possible changes resulting from the use of irradiation, as the presence of 2-Alcilciclobutanonas and also show main equipment used for food irradiation and its categories, with the aim of informing the general public. (author)

  1. Heat-radiation combination for control of mold infection in harvested fruits and processed cereal foods

    International Nuclear Information System (INIS)

    Pawdal-Desai, S.R.; Ghanekar, A.S.; Thomas, P.; Sreenivasan, A.

    1973-01-01

    A combination of mild heat and low dose irradiation was found to extend the shelf-life of fresh fruits and processed cereal foods by controlling mold infection. Chapaties (Indian unleavened bread) and bread slices packed in polycell pouches, subjected to 50 krad followed by dry heat (65 0 C) were free from mold and shelf-stable for 10 weeks at ambient temperature (28-32 0 C). Inoculated pack studies confirmed the efficiency of the treatment. No immediate changes in organoleptic attributes were discernible even after exposure to 100 krad. The quality deterioration in sliced bread stored for 2 1/2 months has been attributed to natural staling rather than radiation. Hot water dip (50 0 C for 5 min) followed by 150 krad irradiation extended the shelf-life of fresh figs by 3-4 days at 28-32 0 C and 8-10 days at 15 0 C. Regardless of the sequence of treatments, combination of heat and 100 krad extended the shelf-life of grapes both at ambinet and refrigerated storage. In mangoes, heat followed by 50 krad was effective in controlling anthracnose and stem-end rot whereas in bananas irradiated for delayed ripening, hot water treatment can be used as a supplementary process to control stem-end rot. Quality of combination treated fruits was comparable to normally ripened fruits. In vitro studies with fungal pathogens isolated from the above fruits and cereal foods revealed that the synergistic effect of heat-radiation combination depends on the sequence of treatments which varied with respect to different pathogens studied. Some biochemical aspects of combination treated fruits is discussed. (F.J.)

  2. Overview of applications of radiation processing in combination with conventional treatments to assure food safety

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M.; Turgis, M, E-mail: monique.lacroix@iaf.inrs.ca [INRS-Institut Armand-Frappier, Canadian Irradiation Center, Research Laboratories in Sciences Applied to Food, Laval, QC (Canada); Severino, R. [INRS-Institut Armand-Frappier, Canadian Irradiation Center, Research Laboratories in Sciences Applied to Food, Laval, QC (Canada); Univ. of Salerno, Dept. of Industrial Engineering, Fisciano, SA (Italy); Vu, K.D. [INRS-Institut Armand-Frappier, Canadian Irradiation Center, Research Laboratories in Sciences Applied to Food, Laval, QC (Canada); Donsi, F. [Univ. of Salerno, Dept. of Industrial Engineering, Fisciano, SA (Italy); Salmieri, S. [INRS-Institut Armand-Frappier, Canadian Irradiation Center, Research Laboratories in Sciences Applied to Food, Laval, QC (Canada); Ferrari, G. [Univ. of Salerno, Dept. of Industrial Engineering, Fisciano, SA (Italy); ProdAl Scarl, Competence Center on Agro-Food Productions, Fisciano, SA (Italy)

    2014-07-01

    Natural antimicrobials (NA) were tested for their efficiency at increasing bacterial relative radiosensitivity (BRR) and, therefore, reducing the radiation dose necessary to eliminate pathogens in meat and vegetables. In order to evaluate the industrial feasibility of using NA in combination to radiation to increase food shelf life, NA were added to food at low concentrations (which do not affect the sensory properties). Then, a bioactive coating formulation was developed to allow retention of the bioactivity of the NA during storage time. Results showed that NA, can increase BRR from 2 to 4 times and lower the dose necessary to eliminate a pathogen by a factor of 3 to 4. (author)

  3. Overview of applications of radiation processing in combination with conventional treatments to assure food safety

    International Nuclear Information System (INIS)

    Lacroix, M.; Turgis, M; Severino, R.; Vu, K.D.; Donsi, F.; Salmieri, S.; Ferrari, G.

    2014-01-01

    Natural antimicrobials (NA) were tested for their efficiency at increasing bacterial relative radiosensitivity (BRR) and, therefore, reducing the radiation dose necessary to eliminate pathogens in meat and vegetables. In order to evaluate the industrial feasibility of using NA in combination to radiation to increase food shelf life, NA were added to food at low concentrations (which do not affect the sensory properties). Then, a bioactive coating formulation was developed to allow retention of the bioactivity of the NA during storage time. Results showed that NA, can increase BRR from 2 to 4 times and lower the dose necessary to eliminate a pathogen by a factor of 3 to 4. (author)

  4. Comparative economic factors on the use of radionuclide or electrical sources for food processing with ionizing radiation

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.

    1985-01-01

    Food irradiation is a promising addition to conventional food processing techniques. However, as is the case with most new technologies, its economic suitability will be determined by comparison to current methods. Assuming that current food processing facilities are adaptable to the incorporation of a food irradiation capability, an analysis of cost for several different optional systems able to process up to 100 Mrad ton/day (1 MGy ton/day; or 1,000 ton/day at 100 krad) will be made. Both radionuclide and electrical accelerators will be compared as sources of ionizing radiation. The cost of irradiation will be shown to be competitive with most other treatments including fumigation, low-temperature storage, and controlled atmosphere. A proper figure-of-merit for comparing the different sources will be defined and used as a basis for an economic evaluation of food irradiation. (author)

  5. Development of a lyoluminescence dosimetry system for the radiation processing of food

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Mallard, J.R.; Srirath, S.; Takavar, A.

    1978-01-01

    A new system of solid-state dosimetry is being developed aimed at the radiation processing of food. The system is based on the effect of lyoluminescence, i.e. emission of light when previously irradiated solids are dissolved in water or other solvents. The physical mechanism is based on the formation of free radicals in the solid, which are stable over periods ranging from days to years. These radicals are set free on dissolution and as a result of chemical reactions taking place in a solution light is produced. The dose response of lyoluminescent phosphors is monotonic, and often almost linear, over a very broad range of radiation doses. Amongst saccharides mannose can be used up to about 90krad, trehalose dihydrate up to 250krad and glucose to about 300krad. Amino acids exhibit a broader range: glutamine and glutamic acid can be used up to at least 4Mrad and threonine up to about 1Mrad. In addition, most of naturally occurring soluble amino acids are suitable in a range of doses below 200krad. Soluble starch (amylodextrin) has been successfully tried in a range up to 3Mrad. The intrinsic precision of the method is fairly high and the present uncertainty of the determination of dose, which is 2-4%, appears to be caused by the non-homogeneity of available phosphor and by insufficient reproducibility of the process of dissolution. The lower limit of doses is set by the sensitivity of the read-out equipment. For a simple arrangement with an uncooled PM tube and glutamine as a phosphor a reproducibility of 2-3% is reached for doses in excess of 600rads. The fading of irradiated phosphors is reproducible. A typical value for mannose is 10-15% during the first week and 20-30% during the first year for dosimeters stored at room temperature

  6. FAO/IAEA/WHO international conference on ensuring the safety and quality of food through radiation processing. Book of extended synopses

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains extended synopses of 90 articles presented to the FAO/IAEA/WHO international conference on ensuring the safety and quality of food through radiation processing, held in Anatalya, Turkey, 19-22 October, 1999. The major themes covered include food irradiation technologies, public acceptance of irradiated food items, effectiveness and economic aspects of food irradiation

  7. FAO/IAEA/WHO international conference on ensuring the safety and quality of food through radiation processing. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document contains extended synopses of 90 articles presented to the FAO/IAEA/WHO international conference on ensuring the safety and quality of food through radiation processing, held in Anatalya, Turkey, 19-22 October, 1999. The major themes covered include food irradiation technologies, public acceptance of irradiated food items, effectiveness and economic aspects of food irradiation.

  8. Analysis on the consumer disposition to afford the cost of food processed by ionizing radiation

    International Nuclear Information System (INIS)

    Cattaruzzi, Eliana Borba

    2012-01-01

    The concept of food quality, in the consumer point of view, reflects the satisfaction of characteristics such as flavor, aroma, appearance, packaging and availability. Economic and social factors, such as cost and eating habits, generally, also influence the choice of a product. Irradiation is an effective technique in food preservation because it reduces the losses caused by natural physiological processes, either reducing or eliminating microorganisms, parasites and pests without causing any damage to the foods and, thus, making them safer to consumers. Nevertheless, there may be an increase in the cost of foods. Research indicates that practicality is already a deep-rooted feature of consumers. The price may be a limiting factor to the popularization of the irradiated product, although some consumers consider that, due to the avoidance of waste, the increased cost may be feasible. The objective of this study was to analyze the cost of using food irradiation technology and verify (a) whether consumers, when informed of the benefits in food safety, are willing to pay for this treatment and (b) how much they are willing to pay. The methodology consisted of a study on the economic feasibility of food irradiation technology by means of a systematic survey of the literature, in order to verify the cost of this process implementation and the increase in costs for the producer. Also, a survey was conducted in an Institution of Superior Education about the consumer's willingness to pay for this higher price. The study results indicate a rise in costs to the producer, ranging from $ 0.01 to U.S. $ 0.25 per pound; it was also found that 75% of the consumers surveyed are willing to pay more for irradiated food. From these results it was concluded that the higher the consumption power is, the greater the willingness to afford the additional cost irradiated foods have. (author)

  9. PERKEMBANGAN DAN PROSPEK PROSES RADIASI PANGAN DI INDONESIA [Development and Prospect of Food Radiation Processing in Indonesia

    Directory of Open Access Journals (Sweden)

    Zubaidah Irawati

    2008-12-01

    Full Text Available Several factors such as insufficient harvesting and handling methods as well as inadequate methods of storage and distribution, poor processing techniques and poor quality of raw materials used in making ready to eat foods may lead to the cumulative causes of food borne illness particularly in developing countries. Public trend in the world nowadays are demanding access to more and more fresh eating products practical but nutritious, safe and preferably processed under non thermal treatments. The new and emerging post harvest technologies in controlling pathogen and maintaining quality of food products is ionizing radiation, because it is applicable for almost all type of foods without impairing the overall quality as well as sensory attributes. The foods either fresh, dried, or ready to eat meals in the packages can be exposed to ionizing radiation for different purposes such as quarantine measures, control of sprouting and germination, shelf-life extension of perishable foods, delaying ripening and aging of fruits and vegetables, destruction of parasites and harmful pathogenic microorganisms. International trade of agricultural commodities opens the possibility of the movement of pests such as insects from country to country. The countries involve in this business have established laws and regulations, including international trade regulation of irradiated foods, in order to minimize the risk and trade barrier. The future of food irradiation is filled with promise although the needs for this technique relates to consumer acceptance. Consumers will grow to appreciate the technology for the lifesaving and good food availability. It should be kept in mind that irradiation is controlling contamination and it does not prevent it.

  10. Determination of radiation-induced hydrocarbons in processed food and complex lipid matrices. A new solid phase extraction (SPE) method for detection of irradiated components in food

    International Nuclear Information System (INIS)

    Hartmann, M.; Ammon, J.; Berg, H.

    1997-01-01

    Detection of irradiated components in processed food with complex lipid matrices can be affected by two problems. First, the processed food may contain only a small amount of the irradiated component, and the radiation-induced hydrocarbons may be diluted throughout the lipid matrix of the whole food. Second, in complex lipid matrices, the detection of prior irradiation is often disturbed by fat-associated compounds. In these cases, common solid phase extraction (SPE) Florisil clean-up alone is inadequate in the detection of prior irradiation. Subsequent SPE argentation chromatography of the Florisil eluate allows the measurement of small amounts of irradiated lipid-containing ingredients in processed food as well as the detection of prior irradiation in complex lipid matrices such as paprika and chilli. SPE argetation chromatography is the first method available for the selective enrichment of radiation-specific hydrocarbons from even complex lipid matrices, thus enabling the detection of irradiation does as low as 0.025 kGy. Furthermore, by using radiation-induced hydrocarbons in the detection of prior irradiation of paprika and chilli powder, a second independent method, the first being measurement of thermoluminescence, is available for the analysis of these matrices. Such analysis could be achieved by using this highly sensitive, cheap and easy to perform combined SPE Florisil/argentation chromatography method, without the need for sophisticated techniques like SFE-GC/MS or LC-GC/MS, so that highly sensitive detection of prior irradiation colud be performed in almost every laboratory

  11. Effect of radiation processing in elimination of Klebsiella pneumoniae from food

    International Nuclear Information System (INIS)

    Gautam, Raj Kamal; Nagar, Vandan; Shashidhar, Ravindranath

    2015-01-01

    Klebsiella pneumoniae has been considered as an important foodborne pathogen which causes severe infections that include meningitis, bronchitis, bacteremia, pneumonia, and urinary tract infections in humans and animals. It is well known to most clinicians as a cause of community-acquired bacterial pneumonia. Klebsiella is an opportunistic pathogen, that primarily attacks neonates, infants, elderly and immuno-compromised patients and therefore impose a serious, emerging public health hazard globally. Contaminated sprouts, vegetables, seafood and other animal meat products are considered as main sources of Klebsiella infection. In the current study, radiation sensitivity of K. pneumoniae MTCC 109 was determined in different food samples. The decimal reduction dose (D 10 ) values of K. pneumoniae MTCC 109 in saline and nutrient broth at 0–4 °C were 0.116±0.009, 0.136±0.005 kGy, respectively. The mixed sprouts, fish and poultry samples were inoculated with K. pneumoniae MTCC 109 and exposed to gamma radiation to evaluate the effectiveness of radiation treatment in the elimination of K. pneumoniae. D 10 values of K. pneumoniae in mixed sprouts, poultry and fish samples were found to be 0.142±0.009, 0.125±0.0004 and 0.277±0.012 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in the complete elimination of 3.1±1.8×10 5 CFU/g of K. pneumoniae from these food samples. No recovery of K. pneumoniae was observed in the 1.5 kGy treated samples stored at 4 °C up to 12 days, even after enrichment and selective plating. This study shows that a 1.5 kGy dose of irradiation treatment could lead to the complete elimination of 3.1±1.8×10 5 CFU/g of K. pneumoniae from mixed sprouts, poultry and fish samples. - Highlights: • K. pneumoniae MTCC 109 is sensitive to gamma radiation. • D 10 values is in the range of 0.116–0.277 kGy. • Dose of 1.5 kGy reduced K. pneumonia from 3.1±1.8×10 5 CFU/g to undetectable. • No recovery of K. pneumoniae

  12. Food preservation by ionising radiation

    International Nuclear Information System (INIS)

    Andrade, M. E.

    1996-01-01

    The process of food preservation by ionising radiation is an alternative, or a complement, to the traditional methods of heating, refrigerating, freezing or using chemical additives. The study and development of this technique has started on the beginning of the fifties but it is based on the radiation killing effect on micro-organisms discovered by the end of last century. Foodstuffs are treated in appropriate plants: isotopic facilities (gamma radiation) and accelerated electron beams produced by machines called accelerators. The FAO and WHO in close cooperation with the IAEA have played an important role on the development of the process and on the increment of the industrial application of food irradiation. Over the world there are about 37 countries trading foods treated by ionising radiation. However, governments have been slow to clear the utilization of this process. The main reason of this attitude is in general due to the fact that the advantages of the technique are not clearly understood. Therefore, the dissemination of the information could on one hand clarify who has to take decisions and on the other hand support the choice of those foods by the consumers. This is the unique way to dynamize the application of this process

  13. Introduction to radiation processing

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2008-01-01

    Nuclear technology such as γ-rays, electron beams and ion beams irradiation is widely used in industrial, medical and agricultural fields. The purpose of radiation application is aiming at increasing welfare and quality of our life. Radiation technology applied to medical care is widely known as X-ray diagnosis but the contribution of radiation processing to our daily life is not well known even though it is effectively used in industry and agriculture. The main radiation processing in industry is the modification of polymers, i.e. heat shrinkable tube, radial tire, plastic foam, etc. in a car, heat resistant wire and cable, semiconductor, floppy disk, etc. in a computer, and sterilization of medical devices. In Agriculture, radiation has been used in various fields such as food irradiation, sterile insect technique, mutation breeding, etc. contributing for human being to supply foods and sustainable environment. (author)

  14. Industrial processing with radiation

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1976-01-01

    The use of large isotopic radiation sources and accelerators in industry is reviewed. The advantages of various sources of ionizing radiation are indicated, and the development and present status of radiation technology are briefly described. Attention is given to the role played by radiation processing in the cross-linking of polymers as applied to cable insulation, artificial limbs and packaging materials, as well as for improving natural rubber. In addition, attention is given to radiation as a possible means of synthesizing polymers, of hardening non-conventional coatings and of manufacturing polymer-wood composites, thereby improving the properties of softwoods. The possibility of improving natural fibres by means of radiation is discussed, and attention is given to the important role already played by radiation in the sterilization of medical products. Finally, reference is made to the role which radiation can play in reducing food spoilage, as well as in making sewage sludge suitable for agricultural purposes [af

  15. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  16. A new kind of radiation dose indicators for control of food irradiation processing

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Pham Duy Duong; Nguyen Dinh Duong; Kojima, T.

    2007-01-01

    A new kind of label dosimeters based on the polyvinyl butyral and dye compounds including leuco malachite green and methyl orange was developed for use as devices for discriminating and monitoring radiation treatment in food irradiation. The dosimeters change their color from orange-yellow to greenish under irradiation with gamma rays or electrons to dose just about 3 kGy. The greenish continue to develop to deep-green upon the increase of dose to 10 kGy. This makes the indicators useful for the dose range of food irradiation application, especially in treatment of frozen meat and sea products for elimination of micro-organism. The indicators were made in a stick-on label type showing attractive characteristics in use. The orange-yellow color before irradiation keep well stable under normal conditions in laboratory. The green after irradiation maintained as long as 6 months in practical conditions of products. New indicators can fill the gap in the demand of labeling indicators of food irradiation in our country as well as the world. (author)

  17. Microbiological safety of tenderized, proteinaceous, semi-processed and processed food prepared from poultry treated with ionizing radiation and other processes

    International Nuclear Information System (INIS)

    Klinger, I.; Lapidot, M.

    1998-01-01

    From a microbiological point of view, poultry meat is considered to be one of the most contaminated raw foods, harbouring bacteria, including pathogens such as Salmonella spp., Staphylococcus aureus, Listeria monocytogenes and Campylobacter spp. Some of these pathogens can survive the heat treatment used during the further processing of poultry meat into ready to eat products such as sausages and patties, and thus endanger consumer health, particularly in the young, the elderly and the immunocompromised. L. monocytogenes is of particular concern. This Gram positive, non-spore forming, psychrotrophic pathogen has been recognized as one of the causes of a severe food borne illness. The organism is relatively heat stable and can multiply under refrigeration conditions, but is sensitive to ionizing radiation. A survey conducted in Israel demonstrated that raw poultry meat was heavily contaminated with L. monocytogenes and that the pathogen could also be recovered from ready to eat poultry products. It was proposed that treatment of the raw meat with ionizing radiation prior to heating and use of the hazard analysis critical control point concept in the further processing plant would result in the elimination of contamination in ready to eat products. (author)

  18. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  19. Studies on assessment of health effects of radiation processed foods: Part 1. genetic toxicological evaluation in somatic and germ cells of laboratory animals

    Energy Technology Data Exchange (ETDEWEB)

    Chaubey, R C; Aravindakshan, M; Chauhan, P S [Genetic Toxicology and Chromosome Studies Section, Cell Biology Div., Bhabha Atomic Research Centre, Mumbai (India)

    1999-09-01

    The studies summarized in this report form a part of the program on the safety evaluation of radiation-processed foods, an important component of the development of radiation technology for food preservation from the public health point of view. These studies contributed significantly and critically to the acceptance of safety of radiation processed foods by regulatory agencies both at the national and international levels. This report contains only genetic studies, one aspect of this program, while the remaining studies will be summarized in a separate report.

  20. Studies on assessment of health effects of radiation processed foods: Part 1. genetic toxicological evaluation in somatic and germ cells of laboratory animals

    International Nuclear Information System (INIS)

    Chaubey, R.C.; Aravindakshan, M.; Chauhan, P.S.

    1999-09-01

    The studies summarized in this report form a part of the program on the safety evaluation of radiation-processed foods, an important component of the development of radiation technology for food preservation from the public health point of view. These studies contributed significantly and critically to the acceptance of safety of radiation processed foods by regulatory agencies both at the national and international levels. This report contains only genetic studies, one aspect of this program, while the remaining studies will be summarized in a separate report

  1. Estimation of the absorbed dose in radiation-processed food. Pt.2

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1991-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately evaluate the absorbed dose to radiation-processed bones (and thus meats) is examined. Additive re-irradiation of the bone produces a reproducible response function which can be used to evaluate the initial dose by back-extrapolation. It was found that an exponential fit (vs linear or polynomial) to the data provides improved accuracy of the estimated dose. These data as well as the protocol for the additive dose method are presented. (author)

  2. Determination of volatiles produced during radiation processing in food and medicinal herbs

    International Nuclear Information System (INIS)

    Salum, Debora Christina

    2008-01-01

    In order to protect food from pathogenic microorganisms as well as to increase its shelf life while keeping sensorial properties (e.g. odor and taste), once the latter are one of the main properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. The aim of the present study was to analyze volatile formation from Co irradiation of Laurus Cinnamomum, Piper Nigrum, Origanum Vulgare and Myristica Fragans. Possible changes on the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties in order to allow better application of irradiation technology. l he samples have been irradiated in plastic packages by making use of a 60 Co Gamma irradiator. Irradiation doses of 0, 5, 10, 15, 20 and 25kGy have been tested. For the analysis of the samples, SPME has been applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation has promoted mostly decrease in volatile compounds when doses of 5, 10, 15, 20 and 25kGy were used. For Laurus cinnamomum, the irradiation decreased volatile by nearly 56% and 89.5% respectively, comparing to volatile from a sample which has not been previously irradiated. Differently from other spices analyzed, irradiation on Myristica Fragans has increased volatile compounds except for 4-terpineol. The miristicine (toxic substance when in large quantities, commonly mentioned as narcotic) has increased by nearly 80%. For Origanum Vulgare and Piper Nigrum, significant decrease in volatile compounds have been found, mainly when it comes to 25 kGy irradiation. In general, results indicate loss of sensorial quality of spices. (author)

  3. Application of ultraviolet and infrared radiation in food

    Directory of Open Access Journals (Sweden)

    D Jafarpour

    2018-03-01

    Conclusion: According to variety of food and maintenance ways, food irradiation is one of the best ways. Food quality becomes constant in different times by processing of food with radiation and putrefactions can stop by controlling of microorganisms

  4. Food irradiation with ionizing radiation

    International Nuclear Information System (INIS)

    Hrudkova, A.; Pohlova, M.; Sedlackova, J.

    1974-01-01

    Application possibilities are discussed of ionizing radiation in inhibiting plant germination, in radiopasteurization and radiosterilization of food. Also methods of combining radiation with thermal food sterilization are discussed. The problems of radiation doses and of hygienic purity of irradiated foodstuffs are dealt with. (B.S.)

  5. Food Process Engineering

    DEFF Research Database (Denmark)

    Friis, Alan; Jensen, Bo Boye Busk; Risum, Jørgen

    to calculate the requirements of heat processing. Our goal is to put food engineering into a production context. Other courses teach food chemistry, food microbiology and food technology. Topics of great importance and all have to be seen in a broader context of producing good and safe food in a large scale...

  6. Food physics and radiation techniques

    International Nuclear Information System (INIS)

    Szabo, A. S.

    1999-01-01

    In the lecture information is given about food physics, which is a rather new, interdisciplinary field of science, connecting food science and applied physics. The topics of radioactivity of foodstuffs and radiation techniques in the food industry are important parts of food physics detailed information will be given about the main fields (e.g. radio stimulation, food preservation) of radiation techniques in the agro-food sector. Finally some special questions of radioactive contamination of foodstuffs in hungary and applicability of radioanalytical techniques (e.g. Inaa) for food investigation will be analyzed and discussed

  7. Application of ultraviolet and infrared radiation in food

    OpenAIRE

    D Jafarpour; M Alizadeh; F Siamak

    2018-01-01

    BACKGROUND: There are many uses of radiation in the food industry. Radiation can be considered as one of the new processes and usage of it can offer new features of food. This process in most food doesn’t leave any physical or sensory changes. Therefore, in this review article, the application of ultraviolet and infrared radiation in food was studied. Methods: Search by the keywords “Ultraviolet Radiation Infrared Radiation Food” in databases Pubmed, Scopus and Web of Sci...

  8. Electromagnetic energy and food processing

    International Nuclear Information System (INIS)

    Mudgett, R.

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1 st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1 st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plant products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy. (33 refs.)

  9. Food packaging and radiation sterilization

    International Nuclear Information System (INIS)

    Kawamura, Yoko

    1998-01-01

    Radiation sterilization has several merits that it is a positively effective sterilization method, it can be used to sterilize low heat-resistant containers and high gas barrier films, and there is no possibility of residual chemicals being left in the packages. It has been commercially used in 'Bag in a Box' and some food containers. The γ ray and an electron beam are commonly used in radiation sterilization. The γ ray can sterilize large size containers and containers with complex shapes or sealed containers due to its strong transmission capability. However, since the equipment tends to be large and expensive, it is generally used in off production lines. On the other hand, it is possible to install and electron beam system on food production lines since the food can be processed in a short time due to its high beam coefficient and its ease of maintenance, even though an electron beam has limited usage such as sterilizing relatively thin materials and surface sterilization due to the weak transmission. A typical sterilization dose is approximately 10-30 kGy. Direct effects impacting packaging materials, particularly plastics, include scission of polymer links, cross-linkage between polymers, and generating radiolysis products such as hydrogen, methane, aliphatic hydrocarbons, etc. Furthermore, under the existence of oxygen, the oxygen radicals generated by the radiation will oxidize and peroxidize polymer chains and will generate alcohol and carbonyl groups, which shear polymer links, and generate oxygen containing low molecular compounds. As a result, degradation of physical strength such as elongation and seal strength, generating foreign odor, and an increase in global migration values shown in an elution test are sometimes evident. The food packages have different shapes, materials, additives, number of microorganisms and purpose. Therefor the effects of radiation, the optimum dose and so on must be investigated on the individual package. (J.P.N.)

  10. International cooperative effort to establish ASTM [American Society for Testing and Materials] standards for the measurement of radiation dose for food processing

    International Nuclear Information System (INIS)

    Farrar, H. IV.

    1987-01-01

    A task group has been formed within the American Society for Testing and Materials (ASTM) specifically to develop standards for measuring radiation dose for food processing. The task group, which has 78 members, including 16 from Europe, consists of a broad cross section of food industry, government, regulatory, manufacturing, and university interests. The group is working on seven standards; three specifically for food irradiation applications, and four for using specific dosimeter types for all radiation applications, including food processing. Together, this set of standards will specify acceptable methods of accomplishing the required irradiation treatment of food and other products, and will be available for adoption by regulatory agencies in food irradiation protocols. 1 tab

  11. Food-Processing Wastes.

    Science.gov (United States)

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  12. Radiation processing of polysaccharides

    International Nuclear Information System (INIS)

    2004-11-01

    Radiation processing is a very convenient tool for imparting desirable effects in polymeric materials and it has been an area of enormous interest in the last few decades. The success of radiation technology for processing of synthetic polymers can be attributed to two reasons namely, their ease of processing in various shapes and sizes, and secondly, most of these polymers undergo crosslinking reaction upon exposure to radiation. In recent years, natural polymers are being looked at with renewed interest because of their unique characteristics, such as inherent biocompatibility, biodegradability and easy availability. Traditionally, the commercial exploitation of natural polymers like carrageenans, alginates or starch etc. has been based, to a large extent, on empirical knowledge. But now, the applications of natural polymers are being sought in knowledge - demanding areas such as pharmacy and biotechnology, which is acting as a locomotive for further scientific research in their structure-function relationship. Selected success stories concerning radiation processed natural polymers and application of their derivatives in the health care products industries and agriculture are reported. This publication will be of interest to individuals at nuclear institutions worldwide that have programmes of R and D and applications in radiation processing technologies. New developments in radiation processing of polymers and other natural raw materials give insight into converting them into useful products for every day life, human health and environmental remediation. The book will also be of interest to other field specialists, readers including managers and decision makers in industry (health care, food and agriculture) helping them to understand the important role of radiation processing technology in polysaccharides

  13. Food processing in action

    Science.gov (United States)

    Radio frequency (RF) heating is a commonly used food processing technology that has been applied for drying and baking as well as thawing of frozen foods. Its use in pasteurization, as well as for sterilization and disinfection of foods, is more limited. This column will review various RF heating ap...

  14. Radiation sterilization and food packaging

    International Nuclear Information System (INIS)

    Harrison, N.

    1991-01-01

    Food irradiation by gamma radiation or electron beams offers a number of benefits to be consumer and to the food industry. Low doses can delay fruit ripening while higher doses can reduce or eliminate pathrogenic microorganisms and control insect infestation. However, ionizing radiations are known to have an effect on the plastics used for food packaging, especially PVC and polyethylene. This chapter looks at food irradiation generally, including legislation on the irradiation of food packaging materials. The effect on specific polymers (PVC, polyethylenes, polypropylene, polystyrene, polyamides and flexible laminates) is then considered. It is concluded that few of the plastics used for food packaging are significantly affected by an overall average dose of 10KGy, the maximum likely for the irradiation of prepackaged food in the United Kingdom. (UK)

  15. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1998-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  16. Food irradiation: Gamma processing facilities

    International Nuclear Information System (INIS)

    Kunstadt, P.

    1997-01-01

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  17. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1997-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  18. Applications of radiation processing in combination with conventional treatments to assure food safety: New development

    International Nuclear Information System (INIS)

    Lacroix, M.; Turgis, M.; Borsa, J.; Millette, M.; Salmieri, S.; Caillet, S.; Han, J.

    2009-01-01

    Spice extracts under the form of essential oils (Eos) were tested for their efficiency to increase the relative bacterial radiosensitivity (RBR) of Listeria monocytogenes, Escherichia coli and Salmonellatyphi in culture media under different atmospheric conditions. The selected Eos were tested for their ability to reduce the dose necessary to eliminate E. coli and S.typhi in medium fat ground beef (23% fat) and Listeria in ready-to-eat carrots when packed under air or under atmosphere rich in oxygen (MAP). Results have demonstrated that depending of the compound added and the combined treatment used, the RBR increased from 2 to 4 times. In order to evaluate the industrial feasibility, EOs were added in ground beef at a concentration which does not affect the taste and treated at a dose of 1.5 kGy. The content of total mesophilic aerobic, E. coli, Salmonella, total coliform, lactic acid bacteria, and Pseudomonas was determined during 28 days. The results showed that the combined treatment (radiation and EOs) can eliminate Salmonella and E. coli when done under air. When done under MAP, Pseudomonas could be eliminated and a shelf life of more than 28 days was observed. An active edible coating containing EOs was also developed and sprayed on ready-to-eat carrots before radiation treatment and Listeria was evaluated. A complete inhibition of Listeria was obtained at a dose of 0.5 kGy when applied under MAP. Our results have shown that the combination of an edible coating, MAP, and radiation can be used to maintain the safety of meat and vegetables.

  19. Applications of radiation processing in combination with conventional treatments to assure food safety: New development

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M. [Canadian Irradiation Center, Research Laboratory in Sciences Applied to Food, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Quebec (Canada)], E-mail: monique.lacroix@iaf.inrs.ca; Turgis, M. [Canadian Irradiation Center, Research Laboratory in Sciences Applied to Food, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Quebec (Canada); Borsa, J. [MDS Nordion, 447 March Road, Kanata, Ontario, K2K 2P7 (Canada); Millette, M.; Salmieri, S.; Caillet, S. [Canadian Irradiation Center, Research Laboratory in Sciences Applied to Food, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Quebec (Canada); Han, J. [Sungkyunkwan University, Department of Food Science and Biotechnology, Suwon 440-746 (Korea, Republic of)

    2009-11-15

    Spice extracts under the form of essential oils (Eos) were tested for their efficiency to increase the relative bacterial radiosensitivity (RBR) of Listeria monocytogenes, Escherichia coli and Salmonellatyphi in culture media under different atmospheric conditions. The selected Eos were tested for their ability to reduce the dose necessary to eliminate E. coli and S.typhi in medium fat ground beef (23% fat) and Listeria in ready-to-eat carrots when packed under air or under atmosphere rich in oxygen (MAP). Results have demonstrated that depending of the compound added and the combined treatment used, the RBR increased from 2 to 4 times. In order to evaluate the industrial feasibility, EOs were added in ground beef at a concentration which does not affect the taste and treated at a dose of 1.5 kGy. The content of total mesophilic aerobic, E. coli, Salmonella, total coliform, lactic acid bacteria, and Pseudomonas was determined during 28 days. The results showed that the combined treatment (radiation and EOs) can eliminate Salmonella and E. coli when done under air. When done under MAP, Pseudomonas could be eliminated and a shelf life of more than 28 days was observed. An active edible coating containing EOs was also developed and sprayed on ready-to-eat carrots before radiation treatment and Listeria was evaluated. A complete inhibition of Listeria was obtained at a dose of 0.5 kGy when applied under MAP. Our results have shown that the combination of an edible coating, MAP, and radiation can be used to maintain the safety of meat and vegetables.

  20. Applications of radiation processing in combination with conventional treatments to assure food safety: New development

    Science.gov (United States)

    Lacroix, M.; Turgis, M.; Borsa, J.; Millette, M.; Salmieri, S.; Caillet, S.; Han, J.

    2009-11-01

    Spice extracts under the form of essential oils (Eos) were tested for their efficiency to increase the relative bacterial radiosensitivity (RBR) of Listeria monocytogenes, Escherichia coli and Salmonellatyphi in culture media under different atmospheric conditions. The selected Eos were tested for their ability to reduce the dose necessary to eliminate E. coli and S.typhi in medium fat ground beef (23% fat) and Listeria in ready-to-eat carrots when packed under air or under atmosphere rich in oxygen (MAP). Results have demonstrated that depending of the compound added and the combined treatment used, the RBR increased from 2 to 4 times. In order to evaluate the industrial feasibility, EOs were added in ground beef at a concentration which does not affect the taste and treated at a dose of 1.5 kGy. The content of total mesophilic aerobic, E. coli, Salmonella, total coliform, lactic acid bacteria, and Pseudomonas was determined during 28 days. The results showed that the combined treatment (radiation and EOs) can eliminate Salmonella and E. coli when done under air. When done under MAP, Pseudomonas could be eliminated and a shelf life of more than 28 days was observed. An active edible coating containing EOs was also developed and sprayed on ready-to-eat carrots before radiation treatment and Listeria was evaluated. A complete inhibition of Listeria was obtained at a dose of 0.5 kGy when applied under MAP. Our results have shown that the combination of an edible coating, MAP, and radiation can be used to maintain the safety of meat and vegetables.

  1. Organic food processing

    DEFF Research Database (Denmark)

    Kahl, Johannes; Alborzi, Farnaz; Beck, Alexander

    2014-01-01

    In 2007 EU Regulation (EC) 834/2007 introduced principles and criteria for organic food processing. These regulations have been analysed and discussed in several scientific publications and research project reports. Recently, organic food quality was described by principles, aspects and criteria....... These principles from organic agriculture were verified and adapted for organic food processing. Different levels for evaluation were suggested. In another document, underlying paradigms and consumer perception of organic food were reviewed against functional food, resulting in identifying integral product...... identity as the underlying paradigm and a holistic quality view connected to naturalness as consumers' perception of organic food quality. In a European study, the quality concept was applied to the organic food chain, resulting in a problem, namely that clear principles and related criteria were missing...

  2. Zapping foods with radiation

    International Nuclear Information System (INIS)

    Sugarman, C.

    1992-01-01

    Does food that has been irradiated have fewer vitamins than food that hasn't? And what happens to the nutrients in strawberries, for example, if you irradiate, freeze, defrost and then bake the fruit in a pie? Those are some of the questions that resurfaced last month when the nation's first food irradiation plant opened in Mulberry, Fla. Marking Vindicator Inc.'s opening was a batch of irradiated strawberries and a rehash of one of the country's longest and most contentious food debates

  3. Novel food processing techniques

    Directory of Open Access Journals (Sweden)

    Vesna Lelas

    2006-12-01

    Full Text Available Recently, a lot of investigations have been focused on development of the novel mild food processing techniques with the aim to obtain the high quality food products. It is presumed also that they could substitute some of the traditional processes in the food industry. The investigations are primarily directed to usage of high hydrostatic pressure, ultrasound, tribomechanical micronization, microwaves, pulsed electrical fields. The results of the scientific researches refer to the fact that application of some of these processes in particular food industry can result in lots of benefits. A significant energy savings, shortening of process duration, mild thermal conditions, food products with better sensory characteristics and with higher nutritional values can be achieved. As some of these techniques act also on the molecular level changing the conformation, structure and electrical potential of organic as well as inorganic materials, the improvement of some functional properties of these components may occur. Common characteristics of all of these techniques are treatment at ambient or insignificant higher temperatures and short time of processing (1 to 10 minutes. High hydrostatic pressure applied to various foodstuffs can destroy some microorganisms, successfully modify molecule conformation and consequently improve functional properties of foods. At the same time it acts positively on the food products intend for freezing. Tribomechanical treatment causes micronization of various solid materials that results in nanoparticles and changes in structure and electrical potential of molecules. Therefore, the significant improvement of some rheological and functional properties of materials occurred. Ultrasound treatment proved to be potentially very successful technique of food processing. It can be used as a pretreatment to drying (decreases drying time and improves functional properties of food, as extraction process of various components

  4. Radiation processing for safe, shelf-stable and ready-to-eat food. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2003-01-01

    The increasingly busy lifestyles of populations in many countries have driven the demand for safe, convenient and ready-to-eat food. Traditional food processes such as drying, canning or refrigeration offer a partial solution to this demand as the sensory quality of such food may be significantly affected or the products may be contaminated by pathogenic bacteria during preparation. For developing countries, safe shelf-stable food without the need for refrigeration would offer advantages. In addition, the increasing number of immuno-compromised populations in many countries requires a new approach to food safety to meet their needs. Irradiation offers a potential to enhance microbiological safety and quality of food through shelf-life extension. The benefits of irradiation as a sanitary treatment of many types of food are well known, some of which are applied commercially in several countries. Little data were available, however, on the effect of irradiation on minimally processed food and composite food including prepared meals. A Co-ordinated Research Project (CRP) on the Development of Safe, Shelf-Stable and Ready-to-Eat Food through Radiation Processing therefore was implemented by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture in 1996 to evaluate the role of irradiation for such food. The results were encouraging as irradiation offers promise as a sanitary treatment to ensure microbiological safety and shelf-life extension of several types of food products including pre-cut vegetables and some sous-vide meals, chilled ready-prepared meals, chilled ready-to-eat meat products, food for immuno-compromised patients/populations, sterile meals, ready-to-eat-food of intermediate moisture content. This publication presents the research results reported at the final Research Co-ordination meeting on this CRP held in Saint Hyacinthe, Quebec, Canada, 10-14 July 2000

  5. Radiation processing for safe, shelf-stable and ready-to-eat food. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    The increasingly busy lifestyles of populations in many countries have driven the demand for safe, convenient and ready-to-eat food. Traditional food processes such as drying, canning or refrigeration offer a partial solution to this demand as the sensory quality of such food may be significantly affected or the products may be contaminated by pathogenic bacteria during preparation. For developing countries, safe shelf-stable food without the need for refrigeration would offer advantages. In addition, the increasing number of immuno-compromised populations in many countries requires a new approach to food safety to meet their needs. Irradiation offers a potential to enhance microbiological safety and quality of food through shelf-life extension. The benefits of irradiation as a sanitary treatment of many types of food are well known, some of which are applied commercially in several countries. Little data were available, however, on the effect of irradiation on minimally processed food and composite food including prepared meals. A Co-ordinated Research Project (CRP) on the Development of Safe, Shelf-Stable and Ready-to-Eat Food through Radiation Processing therefore was implemented by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture in 1996 to evaluate the role of irradiation for such food. The results were encouraging as irradiation offers promise as a sanitary treatment to ensure microbiological safety and shelf-life extension of several types of food products including pre-cut vegetables and some sous-vide meals, chilled ready-prepared meals, chilled ready-to-eat meat products, food for immuno-compromised patients/populations, sterile meals, ready-to-eat-food of intermediate moisture content. This publication presents the research results reported at the final Research Co-ordination meeting on this CRP held in Saint Hyacinthe, Quebec, Canada, 10-14 July 2000.

  6. Radiation in industrial processes

    International Nuclear Information System (INIS)

    1959-01-01

    -linking of polyvinyl alcohol (PVA) and poly-vinyl chloride (PVC), well known polymers derived from the ethylene group. Some papers dealt with the chain oxidation and chlorination of hydro-carbons, both of which are among the most important chemical processes in industry. The effects of radiation on coal and methanation reactions were also discussed. Another subject that came up related to the possibility of improving catalysts by irradiation. It is widely realized that some of the effects produced by ionizing radiation are likely to influence catalytic properties and attempts have been made to alter the catalytic activity of solids by exposure to nuclear radiation. A major field for the use of ionizing radiation is sterilization. The pharmaceutical industry, for example, has been in need of a method by which sensitive materials like proteins and enzymes could be sterilized without the application of heat or highly reactive chemicals. Another related subject discussed at the conference was sterilization of medical supplies like surgical instruments, hypodermic needles and rubber equipment. A further specific application considered in this connexion was sterilization of ampoules of distilled water with gamma rays, which can be of economic advantage in the industrial field. The sterilizing activity of radiation is also useful in the preservation of food and there has been intensive research in several countries on devising an effective and safe method for the treatment of food with ionizing radiations. An account of this research and of the results obtained was given at the conference, and the potentialities were evaluated. Many of the papers presented at the conference examined problems connected with the design and construction of suitable radiation sources for the varied uses in industry. Cobalt sources of different types were described in detail and their operating experience was narrated and discussed. The relative efficiency and usefulness of different radiation sources

  7. Process validation for radiation processing

    International Nuclear Information System (INIS)

    Miller, A.

    1999-01-01

    Process validation concerns the establishment of the irradiation conditions that will lead to the desired changes of the irradiated product. Process validation therefore establishes the link between absorbed dose and the characteristics of the product, such as degree of crosslinking in a polyethylene tube, prolongation of shelf life of a food product, or degree of sterility of the medical device. Detailed international standards are written for the documentation of radiation sterilization, such as EN 552 and ISO 11137, and the steps of process validation that are described in these standards are discussed in this paper. They include material testing for the documentation of the correct functioning of the product, microbiological testing for selection of the minimum required dose and dose mapping for documentation of attainment of the required dose in all parts of the product. The process validation must be maintained by reviews and repeated measurements as necessary. This paper presents recommendations and guidance for the execution of these components of process validation. (author)

  8. Dosimetry and process control for radiation processing

    International Nuclear Information System (INIS)

    Mod Ali, N.

    2002-01-01

    Complete text of publication follows. Accurate radiation dosimetry can provide quality assurance in radiation processing. Considerable relevant experiences in dosimetry by the SSDL-MINT has necessitate the development of methods making measurement at gamma plant traceable to the national standard. It involves the establishment of proper calibration procedure and selection of appropriate transfer system/technique to assure adequate traceability to a primary radiation standard. The effort forms the basis for irradiation process control, the legal approval of the process by the public health authorities (medical product sterilization and food preservation) and the safety and acceptance of the product

  9. Preserving food the radiation way

    International Nuclear Information System (INIS)

    Pim, L.

    1983-01-01

    The food irradiation issue was brought to the public's attention in the summer of 1983 when the Canadian federal government announced proposals to introduce regulations that would speed up the introduction of irradiated food for commercial use and resolve questions about the labelling of such food. The article covers the political forces involved as well as the problems involved in the irradiation process. These problems include chemical toxicity, nutritional quality, bacterial problems and the foods that are unsuitable for irradiation

  10. Food processing and allergenicity.

    Science.gov (United States)

    Verhoeckx, Kitty C M; Vissers, Yvonne M; Baumert, Joseph L; Faludi, Roland; Feys, Marcel; Flanagan, Simon; Herouet-Guicheney, Corinne; Holzhauser, Thomas; Shimojo, Ryo; van der Bolt, Nieke; Wichers, Harry; Kimber, Ian

    2015-06-01

    Food processing can have many beneficial effects. However, processing may also alter the allergenic properties of food proteins. A wide variety of processing methods is available and their use depends largely on the food to be processed. In this review the impact of processing (heat and non-heat treatment) on the allergenic potential of proteins, and on the antigenic (IgG-binding) and allergenic (IgE-binding) properties of proteins has been considered. A variety of allergenic foods (peanuts, tree nuts, cows' milk, hens' eggs, soy, wheat and mustard) have been reviewed. The overall conclusion drawn is that processing does not completely abolish the allergenic potential of allergens. Currently, only fermentation and hydrolysis may have potential to reduce allergenicity to such an extent that symptoms will not be elicited, while other methods might be promising but need more data. Literature on the effect of processing on allergenic potential and the ability to induce sensitisation is scarce. This is an important issue since processing may impact on the ability of proteins to cause the acquisition of allergic sensitisation, and the subject should be a focus of future research. Also, there remains a need to develop robust and integrated methods for the risk assessment of food allergenicity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Current status of radiation processing

    International Nuclear Information System (INIS)

    Silverman, J.

    1979-01-01

    A summary is presented of recent developments and problems in the field of radiation processing. Examples are given of a wide range of industrial products and processes. Irradiation plants are discussed. Cross-linking and sterilization are still the principal areas of success. Some setbacks are mentioned, including the appearance of regulatory codes forbidding the use of high energy electrons in the irradiation of food packing materials. Promising applications, such as food sterilization, treatment of sewage and other wastes, chemical synthesis and the curing of paints. The need for more fundamental work on radiation chemistry is stressed. (U.K.)

  12. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  13. Ionizing radiation effects on food vitamins: a review

    International Nuclear Information System (INIS)

    Dionisio, Ana Paula; Gomes, Renata Takassugui; Oetterer, Marilia

    2009-01-01

    Ionizing radiation has been widely used in industrial processes, especially in the sterilization of medicines, pharmaceuticals, cosmetic products, and in food processing. Similar to other techniques of food processing, irradiation can induce certain alterations that can modify both the chemical composition and the nutritional value of foods. These changes depend on the food composition, the irradiation dose and factors such as temperature and presence or absence of oxygen in the irradiating environment. The sensitivity of vitamins to radiation is unpredictable and food vitamin losses during the irradiation are often substantial. The aim of this study was to discuss retention or loss of vitamins in several food products submitted to an irradiation process. (author)

  14. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  15. Food Processing Control

    Science.gov (United States)

    1997-01-01

    When NASA started plarning for manned space travel in 1959, the myriad challenges of sustaining life in space included a seemingly mundane but vitally important problem: How and what do you feed an astronaut? There were two main concerns: preventing food crumbs from contaminating the spacecraft's atmosphere or floating into sensitive instruments, and ensuring complete freedom from potentially catastrophic disease-producing bacteria, viruses, and toxins. To solve these concerns, NASA enlisted the help of the Pillsbury Company. Pillsbury quickly solved the first problem by coating bite-size foods to prevent crumbling. They developed the hazard analysis and critical control point (HACCP) concept to ensure against bacterial contamination. Hazard analysis is a systematic study of product, its ingredients, processing conditions, handling, storage, packing, distribution, and directions for consumer use to identify sensitive areas that might prove hazardous. Hazard analysis provides a basis for blueprinting the Critical Control Points (CCPs) to be monitored. CCPs are points in the chain from raw materials to the finished product where loss of control could result in unacceptable food safety risks. In early 1970, Pillsbury plants were following HACCP in production of food for Earthbound consumers. Pillsbury's subsequent training courses for Food and Drug Administration (FDA) personnel led to the incorporation of HACCP in the FDA's Low Acid Canned Foods Regulations, set down in the mid-1970s to ensure the safety of all canned food products in the U.S.

  16. Preservation of food and radiation

    International Nuclear Information System (INIS)

    Kasamatsu, Tomomichi

    1975-01-01

    In the application of radiation to preservation of food, there are some methods; sterilization, elimination of noxious insects, prevention of germination and control of maturation. The former two utilize the lethal effect of radiation to the living things and the latter two utilize the injurious effect on the metabolism of the living things. At present, irradiation to potato is most widely permitted for the purpose of prevention of germination, and the irradiation with 15 Krad (maximum) is allowed to preserve potato for 8 months in Japan. In the other hand, a large quantity of doses, such as 4.5 to 5.6 Mrad, is necessary to sterilize completely for industrial use, degeneration of food component and high cost come into question. In addition, food is directly taken into the mouth of human being, therefore, wholesomeness, legal permission and determination of dose must be examined. (Tsukamoto, Y.)

  17. Radiation processing in Japan

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2001-01-01

    Economic scale of radiation application in the field of industry, agriculture and medicine in Japan in 1997 was investigated to compare its economic impacts with that of nuclear energy industry. Total production value of radiation application accounted for 54% of nuclear industry including nuclear energy industry and radiation applications in three fields above. Industrial radiation applications were further divided into five groups, namely nondestructive test, RI instruments, radiation facilities, radiation processing and ion beam processing. More than 70% of the total production value was brought about by ion beam processing for use with IC and semiconductors. Future economic prospect of radiation processing of polymers, for example cross-linking, EB curing, graft polymerization and degradation, is reviewed. Particular attention was paid to radiation vulcanization of natural rubber latex and also to degradation of natural polymers. (S. Ohno)

  18. Radiation processing in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Economic scale of radiation application in the field of industry, agriculture and medicine in Japan in 1997 was investigated to compare its economic impacts with that of nuclear energy industry. Total production value of radiation application accounted for 54% of nuclear industry including nuclear energy industry and radiation applications in three fields above. Industrial radiation applications were further divided into five groups, namely nondestructive test, RI instruments, radiation facilities, radiation processing and ion beam processing. More than 70% of the total production value was brought about by ion beam processing for use with IC and semiconductors. Future economic prospect of radiation processing of polymers, for example cross-linking, EB curing, graft polymerization and degradation, is reviewed. Particular attention was paid to radiation vulcanization of natural rubber latex and also to degradation of natural polymers. (S. Ohno)

  19. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  20. Irradiation processing of food

    International Nuclear Information System (INIS)

    Anunuso, C.I.

    1988-01-01

    Ionizing radiation is now showing new promise of contributing to the feeding of hungry populations, solving solid and liquid waste disposal problems, providing safer medical supplies, pharmaceuticals, and other commodities, and at the same time reducing energy consumption in industrial processing in general. (author)

  1. Pallet irradiators for food processing

    International Nuclear Information System (INIS)

    McKinnon, R.G.; Chu, R.D.H.

    1985-01-01

    This paper looks at the various design concepts for the irradiation processing of food products, with particular emphasis on handling the products on pallets. Pallets appear to offer the most attractive method for handling foods from many considerations. Products are transported on pallets. Warehouse space is commonly designed for pallet storage and, if products are already palletized before and after irradiation, then labour could be saved by irradiating on pallets. This is also an advantage for equipment operation since a larger carrier volume means lower operation speeds. Different pallet irradiator design concepts are examined and their suitability for several applications are discussed. For example, low product holdup for fast turn around will be a consideration for those operating an irradiation 'service' business; others may require a very large source where efficiency is the primary requirement and this will not be consistent with low holdup. The radiation performance characteristics and processing costs of these machines are discussed. (author)

  2. Preservation of food by ionizing radiation

    International Nuclear Information System (INIS)

    Josephson, E.S.; Peterson, M.S.

    1983-01-01

    This study is presented in three volumes. Vol. I: Presents a concise description of the philosophy of radiation, protection for people working with irradiation processes, including problems associated with the design and operation of a large facility and solutions to problems encountered. Radiation dosimetry and radiolytic effects in foods are also presented. Vol. II: Effects of radiation on bacteria and viruses are discussed as well as the lethal effect on microorganisms and insects. Also presented are the effects of irradiated food on packaging materials. Vol. III: The effects of radurization on meats, poultry, fish, shellfish, fruits, vegetables, and spices. Also included are the effects of irradiation for the use of shelf-life extension

  3. Radiation in response to food preservation

    International Nuclear Information System (INIS)

    Bharti, Navaldey; Ram, R.B.; Gautam, Shreesh Kumar; Kumar, Vikas; Singh, Abhishek

    2012-01-01

    Preservation of food items is a pre-requisite for food security. The seasonal nature of production, perishable nature of food materials (fruits, vegetables and other value added products) and the rising gap between demand and supply have posed great challenges to conventional techniques of food preservation and thereby to food security. Food irradiation, one of the beneficial applications of atomic energy, is an important innovation in food preservation, since the development of canning in the 19th century. It provides an effective alternative to fumigants, which are being phased out owing to their adverse effects on the environment and human health. Moreover, exposure of food material to radiation has strong advantages over conventional methods of preservation such as cold storage, fumigation, salting and drying because it does not lead to loss of taste, texture, flavour, odour etc. or overall quality attributes. Generally, two types of radiations are used i.e., ionizing and non-ionizing. Since radiation does not generate heat, it is termed 'cold sterilization'. Gamma rays, E-beam and X-rays are used for irradiation. Irradiation under approved conditions has been demonstrated to have no dangerous effects on food, either chemical or microbial in nature and does not cause any significant loss of macronutrients. Proteins, fats and carbohydrates undergo little change in nutritional value during irradiation even with doses over 10 kGy, though there may be sensory changes. Similarly, the essential amino acids, essential fatty acids, minerals and trace elements are also unaffected. There can be a decrease in certain vitamins (particularly thiamin) but these are of the same order of magnitude as occurs in other manufacturing processes such as drying/dehydration or canning (thermal sterilization). So, there is urgent need to exploit the benefits of irradiation involve standardization, communication and education. The potential benefits of irradiation technology have been

  4. Radiation exposure mitigation through food

    International Nuclear Information System (INIS)

    Nishimura, Yoshikazu; Yukawa, Masae; Watanabe, Yoshito; Shiraishi, Kunio; Muramatsu, Yasuyuki; Uchida, Shigeo; Watabe, Teruhisa; Miyazaki, Taeko

    2001-01-01

    137 CsCl 2 was incorporated into plants (tomyao and broccoli) and these homogenized solutions were administered to rats. The whole-body retention was determined with an Armac counter. The whole body retention patterns of 137 Cs incorporated into the plants were not significantly different from that of the 137 CsCl 2 solution. Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. The present study was to investigate whether chitosan can be applied to animal and human bodies in order to reduce the bioavailability of radio-iron and -zinc in food. Chitosan inhibits dietary iron absorption only when rats eat on iron-deficient diet. The effectiveness of phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and chitosan in reducing the bioavailability of radio-zinc depend on the concentration of phytate and chitosan. Recently, the share of imported foods increased ca. 40% of Japanese total food consumption. Radioactivities in imported foods must be checked from the viewpoints of internal radiation for Japanese subjects. Concentrations of 232 Th and 238 U in some imported mineral waters were higher than domestic waters. However, internal doses of portable waters are negligible. Individual foodstuffs in major food groups (fish and shellfish, meats, mushrooms, root vegetables and so on), which contributed to some radionuclide intakes in Japanese, were also analyzed to clarify the critical pathway in Japanese subjects. (author)

  5. Radiation processes in astrophysics

    CERN Document Server

    Tucker, Wallace H

    1975-01-01

    The purpose of this book is twofold: to provide a brief, simple introduction to the theory of radiation and its application in astrophysics and to serve as a reference manual for researchers. The first part of the book consists of a discussion of the basic formulas and concepts that underlie the classical and quantum descriptions of radiation processes. The rest of the book is concerned with applications. The spirit of the discussion is to present simple derivations that will provide some insight into the basic physics involved and then to state the exact results in a form useful for applications. The reader is referred to the original literature and to reviews for rigorous derivations.The wide range of topics covered is illustrated by the following table of contents: Basic Formulas for Classical Radiation Processes; Basic Formulas for Quantum Radiation Processes; Cyclotron and Synchrotron Radiation; Electron Scattering; Bremsstrahlung and Collision Losses; Radiative Recombination; The Photoelectric Effect; a...

  6. Radiation signal processing system

    International Nuclear Information System (INIS)

    Bennett, M.; Knoll, G.; Strange, D.

    1980-01-01

    An improved signal processing system for radiation imaging apparatus comprises: a radiation transducer producing transducer signals proportional to apparent spatial coordinates of detected radiation events; means for storing true spatial coordinates corresponding to a plurality of predetermined apparent spatial coordinates relative to selected detected radiation events said means for storing responsive to said transducer signal and producing an output signal representative of said true spatial coordinates; and means for interpolating the true spatial coordinates of the detected radiation events located intermediate the stored true spatial coordinates, said means for interpolating communicating with said means for storing

  7. New trends in food processing.

    Science.gov (United States)

    Señorans, Javier; Ibáñez, Elena; Cifuentes, Alejandro

    2003-01-01

    In this work some of the newest trends in food processing are reviewed. This revision intends to provide an updated overview (including works published until February 2001) on the newest food processes, including food manufacturing, preservation, and control. Modern processes for food and food ingredients manufacturing based on membrane technology, super-critical fluid technology, and some applications of biotechnology are presented, mainly applied to obtain functional foods, "all-natural" enriched foods, probiotics and prebiotics. Also included is a critical assessment concerning non-thermal preservation techniques used for food preservation, such as high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, hurdle systems, etc. Finally, a group of new analytical techniques (i.e., molecular techniques such as Polymerase Chain Reaction (PCR), food image analysis, and biosensors) and their use for food and process control is reviewed.

  8. Global trends in radiation processing

    International Nuclear Information System (INIS)

    Defalco, G.

    2003-01-01

    There will be a brief introduction of the companies of MDS serving the Medical, Biotechnology and Pharmaceutical sectors worldwide. MDS Nordion will be introduced in more detail focused on the products and services of our Nuclear Medicine and Ion Technologies business units. World Trends and issues in Radiation Processing will be discussed on: Sterilization of Medical Devices, Pharmaceuticals, Cosmetics and Consumer products and finally I will present an overview on Food Irradiation progress worldwide

  9. Radiation exposure mitigation through food

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yoshikazu; Yukawa, Masae; Watanabe, Yoshito; Shiraishi, Kunio; Muramatsu, Yasuyuki; Uchida, Shigeo [National Inst. of Radiological Sciences, Chiba (Japan); Watabe, Teruhisa; Miyazaki, Taeko [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Lab. for Radioecology

    2001-12-01

    {sup 137}CsCl{sub 2} was incorporated into plants (tomyao and broccoli) and these homogenized solutions were administered to rats. The whole-body retention was determined with an Armac counter. The whole body retention patterns of {sup 137}Cs incorporated into the plants were not significantly different from that of the {sup 137}CsCl{sub 2} solution. Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. The present study was to investigate whether chitosan can be applied to animal and human bodies in order to reduce the bioavailability of radio-iron and -zinc in food. Chitosan inhibits dietary iron absorption only when rats eat on iron-deficient diet. The effectiveness of phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and chitosan in reducing the bioavailability of radio-zinc depend on the concentration of phytate and chitosan. Recently, the share of imported foods increased ca. 40% of Japanese total food consumption. Radioactivities in imported foods must be checked from the viewpoints of internal radiation for Japanese subjects. Concentrations of {sup 232}Th and {sup 238}U in some imported mineral waters were higher than domestic waters. However, internal doses of portable waters are negligible. Individual foodstuffs in major food groups (fish and shellfish, meats, mushrooms, root vegetables and so on), which contributed to some radionuclide intakes in Japanese, were also analyzed to clarify the critical pathway in Japanese subjects. (author)

  10. Radiation processing in the U.S.S.R.

    Science.gov (United States)

    Pikaev, A. K.

    The present paper is a short review of the modern status of radiation processing in the U.S.S.R. Data on ionizing radiation sources used in radiation processing are reported. The main directions of the development of this field of technology: radiation modification of materials, radiation curing of coatings, radiation-chemical methods of synthesis, radiation sterilization of medical products, radiation treatment of food, application of ionizing radiation for the solution of ecological problems etc. -are considered.

  11. Processed foods: contributions to nutrition.

    Science.gov (United States)

    Weaver, Connie M; Dwyer, Johanna; Fulgoni, Victor L; King, Janet C; Leveille, Gilbert A; MacDonald, Ruth S; Ordovas, Jose; Schnakenberg, David

    2014-06-01

    Both fresh and processed foods make up vital parts of the food supply. Processed food contributes to both food security (ensuring that sufficient food is available) and nutrition security (ensuring that food quality meets human nutrient needs). This ASN scientific statement focuses on one aspect of processed foods: their nutritional impacts. Specifically, this scientific statement 1) provides an introduction to how processed foods contribute to the health of populations, 2) analyzes the contribution of processed foods to "nutrients to encourage" and "constituents to limit" in the American diet as recommended by the Dietary Guidelines for Americans, 3) identifies the responsibilities of various stakeholders in improving the American diet, and 4) reviews emerging technologies and the research needed for a better understanding of the role of processed foods in a healthy diet. Analyses of the NHANES 2003-2008 show that processed foods provide both nutrients to encourage and constituents to limit as specified in the 2010 Dietary Guidelines for Americans. Of the nutrients to encourage, processed foods contributed 55% of dietary fiber, 48% of calcium, 43% of potassium, 34% of vitamin D, 64% of iron, 65% of folate, and 46% of vitamin B-12. Of the constituents to limit, processed foods contributed 57% of energy, 52% of saturated fat, 75% of added sugars, and 57% of sodium. Diets are more likely to meet food guidance recommendations if nutrient-dense foods, either processed or not, are selected. Nutrition and food science professionals, the food industry, and other stakeholders can help to improve the diets of Americans by providing a nutritious food supply that is safe, enjoyable, affordable, and sustainable by communicating effectively and accurately with each other and by working together to improve the overall knowledge of consumers. © 2014 American Society for Nutrition.

  12. Detection of food treated with ionizing radiation

    International Nuclear Information System (INIS)

    Delincee, H.

    1998-01-01

    Treatment of food with ionizing energy-'food irradiation'- is finally becoming reality in many countries. The benefits include an improvement in food hygiene, spoilage reduction and extension of shelf-life. Although properly irradiated food is safe and wholesome, consumers should be able to make their own free choice between irradiated and non-irradiated food. For this purpose labelling is indispensable. In order to check compliance with existing regulations, detection of radiation treatment by analysing the food itself is highly desirable. Significant progress has been made in recent years in developing analytical detection methods utilizing changes in food originating from the radiation treatment

  13. Radiation processed polysaccharide products

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien

    2007-01-01

    Radiation crosslinking, degradation and grafting techniques for modification of polymeric materials including natural polysaccharides have been providing many unique products. In this communication, typical products from radiation processed polysaccharides particularly plant growth promoter from alginate, plant protector and elicitor from chitosan, super water absorbent containing starch, hydrogel sheet containing carrageenan/CM-chitosan as burn wound dressing, metal ion adsorbent from partially deacetylated chitin were described. The procedures for producing those above products were also outlined. Future development works on radiation processing of polysaccharides were briefly presented. (author)

  14. Food preservation using ionizing radiation.

    Science.gov (United States)

    Andrews, L S; Ahmedna, M; Grodner, R M; Liuzzo, J A; Murano, P S; Murano, E A; Rao, R M; Shane, S; Wilson, P W

    1998-01-01

    Irradiation processing has been researched extensively and is now in use worldwide for many food commodities. Irradiation has been successfully used to reduce pathogenic bacteria, eliminate parasites, decrease postharvest sprouting, and extend the shelf life of fresh perishable foods. Although food irradiation is widely accepted in world food markets, U.S. markets have been slower to accept the idea of irradiated food products. For fruits and vegetables, irradiation is not a cure for shelf life problems; cost and quality problems damage preclude its general use. It appears that the most likely use of irradiation in fruits and vegetables is as an insect control in those commodities for which there is no effective alternative method. For grains such as rice and wheat, irradiation has been used primarily to control insect infestation when insects have been shown to develop resistance to the traditional fumigation methods. Treatment of spices with irradiation doses of 10 kGy has proved to extend shelf life without causing significant changes in sensory or chemical quality. Higher doses that effectively sterilize spices, however, may cause undesirable chemical and sensorial changes. For meat, especially red meat, irradiation is considered a viable alternative in the effort to improve the safety of meat products. With time, the authors believe that economic realities and the technical superiority of irradiation for specific poultry products will lead to public acceptance of the process. Irradiation of seafood products is still being considered for approval by the USFDA, although it is currently used in Asian and European markets, especially for shrimp. It is our belief that scientifically based research in food irradiation and the positive results thereof will also prove economical in the twenty-first century. As we move to a more peaceful world with reduced threat of nuclear holocaust, these valid opinions will prevail and will overshadow the distortions and

  15. Radiation processing and sterilization

    International Nuclear Information System (INIS)

    Takehisa, M.; Machi, S.

    1987-01-01

    This growth of commercial radiation processing has been largely dependent on the achievement in production of reliable and less expensive radiation facilities as well as the research and development effort for new applications. Although world statistics of the growth are not available, Figure 20-1 shows steady growth in the number of EBAs installed in Japan for various purposes. Growth rate of Co-60 sources supplied by AECL (Atomic Energy of Canada Limited), which supplied approximately 80% of the world market, approximately 10% per year, including future growth estimates. Potential applications of radiation processing under development are in environmental conservation (e.g., treatment of sewage sludge, waste water, and exhaust gases) and bioengineering (e.g., immobilization of bioactive materials). The authors plan to introduce her the characteristics of radiation processing, examples of its industrial applications, the status of its research and development activities, and an economic analysis

  16. Food processing with linear accelerators

    International Nuclear Information System (INIS)

    Wilmer, M.E.

    1987-01-01

    The application of irradiation techniques to the preservation of foods is reviewed. The utility of the process for several important food groups is discussed in the light of work being done in a number of institutions. Recent findings in food chemistry are used to illustrate some of the potential advantages in using high power accelerators in food processing. Energy and dosage estimates are presented for several cases to illustrate the accelerator requirements and to shed light on the economics of the process

  17. Non-food radiation technology applications of food commodities

    International Nuclear Information System (INIS)

    Mastro, N.L. Del

    2004-01-01

    At present food irradiation is considered an effective, broad-spectrum, residue-free, mature technology. Expertise in irradiation processing exists in a network of centers around the world, some of them in developing countries like Brazil and Argentina South American region. The use of renewable resources coming from crops products is becoming attractive also for non-food applications. In this sense, a complete new approach of higher aggregated value of some commodities like soy and maize, for example, is as renewable resources to create functional polymers, mainly for innovative biodegradable packaging solutions. There is a need of innovative approaches to produce edible/biodegradable materials from natural polymeric macromolecules with adequate properties. Incipient researches pointed to the successful use of irradiation processing to obtain or modify different types of biodegradable/edible plastic materials. This new radiation technology application is particularly important for countries that are leading producers of soybean and other commodities. (Author)

  18. Non-food radiation technology applications of food commodities

    Energy Technology Data Exchange (ETDEWEB)

    Mastro, N.L. Del . [Center of Radiation Technology, Energy and Nuclear Research Institute (IPEN-CNEN/SP), Travessa R, 400 Cidade Universitaria, 05508-900 Sao Paulo (Brazil)

    2004-07-01

    At present food irradiation is considered an effective, broad-spectrum, residue-free, mature technology. Expertise in irradiation processing exists in a network of centers around the world, some of them in developing countries like Brazil and Argentina South American region. The use of renewable resources coming from crops products is becoming attractive also for non-food applications. In this sense, a complete new approach of higher aggregated value of some commodities like soy and maize, for example, is as renewable resources to create functional polymers, mainly for innovative biodegradable packaging solutions. There is a need of innovative approaches to produce edible/biodegradable materials from natural polymeric macromolecules with adequate properties. Incipient researches pointed to the successful use of irradiation processing to obtain or modify different types of biodegradable/edible plastic materials. This new radiation technology application is particularly important for countries that are leading producers of soybean and other commodities. (Author)

  19. Ionizing radiations in food industry

    International Nuclear Information System (INIS)

    Adamo, M.; Tata, A.

    1999-01-01

    Foodstuffs treatment by ionization is able to produce both a shelf-life extension and/or a food borne diseases control through the pathogenic population reduction/elimination. The main process goal is to ensure the hygienic quality and the wholesomeness of products to be marketed, in order to limit food borne diseases originated mainly through the cross contamination process. In fact several products may contain pathogenic agents or bacteria (e.g. Salmonella and Campylbacter in poultry meat), whose associated pathologies are world-wide increasing. At present, over 40 countries provide clearances for the treatment of about 45 different types of foodstuffs and in over 20 of them the ionizing process is already industrially utilized for spices, poultry, shrimps and vegetables. As it refers to process economic aspects, market researches have shown cost figures ranging from few tens to some hundreds Lit/kg, depending on the dose to products. The costs are competitive with alternative treatments, beyond the recovery of economic productivity reduction caused by food borne diseases

  20. Radiation microbiology relevant to the food industry

    International Nuclear Information System (INIS)

    Holzapfel, W.H.

    1985-01-01

    Destruction or inactivation of most microbial cells takes place at relatively low doses of gamma irradiation, making 'pasteurising' treatment of several food commodities in the dose range of 1 to 10 kGy a feasible decontamination method. Several factors may influence the effectiveness of an irradiation process, and should be taken into account when radurisation of foods is practised. Damage to microbes is enhanced in the presence of oxygen and at low pH levels, whereas substances such as sulfhydryl compounds tend to act as protectors. Living organisms may be arranged in the order of increasing resistance to ionising radiation, as follows: higher animals, insects, vegetative bacteria, yeasts and fungi, bacterial endospores and viruses. Most food spoilage organisms as well as food-borne pathogens (D 10 -values for the majority ranging between 0,08 and 0,5 kGy) are sensitive to relatively small irradiation doses. Although several bacterial endospores may survive in radurised foods (D 10 -values ranging between 1,5 and 5,0 kGy), additional safety factors (e.g. low pH, refrigeration, reduced Eh, reduced a w , preservatives) may contribute to the shelf stability of a given food

  1. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  2. Electromagnetic radiation properties of foods and agricultural products

    International Nuclear Information System (INIS)

    Mohsenin, N.N.

    1984-01-01

    In this book, the author examines the effects of the various regions of the electromagnetic radiation spectrum on foods and agricultural products. Among the regions of the electromagnetic radiation spectrum covered are high-energy beta and neutron particles, gamma-rays and X-rays, to lower-energy visible, near infrared, infrared, microwave and low-energy radiowaves and electric currents. Dr. Mohsenin applies these electromagnetic phenomena to food products such as fruits, vegetables, seeds, dairy products, meat and processed foods. Contents: Some Basic Concepts of Electromagnetic Radiation. Basic Instruments for Measurement of Optical Properties. Applications of Radiation in the Visible Spectrum. Color and its Measurement. Sorting for Color and Appearance. Near-Infrared and Infrared Radiation Applications. Applications of High-Energy Radiation. Related Concepts of Microwaves, Radiowaves, and Electric Currents. Measurement of Electrical Properties of Foods and Agricultural Products. Applications of Electrical Properties. Appendix, Cited References. Subject Index

  3. Radiation preservation of sea-foods : development of dehydro-irradiation processes for shrimp (Penaeus indicus) and Bombay duck (Harpodon nehereus)

    International Nuclear Information System (INIS)

    Lewis, N.F.

    1978-01-01

    Bombay duck which comprises more than 10% of India's annual fish catch is not amenable to freezing and canning mainly due to the high content of free water and extreme lability of its proteins. The commercially available sun-dried product is suspect to rapid spoilage by mould leading to impairment of organoleptic qualities. The dehydro-irradiation process using heat and gamma radiation has been developed to stabilise sea foods and is studied with Bombay duck (Harpodon nehereus) and shrimp (Penaeus indicus). The process has been found to preserve Bombay duck laminates for a period of four months at ambient temperature and the products are more superior in organoleptic qualities to those prepared by the conventional sun-drying method. (M.G.B.)

  4. How extrusion shapes food processing

    Science.gov (United States)

    This month's column will explore food extrusion. Extrusion is one of the most commonly used food manufacturing processes. Its versatility enables production of a diverse array of food products. This column will review the basic principles and provide an overview of applications. I would like to ...

  5. Radiation processing activities at OGFL

    International Nuclear Information System (INIS)

    Sarkar, Atish

    2014-01-01

    CONCAST group of Industries has set up the first Radiation Processing Plant in Eastern India as 'VIKIRAN' named as Organic Green Foods Ltd., situated at Dankuni (Durgapur Highway Express) 25 km away from central Kolkata on August 21, 2004. Shri Sanjay Sureka, Managing Director of Organic Green Foods Ltd., Kolkata belongs to the famous CONCAST Group of Industries operates the largest plant of West Bengal engaged in manufacturing of Steel Industry. The facility was aimed at improving the quality of healthcare products and devices as well as Laboratory, Spice, Herbal and Ayurvedic Products of large volumes on an industrial scale. The operation of VIKIRAN for the last ten years, has unambiguously proved that both the above objectives have been fully met and now radiation sterilization has emerged as an efficient and effective industrial process. The irradiator is a panoramic wet storage class-IV type. This Facility is designed for 1000 KCi activity of source and is suitable in medium and high dose range application. VIKIRAN offers radiation sterilization service to more than 100 manufacturers

  6. Growth of Radiation Processing Plant, Vashi - an overview

    International Nuclear Information System (INIS)

    Singh, Ranjeet

    2014-01-01

    Radiation Processing Plant, Vashi (RPP) is the first commercial scale Gamma Irradiator for food processing in India. The facility was commissioned on 1 st January 2000 with the mandate of showcasing commercial viability of food processing using gamma radiation. Some of the food products that are processed at RPP, Vashi include dehydrated onion powder, coriander, turmeric, black pepper, cumin, pet food and dried seafood items. RPP, Vashi is the largest radiation processor of food products in the country. More than 95% of the quantity processed is exported to various countries generating millions of foreign exchange annually

  7. Living and learning food processing

    Science.gov (United States)

    This year’s annual event promises to be both exciting and educational for those who wish to learn more about food processing. This column will provide a brief overview of the multitude of scientific sessions that reveal new research related to food processing. In addition to the symposia previewed h...

  8. Recognition of food treated with radiation

    International Nuclear Information System (INIS)

    Kasem, A.R.

    2009-01-01

    This article speaks about the lack of food in the Arab World and the increase of food imports. To decrease the food gap, the Arab Countries can use new agricultural technologies and minimize the lost of food, especially,legumes, fruits and some of meet and fish products which is exposed to environmental and nutritional contamination as a result of incorrect methods for conservation and marketing.Using of irradiation techniques to conserve food means the exposure of food to a source of radiation energy either from radioisotopes or from instruments producing controlled amounts of electrons or x-rays

  9. Prospects for radiation processing in the Philippines

    International Nuclear Information System (INIS)

    Navarro, Q.O.

    1980-01-01

    A review of the status of current facilities and capabilities for radiation processing is presented together with industrial data from some selected industries. Due to limited accessibility of actual production/consumption data only tentative conclusions could be made regarding radiation technology applications for local industries. The order of priority, based on available information, appears to be medical sterilization, food irradiation, wood products modification, radiation polymerization, and rubber latex ''vulcanization.'' There is still a need for market survey and analyses, upgrading of radiation facilities, enactment of appropriate legislations, training of industrial technologies, and increased financial investment in order to make radiation technology a viable alternative to current local practices. (author)

  10. Status of radiation processing in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Dela Rosa, A M [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines)

    2001-03-01

    Radiation processing, one of the well established applications of radiation and radioisotopes, has been successfully integrated into the industrial development of many countries worldwide. Environmental considerations embodied in the Montreal Protocol, the need for energy conservation brought about by escalating costs of fossil fuels, and the bright prospect of utilizing indigenous materials for value-added products have catalyzed the rapid development of radiation processing in the Asia region. This paper presents an overview of current developments in research activities and commercial applications of radiation processing in the Philippines. The areas of application include radiation sterilization of medical products, food irradiation, radiation vulcanization of natural rubber latex, radiation modification of the marine polysaccharide, carrageenan, and upgrading of cellulosic agriwaste by irradiation. (author)

  11. Status of radiation processing in the Philippines

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.

    2001-01-01

    Radiation processing, one of the well established applications of radiation and radioisotopes, has been successfully integrated into the industrial development of many countries worldwide. Environmental considerations embodied in the Montreal Protocol, the need for energy conservation brought about by escalating costs of fossil fuels, and the bright prospect of utilizing indigenous materials for value-added products have catalyzed the rapid development of radiation processing in the Asia region. This paper presents an overview of current developments in research activities and commercial applications of radiation processing in the Philippines. The areas of application include radiation sterilization of medical products, food irradiation, radiation vulcanization of natural rubber latex, radiation modification of the marine polysaccharide, carrageenan, and upgrading of cellulosic agriwaste by irradiation. (author)

  12. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Kumar, A.; Reddy, A.R.

    1994-01-01

    The last few years have seen a significant increase in the use of ionising radiation in industrial processes and also international trade in irradiated products. With this, the demand for internationally accepted dosimetric techniques, accredited to international standards has also increased which is further stimulated by the emergence of ISO-9000 series of standards in industries. The present paper describes some of the important dosimetric techniques used in radiation processing, the role of IAEA in evolving internationally accepted standards and work carried out at the Defence Laboratories, Jodhpur in the development of a cheap, broad dose range and simple dosimeter for routine dosimetry. For this polyhydroxy alcohols viz., mannitol, sorbitol and inositol were studied using the spectrophotometric read out method. Out of the alcohols studied mannitol was found to be most promising covering a dose range of 0.01 kGy - 100 kGy. (author). 26 refs., 3 figs., 1 tab

  13. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  14. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  15. Status of radiation processing: Indian scenario

    International Nuclear Information System (INIS)

    Niyogi, U.K.

    2013-01-01

    Radiation processing is a technique to process different types of materials by way of providing radiations of different energies for various applications. Depending upon the changes, one needs to select the radiations of appropriate energy. The well established mechanism behind the changes occurring in the material is the excitation of electrons in the molecules and atoms. It is a proven technology for more than five decades which results in the modification in materials, both at the bulk and surface levels. While radiations such as IR and UV have low energy and hence affect the surface of the material only, highly energetic radiations such as gamma and e-beam are useful to modify the material at the bulk level. Radiation processing is the most efficient technique for polymerization, sterilization, disinfestations, etc. which are applied in industries such as wires and cables, healthcare, food processing, pet/animal feed, herbal and ayurvedic, artificial jewellery, etc.

  16. Studies on application of radiation and radioisotopes -The application of irradiation techniques for food preservation and process improvement-

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Cho, Han Ok; Cho, Sung Kee; Kang, Il Joon; Yang, Jae Seung; Yook, Heung Sun

    1995-07-01

    The project was designed to solve the infra structural problem required for commercialization of food irradiation. In improvement of physical properties of corn starch, gamma irradiation was effective for increasing glucose productivity and for substituting traditional modified starches (acid modified starch, oxidized starch). In immobilization of microorganisms, the mass production method of natural red pigment was developed by using immobilized mold pellets. In Korean medicinal plants, 10 kGy gamma irradiation was effective for improving sanitary quality and increasing extraction yield. In evaluation of wholesomeness, gamma irradiated red ginseng could be safe on the genotoxic point of view. And also, six items of irradiated foods approved for human consumption from Korea ministry of health and welfare in May 19, 1995. 30 figs, 20 tabs, 54 refs. (Author)

  17. Studies on application of radiation and radioisotopes -The application of irradiation techniques for food preservation and process improvement-

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Cho, Han Ok; Cho, Sung Kee; Kang, Il Joon; Yang, Jae Seung; Yook, Heung Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The project was designed to solve the infra structural problem required for commercialization of food irradiation. In improvement of physical properties of corn starch, gamma irradiation was effective for increasing glucose productivity and for substituting traditional modified starches (acid modified starch, oxidized starch). In immobilization of microorganisms, the mass production method of natural red pigment was developed by using immobilized mold pellets. In Korean medicinal plants, 10 kGy gamma irradiation was effective for improving sanitary quality and increasing extraction yield. In evaluation of wholesomeness, gamma irradiated red ginseng could be safe on the genotoxic point of view. And also, six items of irradiated foods approved for human consumption from Korea ministry of health and welfare in May 19, 1995. 30 figs, 20 tabs, 54 refs. (Author).

  18. Food irradiation and combination processes

    International Nuclear Information System (INIS)

    Campbell-Platt, G.; Grandison, A.S.

    1990-01-01

    International approval of food irradiation is being given for the use of low and medium doses. Uses are being permitted for different categories of foods with maximum levels being set between 1 and 10 kGy. To maximize the effectiveness of these mild irradiation treatments while minimizing any organoleptic quality changes, combination processes of other technologies with irradiation will be useful. Combinations most likely to be exploited in optimal food processing include the use of heat, low temperature, and modified-atmosphere packaging. Because irradiation does not have a residual effect, the food packaging itself becomes an important component of a successful process. These combination processes provide promising alternatives to the use of chemical preservatives or harsher processing techniques. (author)

  19. The radiation preservation of food

    International Nuclear Information System (INIS)

    De Wet, W.J.

    1983-01-01

    The article reviews research that is being done in the field of food irradiation, especially in South Africa. The nutrition value and wholesomeness of irradiated food are regarded as very important. A list is given of a number of products that have been approved for irradiation in South Africa, as well as a list of products on which research is still in progress. The consumer acceptability and the market for irradiated food are also dealt with

  20. Chapter 14. Radionuclides in vegetal production and food processing

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with problems connected with using of radionuclides in vegetal production and food processing. Chapter consist of next parts: (1) Influence of radiation on foods; (2) Radiation sterilisation in health service

  1. Basics of radiation microbiology for food protection

    International Nuclear Information System (INIS)

    Wills, P.A.

    1985-01-01

    The microbiological basics of food poisoning, food spoilage, and ionizing energy treatments are presented. Factors influencing the microbial resistance of ionizing radiation, including the use of physical agents for combination treatments, are briefly reviewed, and parameters involved in dose selection are considered

  2. Radiation processing. Current status and future possibilities

    International Nuclear Information System (INIS)

    Woods, R.J.

    2000-01-01

    Radiation processing developed following the Second World War and employees gamma- or electron-irradiation to process polymers, cure alkene-based inks and coatings, sterilize medical supplies, irradiate food, and manage wastes. The current status of these applications is described with the probable direction of future developments. (author)

  3. Effects of the ionizing radiation in natural food colours

    International Nuclear Information System (INIS)

    Cosentino, Helio Morrone

    2005-01-01

    The world's fast growing population and its consequent increase in demand for food has driven mankind into improving technologies which ensure a safer supply of such commodities. Both food radiation processing and its constituents are highlighted as a feasible alternative technique capable of meeting food safety standards. Natural dyes are extensively employed in the food industry thanks to their colour enhancing properties on food products. This paper has aimed at studying the effects of ionizing radiation on three natural dyes: carminic acid and its derivatives (cochineal dyes), bixine and its salts (annatto dyes) and curcumin (turmeric dyes), used in the food and cosmetic industries within dilutions and doses those goods might eventually be processed in. It also envisages clarifying the compatibility of the irradiation technique with the keeping of such relevant sensorial attribute which is the product colour. Spectrophotometry and capillary electrophoresis were the analytic methods employed. All in all, a colour decrease proportional to the increase on the applied gamma radiation (1 to 32 kGy) has been observed. The annatto dyes have proven moderately stable whereas turmeric has shown to be highly sensitive to radiation. Those results shall be taken into account as far as the need to alter the formulae additive amount in the product is concerned whenever undergoing radiation processing. (author)

  4. Radiation sources and process

    International Nuclear Information System (INIS)

    Honious, H.B.; Janzow, E.F.; Malson, H.A.; Moyer, S.E.

    1980-01-01

    The invention relates to radiation sources comprising a substrate having an electrically-conductive non-radioactive metal surface, a layer of a metal radioactive isotope of the scandium group, which in addition to scandium, yttrium, lanthanum and actinium, includes all the lanthanide and actinide series of elements, with the actinide series usually being preferred because of the nature of the radioactive isotopes therein, particularly americium-241, curium-244, plutonium-238, californium-252 and promethium-147, and a non-radioactive bonding metal codeposited on the surface by electroplating the isotope and bonding metal from an electrolytic solution, the isotope being present in the layer in minor amount as compared to the bonding metal, and with or without a non-radioactive protective metal coating covering the isotoype and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating. The invention also relates to a process for providing radiation sources comprising codepositing a layer of the metal radioactive isotope with a non-radioactive bonding metal from an electrolytic solution in which the isotope is present in minor molar amount as compared to the bonding metal such that the codeposited layer contains a minor molar amount of the isotope compared to the bonding metal by electroplating on an electrically-conductive non-radioactive metal surface of a cathode substrate, and with or without depositing a nonradioactive protective metal coating over the isotope and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating

  5. Development of food preservation and processing techniques by radiation - Studies on the safety and consumer acceptance of gamma irradiated meats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Jun; Lee, Young Jin; Lee, Young Sook; Kim, Ha Kyung [Hallym University, Chunchon (Korea)

    2000-04-01

    Gamma irradiation was applied to chickens for evaluation of their possible genotoxicity, acute toxicity, four-week oral toxicity and nutritional safety. The results were negative in the bacterial reversion assay with S. typhimurium TA98, TA100, TA1535, TA1537. Clastogenic effects of the irradiated samples tested were not shown in vivo mouse micronucleus assay and in chromosomal aberration tests with CHL cells. In an acute toxicity test, the maximal dose of 5,000 mg/kg did not change any toxic parameter examined in this study. In four-week oral toxicity study, appearance, behavior, mortality, food and water consumption of mouse of treated groups were not affected during the experimental periods(four-weeks). In urine analysis, in hematological examination as well as in serum biochemical experiment, no significant differences were found between the control and treatment groups. Although minor changes in some hematological and biochemical parameters were observed, they were in the normal range and were not dose dependent. In nutritional safety, the proximate composition of foods were not significantly changed by irradiation dose. No significant difference in the components of fatty acids were observed by gamma irradiation. In general, the amount of released free amino acid was not significantly changed by gamma irradiation. There was no difference in total amino acid content between non irradiated and irradiated samples. The SDS electrophoresis patterns of samples were not significantly different between nonirradiated and irradiated samples. The major mineral compositions of chicken were phosphorus, potassium, sodium, magnesium. The content of mineral was not significantly changed by gamma irradiation. 58 refs., 11 figs., 16 tabs. (Author)

  6. Microbiological implications of the food irradiation process

    International Nuclear Information System (INIS)

    Teufel, P.

    1981-01-01

    The Joint FAO/IAEA/WHO Expert Committee on the wholesomeness of irradiated food which met in 1976 concluded after a detailed and critical review of the available information, that the microbiological aspects of food irradiation were fully comparable to those of conventional processes used in modern food technology. Processing of food by irradiation may be considered from the microbiological point of view as separate procedures: high dose treatment (> 10 kGy), for sterilisation (radappertization) and low dose treatment (< 10 kGy) for pasteurisation (radicidation, radurization), (for definitions see p. 43), disinfestation, or inhibition of sprouting. No public health hazards related to micro-organisms arise from high dose irradiation because this process results in commercially sterile products. On the other hand, it is important to consider the possible microbiological hazards when food is irradiated with a low dose. The microbiological implications relate to the natural radiation resistance of bacteria, yeasts, fungi and viruses or to the mutagenic effects of ionising radiation in micro-organisms. Both areas of concern were reviewed in detail by Ingram and Ingram and Farkas. (orig.)

  7. Radiation processing of horticulture produce

    International Nuclear Information System (INIS)

    Khandal, R.K.

    2004-01-01

    The present paper deals with various aspects of radiation processing of horticultural products. The risk and success factors of the radiation processing units would be discussed, based on the experiences gained from the operation of Sac over a period of more than twenty years. Emphasis would be given to gamma radiation processing

  8. Verification of imported food upon import for radiation processing: Dried herbs, including herbs used in food supplements, and spices by PSL and TL

    Energy Technology Data Exchange (ETDEWEB)

    Boniglia, C. [Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita, Rome (Italy)], E-mail: concetta.boniglia@iss.it; Aureli, P. [Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita, Rome (Italy); Bortolin, E.; Onori, S. [Department of Technology and Health, Istituto Superiore di Sanita, Rome (Italy)

    2009-07-15

    The Italian National Institute of Health in 2005-2006 performed an analytical survey of import on dried spices and herbs, including herbs used in food supplements, to investigate the entry in Italy of irradiated, and not correctly labelled, raw materials. In this survey, 52 samples, including nine herbal extracts, were collected. The method of photo-stimulated luminescence (PSL) was applied to all samples and only samples screened positive or intermediate with PSL were analysed by using the thermo-luminescence (TL) method. Out of the 12 samples screened positive or intermediate with PSL, the TL method confirmed irradiation of five samples (10% of the total assayed samples). One out of these five samples was a herbal supplement whereas three were herbal extracts that are known to be used as ingredients of herbal supplements, and another one was a spice.

  9. Verification of imported food upon import for radiation processing: Dried herbs, including herbs used in food supplements, and spices by PSL and TL

    International Nuclear Information System (INIS)

    Boniglia, C.; Aureli, P.; Bortolin, E.; Onori, S.

    2009-01-01

    The Italian National Institute of Health in 2005-2006 performed an analytical survey of import on dried spices and herbs, including herbs used in food supplements, to investigate the entry in Italy of irradiated, and not correctly labelled, raw materials. In this survey, 52 samples, including nine herbal extracts, were collected. The method of photo-stimulated luminescence (PSL) was applied to all samples and only samples screened positive or intermediate with PSL were analysed by using the thermo-luminescence (TL) method. Out of the 12 samples screened positive or intermediate with PSL, the TL method confirmed irradiation of five samples (10% of the total assayed samples). One out of these five samples was a herbal supplement whereas three were herbal extracts that are known to be used as ingredients of herbal supplements, and another one was a spice.

  10. Energy analysis in sterilization process of food

    International Nuclear Information System (INIS)

    Lee, Dong Sun; Pyun, Yu Ryang

    1986-01-01

    A procedure was developed for predicting energy consumption of batch type thermal processing of food. From mass and energy balance equations various energy usages or losses were estimated for steam sterilization of model food system in No.301-7 can (Φ74.1 x 113.0mm) at three different temperatures. Selected models were 5 % bentonite solution for conductive food and tap water for convective food. Total steam or energy consumption was higher at 110 deg C than at two other higher temperatures (121 deg C and 130 deg C). High energy consumption at low sterilization temperature was mainly due to high bleeding steam energy and convective and radiative heat losses. Thermal energy efficiency was also disscussed. (Author)

  11. Processing Contaminants in Food Production

    DEFF Research Database (Denmark)

    Granby, Kit; Duedahl-Olesen, Lene; Fromberg, Arvid

    Contaminants like acrylamide, furan or PAHs (polyaromatic hydrocarbons) as e.g. Benz(a)pyrene may be formed during food processing. All of the substances are genotoxic carcinogens, and for that reason mitigation strategies to reduce the levels are needed. Examples of the formation of the processing...... contaminants and factors that influence the occurrence are given as well as suggestions for mitigation....

  12. Processing Contaminants in Food Production

    OpenAIRE

    Granby, Kit; Duedahl-Olesen, Lene; Fromberg, Arvid; Pedreschi, Franco

    2011-01-01

    Contaminants like acrylamide, furan or PAHs (polyaromatic hydrocarbons) as e.g. Benz(a)pyrene may be formed during food processing. All of the substances are genotoxic carcinogens, and for that reason mitigation strategies to reduce the levels are needed. Examples of the formation of the processing contaminants and factors that influence the occurrence are given as well as suggestions for mitigation.

  13. Introduction to Innovative Food Processing and Technology

    OpenAIRE

    Tokusoglu, Ozlem

    2015-01-01

    Consumers, the food industry and the regulatory agencies demand the innovative technologies to provide safe and stable foods. Nonthermal processing technologies offer unprecedented opportunities and challenges for the food industry to market safe, high quality health-promoting foods. Those innovative food processing is often perceived as an alternative to thermal food processing, yet there are many nonthermal preparatory unit operations as well as food processing and preservation opportunitie...

  14. Main trends of radiation application for food stuff treatment

    International Nuclear Information System (INIS)

    Pertsovskij, E.S.; Sakharov, Eh.V.; Dolinin, V.A.

    1980-01-01

    The methods of radiation treatment of food stuff using γ, X-rays and electrons are presented. Radiation doses of various products permitted by the Expert Committee of WHO and other international organizations are presented. The problem of grain disinfestation permitted irradiation doses are in the interval between 50 and 100 krad is stiudied. The harmless effect of these doses for products is shown. The experience of raw fish, fish products, raw meat, meat and vegetable products radappertization is reviewed. The intensification of technological processes of food production using radiation treatment is also considered. The advantages and disadvantages of radiation devices with different radiation sources are shown. It is shown that the choice of this or that type should be primarily determined by the parameter of irradiated objects, the periodicity of their coming to the device and conditions of treating these objects [ru

  15. Radiation preservation of food. Efficiency and wholesomeness

    International Nuclear Information System (INIS)

    Saint-Lebe, Louis; Raffi, Jacques; Henon, Yves.

    1982-03-01

    This document reviews the applications of ionizing radiations in the food industry. The two first chapters feature the characteristics of the three types of ionizing radiations that can be used (gamma rays from cobalt 60 and caesium 137, X rays, electron beams) and their action on foodstuff and the food spoilage organisms. The third chapter is a review of toxicological studies based on two complementary approaches: animal assays and studies on the radiolysis products. It provides the evidences that lead the international experts to regard irradiated food as safe for human consumption. In the fourth chapter, the problems of identification of irradiated food and the possible controls are exposed. The authors conclude by suggesting the measures that would allow commercial application in France [fr

  16. Radiation disinfestation of food and agricultural products

    International Nuclear Information System (INIS)

    Moy, J.H.

    1985-01-01

    This book presents the papers given at a conference on the radiodisinfestation of food and crops. Topics considered at the conference included food irradiation's impact of the US Agency for International Development, FDA regulations, irradiation as a quarantine treatment, quality attributes of irradiated fruits, low-dose irradiation, cesium 137 as a radiation source, radiosterilization, economic feasibility, marketing, consumer acceptance, and the packaging of irradiated products

  17. Radiation preservation of cooked foods

    International Nuclear Information System (INIS)

    Aurangzeb; Bibi, N.; Badshah, A.; Khan, I.

    1989-01-01

    The preservation of irradiated cooked food has been explained in this report under vacuum conditions. The samples were irradiated at dose levels of 7.5 and 10.0 LGy. Measurement of fungal count was carried immediately after irradiation and after each 15 days of storage life upto 60 days of time interval. The samples were evaluated organolepticaly as well. It has been observed that no significance difference was observed among samples of irradiated and vacuum packed controls during storage for 45 days. (A.B.)

  18. Food processing with electrically generated photon irradiation

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1985-01-01

    Economic constraints require that a food irradiation processing facility have a throughput of approximately 1 MGy ton/day (0.91 MGy m.t./day) requiring 3 MegaCuries (MCi) of cobalt-60 at each site. This requirement means that the total world amount of cobalt-60 would have to be increased by about 60 percent just to handle the California almond and raisin crop during peak season. It is doubtful that public opinion would allow the increased distribution of radioactive isotopes, with the resultant burden upon the transportation networks, as a price to be paid to eat irradiated food. Electric sources have characteristics that allow the production of more penetrating, uniform, and efficient radiation that is available from nuclear isotopes. The heart of the electric radiation source is the electron accelerator. At present, there are no accelerators commercially available that can meet the requirements for food irradiation processing. However, the U.S. Department of Defense-funded beam weapons programs have provided a very promising accelerator technology at the Lawrence Livermore National Laboratory. If this technology were to be commercialized, it appears that the required accelerators would be available for US$1.5 million apiece, and quite possibly for less than this amount. A conceptual design for a portable electric food irradiation processing machine is presented and analyzed for cost, assuming the required accelerators are available for $1.5 million each. It is shown that food can be processed for 1 kGy for a price of $5.98/ton ($6.59/m.t.)

  19. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-01

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  20. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-15

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  1. Effects of ionizing radiation on food packaging materials and quality

    International Nuclear Information System (INIS)

    Welle, F.; Franz, R.

    1999-01-01

    Tests have shown that ionizing radiation induces a characteristic smell in the packaging laminates which also affects the simulated foods used, which however were relatively neutral in flavour, so that the tests represent the worst case. The paper explains that due to the various additives used in the production of the plastic packaging materials, the same types of polymers may react differently to the ionizing radiation, so that the results obtained from the tests are not suitable for general application. It is recommended to very carefully select the suitable packaging material for given foods and intended irradiation processes. Aspects of particular importance are discusses. (orig./CB) [de

  2. The basis and safety of food irradiation. Advantages of radiation treatment for food sanitation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-09-01

    The food irradiation has the history of more than 60 years in its development. However, its commercial application has not been promoted well in Japan even though the safety of irradiated foods was confirmed. Recently, relevant authorities in 52 countries have given clearance to many commodities, and irradiated foods are commercially distributed in USA and EU countries. The international situation makes some unavoidable circumstances which can not close the commercialization of food irradiation in Japan. The present report contains the basis and application of food irradiation, and history of development in the World and Japan. Moreover, the safety of irradiated foods are demonstrated from many evidences of researches in animal feeding tests, in analysis of radiolytic products, in nutritional evaluations and in microbiological studies of irradiated foods. Especially, it makes obvious from the results of many researches that unique radiolytic products can not be produced by irradiation of foods. Because main radiation effects are induced by oxidation degradation of food components as similar to natural oxidation by heating or UV light. Radiation engineering for commercial process and identification methods of irradiated foods are also presented. (author)

  3. Development of radiation fusion technology with food technology by the application of high dose irradiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil

    2012-04-01

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  4. Development of radiation fusion technology with food technology by the application of high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil; and others

    2012-04-15

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  5. Processing Food for the Domestic Market

    DEFF Research Database (Denmark)

    Thomsen, Lotte; McCormick, Dorothy; Kamau, Paul

    This paper addresses the domestically owned food-processing industry in Kenya and explores thesale of processed food products to the domestic ‘modern’ retail sector. Food processing represents astep up in the value chain compared to fresh food production and may thus, at least potentially, leadto...

  6. Ionising radiation effects on food packaging

    International Nuclear Information System (INIS)

    Ragni, P.; Segre, A. L.; Capitani, D.; Danesi, P.R.

    2001-01-01

    The main aim of any food irradiation treatment is to guarantee the best safe quality of the products, reducing the spreading risk ( c ross-contamination ) for several food-associated diseases. Actually, over 40 countries provide clearances for the treatment of about 45 different types of foodstuffs. EU has to homogenise the situation within the associated States. With the European directive 1999/2/EC Italy, as other EU countries, already has brought into force their regulations to comply. The current Italian regulation on irradiation treatment of foodstuffs is referred since 1996 as follows: a) potatoes, onions and garlic; b) spices, herbs and condiments microbial. The new (April 2001) Italian law allows the possibility to ask for special permission of treatment for other foodstuff which is possible to treat in other E.U. countries. Large majority of foods are submitted to irradiation treatment after they have been packaged. In Dutch cases the study of radiation effects on the package becomes crucial, also because polymeric materials may be affected by ionizing radiation. We performed our studies on several materials employed in food packaging, with a particular care to the role of anti-oxidant additives present in food packaging materials. The attention is pointed on the possible chemical-physical effects induced by radiation on foodstuff packaging. After irradiation in plastic materials two main effects may occur: degradation and cross-linking. The result depending on the comparative rates of the two actions. This kind of information was successfully obtained using NMR methods on a large number of polymers effectively used for the food packaging procedures

  7. Fungal Spoilage in Food Processing.

    Science.gov (United States)

    Snyder, Abigail B; Worobo, Randy W

    2018-06-01

    Food processing, packaging, and formulation strategies are often specifically designed to inhibit or control microbial growth to prevent spoilage. Some of the most restrictive strategies rely solely or on combinations of pH reduction, preservatives, water activity limitation, control of oxygen tension, thermal processing, and hermetic packaging. In concert, these strategies are used to inactivate potential spoilage microorganisms or inhibit their growth. However, for select microbes that can overcome these controls, the lack of competition from additional background microbiota helps facilitate their propagation.

  8. Introduction of a novel food processing technology- food irradiation

    International Nuclear Information System (INIS)

    Nair, P.M.

    1994-01-01

    The treatment of food with ionizing radiation for its preservation is a resurging technology which was lying dormant since its introduction after the discovery on the use of x-ray as an effective way to kill bacteria in food. Large research programmes were initiated on the use of gamma rays for food preservation in many countries and some of the conclusions derived are discussed. 1 fig., 2 tabs

  9. Progress in radiation processing of polymers

    Science.gov (United States)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad

    2005-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R&D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.

  10. Progress in radiation processing of polymers

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad

    2005-01-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R and D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described

  11. Progress in radiation processing of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, Andrzej G. [International Atomic Energy Agency, Industrial Applications and Chemistry Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, Wagramer Street 5, Vienna 1400 (Austria) and Department of Process and Chemical Engineering, Warsaw University of Technology, Warsaw (Poland)]. E-mail: a-g.chmielewski@iaea.org; Haji-Saeid, Mohammad [International Atomic Energy Agency, Industrial Applications and Chemistry Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, Wagramer Street 5, Vienna 1400 (Austria); Ahmed, Shamshad [Applied Chemistry Laboratories, Pakistan Institute of Nuclear Science and Technology, P.O. Box Nilore, Islamabad (Pakistan)

    2005-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R and D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.

  12. An assessment of prospects for radiation processing in Yugoslavia

    International Nuclear Information System (INIS)

    Razem, D.; Dvornik, I.

    1981-01-01

    The possibilities are reviewed under the headings: food irradiation; sterilization of medical supplies; crosslinking of polymers. It is concluded that radiation sterilization of disposable medical supplies appears most attractive for immediate application; food irradiation can have only a limited success, at least with the present generation of strong inherited attitudes. Processes for radiation crosslinking of polymers are to a large extent subject to industrial secrecy; however, some possibilities are seen. A center for radiation services in Yugoslavia is proposed. (U.K.)

  13. Operational experience of gamma radiation processing facility

    International Nuclear Information System (INIS)

    Patel, Nilesh

    2014-01-01

    Universal lSO-MED is now proud to announce an extension of its irradiation service for low-dose applications specifically in agriculture commodities, food and healthcare applications with the start of Gujarat Agro Radiation Processing Facility at Village: Bavla, Ahmedabad (A Government Enterprise) Operated, Maintained and Managed by Universal Medicap Ltd. Availability of hygienic, safe and nutritious food commodities is essential for any sustainable human development. Food stability is an important element of economic stability and self-reliance of a nation. Though the need to preserve food has been felt by the mankind since the time immemorial, it is even stronger in today's context. The rising population and increasing gap between demand and supply, agro-climatic conditions, in adequate post-harvest practices, seasonal nature of produce and long distances between production and consumption centers underscore the need to device improved conservation and preservation strategies

  14. Cobalt 60 availability for radiation processing

    International Nuclear Information System (INIS)

    Fraser, F.M.

    1986-01-01

    In the last 20 years, the steady and significant growth in the application of radiation processing to industrial sterilization has been seen. The principal application of this technology is the sterilization of disposable medical products, food irradiation, the irradiation of personal care goods and so on. At present, more than 70 million curies of cobalt-60 supplied by Atomic Energy of Canada Ltd. have been used for gamma processing in these applications. This is estimated to be more than 80 % of the total cobalt-60 in service in the world. Commercial food irradiation has an exciting future, and as to the impact of food irradiation on the availability of cobalt-60 over the next ten years, two principal factors must be examined, namely, the anticipated demand for cobalt-60 in all radiation processing applications, and the supply of cobalt-60 to reliably meet the expected demand. As for the cobalt-60 in service today, 90 % is used for the sterilization of disposable medical products, 5 % for food irradiation, and 5 % for other application. The demand for up to 30 million curies of cobalt-60 is expected over the next 10 years. Today, it is estimated that over 150,000 tons of spices, fruit and fish are irradiated. The potential cobalt-60 production could exceed 110 million curies per year. Gamma processing application will demand nearly 50 million curies in 1990. (Kako, I.)

  15. Quality assurance in radiation processing

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2002-01-01

    The growth of the radiation processing industries in Malaysia has presented the SSDL-MINT a new set of parameter for the Quality Assurance (QA) programs. The large massive doses of radiation required for commercial application of sterilization, cross-linking etc needs measurement method outside the scope of familiar radiation detection instruments. This requires establishment of proper calibration procedure and selection of appropriate transfer system/technique to assure adequate traceability to an international radiation standard. The benefit of accurate in-plant dosimetry for the operator, approving authority and purchaser are balanced against the extra dosimetric efforts required for good QA is presented. (Author)

  16. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  17. Radiation facilities and irradiation technology for food irradiation

    International Nuclear Information System (INIS)

    Sunaga, Hiromi

    2005-01-01

    Progress made during these 30 years in the field of radiation treatment of food is reviewed by describing features of the process including elementary processes, quality control of the products and the dosimetric techniques widely employed. The Co-60 gamma-ray irradiation facilities to be used for radiation-sterilization of medical supplies and food preservation are presented. For electron beam irradiation, accelerators for processing with the energy from 0.3 to 10 MeV are generally employed. The electron-guns, the method of acceleration such as rectification, types of acceleration as Cockcroft-Walton, dynamitron, or linear acceleration and X-ray producing facility, with various countermeasures for safety management, are briefly explained. The concepts of dose and traceability are given. The dosimeters including reference dosimeter and routine ones with validation are explained. (S. Ohno)

  18. An introduction to the irradiation processing of foods

    International Nuclear Information System (INIS)

    Hackwood, S.

    1991-01-01

    The food industry has used a variety of methods over the years to preserve or extend the shelf life of food. These have included cooking, packaging, smoking, chilling, freezing, dehydrating and using chemical additives. More recently, ionising radiation has been used to extend the storage life of foods. More research has been focussed on the effects of irradiation on foods than has been directed at any other form of food processing. This research has spanned 40 years and has been carried out in many countries. Food irradiation can be used to: (a) inhibit the sprouting of vegetables; (b) delay the ripening of fruits; (c) kill insect pests in fruit, grains or spices; (d) reduce or eliminate food spoilage organisms; (e) reduce food poisoning bacteria on some meats and sea food products. This chapter includes sections on the historical background; general aspects of radiation; scientific, technological, microbiological and toxicological aspects of food irradiation; nutritional aspects of food irradiation; consumer attitudes; current status and legislation; labelling. It concludes that the relatively new process of preserving food by irradiation compliments rather than competes with the presently available traditional methods. (author)

  19. Radiative processes in gauge theories

    International Nuclear Information System (INIS)

    Berends, F.A.; Kleiss, R.; Danckaert, D.; Causmaecker, P. De; Gastmans, R.; Troost, W.; Tai Tsun Wu

    1982-01-01

    It is shown how the introduction of explicit polarization vectors of the radiated gauge particles leads to great simplifications in the calculation of bremsstrahlung processes at high energies. (author)

  20. Radiation processing of natural polymer

    International Nuclear Information System (INIS)

    Khairul Zaman; Kamaruddin Hashim; Zulkafli Ghazali; Mohd Hilmi Mahmood; Jamaliah Sharif

    2006-01-01

    Radiation processing of natural polymer has been the subject of interest of countries in this region in the past 5 ∼ 7 years. Although some of the output of the research have been commercialized in particular for the applications in the agriculture and healthcare sectors, the potential applications of radiation processing of natural polymers in the medical sector are yet to be fully understood and developed. (author)

  1. Advances in ''radiation processing''. Repeat of a symposium

    International Nuclear Information System (INIS)

    Drawe, H.

    1984-01-01

    A symposium entitled ''International Meeting on Radiation Processing'' was held in Dubrovnik from 4th to 8th October, 1982. The current status of and the most recent developments in the field of radiation chemistry were presented. In the report presented here the reader is given a critical review of papers presented at the meeting, the following aspects being treated: Radiation measurements and quality control; radiation source technology; environmental application of radiation technology; radiation chemistry as related to nuclear technology; developments in applied polymer chemistry; radiation sterilization; radiation technological aspects in the food industry; low energy electron radiation applications; applied radiation chemistry and physics; bio-compatible materials, radiation plants; engineering economics and process optimization. (orig./RB) [de

  2. Radiation processing of starch

    International Nuclear Information System (INIS)

    Kamaruddin Hashim

    2008-01-01

    Starch is a polysaccharide material and generally, it is non-toxic, biocompatible and biodegradable. It mainly use as foodstuff, food additives, production of sugar and flavouring. Sago palm with scientific name Genus Metroxylon belonging to family Palmae is an important resource in the production of sago starch in Malaysia. Nearly 90% of sago planting areas is found in Sarawak State of Malaysia. It can easily grow under the harsh swampy environment. The sago starch content 4% polyphenol, which is an active compound with antioxidant property that has potential benefit in health and skin care applications. Renewal resources and environmental friendly of natural polymer reason for the researcher to explore the potential of this material in order to improve our quality of live. (author)

  3. Radiation processing of poultry

    International Nuclear Information System (INIS)

    Niemand, J.G.; Hauser, G.A.M.; Clarke, I.R.; Thomas, A.C.

    1977-06-01

    Gamma irradiation, through its ability to inactivate microorganisms, has been shown to effectively extend the shelf life of commercially slaughtered chickens from 2-4 d to 14-21 d under normal refrigeration temperatures. Although a high percentage of carcasses were contaminated with Salmonella, the level of contamination was relatively low; the doses applied for shelf-life extention thus also served to eliminate this pathogen. Even when carcasses were artificially inoculated with Salmonella of levels several orders of magnitude higher than normal, the recommended radiation doses (3 or 5 kGy) were still capable of rendering the product 'pathogen free'. Irradiated poultry could not be distinguished organoleptically from control samples, even when twice the maximum recommended dose was applied. In conclusion, the irradiation of commercially produced poultry in South Africa with relatively low doses can be of significant benefit by (1) markedly extending the acceptable shelf life and (2) eliminating pathogenic bacteria present on the commercially available product [af

  4. Combination Processes in Food Irradiation. Proceedings of an International Symposium on Combination Processes in Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-09-15

    Statistics show that over forty per cent of the human population, a large portion of which come from the Third World, are suffering from hunger and malnutrition. While the solution to these problems depends to a great extent on the food production strategies of the various governments, equally important is the need to preserve existing food supply by reducing food and crop spoilage. It has been reported that estimated losses due to bacterial spoilage are heavy; those of highly perishable commodities such as fish and fishery products have been reported as amounting to thirty per cent of the total catch. An additional loss of five to ten per cent due to insects and microbes during lengthy periods of drying and/or storage has also been reported. After about thirty years of research, treatment with ionizing radiations has been proved to be a valuable potential tool for reducing post-harvest storage losses and for preserving quickly perishable food from deterioration. Since irradiation is a purely physical method of food conservation, it may for many purposes become the preferred method, for it is an environmentally clean process not tainted with the chemical residue problem, it is energy saving, and it can, in many cases, produce effects that cannot be achieved by conventional techniques (e.g. decontamination of frozen food without significant temperature changes, disinfestation and decontamination of food in bulk and packaged). The preservative effects of ionizing radiations can often be advantageously combined with effects of other physical or chemical agents. The resulting ''combination treatments'' may involve synergistic or cumulative action of the combination partners, leading to a decreased treatment requirement for one or both agents. This in turn may result in cost and/or energy savings and may bring about improvements in the sensory properties and bacteriological quality of the food thus treated. To review progress in this field a Symposium on Combination

  5. Combination Processes in Food Irradiation. Proceedings of an International Symposium on Combination Processes in Food Irradiation

    International Nuclear Information System (INIS)

    1981-01-01

    Statistics show that over forty per cent of the human population, a large portion of which come from the Third World, are suffering from hunger and malnutrition. While the solution to these problems depends to a great extent on the food production strategies of the various governments, equally important is the need to preserve existing food supply by reducing food and crop spoilage. It has been reported that estimated losses due to bacterial spoilage are heavy; those of highly perishable commodities such as fish and fishery products have been reported as amounting to thirty per cent of the total catch. An additional loss of five to ten per cent due to insects and microbes during lengthy periods of drying and/or storage has also been reported. After about thirty years of research, treatment with ionizing radiations has been proved to be a valuable potential tool for reducing post-harvest storage losses and for preserving quickly perishable food from deterioration. Since irradiation is a purely physical method of food conservation, it may for many purposes become the preferred method, for it is an environmentally clean process not tainted with the chemical residue problem, it is energy saving, and it can, in many cases, produce effects that cannot be achieved by conventional techniques (e.g. decontamination of frozen food without significant temperature changes, disinfestation and decontamination of food in bulk and packaged). The preservative effects of ionizing radiations can often be advantageously combined with effects of other physical or chemical agents. The resulting ''combination treatments'' may involve synergistic or cumulative action of the combination partners, leading to a decreased treatment requirement for one or both agents. This in turn may result in cost and/or energy savings and may bring about improvements in the sensory properties and bacteriological quality of the food thus treated. To review progress in this field a Symposium on Combination

  6. Gamma irradiators for radiation processing

    International Nuclear Information System (INIS)

    2006-01-01

    Radiation technology is one of the most important fields which the IAEA supports and promotes, and has several programmes that facilitate its use in the developing Member States. In view of this mandate, this Booklet on 'Gamma Irradiators for Radiation Processing' is prepared which describes variety of gamma irradiators that can be used for radiation processing applications. It is intended to present description of general principles of design and operation of the gamma irradiators available currently for industrial use. It aims at providing information to industrial end users to familiarise them with the technology, with the hope that the information contained here would assist them in selecting the most optimum irradiator for their needs. Correct selection affects not only the ease of operation but also yields higher efficiency, and thus improved economy. The Booklet is also intended for promoting radiation processing in general to governments and general public

  7. Physical and chemical effects of ionizing radiation, application for conservation of food products

    International Nuclear Information System (INIS)

    Foos, J.

    1986-01-01

    The author sets about ''defining the parameters'' and ''describing the systems'' by means of which ionizing radiation can be used to conserve food products and make them more healthy. After defining the different types of radiation, he goes on to examine interactions between these types of radiation and the food to be processed, including the chemical reactions caused by the ionization and excitation processes [fr

  8. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  9. Challenges and Prospects of Traditional Food Processing ...

    African Journals Online (AJOL)

    This paper focuses on challenges and prospects of traditional food processing technologies and their products in Nigeria. The major objective of the paper is to identify the challenges confronting traditional food processing technologies as well as the potentials the traditional food processing technologies has in boosting the ...

  10. Should food be treated with radiation?

    International Nuclear Information System (INIS)

    Anon.

    1987-05-01

    The article deals with various opinions and attitudes towards food irradiation. It has many benefits for food growers and processors, distributors, wholesalers and retailers. The article outlines the position of several EEC countries with regard to the use of irradiation. At present, it is banned from use in the UK and Germany, but its use is permitted in Belgium, France, Italy and the Netherlands. However, Ireland has not yet to come to a decision. The Nuclear Energy Board, set up in 1973, actively promotes the process. A report published on the irradiation of food stuffs from the Committee on the Environment, Public Health and Consumer Protection, which incorporates an 'opinion' from the Committee on Energy, Research and Technology, comes out strongly against food irradiation. After a general survey, the Committee of Experts concludes the acceptability of food irradiated with a total dose of up to 10 kGy. Also the Committee recommends that the European Parliament rejects the general authorisation of irradiation as a method of conserving food and call for a ban on imports of irradiated food and animal feed from non-Member States

  11. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  12. Exploring novel food proteins and processing technologies

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine

    2016-01-01

    Foods rich in protein are nowadays high in demand worldwide. To ensure a sustainable supply and a high quality of protein foods, novel food proteins and processing technologies need to be explored to understand whether they can be used for the development of high-quality protein foods. Therefore,

  13. Facts about food irradiation: Controlling the process

    International Nuclear Information System (INIS)

    1991-01-01

    This fact sheet briefly reviews the procedures that exist to control the process of food irradiation. It also summarizes the difficulties in identifying irradiated food, which stem from the fact that irradiation does not physically change the food or cause significant chemical changes in foods. 4 refs

  14. Radiation processing technology in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan

    2004-01-01

    Radiation processing technology is widely used in industry to enhance efficiency and productivity, improve product quality and competitiveness. Efforts have been made by MINT to expand the application of radiation processing technology for modification of indigenous materials such as natural rubber and rubber based products, palm oil and palm oil based products and polysaccharide into new and high value added products. This paper described MINT experiences on developing products through R and D from the laboratory to the pilot plant stage and commercialization. The paper also explained some issues and challenges that MINT encountered in the process of commercialization of its R and D results. (author)

  15. Radiation detection technique on the fishery foods

    International Nuclear Information System (INIS)

    Oikawa, Hiroshi; Satomi, Masataka; Nakamura, Koji; Yano, Yutaka

    1999-01-01

    Recently irradiation of fishery products such as sea bream, lobster etc has been spreading in South-east Asia. It is thus necessary to establish a detection technique for irradiated foods . This study aimed to investigate the effects of irradiation on the production of tyrosine isomers with relation to the status of food sample (frozen and cold-storage) and also the stabilities of the isomers in frozen foods after irradiation. Production of tyrosin isomers (meta-tyrosine, ortho-tyrosine) due to γ-ray irradiation (5 kGy) were observed in the muscles of frozen prawns as well as those at room temperature and the contents of these isomers after the irradiation was not different between the two states of the sample. The content increased depending on the radiation dose. The contents of these tyrosine isomers were not changed after storage at -20degC for 120 days. Therefore, it was thought that the tyrosine isomers were available as an effective indicator for detection of an irradiated food. (M.N.)

  16. Analysis of food radiation monitoring system in Belarus

    International Nuclear Information System (INIS)

    1992-01-01

    Food radiation monitoring system in Belarus due to the Chernobyl accident is analysed. Structure of radiation monitoring network, instrumentation and modern developments. Information on permissible concentration levels in foodstuffs and water is presented and calculations of radionuclide intake for man are performed. Proposals on the creation of social centres of food radiation monitoring for Belarussian population are considered. 4 tabs

  17. Effects of daily food processing on allergenicity.

    Science.gov (United States)

    Cabanillas, Beatriz; Novak, Natalija

    2017-08-11

    Daily food processing has the potential to alter the allergenicity of foods due to modification of the physico-chemical properties of proteins. The degree of such modifications depends on factors such as processing conditions, type of food considered, allergenic content, etc. The impact of daily food processing like boiling, roasting, frying or baking on food allergenicity have been extensively studied. The influence of other thermal treatments such as microwave heating or pressure cooking on allergenicity has also been analyzed. Non-thermal treatment such as peeling impacts on the allergenic content of certain foods such as fruits. In this review, we give an updated overview of the effects of daily processing treatments on the allergenicity of a wide variety of foods. The different variables that contribute to the modification of food allergenicity due to processing are also reviewed and discussed.

  18. Food Processing and the Mediterranean Diet

    Directory of Open Access Journals (Sweden)

    Richard Hoffman

    2015-09-01

    Full Text Available The benefits of the Mediterranean diet (MD for protecting against chronic disorders such as cardiovascular disease are usually attributed to high consumption of certain food groups such as vegetables, and low consumption of other food groups such as meat. The influence of food processing techniques such as food preparation and cooking on the nutrient composition and nutritional value of these foods is not generally taken into consideration. In this narrative review, we consider the mechanistic and epidemiological evidence that food processing influences phytochemicals in selected food groups in the MD (olives, olive oil, vegetables and nuts, and that this influences the protective effects of these foods against chronic diseases associated with inflammation. We also examine how the pro-inflammatory properties of meat consumption can be modified by Mediterranean cuisine. We conclude by discussing whether food processing should be given greater consideration, both when recommending a MD to the consumer and when evaluating its health properties.

  19. Food Processing and the Mediterranean Diet.

    Science.gov (United States)

    Hoffman, Richard; Gerber, Mariette

    2015-09-17

    The benefits of the Mediterranean diet (MD) for protecting against chronic disorders such as cardiovascular disease are usually attributed to high consumption of certain food groups such as vegetables, and low consumption of other food groups such as meat. The influence of food processing techniques such as food preparation and cooking on the nutrient composition and nutritional value of these foods is not generally taken into consideration. In this narrative review, we consider the mechanistic and epidemiological evidence that food processing influences phytochemicals in selected food groups in the MD (olives, olive oil, vegetables and nuts), and that this influences the protective effects of these foods against chronic diseases associated with inflammation. We also examine how the pro-inflammatory properties of meat consumption can be modified by Mediterranean cuisine. We conclude by discussing whether food processing should be given greater consideration, both when recommending a MD to the consumer and when evaluating its health properties.

  20. Food Processing and the Mediterranean Diet

    Science.gov (United States)

    Hoffman, Richard; Gerber, Mariette

    2015-01-01

    The benefits of the Mediterranean diet (MD) for protecting against chronic disorders such as cardiovascular disease are usually attributed to high consumption of certain food groups such as vegetables, and low consumption of other food groups such as meat. The influence of food processing techniques such as food preparation and cooking on the nutrient composition and nutritional value of these foods is not generally taken into consideration. In this narrative review, we consider the mechanistic and epidemiological evidence that food processing influences phytochemicals in selected food groups in the MD (olives, olive oil, vegetables and nuts), and that this influences the protective effects of these foods against chronic diseases associated with inflammation. We also examine how the pro-inflammatory properties of meat consumption can be modified by Mediterranean cuisine. We conclude by discussing whether food processing should be given greater consideration, both when recommending a MD to the consumer and when evaluating its health properties. PMID:26393643

  1. Food processing by high hydrostatic pressure.

    Science.gov (United States)

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm 2 ) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  2. Development of functional foods for radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Yu, Young Beob; Park, Hae Ran; Byun, Myung Woo; Yang, Jae Seung; Kim, Sung Ho; Yee, Sung Tae

    2000-03-01

    In searching modulators of immunity and hematopoiesis among natural products, being used as foods, six herbs exhibited lymphocyte proliferation in vitro, and six exhibited augmentation of hematopoietic cell growth. The combined treatments showed synergistic effects of lymphocyte proliferation and of hematopoietic cell growth. On the other hand, we found four effective oriental medicinal prescriptions, used as energy tonic or blood-building decoctions, for survival and regeneration of hematopoietic cells and for protection of stem cells of intestinal crypt in irradiated mice. On the basis of these results, extracts from combinations of herbs were made in expectation of higher effects in the three respects. In immuno modulation activity by the two combinations of herbs was confirmed in mice. In culture of bone narrow cells, growth improvement of non-adherent precursor and induction of cytokine expression by herb mixture extracts were observed. In evaluation of fractions, polysaccharide fraction showed modulation of immunity and hematopoiesis, and methanol fraction showed stem cell protection from radiation. On the basis of the results, we made two provisional products by addition of polysaccharide fraction to the water extract. In further research, the active components would be identified and the fractional foods would be developed for overcoming of declined immunity and radiation damage. For security of sanitation by irradiation, the stability in activity of irradiated resources was confirmed. (author)

  3. Recent status and progress of radiation processing in the world

    International Nuclear Information System (INIS)

    Lee, Yun Jong; Lee, Byoung Hun; Im, Don Sun; Kim, Jae Ho; Nho, Young Chang

    2008-01-01

    Radiation technology is currently used in a number of industrial processes such as sterilization, cross linking of polymer, food irradiation, rubber vulcanization in the tire manufacturing, contaminated medical waste, etc. Gamma ray and electron beam are the key examples of well-established economical applications of radiation processes. The purpose of this paper is to review the recent technological trends and activities for radiation processes in order for the industrial end users to better understand, and obtain useful information about the technology. It is clear that the radiation processing technology has potential for a variety of the industrial applications

  4. Recent status and progress of radiation processing in the world

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Jong; Lee, Byoung Hun; Im, Don Sun; Kim, Jae Ho; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2008-01-15

    Radiation technology is currently used in a number of industrial processes such as sterilization, cross linking of polymer, food irradiation, rubber vulcanization in the tire manufacturing, contaminated medical waste, etc. Gamma ray and electron beam are the key examples of well-established economical applications of radiation processes. The purpose of this paper is to review the recent technological trends and activities for radiation processes in order for the industrial end users to better understand, and obtain useful information about the technology. It is clear that the radiation processing technology has potential for a variety of the industrial applications.

  5. Determination of volatiles produced during radiation processing in food and medicinal herbs; Determinacao de volateis produzidos durante o processamento por radiacao em ervas alimenticias e medicinais

    Energy Technology Data Exchange (ETDEWEB)

    Salum, Debora Christina

    2008-07-01

    In order to protect food from pathogenic microorganisms as well as to increase its shelf life while keeping sensorial properties (e.g. odor and taste), once the latter are one of the main properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. The aim of the present study was to analyze volatile formation from Co irradiation of Laurus Cinnamomum, Piper Nigrum, Origanum Vulgare and Myristica Fragans. Possible changes on the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties in order to allow better application of irradiation technology. l he samples have been irradiated in plastic packages by making use of a {sup 60}Co Gamma irradiator. Irradiation doses of 0, 5, 10, 15, 20 and 25kGy have been tested. For the analysis of the samples, SPME has been applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation has promoted mostly decrease in volatile compounds when doses of 5, 10, 15, 20 and 25kGy were used. For Laurus cinnamomum, the irradiation decreased volatile by nearly 56% and 89.5% respectively, comparing to volatile from a sample which has not been previously irradiated. Differently from other spices analyzed, irradiation on Myristica Fragans has increased volatile compounds except for 4-terpineol. The miristicine (toxic substance when in large quantities, commonly mentioned as narcotic) has increased by nearly 80%. For Origanum Vulgare and Piper Nigrum, significant decrease in volatile compounds have been found, mainly when it comes to 25 kGy irradiation. In general, results indicate loss of sensorial quality of spices. (author)

  6. Status of radiation preservation of foods in India

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Sharma, A.

    1994-01-01

    Food irradiation involves controlled application of radiation energy to agricultural commodities and other foodstuffs for improving hygiene, safety and shelf-life. A number of processes including hygienization of spices and condiments, disinfestation of grains, legumes, and their products, sprout inhibition of onion and potato, delay in ripening of mango and banana, radurization and radicidation of meat and fish have been studied. Collaborative studies have established the efficacy of the process. The technology offers a viable commercial proposition for food conservation and safety. The idea to use ionising radiation for preservation of foods originated almost a century ago. Though today the technology is poised for full scale commercial exploitation, it has undergone several ups and downs due mainly to the perception of users at different points of time. Even today it is difficult to eliminate completely, the fear psychosis in the public mind created by the display of devastating power of atom and radiation during World War II. The chemical revolution of 50s and 60s made all other now ecofriendly technologies appear dim. Nevertheless relentless efforts of the scientists and recognition of the hazards that chemicals posed turned the tide and the technology got its legitimate place in the service of mankind. (author). 5 refs., 6 tabs

  7. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  8. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  9. Engineering Digestion: Multiscale Processes of Food Digestion.

    Science.gov (United States)

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. © 2016 Institute of Food Technologists®

  10. Radiation-Hygienic control of animal food in 1996

    International Nuclear Information System (INIS)

    Vicentijevic, M.; Vukovic, D.; Mitrovic, R.

    1997-01-01

    Radiation-hygienic control of animal food (concentrated fodder, row material for making fodder and food for pets) was done through the first and second circle of radiation biotechnology monitoring system (BIMOS) in 1996. The gamma-spectrometry determined activity of 137 Cs was less than 2,65 Bq/kg with one sample of fish flour exception (23,9 Bq/kg), so the completely radiation safety for animal food was confirmed. (author)

  11. Radiation processing and market economy

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1998-01-01

    In the system of totalitarian economy, regulated by bureaucracy, the real value of equipment, materials and services is almost completely unknown, what makes impossible the comparison of different technologies, eliminates competition, disturbs research and development. With introduction of market economy in Central and Eastern Europe, the radiation processing has lost doubtful support, becoming an independent business, subject to laws of free market economy. Only the most valuable objects of processing have survived that test. At the top of the list are: radiation sterilization of medical equipment and radiation induced crosslinking of polymers, polyethylene in particular. New elements of competition has entered the scene, as well as questions of international regulations and standards have appeared

  12. Consumers' conceptualization of ultra-processed foods.

    Science.gov (United States)

    Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa

    2016-10-01

    Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microbial safety of minimally processed foods

    National Research Council Canada - National Science Library

    Novak, John S; Sapers, Gerald M; Juneja, Vijay K

    2003-01-01

    ...-course meals. All are expected to be portioned and minimally processed to balance the naturalness of unaltered foods with a concern for safety. Yet the responsibility for proper food preparation and handling remains with the naïve modern consumer, who may be less adept in food preparations than his or her less sophisticated ancestors. As a result,...

  14. Food Processing: Technology and Nutritive Value.

    Science.gov (United States)

    Gerbouin-Rerolle, Pascale

    1993-01-01

    This booklet examines the principles of food preservation, food preservation techniques, and nutrition-related consequences of food processing. All foodstuffs in their natural state will deteriorate and become unfit for human consumption due to internal factors, such as enzyme activity, or external factors, such as insects, rodents, and…

  15. Sodium content on processed foods for snacks.

    Science.gov (United States)

    Kraemer, Mariana Vieira dos Santos; Oliveira, Renata Carvalho de; Gonzalez-Chica, David Alejandro; Proença, Rossana Pacheco da Costa

    2016-04-01

    To assess the Na content reported on the labels of processed foods sold in Brazil that are usually consumed as snacks by children and adolescents. Cross-sectional study that assessed Na content and serving size reporting on processed food labels. A supermarket that is part of a large chain in Brazil. All foods available for sale at the study's location and reported in the literature as snacks present in the diets of Brazilian children and adolescents. Of the 2945 processed foods, 87 % complied with the reference serving sizes, although variability in reporting was observed in most of the food subgroups. In addition, 21 % of the processed foods had high Na levels (>600 mg/100 g) and 35 % had medium Na levels (>120 and ≤600 mg/100 g). The meats, oils, fats and seeds groups as well as the prepared dishes had higher percentages of foods classified as high Na (81 %, 58 % and 53 %, respectively). Most of the processed foods had high or medium Na content. We emphasize the importance of revising Brazilian nutrition labelling legislation to standardize reference serving sizes to avoid variation. Besides, we point out the potential for reducing Na levels in most processed foods, as evidenced by the variability in Na content within subgroups. Finally, we have identified the need to develop a method to classify Na levels in processed foods with specific parameters for children and adolescents.

  16. International meeting on radiation chemistry and processing

    International Nuclear Information System (INIS)

    1986-04-01

    The conference heard 76 papers; the abstracts of 74 of them were inputted in INIS. They deal with the basic principles and mechanisms of radiation chemistry, with radiolysis, radiation cross-linking of polymers, with methods and instruments for irradiation beam dosimetry, and with radiation application in the irradiation of foods and wastes. (M.D.)

  17. Processed foods available in the Pacific Islands

    Science.gov (United States)

    2013-01-01

    Background There is an increasing reliance on processed foods globally, yet food composition tables include minimal information on their nutrient content. The Pacific Islands share common trade links and are heavily reliant on imported foods. The objective was to develop a dataset for the Pacific Islands on nutrient composition of processed foods sold and their sources. Methods Information on the food labels, including country of origin, nutrient content and promotional claims were recorded into a standardised dataset. Data were cleaned, converted to per 100 g data as needed and then checked for anomalies and recording errors. Setting: Five representative countries were selected for data collection, based on their trading patterns: Fiji, Guam, Nauru, New Caledonia, and Samoa. Data were collected in the capitals, in larger stores which import their own foods. Subjects: Processed foods in stores. Results The data from 6041 foods and drinks were recorded. Fifty four countries of origin were identified, with the main provider of food for each Pacific Island country being that with which it was most strongly linked politically. Nutrient data were not provided for 6% of the foods, imported from various countries. Inaccurate labels were found on 132 products. Over one-quarter of the foods included some nutrient or health-related claims. Conclusions The globalisation of the food supply is having considerable impacts on diets in the Pacific Islands. While nutrient labels can be informative for consumers looking for healthier options, difficulties still exist with poor labelling and interpretation can be challenging. PMID:24160249

  18. A new radiochromic film for radiation processing

    International Nuclear Information System (INIS)

    Sidney, L.N.; Lynch, D.C.; Willett, P.S.; Englund, W.J.

    1990-01-01

    Acid-sensitive leuco dyes in combination with a chlorine-containing polymer have been used to make a new kind of radiochromic film for radiation processing. When exposed to gamma, electron beam, or high intensity ultraviolet radiation, these films undergo a color change from colorless to royal blue, fuschia, or black, depending on the dye. The dose response for gamma and electron beam radiation has been characterized using reflection and transmission spectrophotometry over an adsorbed dose range of 1 to 100 kGy. The primary features of the films include improved color stability before and after irradiation and improved moisture resistance. The response and stability of the films make them useful for indicator (qualitative) or dosimeter (quantitative) films or labels for sterilization of medical products, food (especially meat, poultry, and spices), pharmaceuticals, and cosmetics, and the crosslinking of plastics, and the curing of polymer coatings. Large pieces of the film could be used in dose mapping when setting up and validating radiation processes and medical treatments

  19. Some new radiation processes in plasmas

    International Nuclear Information System (INIS)

    Wu, C.S.

    1981-01-01

    Some new plasma radiation processes are reviewed, viz., (1) emission near the electron plasma frequency, (2) direct amplification of radiation near the electron cycloton frequency, and (3) parametic amplification of radiation by stimulated scattering. (L.C.) [pt

  20. Food processing with electrically generated photon irradiation

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1983-01-01

    A conceptual design for a portable electric food irradiation processing machine is presented and analyzed for cost assuming the required accelerators are available for $1.5 million each. It is shown that food can be processed to 1 kGy for a price of $5.98/ton

  1. Food processing optimization using evolutionary algorithms | Enitan ...

    African Journals Online (AJOL)

    Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...

  2. Mitigation of Patulin in Fresh and Processed Foods and Beverages.

    Science.gov (United States)

    Ioi, J David; Zhou, Ting; Tsao, Rong; F Marcone, Massimo

    2017-05-11

    Patulin is a mycotoxin of food safety concern. It is produced by numerous species of fungi growing on fruits and vegetables. Exposure to the toxin is connected to issues neurological, immunological, and gastrointestinal in nature. Regulatory agencies worldwide have established maximum allowable levels of 50 µg/kg in foods. Despite regulations, surveys continue to find patulin in commercial food and beverage products, in some cases, to exceed the maximum limits. Patulin content in food can be mitigated throughout the food processing chain. Proper handling, storage, and transportation of food can limit fungal growth and patulin production. Common processing techniques including pasteurisation, filtration, and fermentation all have an effect on patulin content in food but individually are not sufficient safety measures. Novel methods to remove or detoxify patulin have been reviewed. Non-thermal processing techniques such as high hydrostatic pressure, UV radiation, enzymatic degradation, binding to microorganisms, and chemical degradation all have potential but have not been optimised. Until further refinement of these methods, the hurdle approach to processing should be used where food safety is concerned. Future development should focus on determining the nature and safety of chemicals produced from the breakdown of patulin in treatment techniques.

  3. Radiation microbiology relevant to radiation processing

    International Nuclear Information System (INIS)

    Tallentire, A.

    1979-01-01

    The subject is discussed under the following headings: typical background studies involving laboratory models (measurement of radiation responses of different organisms, alone or on or in products; isolation of radiation resistant organisms from products and product environments; measurement of levels of preirradiation microbial contamination ('bioburden')); supplementary studies involving naturally occurring microbial contaminants (unit medical products; microbiological quality assurance; products in bulk; animal diet study). (U.K.)

  4. Possible use of ionizing radiation in food preservation

    International Nuclear Information System (INIS)

    Salkova, Z.

    1975-01-01

    An informative survey is presented of the application of ionizing radiation in the food industry based on experiments performed and literary data. The possibility of radiation treatment of potatoes, onions and strawberries is discussed and the positive effect of experimentally determined gamma radiation doses on the extension of storage of meat is shown

  5. Public relations and the radiation processing industry

    Science.gov (United States)

    Coates, T. Donna

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the "enemy". Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. Clearly it is a challenge we cannot afford to ignore.

  6. Public relations and the radiation processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Coates, T.D. (Nordion International Inc., Kanata, Ontario (Canada))

    1990-01-01

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the ''enemy''. Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. (author).

  7. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  8. Conditions and constraints of food processing in space

    Science.gov (United States)

    Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.

  9. Radiation sterilization: an industrial process

    International Nuclear Information System (INIS)

    Ley, F.J.

    1975-01-01

    A new dimension has been added to the use of radiation in the medical field with the introduction of radiation as a sterilizing agent. Its use in diagnosis through radioactive tracers or X-rays and in therapy administered with the most sophisticated of electrical machines or radioisotope units, is familiar in the hospital world, being well established therein. In contrast, the application of radiation sterilization is in industry where the installation of large radiation sources is already commonplace in many countries. The beginnings in the early 1950's centered on the Van de Graaff machine and linear accelerators and the pioneering efforts of Ethicon Inc. here in the United States must be recognized. However, although sterilization with electron beams is still current practice in a number of plants, the use of gamma rays from cobalt-60 is preferred. The first steps in this direction were taken by the U.K.A.E.A. which, in common with similar organizations elsewhere, was attempting to exploit the tremendous potential for cobalt-60 production arising through the rapid construction of nuclear reactors. The first full-scale commercial gamma plant was commissioned in the U.K. in 1960. It reached a loading of 500,000 curies before its demolition after twelve years of operation. The process gained rapid acceptance within industry and approval by health authorities because it provided a ''cold'' sterilization method combining the property of lethal effect with penetration. Its immediate impact occurred in the introduction of disposable products making it possible, for example, to use heat-labile plastics and new packaging materials and package designs. Certainly, the technique has proved complementary to sterilization methods based on heat and to the use of chemical agents, in particular ethylene oxide gas

  10. Innovative Applications in Radiation Processing

    International Nuclear Information System (INIS)

    Vroom, D.A.

    2006-01-01

    Prior to acquisition by Tyco International, Raychem Corporation initiated several programs to develop new products, reduce the production cost of existing products and identify new market areas that would utilize the skills available in the company in the area of radiation chemistry and radiation technology. Several areas were considered including radiation initiation of specific chemical reactions in polymers at high temperatures, the use of purpose built irradiation equipment for low cost production of specific high volume products and environmental remediation of ground or waste water. In this regard, the Corporation supported a program to improve how material is processed through an electron accelerator and to develop specific equipment to utilize these improvements. The goal was to make the radiation process a single entity as opposed to an accelerator and a material handling system. This paper discusses some of the developments from this program. In the area of radiation induced chemical reactions in polymers at elevated temperatures, a robust accelerator was developed that would allow the irradiation of polymeric materials in the melt as they exited forming equipment such as plastics extruders. Here the goal was to have a low energy, self shielded accelerator in the 300 KeV to 500 KeV range in which extruded polymeric material could be immediately processed in a single pass at melt temperature before it was cooled and allowed to encounter any surfaces. Two machines that met these criteria were constructed and will be discussed. Several of the innovations coming from the high processing temperature, single pass accelerator project were incorporated into the development of purpose built machines to process specific existing products such as wire and heat shrink tubing. Here the goal was to have machines with the minimum acceptable electron energy and compact shielding to reduce cost and foot print. Beam scanning technology developed will be discussed. A major

  11. Modeling of Heating During Food Processing

    Science.gov (United States)

    Zheleva, Ivanka; Kamburova, Veselka

    Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.

  12. Developments and potential of radiation processing in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Singson, C; Carmona, C [Philippine Atomic Energy Commission, Diliman, Quezon City

    1981-01-01

    This paper describes the research and development activities in three areas of radiation processing, namely: food irradiation, medical product sterilization and wood plastic combination. Plans and efforts exerted to acquire a larger gamma source to augment our present 5,000 curie source are discussed. Cost estimates for a radiation facility are presented on the basis of the market potential of food irradiation and medical product sterilization. Existing local industries that can benefit from the adaptation of irradiation technology in their processing requirements are described.

  13. Determination of acrylamide concentration in processed food ...

    African Journals Online (AJOL)

    Currently, acrylamide concentration in processed food products have become a very serious health issue. The World Health Organization (WHO) and the Scientific Committee for Food (SCF) of the European Union also confirmed this concern. In laboratory scale, it was found that acrylamide causes tumors in animals.

  14. Sustainable Food Processing Inspired by Nature.

    Science.gov (United States)

    Sybesma, Wilbert; Blank, Imre; Lee, Yuan-Kun

    2017-04-01

    Here, we elaborate on the natural origin and use of enzymes and cultures in sustainable food processing. We also illustrate how enzymatically treated or fermented food can contribute to solving challenges involving nutrition and health, such as aging, malnutrition, obesity, and allergy. Copyright © 2017. Published by Elsevier Ltd.

  15. Food Processing Contracts: Savings for Schools.

    Science.gov (United States)

    Van Egmond-Pannell, Dorothy

    1983-01-01

    Food processing contracts between schools and food manufacturers can result in huge cost savings. Fairfax County, Virginia, is one of 30 "letter of credit" sites in a three-year study of alternatives. After one year it appears that schools can purchase more for the dollar in their local areas. (MD)

  16. Exergy analysis in industrial food processing

    NARCIS (Netherlands)

    Zisopoulos, F.K.

    2016-01-01

    The sustainable provision of food on a global scale in the near future is a very serious challenge. This thesis focuses on the assessment and design of sustainable industrial food production chains and processes by using the concept of exergy which is an objective metric based on the first and

  17. Application of low dose radiation for preservation of sea foods

    International Nuclear Information System (INIS)

    Venugopal, V.; Nair, P.M.

    1994-01-01

    Treatment of food with low doses of gamma radiation has been recognized to have two main advantages. These consist of: (1) improvement of food safety by elimination of pathogens and (2) reduction of microbial spoilage and extension of shelf life of perishable items by reducing the number of viable spoilage organisms. Studies during the last few decades have conclusively proved the beneficial effects of radiation with respect to fishery products. The three potential areas of application to fish products include: (i) radurization for shelf life extension (ii) radicidation to eliminate food borne pathogens in the products and (iii) radiation treatment to dried products to control insects

  18. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  19. Future radiation sources and identification of irradiated foods

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1989-01-01

    Two major questions regarding irradiation that are raised today are: (1) Which sources should be used for irradiating food? and (2) How can irradiated foods be identified? This article considers both questions. After briefly mentioning a few of the historical stepping stones in the development of radiation sources, present and future radiation sources are discussed. Next the changes in foods caused by irradiation are considered. These changes are extremely small-so minor in fact that it is difficult to detect if the food has been irradiated. Still, these are several detection methods available, and this article describes them

  20. International cooperative effort to establish dosimetry standardization for radiation processing

    International Nuclear Information System (INIS)

    Farrar, Harry IV

    1990-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms and applications of radiation processing. To date, the group has completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment. This set will be available for adoption by national regulatory agencies or other standards-setting organizations for their procedures and protocols. (author)

  1. International cooperative effort to establish dosimetry standardization for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV.

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab

  2. Solving Microbial Spoilage Problems in Processed Foods

    Science.gov (United States)

    Clavero, Rocelle

    This chapter surveys common microbial food spoilage processes. The chapter is organized by food products and includes sections addressing spoilage in meat, poultry, fish; dairy products (milk, butter, cheese); beverage products; bakery products; canned foods; fruit and confectionery products; and emulsions. It addresses the isolation and identification of spoilage organisms and provides several case studies as examples. It introduces various organisms responsible for spoilage including Gram-positive lactic acid bacteria, Gram-negative aerobic bacteria, yeasts, molds, and fungal contaminants. Throughout the chapter, attention is given to when, where, and how spoilage organisms enter the food processing chain. Troubleshooting techniques are suggested. The effect (or lack of effect) of heating, dehydration, pH change, cooling, and sealing on various organisms is explained throughout. The chapter contains four tables that connect specific organisms to various spoilage manifestations in a variety of food products.

  3. Ionizing energy in food processing and pest control. 1. Wholesomeness of food treated with ionizing energy

    International Nuclear Information System (INIS)

    Wierbicki, Eugen

    1986-01-01

    Congressional concerns about the use of ionizing energy for food preservation and to control pests in food products for export and domestic use promoted the preparation of this report by a special task force of the Council for Agricultural Science and Technology (CAST). An overview surveys research conducted on the toxicological safety, nutritional quality, and microbiological safety of foods treated with ionizing energy. Background information is provided on various types of electromagnetic radiation, effects of ionizing energy level and dose, sources of natural background radiation and induced radioactivity, and the nature and safety of various radiolytic products. Objectives, methodologies, and problems associated with feeding studies of toxicological safety are outlined; results of scientific studies, U.S. government wholesomeness studies, and international feeding studies are summarized. Studies on the nutritional value of food products processed using ionized energy have examined the effects of ionizing energy on 1) composite diets, 2) carbohydrates, 3) fats, 4) proteins and amino acids, 5) vitamins (potatoes, onions, fruits, meat, seafood, cereals, vegetables, dairy products, oils), 6) antivitamins, and 7) minerals. The report concludes that currently available scientific evidence indicates that foods exposed to ionizing energy under the conditions proposed for commercial application are 1) wholesome (safe to eat) and 2) comparable in nutritional adequacy to fresh or conventionally processed foods

  4. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  5. Design and optimization of food processing conditions

    OpenAIRE

    Silva, C. L. M.

    1996-01-01

    The main research objectives of the group are the design and optimization of food processing conditions. Most of the work already developed is on the use of mathematical modeling of transport phenomena and quantification of degradation kinetics as two tools to optimize the final quality of thermally processed food products. Recently, we initiated a project with the main goal of studying the effects of freezing and frozen storage on orange and melon juice pectinesterase activity and q...

  6. Infrared Radiative Properties of Food Materials

    Science.gov (United States)

    Precisely, infrared radiation is electromagnetic radiation whose wavelength is longer than that of visible light, but shorter than that of terahertz radiation and microwaves. The infrared portion of the electromagnetic spectrum spans roughly three orders of magnitude (750 nm to 100 µm) and has been...

  7. Role of radiation technology in preservation of food and agricultural commodities

    International Nuclear Information System (INIS)

    Rajput, Sanjay

    2016-01-01

    Several technological benefits can be achieved by gamma radiation processing of agricultural commodities and food include: inhibition of sprouting in tubers, bulbs and rhizomes; disinfestation of insect pests in stored products; disinfestation of quarantine pests in fresh produce; delay in ripening and senescence in fruits and vegetables; destruction of microbes responsible for spoilage of food; elimination of parasites and pathogens of public health importance in food

  8. Effects of gamma radiation in cauliflower (Brassica spp) minimally processed

    International Nuclear Information System (INIS)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Thomaz, Fernanda S.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H.; Alencar, Severino M.

    2007-01-01

    Consumers demand for health interests and the latest diet trends. The consumption of vegetables worldwide has increased every year over the past decade, consequently, less extreme treatments or additives are being required. Minimally processed foods have fresh-like characteristics and satisfy the new consumer demand. Food irradiation is an exposure process of the product to controlled sources of gamma radiation with the intention to destroy pathogens and to extend the shelf life. Minimally processed cauliflower (Brassica oleraceae) exposed to low dose of gamma radiation does not show any change in sensory attributes. The aim of this study was to analyze the effects of the low doses of gamma radiation on sensorial aspects like appearance, texture and flavor of minimally processed cauliflower. (author)

  9. Exploring the food chain. Food production and food processing in Western Europe, 1850-1990

    NARCIS (Netherlands)

    Bieleman, J.; Segers, Y.; Buyst, E.

    2009-01-01

    Until the late 19th century the food industry was restricted to a few activities, usually based on small scale industries. The links between agriculture and food processing were very tight. Due to increased purchasing power, population growth and urbanisation, the demand for food grew substantially.

  10. Effects of atomic bomb radiations on human food

    Energy Technology Data Exchange (ETDEWEB)

    Pace, F C

    1956-01-01

    The increase in energy release of atomic weapons has increased the hazard of atomic radiation to food. Products of atomic explosions are probably similar regardless of size. Of the energy released, blast energy accounts for one-half, heat flash for one-third, initial nuclear radiation for one-twentieth, and residual radiation (potential fallout) about one-tenth. Radioactive elements may enter man by inhalation, by open wounds, or by ingestion of contaminated food. Food can become contaminated by direct fallout on unprotected food or through metabolic assimilation by plants or animals. Dust-proof containers and undamaged cans provide protection from the first hazard. Cans, etc. should be washed before opening. Other food could be cleaned and used if subsequent monitoring indicated that the fallout material had been removed.

  11. Use of ionizing radiation for preservation of food and feed products

    International Nuclear Information System (INIS)

    Josephson, E.S.; Brynjolfsson, A.; Wierbicki, E.

    1975-01-01

    Exposing food to ionizing radiation can contribute to closing the worldwide food deficit by reducing food spoilage losses, by making available more food of higher nutritional quality (animal protein food) to more people, and by keeping prices down by reducing losses. Because ionizing radiation kills disease-causing organisms, it can reduce the incidence of food-borne diseases. It also reduces our dependence upon some of the chemical additives, such as nitrites and nitrates, now being questioned by health authorities to control food spoilage and food-borne diseases. The three basic types of ionizing radiation used for processing of food are electrons (10 MeV maximum energy), X-rays (5 MeV maximum energy) produced by electrons in an X-ray target, and gamma rays from 60 Co and 137 Cs. Electrons, X-rays, and gamma rays cause ionization in the food by either the primary electrons or by the secondary electrons resulting from gamma or X-ray interactions in the food with little rise in temperature and little total chemical change. The ionized and activated molecules form unstable secondary products that kill the organisms. Another effect is to slow down post-harvest growth and maturation in some fruits and vegetables

  12. Fish and food preservation by radiation in Bangladesh

    International Nuclear Information System (INIS)

    Hossain, M.M.

    1985-01-01

    Bangladesh Atomic Energy Commission (BAEC) has been engaged for the last two decades in research and development activities in food irradiation and has been actively participating in research projects under the Regional Project in Food Irradiation (RPFI) of the RCA countries since its inception. The Institute of Food and Radiation Biology (IFRB) of the Commission has been using since 1979 a 50,000 curie Cobalt-60 gamma source (Gamma beam-650) for R and D and pilot-scale studies on food irradiation. The present status of food irradiation and its prospects of commercial introduction in Bangladesh are described

  13. Radiation processing in the United States

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1986-01-01

    In animal feeding studies, including the huge animal feeding studies on radiation sterilized poultry products irradiated with sterilizing dose of 58 kGy revealed no harmful effects. This finding is corroborated by the very extensive analysis of the radiolytic products, which indicated that the radiolytic products could not in the quantity found in the food be expected to produce any toxic effect. It thus appears to be proven with reasonable certainty that no harm will result from the proposed use of the process. Accordingly, FDA is moving forward with approvals while allowing the required time for hearings and objection. On July 5, 1983 FDA permitted gamma irradiation for control of microbial contamination in dried spices and dehydrated vegetable seasoning at doses up to 10 kGy; on June 19, 1984 the approval was expanded to cover insect infection; and additional seasonings and irradiation of dry or dehydrated enzyme preparations were approved on February 12 and June 4, respectively, 1985. In addition, in July 1985, FDA cleared irradiation of pork products with doses of 0.3 to 1 kGy for eliminating trichinosis. Approvals of other agencies, including Food and Drug Administration, Department of Agriculture, the Nuclear Regulatory Commission, Occupational Safety and Health Administration, Department of Transportation, Environmental Protection Agency, and States and local communities, are usually of a technological nature and can then be obtained if the process is technologically feasible. (Namekawa, K.)

  14. Disinfection ultraviolet radiation bulk food products

    OpenAIRE

    Семенов, А. А.

    2014-01-01

    В работе представлены результаты обеззараживания сыпучих пищевых продуктов ультрафиолетовым излучением. Предложена технология бактерицидного обеззараживания сыпучих продуктов с размером частиц до 50 мкм. Проведены необходимые расчеты, связанные с дозой облучения, с временем пребывания частиц в зоне облучения и необходимой дозой инактивации в зависимости от вида бактерий. Considered the results of bulk food products disinfection by ultraviolet radiation. The technology bactericidal disinfec...

  15. The choice of food consumption rates for radiation dose assessments

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Webb, G.A.M.

    1981-01-01

    The practical problem in estimating radiation doses due to radioactive contamination of food is the choice of the appropriate food intakes. To ensure compliance or to compare with dose equivalent limits, higher than average intake rates appropriate to critical groups should be used. However for realistic estimates of health detriment in the whole exposed population, average intake rates are more appropriate. (U.K.)

  16. Radiation monitoring of imported food to Saudi Arabia after Chernobyl

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Abdul-Majid, S.; Abdul-Fattah, A.F.

    1987-01-01

    Saudi Arabia has been indirectly affected by the Chernobyl accident. Large amounts of food or products that may enter the food chain are daily imported from European countries. After April 27, the Saudi government assigned the responsibilities of radiation monitoring of imported food to some universities and governmental sectors. The nuclear engineering department at King Abdulaziz Univ. (KAU) has undertaken the monitoring duties for products coming to western and southern provinces of the country. The sampling and monitoring procedures and results are described

  17. Radiation processing. Present situation of the applications in Europe

    International Nuclear Information System (INIS)

    Laizier, J.

    1977-01-01

    A review is given of radiation processings in Europe: sterilization, food irradiation, sewage treatment, cross-linking of polyethylenes, vinyl polychlorides, rubbers and polymers, electron beam drying of coatings on wood, plastics and paper, production of wood-plastic composites, polymerization of ethylene and vinyl monomers [fr

  18. Retort process modelling for Indian traditional foods.

    Science.gov (United States)

    Gokhale, S V; Lele, S S

    2014-11-01

    Indian traditional staple and snack food is typically a heterogeneous recipe that incorporates varieties of vegetables, lentils and other ingredients. Modelling the retorting process of multilayer pouch packed Indian food was achieved using lumped-parameter approach. A unified model is proposed to estimate cold point temperature. Initial process conditions, retort temperature and % solid content were the significantly affecting independent variables. A model was developed using combination of vegetable solids and water, which was then validated using four traditional Indian vegetarian products: Pulav (steamed rice with vegetables), Sambar (south Indian style curry containing mixed vegetables and lentils), Gajar Halawa (carrot based sweet product) and Upama (wheat based snack product). The predicted and experimental values of temperature profile matched with ±10 % error which is a good match considering the food was a multi component system. Thus the model will be useful as a tool to reduce number of trials required to optimize retorting of various Indian traditional vegetarian foods.

  19. Innovation drivers and barriers in food processing

    NARCIS (Netherlands)

    Fortuin, F.T.J.M.; Omta, S.W.F.

    2009-01-01

    Purpose - The food processing industry, confronted with increased global competition and more stringent customer demands, is pressurized to improve the pace and quality of its innovation processes. This paper aims to find out what factors constitute the main drivers and barriers to innovation and to

  20. Research status and prospects of the radiation food science and biotechnology in Korea

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Choi, Jong Il; Song, Byum Suk; Byun, Myung Woo

    2008-01-01

    Irradiation Food has been approved in 52 countries worldwide. In Korea, 26 food items have been approved since 1987. Recently, the irradiation technology with high dose was applied for the development of Korean space foods. Besides the sanitary purpose, the irradiation technology was used for elimination of undesired products such as food allergens, nitrite, biogenic amines, and so on. In this paper, the status of irradiation in the field of food and other biotechnology in Korea will be presented. Food irradiation is known to be the best method for controlling pathogenic microorganisms and one of the best alternatives to the chemical fumigants or preservatives usually used for a sanitation treatment for international trade. Also, there are larger industrial groups dedicated to radiation processing other than food irradiation industry. In this paper, the status of irradiation food science and biotechnology in Korea will be presented

  1. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    Makuuchi, K.; Sasak, T.; Vikis, A.C.; Singh, A.

    1993-12-01

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  2. Radiation processing: a versatile technology for industry

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1996-01-01

    Soon after the discovery of x-ray in 1895 and radioactivity in 1896, it was recognized that ionizing radiation can modify the chemical, physical and/or biological properties of materials. However, it was only in the late 50's, when large radiation sources become available, has this unique property of radiation found industrial applications in radiation processing. Today, radiation processing has been used by industry in such diverse applications, such as radiation sterilization/decontamination of medical products, pharmaceuticals, cosmetics and their raw materials; radiation cross-linking of wire and cable insulation; production of heat shrinkable materials and polymer foam; and radiation curing of coatings, adhesives and inks on a wide variety of substrates. In addition to being a clean environment-friendly technology, radiation processing can also be used for the conservation of the environment by such processes as radiation treatment of flue gases to remove SO 2 and NO x and disinfection of sewage sludge. Because of the many advantages offered by radiation processing, industry is showing strong interest in the technology as evidenced by the growing number of industrial radiation facilities in many countries. (author)

  3. Food processing using electrons and X-rays

    International Nuclear Information System (INIS)

    Clouston, J.G.

    1985-01-01

    The ionizing radiation which will be used as process energy for the preservation of food, will be limited to high energy electrons (less than 10 MeV), X-rays (less than 5 MeV) and gamma rays emitted by cobalt-60 (1.17;1.33 MeV) and cesium -137 (0.663 MeV). When a foodstuff is irradiated with any of these radiations absorption of the radiant energy will initiate a variety of reactions between its atomic and molecular constituents causing permanent chemical, physical and biological changes. This paper focusses on radiation processing using electron or X-ray generators in the range 2 to 10 MeV

  4. The new development of radiation processing in China

    International Nuclear Information System (INIS)

    Chen Dianhua

    1998-12-01

    China Isotope and Radiation Association (CIRA) investigated the status of radiation processing in China's mainland. There are 45 accelerators each with beam power over 5 kW, the total beam power is 2005 kW. There are 48 γ facilities each with designed capacity over 1.11 x 10 4 TBq (0.3 million curies) and other 75 units with designed capacity less than 1.11 x 10 4 TBq. The total loaded capacity is 4.63 x 10 5 TBq, more than one third of the designed capacity. radiation processing is mainly used in producing chemical-industrial products (as heat-shrinkable products and radiation cross-linked wire and cable) in China. Some enterprises with annual output value over a hundred million RMB have emerged. Radiation processing is also used in preservation and disinfection of food. In 1977, six kinds of hygienic standards for irradiated food were authorized. Radiation sterilization of disposable medical products, radiation desulphurization and denitration are also being developed in China

  5. Radiation protection at radioisotope processing facilities

    International Nuclear Information System (INIS)

    Hillier, L.R.; Decaire, R.

    2002-01-01

    MDS Inc. is Canada's largest diversified health and life sciences company and provides health care services and products to prevent, diagnose and treat disease. MDS Nordion Inc. is a subsidiary of MDS Inc. and is located in Ottawa, Ontario. It provides much of the world's supply of radioisotopes used in nuclear medicine primarily to diagnose, but also to treat disease. MDS Nordion is composed of three major production divisions at its Ottawa location and serves customers in three major markets. These are primarily: radioisotopes used in nuclear medicine (Nuclear Medicine Division), radiation processing for sterilization of medical equipment and supplies, and food (Ion Technologies Division), and teletherapy equipment used in cancer treatment (Therapy Systems Division). MDS Nordion supplies customers in over 100 countries, exporting more than 95 percent of its product processed in Canada. Every year, 15 to 20 million diagnostic imaging tests are carried out in hospitals around the world, using radioisotopes supplied by MDS Nordion. In addition, 150 to 200 million cubic feet (that's enough to cover an entire CFL field - including the end zones - stacked over half a kilometer high) of single use medical products are sterilized using MDS Nordion supplied equipment. MDS Nordion receives medical isotopes from AECL, Chalk River Laboratories and processes the material to purify and quantify the radioisotope product. Sealed sources, comprised of cobalt 60, are supplied from CANDU reactors. Production processes include ventilated shielded cells with remote manipulators, gloveboxes and fumehoods, to effectively control the safety of the workplace and the environment, and to prevent contamination of the products. The facilities are highly regulated by the Canadian Nuclear Safety Commission (CNSC) for safety and environmental protection. Products are also regulated by Health Canada and the US-Food and Drug Administration (FDA). (author)

  6. Actual situation of radiation analysis of food

    International Nuclear Information System (INIS)

    Nomura, Takakazu

    2011-01-01

    The measurement methods of radioactivity of food and quality control are described. 'Manual for Measuring Radioactivity of Foods in Case of Emergency' was published by Ministry of Health, Labor and Welfare, Japan, on March 17, 2011. It explained the analytical methods such as radioactive iodine by NaI (Tl) scintillation survey meter, radionuclide by gamma-ray spectrometry using germanium semiconductor detector, uranium and plutonium rapid analytical method for emergency, and radioactive strontium analytical method. This report gave a detailed explanation of the measurement method of radioactive iodine by NaI (Tl) scintillation survey meter and radionuclide by γ-ray spectrometry using germanium semiconductor detector. Indices for Food and Beverage Intake Restriction, germanium semiconductor detector and lead shield, activity standard gamma volume sources and the calibration certificate, Eu-152 radioactivity standard gamma ray sources and energy calibration curve, Food Safety Risk Assessment on Radioactive Nuclides in Food, measurement results of food by germanium semiconductor detector, and the measurement results of vegetables before and after the nuclear accident are illustrated. (S.Y.)

  7. Chemiclearance of food irradiation process: Its scientific basis

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1981-01-01

    Irradiation can facilitate preservation and distribution of food; it can reduce the need for chemical additives and pesticides; and it can reduce the overall use of energy. Often, industry must make changes because of seasonal variation in supply. Application of food irradiation will be difficult, therefore, unless industry can adjust to these changes, which require a broad clearance, or that food irradiation be cleared as a process. Basic to such broad clearance is a thorough understanding of the changes that take place so that the results of animal feeding studies can be extrapolated to foods similar to those used in the animal feeding studies. Such extrapolation is sometimes called chemiclearance. The extensive research on the safety of irradiated foods is summarized and the following major categories discussed: (a) theory of interaction of radiation with food; (b) chemical analysis of the radiolytic products and measurements of their yields as a function of the chemical composition of the food, temperature, dose, and dose-rates; (c) toxicological evaluation of the radiolytic compounds; and (d) toxicological evaluation of short-term and long-term animal feeding studies, mutagenicity studies, teratogenicity studies, and anti-metabolite studies. (author)

  8. 3D food printing: a new dimension in food production processes

    Science.gov (United States)

    3D food printing, also known as food layered manufacture (FLM), is an exciting new method of digital food production that applies the process of additive manufacturing to food fabrication. In the 3D food printing process, a food product is first scanned or designed with computer-aided design softwa...

  9. Food-processing, packaging and irradiation/preservation

    International Nuclear Information System (INIS)

    Tripathi, Jyothi

    2017-01-01

    The present talk describes the major projects being carried out in FFACS during last few years. One of the major aims of the section is development of ready-to-cook (RTC) vegetables and ready-to-eat (RTE) fruits with improved shelf life using radiation processing. RTC vegetables and fruits (French beans, ash gourd, drumstick, pumpkin, cabbage, cauliflower and pomegranate having shelf life of 2-3 days at 10 °C) with enhanced shelf life (up to 21 days at 10°C) were developed using radiation treatment. The developed products were far superior as compared to the corresponding control samples with respect to sensory and microbial quality during the intended storage period. The findings have helped the food industry in adoption of food irradiation technology. The products developed are now being taken up by HyperCITY Retail (India) Ltd. for sale on their shelves

  10. Food preservation by ionizing radiation in Nigeria. Present and future status

    International Nuclear Information System (INIS)

    Olorunda, A.O.; Aboaba, F.O.

    1978-01-01

    Research into the use of ionizing radiation in food preservation in Nigeria is still in its very infancy and most of the work done to date is at the exploratory stage. Such work has, however, demonstrated the potential of ionizing radiation in prolonging the shelf-life of yams and, possibly, onions. The paper reviews the present status of the use of radiation food preservation in Nigeria. The present research programme of the Faculty of Technology, University of Ibadan, which includes a wider application of ionizing radiation to fruit and vegetable preservation and grain storage, is also highlighted. The primary objectives of this programme are to establish the wholesomeness of the irradiated foods and the economics of the process. (author)

  11. Electrostatic coating technologies for food processing.

    Science.gov (United States)

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  12. One of the great conundrums of the 20th century science - ionizing radiation: Radiation processing and applications in the Czech Lands

    International Nuclear Information System (INIS)

    Janovsky, I.

    2007-01-01

    The article deals with the following topics: Milestones in the early history of radiation and radiation sources (1895-1954); Radiation effects - early observations and further development; Scope of radiation processing; Radiation processing in the Czech Lands (i.e. Bohemia + Moravia = the Czech part of Czechoslovakia or Austria-Hungary till 1918) (radiation sterilization of medical items; radiation processing of cable insulations; radiation preservation of objects of art and historical monuments; radiation modification of semiconductors; radiation synthesis of organic compounds; food irradiation; application of ionizing radiation in agriculture and gardening; radiation regeneration of water wells; radiation degradation of chlorinated biphenyls; radiation coloration of glass for decorative purposes; some other applications; and problems associated with practical radiation processing). An overview of 60 Co gamma irradiators and electron accelerators installed at Czech institutions is presented in the tabular form. (P.A.)

  13. Putting ultrasound to use in food processing

    Science.gov (United States)

    Ultrasound has been applied to a wide range of food processing operations, both in research laboratories and commercially. This emerging technology has received a good deal of interest due to its green nature and nonthermal benefits, which include increased throughput, reduced cost, improved final ...

  14. Food Processing Curriculum Material and Resource Guide.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge.

    Intended for secondary vocational agriculture teachers, this curriculum guide contains a course outline and a resource manual for a seven-unit food processing course on meats. Within the course outline, units are divided into separate lessons. Materials provided for each lesson include preparation for instruction (student objectives, review of…

  15. Hygienic Design in the Food Processing Industry

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hjelm, M.

    2001-01-01

    Bacterial adhesion and biofilm formation are of major concern in food production and processing industry. In 1998 a Danish co-operation programme under the title Centre for Hygienic Design was funded to combine the skills of universities, research institutes and industry to focus on the following...

  16. Radiation processing in India. Current status and future program

    International Nuclear Information System (INIS)

    Mittal, Jai Pal

    2003-01-01

    Radiation processing is an alternative to conventional methods such as thermal and chemical processing in many industrial applications. In India, this technology has found extensive applications in area of healthcare, agriculture, food preservation, industry and environment. Both gamma radiation and electron beam accelerators are being utilized for this purpose. Presently, 6 commercial gamma irradiators housing about 1.5 million curie Co-60 and an annual turnover of over US$ 2 million and 3 commercial electron beam (EB) accelerators with installed capacity of 185 kW are commercially operating in India. Five demonstration plants housing a total of 0.5 million curie Co-60 have been set up to assess the techno-commercial viability of the processes such as radiation vulcanization of natural rubber latex, decontamination of spices, hygienization of sewage sludge, shelf-life extension of onions. The new areas being explored include use of electron beam treated pulp for viscose-rayon process, radiation processed 'hydrogel' burn/wound dressings and radiation processing of natural polymers. In the present paper, the current status of this program, especially the recent developments and future direction of radiation processing technology in India is reviewed. (author)

  17. Development of space foods using radiation technology

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  18. Development of space foods using radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  19. Use of radiation processing technology gradually expands in industry

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The use of radioisotopes and radiation is expanding in the fields of industries and medicine with a high potentiality of the application to environmental protection. The technology transfer on the use of isotopes and radiation is progressing in the framework of international cooperation. But the industry has maintained wait and see attitude on the commercialization of food irradiation. Such present features were the highlight in the 19th Japan Conference on Radiation and Radioisotopes held on November 14-16. 72 papers from 19 countries were presented and discussed in 13 sessions. The progress of accelerator technology has contributed to the expansion of radiation processing market. The importance of the application of isotopes and radiation to environmental protection has been gradually acknowledged, and the electron beam treatment of flue gas for acid rain abatement and the elimination of chlorinated ethylene from drinking water were discussed. Drastic change has not been seen in the climate of food irradiation, however there are several positive indicators which support the prediction of slow but steady progress in the commercialization of the process and the trade of irradiated foods. (K.I.)

  20. Logistics integration processes in the food industry

    OpenAIRE

    Giménez, Cristina

    2003-01-01

    This paper analyses the integration process that firms follow to implement Supply Chain Management (SCM). This study has been inspired in the integration model proposed by Stevens (1989). He suggests that companies internally integrate first and then extend integration to other supply chain members, such as customers and suppliers. To analyse the integration process a survey was conducted among Spanish food manufacturers. The results show that there are companies in three different integratio...

  1. Optimization of frying process in food safety

    Directory of Open Access Journals (Sweden)

    Quaglia, G.

    1998-08-01

    Full Text Available The mechanics of frying are fairly simple. Hot oil serves as a heat exchange medium in which heat is transferred to the food being fried. As a result, the heat converts water within the food to steam and melts the fat within the food. The steam and fat then migrate from the interior of the food through the exterior and into the oil. Conversely, some of the frying oil is absorbed into the food being fried. The chemistry occurring in the frying oil and in the food being fried includes a myriad of thermal and oxidative reactions involving lipids, proteins, carbohydrates and minor food constituents. Decomposition products by autoxidation above 100°C, polimerization without oxigen between 200-300°C and thermal oxidation at 200°C, can be produced in frying oil and their amounts are related to different chemical and physical parameters such as temperature, heating time, type of oil used and food being fried, oil turnover rate, management of the oil and finally type of equipment used. Different studies have remarked as the toxicity of these by-products, is due to their chemistry and concentration. Since the prime requirement in food quality is the safety of the products, attainable through preventive analysis of the risks and total control through all frying processes, in this work the critical points of particular importance are identify and showed: Oil composition, and in particular its antioxidant capacity. Proper fryer design. Food/oil ratio. Good manufactured practice. Beside the quality screening has to be direct towards the chemical quality evaluation by easy and rapid analysis of oil (colour, polar compounds, free fatty acids and antioxidant capacity and food fried (panel test and/or consumer test. Conclusion, to maintain high quality in the frying medium, choose efficient equipment, select a fat with desirable flavour and good antioxidant capacity, eliminate crackling as soon and often as possible, choose better components with minimal but

  2. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  3. Development of the radiation inspection system for food materials

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sujung; Kim, Heeyoung; Kim, Myungjin; Lee, Unjang [ORIONENC Co., Seoul (Korea, Republic of)

    2015-10-15

    Radioactive contamination of processed foodstuffs, livestock, marine products, farm products imported from Japan and fishes caught in coastal waters of Korea has become an important social issue. Recently, there are also needs of inspection system for monitoring of public meals such like school feedings of kindergarten, elementary school, middle school, high school and university. Radioactivity inspections of those foods are executed manually with portable measuring instruments or at labs using their samples. But, radioactivity inspections of those foods should execute field survey in real time. In consequence, there are some problem of time delay and low reliability. To protect the health of citizens from radioactivity contained in Japanese marine products imported to Korea, a system to inspect radioactivity in real time is developed. The system is to measure the radioactivity level of farm and marine products and public meals continuously and automatically at inspection sites of an agency checking radiation of imported foodstuffs to determine radioactive contamination. Performance was identified through the performance test (Cs-137 30, 50, 300, 900Bq/kg) at Korea Research Institute of Standards and Science (KRISS). NaI(Tl) detector was satisfied the performance for measurement.

  4. Development of the radiation inspection system for food materials

    International Nuclear Information System (INIS)

    Min, Sujung; Kim, Heeyoung; Kim, Myungjin; Lee, Unjang

    2015-01-01

    Radioactive contamination of processed foodstuffs, livestock, marine products, farm products imported from Japan and fishes caught in coastal waters of Korea has become an important social issue. Recently, there are also needs of inspection system for monitoring of public meals such like school feedings of kindergarten, elementary school, middle school, high school and university. Radioactivity inspections of those foods are executed manually with portable measuring instruments or at labs using their samples. But, radioactivity inspections of those foods should execute field survey in real time. In consequence, there are some problem of time delay and low reliability. To protect the health of citizens from radioactivity contained in Japanese marine products imported to Korea, a system to inspect radioactivity in real time is developed. The system is to measure the radioactivity level of farm and marine products and public meals continuously and automatically at inspection sites of an agency checking radiation of imported foodstuffs to determine radioactive contamination. Performance was identified through the performance test (Cs-137 30, 50, 300, 900Bq/kg) at Korea Research Institute of Standards and Science (KRISS). NaI(Tl) detector was satisfied the performance for measurement

  5. Effect of radiation processing on meat tenderisation

    International Nuclear Information System (INIS)

    Kanatt, Sweetie R.; Chawla, S.P.; Sharma, Arun

    2015-01-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour. - Highlights: • Effect of radiation processing on tenderness of three meat systems was evaluated. • Dose dependant reduction in shear force seen in buffalo meat. • Collagen solubility increased with irradiation

  6. Stability of mycotoxins during food processing.

    Science.gov (United States)

    Bullerman, Lloyd B; Bianchini, Andreia

    2007-10-20

    The mycotoxins that commonly occur in cereal grains and other products are not completely destroyed during food processing operations and can contaminate finished processed foods. The mycotoxins most commonly associated with cereal grains are aflatoxins, ochratoxin A, fumonisins, deoxynivalenol and zearalenone. The various food processes that may have effects on mycotoxins include sorting, trimming, cleaning, milling, brewing, cooking, baking, frying, roasting, canning, flaking, alkaline cooking, nixtamalization, and extrusion. Most of the food processes have variable effects on mycotoxins, with those that utilize the highest temperatures having greatest effects. In general the processes reduce mycotoxin concentrations significantly, but do not eliminate them completely. However, roasting and extrusion processing show promise for lowering mycotoxin concentrations, though very high temperatures are needed to bring about much of a reduction in mycotoxin concentrations. Extrusion processing at temperatures greater than 150 degrees C are needed to give good reduction of zearalenone, moderate reduction of alfatoxins, variable to low reduction of deoxynivalenol and good reduction of fumonisins. The greatest reductions of fumonisins occur at extrusion temperatures of 160 degrees C or higher and in the presence of glucose. Extrusion of fumonisin contaminated corn grits with 10% added glucose resulted in 75-85% reduction in Fumonisin B(1) levels. Some fumonisin degredation products are formed during extrusion, including small amounts of hydrolyzed Fumonisin B(1) and N-(Carboxymethyl) - Fumonisin B(1) and somewhat higher amounts of N-(1-deoxy-d-fructos-1-yl) Fumonisin B(1) in extruded grits containing added glucose. Feeding trial toxicity tests in rats with extruded fumonisin contaminated corn grits show some reduction in toxicity of grits extruded with glucose.

  7. Radiation processing of Garcinia cambogia

    International Nuclear Information System (INIS)

    Francis, Sanju; Varshney, Lalit

    2001-01-01

    Garcinia Cambogia (GC) extract is used in controlling obesity and many health related problems. Being a natural product, locally known as cocum powder, is often contaminated with various microbiological species. Ability of g-radiation is well established to eliminate such species and it could be used to protect the quality of the product. In the present study, GC extract was subjected to g-radiation dose in order to evaluate the stability of its active ingredients. High Performance Liquid Chromatography (HPLC) with Diode Array Detector (DAD) and Thermo-Gravimetric analysis (TGA) were used to evaluate the product stability. No significant physico-chemical changes were observed in GC at 30 kGy. GC could be sterilized or decontaminated in dry powder form using gamma radiation without affecting its physico-chemical properties. (author)

  8. Food irradiation : estimates of cost of processing

    International Nuclear Information System (INIS)

    Krishnamurthy, K.; Bongirwar, D.R.

    1987-01-01

    For estimating the cost of food irradiation, three factors have to be taken into consideration. These are : (1) capital cost incurred on irradiation device and its installation, (2) recurring or running cost which includes maintenance cost and operational expenditure, and (3) product specific cost dependent on the factors specific to the food item to be processed, its storage, handling and distribution. A simple method is proposed to provide estimates of capital costs and running costs and it is applied to prepare a detailed estimate of costs for irradiation processing of onions and fish in India. The cost of processing onions worked out to be between Rs. 40 to 120 per 1000 Kg and for fish Rs 354 per 1000 Kg. These estimates do not take into account transparation costs and fluctuations in marketing procedures. (M.G.B.). 7 tables

  9. Mediate gamma radiation effects on some packaged food items

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Uehara, Vanessa B.; Teixeira, Christian A.H.M.; Mastro, Nelida L. del

    2012-01-01

    For most of prepackaged foods a 10 kGy radiation dose is considered the maximum dose needed; however, the commercially available and practically accepted packaging materials must be suitable for such application. This work describes the application of ionizing radiation on several packaged food items, using 5 dehydrated food items, 5 ready-to-eat meals and 5 ready-to-eat food items irradiated in a 60 Co gamma source with a 3 kGy dose. The quality evaluation of the irradiated samples was performed 2 and 8 months after irradiation. Microbiological analysis (bacteria, fungus and yeast load) was performed. The sensory characteristics were established for appearance, aroma, texture and flavor attributes were also established. From these data, the acceptability of all irradiated items was obtained. All ready-to-eat food items assayed like manioc flour, some pâtés and blocks of raw brown sugar and most of ready-to-eat meals like sausages and chicken with legumes were considered acceptable for microbial and sensory characteristics. On the other hand, the dehydrated food items chosen for this study, such as dehydrated bacon potatoes or pea soups were not accepted by the sensory analysis. A careful dose choice and special irradiation conditions must be used in order to achieve sensory acceptability needed for the commercialization of specific irradiated food items. - Highlights: ► We applied gamma radiation on several kinds of packaged food items. ► Microbiological and sensory analyses were performed 2 and 8 months after irradiation. ► All ready-to-eat food items assayed were approved for microbial and sensory characteristics. ► Most ready-to-eat meals like sausages and chicken with legumes were also acceptable. ► Dehydrated bacon potatoes or pea soups were considered not acceptable.

  10. Radiation processing of minimally processed fruits and vegetables to ensure microbiological safety

    International Nuclear Information System (INIS)

    Bandekar, J.R.; Saroj, S.D.; Shashidhar, R.; Dhokane, V.S.; Hajare, S.N.; Nagar, V.; Sharma, A.

    2009-01-01

    Minimally processed fruits and vegetables are in demand as they offer ready rich source of nutrients and convenience to consumers. However, these products are often unsafe due to contamination with harmful pathogens. Therefore, a study was carried out to analyze microbiological quality of minimally processed fruits, vegetables and sprouts and to optimize radiation dose necessary to ensure safety of these commodities. Microbiological quality of these products was found to be poor. Decimal reduction dose (D 10 ) for Salmonella Typhimurium and Listeria monocytogenes in these minimally processed foods (MPF) were in the range of 164 to 588 Gy. Radiation processing with 2 kGy dose of gamma radiation resulted in 5 log reduction of S. Typhimurium and 4 log reduction of L. monocytogenes. The treatment did not significantly affect nutritional, organoleptic and textural properties. These results suggest that radiation processing can ensure safety of these products. (author)

  11. Electroporation in food processing and biorefinery.

    Science.gov (United States)

    Mahnič-Kalamiza, Samo; Vorobiev, Eugène; Miklavčič, Damijan

    2014-12-01

    Electroporation is a method of treatment of plant tissue that due to its nonthermal nature enables preservation of the natural quality, colour and vitamin composition of food products. The range of processes where electroporation was shown to preserve quality, increase extract yield or optimize energy input into the process is overwhelming, though not exhausted; e.g. extraction of valuable compounds and juices, dehydration, cryopreservation, etc. Electroporation is--due to its antimicrobial action--a subject of research as one stage of the pasteurization or sterilization process, as well as a method of plant metabolism stimulation. This paper provides an overview of electroporation as applied to plant materials and electroporation applications in food processing, a quick summary of the basic technical aspects on the topic, and a brief discussion on perspectives for future research and development in the field. The paper is a review in the very broadest sense of the word, written with the purpose of orienting the interested newcomer to the field of electroporation applications in food technology towards the pertinent, highly relevant and more in-depth literature from the respective subdomains of electroporation research.

  12. A novel processed food classification system applied to Australian food composition databases.

    Science.gov (United States)

    O'Halloran, S A; Lacy, K E; Grimes, C A; Woods, J; Campbell, K J; Nowson, C A

    2017-08-01

    The extent of food processing can affect the nutritional quality of foodstuffs. Categorising foods by the level of processing emphasises the differences in nutritional quality between foods within the same food group and is likely useful for determining dietary processed food consumption. The present study aimed to categorise foods within Australian food composition databases according to the level of food processing using a processed food classification system, as well as assess the variation in the levels of processing within food groups. A processed foods classification system was applied to food and beverage items contained within Australian Food and Nutrient (AUSNUT) 2007 (n = 3874) and AUSNUT 2011-13 (n = 5740). The proportion of Minimally Processed (MP), Processed Culinary Ingredients (PCI) Processed (P) and Ultra Processed (ULP) by AUSNUT food group and the overall proportion of the four processed food categories across AUSNUT 2007 and AUSNUT 2011-13 were calculated. Across the food composition databases, the overall proportions of foods classified as MP, PCI, P and ULP were 27%, 3%, 26% and 44% for AUSNUT 2007 and 38%, 2%, 24% and 36% for AUSNUT 2011-13. Although there was wide variation in the classifications of food processing within the food groups, approximately one-third of foodstuffs were classified as ULP food items across both the 2007 and 2011-13 AUSNUT databases. This Australian processed food classification system will allow researchers to easily quantify the contribution of processed foods within the Australian food supply to assist in assessing the nutritional quality of the dietary intake of population groups. © 2017 The British Dietetic Association Ltd.

  13. Emerging applications of radiation processing. Proceedings of a technical meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Approximately 160 gamma irradiators and 1200 electron accelerator based processing units are in operation worldwide. In recent years the IAEA has prepared a directory of industrial gamma irradiators and held several meetings on developments in radiation technology applications. Developments involving the engineering of new sources (both isotope and electrical), high power accelerator applications, etc. have been reported recently, making a review and evaluation of this progress timely. Therefore the IAEA organized a technical meeting in Vienna, Austria, from 28 to 30 April 2003 to review the present situation and the potential contribution of radiation technology to sustainable development. Engineering developments and other features of radiation sources, both isotope and accelerator, were discussed. Recent research has concentrated on three fields: medical and food products, polymers, and environmental pollution control. The stability of radiation sterilized medical implants, as well as the uses of radiation processing for sterilization or decontamination of pharmaceuticals and pharmaceutical raw materials, radiation synthesis and modification of polymers for biomedical applications have been studied. Since separation and enrichment technologies play an important role in product recovery and pollution control, the possibility of radiation synthesis of stimuli-responsive membranes, hydrogels and adsorbents is being investigated. Finally, aside from the technologies for flue gas and wastewater treatment already in use, further research is ongoing on the treatment of organic contaminants in both gaseous and liquid phases. Environmental applications, which also offer new opportunities, should be carefully reviewed to reflect existing regulations and current knowledge. The increasingly serious problem of polyaromatic hydrocarbons (PAH) emissions may be solved in part by the application of radiation technology. This is being studied on a pilot scale for the removal of

  14. Emerging applications of radiation processing. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-01-01

    Approximately 160 gamma irradiators and 1200 electron accelerator based processing units are in operation worldwide. In recent years the IAEA has prepared a directory of industrial gamma irradiators and held several meetings on developments in radiation technology applications. Developments involving the engineering of new sources (both isotope and electrical), high power accelerator applications, etc. have been reported recently, making a review and evaluation of this progress timely. Therefore the IAEA organized a technical meeting in Vienna, Austria, from 28 to 30 April 2003 to review the present situation and the potential contribution of radiation technology to sustainable development. Engineering developments and other features of radiation sources, both isotope and accelerator, were discussed. Recent research has concentrated on three fields: medical and food products, polymers, and environmental pollution control. The stability of radiation sterilized medical implants, as well as the uses of radiation processing for sterilization or decontamination of pharmaceuticals and pharmaceutical raw materials, radiation synthesis and modification of polymers for biomedical applications have been studied. Since separation and enrichment technologies play an important role in product recovery and pollution control, the possibility of radiation synthesis of stimuli-responsive membranes, hydrogels and adsorbents is being investigated. Finally, aside from the technologies for flue gas and wastewater treatment already in use, further research is ongoing on the treatment of organic contaminants in both gaseous and liquid phases. Environmental applications, which also offer new opportunities, should be carefully reviewed to reflect existing regulations and current knowledge. The increasingly serious problem of polyaromatic hydrocarbons (PAH) emissions may be solved in part by the application of radiation technology. This is being studied on a pilot scale for the removal of

  15. Thermal food processing: new technologies and quality issues

    National Research Council Canada - National Science Library

    Sun, Da-Wen

    2012-01-01

    .... Part I, Modeling of Thermal Food Processes, discusses the thermal physical properties of foods, recent developments in heat and mass transfer, innovative modeling techniques including artificial...

  16. Radiation processing of minimally processed vegetables and aromatic plants

    International Nuclear Information System (INIS)

    Trigo, M.J.; Sousa, M.B.; Sapata, M.M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M.L.; Veloso, M.G.

    2009-01-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander (Coriandrum sativum L.), mint (Mentha spicata L.), parsley (Petroselinum crispum Mill, (A.W. Hill)), lettuce (Lactuca sativa L.) and watercress (Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (≥2 log). Based on the determined D 10 , the amount of radiation necessary to kill 10 5 E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  17. Radiation processing of minimally processed vegetables and aromatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, M.J. [Instituto Nacional dos Recursos Biologicos, L-INIA, Quinta do Marques, 2784-505 Oeiras (Portugal)], E-mail: mjptrigo@gmail.com; Sousa, M.B.; Sapata, M.M.; Ferreira, A.; Curado, T.; Andrada, L. [Instituto Nacional dos Recursos Biologicos, L-INIA, Quinta do Marques, 2784-505 Oeiras (Portugal); Botelho, M.L. [Instituto Tecnologico e Nuclear, E.N. 10, 2696 Sacavem (Portugal); Veloso, M.G. [Faculdade de Medicina Veterinaria de Lisboa, Av. da Universidade Tecnica, Alto da Ajuda, 1300-477 Lisboa (Portugal)

    2009-07-15

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander (Coriandrum sativum L.), mint (Mentha spicata L.), parsley (Petroselinum crispum Mill, (A.W. Hill)), lettuce (Lactuca sativa L.) and watercress (Nasturium officinale L.). The inactivation level of natural microbiota and the D{sub 10} values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed ({>=}2 log). Based on the determined D{sub 10}, the amount of radiation necessary to kill 10{sup 5}E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  18. Radiation processing of minimally processed vegetables and aromatic plants

    Science.gov (United States)

    Trigo, M. J.; Sousa, M. B.; Sapata, M. M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M. L.; Veloso, M. G.

    2009-07-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander ( Coriandrum sativum L .), mint ( Mentha spicata L.), parsley ( Petroselinum crispum Mill, (A.W. Hill)), lettuce ( Lactuca sativa L.) and watercress ( Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (⩾2 log). Based on the determined D10, the amount of radiation necessary to kill 10 5E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  19. Safety of vendor-prepared foods: evaluation of 10 processing mobile food vendors in Manhattan.

    OpenAIRE

    Burt, Bryan M.; Volel, Caroline; Finkel, Madelon

    2003-01-01

    OBJECTIVES: Unsanitary food handling is a major public health hazard. There are over 4,100 mobile food vendors operating in New York City, and of these, approximately forty percent are processing vendors--mobile food units on which potentially hazardous food products are handled, prepared, or processed. This pilot study assesses the food handling practices of 10 processing mobile food vendors operating in a 38-block area of midtown Manhattan (New York City) from 43rd Street to 62nd Street bet...

  20. Validation of radiation sterilization process

    International Nuclear Information System (INIS)

    Kaluska, I.

    2007-01-01

    The standards for quality management systems recognize that, for certain processes used in manufacturing, the effectiveness of the process cannot be fully verified by subsequent inspection and testing of the product. Sterilization is an example of such a process. For this reason, sterilization processes are validated for use, the performance of sterilization process is monitored routinely and the equipment is maintained according to ISO 13 485. Different aspects of this norm are presented

  1. Quality control in the process and in the irradiated food

    International Nuclear Information System (INIS)

    Farrar IV, H.

    1997-01-01

    In the irradiation process, absorbed dose is the key parameter that must be controlled. In general, the minimum absorbed dose needed to accomplish a desired effect, such as insect disinfestation or pathogen reduction, is already known from previous research, and is often prescribed by government regulations. The irradiation process is effective, however, only if the food can tolerate this dose without experiencing unwanted changes in flavor or appearance. The dose that food can tolerate often depends on such things as the variety of the fruit or vegetable, where it was grown, the season in which it was harvested and the length of time between harvesting and irradiation. Once the minimum and maximum doses are established, the irradiator operator must make sure that these dose limits are not exceeded. First, a dose mapping using many dosimeters must be undertaken to determine the locations of the minimum and maximum dose in the overall process load. From then on, the process load must always be the same, and, as a key step in the overall process control, dosimeters need to be placed from time to time only at the minimum or maximum locations. The dosimeters must be calibrated and directly trackable to national or international standards, and a fool-proof method of labelling and segregating irradiated from unirradiated product must be used. Radiation sensitive indicators that may help identify irradiated from unirradiated food should not be relied upon, and are not a substitute fro proper dosimetry. (Author)

  2. Quality control in the process and in the irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, IV, H [Chairman, ASTM Subcommittee E10.01 ` Dosimetry for Radiation Processing` , 18 Flintlock Lane, Bell Canyon, California 91307-1127 (United States)

    1998-12-31

    In the irradiation process, absorbed dose is the key parameter that must be controlled. In general, the minimum absorbed dose needed to accomplish a desired effect, such as insect disinfestation or pathogen reduction, is already known from previous research, and is often prescribed by government regulations. The irradiation process is effective, however, only if the food can tolerate this dose without experiencing unwanted changes in flavor or appearance. The dose that food can tolerate often depends on such things as the variety of the fruit or vegetable, where it was grown, the season in which it was harvested and the length of time between harvesting and irradiation. Once the minimum and maximum doses are established, the irradiator operator must make sure that these dose limits are not exceeded. First, a dose mapping using many dosimeters must be undertaken to determine the locations of the minimum and maximum dose in the overall process load. From then on, the process load must always be the same, and, as a key step in the overall process control, dosimeters need to be placed from time to time only at the minimum or maximum locations. The dosimeters must be calibrated and directly trackable to national or international standards, and a fool-proof method of labelling and segregating irradiated from unirradiated product must be used. Radiation sensitive indicators that may help identify irradiated from unirradiated food should not be relied upon, and are not a substitute fro proper dosimetry. (Author)

  3. Quality control in the process and in the irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Farrar IV, H. [Chairman, ASTM Subcommittee E10.01 `Dosimetry for Radiation Processing`, 18 Flintlock Lane, Bell Canyon, California 91307-1127 (United States)

    1997-12-31

    In the irradiation process, absorbed dose is the key parameter that must be controlled. In general, the minimum absorbed dose needed to accomplish a desired effect, such as insect disinfestation or pathogen reduction, is already known from previous research, and is often prescribed by government regulations. The irradiation process is effective, however, only if the food can tolerate this dose without experiencing unwanted changes in flavor or appearance. The dose that food can tolerate often depends on such things as the variety of the fruit or vegetable, where it was grown, the season in which it was harvested and the length of time between harvesting and irradiation. Once the minimum and maximum doses are established, the irradiator operator must make sure that these dose limits are not exceeded. First, a dose mapping using many dosimeters must be undertaken to determine the locations of the minimum and maximum dose in the overall process load. From then on, the process load must always be the same, and, as a key step in the overall process control, dosimeters need to be placed from time to time only at the minimum or maximum locations. The dosimeters must be calibrated and directly trackable to national or international standards, and a fool-proof method of labelling and segregating irradiated from unirradiated product must be used. Radiation sensitive indicators that may help identify irradiated from unirradiated food should not be relied upon, and are not a substitute fro proper dosimetry. (Author)

  4. Radiation processing of foods: fruits and vegetables

    International Nuclear Information System (INIS)

    Thomas, Paul

    1990-01-01

    Post-harvest irradiation of fruits and vegetables improves their shelf-life by: (1) delaying ripening and senescence of fruits, (2) controlling fungal diseases, (3) inhibiting sprouting, and (4) disinfestation. Nutritional and quality aspects of irradiated fruits and vegetables are discussed. Commercial prospects are briefly described. (M.G.B.)

  5. Radiation Dosimetry for Quality Control of Food Preservation and Disinfestation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Uribe, R.M.

    1983-01-01

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters...

  6. Thermoluminescence analysis for detection of irradiated food - luminescence characteristics of minerals for different types of radiation and radiation doses

    International Nuclear Information System (INIS)

    Soika, C.; Delincée, H.

    2000-01-01

    Federal Research Centre for Nutrition, Institute of Nutritional Physiology, Haid-und-Neu-Straße 9, 76131 Karlsruhe (Germany) Thermoluminescence analysis is used to detect radiation processing of foods which are contaminated with sand or dust. Silicate minerals are isolated, their radiation-induced luminescence is measured and compared to the thermoluminescence from a second measurement after exposure to a dexned radiation dose (normalization). In the present study, the mineral mixture *sand+ and its main components feldspar and quartz were investigated for their thermoluminescence behaviour using different types of radiation, in order to determine adequate radiation sources for the purpose of normalization. The material was irradiated with types of ionizing radiation commonly used for commercial food irradiation, i.e. accelerated electrons with beam energies of 5 MeV as well as 10 MeV, and 60 Co--rays. After thermoluminescence measurements, samples were re-irradiated using either accelerated electrons with beam energies of 2 MeV, 5 MeV or 10 MeV, or 60 Co--rays, 90 Sr--rays or ultraviolet rays (200}280 nm). Evaluation of the xrst and corresponding second glow curve revealed that their shapes depend on the type of minerals in the mixture. The second radiation treatment (normalization) is satisfactory when accelerated electrons (2, 5 and 10 MeV) as well as 60 Co--rays and 90 Sr--rays are employed. Normalization with ultraviolet rays, however, has only a limited range of use

  7. Radiation control of salmonellae in food and feed products

    Energy Technology Data Exchange (ETDEWEB)

    1963-12-01

    A panel on radiation control of harmful organisms, primarily Salmonella, transmitted by food and feed products was convened by the International Atomic Energy Agency (IAEA) in December 1962. Transmission of pests and diseases is a consequence of the growth in world trade. As most food and feed products are distributed from large centralized plants, primary infection at such centers can lead to the spread of diseases over wide areas and among a great number of people. The main purpose of this panel was to advise the Director General of the International Atomic Energy Agency as to how the Agency could assist in solving the problem of bacterial infection of food and animal feeds. The panel meeting was attended by twelve experts on public health problems, food hygiene, radiomicrobiology and radiation technology and by representatives from the Food and Agriculture Organization of the United Nations (FAO) and the World Health organization (WHO). In view of the seriousness of the spread of Salmonella and other organisms and the fact that radiation control seems to offer significant advantages in a number of cases, it was recommended by the panel members that the Agency publish the papers presented. Refs, figs and tabs.

  8. Radiation control of salmonellae in food and feed products

    International Nuclear Information System (INIS)

    1963-01-01

    A panel on radiation control of harmful organisms, primarily Salmonella, transmitted by food and feed products was convened by the International Atomic Energy Agency (IAEA) in December 1962. Transmission of pests and diseases is a consequence of the growth in world trade. As most food and feed products are distributed from large centralized plants, primary infection at such centers can lead to the spread of diseases over wide areas and among a great number of people. The main purpose of this panel was to advise the Director General of the International Atomic Energy Agency as to how the Agency could assist in solving the problem of bacterial infection of food and animal feeds. The panel meeting was attended by twelve experts on public health problems, food hygiene, radiomicrobiology and radiation technology and by representatives from the Food and Agriculture Organization of the United Nations (FAO) and the World Health organization (WHO). In view of the seriousness of the spread of Salmonella and other organisms and the fact that radiation control seems to offer significant advantages in a number of cases, it was recommended by the panel members that the Agency publish the papers presented. Refs, figs and tabs

  9. Radiation Sensitivity of some Food Borne Bacterial Pathogens in Animal Foods and Minced Meat

    International Nuclear Information System (INIS)

    Mohammed, W.S.; Ali, A.R.; Alexan, A.F.

    2010-01-01

    Bacteriological examination of 100 samples of animal food stuffs (fish meal and bone and meat meal; as models of dry food materials) and 50 samples of minced meat (as a model of moist food materials) revealed the isolation of different bacterial pathogens; Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Proteus spp., Staph. aureus and Salmonella species, in a decreasing order of occurrence. In the experiment; the dry food stuffs were sterilized in autoclave and the minced meat was sterilized by gamma irradiation at 10 kGy. The efficacy of gamma irradiation against the inoculated bacterial isolates (E coli 0157: H7, Salmonella enteritidis and Staph. aureus) in animal food stuffs and minced meat was investigated. Irradiated samples were stored at room temperature (25 degree C) for 2 weeks. The food borne pathogens used in this study showed a difference in radiation sensitivity. E. coli 0157: H7, Staphylococcus aureus and Salmonella enteritidis were eradicated at 1, 2 and 3 kGy, respectively. Also, inoculated pathogens in minced meat were more sensitive to ionizing radiation than dry animal food stuffs. It could be concluded that low doses of gamma irradiation are effective means of inactivating pathogenic bacteria. This radiation sensitivity is related to the bacterial isolates and the evaluated growth

  10. Electron beam processing in food industry - technology and costs

    International Nuclear Information System (INIS)

    Gallien, Cl.L.; Ferradini, C.; Paquin, J.; Sadat, T.

    1985-01-01

    After nearly 40 years of research and thousands of positive experimentations, the fact that ionising radiations could be used for food preservation has been taken into account by the joint Expert Committee of the UN agencies, FAO, WHO and IAEA, who recommended this type of treatment in 1981 allowing doses up to 10 kGy. The market for irradiated food is actually small, but it could develop rapidly. National authorities who establish the regulations are becoming very active: so, in 1984, the US FDA has issued a proposed rule to regulate the commercial applications of food irradiation. It is timely to propose a MODEL that should really convince administration, food industry executives and consumers organizations that food irradiation is more than academic speculation: an industrial processing and an economical imperative. To this aim, we have defined an integrated model assembling (a) a sample product; (b) the optimal treatment conditions for this product, including a reliable dosimetry control system; and (c) a most efficient and competitive treatment unit that can suit a wide range of industrial needs. (author)

  11. Locally processed roasted-maize-based weaning foods fortified with ...

    African Journals Online (AJOL)

    Locally processed roasted-maize-based weaning foods fortified with legumes: factors ... African Journal of Food, Agriculture, Nutrition and Development ... Tom Brown (roasted-maize porridge) is one of the traditional weaning foods in Ghana.

  12. Use of nanotechnology in food processing, packaging and safety ...

    African Journals Online (AJOL)

    Use of nanotechnology in food processing, packaging and safety – review. ... application of nanotechnology in food packaging and food contact materials, ... developing active antimicrobial and antifungal surfaces, and sensing as well as ...

  13. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1979-03-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and pathogenic toxins. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  14. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  15. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  16. Global trends in radiation processing

    International Nuclear Information System (INIS)

    Defalco, Gerry

    2002-01-01

    A global leader in radioisotope technology with three business units: - Nuclear Medicine supplies about two-thirds of the world requirements for molybdenum-99 and other isotopes used to diagnose disease - Radiation Therapy business unit supplied more than over 2,300 cobalt cancer treatment machines and is a leader in treatment planning - Ion Technologies is the world's leading supplier of cobalt 60 and innovative gamma irradiation systems About Ion Technologies · Supply over 70% of world's cobalt-60 sources · Custom-designed and built irradiation systems · Comprehensive engineering, physics, logistics, installation and marketing services · Canadian Irradiation Center for unique 'hands on' training, R and D product irradiation

  17. Development of sterilized porridge for patients by combined treatment of food technology with radiation technology

    International Nuclear Information System (INIS)

    Kim, Jaehun; Choi, Jongil; Song, Beomseok

    2010-09-01

    This research was conducted to develop patient foods of high quality using a radiation fusion technology with food processing. Radiation technique to increase calorie of porridge was established, and it was investigated that radiation effects on functional materials, which can could be added to increase functionality of patient foods. Moreover, sterilized semi-fluid meal (milk porridge) for patients with higher calorie was developed by a sterilization process by gamma irradiation, combined treatments to improve the sensory qualities, and fortification with various nutrients. Also, sensory survey on irradiated commercial patient foods was performed to find the problems and improvement points of the developed products. Optimal packaging material was selected by evaluation of effect of irradiation in packaging materials and a convenient package for consuming by patients was decided. Safety of the irradiated milk porridge was confirmed by in-vivo genotoxicological test, and its nutritional composition for patients was evaluated by nutritional analysis. Finally, the milk porridge was developed as liquid, dried, powdered, and pellet type products. This research may contribute to improve life quality of patients by supplement of various foods with high quality to immuno-compromised patients. Furthermore, economic profits and technological advances are expected by commercialization of the patient foods

  18. Development of sterilized porridge for patients by combined treatment of food technology with radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Choi, Jongil; Song, Beomseok; and others

    2010-09-15

    This research was conducted to develop patient foods of high quality using a radiation fusion technology with food processing. Radiation technique to increase calorie of porridge was established, and it was investigated that radiation effects on functional materials, which can could be added to increase functionality of patient foods. Moreover, sterilized semi-fluid meal (milk porridge) for patients with higher calorie was developed by a sterilization process by gamma irradiation, combined treatments to improve the sensory qualities, and fortification with various nutrients. Also, sensory survey on irradiated commercial patient foods was performed to find the problems and improvement points of the developed products. Optimal packaging material was selected by evaluation of effect of irradiation in packaging materials and a convenient package for consuming by patients was decided. Safety of the irradiated milk porridge was confirmed by in-vivo genotoxicological test, and its nutritional composition for patients was evaluated by nutritional analysis. Finally, the milk porridge was developed as liquid, dried, powdered, and pellet type products. This research may contribute to improve life quality of patients by supplement of various foods with high quality to immuno-compromised patients. Furthermore, economic profits and technological advances are expected by commercialization of the patient foods.

  19. Radiation technology for value addition to food and agro commodities

    International Nuclear Information System (INIS)

    Sharma, Arun

    2012-01-01

    Assuring adequate food security to citizens of the country requires deployment of strategies for augmenting agricultural production while reducing post-harvest losses. Appropriate post-harvest processing, handling, storage and distribution practices are as important as the efforts to increase productivity for sustained food security, food safety and international trade in agricultural commodities. Nuclear energy has played a significant role both in the improvement of crop productivity, as well as, in the preservation and hygienization of agricultural produce

  20. Effect of radiation processing on meat tenderisation

    Science.gov (United States)

    Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.

  1. New trends in radiation processing of polymers

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.

    2005-01-01

    Nowadays, the modification of polymers covers radiation cross-linking, radiation induced polymerization (graft polymerization and curing) and the degradation of polymers. The success of radiation technology for the processing of synthetic polymers can be attributed to two reasons, namely the easiness of processing in various shapes and sizes and, secondly, most of these polymers undergo cross-linking reaction upon exposure to radiation. years, natural polymers are being looked at again with renewed interest because of their unique characteristics like inherent biocompatibility, biodegradability and easy availability. However the recent progress in the field regards development of new processing methods and technical solutions. No other break trough technologies or products based on synthetic polymers are reported recently. The future progress, both from scientific and practical points of view, concerns nanotechnology and natural polymer processing. Overview of the subject, including the works performed in the Institute of the author is presented in the paper. (author)

  2. Radiation processing of plastics for decorative purposes

    International Nuclear Information System (INIS)

    Knizhnik, R.I.; Onisko, A.D.

    1982-01-01

    Methods are reviewed for the radiation processing of polymeric films, sheets, plates and panels to form patterns, drawings, images and decorative finishing which have been recently developed in various countries. Methods of beam and radiation processing of transparent plastics are described for making a decorative article with a pattern inside the volume; advantages and shortcomings of the methods are shown. The method of radiation processing of transparent dielectric plastics by electron beam of a Microtron is considered in detail. It provides an economical method of fabrication of large-size highly artistic decorative articles with an original pattern inside the volume. Radiation processing operations are presented which are aimed at creation and visualization of regions of extended thermalized electron space charges stored by irradiation of dielectric. Examples are presented of large-size highly artistic decorative articles of polymethylmethacrylate which were used in interior of buildings and demonstrated at home and international exhibitions. (author)

  3. 21 CFR 133.173 - Pasteurized process cheese food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese food. 133.173 Section 133.173 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific...

  4. Radiation sensitivity of food decay fungi

    International Nuclear Information System (INIS)

    Chang, H.G.; Lee, B.H.

    1980-01-01

    Five species of food decay fungi, Aspergillus flavus, Asp. uiger, Penicillium sp., Botrytis cinerea and Rhizopus stolonifer, were examined for their radiosensitivity in several suspension media. Asp. flavus, Asp. niger and Penicillium sp. have almost the same sensitivity toward gamma rays, with D value in the range of 30 to 35 K rad, whereas Botrytis cinerea has a D value of approximately 55 K rad and Rhizopus stolonifer, the most resistant fungus studied, has a D value of approximately 100 K rad. Dry spores of Asp. flavus showed a considerable increase in their radioresistance when compared with spores irradiated in water. Asp. flavus and Penicillium sp. spores irradiated in citrate buffer at pH 3-7 showed almost no change in their radiosensitivity with pH, but Botrytis cinerea spores showed a distinct decrease in their radioresistance at pH 6 and 7. Penicillium sp. spores irradiated in sucrose solutions showed no significant change in their radioresistance. Botrytis cinerea spores displayed a higher radioresistance when they were irradiated in sucrose solution than in water. (author)

  5. Food irradiation - a fresh case of radiation phobia?

    International Nuclear Information System (INIS)

    Robotham, F.P.J.

    1988-01-01

    Two arguments are being used by the opponents of food irradiation. One is that the process is hazardous to both plant operators and members of the public who live nearby. The second is that the irradiation process harms the eventual consumers of the food from either induced radiolytic products or substantially reduced nutritional loss and vitamin loss. This paper argues that whether or not the second point is valid, the process itself is inherently safe and does not present any untoward radiological hazard

  6. Decease of accelerator size for radiation processing

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi; Sunaga, Hiromi

    2003-01-01

    The decrease of accelerator size is an essential means to improve the market competition power of the radiation processing industry and to expand the wide application. Trials for the decrease or minimization are increasing steadily including development of irradiation equipments for exclusive uses. Compact irradiation systems were outlined for the significance and recent examples of the decrease in radiation processing, the problems in the industrial application, and the future of compact accelerators. (author)

  7. Applications of sonochemistry in Russian food processing industry.

    Science.gov (United States)

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Analysis on the consumer disposition to afford the cost of food processed by ionizing radiation; Analise sobre a predisposicao do consumidor em arcar com o custo do alimento processado por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Cattaruzzi, Eliana Borba

    2012-07-01

    The concept of food quality, in the consumer point of view, reflects the satisfaction of characteristics such as flavor, aroma, appearance, packaging and availability. Economic and social factors, such as cost and eating habits, generally, also influence the choice of a product. Irradiation is an effective technique in food preservation because it reduces the losses caused by natural physiological processes, either reducing or eliminating microorganisms, parasites and pests without causing any damage to the foods and, thus, making them safer to consumers. Nevertheless, there may be an increase in the cost of foods. Research indicates that practicality is already a deep-rooted feature of consumers. The price may be a limiting factor to the popularization of the irradiated product, although some consumers consider that, due to the avoidance of waste, the increased cost may be feasible. The objective of this study was to analyze the cost of using food irradiation technology and verify (a) whether consumers, when informed of the benefits in food safety, are willing to pay for this treatment and (b) how much they are willing to pay. The methodology consisted of a study on the economic feasibility of food irradiation technology by means of a systematic survey of the literature, in order to verify the cost of this process implementation and the increase in costs for the producer. Also, a survey was conducted in an Institution of Superior Education about the consumer's willingness to pay for this higher price. The study results indicate a rise in costs to the producer, ranging from $ 0.01 to U.S. $ 0.25 per pound; it was also found that 75% of the consumers surveyed are willing to pay more for irradiated food. From these results it was concluded that the higher the consumption power is, the greater the willingness to afford the additional cost irradiated foods have. (author)

  9. Analysis on the consumer disposition to afford the cost of food processed by ionizing radiation; Analise sobre a predisposicao do consumidor em arcar com o custo do alimento processado por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Cattaruzzi, Eliana Borba

    2012-07-01

    The concept of food quality, in the consumer point of view, reflects the satisfaction of characteristics such as flavor, aroma, appearance, packaging and availability. Economic and social factors, such as cost and eating habits, generally, also influence the choice of a product. Irradiation is an effective technique in food preservation because it reduces the losses caused by natural physiological processes, either reducing or eliminating microorganisms, parasites and pests without causing any damage to the foods and, thus, making them safer to consumers. Nevertheless, there may be an increase in the cost of foods. Research indicates that practicality is already a deep-rooted feature of consumers. The price may be a limiting factor to the popularization of the irradiated product, although some consumers consider that, due to the avoidance of waste, the increased cost may be feasible. The objective of this study was to analyze the cost of using food irradiation technology and verify (a) whether consumers, when informed of the benefits in food safety, are willing to pay for this treatment and (b) how much they are willing to pay. The methodology consisted of a study on the economic feasibility of food irradiation technology by means of a systematic survey of the literature, in order to verify the cost of this process implementation and the increase in costs for the producer. Also, a survey was conducted in an Institution of Superior Education about the consumer's willingness to pay for this higher price. The study results indicate a rise in costs to the producer, ranging from $ 0.01 to U.S. $ 0.25 per pound; it was also found that 75% of the consumers surveyed are willing to pay more for irradiated food. From these results it was concluded that the higher the consumption power is, the greater the willingness to afford the additional cost irradiated foods have. (author)

  10. Radiation processing of polysaccharide derivatives

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2004-01-01

    Carboxymethylcellulose (CMC), carboxymethylstarch (CMS), carboxymethylchitin (CM-chitin) and carboxymethylchitosan (CM-chitosan) form gels when irradiated at paste-like condition. Bedsore prevention mat filled up CMC hydrogel crosslinked by irradiation at paste-like condition was practical applied as a health care products. It was found that CM-chitosan hydrogels have anti-microbial activity and effective as absorbents to remove metal ions. When crosslinked gel sheets of CM-chitin and CM-chitosan were immersed in copper (II) aqueous solution, absorption of Cu (II) were 161 mg/g and 172 mg/g, respectively. Radiation crosslinking of cellulose derivative such as hydroxypropyl methylcellulose phthalate, (HPMCP) kneaded with aqueous alkali solution and methanol was achieved with EB-irradiation at paste-like condition. The HPMCP gel absorbed organic solvents such as chloroform and pyridine. (author)

  11. Food irradiation - A new way to process food

    International Nuclear Information System (INIS)

    1987-01-01

    The film shows how irradiation of food by ionizing energy (gamma rays or beams of electrons) can help cut down post-harvest losses of food such as cereals, meat, fish and shellfish and fresh or dried fruits and vegetables. One quarter to one third of the total world food production is lost due to sprouting, destruction by insects and parasites, spoilage by micro-organisms such as bacteria and funghi, and premature ripening. Food contamination not only leads to economic problems but can also cause diseases such as trichinosis, toxoplasmosis, etc. The new technique of food irradiation has been studied by independent groups of experts whose evaluations without exception have been favourable. One of the main advantages is that there are no chemical residues. On the long run, food irradiation will help to assure world-wide food security

  12. Guest editorial, special issue on new food processing technologies and food safety

    Science.gov (United States)

    The microflora of foods is very significant to food producers, processors and consumers and the food manufacturers including distributors are responding to consumers’ demand for food products that are safe, fresher and convenient for use. In some cases foods may be improperly processed and/or contam...

  13. Some novel concepts in radiation processing technology applications

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2014-01-01

    Search for better materials and processes has been a part of the evolution of mankind and it still continues to be so as it is being realized that earth's resources are not everlasting and effect of rapid growth on environment may adversely affect the future development. Sustainable development is the only choice for today for long term survival. Better quality and high functional materials, made by superior technologies are being demanded by the society. Radiation processing technology has significantly contributed to meet the expectation of the people in providing superior products and processes while preserving the environment. Processes are being developed where resources are fully utilized with maximum advantages and little disturbance to the environment. More than 1500 electron beam accelerators and about 500 Gamma Irradiators are presently in use and many are being deployed for radiation processing of medical supplies, pharmaceuticals and herbal materials, treat effluents and preserve food and agricultural products and several industrial products. DAE has an ambitious plan to deploy radiation technology for societal benefits in India. In the presentations some interesting applications of Radiation Processing Technology will be discussed which includes (1) Radiation Processing of Cashew Apple fruit for bio-ethanol production (2) High Energy Battery separators (3) Plant Growth Promoters and (4) Tunable biodegradability. The discussion would reveal how a waste product like cashew apple can be converted to useful materials and advanced materials like HEB separators and Tunable Biodegradable films can be made using radiation technology. Use of radiation de-polymerized polysaccharides in some experiments have shown unexpected increase in agriculture output giving new concepts to increase the productivity. (author)

  14. Radiation processing technology in the 21st century

    International Nuclear Information System (INIS)

    Miyuki Hagiwara

    1997-01-01

    The address discusses the following issue - towards the 21st century, we are required more and more to create innovative technologies to solve problems about environment, energy, natural resources, materials, health care, food and others which are the great concern to human beings. For the radiation processing technology to survive, it will be required to provide answers to those problems. The use of radiation of polymer modification will remain as an important field of the radiation application. Some other promising polymer processing can be cited as those which will grow in near future; for environment technology - polymeric fibers grafted with ion exchange residues to remove toxic metals for cleaning industrial waste water; For health care technology - crosslinked polyvinylalcohol hydrogel for wound dressing (irradiation of hydrogel); For high performance materials technology - less toxic crosslinked natural rubber latex (irradiation of emulsion), abrasion resistant crosslinked PTFE (irradiation at high temperature)

  15. Advancements in internationally accepted standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV; Derr, D.D.; Vehar, D.W.

    1993-01-01

    Subcommittees of the American Society for Testing and Materials (ASTM) are developing standards on various aspects of radiation processing. Nine standards on how to select and calibrate dosimeters, where to put them, how many to use, and how to use individual types of dosimeter systems have been published. The group is also developing standards on how to use gamma, electron beam, and X-ray facilities for radiation processing, and a standard on how to treat dose uncertainties. Efforts are underway to promote inclusion of these standards into procedures now being developed by government agencies and by international groups such as the United Nations' International Consultative Group on Food Irradiation (ICGFI) in order to harmonize regulations and help avoid trade barriers. Standards on good irradiation practices for meat and poultry and for fresh fruits, and for the irradiation of seafood and spices have been developed. These food-related standards are based on practices previously published by ICGFI. Standards for determining doses for radiation hardness testing of electronics have been developed. Standards on the Fricke and TLD dosimetry systems are equally useful in other radiation processing applications. (Author)

  16. Evaluation of peach palm (Bactris gasipaes Kunth) processed by radiation

    International Nuclear Information System (INIS)

    Silva, Priscila Vieira da

    2009-01-01

    The peach palm can be obtained from several species of palms, but the peach palm has attracted great interest by producers, as has characteristics of precocity, rusticity and tillering, producing a palm-quality differentiating it from other palmettos for their sweet flavor and yellowish . The food irradiation has been used as a treatment to ensure microbiological food safety of products to avoid infection. Its use combined with minimal processing could increase the safety and quality of minimally processed vegetables. We aimed at evaluating the effect of gamma radiation and electron beams to control bacteria; assess the physical characteristics through analysis of color and texture in peach palm in natura minimally processed and subjected to ionizing radiation stored at 8 deg C as well as evaluating the sensory characteristics. The results in the microbiological analysis showed that ionizing radiation promotes reduction of microbial load in both treatments. In the analysis of color we can conclude that among all the treatments the sample irradiated with 1.5 kGy showed more differences when compared with the other samples. Observing texture characteristics we could conclude that irradiation changed the texture of the palm, unlike the treatment by electron beams that showed no difference between samples. For the sensory analysis, the gamma radiation with dose of 1.5 kGy, induced changes in sensory properties to the attributes and overall appearance. The dose of 1 kGy caused no significant difference, so a recommended dose for the irradiation of the studied product. (author)

  17. Radiation processing of aqueous systems

    International Nuclear Information System (INIS)

    Gehringer, P.

    1997-09-01

    Groundwater contaminated with about 60 μg/L perchloroethylene (PCE) is purified by a combined ozone/electron beam irradiation process for subsequent use as drinking water. The design of the first commercial plant for such a groundwater remediation having a capacity of 108 m 3 /h is described. The mechanism of the combined ozone/electron beam process for PCE decomposition is discussed with respect to other ozone based advanced oxidation processes like ozone/U.V. and ozone/hydrogen peroxide. The formation of trace amounts of trichloroacetic acid as the only organic by-product in all these processes has been interpreted as an indication that PCE decomposition proceeds via the same mechanism in all cases. (author)

  18. Factors determining the viability of radiation processing in developing countries

    International Nuclear Information System (INIS)

    Linde, H.J. van der

    1988-01-01

    In the fifteen years since the introduction of radiation processing to South Africa, four commercial irradiation facilities have been established. These are involved in the processing of a large variety of products, from syringes and prostheses to strawberries and sugar yeast. Three of the facilities are devoted mainly to food irradiation and several thousand tonnes are now processed annually. During this period it was repeatedly experienced that the successful introduction of radiation processing in general, and food radurization in particular, on a commercial scale was critically dependent on the following factors: acceptance by the producer, industry and consumer; initial capital expenditure; running costs and overheads in general; and continuous throughput. All of these factors contribute to the processing cost which is the ultimate factor in determining the value/price ratio for the potential entrepreneur and customer of this new technology. After a market survey had identified the need for a new food irradiation facility to cope with the growing interest in commercial food radurization in the Western Cape, the above-mentioned factors were of cardinal importance in the design and manufacture of a new irradiator. The resulting batch-pallet facility which was commissioned in August 1986, is rather inefficient as far as energy utilization is concerned but this shortcoming is compensated for by its low cost, versatility and low hold-up. Although the facility has limitations as far as the processing of really large volumes of produce is concerned, it is particularly suitable not only for developing countries, but for developed countries in the introductory phase of commercial food radurization. (author)

  19. Factors determining the viability of radiation processing in developing countries

    Science.gov (United States)

    van der Linde, HJ; Basson, RA

    In the fifteen years since the introduction of radiation processing to South Africa, four commercial irradiation facilities have been established. These are involved in the processing of a large variety of products, from syringes and prostheses to strawberries and sugar yeast. Three of the facilities are devoted mainly to food irradiation and several thousand tonnes are now processed annually. During this period it was repeatedly experienced that the successful introduction of radiation processing in general, and food radurization in particular, on a commercial scale was critically dependent on the following factors: acceptance by the producer, industry and consumer; initial capital expenditure; running costs and overheads in general; and continous throughput. All of these factors contribute to the processing cost which is the ultimate factor in determing the value/price ratio for the potential entrepreneur and customer of this new technology. After a market survey had identified the need for a new food irradiation facility to cope with the growing interest in commercial food radurization in the Western Cape, the above-mentioned factors were of cardinal importance in the design and manufacture of a new irradiator. The resulting batch-pallet facility which was commisioned in August 1986, is rather inefficient as far as energy utilization is concerned but this shortcoming is compensated for by its low cost, versatility and low hold-up. Although the facility has limitations as far as the processing of really large volumes of produce is concerned, it is particularly suitable not only for developing countries, but for developed countries in the introductory phase of commercial food radurization.

  20. Employing ionizing radiation to enhance food safety. A review

    International Nuclear Information System (INIS)

    Grolichova, M.; Dvorak, P.; Musilova, H.

    2004-01-01

    Food irradiation is employed to ensure food safety or food sterility, extend its shelf-life and reduce the losses due to sprouting, ripening or pests. In the Czech Republic mainly spices, mixed spices and dried vegetables are exposed to ionizing radiation. The leading suppliers of irradiated foodstuffs in Europe are Belgium, France and the Netherlands. In the USA, food irradiation is more common and there are also attempts to enforce irradiation not only for food safety, but also for technological purposes. Even though irradiation is a prospective technology, its application causes physico-chemical changes that may affect nutritional adequacy and sensory characteristics of irradiated food. In this paper, the chemical changes of basic food components (proteins, saccharides, fats) are reviewed. Some chemical changes lead to the formation of radiolytic products whose risks are still subject of scientific research. It is expected that the main use of gamma irradiation will be the treatment of diets for patients suffering from different disorders of the immune system, allergic patients or for the army and space flights. Irradiation may be a critical control point in the production of some types of foodstuffs

  1. The pilot plant for electron beam food processing

    International Nuclear Information System (INIS)

    Migdal, W.; Stachowicz, W.

    1993-01-01

    The investigations on food irradiation began in Poland in the end of 50-ties. Till the end of 70-ties the research activity on food irradiation was rather of the random nature and the objectives involved the fundamental research areas of food science. After the JECFI recommended in 1980 the general approval of foods treated with the doses of ionizing radiation up to 10 kG as unconditionally wholesome, the interest on practical application of food irradiation was gained in Poland. In 1986 the governmental bodies decided to recognize the possibilities of practical application of radiation techniques in agriculture, and the Central Research and Development Project No 10.13. ''Radiation Techniques in Agriculture'' was initiated for the period of 5 years. The project in the part that refers to food irradiations involved 3 major objectives: - radiation preservation of food; - radiation hygienization of animal feed; - Pilot plants for food irradiation. The most liable project of the programme was the construction of experimental plant for electron beam food irradiation, intended to be the national center for future testing and implementary works in this field. (orig.)

  2. Role of BRIT in promoting radiation processing technology in India

    International Nuclear Information System (INIS)

    Bandi, L.N.

    2014-01-01

    Some of the major applications of radiation processing include: the sterilization of products such as medical devices to kill bacteria or in the case of food, hygienize the product; the treatment of export bulk commodities such as tropical fruits to extend shelf life by slowing the ripening process and inhibiting sprouting and to kill quarantine pests such as fruit flies. Radiation processing is a value addition process. Taking note of these benefits, Department of Atomic Energy, Government of India constituted Board of Radiation and Isotope Technology (BRIT) in March 1989 by carving it out from Bhabha Atomic Research Centre, Mumbai. The mandate given to BRIT was to extend commercial applications of radioisotopes and radiation in the areas of Health, Agriculture, Industry and Research without losing sight of societal obligations. So far Department of Atomic Energy has set up three demonstration plants, namely, Isomed, RPP, Vashi and Krushak for high, medium and low dose applications of radiation respectively. The safe and business like operation of these facilities amply demonstrated the embedded safety and commercial viability of this technology

  3. RVNRL and radiation processing in Thailand

    International Nuclear Information System (INIS)

    Siri-Upathum, C.

    2000-01-01

    Industrial application of radiation processing in Thailand is gaining wide acceptance. The first private-owned radiation sterilization plant was established in 1984. Commercialization of protective rubber gloves from radiation vulcanized of natural rubber latex (RVNRL) started in 1993. Two new sterilization plants using electron beam accelerator and gamma irradiation were commissioned in 1997 and 1999 respectively. Another gamma sterilization plant is scheduled to operate in the year 2000. Additional electron accelerator is being installed in one operational gamma sterilization plant, for upgrading of gemstones. Research and development at Office of Atomic Energy for Peace (OAEP) and universities has been focused on RVNRL, radiation treatment of sludge, grafting of cassava starch and utilization of irradiated silk protein. Except for RVNRL which has passed to commercial scale, pilot scale of radiation treatment of sludge has achieved its goal to be utilized as new resources for animal feed and fertilizer. (author)

  4. RVNRL and radiation processing in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, C. [Department of Nuclear Technology, Faculty of Engineering, Chulalongkorn University, Bangkok (Thailand)

    2000-03-01

    Industrial application of radiation processing in Thailand is gaining wide acceptance. The first private-owned radiation sterilization plant was established in 1984. Commercialization of protective rubber gloves from radiation vulcanized of natural rubber latex (RVNRL) started in 1993. Two new sterilization plants using electron beam accelerator and gamma irradiation were commissioned in 1997 and 1999 respectively. Another gamma sterilization plant is scheduled to operate in the year 2000. Additional electron accelerator is being installed in one operational gamma sterilization plant, for upgrading of gemstones. Research and development at Office of Atomic Energy for Peace (OAEP) and universities has been focused on RVNRL, radiation treatment of sludge, grafting of cassava starch and utilization of irradiated silk protein. Except for RVNRL which has passed to commercial scale, pilot scale of radiation treatment of sludge has achieved its goal to be utilized as new resources for animal feed and fertilizer. (author)

  5. Application of finite-element-methods in food processing

    DEFF Research Database (Denmark)

    Risum, Jørgen

    2004-01-01

    Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....

  6. Install and operate type radiation processing plant for marine products

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, A.K. [BARC-BTIR Complex, Mumbai (India). Dept. of Atomic Energy. Board of Radiation and Isotope Technology

    2002-07-01

    Marine products can be carrier of several pathogens. Radiation processing is a very useful technique that is used to eliminate pathogens and also to extend shelf life of fresh fish. For marine products three processes are involved namely: radurization to pasteurize fresh chilled fish for extending shelf life; radicidation to sanitize frozen fishery products by elimination of pathogenic microorganisms and radiation disinfestations to eliminate insects from dehydrated fishery products. The paper brings out conceptual design of a compact radiation processing plant that can cater to all the three processes. The design is different from conveyor type of designs. The design is specially configured to maintain the temperature of frozen products and overdose ratio within limits specified. The throughput depends upon the source strength, type of product, the size of box and its configuration in which these could be arranged. The design has many features, which make it a very safe, convenient and economical method for processing of such items or for that matter all the food products, which are amenable for radiation processing. (author)

  7. Install and operate type radiation processing plant for marine products

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    Marine products can be carrier of several pathogens. Radiation processing is a very useful technique that is used to eliminate pathogens and also to extend shelf life of fresh fish. For marine products three processes are involved namely: radurization to pasteurize fresh chilled fish for extending shelf life; radicidation to sanitize frozen fishery products by elimination of pathogenic microorganisms and radiation disinfestations to eliminate insects from dehydrated fishery products. The paper brings out conceptual design of a compact radiation processing plant that can cater to all the three processes. The design is different from conveyor type of designs. The design is specially configured to maintain the temperature of frozen products and overdose ratio within limits specified. The throughput depends upon the source strength, type of product, the size of box and its configuration in which these could be arranged. The design has many features, which make it a very safe, convenient and economical method for processing of such items or for that matter all the food products, which are amenable for radiation processing. (author)

  8. Membranes for Food and Bioproduct Processing

    Science.gov (United States)

    Avram, Alexandru M.

    Modified membranes for process intensification in biomass hydrolysis: Production of biofuels and chemicals from lignocellulosic biomass is one of the leading candidates for replacement of petroleum based fuels and chemicals. However, conversion of lignocellulosic biomass into fuels and chemicals is not cost effective compared to the production of fuels and chemicals from crude oil reserves. Some novel and economically feasible approaches involve the use of ionic liquids as solvents or co-solvents, since these show improved solvation capability of cellulose over simple aqueous systems. Membranes offer unique opportunities for process intensification which involves fractionation of the resulting biomass hydrolysate leading to a more efficient and cheaper operation. This research attempts to develop membranes that would usher the economics of the biochemical conversion of lignocellulosic biomass into fuels and chemicals by recycling the expensive ionic liquid. The overall aim of this work is the development of novel membranes with unique surface properties that enable the selective separation of non-reacted cellulose and hydrolysis sugars from ionic liquids. Nanofiltration separation for application in food product engineering: With the advent of the modern, well-informed consumer who has high expectations from the nutritional value of consumed food products, novel approaches are being developed to produce nutrient-enhanced foods and drinks. As a response to the consumer needs, different techniques to recover, concentrate and retain as much as possible of bioactive compounds are being investigated. Membrane technology has the advantage of selective fractionation of food products (e.g. salt removal, removal of bitter-tasting compounds or removal of sugar for sweet taste adjustment), volume reduction, and product recovery at mild conditions. In this work, we use nanofiltration in dead-end and crossflow mode to concentrate polyphenols from blueberry pomace. Blueberry

  9. Glycoalkaloids and phenolic compounds in gamma irradiated potatoes; a food irradiation study on radiation induced stress in vegetable products

    NARCIS (Netherlands)

    Bergers, W.W.A.

    1980-01-01

    Irradiation is a recent preservation method. With the aid of ionizing radiation microorganisms in food can be killed or specific physiological processes in vegetable products can be influenced.

    In order to study the effects of metabolic radiation stress on quantitative chemical changes in

  10. Current status of the radiation technology and quality control for radiation processing in Latin America

    International Nuclear Information System (INIS)

    Miranda, Enrique Francisco Prietro

    2013-01-01

    The use of the radiation technology has gained acceptance in various regions of the world, where studies estimated that the installed capacity increases at a rate of 6 % per year and Latin America is part of this increase, due the advantages of this process when it is employed for the food preservation, sterilization of medical pharmaceutical material and to control the insect pests. This paper shows the art state of the application of Radiation Technology in Latin America, as well as the technological characteristics of the most gamma irradiation facilities and minor number the electron beam accelerator facilities, the types of irradiated products, state of the Quality Management System and the Dosimetric Systems used in the Radiation Processing Control in the Region. (author)

  11. Kinetic and radiation processes in cluster plasmas

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1996-01-01

    The analysis of processes is made for a cluster plasma which is a xenon arc plasma of a high pressure with an admixture of tungsten cluster ions. Because cluster ions emit radiation, this system is a light source which parameters are determined by various processes such as heat release and transport of charged particles in the plasma, radiative processes involving clusters, processes of cluster evaporation and attachment of atoms to it that leads to an equilibrium between clusters and vapor of their atoms, processes of cluster generation, processes of the ionization equilibrium between cluster ions and plasma electrons, transport of cluster ions in the discharge plasma in all directions. These processes govern by properties of a specific cluster plasma under consideration. (author)

  12. Product quality driven food process design

    NARCIS (Netherlands)

    Hadiyanto, M.

    2007-01-01

    Consumers evaluate food products on their quality, and thus the product quality is a main target in industrial food production. In the last decade there has been a remarkable increase of interest of the food industry to put food product quality central in innovation. However, quality itself is

  13. Use of ionizing radiation in refrigerated foods

    International Nuclear Information System (INIS)

    King, J.; Figueroa, G.; Pablo, S. de

    1998-01-01

    present in infective loads, e.g. 10 7 CFU/g. It is concluded that irradiation at a dose of up to 3.5 kGy, combined with other processes, does not affect the chemical quality and can extend the shelf-life of ready to eat meals. (author)

  14. Use of ionizing radiation in refrigerated foods

    Energy Technology Data Exchange (ETDEWEB)

    King, J; Figueroa, G; Pablo, S de [Instituto de Nutricion y Tecnologia de los Alimentos, Universidad de Chile, Santiago (Chile)

    1999-12-31

    storage. No starch hydrolysis was found in beans and potatoes at a dose of up to 3.5 kGy and in rice at up to 15 kGy, the dose needed to destroy Bacillus cereus spores. No vibrios survived at 3-7.5 kGy (at an initial load of 11x10{sup 6} CFU/g), which indicates that a dose of 3 kGy could be sufficient to kill the V. cholerae present in infective loads, e.g. 10{sup 7} CFU/g. It is concluded that irradiation at a dose of up to 3.5 kGy, combined with other processes, does not affect the chemical quality and can extend the shelf-life of ready to eat meals. (author) 17 refs, 5 figs, 11 tabs

  15. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  16. Applications of Radiation Processing in Industry

    International Nuclear Information System (INIS)

    Abad, Lucille V.

    2015-01-01

    Radiation processing has long been known as commercially viable technology that can be beneficially used to enhance the characteristics of many materials. Several gamma irradiators and electron beam accelerators are operating worldwide which are utilized for various established industrial applications. These could be used for the following processes: a) radiation crosslinking e.g. crosslinking of wires and cables, heat shrinkable film and tube productions, manufacture of plastic bags and tubings for medical products, pre-curing of automobile tire components, curing of polymeric coatings, etc. b) radiation degradation e.g. Scrap Teflon (Polytetraflouroethylene) to form powders, disinfestations and pasteurization of agricultural products, sterilization of medical products, etc.; and c) radiation grafting e.g. grafted non-woven fabrics for metal adsorbent. Emerging applications for radiation processing include grafted membranes for fuel cell, electrodes, cell sheet for tissue engineering, nanoparticle production, polymer composite synthesis, and fibrous catalyst for biodiesel production. Current researches at the Philippine Nuclear Research Institute consist of crosslinking of natural and synthetic polymers for medical application e.g. wound dressing, hemostats, and bioimplants for vesicouretal reflux (VUR); grafting of natural and synthetic fabrics for metal adsorbents; and radiation degradation of carrageenan as plant growth promoter. (author)

  17. Radiation processing of wood-plastic composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1992-01-01

    There are three main types of radiation-processed composite material derived from plastics and fibrous natural polymers. The first are the monomer-impregnated, radiation-treated wood-plastic composites (WPC). They became a commercial success in the early 1970s. More recently, work has focused on improving the WPCs by creating in them interpenetrating network (IPN) systems by the use of appropriate multifunctional oligomers and monomers. The main kinetic features of radiation-initiated chain polymerization remain applicable even in impregnated wood. The second type are the plastics filled or reinforced with dispersed wood fiber or other cellulosics (WFRP). In their case, radiation processing offers a new opportunity to apply radiation-reactive adhesion promoters between wood or cellulosic fibers and the thermoplastic matrices. The third type are the laminar composites made by electron beam coating of wood-based agglomerate sheets and boards. This chapter reviews the industrial applications and the radiation processing of the three types of the wood-plastic composites and indicates future trends. (orig.)

  18. 48 CFR 852.246-72 - Frozen processed foods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Frozen processed foods. 852.246-72 Section 852.246-72 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS... Frozen processed foods. As prescribed in 846.302-72, insert the following clause: Frozen Processed Foods...

  19. 48 CFR 846.302-72 - Frozen processed foods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Frozen processed foods... CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 846.302-72 Frozen processed foods. The contracting officer shall insert the clause at 852.246-72, Frozen processed foods, in solicitations and contracts for...

  20. A review on the beneficial aspects of food processing.

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.P.D.; Somoza, V.; Knorr, D.; Rao Jasti, P.; Eisenbrand, G.

    2010-01-01

    The manuscript reviews beneficial aspects of food processing with main focus on cooking/heat treatment, including other food-processing techniques (e.g. fermentation). Benefits of thermal processing include inactivation of food-borne pathogens, natural toxins or other detrimental constituents,

  1. Economic feasibility of radiation insect disinfestation of foods

    International Nuclear Information System (INIS)

    Urbain, W.M.

    1985-01-01

    Little actual experience is available today to provide proved data on costs for the irradiation of foods. The various cost factors for food irradiation have been identified, however, and ordinary costing procedures are applicable. As is customary, costs can be divided into capital or fixed costs and operating or variable costs. Particularly with regard to capital costs, appropriate inputs in the domain of irradiation technology are needed. Some of these represent a balancing of technical factors and options in order to minimize costs. One commercial food irradiation application has provided actual cost data on the operation of an irradiator. To determine economic feasibility of a particular planned usage of radiation disinfestation, it is suggested that a cost analysis is outlined in this paper and in accord with ordinary business practices be made

  2. Flexibility Study of a Liquid Food Production Process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2006-01-01

    Applying process engineering simulation method to model the processing of liquid food can provide a way to build a flexible food factory that can efficiently offer a wide range of tailored products in short delivery time. A milk production process, as an example, is simulated using a process...... engineering software to investigate the process operation conditions and flexibility. The established simulation method can be adapted to simulate similar liquid food production processes through suitable modifications....

  3. Introduction [Radiation processing: Environmental applications

    International Nuclear Information System (INIS)

    2007-01-01

    In recent years, the problems of environmental damage and degradation of natural resources have received increasing attention throughout the world. Population growth, higher standards of living, increased urbanization and enhanced industrial activities all contribute to environmental degradation. For example, fossil fuels - including coal. natural gas, petroleum, shale oil and bitumen - are the main primary sources of heat and electrical energy production, and are responsible for a large number and amount of pollutants emitted to the atmosphere via exhaust gases from industry. power stations, residential heating systems and vehicles. All of these fuels are composed of major constituents such as carbon, hydrogen and oxygen, and other components including sulphur and nitrogen compounds and metals. During the combustion process, different pollutants are emitted, such as fly ash (containing diverse trace elements (heavy metals)), SO x (including SO 2 and SO 3 ). NO x (including NO 2 and NO) and volatile organic compounds (VOCs). Air pollution caused by particulate matter and other pollutants not only directly impacts the atmospheric environment but also contaminates water and soil, leading to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of the environment. These phenomena have a negative impact on human health and on vegetation

  4. Seattle's minimum wage ordinance did not affect supermarket food prices by food processing category.

    Science.gov (United States)

    Spoden, Amanda L; Buszkiewicz, James H; Drewnowski, Adam; Long, Mark C; Otten, Jennifer J

    2018-06-01

    To examine the impacts of Seattle's minimum wage ordinance on food prices by food processing category. Supermarket food prices were collected for 106 items using a University of Washington Center for Public Health Nutrition market basket at affected and unaffected supermarket chain stores at three times: March 2015 (1-month pre-policy enactment), May 2015 (1-month post-policy enactment) and May 2016 (1-year post-policy enactment). Food items were categorized into four food processing groups, from minimally to ultra-processed. Data were analysed across time using a multilevel, linear difference-in-differences model at the store and price level stratified by level of food processing. Six large supermarket chain stores located in Seattle ('intervention') affected by the policy and six same-chain but unaffected stores in King County ('control'), Washington, USA. One hundred and six food and beverage items. The largest change in average price by food item was +$US 0·53 for 'processed foods' in King County between 1-month post-policy and 1-year post-policy enactment (P food processing level strata in Seattle v. King County stores at 1-month or 1-year post-policy enactment. Supermarket food prices do not appear to be differentially impacted by Seattle's minimum wage ordinance by level of the food's processing. These results suggest that the early implementation of a city-level minimum wage policy does not alter supermarket food prices by level of food processing.

  5. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  6. Twenty new ISO standards on dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Farrar IV, H.

    2000-01-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but have

  7. The simulation of the LANFOS-H food radiation contamination detector using Geant4 package

    Science.gov (United States)

    Piotrowski, Lech Wiktor; Casolino, Marco; Ebisuzaki, Toshikazu; Higashide, Kazuhiro

    2015-02-01

    Recent incident in the Fukushima power plant caused a growing concern about the radiation contamination and resulted in lowering the Japanese limits for the permitted amount of 137Cs in food to 100 Bq/kg. To increase safety and ease the concern we are developing LANFOS (Large Food Non-destructive Area Sampler)-a compact, easy to use detector for assessment of radiation in food. Described in this paper LANFOS-H has a 4 π coverage to assess the amount of 137Cs present, separating it from the possible 40K food contamination. Therefore, food samples do not have to be pre-processed prior to a test and can be consumed after measurements. It is designed for use by non-professionals in homes and small institutions such as schools, showing safety of the samples, but can be also utilized by specialists providing radiation spectrum. Proper assessment of radiation in food in the apparatus requires estimation of the γ conversion factor of the detectors-how many γ photons will produce a signal. In this paper we show results of the Monte Carlo estimation of this factor for various approximated shapes of fish, vegetables and amounts of rice, performed with Geant4 package. We find that the conversion factor combined from all the detectors is similar for all food types and is around 37%, varying maximally by 5% with sample length, much less than for individual detectors. The different inclinations and positions of samples in the detector introduce uncertainty of 1.4%. This small uncertainty validates the concept of a 4 π non-destructive apparatus.

  8. Status and future trends of radiation processing in Brazil

    International Nuclear Information System (INIS)

    Lugao, A.B.; Andrade, E; Silva, L.G.

    1998-01-01

    Electron-beam and gamma irradiation of polymers are widely applied in Brazil today. The main applications are: radio-induced crosslinking of wire and cable for automobile and appliance industry; heat shrinkable tubes for appliance, automobile and electronic; heat shrinkable packing for food processing industry; sterilization of medical supplies and so on. Nevertheless, there are only a few industrial facilities about 20 years old in full operation at present and there are some new low energy machines for food packing. The reason for such absence of investment in this area was studied and the relation between automobile and appliance production with radiation processing was fully demonstrated for Brazil case. In conclusion, it was shown that the industry of radiation processing of polymers is likely to experience a strong growth based on the continuous increase in the production of automobiles and appliances. The R and D activities of IPEN are an important support for developing the necessary technology and developing the necessary confidence in the radiation as tool for economical and social growth

  9. Status and future trends of radiation processing in Brazil

    Science.gov (United States)

    Lugão, A. B.; Andrade, E.; Silva, L. G.

    1998-06-01

    Electron-beam and gamma irradiation of polymers are widely applied in Brazil today. The main applications are: - radio-induced crosslinking of wire and cable for automobile and appliance industry; - heat shrinkable tubes for appliance, automobile and electronic; - heat shrinkable packing for food processing industry; - sterilization of medical supplies and so on. Nevertheless, there are only a few industrial facilities about 20 years old in full operation at present and there are some new low energy machines for food packing. The reason for such absence of investment in this area was studied and the relation between automobile and appliance production with radiation processing was fully demonstrated for Brazil case. In conclusion, it was shown that the industry of radiation processing of polymers is likely to experience a strong growth based on the continuous increase in the production of automobiles and appliances. The R&D activities of IPEN are an important support for developing the necessary technology and developing the necessary confidence in the radiation as tool for economical and social growth.

  10. Radiation processing of natural polymer in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman; Kamaruddin Hashim; Zulkafli Ghazali; Mohd Hilmi Mahmood; Dahlan Hj. Mohd; Jamaliah Sharif

    2007-01-01

    Research on radiation processing of natural polymer has been carried out by Nuclear Malaysia since 10 years ago. The progress of the research is at various stages. Radiation processing of sago hydrogel has been commercialized. Meanwhile ago film for packaging is at the pilot scale trial. Palm oil products are ready to be further developed for commercialization with any interested industrial partner. On the other hand, some new materials are being developed based on natural rubber such as liquid natural as compatibilizer, natural rubber thermoplastic nanoclay composites and natural rubber magnetic nano particles composites. (author)

  11. Development of Functional Foods for Body Protection Using Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, S. K.; Jung, U. H.; Park, H. R.

    2007-07-15

    We have previously developed two herbal compositions(HemoHIM, HemoTonic) that protects immune/hematopoietic system and self-renewal tissues against radiation and enhances immune/hematopoietic functions. In this study, we tried to expand its usability by verifying its protective activity against various harmful stimuli as well as radiation. HemoHIM was shown to be highly effective in reducing immune/hematopoietic damage, particularly, normalizing the Th1/Th2 imbalance, which seemed to be a result of increased production of IL-12p70 by APC and enhanced NK cell activity. Also HemoHIM was shown to have protective activities against UV-induced skin damage, immune system damage by an anticancer drug (CP), immune depression by old age and stress, and inflammation. Finally it was confirmed in a human study that HemoHIM improves the immune cell functions and cytokine production. Based on these results, HemoHIM has been approved as a health functional food for immunomodulation by Korea FDA and succeeded in its industrialization. Meanwhile, to develop functional foods for the reduction of chronic radiation damage (carcinogenesis), we have screened natural products for inhibitory activities against carcinogenesis-related factors, and developed two anti-carcinogenic compositions. Also 6 single compounds were isolated and identified from radioprotective natural products and elucidated some synergistic protection by several single compounds and established a basis for the development of advanced technology for radioprotection. Also, to obtain the applicability of radiation technology for the safe sanitatation and distribution of functional food materials, we verified the toxicological safety, stability of activity and active components of irradiated medicinal herbs

  12. Development of Functional Foods for Body Protection Using Radiation

    International Nuclear Information System (INIS)

    Jo, S. K.; Jung, U. H.; Park, H. R.

    2007-07-01

    We have previously developed two herbal compositions(HemoHIM, HemoTonic) that protects immune/hematopoietic system and self-renewal tissues against radiation and enhances immune/hematopoietic functions. In this study, we tried to expand its usability by verifying its protective activity against various harmful stimuli as well as radiation. HemoHIM was shown to be highly effective in reducing immune/hematopoietic damage, particularly, normalizing the Th1/Th2 imbalance, which seemed to be a result of increased production of IL-12p70 by APC and enhanced NK cell activity. Also HemoHIM was shown to have protective activities against UV-induced skin damage, immune system damage by an anticancer drug (CP), immune depression by old age and stress, and inflammation. Finally it was confirmed in a human study that HemoHIM improves the immune cell functions and cytokine production. Based on these results, HemoHIM has been approved as a health functional food for immunomodulation by Korea FDA and succeeded in its industrialization. Meanwhile, to develop functional foods for the reduction of chronic radiation damage (carcinogenesis), we have screened natural products for inhibitory activities against carcinogenesis-related factors, and developed two anti-carcinogenic compositions. Also 6 single compounds were isolated and identified from radioprotective natural products and elucidated some synergistic protection by several single compounds and established a basis for the development of advanced technology for radioprotection. Also, to obtain the applicability of radiation technology for the safe sanitatation and distribution of functional food materials, we verified the toxicological safety, stability of activity and active components of irradiated medicinal herbs

  13. Pulse foods: processing, quality and nutraceutical applications

    National Research Council Canada - National Science Library

    Tiwari, Brijesh K; Gowen, Aoife; McKenna, B. M

    2011-01-01

    ... Applications Edited by Brijesh K. Tiwari Department of Food and Tourism, Manchester Metropolitan University, Manchester, UK Aoife Gowen UCD School of Agriculture, Food Science and Veterinary ­ M edicine,...

  14. A commercial multipurpose radiation processing facility for Hawaii

    International Nuclear Information System (INIS)

    Welt, M.A.

    1985-01-01

    The State of Hawaii offers a unique challenge for the designer of an economically feasible radiation processing system. Based on the prevailing agricultural export requirements, the radiation facility must be capable for handling a variety of bulky fruit and vegetable products for insect disinfestation purposes and, yet, provide proper economies for the users of the facility. A capability must exist for irradiating other types of products requiring higher doses, e.g., fish and shellfish products for shelf-life extension, which might require a dose approximately eight times higher than the disinfestation dose, or even medical product or a food sterilization dose, which would be approximately twelve times higher than the required shelf-life extension dose. The Radiation Technology Model RT 4l0l-4048 radiation processing facility provides the necessary versatility and operational reliability to meet the challenge. The technical features and economic analyses demonstrate the advantages of this computer-operated pallet irradiation system. Actual performance data from the Radiation Technology subsidiary operations in West Memphis, Arkasas, and Burlilngton, North Carolina, are presented along with photographs of the proposed system for Hawaii

  15. Applications of radiation processing: SRI experiences

    International Nuclear Information System (INIS)

    Rajput, Sanjay

    2014-01-01

    Shriram Applied Radiation Centre (SARC) is a part of Shriram Institute for Industrial Research (SRI), and was established in 1986, in collaboration with Bhabha Atomic Research Centre (BARC), Board of Radiation and Isotope Technology (BRIT), Department of Atomic Energy (DAE), Atomic Energy Regulatory Board (AERB). SARC was established with a objective to popularize the radiation processing technology for various applications. SARC is a fully automatic, computerized plant setup as per the design and norms of BRIT/AERB for round the clock fail safe operations. The capacity of SARC Irradiator is 800 kCi of Cobalt -60 source which can process up to 10,000 cubic meters of material (0.1g/cc) at 25 kGy level

  16. Role of dosimetry in radiation processing applications

    International Nuclear Information System (INIS)

    Mehta, Kishor

    2001-01-01

    Today, radiation processing is a growing technology offering potential technological advantages as well as enhanced safety and economy. It is expanding on two fronts: the variety of applications is exploding as well as the sources of radiation. And with that comes the necessary advances in dosimetry. However, the success of the technology still depends on the assertion that the irradiated products are reliable and safe, whether they are health care products or cables and wires. And this is best assured through quality assurance programmes. The key element in QA in radiation processing is a well-characterised, reliable dosimetry that is traceable to the international measurement system. Traceability is the foundation for international acceptance of the irradiated products; and with international trade of irradiated products on the rise, it becomes absolutely critical. It is thus vital that the industry recognises this pivotal position of good dosimetry and the role a national standards laboratory plays in that connection. (author)

  17. 21 CFR 170.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... the concentration of the residue in the processed food when ready to eat is not greater than the... processed food when ready to eat is higher than the tolerance prescribed for the raw agricultural commodity... authorized by the regulations in this part. Food that is itself ready to eat, and which contains a higher...

  18. 21 CFR 570.19 - Pesticide chemicals in processed foods.

    Science.gov (United States)

    2010-04-01

    ... the concentration of the residue in the processed food when ready to eat is not greater than the... processed food when ready to eat is higher than the tolerance prescribed for the raw agricultural commodity... authorized by the regulations in this part. Food that is itself ready to eat, and which contains a higher...

  19. Cooking, industrial processing and caloric density of foods

    NARCIS (Netherlands)

    Pellegrini, Nicoletta; Fogliano, Vincenzo

    2017-01-01

    During human evolution, the development of a wide range of cooking processing techniques enabled humans to provide their social group with maximum benefits from limited food resources. Industrial processing and mass market distribution made available high food calorie density foods to the world

  20. Effects of the ionizing radiation in natural food colours; Efeitos da radiacao ionizante em corantes naturais de uso alimenticio

    Energy Technology Data Exchange (ETDEWEB)

    Cosentino, Helio Morrone

    2005-07-01

    The world's fast growing population and its consequent increase in demand for food has driven mankind into improving technologies which ensure a safer supply of such commodities. Both food radiation processing and its constituents are highlighted as a feasible alternative technique capable of meeting food safety standards. Natural dyes are extensively employed in the food industry thanks to their colour enhancing properties on food products. This paper has aimed at studying the effects of ionizing radiation on three natural dyes: carminic acid and its derivatives (cochineal dyes), bixine and its salts (annatto dyes) and curcumin (turmeric dyes), used in the food and cosmetic industries within dilutions and doses those goods might eventually be processed in. It also envisages clarifying the compatibility of the irradiation technique with the keeping of such relevant sensorial attribute which is the product colour. Spectrophotometry and capillary electrophoresis were the analytic methods employed. All in all, a colour decrease proportional to the increase on the applied gamma radiation (1 to 32 kGy) has been observed. The annatto dyes have proven moderately stable whereas turmeric has shown to be highly sensitive to radiation. Those results shall be taken into account as far as the need to alter the formulae additive amount in the product is concerned whenever undergoing radiation processing. (author)

  1. Achievements and perspectives for radiation processing

    International Nuclear Information System (INIS)

    Charlcsby, A.

    1992-01-01

    In the last few decades the major practical applications of large radiation sources have been in the irradiation of macromolecular systems. These have risen rapidly to annual outputs of billions of dollars and continue to show steady growth. In other directions such as polymerization and grafting, radiation has been less successful, primarily because in these subjects radiation serves as only one step in a sequence of chemical reactions, and often these can be achieved by more conventional and familiar methods. We envisage future progress along several distinct lines. 1. Reduction in the cost of radiation. 2. The application of radiation technology in areas where valuable modifications are involved and where advantage can be taken of the remarkable control offered by electron beams. 3. Areas where the chemical alternatives do not exist or are difficult to apply. 4. A very different line of approach is to use radiation with its far more complete control and reproducibility to investigate many processes even if in the production stage itself a different technique is later utilized. Present examples are chemical kinetics as with ESR, pulse radiolysis, pulsed NMR, behavior of trapped charges, crystal structure, local modifications, reinforcement and orientation etc. (J.P.N.)

  2. Dosimetry and control of radiation processing

    International Nuclear Information System (INIS)

    1988-01-01

    Eight invited papers on the general theme of 'Dosimetry and Control of Radiation Processing', presented at a one day symposium held at the National Physical Laboratory, are collected together in this document. Seven of the papers are selected and indexed separately. (author)

  3. Radiation processing of polyolefins and compounds

    International Nuclear Information System (INIS)

    Barlow, A.; Biggs, J.; Maringer, M.

    1977-01-01

    Many properties of polyethylene and its copolymers are enhanced by crosslinking. This can be accomplished through the use of either peroxides or radiation. Crosslinking with peroxides is performed at elevated temperatures generally under pressure; catalyst residues remain in the product which have an adverse effect on electrical and possibly other properties. Radiation crosslinking, on the other hand, is performed under ambient conditions, is essentially free of pollution and offers lower overall production costs due to increased processing speed. A cost analysis of the two crosslinking processes applied to wire and cable coating is included. The advantages of radiation curing can be negated by processing problems which lead to inadequate product properties. Problems are described which may be encountered in developing a flame retardant, radiation curable compound for wire and cable coating. Of particular concern is the generation of a microporous structure which is accentuated by the presence of flame retardant ingredients and the absence of pressure inherent to the peroxide curing process. The procedures involved in solving these problems are briefly described. (author)

  4. Optimization of industrial processes using radiation sources

    International Nuclear Information System (INIS)

    Salles, Claudio G.; Silva Filho, Edmundo D. da; Toribio, Norberto M.; Gandara, Leonardo A.

    1996-01-01

    Aiming the enhancement of the staff protection against radiation in operational areas, the SAMARCO Mineracao S.A. proceeded a reevaluation and analysis of the real necessity of the densimeters/radioactive sources in the operational area, and also the development of an alternative control process for measurement the ore pulp, and introduced of the advanced equipment for sample chemical analysis

  5. The control of foods treated by ionizing radiations

    International Nuclear Information System (INIS)

    Hasselmann, C.; Strasbourg Univ., 67

    1986-01-01

    The French regulation relating to ionized foods is based on a decree issued in 1970. During several years the intricacy of the procedure for obtaining clearances hindered the development of this process. In 1980, the Joint FAO/IAEA/WHO Expert Committee concluded that the irradiation of any food commodity up to an overall average dose of 10 kGy presented no toxicological hazard. Hence toxicological expert's report was no longer required. And a new decree (its composition is in progress) will simplify again the procedure. It will also prescribe more precise methods of control. A special interest will be brough to dosimetry, ticketing and analysis of foods before and after ionization. The control of imported foods is more critical. As the distinction between an ionized food an a non-ionized food cannot be obtained by physicochemical or biological methods, this control must be carried out in the exporting country. This involve the adoption of a common legislation by each country which utilize the ionization process. In the very near future, this eventually is unlikely [fr

  6. FOOD safety and hygiene - Systematic layout planning of food processes

    NARCIS (Netherlands)

    Van Donk, DP; Gaalman, G

    2004-01-01

    Hygiene and food safety have been dealt with from different fields of science such as biology and health, and from different angles such as HACCP and GMP. Little systematically ordered knowledge is available for the analysis of a layout, taking hygienic factors into account. HACCP and GMP are

  7. The place of radiation processing in polymer technology

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1978-01-01

    A number of polymerisation processes initiated through radiation are discussed, among others the impregnation of wood with a monomer to form wood-polymer composites; radiation crosslinking of cable insulation; radiation degradation; radiation grafting of wool and textiles; and radiation sterilization of medical and pharmaceutical equipment. The last-named process is briefly compared to steam and to ethylene oxide sterlization

  8. Combined effect of heat sterilization and ionizing radiation on folacin in canned food

    International Nuclear Information System (INIS)

    Hozova, B.; Sorman, L.

    1986-01-01

    The results are reported of a study in folacin changes following heat sterilization at reduced intensity combined with irradiation of model food products, such as pickled cauliflower and beef in gravy. The folacin content in cauliflower was found to vary with the intensity of heat sterilization; no significant effect was observed of varying radiation doses. With respect to beef in gravy, the study confirmed the suitability of the combined preservation process in view of the higher folacin retention in the given food type. (author). 3 tabs., 14 refs

  9. Track 8: health and radiological applications. Isotopes and radiation: general. 2. Radiation Pasteurization for Diverse Food Products

    International Nuclear Information System (INIS)

    Braby, L.A.; Whittaker, A.D.; McLellan, M.; Waltar, A.E.

    2001-01-01

    After a lengthy and controversial development period, radiation-pasteurized products that can be easily recognized by consumers are starting to make it to a few grocery store shelves. Of course, certain spices used in packaged products and a wide variety of nonfood products have been irradiated for many years. However, the involvement of radiation processing in these products has generally gone unrecognized by the consumers. More recently, the approval of irradiated poultry and red meat, which would bear a clear label indicating radiation treatment, has provided an opportunity to confirm the consumers' acceptance of irradiated products. The early indications are that consumers not only accept, but they actually prefer, the irradiated product when it is available. In spite of extensive efforts of antinuclear activists to convince the public that there are unknown but potentially serious hazards associated with radiation-processed food, along with some misleading reports in the news media suggesting that retailers had withdrawn irradiated products from their shelves, it appears that those retailers who received irradiated meat sold their complete inventory in short order. Further, they did so at substantial price premiums relative to equivalent un-irradiated products. Apparently, the combination of more than 40 yr of research showing no credible evidence of hazards produced by irradiation, augmented by greater public awareness of the risks of some food-borne pathogens, has convinced some consumers that use of radiation-processed products is in their personal best interest. Furthermore, the reluctance of many producers and retailers to introduce irradiated products for fear of adverse publicity is being countered by recognition that if an un-irradiated product is found to be responsible for a significant incidence of food-borne illness, their liability may be high because they did not use the 'best available technology for minimizing risk', namely, irradiation

  10. Radiation technology for preservation and hygienization of food and agricultural commodities

    International Nuclear Information System (INIS)

    Hajare, Sachin N.

    2017-01-01

    Growing population demands more food for consumption. Given that the agricultural land is shrinking day by day in urban as well as rural areas, we are left with no choice but to preserve the produce in whatever way we can. In this scenario, gamma irradiation or exposure of foods or food products to high energy rays is a very effective technology in long term preservation of these products. Food Irradiation is an established and effective processing methodology that involves controlled application of energy from ionizing radiations in an irradiation chamber shielded by thick concrete walls using radioisotopes (Cobalt-60 and Caesium-137), electron beam (up to 10 MeV) and X-rays (up to 5 MeV). Presently it is being practiced in more than 60 countries for various applications. Radiation processing can achieve insect disinfestation of stored products, inhibition of sprouting in tubers, bulbs and rhizomes, delay in fruit ripening, destruction of microbes responsible for food spoilage and elimination of pathogens and parasites of public health importance

  11. Impacts of UVB radiation on food consumption of forest specialist tadpoles.

    Science.gov (United States)

    Londero, James Eduardo Lago; Dos Santos, Caroline Peripolli; Segatto, Ana Lúcia Anversa; Passaglia Schuch, André

    2017-09-01

    Solar ultraviolet radiation B (UVB) is an important environmental stressor for amphibian populations due to its genotoxicity, especially in early developmental stages. Nonetheless, there is an absence of works focused on the UVB effects on tadpoles' food consumption efficiency. In this work, we investigated the effects of the exposure to a low environmental-simulated dose of UVB radiation on food consumption of tadpoles of the forest specialist Hypsiboas curupi [Hylidae, Anura] species. After UVB treatment tadpoles were divided and exposed to a visible light source or kept in the dark, in order to indirectly evaluate the efficiency of DNA repair performed by photolyases and nucleotide excision repair (NER), respectively. The body mass and the amount of food in tadpoles' guts were verified in both conditions and these data were complemented by the micronuclei frequency in blood cells. Furthermore, the keratinized labial tooth rows were analyzed in order to check for possible UVB-induced damage in this structure. Our results clearly show that the body weight decrease induced by UVB radiation occurs due to the reduction of tadpoles' food consumption. This behavior is directly correlated with the genotoxic impact of UVB light, since the micronuclei frequency significantly increased after treatments. Surprisingly, the results indicate that photoreactivation treatment was ineffective to restore the food consumption activity and body weight values, suggesting a low efficiency of photolyases enzymes in this species. In addition, UVB treatments induced a higher number of breaks in the keratinized labial tooth rows, which could be also associated with the decrease of food consumption. This work contributes to better understand the process of weight loss observed in tadpoles exposed to UVB radiation and emphasizes the susceptibility of forest specialist amphibian species to sunlight-induced genotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Sodium monitoring in commercially processed and restaurant foods.

    Science.gov (United States)

    Ahuja, Jaspreet K C; Pehrsson, Pamela R; Haytowitz, David B; Wasswa-Kintu, Shirley; Nickle, Melissa; Showell, Bethany; Thomas, Robin; Roseland, Janet; Williams, Juhi; Khan, Mona; Nguyen, Quynhanh; Hoy, Kathy; Martin, Carrie; Rhodes, Donna; Moshfegh, Alanna; Gillespie, Cathleen; Gunn, Janelle; Merritt, Robert; Cogswell, Mary

    2015-03-01

    Most sodium in the US diet comes from commercially processed and restaurant foods. Sodium reduction in these foods is key to several recent public health efforts. The objective was to provide an overview of a program led by the USDA, in partnership with other government agencies, to monitor sodium contents in commercially processed and restaurant foods in the United States. We also present comparisons of nutrients generated under the program to older data. We track ∼125 commercially processed and restaurant food items ("sentinel foods") annually using information from food manufacturers and periodically by nationwide sampling and laboratory analyses. In addition, we monitor >1100 other commercially processed and restaurant food items, termed "priority-2 foods" (P2Fs) biennially by using information from food manufacturers. These foods serve as indicators for assessing changes in the sodium content of commercially processed and restaurant foods in the United States. We sampled all sentinel foods nationwide and reviewed all P2Fs in 2010-2013 to determine baseline sodium concentrations. We updated sodium values for 73 sentinel foods and 551 P2Fs in the USDA's National Nutrient Database for Standard Reference (releases 23-26). Sodium values changed by at least 10% for 43 of the sentinel foods, which, for 31 foods, including commonly consumed foods such as bread, tomato catsup, and potato chips, the newer sodium values were lower. Changes in the concentrations of related nutrients (total and saturated fat, total sugar, potassium, or dietary fiber) that were recommended by the 2010 Dietary Guidelines for Americans for reduced or increased consumption accompanied sodium reduction. The results of sodium reduction efforts, based on resampling of the sentinel foods or re-review of P2Fs, will become available beginning in 2015. This monitoring program tracks sodium reduction efforts, improves food composition databases, and strengthens national nutrition monitoring. © 2015

  13. Review of radiation processing of natural polymer

    International Nuclear Information System (INIS)

    Khairul Zaman

    2007-01-01

    In recent years, natural polymers are being investigated with renewed interest because of their abundant quantity and unique characteristics such as inherent biocompatibility, biodegradability and renewable. It is also known as green polymer. Natural polymers such as carrageen, alginate, chitin/chitosan and starch are traditionally used in food-based industry. But now, the applications of natural polymers are being sought in knowledge-driven areas such as healthcare, agro-technology and industry. Radiation degraded alginates, carrangeenan and chitosan as plant growth promoter and protector have been developed. Radiation degraded chitosan, carraneenan and starch have also been used together with synthetic polymers for hydrogel production to be used for wound dressing, skin moisturization and for biodegradable packaging films and foams. Radiation crosslinking of natural polymer derivatives such as carboxymethyl chitosan, carboxymethyl starch have been successfully developed in Japan and used for various applications such as removal of pollutants, removal of waters from liverstock excrete as well as for bedsores protection mat. (author)

  14. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods.

    Science.gov (United States)

    Fardet, Anthony

    2016-05-18

    Beyond nutritional composition, food structure is increasingly recognized to play a role in food health potential, notably in satiety and glycemic responses. Food structure is also highly dependent on processing conditions. The hypothesis for this study is, based on a data set of 98 ready-to-eat foods, that the degree of food processing would correlate with the satiety index (SI) and glycemic response. Glycemic response was evaluated according to two indices: the glycemic index (GI) and a newly designed index, the glycemic glucose equivalent (GGE). The GGE indicates how a quantity of a certain food affects blood glucose levels by identifying the amount of food glucose that would have an effect equivalent to that of the food. Then, foods were clustered within three processing groups based on the international NOVA classification: (1) raw and minimally processed foods; (2) processed foods; and (3) ultra-processed foods. Ultra-processed foods are industrial formulations of substances extracted or derived from food and additives, typically with five or more and usually many (cheap) ingredients. The data were correlated by nonparametric Spearman's rank correlation coefficient on quantitative data. The main results show strong correlations between GGE, SI and the degree of food processing, while GI is not correlated with the degree of processing. Thus, the more food is processed, the higher the glycemic response and the lower its satiety potential. The study suggests that complex, natural, minimally and/or processed foods should be encouraged for consumption rather than highly unstructured and ultra-processed foods when choosing weakly hyperglycemic and satiating foods.

  15. EPR detection of foods preserved with ionizing radiation

    Science.gov (United States)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60Co) and 10 MeV electrons were observed

  16. EPR detection of foods preserved with ionizing radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-01-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60 Co) and 10 MeV electrons were observed

  17. EPR detection of foods preserved with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stachowicz, W.; Burlinska, G.; Michalik, J

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ({sup 60}Co) and 10 MeV electrons were observed.

  18. A rapid and simple screening test to detect the radiation treatment of fat-containing foods

    International Nuclear Information System (INIS)

    Delincee, H.

    1993-01-01

    In recent years several international efforts have been made to develop analytical detection methods for the radiation treatment of foods. A number of methods has indeed been developed. Particularly, for fat-containing foods several methods are already in an advanced stage. In addition to the sophisticated techniques such as gas chromatography/mass spectrometry which require relatively expensive equipment and/or extended sample preparation time, it would be desirable to have quick and simple screening tests, which immediately on-the-spot give some indication whether a food product has been irradiated or not. A solution to this problem for lipid-containing foods has been put forward by Furuta and co-workers (1991, 1992), who estimated the amount of carbon monoxide originating from the lipid fraction in poultry meat after irradiation. The carbon monoxide was expelled from the frozen meat by quick microwave heating and in the head space of the sample, the formed carbon monoxide was determined by gas chromatography. In order to speed up time of analysis, we have used an electrochemical CO sensor, as also is being used to estimate CO in ambient air in workplaces, to determine the CO content in the vapor expelled from the irradiated samples. This CO test is very simple, cheap and easy to perform. It takes only a few minutes to screen food samples for evidence of their having been radiation processed. If doubts concerning the radiation treatment of a sample arise, the more sophisticated - and expensive -methods for analyzing lipid-containing foods can be applied. Certainly the test is limited to food products which contain a certain amount of fat. A preliminary test with lean shrimps showed practically no difference between irradiated (2.5 and 5 kGy) and non-irradiated samples. By relating CO production to the fat content, possibly a better parameter for classification can be obtained. (orig./vhe)

  19. Studies and Development of Radiation Processed Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree [Radiation Technology Development Section, Bhabha Atomic Research Centre, Mumbai (India)

    2009-07-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  20. Radiation methods in dairy production and processing

    International Nuclear Information System (INIS)

    Ganguli, N.C.

    1975-01-01

    Various uses of radiotracers and radiation in dairy technology are described. In dairy production, radiotracers are used for studying: (1) rumen metabolism leading to protein synthesis (2) total body water, blood volume and sodium (3) minerals metabolism (4) relation between climatic stress and thyroid functioning of dairy animals (5) volume of milk in mammary glands (6) hormone level in dairy animals and (7) spermatozoa metabolism. In dairy processing, radiotracers are used for studying: (1) compositional analysis of milk and milk products and (2) efficiency of cleaning agents for cleaning dairy equipment. Ionizing radiation is used for: (1) preservation of milk and milk products and (2) sterilization of packaging materials. Radiation source has been used to monitor the over-run in ice-cream and the fill control for fluid in papar cartons. (M.G.B.)

  1. Studies and Development of Radiation Processed Nanomaterials

    International Nuclear Information System (INIS)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree

    2009-01-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  2. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario.

    Science.gov (United States)

    Camargo, Anderson Carlos; Woodward, Joshua John; Call, Douglas Ruben; Nero, Luís Augusto

    2017-11-01

    Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, utensils, floors, and drains, ultimately reaching final products by cross-contamination. This pathogen grows even under high salt conditions or refrigeration temperatures, remaining viable in various food products until the end of their shelf life. While the estimated incidence of listeriosis is lower than other enteric illnesses, infections caused by L. monocytogenes are more likely to lead to hospitalizations and fatalities. Despite the description of L. monocytogenes occurrence in Brazilian food-processing facilities and foods, there is a lack of consistent data regarding listeriosis cases and outbreaks directly associated with food consumption. Listeriosis requires rapid treatment with antibiotics and most drugs suitable for Gram-positive bacteria are effective against L. monocytogenes. Only a minority of clinical antibiotic-resistant L. monocytogenes strains have been described so far; whereas many strains recovered from food-processing facilities and foods exhibited resistance to antimicrobials not suitable against listeriosis. L. monocytogenes control in food industries is a challenge, demanding proper cleaning and application of sanitization procedures to eliminate this foodborne pathogen from the food-processing environment and ensure food safety. This review focuses on presenting the L. monocytogenes distribution in food-processing environment, food contamination, and control in the food industry, as well as the consequences of listeriosis to human health, providing a comparison of the current Brazilian situation with the international scenario.

  3. Evaluation of sensorial analysis in mate (Ilex Paraguariensis) processed by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Furgeri, Camilo; Sabundjian, Ingrid T.; Silva, Priscila V.; Salum, Debora C.; Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: camilo.furgeri@gmail.com; Bastos, Deborah H.M. [Universidade de Sao Paulo USP, SP (Brazil). Faculdade de Saude Publica. Dept. de Nutricao Experimental]. E-mail: dmbastos@usp.br

    2007-07-01

    Mate (Ilex paraguariensis) is a native species from South America which is widely consumed as chimarrao (made white hot water) and terere (made white could water) beverages. One of the basic questions for the food area is the relation between the quality observed by the consumers and the presence of compounds responsible for its flavor and aroma, essential parameters of the food quality. The radiation food processing has been demonstrating great effectiveness in the combat of pathogenic agents while little compromising nutritional value and sensorial properties of foods. This boarding affects directly the food industry, which represent quality and aggregate product value. (author)

  4. Evaluation of sensorial analysis in mate (Ilex Paraguariensis) processed by gamma radiation

    International Nuclear Information System (INIS)

    Furgeri, Camilo; Sabundjian, Ingrid T.; Silva, Priscila V.; Salum, Debora C.; Villavicencio, A.L.C.H.; Bastos, Deborah H.M.

    2007-01-01

    Mate (Ilex paraguariensis) is a native species from South America which is widely consumed as chimarrao (made white hot water) and terere (made white could water) beverages. One of the basic questions for the food area is the relation between the quality observed by the consumers and the presence of compounds responsible for its flavor and aroma, essential parameters of the food quality. The radiation food processing has been demonstrating great effectiveness in the combat of pathogenic agents while little compromising nutritional value and sensorial properties of foods. This boarding affects directly the food industry, which represent quality and aggregate product value. (author)

  5. Codex general standard for irradiated foods and recommended international code of practice for the operation of radiation facilities used for the treatment of foods

    International Nuclear Information System (INIS)

    1990-06-01

    The FAO/WHO Codex Alimentarius Commission was established to implement the Joint FAO/WHO Food Standards Programme. The purpose of this programme is to protect the health of consumers and to ensure fair practices in the food trade. At its 15th session, held in July 1983, the Commission adopted a Codex General Standard for Irradiated Foods and a Recommended International Code of Practice for the Operation of Radiation Facilities used for the Treatment of Foods. This Standard takes into account the recommendations and conclusions of the Joint FAO/IAEA/WHO Expert Committees convened to evaluate all available data concerning the various aspects of food irradiation. This Standard refers only to those aspects which relate to the processing of foods by ionising energy. The Standard recognizes that the process of food irradiation has been established as safe for general application to an overall average level of absorbed dose of 10 KGy. The latter value shold not be regarded as a toxicological upper limit above which irradiated foods become unsafe; it is simply the level at or below which safety has been established. The Standard provides certain mandatory provisions concerning the facilities used and for the control of the process in the irradiation plants. The present Standard requires that shipping documents accompanying irradiated foods moving in trade should indicate the fact of irradiation. The labelling of prepackaged irradiated foods intended for direct sale to the consumer is not covered in this Standard

  6. Codex general standard for irradiated foods and recommended international code of practice for the operation of radiation facilities used for the treatment of foods

    International Nuclear Information System (INIS)

    1984-01-01

    The FAO/WHO Codex Alimentarius Commission was established to implement the Joint FAO/WHO Food Standards Programme. The purpose of this programme is to protect the health of consumers and to ensure fair practices in the food trade. At its 15th session, held in July 1983, the Commission adopted a Codex General Standard for Irradiated Foods and a Recommended International Code of Practice for the Operation of Radiation Facilities used for the Treatment of Foods. This Standard takes into account the recommendations and conclusions of the Joint FAO/IAEA/WHO Expert Committees convened to evaluate all available data concerning the various aspects of food irradiation. This Standard refers only to those aspects which relate to the processing of foods by ionising energy. The Standard recognizes that the process of food irradiation has been established as safe for general application to an overall average level of absorbed dose of 10 kGy. The latter value should not be regarded as a toxicological upper limit above which irradiated foods become unsafe; it is simply the level at or below which safety has been established. The Standard provides certain mandatory provisions concerning the facilities used and for the control of the process in the irradiation plants. The present Standard requires that shipping documents accompanying irradiated foods moving in trade should indicate the fact of irradiation. The labelling of prepackaged irradiated foods intended for direct sale to the consumer is not covered in this Standard

  7. Radiation processing technology for industrial waste water treatment

    International Nuclear Information System (INIS)

    2011-01-01

    Radiation sterilization technology, cross-linked polymers and curing, food and environmental applications of the radiation is widely used for many years. At the same time, drinking water and wastewater treatment are the part of the radiation technology applications. For this purpose, drinking water and wastewater treatment plants in various countries has been established. In this project, gamma / electron beam radiation treatment is intended to be used for the treatment of alkaloid, textiles and polychlorinated biphenyls (PCBs) wastewater. In this regard, the chemical characterization of wastewater, the interaction with radiation, biological treatment and determination of toxicological properties are the laboratory studies milestones. After laboratory studies, the establishment of a pilot scale treatment plant has been planned. Within the framework of the project a series of dye used in textile industry were examined. Besides the irradiation, the changes in treatment efficiency were investigated by using of oxygen and hydrogen peroxide in conjunction with the irradiation. Same working methods were implemented in the wastewater treatment of Bolvadin Opium Alkaloid Factory as well. In addition to chemical analysis in this study, aerobic and anaerobic biological treatment process also have been applied. Standard reference materials has been used for the marine sediment study contaminated with polychlorinated biphenyls.

  8. Recent developments in the field of radiation processing

    International Nuclear Information System (INIS)

    Andrzej, G. Chmielewski

    2006-01-01

    Full text: Radiation has been discovered more than one hundred years ago. Since than, properties of radiation to modify physico-chemical properties of materials have found many applications. Radiation technologies applying gamma sources and electron accelerators for material processing are well established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. They are being widely used for sterilization, food irradiation and polymer processing. New developments in the field of radiation sources engineering are compact size gamma irradiators, high power electron accelerators (medium energy range) for environmental applications and other types (high energy range) for materials' processing, with direct e-/X conversion. Future applications of low energy, inexpensive EB processing systems are foreseen. Electron beam lithography for microelectronics is a well-established technique. The already tested e-/X system equipped in an accelerator of 700 kW power opens new horizons for this kind of application. The developments described above need introduction of new computational methods that facilitate prediction of dose distribution, even in containers filled with complex products of varying densities. This technique provides good solutions for homeland security applications which may be complemented by mobile system applications. Technologies to be developed besides environmental applications could be nano materials, structure engineered materials (sorbents, the composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation processed polysaccharides have already been commercialized in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environment protection - radiation technology being a clean and environment friendly process, helps to curb pollutants' emission as

  9. Application of radiation processing in Asia and the pacific region: focus on Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman, H.J.; Mohd Dahlan

    1995-01-01

    Applications of radiation processing in Malaysia and other developing countries in Asia and the Pacific region is increasing as the countries move toward industrialisation. At present, there are more than 85 gamma facilities and 334 electron accelerators in Asia and the Pacific region which are mainly in Japan, Rep. of Korea and China. The main applications which are in the interest of the region are radiation sterilisation of medical products; radiation crosslinking of wire and cable, heat shrinkable film and tube, and foam; radiation euring of surface coatings, printing inks and adhesive; radiation vulcanisation of natural rubber latex; radiation processing of agro-industrial waste; radiation treatment of sewage sludge and municipal waste; food irradiation; tissue grafts and radiation synthesis of bioactive materials. (author)

  10. Application of radiation processing in Asia and the Pacific region: focus on Malaysia

    International Nuclear Information System (INIS)

    Dahlan, K.Z.H.M.

    1995-01-01

    Applications of radiation processing in Malaysia and other developing countries in Asia and the Pacific region is increasing as the countries move toward industrialisation. At present, there are more than 85 gamma facilities and 334 electron accelerators in Asia and the Pacific region which are mainly in Japan, Rep. of Korea and China. The main applications which are in the interest of the region are radiation sterilisation of medical products; radiation crosslinking of wire and cable, heat shrinkable film and tube, and foam; radiation curing of surface coatings, printing inks and adhesive; radiation vulcanisation of natural rubber latex; radiation processing of agro-industrial waste; radiation treatment of sewage sludge and municipal waste; food irradiation; tissue grafts and radiation synthesis of bioactive materials. (author)

  11. Radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Saunders, C.B.

    1988-01-01

    The interaction of ionizing radiation with organic substrates to produce useful physical and chemical changes is the basis of the radiation processing industry for plastics. Electron beam (EB) accelerators dominate the industry; however, there are a few small applications that use gamma radiation. The five general product categories that account for over 95% of the worldwide EB capacity used for plastics production are the following: wire and cable insulation; heat-shrinkable film, tubes and pipes; radiation-curable coatings; rubber products; and polyolefin foam. A total of 6.1% of the yearly production of these products in the United States is EB treated. The United States accounts for 59% of the total worldwide EB capacity of 20.5 MW (1984), followed by Europe (16%) and Japan (15%). There are 469 to 479 individual EB units worldwide used for the production of plastics and rubber. The average annual rate of growth (AARG) for the EB processing of plastics in Japan, from 1977 to 1987, was 13.3%. The AARG for Japan has decreased from 20% for 1977 to 198, to 6.4% for 1984 to 1987. Radiation cross-linking, of power cable insulation (cable rating ≥75 kV), thick polyolefin and rubber sheet (≥15 mm), and thick-walled tubing is one fo the potential applications for a 5- to 10-MeV EB system. Other products such as coatings, films and wire insulation may be economically EB-treated using a 5 to 10 MeV accelerator, if several layers of the product could be irradiated simultaneously. Two general product categories that require more study to determine the potential of high-energy EB processing are moulded plastics and composite materials. 32 refs

  12. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1990-01-01

    The present report is prepared for planners of radiation processing of any material. Sources with cobalt-60 are treated marginally, because most probably, there will be no installation of technically meaningful activity in Poland before the year 2000. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV and accelerators of lower energy, below 2 MeV, of better energetical yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of twenty years of exploitation of the machine. One has to realize that from the 150 kV input power from the mains, only 5 kV of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, sometimes only a few percent, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of losses at the edges of the scanned area and in the spaces between boxes, and of losses during the dead time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical in case of objects of optimum type. At the first stage, that is of the conversion of electrical power into that of the low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating bremsstrahlung similar to gamma radiation. The advantages of these technologies, which make it possible to control the shape of the processed object are stressed. Ten parameters necessary for a proper calculation of technological yields of radiation processing are listed. Additional conditions which must be taken into account in the comparison of the cost of radiation processing with the cost of other technologies are also

  13. Applications of edible films and coatings to processed foods

    Science.gov (United States)

    Edible coatings have been successfully applied in processed foods such as meat, cereals, confectionaries, dried fruits, nuts and fresh and fresh-cut fruits and vegetables. These coatings are used to improve the quality and shelf-life of foods. Furthermore, different food ingredients, derived from ...

  14. Cold plasma as a nonthermal food processing technology

    Science.gov (United States)

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...

  15. Collisional and radiative processes in fluorescent lamps

    International Nuclear Information System (INIS)

    Lister, Graeme G.

    2003-01-01

    Since electrode life is the major limiting factor in operating fluorescent lamps, many lighting companies have introduced 'electrodeless' fluorescent lamps, using inductively coupled discharges. These lamps often operate at much higher power loadings than standard lamps and numerical models have not been successful in reproducing experimental measurements in the parameter ranges of interest. A comprehensive research program was undertaken to study the fundamental physical processes of these discharges, co-funded by the Electric Power Research Institute (EPRI) and OSRAM SYLVANIA under the name of ALITE. The program included experiments and modeling of radiation transport, computations of electron-atom and atom-atom cross sections and the first comprehensive power balance studies of a highly loaded fluorescent lamp. Results from the program and their importance to the understanding of the physics of fluorescent lamps are discussed, with particular emphasis on the important collisional and radiative processes. Comparisons between results of experimental measurements and numerical models are presented

  16. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  17. Detection of radiation processing in onions

    International Nuclear Information System (INIS)

    Duchacek, V.

    1985-01-01

    Two breeds of onions were used for irradiation. Both breeds were divided into two parts - the first was irradiated with a dose of 80 Gy and the second served as a control. The two parts were stored under the same conditions. Conductometry, liquid chromatography and spectrophotometry were used for detecting the radiation processing of the onions. Only from the spectrophotometric determination of 2-desoxysaccharides it was possible to safely distinguish irradiated onions from non-irradiated controls throughout storage time. (E.S.)

  18. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  19. Future of radiation processing of polymers

    International Nuclear Information System (INIS)

    Chapiro, A.; Tabata, Y.; Stannett, V.; Dole, M.; Dobo, J.; Charlesby, A.

    1990-01-01

    The present development of radiation processing in the polymer field including well established technologies, with large scale productions and substantial markets, such as: crosslinking; curing of monomer-polymer formulations; sterilization of plastic supplies; are discussed. The manufacture of sophisticated devices with low volume production but large added value: electronic devices; resistors and several promising applications for which only small commercial productions are on stream today: chain degradation; polymerization; graft copolymerization, are reviewed. (author)

  20. Radiation in industrial processes;Applications reviewed at Warsaw Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    -linking of polyvinyl alcohol (PVA) and poly-vinyl chloride (PVC), well known polymers derived from the ethylene group. Some papers dealt with the chain oxidation and chlorination of hydro-carbons, both of which are among the most important chemical processes in industry. The effects of radiation on coal and methanation reactions were also discussed. Another subject that came up related to the possibility of improving catalysts by irradiation. It is widely realized that some of the effects produced by ionizing radiation are likely to influence catalytic properties and attempts have been made to alter the catalytic activity of solids by exposure to nuclear radiation. A major field for the use of ionizing radiation is sterilization. The pharmaceutical industry, for example, has been in need of a method by which sensitive materials like proteins and enzymes could be sterilized without the application of heat or highly reactive chemicals. Another related subject discussed at the conference was sterilization of medical supplies like surgical instruments, hypodermic needles and rubber equipment. A further specific application considered in this connexion was sterilization of ampoules of distilled water with gamma rays, which can be of economic advantage in the industrial field. The sterilizing activity of radiation is also useful in the preservation of food and there has been intensive research in several countries on devising an effective and safe method for the treatment of food with ionizing radiations. An account of this research and of the results obtained was given at the conference, and the potentialities were evaluated. Many of the papers presented at the conference examined problems connected with the design and construction of suitable radiation sources for the varied uses in industry. Cobalt sources of different types were described in detail and their operating experience was narrated and discussed. The relative efficiency and usefulness of different radiation sources

  1. Radiation processing applications in the Czechoslovak water treatment technologies

    International Nuclear Information System (INIS)

    Vacek, K.; Pastuszek, F.; Sedlacek, M.

    1986-01-01

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone, or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation. (author)

  2. Radiation processing applications in the Czechoslovak water treatment technologies

    Science.gov (United States)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  3. Dosimetry systems for radiation processing in Japan

    International Nuclear Information System (INIS)

    Tamura, Naoyuki

    1995-01-01

    The present situation of dosimetry systems for radiation processing industry in Japan is reviewed. For gamma-rays irradiation the parallel-plate ionization chamber in TRCRE, JAERI has been placed as a reference standard dosimeter for processing-level dose. Various solid and liquid chemical dosimeters are used as routine dosimeters for gamma processing industries. Alanine dosimeters is used for the irradiation purpose which needs precise dosimetry. For electron-beam irradiation the electron current density meter and the total absorption calorimeter of TRCRE are used for the calibration of routine dosimeters. Plastic film dosimeters, such as cellulose triacetate and radiochromic dye are used as routine dosimeters for electron processing industries. When the official traceability systems for processing-level dosimetry now under investigation is completed, the ionization chamber of TRCRE is expected to have a role of the primary standard dosimeter and the specified alanine dosimeter will be nominated for the secondary or reference standard dosimeter. (author)

  4. Radiation degradation of biological waste (aflatoxins) produced in food laboratory

    International Nuclear Information System (INIS)

    Rogovschi, Vladimir Dias

    2009-01-01

    Many filamentous fungi can produce secondary metabolites, called mycotoxins, which can be found in food and agricultural products. One of the main genera of myco toxigenic fungi related to the food chain is the Aspergillus spp. There are over 400 mycotoxins described in the literature, the most common the aflatoxins B1, B2, G1 and G2. The mycotoxins are commonly found in foods and are considered one of the most dangerous contaminants. The aflatoxin B1 is classified in group one by the International Agency of Research on Cancer. Aflatoxins resisting for more than one hour in autoclave making it necessary to other means of degradation of these toxins. This work aimed to observe the effects of gamma radiation of 60 Co and electron beams in the degradation of aflatoxins and compare the damage caused on the morphology of the Aspergillus flavus. The fungus was grown on potato dextrose agar (PDA) for 10 days and was subsequently transferred to coconut agar medium, and maintained for 14 days at 25 degree C. After this step the coconut agar was ground to become a homogeneous pasty and was irradiated with doses of 2.5, 5.0, 10 and 20 kGy. The samples used in scanning electron microscopy were irradiated with doses of 0, 2.5, 5.0, 10 and 20 kGy with sources of 60 Co and electron beams. Irradiation with electron accelerator showed a slightly higher degradation to gamma radiation, reducing 29.93 %, 34.50 %, 52.63 % and 72.30 % for doses of 2.5, 5.0, 10 and 20 kGy, respectively. The Scanning Electron Microscopy showed that doses of 2.5 to 10 kGy did not cause damage to the fungus, but with a dose of 20 kGy it can be observed fungal damage to structures. (author)

  5. Radiation processing of natural polymers for industrial and agricultural applications

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.; Diaa, D.A.; El-Barbary, A.

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great efforts should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2 O 2 to natural polymers (carboxymethylcellulose (CMC), chitosan, carrageenan and Na-alginate) during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated CMC, chitosan, carrageenan and Na-alginate may be used as food additive or benefited in agricultural purposes. On the other hand, radiation crosslinking of PAAm or PNIPAAm is affected by the presence of natural polymer like CMC-Na and carrageenan due to their degradability which could be controlled according to its concentration in the bulk medium and irradiation dose. Accordingly, the gel content, thermo-sensitivity (LCST) and swelling properties of PNIPAAm based natural polymers could be controlled. The swelling of the prepared copolymer hydrogels was investigated for its possible use in personal care articles particularly diapers or as carriers for drug delivery systems. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na/PAAm gels in urine are acceptable for diaper

  6. Radiation Processing of Natural Polymers for Industrial Applications

    International Nuclear Information System (INIS)

    Hegazy, E.A.

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great effort should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2 O 2 to natural polymers (carboxy-methylcellulose (CMC), chitosan, carrageenan and Na-alginate) during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated CMC, chitosan, carrageenan and Na-alginate may be used as food additive or benefited in agricultural purposes. On the other hand, radiation crosslinking of PAAm or PNIPAAm is affected by the presence of natural polymer like CMC-Na and carrageenan due to their degradability which could be controlled according to its concentration in the bulk medium and irradiation dose. Accordingly, the gel content, thermo-sensitivity (LCST) and swelling properties of PNIPAAm based natural polymers could be controlled. The swelling of the prepared copolymer hydrogels was investigated for its possible use in personal care articles particularly diapers or as carriers for drug delivery systems. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na /PAAm gels in urine are acceptable for diaper

  7. Persistence and survival of pathogens in dry foods and dry food processing environments

    NARCIS (Netherlands)

    Beuchat, L.; Komitopoulou, E.; Betts, R.; Beckers, H.; Bourdichon, F.; Joosten, H.; Fanning, S.; ter Kuile, B.

    2011-01-01

    Low-moisture foods and food ingredients, i.e., those appearing to be dry or that have been subjected to a drying process, represent important nutritional constituents of human diets. Some of these foods are naturally low in moisture, such as cereals, honey and nuts, whereas others are produced from

  8. Global food chains and environment: agro-food production and processing in Thailand

    NARCIS (Netherlands)

    Sriwichailamphan, T.H.

    2007-01-01

    In this study on the global food chain and the environment, the objective is to understand the dynamics of food safety and environmental improvements among the large and medium-sized agro-food processing industries and farmers in Thailand that operate in the global market. This study assesses

  9. Gamma radiation effect on agar viscosity for use in food industry

    International Nuclear Information System (INIS)

    Aliste, Antonio J.; Del Mastro, Nelida L.

    1999-01-01

    The application of food radiation processing is increasing worldwide mainly because of its efficiency in the industrial decontamination of packaged food products. Indeed, the process neither introduces any undesirable elements nor increases the temperature, thus allowing the preparation of ready-to-use products which remain stable for long periods at room temperature. The aim of this work was to study the effect of Co-60 gamma radiation on the viscosity of agar. This hydrocolloid derived from seaweed is a galactose polymer with a high hysteresis capacity (great difference among melting and gelification temperature) which is extremely important when used as additive for the food industry. Commercial agar was irradiated with doses of 0, 1, 5 and 10 kGy. Proper dilutions were prepared and the viscosity was measured in a Brookfield model LVDVIII viscosimeters. The relationships viscosity/dose for the temperatures of 45 deg C and 60 deg C were established. The decrease of the viscosity was 71.4% and 49.6% respectively when the applied dose was 10 kGy. The implications of the use of this additive in food irradiation are discussed. (author)

  10. Pilot material handling system for radiation processing of agricultural and medical products

    International Nuclear Information System (INIS)

    Sandha, R.S.; Nageswar Rao, J; Dwivedi, Jishnu; Petwal, V.C.; Soni, H.C.

    2005-01-01

    A 10 MeV, 10 kW electron LINAC based radiation processing facility is being constructed at Centre for Advanced Technology, Indore for radiation processing of various food products like potatoes, onion, spices, home pack items and medical sterilization. A pilot material handling system has been designed, manufactured, and installed at CAT to verify process parameters viz. conveying speed, dose uniformity, and to study the effect of packing shape and size for radiation processing of different product. This paper describes various features of pilot material handling system. (author)

  11. Engineering concepts for food processing in bioregenerative life support systems.

    Science.gov (United States)

    Hunter, J B

    1999-01-01

    Long-duration manned missions, such as Mars exploration, will require development of new and cost-effective food production and delivery systems. Requirements for both carry-on preserved food and food processed from on-board crops exceed the capabilities of existing food processing and preservation technologies. For the transit phase, new food products, preservation methods, and processing technologies for ground-based food processing are required. The bioregenerative surface phase requires methods for processing of in situ-grown crops, treatment of food wastes, preparation of daily meals, and design of nutritious and appealing plant-based menus, all within severe cost and labor constraints. In design of the food supply for a long-term mission, the designers must select and apply both the packaged food and in situ processing technologies most appropriate for the specific mission requirements. This study aims to evaluate the strengths and weaknesses of different food system strategies in the context of different types of mission, and to point out the most important areas for future technology development.

  12. Consenting process for radiation facilities. V. 4

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  13. Consenting process for radiation facilities. V. 3

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  14. Consenting process for radiation facilities. V. 1

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  15. Irradiation processing of food items for exports

    International Nuclear Information System (INIS)

    Sareen, Shashi

    1998-01-01

    Globalization has led to rapid increases in international food trade. About 460 million metric tonnes of foodstuffs are traded annually of a value to the order of 300 billion US dollar. With such high trade figures, it is imperative to provide safe and nutritious foods to consumers and to minimize food losses due to spoilage. Food irradiation is a technology which has been under study and debate since fifties for the purpose of food preservation. This technology has been extensively reviewed and studied at international levels and by several countries and on the basis of these, a number of countries have permitted the use of irradiation for specified foods and are also applying it on commercial scale. In this paper, a review of the status and importance of this technology has been brought out to include the application of the technology and its perceived benefits, acceptance of the technology at the international level and by different countries including the scenario in India, the various types of concerns expressed by Governments as well as consumers and specific areas with regard to exports for which the technology would be beneficial. (author)

  16. Use of Foodomics for Control of Food Processing and Assessing of Food Safety.

    Science.gov (United States)

    Josić, D; Peršurić, Ž; Rešetar, D; Martinović, T; Saftić, L; Kraljević Pavelić, S

    Food chain, food safety, and food-processing sectors face new challenges due to globalization of food chain and changes in the modern consumer preferences. In addition, gradually increasing microbial resistance, changes in climate, and human errors in food handling remain a pending barrier for the efficient global food safety management. Consequently, a need for development, validation, and implementation of rapid, sensitive, and accurate methods for assessment of food safety often termed as foodomics methods is required. Even though, the growing role of these high-throughput foodomic methods based on genomic, transcriptomic, proteomic, and metabolomic techniques has yet to be completely acknowledged by the regulatory agencies and bodies. The sensitivity and accuracy of these methods are superior to previously used standard analytical procedures and new methods are suitable to address a number of novel requirements posed by the food production sector and global food market. © 2017 Elsevier Inc. All rights reserved.

  17. Radiation-chemical concepts applied to the wholesomeness evaluation of irradiated foods

    International Nuclear Information System (INIS)

    Basson, R.A.

    1977-06-01

    Food irradiation has anomalously been classified as a food additive rather than as a processing method. The justification for this is that chemical changes take place during the process. However, most foodstuffs consist of a large number of constituents, most of which are present in small concentrations. As a result, the amounts of radiolysis products which may be formed are far too low for identification and measurement, even by conventional analytical methods. Radiation-chemical knowledge is applied to determine the probable nature and concentration of reaction products produced in fruits. Fruits consist mainly of water and carbohydrates, with small amounts of protein, fat, inorganic material and vitamins as 'contaminants'. The real situation is exceedingly complex, but, using this simple model as a first approximation, predictions which may be verified in a relatively simple experimental scheme are made on the radiation stability of a typical fruit. Calculations using known radiation-chemical data show that, in the case of the mango, only carbohydrates are present in sufficient concentration and of sufficient sensitivity to merit attention from a toxicological viewpoint. Experimentally, the radiation sensitivity of numerous constituents of the fruit has been compared with that of glucose and, apart from a few exceptions whose concentrations are minimal, results obtained agree well with predicted values [af

  18. [Food prices in Brazil: prefer cooking to ultra-processed foods].

    Science.gov (United States)

    Claro, Rafael Moreira; Maia, Emanuella Gomes; Costa, Bruna Vieira de Lima; Diniz, Danielle Pereira

    2016-08-29

    This study aims to describe the prices of food groups consumed in Brazil considering the nature, extent, and purpose of their processing. Data were obtained from the Brazilian Household Budget Survey for 2008-2009. The mean prices of the groups (natural, cooking ingredients, processed, and ultra-processed) and their respective food subgroups were estimated for Brazil according to income, region, and area. Natural products and cooking ingredients showed lower prices per calorie when compared to the other groups, suggesting an economic advantage to preparing meals at home when compared to replacing them with ultra-processed foods. Families with the highest income paid the highest prices for their food, while families in the Northeast and North regions and rural areas paid the lowest. While fresh foods (meat, milk, fruit, and vegetables) tend to cost more than ultra-processed foods, dry grains (like rice and beans) are a more economical alternative for adopting healthy eating practices.

  19. The prospect of food irradiation and the contribution of radiation chemistry to enact the hygienic safety standard of irradiated foods

    International Nuclear Information System (INIS)

    Wu Jilan; Yuan Rongyao

    1986-01-01

    Now, it is said that we are at the dawn of food irradiation application both nationally and internationally. However, referring to the acceptability of customers the labeling of irradiated foods has been a nightmare to the food processors. On the other hand the recommended international standard has the shortcomings of thinking in absolute terms. In this paper a proposal which puts special emphasis on enacting hygienic safety standard of individual irradiated food is recommended. The hygienic safety standard of the irradiated food may be classified in three classes: 1) its hygienic safety standard is similar to that of common food; 2) the maximum permissible quantities of harmful compounds induced by radiation must be controlled; and 3) the quantity of unique radiolysis products may by dutermined. Radiation chemistry plays an important role in enacting the hygienic safety standard of irradiated foods. For international cooperation in this field some suggestions are made

  20. The application of radiation technology in industrial processes

    International Nuclear Information System (INIS)

    Silvermann, J.

    1974-01-01

    The author makes a general survey of current applications for radiation processing such as sterilization of biological and medical supplies, crosslinking of polymers, production of durable press fabrics, radiation-cured coating, production of wood-plastic composites, radiation degradation and chemical synthesis. The adoption of radiation processing on large scale by Western Electric is presented. The trend in costs and the environmental problems has a profound effect on the future of radiation processing. (M.S.)

  1. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  2. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  3. Ultra-processed foods in human health: a critical appraisal.

    Science.gov (United States)

    Gibney, Michael J; Forde, Ciarán G; Mullally, Deirdre; Gibney, Eileen R

    2017-09-01

    The NOVA classification of foods proposes 4 categories: unprocessed or minimally processed foods, processed culinary ingredients, processed foods, and ultra-processed foods and drinks (UPFDs). It is argued that the latter relies heavily on modifications to foods, resulting in enhanced amounts of salt, added sugar, and fat as well as the use of additives in an attempt to make this food category highly palatable. It further argues that controlling food processing, rather than examining nutrients, should be foremost in shaping nutrition policy. This commentary challenges many of the basic arguments of using the NOVA food classification system to examine the link between food and health. We believe that there is no evidence to uphold the view that UPFDs give rise to hyperpalatable foods associated with a quasi-addictive effect and that the prevailing European Union and US data fail to uphold the assertion that UPFDs, which dominate energy intake, give rise to dietary patterns that are low in micronutrients. With regard to the use of the NOVA food classification in the development of food-based dietary guidelines, we show that the very broad definition of UPFDs makes this impossible. Finally, the available evidence does not support the view that the globalization of food is the driver of increased intakes of UPFDs in low- to middle-income countries but rather that this is driven by small indigenous companies. On balance, therefore, there seems to be little advantage from the use of the NOVA classification compared with the current epidemiologic approach, which relies on the linkage of nutrient intakes to chronic disease with subsequent identification of foods that merit consideration in public health nutrition strategies. © 2017 American Society for Nutrition.

  4. Identification of Radiation Effects on Carcinogenic Food Estimated by Ames Test

    International Nuclear Information System (INIS)

    Afifi, M.; Eid, I.; El - Nagdy, M.; Zaher, R.; Abd El-Karem, H.; Abd EL Karim, A.

    2016-01-01

    A major concern in studies related to carcinogenesis is the exposure to the exogenous carcinogens that may occur in food in both natural and polluted human environments. The purpose of the present study is to examine some of food products by Ames test to find out if food products carcinogenic then expose food to gamma radiation to find out the effect of radiation on it as a treatment. In this study, the food samples were examined by Ames test (Salmonella typhimurium mutagenicity test) to find out that a food product could be carcinogenic or highly mutated. Testing of chemicals for mutagenicity is based on the knowledge that a substance which is mutagenic in the bacterium is more likely than not to be a carcinogen in laboratory animals, and thus , by extension, present a risk of cancer to humans. After that food products that showed mutagenicity exposed to gamma radiation at different doses to examine the effect of gamma radiation on food products. This study represent γ radiation effect on carcinogenic food by using Ames test in the following steps: Detect food by Ames test using Salmonella typhimurium strains in which the colony count /plate for each food sample will show if food is slightly mutated or highly mutated or carcinogenic. If food is highly mutated or carcinogenic with high number of colonies /plate, then the carcinogenic food or highly mutated food exposed to different doses of radiation The applied doses in this study were 0, 2.5, 5, and 10 (KGy). Detect the radiation effect on food samples by Ames test after irradiation. The study shows that mutated and carcinogenic food products estimated by Ames test could be treated by irradiation

  5. Engineering aspects of rate-related processes in food manufacturing.

    Science.gov (United States)

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  6. Development of radiation processes for better environment

    International Nuclear Information System (INIS)

    Majali, A.B.; Sabharwal, S.; Deshpande, R.S.; Sarma, K.S.S.; Bhardwaj, Y.K.; Dhanawade, B.R.

    1998-01-01

    The increasing population and industrialization, worldover, is placing escalating demands for the development of newer technologies that are environment friendly and minimize the pollution associated with the development. Radiation technology can be of benefit in reducing the pollution levels associated with many processes. The sulphur vulcanization method for natural rubber latex vulcanization results in the formation of considerable amounts of nitrosoamines, both in the product as well as in the factory environment. Radiation vulcanization of natural rubber latex has emerged as a commercially viable alternative to produce sulphur and nitrosoamine free rubber. A Co-60 γ-radiation based pilot plant has been functioning since April 1993 to produce vulcanized natural rubber latex (RVNRL) using acrylate monomers as sensitizer. The role of sensitizer, viz. n-butyl acrylate in the vulcanization process has been elucidated using the pulse radiolysis technique. Emission of toxic sulphur containing gases form an inevitable part of viscose-rayon process and this industry is in search of ways to reduce the associated pollution levels. The irradiation of cellulose results in cellulose activation and reduction in the degree of polymerization (DP). These effects can reduce the solvents required to dissolve the paper pulp. There is a keen interest in utilizing radiation technology in viscose rayon production. We have utilized the electron beam (EB) accelerator for reducing the degree of polymerization (DP) of paper pulp. Laboratory scale tests have been carried out to standardize the conditions for production of pulp having the desired DP by EB irradiation. The use of irradiated paper pulp can result in ∼40% reduction in the consumption of CS 2 in the process that can be beneficial in reducing the pollution associated with the process. PTFE waste can be recycled into a low molecular weight microfine powder by irradiation. An EB based process has been standardized to produce

  7. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  8. Evaluation of performance of food packagings when treated with ionizing radiation

    International Nuclear Information System (INIS)

    Moura, Esperidiana Augusta Barretos de

    2006-01-01

    In this study the mechanical properties (tensile strength and percentage elongation at break and penetration resistance), optical properties, gas oxygen and water vapor permeability, the overall migration tests into aqueous food simulant (3% aqueous acetic acid) and fatty food simulant (n-heptane), as well as the formation of volatile radiation product tests were used to evaluate the effects of ionizing radiation (gamma irradiation or electron-beam irradiation) on commercial monolayer and multilayer flexible plastics packaging materials. These films are two typical materials produced in Brazil for industrial meat packaging, one of them is a monolayer low-density polyethylene (LDPE) and other is a multilayer co extruded low-density polyethylene (LDPE), ethylene vinyl alcohol (EVOH), polyamide (PA) based film (LDPE/EVOH/PA). Film samples were irradiated with doses up to 30 kGy, at room temperature and in the presence of air with gamma rays using a 60 Co facility and electron beam from 1.5 MeV electrostatic accelerator. Alterations of these properties were detected according to the dose applied initially eight day after irradiation took place and new alterations of these values when the properties were evaluate two to three months after irradiation process. The results showed that scission reactions are higher than cross-linking process for both studied films, irradiated with gamma rays and electron beam. The evaluated properties of the irradiated films were not affected significantly with the dose range and period studied. The monolayer Unipac PE-60 and the multilayer Lovaflex CH 130 films can be used as food packaging materials for food pasteurization and in the sterilization process of by ionizing radiation using a gamma facilities and electron beam accelerators in commercial scale. (author)

  9. Analysis of texture in baby carrot (Daucus carota) subjected to the process of ionizing radiation

    International Nuclear Information System (INIS)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Fabbri, Adriana D.T.; Sagretti, Juliana M.A.; Sabato, Susy F.

    2011-01-01

    The carrot is a vegetable of great economic value due to its versatility in the food industry and can be used as raw or minimally processed vegetable or aggregating value to the product, transforming the fresh carrots in baby carrots. It is well known that the application of gamma radiation in food may help in maintaining the quality of food. The aim of this study was to analyze the effects of the low doses of ionizing radiation on texture of minimally processed baby carrot after the processing in a Multipurpose 60 Co irradiator. It can be concluded that the treatment with low doses of gamma radiation keep the quality of fresh-cut baby carrot. (author)

  10. 40 CFR 52.279 - Food processing facilities.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Food processing facilities. 52.279 Section 52.279 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities. (a) The following regulations are disapproved...

  11. Monitoring Industrial Food Processes Using Spectroscopy & Chemometrics

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær; Engelsen, Søren Balling

    2001-01-01

    In the last decade rapid spectroscopic measurements have revolutionized quality control in practically all areas of primary food and feed production. Near-infrared spectroscopy (NIR & NIT) has been implemented for monitoring the quality of millions of samples of cereals, milk and meat with unprec......In the last decade rapid spectroscopic measurements have revolutionized quality control in practically all areas of primary food and feed production. Near-infrared spectroscopy (NIR & NIT) has been implemented for monitoring the quality of millions of samples of cereals, milk and meat...

  12. Novel approaches in food-processing technology: new technologies for preserving foods and modifying function.

    Science.gov (United States)

    Knorr, D

    1999-10-01

    Recent advances in emerging food-processing technologies, such as high hydrostatic pressure or high-intensity electric field pulses, allow targeted and sophisticated modification and preservation of foods. We are beginning to understand the mechanisms involved in pressure inactivation of bacterial spores and have been collecting considerable amounts of kinetic data regarding inactivation mechanisms of enzymes and vegetative microorganisms. We are also gaining more insight into the permeabilization of plant membranes and related biosynthetic responses, making progress in food structure engineering and food modification for function, and have been initiating process developments for gentle processing of delicate biomaterials based on pressure-assisted phase transitions of water.

  13. Apparatus and method for radiation processing of materials

    International Nuclear Information System (INIS)

    Neuberg, W.B.; Luniewski, R.

    1983-01-01

    A method and apparatus for radiation degradation processing of polytetrafluoroethylene makes use of a simultaneous irradiation, agitation and cooling. The apparatus is designed to make efficent use of radiation in the processing. (author)

  14. Predicted effects of countermeasures on radiation doses from contaminated food

    International Nuclear Information System (INIS)

    Yamamoto, Hideaki; Nielsen, S.P.; Nielsen, F.

    1993-02-01

    Quantitative assessments of the effects on radiation-dose reductions from nine typical countermeasures against accidental fod contamination have been carried out with dynamic radioecological models. The foodstuffs are assumed to be contaminated with iodine-131, caesium-134 and caesium-137 after a release of radioactive materials from the Ringhals nuclear power station in Sweden resulting from a hypothetical core melt accident. The release of activity of these radionuclides is assumed at 0.07% of the core inventory of the unit 1 reactor (1600 TBq of I-131, 220 TBq of Cs-134 and 190 TBq of Cs-137). Radiation doses are estimated for the 55,000 affected inhabitants along the south-eastern coast of Sweden eating locally produced foodstuffs. The average effective dose equivalent to an individual in the critical group is predicted to be 2.9 mSv from food consumption contaminated with I-131. An accident occurring during winter is estimated to cause average individual doses of 0.32 mSv from Cs-134 and 0.47 mSv from Cs-137, and 9.4 mSv and 6.8 mSv from Cs-134 and Cs-137, respectively, for an accident occurring during summer. Doses from the intake of radioiodine may be reduced by up to a factor of 60 by rejecting contaminated food for 30 days. For the doses from radiocaesium, the largest effect is found form deep ploughing which may reduce the dose by up to a factor of 80. (au) (12 tabs., 6 ills., 19 refs.)

  15. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1993-01-01

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs

  16. Dye film dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Humphreys, J.C.; McLaughlin, W.L.

    1981-01-01

    Commercially available plastic films containing dyes or dye precursors are convenient dosimeters and imaging media for electron beams or photons used for industrial radiation processing. As ''grainless'' imaging systems having thicknesses down to a few micrometers, they provide high spatial resolution for determining detailed absorbed dose distributions through microdensitometric analysis. The radiation absorption properties of these systems are adjusted by changing film composition so that the dosimeter materials can be made to simulate the material of interest undergoing irradiation. Other advantages include long-term stability, dose-rate independence, and ease of use and calibration. Radiochromic dye films with thicknesses varying from 0.005 to 1 mm are presently used to monitor electron-beam or gamma-ray doses from 10 to 10 5 Gy (10 3 to 10 7 rad), typical of those encountered in medical applications, radiation curing of polymeric composites, wire and cable insulation, shrinkable plastic tubing and film, as well as sterilization of medical supplies and treatment of municipal and industrial wastes. An NBS calibration service to industry involves the traceability of standard 60 Co gamma ray absorbed dose measurements by means of these films employed as transfer standards

  17. Radiation processing facilities and services in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    It is envisaged that radiation processing will continue to play an important role towards the progress and development of industry in Malaysia. Malaysian Government will continue to play an active role to support R and D in this field by providing the necessary infrastructure, facility, trained manpower and research funds. Additional e-beam accelerator is planned to be installed at Nuclear Malaysia in 2007. The medium energy electron beam accelerator (1 MeV, 50 mA) will be mainly use to evaluate the commercial viability for treating aqueous products such as wastewater. (author)

  18. Improving the hygienic quality of chicken through radiation processing

    International Nuclear Information System (INIS)

    Torgby-Tetteh, W.

    2010-06-01

    Irradiation is considered one of the most efficient technological processes for the reduction of microorganisms in food, It can be used to improve the safety of food products, and to extend their shelf lives. The aim of this study was to improve the hygienic quality of chicken through radiation processing. As part of the study a microbial assessment of broiler chicken thighs from three retail outlets (supermarket, local markets and farms) was conducted. The total viable count and total coliform counts were determined. Hygienic quality indicator organisms such as Escherichia coli, Salmonella and Staphylococcus aureus were isolated and microbial counts made. Radiation sensitivity test to determine the D 10 (decimal reduction does) of E. coli on chicken at refrigeration and frozen temperature were conducted. D 10 values were 0.22 ± 0.02 and 0.32 ± 0.03 kGy at refrigerated and frozen temperatures respectively. A storage test consisting of an uninoculated pack experiment and a challenge test to explore the effect of irradiation and frozen food storage on the total viable count and survival of E. coli was conducted. Chicken thigh samples were treated with 0 (non irradiated), 2.0, 4.0, 6.0 and 8.0 kGy of gamma irradiation and held frozen for 56 days. The control and irradiated samples were stored at -18 o C and underwent microbial analysis and sensory evaluation at 7 days intervals. It was observed that irradiation and frozen storage reduced microbial loads. There were significant differences in sensory quality characteristics during freezing storage in chicken meat. The combination of irradiation and frozen storage resulted in greater overall reductions on microbial loads thus improving hygienic quality. (au)

  19. Safety of vendor-prepared foods: evaluation of 10 processing mobile food vendors in Manhattan.

    Science.gov (United States)

    Burt, Bryan M; Volel, Caroline; Finkel, Madelon

    2003-01-01

    Unsanitary food handling is a major public health hazard. There are over 4,100 mobile food vendors operating in New York City, and of these, approximately forty percent are processing vendors--mobile food units on which potentially hazardous food products are handled, prepared, or processed. This pilot study assesses the food handling practices of 10 processing mobile food vendors operating in a 38-block area of midtown Manhattan (New York City) from 43rd Street to 62nd Street between Madison and Sixth Avenues, and compares them to regulations stipulated in the New York City Health Code. Ten processing mobile food vendors located in midtown Manhattan were observed for a period of 20 minutes each. Unsanitary food handling practices, food storage at potentially unsafe temperatures, and food contamination with uncooked meat or poultry were recorded. Over half of all vendors (67%) were found to contact served foods with bare hands. Four vendors were observed vending with visibly dirty hands or gloves and no vendor once washed his or her hands or changed gloves in the 20-minute observation period. Seven vendors had previously cooked meat products stored at unsafe temperatures on non-heating or non-cooking portions of the vendor cart for the duration of the observation. Four vendors were observed to contaminate served foods with uncooked meat or poultry. Each of these actions violates the New York City Code of Health and potentially jeopardizes the safety of these vendor-prepared foods. More stringent adherence to food safety regulations should be promoted by the New York City Department of Health.

  20. Nuclear science in the 20th century. Radiation chemistry and radiation processing

    International Nuclear Information System (INIS)

    Fu Tao; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear science and technology to chemistry has led to two important subjects, radiation chemistry and radiation processing, which are playing important roles in many aspects of science and society. We review the development and major applications of radiation chemistry and radiation processing, including the basic physical and chemical mechanisms involved

  1. Application of Proteomics in Food Technology and Food Biotechnology: Process Development, Quality Control and Product Safety

    Directory of Open Access Journals (Sweden)

    Dajana Gašo-Sokač

    2010-01-01

    Full Text Available Human food is a very complex biological mixture and food processing and safety are very important and essential disciplines. Proteomics technology using different high-performance separation techniques such as two-dimensional gel electrophoresis, one-dimensional and multidimensional chromatography, combined with high-resolution mass spectrometry has the power to monitor the protein composition of foods and their changes during the production process. The use of proteomics in food technology is presented, especially for characterization and standardization of raw materials, process development, detection of batch-to-batch variations and quality control of the final product. Further attention is paid to the aspects of food safety, especially regarding biological and microbial safety and the use of genetically modified foods.

  2. Radiation processing for value addition in fish and fishery products

    International Nuclear Information System (INIS)

    Bandekar, J.R.; Karani, M.; Kakatkar, A.S.; Sharma, A.

    2009-01-01

    Fish is highly nutritious as it contains easily digestible proteins and nutritionally important vitamins and polyunsaturated fatty acids. However, due to high ambient temperature in tropical countries, fish is spoiled rapidly. Spoilage of fish during transportation and storage amounting to about 30% of the catch results in heavy economic losses. The microbiological hazard related to the presence of food-borne pathogens is also common in both marine and aqua-cultured fish and shellfish. In dried products (moisture content, < 20%) insects are mainly responsible for the loss of quality during storage. Radiation processing can play a major role in ensuring security and safety of fish and fishery products by reducing post-harvest losses and eliminating pathogenic microorganisms. Being a 'cold process' the technology helps in retaining the quality of fishery products in 'as is' condition. (author)

  3. Radiation method for hygienization food and agriculture products

    International Nuclear Information System (INIS)

    Migdal, W.

    1995-01-01

    The irradiation of food and agriculture products have been used for several goals. That are: disinsectization, disinfection, sprout inhibition and retardation of mattering. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT (Institute of Nuclear Chemistry and Technology). The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and and industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established. (author)

  4. Some features of radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Dobo, J.

    1985-01-01

    In the last few years, the production of free radicals by radiation became competitive with chemical initiators. Nevertheless radiation processing got only a firm footing, where distinct advantages could be demonstrated as compared with conventional processes, either in the technology or the product quality. This paper is intended to direct attention to some of the special features of radiation processing. (author)

  5. Some features of radiation processing in the plastics industry

    Science.gov (United States)

    D´, J.

    In the last few years, the production of free radicals by radiation became competitive with chemical initiators. Nevertheless, radiation processing got only a firm footing, where distinct advantages could be demonstrated as compared with conventional processes, either in the technology or the product quality. This paper is intended to direct attention to some of the special features of radiation processing.

  6. Stability of prebiotic, laminaran oligosaccharide under food processing conditions

    Science.gov (United States)

    Chamidah, A.

    2018-04-01

    Prebiotic stability tests on laminaran oligosaccharide under food processing conditions were urgently performed to determine the ability of prebiotics deal with processing. Laminaran, oligosaccharide is produced from enzymatic hydrolysis. To further apply this prebiotic, it is necessary to test its performance on food processing. Single prebiotic or in combination with probiotic can improve human digestive health. The effectiveness evaluation of prebiotic should be taken into account in regards its chemical and functional stabilities. This study aims to investigate the stability of laminaran, oligosaccharide under food processing condition.

  7. Prospects of eliminating pathogens by the process of food irradiation

    International Nuclear Information System (INIS)

    Kampelmacher, E.H.

    1981-01-01

    Food-borne diseases are an increasing health hazard throughout the world. Some of these diseases, such as salmonellosis, staphylo-entero-toxicosis, botulism, vibriosis and parasitic infections have always played an important role, whereas some other food-borne pathogens, such as Campylobacter, Vibrio parahaemolyticus and toxin-producing fungi have only been recognised in recent decades. Changing food-production methods, food processing and especially food habits, together with the enormous trade in foods and feeds from one part of the world to the other, are responsible for the increase of these diseases. To meet this situation, prevention and control of food-borne diseases, which involve large groups of persons and play a major socio-economic role in many parts of the world, are of utmost importance. In prevention and control programmes food irradiation can be applied successfully and may solve some of the food and feed contamination problems. The author summarizes to-day's most important food-borne diseases, the type of foods which are responsible for infections in man and animals, and the commodities in which low-dose food irradiation may be of great value in preventing these diseases. The advantages of irradiation versus the use of chemical additives and pesticides and with respect to the prevention of cross-contamination (which plays a very important role in initiating food-borne diseases) by pre-packaging, are emphasized. The required irradiaton doses to eliminate or reduce the number of pathogenic organisms which may be present in foods, the problem of radioresistance and the acceptability of irradiated food are discussed. Finally to-day's situation of irradiated foods with regard to legislation, consumers' information and economic feasibility is summarized. (author)

  8. Aspects of food processing and its effect on allergen structure.

    Science.gov (United States)

    Paschke, Angelika

    2009-08-01

    The article summarizes current physical and chemical methods in food processing as storage, preparation, separation, isolation or purification and thermal application on the one hand as well as enzymatic treatment on the other and their impact on the properties of food proteins. Novel methods of food processing like high pressure, electric field application or irradiation and their impact on food allergens are presented. The EU project REDALL (Reduced Allergenicity of Processed Foods, Containing Animal Allergens: QLK1-CT-2002-02687) showed that by a combination of enzyme and heat treatment the allergic potential of hen's egg decreased about 100 fold. Clinical reactions do not appear anymore. An AiF-FV 12024 N project worked with fruits like mango, lychee and apple. Processed mango and lychee had no change in allergenic potential during heating while e. g. canning. Apple almost lost its allergenic potential after pasteurization in juice production.

  9. Modern foraging: Presence of food and energy density influence motivational processing of food advertisements.

    Science.gov (United States)

    Bailey, Rachel L

    2016-12-01

    More energy dense foods are preferable from an optimal foraging perspective, which suggests these foods are more motivationally relevant due to their greater capability of fulfilling biological imperatives. This increase in motivational relevance may be exacerbated in circumstances where foraging will be necessary. This study examined how food energy density and presence of food in the immediate environment interacted to influence motivational processing of food advertisements. N = 58 adults viewed advertisements for foods varying in energy density in contexts where the advertised food was actually present in the viewing room or not. Advertisements for more energy dense foods elicited greater skin conductivity level compared to ads for less energy dense foods when food was not present. All ads elicited decreases in corrugator supercilii activation indicating positive emotional response resultant from appetitive motivational activation, though the greatest activation was exhibited toward higher energy density foods when food was present. This supports an optimal foraging perspective and has implications for healthy eating interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hippocampal leptin signaling reduces food intake and modulates food-related memory processing.

    Science.gov (United States)

    Kanoski, Scott E; Hayes, Matthew R; Greenwald, Holly S; Fortin, Samantha M; Gianessi, Carol A; Gilbert, Jennifer R; Grill, Harvey J

    2011-08-01

    The increase in obesity prevalence highlights the need for a more comprehensive understanding of the neural systems controlling food intake; one that extends beyond food intake driven by metabolic need and considers that driven by higher-order cognitive factors. The hippocampus, a brain structure involved in learning and memory function, has recently been linked with food intake control. Here we examine whether administration of the adiposity hormone leptin to the dorsal and ventral sub-regions of the hippocampus influences food intake and memory for food. Leptin (0.1 μg) delivered bilaterally to the ventral hippocampus suppressed food intake and body weight measured 24 h after administration; a higher dose (0.4 μg) was needed to suppress intake following dorsal hippocampal delivery. Leptin administration to the ventral but not dorsal hippocampus blocked the expression of a conditioned place preference for food and increased the latency to run for food in an operant runway paradigm. Additionally, ventral but not dorsal hippocampal leptin delivery suppressed memory consolidation for the spatial location of food, whereas hippocampal leptin delivery had no effect on memory consolidation in a non-spatial appetitive response paradigm. Collectively these findings indicate that ventral hippocampal leptin signaling contributes to the inhibition of food-related memories elicited by contextual stimuli. To conclude, the results support a role for hippocampal leptin signaling in the control of food intake and food-related memory processing.

  11. High Throughput Multispectral Image Processing with Applications in Food Science.

    Directory of Open Access Journals (Sweden)

    Panagiotis Tsakanikas

    Full Text Available Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  12. High Throughput Multispectral Image Processing with Applications in Food Science.

    Science.gov (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  13. Effects of food processing on the thermodynamic and nutritive value of foods: literature and database survey.

    Science.gov (United States)

    Prochaska, L J; Nguyen, X T; Donat, N; Piekutowski, W V

    2000-02-01

    One of the goals of our society is to provide adequate nourishment for the general population of humans. In the strictness sense, the foodstuffs which we ingest are bundles of thermodynamic energy. In our post-industrial society, food producers provide society with the bioenergetic content of foods, while stabilizing the food in a non-perishable form that enables the consumer to access foods that are convenient and nutritious. As our modern society developed, the processing of foodstuffs increased to allow consumers flexibility in their choice in which foods to eat (based on nutritional content and amount of post-harvest processing). The thermodynamic energy content of foodstuffs is well documented in the literature by the use of bomb calorimetry measurements. Here, we determine the effects of processing (in most cases by the application of heat) on the thermodynamic energy content of foods in order to investigate the role of processing in daily nutritional needs. We also examine which processing procedures affect the nutritive quality (vitamin and mineral content) and critically assess the rational, advantages and disadvantages of additives to food. Finally, we discuss the role of endogenous enzymes in foods not only on the nutritive quality of the food but also on the freshness and flavor of the food. Our results show that a significant decrease in thermodynamic energy content occurs in fruits, vegetables, and meat products upon processing that is independent of water content. No significant change in energy content was observed in cereals, sugars, grains, fats and oils, and nuts. The vitamin content of most foods was most dramatically decreased by canning while smaller effects were observed upon blanching and freezing. We found that most food additives had very little effect on thermodynamic energy content due to their presence in minute quantities and that most were added to preserve the foodstuff or supplement its vitamin content. The endogenous food enzymes

  14. Guide for dosimetry in radiation research on food and agricultural products

    International Nuclear Information System (INIS)

    2002-01-01

    This guide covers the minimum requirements for dosimetry and absorbed-dose validation needed to conduct research on the irradiation of food and agricultural products. Such research includes establishment of the quantitative relationship between the absorbed dose and the relevant effects in these products. This guide also describes the overall need for dosimetry in such research, and in reporting of the results. This guide is intended for use by research scientists in the food and agricultural communities, and not just scientists conducting irradiation research. It, therefore, includes more tutorial information than most other ASTM and ISO/ASTM dosimetry standards for radiation processing. This guide is in no way intended to limit the flexibility of the experimenter in the experimental design. However, the radiation source and experimental set up should be chosen such that the results of the experiment will be beneficial and understandable to other scientists, regulatory agencies, and the food and agricultural communities. The effects produced by ionizing radiation in biological systems depend on a large number of factors which may be physical, physiological, or chemical. Although not treated in detail in this guide, quantitative data of environmental factors that may affect the absorbed-dose response of dosimeters, such as temperature and moisture content in the food or agricultural products should be reported. The overall uncertainty in the absorbed-dose measurement and the inherent absorbed-dose range within the specimen should be taken into account in the design of an experiment. The guide covers research conducted using the following types of ionizing radiation: gamma rays, bremsstrahlung X-rays, and electron beams. This guide does not include other aspects of radiation processing research, such as planning of the experimental design. Dosimetry must be considered as an integral part of the experimental design. The guide does not include dosimetry for irradiator

  15. Processing- and product-related causes for food waste and implications for the food supply chain.

    Science.gov (United States)

    Raak, Norbert; Symmank, Claudia; Zahn, Susann; Aschemann-Witzel, Jessica; Rohm, Harald

    2017-03-01

    Reducing food waste is one of the prominent goals in the current research, which has also been set by the United Nations to achieve a more sustainable world by 2030. Given that previous studies mainly examined causes for food waste generation related to consumers, e.g., expectations regarding quality or uncertainties about edibility, this review aims at providing an overview on losses in the food industry, as well as on natural mechanisms by which impeccable food items are converted into an undesired state. For this, scientific literature was reviewed based on a keyword search, and information not covered was gathered by conducting expert interviews with representatives from 13 German food processing companies. From the available literature, three main areas of food waste generation were identified and discussed: product deterioration and spoilage during logistical operations, by-products from food processing, and consumer perception of quality and safety. In addition, expert interviews revealed causes for food waste in the processing sector, which were categorised as follows: losses resulting from processing operations and quality assurance, and products not fulfilling quality demands from trade. The interviewees explained a number of strategies to minimise food losses, starting with alternative tradeways for second choice items, and ending with emergency power supplies to compensate for power blackouts. It became clear that the concepts are not universally applicable for each company, but the overview provided in the present study may support researchers in finding appropriate solutions for individual cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011.

    Science.gov (United States)

    Moubarac, Jean-Claude; Batal, Malek; Martins, Ana Paula Bortoletto; Claro, Rafael; Levy, Renata Bertazzi; Cannon, Geoffrey; Monteiro, Carlos

    2014-01-01

    A classification of foods based on the nature, extent, and purpose of industrial food processing was used to assess changes in household food expenditures and dietary energy availability between 1938 and 2011 in Canada. Food acquisitions from six household food budget surveys (1938/1939 , 1953, 1969, 1984, 2001, and 2011) were classified into unprocessed or minimally processed foods, processed culinary ingredients, and ready-to-consume processed or ultra-processed products. Contributions of each group to household food expenditures, and to dietary energy availability (kcal per capita) were calculated. During the period studied, household expenditures and dietary energy availability fell for both unprocessed or minimally processed foods and culinary ingredients, and rose for ready-to-consume products. The caloric share of foods fell from 34.3% to 25.6% and from 37% to 12.7% for culinary ingredients. The share of ready-to-consume products rose from 28.7% to 61.7%, and the increase was especially noteworthy for those that were ultra-processed. The most important factor that has driven changes in Canadian dietary patterns between 1938 and 2011 is the replacement of unprocessed or minimally processed foods and culinary ingredients used in the preparation of dishes and meals; these have been displaced by ready-to-consume ultra-processed products. Nutrition research and practice should incorporate information about food processing into dietary assessments.

  17. Radio-Frequency Applications for Food Processing and Safety.

    Science.gov (United States)

    Jiao, Yang; Tang, Juming; Wang, Yifen; Koral, Tony L

    2018-03-25

    Radio-frequency (RF) heating, as a thermal-processing technology, has been extending its applications in the food industry. Although RF has shown some unique advantages over conventional methods in industrial drying and frozen food thawing, more research is needed to make it applicable for food safety applications because of its complex heating mechanism. This review provides comprehensive information regarding RF-heating history, mechanism, fundamentals, and applications that have already been fully developed or are still under research. The application of mathematical modeling as a useful tool in RF food processing is also reviewed in detail. At the end of the review, we summarize the active research groups in the RF food thermal-processing field, and address the current problems that still need to be overcome.

  18. Video fluoroscopic techniques for the study of Oral Food Processing

    Science.gov (United States)

    Matsuo, Koichiro; Palmer, Jeffrey B.

    2016-01-01

    Food oral processing and pharyngeal food passage cannot be observed directly from the outside of the body without instrumental methods. Videofluoroscopy (x-ray video recording) reveals the movement of oropharyngeal anatomical structures in two dimensions. By adding a radiopaque contrast medium, the motion and shape of the food bolus can be also visualized, providing critical information about the mechanisms of eating, drinking, and swallowing. For quantitative analysis of the kinematics of oral food processing, radiopaque markers are attached to the teeth, tongue or soft palate. This approach permits kinematic analysis with a variety of textures and consistencies, both solid and liquid. Fundamental mechanisms of food oral processing are clearly observed with videofluoroscopy in lateral and anteroposterior projections. PMID:27213138

  19. Modeling of processing technologies in food industry

    Science.gov (United States)

    Korotkov, V. G.; Sagitov, R. F.; Popov, V. P.; Bachirov, V. D.; Akhmadieva, Z. R.; TSirkaeva, E. A.

    2018-03-01

    Currently, the society is facing an urgent need to solve the problems of nutrition (products with increased nutrition value) and to develop energy-saving technologies for food products. A mathematical modeling of heat and mass transfer of polymer materials in the extruder is rather successful these days. Mathematical description of movement and heat exchange during extrusion of gluten-protein-starch-containing material similar to pasta dough in its structure, were taken as a framework for the mathematical model presented in this paper.

  20. Stability of tinned food from pigs radiated with various doses of ionizing rays

    International Nuclear Information System (INIS)

    Kossakowska, A.; Kossakowski, S.; Widenska, T.; Wojton, B.

    1978-01-01

    The examinations were carried out on 347 tinned food made of meat from pigs exposed to radiation of 300 and 600 R. The animals were irradiated with 60 Co. The pigs irradiated with 300 R were slaughtered after 7 and 14 days, and these with 600 R after 7 and 12 days; the control animals were killed after 14 days. Post-slaughter visual and microbiological examinations were performed by seeding the samples of the blood, muscles, lymphnodes and internal organs for the presence of Salmonella sp. Meat was pickled and heated up to 67-68 0 C (in the center of tinned food). The lowest stability showed the tinned food made of pigs irradiated with 600 R and killed after 12 days. Chemical examinations of the tinned food stored at 6 0 C revealed the prevalence of oxydative processes in fat over hydrolitic ones. The difference in acid number between tinned food under test and controls appeared after 6 months. Peroxides occurred in the control after 6 months and in these under examination after 3 months, and the level was 4.00-5.80 apart from the tins made of meat of pigs irradiated with 300 R and slaughtered after 7 days. (author)