WorldWideScience

Sample records for radiation fields produced

  1. Study of extremely low frequency electromagnetic field (ELF EMF) radiation produced by consumer products

    International Nuclear Information System (INIS)

    Roha Tukimin; Ahmad Fazli Ahmad Sanusi; Rozaimah Abd Rahim; Mohd Yusof Mohd Ali; Mohamad Amirul Nizam Mohamad Thari

    2006-01-01

    Extremely low frequency electromagnetic field ( ELF EMF) radiation falls under category of non-ionising radiation (NIR).ELF EMF consists of electric and magnetic fields. Excessive exposure to ELF EMF radiation may cause biological and health effects to human beings such as behavioral changes, stochastic and as initiator of cancer. In daily life, the main source of extremely low frequency electromagnetic radiation are consumer products in our home and office. Due to its ability to cause hazard, a study of ELF EMF radiation produced by consumer product was conducted. For this preliminary study, sample of 20 types electrical appliances were selected. The measurement was covered electric and magnetic field strength produced by the sample. PMM model EHP50A were used for measurement and data analysis. The results were compared with the permissible limits recommended by International Commission of Non-Ionising Radiation Protection (ICNIRP) for members of public (1000 mGauss and 5000 V/m). The results showed that all tested sample produced magnetic and electric field but still under the permissible limit recommended by ICNIRP. Besides that we found that field strengths can be very high at closer distance to the sample. (Author)

  2. Scintillation camera for establishing the coordinates of a radiation stimuli produced by a radiation field

    International Nuclear Information System (INIS)

    Zioni, J.; Klein, Y.; Inbar, D.

    1977-01-01

    A scintillation camera has a planar scintillating crystal that produces light events whose spatial distribution corresponds to the spatial distribution of the radiation stimuli causing such events, and a plurality of photomultipliers having photocathodes for receiving light from the crystal through a planar face thereof. Computing circuitry coupled to the photomultipliers computes the projection of a light event in the crystal on a reference axis by forming an analytical function of the outputs of the photomultipliers according to the spatial location of the light event in the crystal

  3. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1998-01-01

    radiation technique. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as modification of material surfaces to improve their biocompatibility and ability to bond antigens and antibodies have been the main subject of their investigations. The rising interest in the field of application of radiation to bioengineering was also recognized by the International Atoimc Energy Agency, which has initiated the international programs relating to those studies. In these lectures some directions of investigations on the formation of hydrogels and their applications for biomedical purposes have been specified. Also, some examples of commercialized products being produced by means of radiation technique have been presented

  4. Cooling of ions trapped in potential wells produced by electromagnetic radiation fields

    International Nuclear Information System (INIS)

    Sobehart, J.R.

    1990-01-01

    The probability distributions for the ground state and the excited state of a two-level ion trapped in an harmonic potential well are studied. The ion is excited by electromagnetic radiation and relaxes back due to either spontaneous or stimulated emission. The photon statistics is considered Poissonian and the momentum transfer between the electromagnetic field and the ion is assumed discrete. The present results are closely related to the quantum treatment in the heavy particle limit as well as to those derived from previous semiclassical models. (Author) [es

  5. Workplace photon radiation fields

    International Nuclear Information System (INIS)

    Burgess, P.H.; Bartlett, D.T.; Ambrosi, P.

    1999-01-01

    The knowledge of workplace radiation fields is essential for measures in radiation protection. Information about the energy and directional distribution of the incident photon radiation was obtained by several devices developed by the National Radiation Protection Board, United Kingdom, by the Statens Stralskyddsinstitut, Sweden, together with EURADOS and by the Physikalisch-Technische Bundesanstalt, Germany. The devices are described and some results obtained at workplaces in nuclear industry, medicine and science in the photon energy range from 20 keV to 7 MeV are given. (author)

  6. Radiation processing of horticulture produce

    International Nuclear Information System (INIS)

    Khandal, R.K.

    2004-01-01

    The present paper deals with various aspects of radiation processing of horticultural products. The risk and success factors of the radiation processing units would be discussed, based on the experiences gained from the operation of Sac over a period of more than twenty years. Emphasis would be given to gamma radiation processing

  7. Evaluate existing radiation fields

    International Nuclear Information System (INIS)

    Aldrich, J.M.; Haggard, D.L.; Endres, G.W.R.; Fix, J.J.

    1981-01-01

    Knowledge of the spectrum of energies for beta, gamma, and neutron radiation experienced in the field is crucial to the proper interpretation of personnel dose. Calibration sources and techniques are determined on the basis of their relationship to field exposure. Selected techniques were used to obtain neutron, photon, and beta energy spectra data at several Hanford locations. Four neutron energy spectra and dose measurement methods were used: (1) multisphere spectrometer system; (2) tissue equivalent proportional counter (TEPC); (3) RASCAL (9'' to 3'' sphere ratios); and (4) helium-3 neutron spectrometer. Gamma spectroscopy was done using standard techniques. A specially designed TLD dosimeter was used to obtain beta spectrum measurements. The design and use of each of these instruments is described in the body of this report. Data collected and analyzed for each of the Hanford locations are included

  8. Why does gravitational radiation produce vorticity?

    International Nuclear Information System (INIS)

    Herrera, L; Barreto, W; Carot, J; Prisco, A Di

    2007-01-01

    We calculate the vorticity of worldlines of observers at rest in a Bondi-Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super-Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacuum spacetimes

  9. Quality assurance in field radiation measurements

    International Nuclear Information System (INIS)

    Howell, W.P.

    1985-01-01

    In most cases, an ion chamber radiation measuring instrument is calibrated in a uniform gamma radiation field. This results in a uniform ionization field throughout the ion chamber. Measurement conditions encountered in the field often produce non-uniform ionization fields within the ion chamber, making determination of true dose rates to personnel difficult and prone to error. Extensive studies performed at Hanford have provided appropriate correction factors for use with one type of ion chamber instrument, the CP. Suitable corrections are available for the following distinct measurement circumstances: (1) contact measurements on large beta and gamma sources, (2) contact measurements on small beta and gamma sources, (3) contact measurements on small-diameter cylinders, (4) measurements in small gamma beams, and (5) measurements at a distance from large beta sources. Recommendations are made for the implementation of these correction factors, in the interest of improved quality assurance in field radiation measurements. 12 references, 10 figures

  10. Quality of radiation field imaging

    International Nuclear Information System (INIS)

    Petr, I.

    1988-01-01

    The questions were studied of the quality of imaging the gamma radiation field and of the limits of the quality in directional detector scanning. A resolution angle was introduced to quantify the imaging quality, and its relation was sought with the detection effective half-angle of the directional detector. The resolution angle was defined for the simplest configuration of the radiation field consisting of two monoenergetic gamma beams in one plane. It was shown that the resolution angle decreases, i.e., resolution in imaging the radiation field is better, with the effective half-angle of the directional detector. It was also found that resolution of both gamma beams deteriorated when the beams were surrounded with an isotropic background field. If the beams are surrounded with a background field showing general distribution, the angle size will be affected not only by the properties of the detector but also by the distribution of the ambient radiation field and the method of its scanning. The method described can be applied in designing a directional detector necessary for imaging the presumed radiation field in the required quality. (Z.M.). 4 figs., 3 refs

  11. Particles in spherical electromagnetic radiation fields

    International Nuclear Information System (INIS)

    Mitter, H.; Thaller, B.

    1984-03-01

    If the time-dependence of a Hamiltonian can be compensated by an appropriate symmetry transformation, the corresponding quantum mechanical problem can be reduced to an effectively stationary one. With this result we investigate the behavior of nonrelativistic particles in a spherical radiation field produced by a rotating source. Then the symmetry transformation corresponds to a rotation. We calculate the transition probabilities in Born approximation. The extension to problems involving an additional Coulomb potential is briefly discussed. (Author)

  12. Radiation Entropy and Near-Field Thermophotovoltaics

    Science.gov (United States)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  13. International cooperation in the field of radiation application

    International Nuclear Information System (INIS)

    Sato, Shoichi

    1993-01-01

    Bilateral and multilateral research cooperations have been implemented at TRCRE, JAERI, producing favourable results in the field of radiation application. Frameworks and some achievements are described and the significance of the international cooperation is discussed. (Author)

  14. Radiation sources and methods for producing them

    International Nuclear Information System (INIS)

    Malson, H.A.; Moyer, S.E.; Honious, H.B.; Janzow, E.F.

    1979-01-01

    The radiation sources contain a substrate with an electrically conducting, non-radioactive metal surface, a layer of a metal isotope of the scandium group as well as a percentage of non-radioactive binding metal being coated on the surface by means of an electroplating method. Besides examples for β sources ( 147 Pm), γ sources ( 241 Am), and neutron sources ( 252 Cf) there is described an α-radiation source ( 241 Am, 244 Cu, 238 Pu) for smoke detectors. There are given extensive tables and a bibliography. (DG) [de

  15. Radiation produced by electrons incident on molecules

    International Nuclear Information System (INIS)

    Moehlman, G.R.

    1977-01-01

    The work described in this thesis deals with light intensity measurements of emission spectra (1850-9000 A) produced by a continuous or pulsed beam of monoenergetic electrons (0 - 2000 eV) incident on a variety of molecular gases like H 2 , D 2 , H 2 O, HCl, NH 3 and several hydrocarbons. The emission spectra are dominated by fluorescence from excited fragments produced via dissociative excitation, besides fluorescence from excited parent molecules themselves. The experimental results thus obtained are expressed in terms of emission cross sections and lifetimes

  16. Simulation of radiation in laser produced plasmas

    Science.gov (United States)

    Colombant, D. G.; Klapisch, M.; Deniz, A. V.; Weaver, J.; Schmitt, A.

    1999-11-01

    The radiation hydrodynamics code FAST1D(J.H.Gardner,A.J.Schmitt,J.P.Dahlburg,C.J.Pawley,S.E.Bodner,S.P.Obenschain,V.Serlin and Y.Aglitskiy,Phys. Plasmas,5,1935(1998)) was used directly (i.e. without postprocessor) to simulate radiation emitted from flat targets irradiated by the Nike laser, from 10^12 W/cm^2 to 10^13W/cm^2. We use enough photon groups to resolve spectral lines. Opacities are obtained from the STA code(A.Bar-Shalom,J.Oreg,M.Klapisch and T.Lehecka,Phys.Rev.E,59,3512(1999)), and non LTE effects are described with the Busquet model(M.Busquet,Phys.Fluids B,5,4191(1993)). Results are compared to transmission grating spectra in the range 100-600eV, and to time-resolved calibrated filtered diodes (spectral windows around 100, 180, 280 and 450 eV).

  17. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  18. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  19. Radiation damage of polymers in ultrasonic fields

    International Nuclear Information System (INIS)

    Anbalagan, Poornnima

    2008-01-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  20. Hybrid hydrogels produced by ionizing radiation technique

    Science.gov (United States)

    Oliveira, M. J. A.; Amato, V. S.; Lugão, A. B.; Parra, D. F.

    2012-09-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling.

  1. Hybrid hydrogels produced by ionizing radiation technique

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Amato, V.S.; Lugão, A.B.; Parra, D.F.

    2012-01-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling. - Highlights: ► Chemical interaction is observed when nanoclay is irradiated in PVAl hybrid hydrogels. ► Osmotic pressure within network promotes the rehydration capacity of the membranes. ► This effect is an important characteristic for hydrogels drug delivery systems.

  2. Field reversal produced by a plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Condit, W.; Granneman, E.H.A.; Prono, D.; Smith, A.C. Jr.; Taska, J.; Turner, W.C.

    1980-01-01

    Experimental results are presented of the production of Field-Reversed Plasma with a high energy coaxial plasma gun. The gun is magnetized with solenoids inside the center electrode and outside the outer electrode so that plasma emerging from the gun entrains the radial fringer field at the muzzle. The plasma flow extends field lines propagating a high electrical conductivity, the flux inside the center electrode should be preserved. However, for low flux, the trapped flux exceeds by 2 or more the initial flux, possibly because of helical deformation of the current channel extending from the center electrode

  3. Effects produced by nuclear radiation in powdery milk

    International Nuclear Information System (INIS)

    Urena N, F.; Reyes G, A.

    1999-01-01

    The objective of this work is to determine the chemical effects produced by the gamma rays and beta particles radiations on the powdery milk. This work treats on the Pre-dose analysis, sampling radiating, electron spin resonance, acidity, proteins, aminoacids, lactose, fatty acids, peroxides, as well as its experimental results. (Author)

  4. What is radiation and how is it produced

    International Nuclear Information System (INIS)

    Edwards, M.

    1984-01-01

    In summary, a short answer to the question posed by the title of this chapter may be attempted in the following manner. Radiation is electromagnetic or particulate energy emitted or produced as the consequence of electron motion, radioactive decay, or atomic and nuclear interactions. Ionizing radiation is that radiation having sufficient energy to produce positive and negative charges directly or indirectly when it interacts with matter. As with many ''simple'' definitions of complex subjects, this definition contains many terms equally, if not more, complex than the one it purports to define. Like the aroma a good meal, it conveys a feeling for the subject that should stimulate, rather than satisfy, the appetite

  5. Gravitational radiation resistance, radiation damping and field fluctuations

    International Nuclear Information System (INIS)

    Schaefer, G.

    1981-01-01

    Application is made of two different generalised fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler (Gravitation (San Francisco: Freeman) ch 36,37 (1973)) and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalisations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance. (author)

  6. Method for producing bonded nonwoven fabrics using ionizing radiation

    International Nuclear Information System (INIS)

    Drelich, A.H.; Oney, D.G.

    1979-01-01

    A method is described for producing a resin-bonded nonwoven fabric. The preparation involves forming a fibrous web annealing it and compressing it to provide fiber to fiber contact. A polymerizable binder is applied to the fibrous web which is then treated by ionizing radiation to produce the material. 9 figures, 3 drawing

  7. Quantization of the Radiation Field

    Indian Academy of Sciences (India)

    field,quantization,Lamb shift. Avinash Khare ... actions as well as for theories beyond like grand unified theories. Further, the same ... cules as well as condensed matter physics, not to men- tion their ... of an electromagnetic field by a moving electron, and of the reaction of this field on the electron have not yet been touched.".

  8. Purification of produced waters in oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Niyazov, R S; Baikov, U M

    1970-01-01

    Experience has shown that a single step water-conditioning process cannot be used to prepare Bashkirian produced waters for underground injection. In the single-step process, the water is passed through horizontal or vertical settling basins to remove solids. This system does not work when suspended solids increase above 200 to 500 mg/liter. The required quality of injection water can be obtained by filtering the water through sand at flow velocities of 5 to 10 m/hr. The filter has a sand layer 0.6 to 1 m thick, composed of 0.35 to 1.0 mm sand. Water entering the filters should not contain more than 100 to 150 mg/liter of oil products. The filters are backwashed at velocity of 10 to 15 m/hr and rates of 12 to 16 liters/sec sq m for 10 to 15 min. Clean water is used in backwashing. When surfactant is added to the backwash water, the filter cycle lasts longer.

  9. Study of detectors in beta radiation fields

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Xavier, M.; Caldas, L.V.E.

    1987-01-01

    Several commercial detectors used with gamma or X radiation are studied. Their sensibility and energetic dependence are analysed in exposures of beta radiation fields. A comparative evaluation with the reference detector (the extrapolation chamber) is presented. (M.A.C.) [pt

  10. Lazer-produced plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Kaitmazov, S.D.; Shklovskij, E.I.

    1978-01-01

    Investigations on interaction of laser plasma with the magnetic field in the range of 100-300 kOe are surveyed. Problems associated with the effect of the field on the optical breakdown threshold in gases, the geometry (kinetics) of laser plasma and its radiation are mainly considered. It is noted that the magnetic field may reduce the o tical breakdown threshold in gases, promote the spreading of plasma predominantly in the direction of tice magnetic field, and also affect (increase in the visible range) the radiation intensity of the laser plasma. The effect of the magnetic field on the temperature of the laser plasma is not completely understood yet, but the very fact of existence of this dependence is important; it enables one to search for conditions under which the magnetic field would promote the increase at the temperature of laser plasma

  11. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-01-01

    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  12. Laser radiation forces in laser-produced plasmas

    International Nuclear Information System (INIS)

    Stamper, J.A.

    1975-01-01

    There are two contributions to laser radiation forces acting on the electrons. Transfer of momentum from the fields to the electrons results in a field pressure contribution and occurs whenever there is absorption or reflection. The quiver pressure contribution, associated with electron quiver motion, is due to inhomogeneous fields inducing momentum transfer within the electron system. It is shown that the ponderomotive force with force density, (epsilon-1)/8πdel 2 >, does not include the field contribution and does not lead to a general description of macroscopic processes. A theory is discussed which does give a general macroscopic description (absorption, reflection, refraction, and magnetic field generation) and which reduces to the ponderomotive force for purely sinusoidal fields in a neutral, homogeneous, nonabsorbing plasma

  13. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  14. Differential Detector for Measuring Radiation Fields

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  15. Thyorid function after mantle field radiation therapy

    International Nuclear Information System (INIS)

    Daehnert, W.; Kutzner, J.; Grimm, W.

    1981-01-01

    48 patients with malignant lymphoma received a 60 Co-radiation dose of 30 to 50 Gy using the mantle field technique. Thyroid function tests were performed 34 to 92 months after radiation therapy. One patient developed myxedema, ten (20.8%) had subclinical hypothyroidism and six (12.5%) latent hypothyroidism. The incidence of hypothyroidism after treatment of malignant lymphomas is summarized in a review of the literature. Discrepancies on the incidence of hypothyroidism were found, and their possible cause is discussed. Periodic examinations of all patients with thyroid radiation exposure are recommended. The examination can be limited to measurement of TSH concentration and palpation of the thyroid for nodules. (orig.) [de

  16. Individual Dosimetry for High Energy Radiation Fields

    International Nuclear Information System (INIS)

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  17. Radiation of Electron in the Field of Plane Light Wave

    International Nuclear Information System (INIS)

    Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.

    2006-01-01

    Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity

  18. Resonance Raman Spectroscopy of Free Radicals Produced by Ionizing Radiation

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter

    1984-01-01

    Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p-nitrobenzylchloride and......Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p......-nitrobenzylchloride and subsequent formation of the p-nitrobenzyl radical and the reaction of p-nitrotoluene with O– are studied by resonance Raman and optical absorption spectroscopy....

  19. Radiation distribution sensor with optical fibers for high radiation fields

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Hosono, Yoneichi; Takahashi, Hiroyuki; Nakazawa, Masaharu

    1999-01-01

    Radiation distribution sensors with their feasibilities have been described in earlier works. However, due to large radiation induced transmission losses in optical fibers, especially in the visible wavelength region, it has been difficult to apply these techniques to high radiation fields. In this study, we proposed a new concept of optical fiber based radiation distribution measurements with near infrared (IR) emission. Near IR scintillators were attached to the ends of optical fibers, where the fibers were bundled and connected to an N-MOS line sensor or a cooled CCD camera. From the measurements of each area density, the radiation levels at the positions of the scintillators can be known. The linearity between the gamma dose rate at each scintillator and the registered counts has been examined. For correcting the radiation induced loss effects, we applied the Optical Time Domain Reflectometry technique to measure the loss distribution and from the results, a possibility for correction of the loss effect has been demonstrated. The applicable dose rate range was evaluated to be from 0.1 to 10 3 Gy/h. This system can be a promising tool as a flexible dose rate distribution monitor in radiation facilities like nuclear plants and accelerator facilities. (author)

  20. Nonthermal Particles and Radiation Produced by Cluster Merger Shocks

    Science.gov (United States)

    2003-09-10

    NONTHERMAL PARTICLES AND RADIATION PRODUCED BY CLUSTER MERGER SHOCKS Robert C. Berrington and Charles D. Dermer Naval Research Laboratory, Code 7653...of the merging cluster and is assumed to be constant as the shock propagates outward from the cluster center. In this paper , we model the cluster ...emission in the60–250 eV band for a number of clus- ters. These clusters include Virgo , Coma, Fornax, A2199, A1795, and A4059 (Lieu et al. 1996a, 1996b

  1. Research with stored ions produced using synchrotron radiation

    International Nuclear Information System (INIS)

    Church, D.A.; Kravis, S.D.; Meron, M.; Johnson, B.M.; Jones, K.W.; Sellin, I.A.; O, C.S.; Levin, J.C.; Short, R.T.

    1987-01-01

    A distribution of argon ion charge states has been produced by inner shell photoionization of argon atoms using x-ray synchrotron radiation. These ions were stored in a Penning ion trap at moderate to very low well depths, and analog-detected yielding narrow charge-to-mass spectrum linewidths. Estimates of ion densities indicated that ion-ion collisional energy transfer should be rapid, leading to thermalization. Measurements using variants of this novel stored, multi-charged ion gas are considered

  2. Radiation phase of a dipole field

    International Nuclear Information System (INIS)

    Shunovsky, A.S.

    1998-01-01

    In the case of a dipole electromagnetic radiation, the operator of the 'radiation phase' is defined. It is shown that this operator has a discrete spectrum with eigenvalues, lying in the segment [0,2π]. Some properties of the radiation phase and polarization are discussed. Seventy years of investigation of the problem of quantum phase led to the conclusion that there is no unique quantum variable, determining universally the measured phase properties of electromagnetic radiation. The operator constructions, describing cosine and sine of the phase, could be different schemes of measurement. This fact has accurately been confirmed by a number of recent experiments. Thus, it seems to be quite plausible that the quantum phase properties of an electromagnetic radiation are determined by interaction photons with a macroscopic detecting device. It is pertinent to ask the following question. Are the quantum phase properties of radiation completely determined by such an interaction or the photons have their own inherent phase properties which might be measured even if they are modified by interaction with a detecting device? The universally recognized fact is that the vacuum state of field is degenerated with respect to phase. If a quantum radiation has its inherent phase properties, it means that the degeneration is taken off in the process of generation which is an interaction of the vacuum field with excited states of atoms or molecules. By virtue of this picture proposed in, what all one can expect is that the inherent quantum phase properties of radiation are completely determined by a source via the conservation laws, describing the generation process. Even in this way, it seems to determine a unique quantum phase of radiation. As a matter of fact, there are two conservation laws, admitting a nontrivial angular dependence

  3. Polarization operator in quantum electrodynamics with a pair-producing external field

    International Nuclear Information System (INIS)

    Barashev, V.P.; Shvartsman, Sh.M.; Shabad, A.E.

    1986-01-01

    Various radiative processes with one-photon initial state are treated in QED with pair-producing external field. It is shown that the probabilities of such processes are expressed in terms of two different polarization operators. For the case of a constant field the polarization operator which is expressed through the so-called causal Green electron function, is calculated. This operator has never been calculated previously. It enters the formula for probability of production of N arbitrary pairs by a photon

  4. The spectrum of mutation produced by low dose radiation

    International Nuclear Information System (INIS)

    Morley, Alexander A.; Turner, David R.

    2004-01-01

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  5. Radiation degradation of biological residues (Aflatoxins) produced in food laboratory

    International Nuclear Information System (INIS)

    Rogovschi, Vladimir D.; Aquino, Simone; Nunes, Thaise C.F.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H.; Zorzete, Patricia; Correa, Benedito

    2007-01-01

    Some molds have the capacity to produce substances that are toxic and generally cancer-causing agents, such as aflatoxins, that stand between the most important carcinogenic substances (class one of the agents which are certainly carcinogenous for human people according to the International Agency for Research on Cancer). Aspergillus spp. is present in world-wide distribution, with predominance in tropical and subtropical regions growing in any substratum. The aim of this work is establish a minimum dose of radiation that degrades aflatoxins produced by fungi Aspergillus spp. The Aspergillus spp. colonies will be cultivated in coconut agar medium and the samples will be conditioned in appropriate bags for irradiation treatment of contaminated material and processed in the Gammacell 220 with dose of 20 kGy. (author)

  6. Radiation degradation of biological residues (Aflatoxins) produced in food laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, Vladimir D.; Aquino, Simone; Nunes, Thaise C.F.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (brazil)]. E-mails: vladrogo@yahoo.com.br; villavic@ipen.br; Zorzete, Patricia; Correa, Benedito [Universidade de Sao Paulo, SP (Brazil). Inst. de Ciencias Biomedicas]. E-mail: correabe@usp.br

    2007-07-01

    Some molds have the capacity to produce substances that are toxic and generally cancer-causing agents, such as aflatoxins, that stand between the most important carcinogenic substances (class one of the agents which are certainly carcinogenous for human people according to the International Agency for Research on Cancer). Aspergillus spp. is present in world-wide distribution, with predominance in tropical and subtropical regions growing in any substratum. The aim of this work is establish a minimum dose of radiation that degrades aflatoxins produced by fungi Aspergillus spp. The Aspergillus spp. colonies will be cultivated in coconut agar medium and the samples will be conditioned in appropriate bags for irradiation treatment of contaminated material and processed in the Gammacell 220 with dose of 20 kGy. (author)

  7. Recent developments in radiation field control technology

    International Nuclear Information System (INIS)

    Wood, C.J.

    1995-01-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses

  8. Recent developments in radiation field control technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-03-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses.

  9. On quantization of the electromagnetic field in radiation gauge

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper contains a detailed description of quantization of the electromagnetic field (in radiation gauge) and quantization of some basic physical variables connected with radiation field as energy, momentum and spin. The dynamics of the free quantum radiation field and the field interacting with external classical sources is described. The canonical formalism is not used explicity. (author)

  10. Haemopoietic cell renewal in radiation fields

    Science.gov (United States)

    Fliedner, T. M.; Nothdurft, W.; Tibken, B.; Hofer, E.; Weiss, M.; Kindler, H.

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a ``turbulence region'' for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a ``blood stem cell bank'' might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container.

  11. Assessment of ELF magnetic fields produced by independent power lines

    International Nuclear Information System (INIS)

    Lucca, G.

    2008-01-01

    In this paper, the problem of assessing the ELF (extremely low-frequency) magnetic fields produced, in a certain area characterised by the presence of more than one independent power line, is faced. The use of the incoherent summation of the single contributions, as an advantageous estimator of the total magnetic field, is proposed and justified by means of a heuristic procedure. This kind of approach can be seen as a useful and practical tool to be employed in environmental impact analysis and in assessing long-term human exposure to ELF magnetic fields. (authors)

  12. Ponderomotive force, magnetic fields and hydrodynamics of laser produced plasmas

    International Nuclear Information System (INIS)

    Bobin, J.-L.; Wee Woo; Degroot, J.-S.

    1977-01-01

    Nonlinear effects deeply change the structure of a laser driven plasma flow. For high intensities, the radiation pressure should be taken into account. It acts through a ponderomotive force proportional to the electron density and to the gradient of the mean electric field energy density of the incident wave. Static magnetic fields originate from a term in the ponderomotive force which includes radiation absorption and whose curl is non zero. The basic properties of the structure are determined analytically in the absence of thermal conductivity and magnetic fields: steep density gradient close to the cut-off density, shelf at lower densities. The conditions of a steady state regime are set up. The isothermal case is specially investigated. It is shown that the cavities which are created in a motionless plasma may disappear due to the onset of a flow. Regions in which electromagnetic forces arising from the static field compensate the ponderomotive force are determined. The subsequent effects on the flow itself are studied [fr

  13. Inner-shell photoionization in weak and strong radiation fields

    International Nuclear Information System (INIS)

    Southworth, S.H.; Dunford, R.W.; Ederer, D.L.; Kanter, E.P.; Kraessig, B.; Young, L.

    2004-01-01

    The X-ray beams presently produced at synchrotron-radiation facilities interact weakly with matter, and the observation of double photoionization is due to electron-electron interactions. The intensities of future X-ray free-electron lasers are expected to produce double photoionization by absorption of two photons. The example of double K-shell photoionization of neon is discussed in the one- and two-photon cases. We also describe an experiment in which X rays photoionize the K shell of krypton in the presence of a strong AC field imposed by an optical laser

  14. Limited-field radiation for bifocal germinoma

    International Nuclear Information System (INIS)

    Lafay-Cousin, Lucie; Millar, Barbara-Ann; Mabbott, Donald; Spiegler, Brenda; Drake, Jim; Bartels, Ute; Huang, Annie; Bouffet, Eric

    2006-01-01

    Purpose: To report the incidence, characteristics, treatment, and outcomes of bifocal germinomas treated with chemotherapy followed by focal radiation. Methods and Materials: This was a retrospective review. Inclusion criteria included radiologic diagnosis of bifocal germinoma involving the pineal and neurohypophyseal region, no evidence of dissemination on spinal MRI, negative results from cerebrospinal fluid cytologic evaluation, and negative tumor markers. Results: Between 1995 and 2004, 6 patients (5 male, 1 female; median age, 12.8 years) fulfilled the inclusion criteria. All had symptoms of diabetes insipidus at presentation. On MRI, 4 patients had a pineal and suprasellar mass, and 2 had a pineal mass associated with abnormal neurohypophyseal enhancement. All patients received chemotherapy followed by limited-field radiation and achieved complete remission after chemotherapy. The radiation field involved the whole ventricular system (range, 2,400-4,000 cGy) with or without a boost to the primary lesions. All patients remain in complete remission at a median follow-up of 48.1 months (range, 9-73.4 months). Conclusions: This experience suggests that bifocal germinoma can be considered a locoregional rather than a metastatic disease. Chemotherapy and focal radiotherapy might be sufficient to provide excellent outcomes. Staging refinement with new diagnostic tools will likely increase the incidence of the entity

  15. Investigation of Radiation Fields at Aircraft Altitudes (invited paper)

    International Nuclear Information System (INIS)

    O'Sullivan, D.; Bartlett, D.; Grillmaier, R.; Heinrich, W.; Lindborg, L.; Schraube, H.; Silari, M.; Tommasino, L.; Zhou, D.

    2000-01-01

    Cosmic rays are believed to originate from several possible sources and recent research suggests that the bulk originate from the gas and dust of the interstellar medium and are accelerated by strong shock waves driven by supernova explosions. Cosmic ray particles are made up of γ98.5% hydrogen and helium and only 1.5% have charges greater than 2. Their average energy is about 1 GeV/nucleon and they lose energy through ionisation interactions and nuclear interactions with atoms of air as they penetrate deeply into the Earth's atmosphere. A very complicated radiation field develops as particles are generated by successive interaction of primary and secondary nuclei and a cascade of hadrons is produced in the atmosphere. The intensity of particles reaches a maximum at about 20 km above sea level (γ60 g.cm -2 ). The relative abundances of different particles change with depth within the atmosphere and mainly muons which are the decay products of charged mesons, reach sea level because of their weak interaction. The radiation field produced and consequently its effect on aircrew and frequent travellers is a matter of some concern. This paper outlines the results of investigations carried out to determine the characteristics of this radiation field and assess its impact on aircrew. (author)

  16. Momentum of the Pure Radiation Field

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2007-01-01

    Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.

  17. Quantum processes in a strong electromagnetic field producing pairs. 3

    International Nuclear Information System (INIS)

    Gitman, D.M.; Gavrilov, S.P.

    1977-01-01

    The Furry picture in quantum electrodynamics with an external field producing real pairs has been generalized. For the required generalization to be achieved all operators of a spinor field are expressed through functions of production and annihilation operators and formulated are the rules for reduction to a generalized normal form, i.e., to such a form in which all the production operators in each term are on the left from all the annihilation operators. The diagram technique for matrix elements of random processes has been considered

  18. Virtual radiation fields for ALARA determination

    International Nuclear Information System (INIS)

    Knight, T.W.

    1995-01-01

    As computing power has increased, so too has the ability to model and simulate complex systems and processes. In addition, virtual reality technology has made it possible to visualize and understand many complex scientific and engineering problems. For this reason, a virtual dosimetry program called Virtual Radiation Fields (VRF) is developed to model radiation dose rate and cumulative dose to a receptor operating in a virtual radiation environment. With the design and testing of many facilities and products taking place in the virtual world, this program facilitates the concurrent consideration of radiological concerns during the design process. Three-dimensional (3D) graphical presentation of the radiation environment is made possible through the use of IGRIP, a graphical modeling program developed by Deneb Robotics, Inc. The VRF simulation program was designed to model and display a virtual dosimeter. As a demonstration of the program's capability, the Hanford tank, C-106, was modeled to predict radiation doses to robotic equipment used to remove radioactive waste from the tank. To validate VRF dose predictions, comparison was made with reported values for tank C-106, which showed agreement to within 0.5%. Graphical information is presented regarding the 3D dose rate variation inside the tank. Cumulative dose predictions were made for the cleanup operations of tank C-106. A four-dimensional dose rate map generated by VRF was used to model the dose rate not only in 3D space but also as a function of the amount of waste remaining in the tank. This allowed VRF to predict dose rate at any stage in the waste removal process for an accurate simulation of the radiological conditions throughout the tank cleanup procedure

  19. Virtual radiation fields for ALARA determination

    Energy Technology Data Exchange (ETDEWEB)

    Knight, T.W.

    1995-12-31

    As computing power has increased, so too has the ability to model and simulate complex systems and processes. In addition, virtual reality technology has made it possible to visualize and understand many complex scientific and engineering problems. For this reason, a virtual dosimetry program called Virtual Radiation Fields (VRF) is developed to model radiation dose rate and cumulative dose to a receptor operating in a virtual radiation environment. With the design and testing of many facilities and products taking place in the virtual world, this program facilitates the concurrent consideration of radiological concerns during the design process. Three-dimensional (3D) graphical presentation of the radiation environment is made possible through the use of IGRIP, a graphical modeling program developed by Deneb Robotics, Inc. The VRF simulation program was designed to model and display a virtual dosimeter. As a demonstration of the program`s capability, the Hanford tank, C-106, was modeled to predict radiation doses to robotic equipment used to remove radioactive waste from the tank. To validate VRF dose predictions, comparison was made with reported values for tank C-106, which showed agreement to within 0.5%. Graphical information is presented regarding the 3D dose rate variation inside the tank. Cumulative dose predictions were made for the cleanup operations of tank C-106. A four-dimensional dose rate map generated by VRF was used to model the dose rate not only in 3D space but also as a function of the amount of waste remaining in the tank. This allowed VRF to predict dose rate at any stage in the waste removal process for an accurate simulation of the radiological conditions throughout the tank cleanup procedure.

  20. Radiation therapy alone for growth hormone-producing pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Plataniotis, G.A.; Kouvaris, J.R.; Vlahos, L.; Papavasiliou, C. [Athens Univ. (Greece). Dept. of Radiology

    1998-09-01

    We present our experience in the treatment of growth hormone (GH)-producing pituitary adenomas using irradiation alone. Between 1983 and 1991, 21 patients suffering from GH-secreting pituitary adenomas were treated with radiotherapy alone. Two bilateral opposing coaxial fields were used in 10 patients and in the remaining 11 a third frontovertex field was added. Treatment was given in 1.8-2 Gy daily fractions and total dose ranged between 45 and 54 Gy. Treatment was given using a cobalt unit. Four patients treated with somatostatin prior to and 14 patients treated after the end of radiotherapy experienced symptom relief for 6-28 weeks. The 5-year actuarial rate of disease control was 72%. Five out of six failed patients had macroadenomas. Hypopituitarism was observed in 5/21 (24%) patients. Whereas RT alone is effective in the treatment of microadenomas, this is not true for large infiltrative macroadenomas. (orig.)

  1. Radiation therapy alone for growth hormone-producing pituitary adenomas

    International Nuclear Information System (INIS)

    Plataniotis, G.A.; Kouvaris, J.R.; Vlahos, L.; Papavasiliou, C.

    1998-01-01

    We present our experience in the treatment of growth hormone (GH)-producing pituitary adenomas using irradiation alone. Between 1983 and 1991, 21 patients suffering from GH-secreting pituitary adenomas were treated with radiotherapy alone. Two bilateral opposing coaxial fields were used in 10 patients and in the remaining 11 a third frontovertex field was added. Treatment was given in 1.8-2 Gy daily fractions and total dose ranged between 45 and 54 Gy. Treatment was given using a cobalt unit. Four patients treated with somatostatin prior to and 14 patients treated after the end of radiotherapy experienced symptom relief for 6-28 weeks. The 5-year actuarial rate of disease control was 72%. Five out of six failed patients had macroadenomas. Hypopituitarism was observed in 5/21 (24%) patients. Whereas RT alone is effective in the treatment of microadenomas, this is not true for large infiltrative macroadenomas. (orig.)

  2. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1994-01-01

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  3. Experimental microdosimetry in high energy radiation fields

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    To determine microdosimetric characteristics in the beams and fields of high energy panicles with the goal, also, to compare the classical method of experimental microdosimetry, a tissue equivalent low pressure proportional counter (TEPC) with the linear energy transfer (LET) spectrometer based on a chemically etched polyallyldiglycolcarbonate as a track etched detector (TED). To test the use of TED LET spectrometer in the conditions, where the use or TEPC is not possible (high energy charged particle beams at high dose rates). The results obtained with the TEPC NAUSICAA were used in this work to compare them with other data. This TEPC measures directly the linear energy in the interval between 0.15 and 1500 keV/μm in tissue, the low gas pressure (propan based TE mixture) permits to simulate a tissue element of about 3 μm. It can be used in the fields with instantaneous dose equivalent rates between 1 μSv/hour and 1 mSv/ hour. TED LET spectrometer developed to determine LET spectra between 10 and 700 keV/μm in tissue. Primarily, track-to-bulk etch rate ratios are determined through the track parameters measurements, the spectra of these ratios are convened to LET spectra using the calibration curve established by means of heavy charge panicles. The critical volume of thi spectrometer is supposed to be a few nm. There is no limit of use for the dose rate, the background tracks limit the lowest threshold to about 1 mSv, the overlapping of tracks (the highest one) to 100 mSv. Both experimental microdosimetry methods have been used in on board aircraft radiation fields, in on-Earth high energy radiation reference fields, and in the beams of protons with energies up to 300 MeV (Dubna, Moscow, Loma Linda). First, it should be emphasized, that in all high energy radiation fields studied, we concentrated our analysis on the region, where both methods overlap, i.e. between 10 and 1000 keV/μm in tissue. It should be also stressed, that the events observed in this region

  4. Spin and radiation in intense laser fields

    International Nuclear Information System (INIS)

    Walser, M.W.; Urbach, D.J.; Hatsagortsyan, K.Z.; Hu, S.X.; Keitel, C.H.

    2002-01-01

    The spin dynamics and its reaction on the particle motion are investigated for free and bound electrons in intense linearly polarized laser fields. Employing both classical and quantum treatments we analytically evaluate the spin oscillation of free electrons in intense laser fields and indicate the effect of spin-orbit coupling on the motion of the electron. In Mott scattering an estimation for the spin oscillation is derived. In intense laser ion dynamics spin signatures are studied in detail with emphasis on high-order harmonic generation in the tunneling regime. First- and second-order calculations in the ratio of electron velocity and the speed of light show spin signatures in the radiation spectrum and spin-orbit effects in the electron polarization

  5. Radiation degradation of biological waste (aflatoxins) produced in food laboratory

    International Nuclear Information System (INIS)

    Rogovschi, Vladimir Dias

    2009-01-01

    Many filamentous fungi can produce secondary metabolites, called mycotoxins, which can be found in food and agricultural products. One of the main genera of myco toxigenic fungi related to the food chain is the Aspergillus spp. There are over 400 mycotoxins described in the literature, the most common the aflatoxins B1, B2, G1 and G2. The mycotoxins are commonly found in foods and are considered one of the most dangerous contaminants. The aflatoxin B1 is classified in group one by the International Agency of Research on Cancer. Aflatoxins resisting for more than one hour in autoclave making it necessary to other means of degradation of these toxins. This work aimed to observe the effects of gamma radiation of 60 Co and electron beams in the degradation of aflatoxins and compare the damage caused on the morphology of the Aspergillus flavus. The fungus was grown on potato dextrose agar (PDA) for 10 days and was subsequently transferred to coconut agar medium, and maintained for 14 days at 25 degree C. After this step the coconut agar was ground to become a homogeneous pasty and was irradiated with doses of 2.5, 5.0, 10 and 20 kGy. The samples used in scanning electron microscopy were irradiated with doses of 0, 2.5, 5.0, 10 and 20 kGy with sources of 60 Co and electron beams. Irradiation with electron accelerator showed a slightly higher degradation to gamma radiation, reducing 29.93 %, 34.50 %, 52.63 % and 72.30 % for doses of 2.5, 5.0, 10 and 20 kGy, respectively. The Scanning Electron Microscopy showed that doses of 2.5 to 10 kGy did not cause damage to the fungus, but with a dose of 20 kGy it can be observed fungal damage to structures. (author)

  6. A method for characterizing photon radiation fields

    International Nuclear Information System (INIS)

    Whicker, J.J.; Hsu, H.H.; Hsieh, F.H.; Borak, T.B.

    1999-01-01

    Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers' torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed

  7. Transition and synchrotron radiation produced by electrons and particle discrimination

    International Nuclear Information System (INIS)

    Merkel, B.; Repellin, J.-P.; Sauvage, G.; Chollet, J.C.; Dialinas, M.; Gaillard, J.-M.; Hrisoho, A.; Jean, P.

    1976-01-01

    Transition radiation from a radiator of 650 lithium foils has been studied in a multiwire proportional chamber filled with a Xenon-CO 2 mixture for two experimental configurations. With the chamber immediately after the radiator, particle discrimination comparable to those reported in the litterature (90% efficiency for electrons, 10% for hadrons) have been observed. With magnetic bending between the radiator and the xenon chamber typical efficiencies of 87% for electrons and less than 0.4% for hadrons have been measured. The discrimination obtained is at least a factor 20 better than for the more conventional configuration. In the latter case, synchrotron radiation has also been observed

  8. Temperature field for radiative tomato peeling

    International Nuclear Information System (INIS)

    Cuccurullo, G; Giordano, L

    2017-01-01

    Nowadays peeling of tomatoes is performed by using steam or lye, which are expensive and polluting techniques, thus sustainable alternatives are searched for dry peeling and, among that, radiative heating seems to be a fairly promising method. This paper aims to speed up the prediction of surface temperatures useful for realizing dry-peeling, thus a 1D-analytical model for the unsteady temperature field in a rotating tomato exposed to a radiative heating source is presented. Since only short times are of interest for the problem at hand, the model involves a semi-infinite slab cooled by convective heat transfer while heated by a pulsating heat source. The model being linear, the solution is derived following the Laplace Transform method. A 3D finite element model of the rotating tomato is introduced as well in order to validate the analytical solution. A satisfactory agreement is attained. Therefore, two different ways to predict the onset of the peeling conditions are available which can be of help for proper design of peeling plants. Particular attention is paid to study surface temperature uniformity, that being a critical parameter for realizing an easy tomato peeling. (paper)

  9. Mixed field radiation modification of polyurethanes based on castor oil

    International Nuclear Information System (INIS)

    Mortley, A.; Bonin, H.W.; Bui, V.T.

    2006-01-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing 13 C-NMR and FTIR spectra. (author)

  10. Mixed field radiation modification of polyurethanes based on castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, A.; Bonin, H.W.; Bui, V.T. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: aba.mortley@rmc.ca

    2006-07-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing {sup 13}C-NMR and FTIR spectra. (author)

  11. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  12. Reference radiation fields - Simulated workplace neutron fields - Part 2: Calibration fundamentals related to the basic quantities

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 8529-1, ISO 8529-2 and ISO 8529-3, deal with the production, characterization and use of neutron fields for the calibration of personal dosimeters and area survey meters. These International Standards describe reference radiations with neutron energy spectra that are well defined and well suited for use in the calibration laboratory. However, the neutron spectra commonly encountered in routine radiation protection situations are, in many cases, quite different from those produced by the sources specified in the International Standards. Since personal neutron dosimeters, and to a lesser extent survey meters, are generally quite energy dependent in their dose equivalent response, it might not be possible to achieve an appropriate calibration for a device that is used in a workplace where the neutron energy spectrum and angular distribution differ significantly from those of the reference radiation used for calibration. ISO 8529-1 describes four radionuclide based neutron reference radiations in detail. This part of ISO 12789 includes the specification of neutron reference radiations that were developed to closely resemble radiation that is encountered in practice

  13. Radiation shielding phenolic fibers and method of producing same

    International Nuclear Information System (INIS)

    Ohtomo, K.

    1976-01-01

    A radiation shielding phenolic fiber is described comprising a filamentary phenolic polymer consisting predominantly of a sulfonic acid group-containing cured novolak resin and a metallic atom having a great radiation shielding capacity, the metallic atom being incorporated in the polymer by being chemically bound in the ionic state in the novolak resin. A method for the production of the fiber is discussed

  14. Radiation field mapping using a mechanical-electronic detector

    Energy Technology Data Exchange (ETDEWEB)

    Czayka, M., E-mail: mczayka@kent.ed [College of Technology, Kent State University-Ashtabula 3300 Lake Road West, Ashtabula, OH 44004 (United States); Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); Fisch, M. [Program on Electron Beam Technology, Kent State University, P.O. Box 1028, Middlefield, OH 44062 (United States); College of Technology, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 (United States)

    2010-04-15

    A method of radiation field mapping of a scanned electron beam using a Faraday-type detector and an electromechanical linear translator is presented. Utilizing this arrangement, fluence and fluence rate measurements can be made at different locations within the radiation field. The Faraday-type detector used in these experiments differs from most as it consists of a hollow stainless steel sphere. Results are presented in two- and three-dimensional views of the radiation field.

  15. Collimation of laser-produced plasmas using axial magnetic field

    Czech Academy of Sciences Publication Activity Database

    Roy, Amitava; Harilal, S.S.; Hassan, S.M.; Endo, Akira; Mocek, Tomáš; Hassanein, A.

    2015-01-01

    Roč. 33, č. 2 (2015), s. 175-182 ISSN 0263-0346 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : laser-produced plasma * optical emission spectroscopy * plasma-B field interaction * plasma temperature and density * tin plasma Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.649, year: 2015

  16. Radiation of an electron in an electric field. 1

    International Nuclear Information System (INIS)

    Fedosov, N.I.; Flesher, G.I.

    1976-01-01

    The problem of electron radiation in a field of a travelling electric wave is solved by methods of classical electrodynamics. Such a field may serve as a model of a field on the linear accelerator axis. It is shown that the total radiation power, as well as the spectral-angular distribution of the radiation energy of an electron travelling in a longitudinal electric wave coincide with radiation in a stationary uniform electric field with the strength equal to that of the wave at the point where the particle velocity becomes close to the velocity of light [ru

  17. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  18. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  19. Radiation, waves, fields. Causes and effects on environment and health

    International Nuclear Information System (INIS)

    Leitgeb, N.

    1990-01-01

    The book discusses static electricity, alternating electric fields, magnetostatic fields, alternating magnetic fields, electromagnetic radiation, optical and ionizing radiation and their hazards and health effects. Each chapter presents basic physical and biological concepts and describes the common radiation sources and their biological effects. Each chapter also contains hints for everyday behaviour as well as in-depth information an specific scientific approaches for assessing biological effects; the latter are addressed to all expert readers working in these fields. There is a special chapter on the problem of so-called 'terrestrial radiation'. (orig.) With 88 figs., 31 tabs [de

  20. Characteristic of the radiation field in low earth orbit and in deep space

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60 latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  1. Characteristic of the radiation field in low Earth orbit and in deep space.

    Science.gov (United States)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  2. The effect of the geometry on the fluorescence radiation field

    International Nuclear Information System (INIS)

    Teodori, F.; Fernandez, J.E.; Molinari, V.

    2000-01-01

    In x-ray fluorescence spectroscopy a narrow photon beam is focused on the surface of the sample to stimulate the production of characteristic radiation which gives useful information about the composition of the target. Even if the interpretation of the measurement is simple, the quantification of the total emitted intensity is not straightforward because the primary photons are produced in the depth of the sample and only a fraction can reach the surface without colliding again with matter. In this work we show that the geometry of the system plays an important role in determining the properties of the 3D radiation field. By using the integral Boltzmann equation, we show that there exist a link among the source distribution, the boundary conditions, the emission points, the observation angles and the properties of the field of emitted radiation. To illustrate the influence of the geometry, the energy distribution of a continuos emission spectrum like the Compton one has been calculated, firstly. It is shown that the energy distribution of the Compton primary photons (coming out from a slab irradiated with an internal monochromatic and isotropic point source) changes with the orientation of the observation direction. Another example involves a second order effect which depends on a double collision in the specimen. It has been shown that the characteristic emission due to the photoelectric effect is accompanied by a (P,C) continuous contribution which introduces an asymmetry in the shape of the line. Computations in a 3D radiation field have shown that such asymmetry is strongly dependent on the observation direction with respect to the primary volume where the photoelectric effect is produced. This means that detection through a narrow collimator whose axis (assumed here as the observation direction) deviates from the centre of symmetry of the primary volume, will produce differently shaped characteristic lines depending on the extent and placement of the

  3. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  4. Reference neutron radiations. Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field

    International Nuclear Information System (INIS)

    2000-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 2. of ISO 8529 takes as its starting point the neutron sources described in ISO 8529-1. It specifies the procedures to be used for realizing the calibration conditions of radiation protection devices in neutron fields produced by these calibration sources, with particular emphasis on the corrections for extraneous effects (e.g., the neutrons scattered from the walls of the calibration room). In this part of ISO 8529, particular emphasis is placed on calibrations using radionuclide sources (clauses 4 to 6) due to their widespread application, with less details given on the use of accelerator and reactor sources (8.2 and 8.3). This part of ISO 8529 then leads to ISO 8529-3 which gives conversion coefficients and the general rules and procedures for calibration

  5. Optical camera system for radiation field

    International Nuclear Information System (INIS)

    Maki, Koichi; Senoo, Makoto; Takahashi, Fuminobu; Shibata, Keiichiro; Honda, Takuro.

    1995-01-01

    An infrared-ray camera comprises a transmitting filter used exclusively for infrared-rays at a specific wavelength, such as far infrared-rays and a lens used exclusively for infrared rays. An infrared ray emitter-incorporated photoelectric image converter comprising an infrared ray emitting device, a focusing lens and a semiconductor image pick-up plate is disposed at a place of low gamma-ray dose rate. Infrared rays emitted from an objective member are passed through the lens system of the camera, and real images are formed by way of the filter. They are transferred by image fibers, introduced to the photoelectric image converter and focused on the image pick-up plate by the image-forming lens. Further, they are converted into electric signals and introduced to a display and monitored. With such a constitution, an optical material used exclusively for infrared rays, for example, ZnSe can be used for the lens system and the optical transmission system. Accordingly, it can be used in a radiation field of high gamma ray dose rate around the periphery of the reactor container. (I.N.)

  6. Six categories of ionizing radiation quantities practical in various fields

    International Nuclear Information System (INIS)

    Zheng Junzheng; Zhuo Weihai

    2011-01-01

    This paper is the part of review on the evolvement of the systems for ionizing radiation quantities and units. In the paper, for better understanding and correct use of the relevant quantities of ionizing radiation, the major ionizing radiation quantities in various fields are divided into six categories. (authors)

  7. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  8. Electromagnetic field, excited by monodirected X-radiation pulse

    International Nuclear Information System (INIS)

    Zhemerov, A.V.; Metelkin, E.V.

    1994-01-01

    Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface

  9. Radiative decay of coupled states in an external dc field

    International Nuclear Information System (INIS)

    Pal'chikov, V.; Sokolov, Y.; Yakovlev, V.

    2001-01-01

    This paper examines two theoretical aspects of the interference of atomic states in hydrogen which comes from the application of an external electric field F to the 2s metastable state. The radiative corrections to the Bethe-Lamb formula and anisotropy contribution to the angular distribution, which arises from interference between electric-field-induced E1-radiation and forbidden M1-radiation, are analysed

  10. Radiative decay of coupled states in an external dc field

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V. [National Research Inst. for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Mendeleevo, Moscow Region (Russian Federation); Sokolov, Y. [Kurchatov Inst., Russian Research Centre, Moscow (Russian Federation); Yakovlev, V. [Moscow Engineering Physics Inst., Moscow (Russian Federation)

    2001-07-01

    This paper examines two theoretical aspects of the interference of atomic states in hydrogen which comes from the application of an external electric field F to the 2s metastable state. The radiative corrections to the Bethe-Lamb formula and anisotropy contribution to the angular distribution, which arises from interference between electric-field-induced E1-radiation and forbidden M1-radiation, are analysed.

  11. Review of radiation sources, calibration facilities and simulated workplace fields

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, V., E-mail: veronique.lacoste@irsn.f [Institut de Radioprotection et de Surete Nucleaire, BP3, Bat. 159, F-13115 Saint-Paul Lez Durance (France)

    2010-12-15

    A review on radiation sources, calibration facilities and realistic fields is presented and examples are given. The main characteristics of the fields are shortly described together with their domain of applications. New emerging fields are also mentioned and the question of needs for additional calibration fields is raised.

  12. OH megamasers: dense gas & the infrared radiation field

    Science.gov (United States)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  13. Laser readable thermoluminescent radiation dosimeters and methods for producing thereof

    International Nuclear Information System (INIS)

    Braunlich, P.F.; Tetzlaff, W.

    1989-01-01

    Thin layer thermoluminescent radiation dosimeters for use in laser readable dosimetry systems, and methods of fabricating such thin layer dosimeters are disclosed. The thin layer thermoluminescent radiation dosimeters include a thin substrate made from glass or other inorganic materials capable of withstanding high temperatures and high heating rates. A thin layer of a thermoluminescent phosphor material is heat bonded to the substrate using an inorganic binder such as glass. The dosimeters can be mounted in frames and cases for ease in handling. Methods of the invention include mixing a suitable phosphor composition and binder, both being in particulate or granular form. The mixture is then deposited onto a substrate such as by using mask printing techniques. The dosimeters are thereafter heated to fuse and bond the binder and phosphor to the substrate. 34 figs

  14. Does radiation exposure produce a protective effect among radiologists

    International Nuclear Information System (INIS)

    Matanoski, G.M.; Sternberg, A.; Elliott, E.A.

    1987-01-01

    The mortality experience of radiologists compared to that of other physician specialists demonstrates an increased risk of cancer deaths as well as deaths from all causes among physicians practicing in the early years of this century. However, for the radiologists who joined specialty societies after 1940, the age pattern of deaths has changed. Whereas among early entrants, young radiologists had higher mortality rates than those of other specialists; among later entrants, the young radiologists have lower mortality. However, as these later-entrant radiologists age, their rates appear to exceed those of other specialists. Although the level of radiation exposure is unknown, physicians in more recent years usually have lower cumulative doses. Lower radiation exposure may be one of a number of possible explanatory factors for the cross-over from protected to higher risk status as these physicians age

  15. Underwater inspection training in intense radiation field

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi

    2017-01-01

    Osaka Prefecture University has a large dose cobalt 60 gamma ray source of about 2 PBq, and is engaged in technological training and human resource development. It is assumed that the decommissioning underwater operation of Fukushima Daiichi Nuclear Power Station would be the focus. The university aims at acquisition of the basic of underwater inspection work under radiation environment that is useful for the above purpose, radiation measurement under water, basic training in image measurement, and aims as well to evaluate the damage of imaging equipment due to radiation, and master practical knowledge for the use of inspection equipment under a large dose. In particular, it is valuable to train in the observation of Cherenkov light emitted from a large dose cobalt radiation source in water using a high sensitivity camera. The measurement of radiation dose distribution in water had difficulty in remote measurement due to water shielding effect. Although it took much time before, the method using high sensitivity camera is easy to sequentially perform two-dimensional measurement, and its utility value is large. Its effect on the dose distribution measurement of irregularly shaped sources is great. The contents of training includes the following: radiation source imaging in water, use of a laser rangefinder in water, dose distribution measurement in water and Cherenkov light measurement, judgment of equipment damage due to irradiation, weak radiation measurement, and measurement and decontamination of surface contamination. (A.O.)

  16. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields

    International Nuclear Information System (INIS)

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2011-01-01

    Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the α-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

  17. Polarization of photoelectrons produced from atoms by synchrotron radiation

    International Nuclear Information System (INIS)

    Hughes, V.W.; Lu, D.C.; Huang, K.N.

    1981-01-01

    The polarization of photoelectrons from stoms has proved to be an important tool for studying correlation effects in atoms, as well as relativistic effects such as the spin-orbit interaction. Extensive experimental and theoretical studies have been made of the Fano effect, which is the production of polarized electrons by photoionization of unpolarized atoms by circularly polarized light. The experiments have dealt mostly with alkali atoms and with photon energies slightly above the ionization thresholds. Measurements that could be made to utilize polarized radiation are discussed

  18. Energetic radiation produced during rocket-triggered lightning.

    Science.gov (United States)

    Dwyer, Joseph R; Uman, Martin A; Rassoul, Hamid K; Al-Dayeh, Maher; Caraway, Lee; Jerauld, Jason; Rakov, Vladimir A; Jordan, Douglas M; Rambo, Keith J; Corbin, Vincent; Wright, Brian

    2003-01-31

    Using a NaI(Tl) scintillation detector designed to operate in electrically noisy environments, we observed intense bursts of energetic radiation (> 10 kiloelectron volts) during the dart leader phase of rocket-triggered lightning, just before and possibly at the very start of 31 out of the 37 return strokes measured. The bursts had typical durations of less than 100 microseconds and deposited many tens of megaelectron volts into the detector. These results provide strong evidence that the production of runaway electrons is an important process during lightning.

  19. Infrared radiation emerging from smoke produced by brush fires

    Science.gov (United States)

    Weinman, J. A.; Olson, W. S.; Harshvardhan, M.

    1981-01-01

    The IR radiative transport properties of brush fire smoke clouds, computed for a model with finite horizontal dimensions as well as the more common plane-parallel model, are presented. The finite model is a three-dimensional version of the two-stream approximation applied to cubic clouds of steam, carbon, and silicates. Assumptions are made with regard to the shape and size distributions of the smoke particles. It is shown that 11.5-micron radiometry can detect fires beneath smoke clouds if the path integrated mass density of the smoke is less than or equal to 3 g/sq m.

  20. A radiation-electric-field combination principle for SO2-oxidation in Ar-mixtures

    International Nuclear Information System (INIS)

    Leonhardt, J.; Krueger, H.; Popp, P.; Boes, J.

    1981-01-01

    A simple model for a radiation-induced SO 2 -oxidation in Ar using SO 2 /O 2 /Ar-mixtures has been described by Leonhardt a.o. It is possible to improve the efficiency of the radiation-induced SO 2 -oxidation in such mixtures if the electrons produced by the ionizing radiation are accelerated by means of an electric field. The energy of the field-accelerated electrons must be high enough to form reactive SO 2 radicals but not high enough to ionize the gas mixture. Such an arrangement is described. The connection between the rate of SO 3 -formation and the electric field and the connection between SO 3 -formation and decreasing of the O 2 -concentration in the reaction chaimber were experimentally determined. Further the G-values attained by means of the radiation-electric-field combination are discussed. (author)

  1. Characterization of hydrothermal green quartz produced by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Enokihara, Cyro T.; Rela, Paulo R., E-mail: cteiti@ipen.br, E-mail: prela06@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Schultz-Güttler, Rainer A., E-mail: rainersgut@gmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Geociencias

    2015-07-01

    A specific variety of quartz showing a green color in nature or induced artificially by radiation gamma ({sup 60}Co) is quite rare. Only two occurrences are known today, where this type of quartz can be found: Canada, at the Thunder Bay Amethyst Mine, Ontario and Brazil, at widely scattered geode occurrences along a 600 km stretch from Quarai at Brazils southern most tip to Uberlandia in Minas Gerais. These two occurrences have been formed by strong hydrothermal activities.That way much quartz crystals showed a very fast growth history facilitating the formation of growth defects (twinning, small angle tilting, mosaic growth, striations) and the uptake of water in form of micro inclusions, molecular water, silanol (Si-OH) and OH. In the present work the material analyzed is from hydrothermal regimes found in intrusions of basaltic rocks located in the Rio Grande do Sul state. To characterize these materials, colored green by gamma rays, analyses by ICP, electron microscopy, water loss techniques and UV-VIS or NIR-FTIR spectroscopic measurements have been made. Silanol complexes are formed, which by radiation due to gamma rays form the color center NBOHC (Non-bonding Oxygen Hole Center), showing absorption between 590 to 620 nm, responsible for the green color. The water content with up to 3200 ppm by weight exceeds the amount of charge balancing cations (Fe, Al, Li). There is no correlation between water content and cations as in other color varieties. (author)

  2. Determination of volatiles produced during radiation processing in Laurus cinnamomum

    Energy Technology Data Exchange (ETDEWEB)

    Salum, D.C.; Araujo, M.M.; Fanaro, G.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Cidade Universitaria, Av. Professor Lineu Prestes 2242, Zip code: 05508-000 Butanta, Sao Paulo, SP (Brazil); Purgatto, E. [Faculdade de Ciencias Farmaceuticas, FCF/USP, Departamento de Alimentos e Nutricao Experimental. Av. Prof. Lineu Prestes, 580 Bloco 14. CEP: 05508-900 Sao Paulo, SP (Brazil)], E-mail: epurgatt@usp.br; Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Cidade Universitaria, Av. Professor Lineu Prestes 2242, Zip code: 05508-000 Butanta, Sao Paulo, SP (Brazil)], E-mail: villavic@ipen.br

    2009-07-15

    In order to protect food from pathogenic microorganisms as well as increase its shelf-life, while keeping sensorial properties (e.g., odor and taste), which are important properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. Possible changes in the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties, in order to allow better application of the irradiation technology. The aim of the present study was to analyze volatile formation on cinnamon (Laurus cinnamomum) samples after gamma irradiation. These samples were irradiated into plastic packages using a {sup 60}Co facility. Radiation doses applied were 0, 5, 10, 15, 20 and 25 kGy. For the analysis of the samples, solid-phase microextraction (SPME) was applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation showed the highest decrease in volatile compounds. For L. cinnamomum, the irradiation decreased volatile compounds by nearly 56% and 89.5%, respectively, comparing to volatile from a sample which had not been previously irradiated.

  3. Radiation breeding researches in gamma field. Results of researches

    International Nuclear Information System (INIS)

    Morishita, Toshikazu

    2006-01-01

    Abstract of radiation breeding researches and outline of gamma field in IRB (Institute of Radiation Breeding) are described. The gamma field is a circular field of 100 m radius with 88.8TBqCo-60 source at the center. The field is surrounded by a shielding dike of 8 m in height. The effects of gamma irradiation on the growing plants, mutant by gamma radiation and plant molecular biological researches using mutant varieties obtained by the gamma field are explained. For examples, Japanese pear, chrysanthemum, Cytisus, Eustoma grandiflorum, Manila grass, tea and rose are reported. The mutant varieties in the gamma field, nine mutant varieties of flower colors in chrysanthemum, evergreen mutant lines in Manila grass, selection of self-compatible mutants in tea plant, and the plants of the gamma field recently are shown. (S.Y.)

  4. High density terahertz frequency comb produced by coherent synchrotron radiation

    Science.gov (United States)

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-07-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10-10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  5. Morphology of magnetic fields generated in laser-produced plasmas

    International Nuclear Information System (INIS)

    Boyd, T.J.M.; Cooke, D.

    1988-01-01

    Magnetic fields in the megagauss range have been measured in experiments on plasmas generated by irradiating targets with high power lasers. A study of the morphology of these self-generated fields is important not only for its intrinsic interest but for possible implications in laser--target physics. In this paper work on the numerical modeling of large magnetic fields generated in target experiments is reported. The results show generally satisfactory agreement with the fields measured experimentally both in terms of the magnitude of the peak fields and their morphology. In the numerical model the contribution from the Hall term in describing the evolution of the magnetic field is shown to be important especially in short pulse (≅100 psec) experiments

  6. Influence of electromagnetic radiation produced by mobile phone on some biophysical blood properties in rats.

    Science.gov (United States)

    El-Bediwi, Abu Bakr; Saad, Mohamed; El-kott, Attall F; Eid, Eman

    2013-04-01

    Effects of electromagnetic radiation produced by mobile phone on blood viscosity, plasma viscosity, hemolysis, Osmotic fragility, and blood components of rats have been investigated. Experimental results show that there are significant change on blood components and its viscosity which affects on a blood circulation due to many body problems. Red blood cells, White blood cells, and Platelets are broken after exposure to electromagnetic radiation produced by mobile phone. Also blood viscosity and plasma viscosity values are increased but Osmotic fragility value decreased after exposure to electromagnetic radiation produced by mobile phone.

  7. Separation of radiation from two sources from their known radiated sum field

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey

    2011-01-01

    This paper presents a technique for complete and exact separation of the radiated fields of two sources (at the same frequency) from the knowledge of their radiated sum field. The two sources can be arbitrary but it must be possible to enclose the sources inside their own non-intersecting minimum...

  8. The effect of ultraviolet (UV)-B radiation on primary producers

    International Nuclear Information System (INIS)

    Germ, M.

    2003-01-01

    Ozone layer in stratosphere is thinning and consequently UV-B radiation on the Earth surface is increasing. Although there is a small portion of UV-B radiation in the solar radiation, it has strong influence on organisms. Targets of UV-B radiation and protective mechanisms in primary producers are described. In the framework of the international project we studied the effect of UV-B radiation on blue-greens, algae, mosses, lichens and vascular plants on the National Institute of Biology

  9. Use of gamma radiation to control fusarium verticilloides producing two known mycotoxins in infected corn grains

    International Nuclear Information System (INIS)

    Youssef, K.A.; Abouzeid, M.A.; Hassan, A.A.; Abd-Elrahman, D.G.; Hammad, A.A.

    2007-01-01

    Fusarium verticillioides Sacc. (Nirenberg) was isolated from fresh grains collected from corn fields with ears symptoms. When cultured in liquid media under controlled incubation conditions, two already known mycotoxins were produced. The two mycotoxins were obtained through the extraction process of the lyophilized culture filtrate under acidic condition using ethyl acetate and were detected by thin layer chromatography and high performance liquid chromatography in comparison with the authentic of both acids. Mass spectroscopic investigations confirmed the molecular weight of the two toxic compounds which are known as fusaric and 9, 10-dehydro fusaric acids. Application of gamma radiation at doses up to 3 KGy caused a slight decrease in the mould count of isolated pathogen while a 5 KGy dose caused a dramatic reduction in fungal count and at irradiation dose of 12.5 KGy the fungus was completely inhibited for up to 12 weeks of storage

  10. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  11. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    Science.gov (United States)

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  12. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  13. Radiation from channeled positrons in a hypersonic wave field

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Gasparyan, R.A.; Gabrielyan, R.G.

    1987-01-01

    The radiation emitted by channeled positrons in a longitudinal or transverse standing hypersonic wave field is considered. In the case of plane channeling the spectral distribution of the radiation intensity is shown to be of a resonance nature depending on the hypersound frequency

  14. Conditions's considerations of the CT radiation field

    International Nuclear Information System (INIS)

    Andrade, Lucio das Chagas de; Peixoto, Jose Guilherme Pereira

    2013-01-01

    In obtaining the standardization of radiation fields in diagnostic radiology were established standards and qualities to X radiation beams, which are specified in terms of the tension in the tube, first CSR, additional filters, homogeneity coefficient or second CSR. The qualities recommended in CT (RQT), are established in IEC 61267, which is the reference for the establishment of beams in diagnostic radiology. (author)

  15. Repair of radiation damage caused by cyclotron-produced neutrons

    International Nuclear Information System (INIS)

    Martins, B.I.

    1979-01-01

    Hall et al. present experimental data on repair of sublethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 60 Co γ rays. Hall and Kraljevic present experimental data on repair of potentially lethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 210 kVp x rays. These results of Hall et al. are very difficult to explain from basic concepts in radiobiology. Contrary to Rossi, these data do not support his thesis that repair of radiation damage is dose-dependent and linear energy transfer independent. Nor do these results meet the expectations of multitarget-single hit theory which would require dose-independent repair equal to n. The observation of the same extrapolation number for neutrons and for x rays is also surprising. From the point of view of radiotherapy, the doses of interest are about 140 rad for neutrons and about 300 rad for x rays. There are no data for repair of potentially lethal damage below 800 rad for x rays and 400 rad for neutrons. The difference in survival between single and split dose is negligible up to a total of about 600 rad of x rays or of neutrons. These data of Hall et al. therefore have little significance to radiotherapists and are an enigma to radiobiologists

  16. Hybrid hydrogels produces by ionizing radiation technique for drug delivery

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Parra, D.F.; Lugao, A.B.; Amato, V.S.

    2011-01-01

    Complete text of publication follows. Interest in the preparation of biocompatible hydrogels with various properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl, PEG and 0.5, 1.0 and 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopic analysis (FTIR), swelling in solutions of different pH and gel determinations. The membranes have no toxicity and the gel content reveals the reticulation. The nano-clay influences directly the equilibrium swelling. Acknowledgement: Support by FAPESP 09/50926-1, FAPESP Process no. 2009/18627-4 CNPq Process no. 310849/2009-8, CAPES, IPEN/CNEN.

  17. Hawking radiation of a vector field and gravitational anomalies

    International Nuclear Information System (INIS)

    Murata, Keiju; Miyamoto, Umpei

    2007-01-01

    Recently, the relation between Hawking radiation and gravitational anomalies has been used to estimate the flux of Hawking radiation for a large class of black objects. In this paper, we extend the formalism, originally proposed by Robinson and Wilczek, to the Hawking radiation of vector particles (photons). It is explicitly shown, with the Hamiltonian formalism, that the theory of an electromagnetic field on d-dimensional spherical black holes reduces to one of an infinite number of massive complex scalar fields on 2-dimensional spacetime, for which the usual anomaly-cancellation method is available. It is found that the total energy emitted from the horizon for the electromagnetic field is just (d-2) times that for a scalar field. The results support the picture that Hawking radiation can be regarded as an anomaly eliminator on horizons. Possible extensions and applications of the analysis are discussed

  18. Tomography of binomial states of the radiation field

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    2004-01-01

    The symplectic, optical, and photon-number tomographic symbols of binomial states of the radiation field are studied. Explicit relations for all tomograms of the binomial states are obtained. Two measures for nonclassical properties of these states are discussed.

  19. Synthesis of magnetic systems producing field with maximal scalar characteristics

    International Nuclear Information System (INIS)

    Klevets, Nickolay I.

    2005-01-01

    A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient of a field energy on a given directing vector, a field magnitude, a magnetic flux through a given surface, a scalar product of a field or a force by a directing function given in some area of space, etc. The synthesized MSs provide maximal efficiency of permanent magnets utilization. The usage of the proposed method of MSs synthesis allows to change a procedure of projecting in principal, namely, to execute it according to the following scheme: (a) to choose the sizes, a form and a number of blocks of a system proceeding from technological (economical) reasons; (b) using the proposed synthesis method, to find an orientation of site magnetization providing maximum possible effect of magnet utilization in a system obtained in (a). Such approach considerably reduces a time of MSs projecting and guarantees maximal possible efficiency of magnets utilization. Besides it provides absolute assurance in 'ideality' of a MS design and allows to obtain an exact estimate of the limit parameters of a field in a working area of a projected MS. The method is applicable to a system containing the components from soft magnetic material with linear magnetic properties

  20. Proton radiography of magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Le Pape, S.; Patel, P.; Chen, S.; Town, R.; Mackinnon, A.

    2009-01-01

    Electromagnetic fields generated by the interaction with plasmas of long-pulse laser beams relevant to inertial confinement fusion have been measure. A proton beam generated by the interaction of an ultra intense laser with a thin metallic foil is used to probe the B-fields. The proton beam then generated is temporally short (of the order of a ps), highly laminar and hence equivalent to a virtual point which makes it an ideal source for radiography. We have investigated, using face-on radiography, B fields at intensity around 10 14 W/cm 2 due to the non co-linearity of temperature and density gradients. (authors)

  1. Anisotropic instability of the photoelectrons generated by soft x-ray radiation of the laser-produced plasma focus

    International Nuclear Information System (INIS)

    Klumov, B.A.; Tarakanov, V.P.

    1994-01-01

    The electron field with the anisotropic distribution function is being formed when the gas is being affected with ionizing radiation. The anisotropy of the distribution function occurs due to the fact that photoelectrons fly mainly in the direction perpendicular to that of ionizing radiation quantum propagation. In order to emphasize the most typical features of the developed anisotropic instability, photoelectrons were believed to fly strictly across the photon propagation direction. Two-dimensional electromagnetic particle simulations have been carried out to study high-frequency disturbances in the plasma produced by ionizing radiation. Elastic processes were taken into account. It has been shown, in particular, that the energy of anisotropic electrons transforms mainly into that of magnetic pulsations (approximately 7% of the energy transforms into that of magnetic pulsations). Development of the anisotropic instability result in a space stratification into current filaments. The anisotropic instability study can be important for an interpretation of electromagnetic emission spectra for a plasma disturbed by radiation

  2. Effects of hypersonic field and anharmonic interactions on channelling radiation

    International Nuclear Information System (INIS)

    George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G

    2007-01-01

    The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably

  3. Maximal near-field radiative heat transfer between two plates

    OpenAIRE

    Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl

    2013-01-01

    International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...

  4. Long distance elementary measurement of the radiation dose ratio produced by neutron activation

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Wu Chunlei; Hu Yonghong; Li Yan

    2009-04-01

    The working principle and the structure and performances of a long distance controllable individual radiation dose ratio instrument are described. The radiation dose ratio produced by neutron activation is elementarily measured by using this instrument in the neutron generator hall with high neutron yield. When neutron yield arrives to 2 x 10 11 s -1 , the radiation dose ratio produced by neutron activation is 99.9 μSv/h in 1 h after the generator being stopped. The radiation dose ratio is reduced to 24.4 μSv/h in 39 h after the generator being stopped. When neutron yield is 3.2 x 10 10 s -1 , the radiation dose ratio produced by neutron activation is 21.9 μSv/h in 36 min, after the generator being stopped. The measurement results may provide reference for physical experimenters and neutron generator operators. (authors)

  5. Radiation measurement of apples produced in Aomori prefecture

    International Nuclear Information System (INIS)

    Tarusawa, Kohetsu; Kudo, Kohsei; Yamadera, Akira

    2003-01-01

    The activities of seven kinds of apples produced in Aomori prefecture were measured with a high pure Ge detector set in a 15 cm-thick lead shield. The activities of 40 K were detected in all samples, but an artificial radioactive nuclide was not detected. The slices of an apple were contacted to an imaging plate for 15 days in a 15 cm-thick lead shield and cross sectional activity distributions were measured. By using the distribution map, the activities of skin, flesh and lead portion of an apple 'Ohrin' were calculated to 0.041, 0.032 and 0.046 Bq/g, respectively. This measuring system will be used for the activity estimations of the farm products, specially apples, because of that many atomic institutions are in operation and in the planning stage on Aomori prefecture. (author)

  6. Behavior of MOSFET Amplifier in Radiation Fields

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.; Ashry, M.

    2000-01-01

    MOSFET type 2 N 3823 characteristics and its application as an amplifier are analyzed including the effects of gamma, electron beam 1.5 MeV 25 m A and neutron flux. The 1-V characteristics, transfer curve, and the frequency response of the amplifier, and the amplification factor(A v 0 are discussed with MOSFET circuit parameters. The drain current and the amplitude of the output signal decrease as the absorbed dose increases. The measured values of the amplified signal are attenuated by 30% and 6% after exposing the MOSFET to gamma radiation and electron beam at the same dose respectively. Also for exposure to 4x10 13 N/cm 3 neutrons decreased the measured value of the amplified signal by 73% of the initial values. The decrease in the gain of the MOSFET is due to the degradation of the transconductance. It is also noticed that percentage of the decrease depends on the type of radiation

  7. A survey of synchrotron radiation devices producing circular or variable polarization

    International Nuclear Information System (INIS)

    Kim, K.J.

    1990-01-01

    This paper reviews the properties and operating principles of the new types of synchrotron radiation devices that produce circular polarization, or polarization that can be modulated in arbitrary fashion

  8. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  9. Lightweight space radiator with leakage control by internal electrostatic fields

    International Nuclear Information System (INIS)

    Kim, H.; Bankoff, S.G.; Miksis, M.J.

    1991-01-01

    An electrostatic liquid film space radiator is proposed. This will employ an internal electrostatic field to prevent leakage of the liquid-metal coolant out of a puncture. This overcomes the major disadvantage of membrane radiators, which is their vulnerability to micrometeorite impacts. Calculations show that leaks of liquid lithium at 700 degree K can easily be stopped from punctures which are several mm in diameter, with very large safety factors. The basic idea lends itself to a variety of radiator concepts, both rotating and non-rotating. Some typical film thickness and pressure calculations in the presence of an electric field are shown

  10. Establishment of 137Cs radiation fields for instrument calibration

    International Nuclear Information System (INIS)

    Albuquerque, M. da P.P.; Caldas, L.V.E.; Xavier, M.

    1988-09-01

    In order to study the energy dependence of clinical dosemeters, systems constituted of ionization chambers connected to special electrometers, many times their calibration with the gamma radiation of 137 Cs is necessary. In this case, the radiation field characterization is fundamental. The source used presents and activity of 38,8 Tbq and belongs to the Calibration Laboratory of IPEN. Dosimetric films, gammagraphy films, ionization chambers and Lucite phantons were used. At the calibration distance, 80 cm (detector-source detection), the homogeneity of a 10 X 10 cm 2 radiation field was equal 68%. (author) [pt

  11. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  12. Gravitational radiation from preheating with many fields

    International Nuclear Information System (INIS)

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier

    2010-01-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields

  13. Gravitational radiation from preheating with many fields

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier, E-mail: giblinj@kenyon.edu, E-mail: larry@gravity.phys.uwm.edu, E-mail: siemens@gravity.phys.uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin — Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2010-08-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.

  14. Electrostatic fields and charged particle acceleration in laser produced plasmas

    International Nuclear Information System (INIS)

    Hora, H.

    1983-01-01

    Some new aspects pioneered recently by Alfven in the theory of cosmic plasmas, indicate the possibility of a new treatment of the action of electrostatic double layers in the periphery of an expanding laser produced plasma. The thermally produced electrostatic double layer which has been re-derived for a homogeneous plasma shows that a strong upshift of ion energies is possible, in agreement with experiments. The number of accelerated ions is many orders of magnitude smaller than observed at keV and MeV energies. The nonlinear force acceleration could explain the number and energy of the observed fast ions. It is shown, however, that electrostatic double layers can be generated which should produce super-fast ions. A derivation of the spread double layers in the case of inhomogeneous plasmas is presented. It is concluded that the hydrodynamically expected multi GeV heavy ions for 10 TW laser pulses should produce super-fast ions up to the TeV range. Further conclusions are drawn from the electrostatically measured upshifted (by 300 keV) DT fusion alphas from laser compressed plasma. An analysis of alpha spectra attempts to distinguish between different models of the stopping power in the plasmas. The analysis preliminarily arrives at a preference for the collective model. (author)

  15. Effects of external radiation fields on line emission—application to star-forming regions

    Energy Technology Data Exchange (ETDEWEB)

    Chatzikos, Marios; Ferland, G. J. [University of Kentucky, Lexington, KY 40506 (United States); Williams, R. J. R. [AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); Porter, Ryan [Department of Physics and Astronomy and Center for Simulational Physics, University of Georgia, Athens, GA 30602-2451 (United States); Van Hoof, P. A. M., E-mail: mchatzikos@gmail.com [Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Uccle (Belgium)

    2013-12-20

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.

  16. Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields

    International Nuclear Information System (INIS)

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-01-01

    We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.

  17. Miniature coils for producing pulsed inplane magnetic fields for nanospintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pawliszak, Łukasz; Zgirski, Maciej [Institute of Physics, Polish Academy of Sciences, al.Lotnikow 32/46, PL 02-668 Warszawa (Poland); Tekielak, Maria [Faculty of Physics, University of Białystok, ul.Lipowa 41, PL 15-424 Białystok (Poland)

    2015-03-15

    Nanospintronic and related research often requires the application of quickly rising magnetic field pulses in the plane of the studied planar structure. We have designed and fabricated sub-millimeter-sized coils capable of delivering pulses of the magnetic field up to ∼500 Oe in the plane of the sample with the rise time of the order of 10 ns. The placement of the sample above the coil allows for easy access to its surface with manipulators or light beams for, e.g., Kerr microscopy. We use the fabricated coil to drive magnetic domain walls in 1 μm wide permalloy wires and measure magnetic domain wall velocity as a function of the applied magnetic field.

  18. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  19. Monte Carlo technique applications in field of radiation dosimetry at ENEA radiation protection institute: A Review

    International Nuclear Information System (INIS)

    Gualdrini, G.F.; Casalini, L.; Morelli, B.

    1994-12-01

    The present report summarizes the activities concerned with numerical dosimetry as carried out at the Radiation Protection Institute of ENEA (Italian Agency for New Technologies, Energy and the Environment) on photon dosimetric quantities. The first part is concerned with MCNP Monte Carlo calculation of field parameters and operational quantities for the ICRU sphere with reference photon beams for the design of personal dosemeters. The second part is related with studies on the ADAM anthropomorphic phantom using the SABRINA and MCNP codes. The results of other Monte Carlo studies carried out on electron conversion factors for various tissue equivalent slab phantoms are about to be published in other ENEA reports. The report has been produced in the framework of the EURADOS WG4 (numerical dosimetry) activities within a collaboration between the ENEA Environmental Department and ENEA Energy Department

  20. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  1. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  2. Electromagnetic Fields, Pulsed Radiofrequency Radiation, and Epigenetics: How Wireless Technologies May Affect Childhood Development

    Science.gov (United States)

    Sage, Cindy; Burgio, Ernesto

    2018-01-01

    Mobile phones and other wireless devices that produce electromagnetic fields (EMF) and pulsed radiofrequency radiation (RFR) are widely documented to cause potentially harmful health impacts that can be detrimental to young people. New epigenetic studies are profiled in this review to account for some neurodevelopmental and neurobehavioral changes…

  3. Electron acceleration by laser produced wake field: Pulse shape effect

    Science.gov (United States)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  4. Use of mobile robots for mapping radiation field around particle accelerators

    International Nuclear Information System (INIS)

    Sharma, S.; Agashe, V.; Pal, P.K.

    2011-01-01

    In Particle Accelerators, when the accelerated particles hit the target or inadvertently strike the wall, prompt and induced radiation is produced. It is necessary to monitor the resulting radiation field in order to reduce radiation exposure to operating personnel, as well as to locate points of leakage of the particle beam. This paper describes the development of mobile robots equipped with onboard radiation detectors for mapping such radiation fields. They include a user interface software running on a host computer to tele operate the robot, monitor radiation levels, and build and display a radiation map out of these data through interpolation. One such robot (ARMER-II), designed and developed by us in consultation with Radiation Safety Division (RSD), is a portable mobile robot for identifying locations with radiation levels higher than permissible limits. Its remote interface computes and guides the robot to move in a direction in which the increase in intensity of radiation is the steepest. Another mobile robot (ARMER-I) has a telescopic arm fitted with a light and small GM tube. This also can be controlled remotely, and is very useful in remote measurement of radiation from locations which are difficult to reach otherwise. Another version (ASHWA) has been successfully adapted by VECC, Kolkata, for gamma and neutron radiation profiling in the cyclotron vault area. We are presently working on the design and development of a four-wheel differentially driven mobile robot (RADMAPPER) with higher payload capacity for carrying radiation detectors like gamma camera and neutron dosimeters and positioning them at desired heights. With appropriate localization capability, this is going to be a very flexible mobile robot based system for radiation profiling around particle accelerators. The specification for this robot has been prepared in consultation with VECC for use in their cyclotron facilities. (author)

  5. Neutron measurements in the stray field produced by 158 GeV/c lead ion beams

    International Nuclear Information System (INIS)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Nava, E.; Silari, M.; Ulrici, L.

    1997-01-01

    This paper discusses measurements carried out at CERN in the stray radiation field produced by 158 GeV/c 208 Pb 82+ ions. The purpose was to test and intercompare the response of several detectors, mainly neutron measuring devices, and to determine the neutron spectral fluence as well as the microdosimetric (absorbed dose and dose equivalent) distributions in different locations around the shielding. Both active instruments and passive dosimeters were employed, including different types of Andersson-Braun rem counters, a tissue equivalent proportional counter, a set of superheated drop detectors, a Bonner sphere system and different types of ion chambers. Activation measurements with 12 C plastic scintillators and with 32 S pellets were also performed to assess the neutron yield of high energy lead ions interacting with a thin gold target. The results are compared with previous measurements and with measurements made during proton runs. (author)

  6. Black-body radiation of noncommutative gauge fields

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.; Hajirahimi, Maryam

    2006-01-01

    The black-body radiation is considered in a theory with noncommutative electRomegnetic fields; that is noncommutativity is introduced in field space, rather than in real space. A direct implication of the result on cosmic microwave background map is argued

  7. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  8. Spherical-wave expansions of piston-radiator fields.

    Science.gov (United States)

    Wittmann, R C; Yaghjian, A D

    1991-09-01

    Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.

  9. Dynamics of Charged Particles and their Radiation Field

    International Nuclear Information System (INIS)

    Poisson, E

    2006-01-01

    an electron for very long times. Without radiation reaction, the motion of an electron in the trap is an epicycle that consists of a rapid (and small) cyclotron orbit superposed onto a slow (and large) magnetron orbit. Spohn shows that according to the Landau-Lifshitz equations, the radiation reaction produces a damping of the cyclotron motion. For reasonable laboratory situations this damping occurs over a time scale of the order of 0.1 second. This experiment might well be within technological reach. The presentation of the quantum theory is based on the nonrelativistic Abraham model, which upon quantization leads to the well-known Pauli-Fierz Hamiltonian of nonrelativistic quantum electrodynamics. This theory, an approximation to the fully relativistic version of QED, has a wide domain of validity that includes many aspects of quantum optics and laser-matter interactions. I first admit that I found Spohn's presentation to be tough going. Unlike the pair of delightful books by Cohen-Tannoudji, Dupont-Roc, and Grynberg, this is not a gentle introduction to the quantum theory of a charged particle coupled to its own electromagnetic field. Instead, Spohn proceeds rather quickly through the formulation of the theory (defining the Hamiltonian and the Hilbert space) and then presents some applications (for example, he constructs the ground states of the theory, he examines radiation processes, and he explores finite-temperature aspects). There is a lot of material in the eight chapters devoted to the quantum theory, but my insufficient preparation and the advanced nature of Spohn's presentation were significant obstacles. One of the most useful resources in Spohn's book are the historical notes and literature reviews that are inserted at the end of each chapter. I discovered a wealth of interesting articles by reading these, and I am grateful that the author made the effort to collect this information for the benefit of his readers. (book review)

  10. Visual verification of linac light and radiation fields coincidence

    International Nuclear Information System (INIS)

    Monti, Angelo F.; Frigerio, Milena; Frigerio, Giovanna

    2003-01-01

    X-ray and light field alignment evaluation is carried out during linac quality assurance programs. In this paper, we compare the size of the light field measured by a photodiode and by a more traditional visual observation with the size of the x-ray field. The comparison between actual light field size, measured with the photodiode, and light field size measured by human eye allow us to verify the reliability of human eye in the evaluation of this parameter. The visual field is always larger than real light field; however, it agrees better with the x-ray field. It matches the light field if we take into account the 25% (± 1%) of the decrement line of the maximum central lightening; however, this method simulates better the actual field employed in radiation treatments

  11. Problems with ink skin markings for radiation field setups

    International Nuclear Information System (INIS)

    Endoh, Masaru; Saeki, Mituaki; Ishida, Yusei

    1982-01-01

    Ink skin markings are used in radiation therapy to aid in reproduction of treatment field setups or to indelibly outline field markings or tumors. We reported two cases of indelible ink skin for radiation field septa with minimal discomfort and dermatitis have been experienced for 6 months and above since end of radiotherapy. These indelible ink skin markings look like tattoo that will be big problems in the case of young female. We improved these problems by using of 10 percent silver nitrate instead of habitual skin ink. (author)

  12. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  13. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination

    Science.gov (United States)

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer to avoid harvesting fecal-contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal-contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil,...

  14. Start broadened profiles with self-consistent radiation transfer and atomic kinetics in plasmas produced by high intensity lasers

    International Nuclear Information System (INIS)

    Olson, G.L.; Comly, J.C.; La Gattuta, J.K.; Kilcrease, D.P.

    1993-01-01

    Spectral line shapes and line strengths have long been used to diagnose plasma temperatures and densities. In dense plasmas, the additional broadening due to Stark effects give additional information about the plasma density. We present calculations that are self-consistent in that the radiation fields of the line transitions and the atomic kinetics are iterated to convergence. Examples are given for simple plasmas with temperature gradients, density gradients, and velocity fields. Then a more complex example of a laser produced plasma is presented

  15. A proposal how to take into account inhomogeneous radiation fields in radiation protection

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1996-01-01

    External radiation fields exposing the human body inhomogenously are not considered neither in radiation protection standards nor in recent ICRU recommendations, but appear frequently in practical radiation protection. A proposal to solve this question is given taking into account both a conceptual and a metrological approach. The proposal suggests that a mean over an area of about 100 cm 2 can be taken as reference area for compliance with limits in terms of effective dose. (author)

  16. Super-Planckian far-field radiative heat transfer

    Science.gov (United States)

    Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.

    2018-01-01

    We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.

  17. IAEA programme in the field of radiation technology

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-01-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e - /X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on 'Emerging Applications of Radiation Technology for the 21st Century' at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: 'Advances in Radiation Chemistry of Polymers' (Notre Dame, USA

  18. IAEA programme in the field of radiation technology

    Science.gov (United States)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-07-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e-/X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on "Emerging Applications of Radiation Technology for the 21st Century" at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: "Advances in Radiation Chemistry of Polymers" (Notre Dame, USA

  19. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  20. Strong field interaction of laser radiation

    International Nuclear Information System (INIS)

    Pukhov, Alexander

    2003-01-01

    The Review covers recent progress in laser-matter interaction at intensities above 10 18 W cm -2 . At these intensities electrons swing in the laser pulse with relativistic energies. The laser electric field is already much stronger than the atomic fields, and any material is instantaneously ionized, creating plasma. The physics of relativistic laser-plasma is highly non-linear and kinetic. The best numerical tools applicable here are particle-in-cell (PIC) codes, which provide the most fundamental plasma model as an ensemble of charged particles. The three-dimensional (3D) PIC code Virtual Laser-Plasma Laboratory runs on a massively parallel computer tracking trajectories of up to 10 9 particles simultaneously. This allows one to simulate real laser-plasma experiments for the first time. When the relativistically intense laser pulses propagate through plasma, a bunch of new physical effects appears. The laser pulses are subject to relativistic self-channelling and filamentation. The gigabar ponderomotive pressure of the laser pulse drives strong currents of plasma electrons in the laser propagation direction; these currents reach the Alfven limit and generate 100 MG quasistatic magnetic fields. These magnetic fields, in turn, lead to the mutual filament attraction and super-channel formation. The electrons in the channels are accelerated up to gigaelectronvolt energies and the ions gain multi-MeV energies. We discuss different mechanisms of particle acceleration and compare numerical simulations with experimental data. One of the very important applications of the relativistically strong laser beams is the fast ignition (FI) concept for the inertial fusion energy (IFE). Petawatt-class lasers may provide enough energy to isochorically ignite a pre-compressed target consisting of thermonuclear fuel. The FI approach would ease dramatically the constraints on the implosion symmetry and improve the energy gain. However, there is a set of problems to solve before the FI

  1. Topological magnetoelectric effects in microwave far-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2016-07-21

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  2. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  3. Computational methods in several fields of radiation dosimetry

    International Nuclear Information System (INIS)

    Paretzke, Herwig G.

    2010-01-01

    Full text: Radiation dosimetry has to cope with a wide spectrum of applications and requirements in time and size. The ubiquitous presence of various radiation fields or radionuclides in the human home, working, urban or agricultural environment can lead to various dosimetric tasks starting from radioecology, retrospective and predictive dosimetry, personal dosimetry, up to measurements of radionuclide concentrations in environmental and food product and, finally in persons and their excreta. In all these fields measurements and computational models for the interpretation or understanding of observations are employed explicitly or implicitly. In this lecture some examples of own computational models will be given from the various dosimetric fields, including a) Radioecology (e.g. with the code systems based on ECOSYS, which was developed far before the Chernobyl reactor accident, and tested thoroughly afterwards), b) Internal dosimetry (improved metabolism models based on our own data), c) External dosimetry (with the new ICRU-ICRP-Voxelphantom developed by our lab), d) Radiation therapy (with GEANT IV as applied to mixed reactor radiation incident on individualized voxel phantoms), e) Some aspects of nanodosimetric track structure computations (not dealt with in the other presentation of this author). Finally, some general remarks will be made on the high explicit or implicit importance of computational models in radiation protection and other research field dealing with large systems, as well as on good scientific practices which should generally be followed when developing and applying such computational models

  4. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  5. A MODEL FOR PRODUCING STABLE, BROADBAND TERAHERTZ COHERENT SYNCHROTRON RADIATION IN STORAGE RINGS

    International Nuclear Information System (INIS)

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Martin, MichaelC.; Venturini, Marco

    2003-01-01

    We present a model for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use this model to optimize the performance of a source for CSR emission

  6. Characterization of beta radiation fields using radiochromic films

    International Nuclear Information System (INIS)

    Benavente, Jhonny A.; Silva, Teogenes A. da

    2011-01-01

    The objective of this work was to study the response of radiochromic films for beta radiation fields in terms of absorbed dose. The reliability of the EBT model Gafchromic radiochromic film was studied. A 9800 XL model Microtek, transmission scanner, a 369 model X-Rite optical densitometer and a Mini 1240 Shimadzu UV spectrophotometer were used for measurement comparisons. Calibration of the three systems was done with irradiated samples of radiochromic films with 0.1; 0.3; 0.5; 0.8; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.5 e 5.0 Gy in beta radiation field from a Sr-90/Y-90 source. Calibration was performed by establishing a correlation between the absorbed dose values and the corresponding radiochromic responses. Results showed significant differences in the absorbed dose values obtained with the three methods. Absorbed dose values showed errors from 0.6 to 4.4%, 0.3 to 31.8% and 0.2 to 47.3% for the Microtek scanner, the X-Rite Densitometer and the Shimadzu spectrophotometer, respectively. Due to the easy acquisition and use for absorbed dose measurements, the densitometer and the spectrophotometer showed to be suitable techniques to evaluate radiation dose in relatively homogeneous fields. In the case of inhomogeneous fields or for a two dimension mapping of radiation fields to identify anisotropies, the scanner technique is the most recommended. (author)

  7. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion

  8. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  9. Monte-Carlo study on primary knock-on atom energy spectrum produced by neutron radiation

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Yongkang; Deng Yongjun; Ma Jimin

    2012-01-01

    Computational method on energy distribution of primary knock-on atom (PKA) produced by neutron radiation was built in the paper. Based on the DBCN card in MCNP, reaction position, reaction type and energy transfer between neutrons and atoms were recorded. According to statistic of these data, energy and space distributions of PKAs were obtained. The method resolves preferably randomicity of random number and efficiency of random sampling computation. The results show small statistical fluctuation and well statistical. Three-dimensional figure of energy and space distribution of PKAs were obtained, which would be important to evaluate radiation capability of materials and study radiation damage by neutrons. (authors)

  10. Reduction in life span on normal human fibroblasts exposed to low-dose radiation in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, Masao; Yamaguchi, Chizuru; Yasuda, Hiroshi; Uchihori, Yukio; Fujitaka, Kazunobu

    2003-01-01

    We studied the effect of in vitro life span in normal human fibroblasts exposed to chronically low-dose radiation in heavy-ion radiation field. Cells were cultured in a CO 2 incubator, which was set in the irradiation room for biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and exposed to scattered radiations produced with heavy-ion beams throughout the life span of the cell population. Absorbed dose, which was measured using a thermoluminescence dosimeter(TLD) and a Si-semiconductor detector, was to be 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number of the exposed cells reduced to 79-93% of non-exposed control cells in the three independent experiments. There is evidence that the exposure of chronically low-dose radiation in heavy-ion radiation field promotes the life-span reduction in cellular level. (author)

  11. Selection of daunorubicin-producing strain S. Coeruleorubidus by plasma radiation technology

    International Nuclear Information System (INIS)

    Jiang Shichun; Wu Jianping; Bai Hua

    2001-01-01

    The authors reported the results of mutagenesis by nitrogen plasma radiation with energy from 65 to 80 keV and dose from 9.6 x 10 9 to 1.5 x 10 11 /cm 2 in antineoplastic antibiotics daunorubicin-producing S. Coeruleorubidus. The relationship between death rate and radiation dose was formulated by computer and the formula. It was fit to a biological single-hit curve. The obtained high-producing mutagenic strain 137 was tested for its production property. The result showed that it could increase the daunorubicin potency by 25.8% in productive tanks of fermentation

  12. Maximal near-field radiative heat transfer between two plates

    Science.gov (United States)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  13. Radiation field mapping in mammography units with TLDs

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.C.O.; Silva, J.O., E-mail: jonas.silva@ufg.br [Universidade Federal de Goiás (IFG), Goiânia (Brazil). Instituto de Física; Veneziani, G.R. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo-SP (Brazil). Centro de Metrologia das Radiações

    2017-07-01

    Mammography is the most common imaging technique for breast cancer detection and its tracking. For dosimetry, is important to know the field intensity variation. In this work, TLD-100 were used to made a field mapping of a mammographic system from a hospital in Goiânia/GO. The maximum radiation intensity was 8 cm far from chest wall. The results obtained could be used in the optimization of the dosimetry in the equipment used in this work. (author)

  14. Applicability of ambient dose equivalent H*(d) in mixed radiation fields - a critical discussion

    International Nuclear Information System (INIS)

    Hajek, M.; Vana, N.

    2004-01-01

    For purposes of routine radiation protection, it is desirable to characterize the potential irradiation of individuals in terms of a single dose equivalent quantity that would exist in a phantom approximating the human body. The phantom of choice is the ICRU sphere made of 30 cm diameter tissue-equivalent plastic with a density of 1 g.cm-3 and a mass composition of 76.2 % O, 11.1 % C, 10.1 % H and 2.6 % N. Ambient dose equivalent, H*(d), was defined in ICRU report 51 as the dose equivalent that would be produced by an expanded and aligned radiation field at a depth d in the ICRU sphere. The recommended reference depths are 10 mm for strongly penetrating radiation and 0.07 mm for weakly penetrating radiation, respectively. As an operational quantity in radiation protection, H*(d) shall serve as a conservative and directly measurable estimate of protection quantities, e.g. effective dose E, which in turn are intended to give an indication of the risk associated with radiation exposure. The situation attains increased complexity in radiation environments being composed of a variety of charged and uncharged particles in a broad energetic spectrum. Radiation fields of similarly complex nature are, for example, encountered onboard aircraft and in space. Dose equivalent was assessed as a function of depth in quasi tissue-equivalent spheres by means of thermoluminescent dosemeters evaluated according to the high-temperature ratio (HTR) method. The presented experiments were performed both onboard aircraft and the Russian space station Mir. As a result of interaction processes within the phantom body, the incident primary spectrum may be significantly modified with increasing depth. For the radiation field at aviation altitudes we found the maximum of dose equivalent in a depth of 60 mm which conflicts with the 10 mm value recommended by ICRU. Contrary, for the space radiation environment the maximum dose equivalent was found at the surface of the sphere. This suggests that

  15. Applicability of Ambient Dose Equivalent H (d) in Mixed Radiation Fields - A Critical Discussion

    International Nuclear Information System (INIS)

    Vana, R.; Hajek, M.; Bergerm, T.

    2004-01-01

    For purposes of routine radiation protection, it is desirable to characterize the potential irradiation of individuals in terms of a single dose equivalent quantity that would exist in a phantom approximating the human body. The phantom of choice is the ICRU sphere made of 30 cm diameter tissue-equivalent plastic with a density of 1 g/cm3 and a mass composition of 76.2% O, 11.1% C, 10.1% H and 2.6% N. Ambient dose equivalent, H(d), was defined in ICRU report 51 as the dose equivalent that would be produced by an expanded and aligned radiation field at a depth d in the ICRU sphere. The recommended reference depths are 10 mm for strongly penetrating radiation and 0.07 mm for weakly penetrating radiation, respectively. As an operational quantity in radiation protection, H(d) shall serve as a conservative and directly measurable estimate of protection quantities, e.g. effective dose E, which in turn are intended to give an indication of the risk associated with radiation exposure. The situation attains increased complexity in radiation environments being composed of a variety of charged and uncharged particles in a broad energetic spectrum. Radiation fields of similarly complex nature are, for example, encountered onboard aircraft and in space. Dose equivalent was assessed as a function of depth in quasi tissue-equivalent spheres by means of thermoluminescent dosemeters evaluated according to the high-temperature ratio (HTR) method. The presented experiments were performed both onboard aircraft and the Russian space station Mir. As a result of interaction processes within the phantom body, the incident primary spectrum may be significantly modified with increasing depth. For the radiation field at aviation altitudes we found the maximum of dose equivalent in a depth of 60 mm which conflicts with the 10 mm value recommended by ICRU. Contrary, for the space radiation environment the maximum dose equivalent was found at the surface of the sphere. This suggests that skin

  16. Strain-induced modulation of near-field radiative transfer.

    Science.gov (United States)

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  17. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    Science.gov (United States)

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  18. Non-ionizing radiation exposure: electric field strength measurement ...

    African Journals Online (AJOL)

    In this research, the measured values are compared with the international standard recommended by ICNIRP then were also compared with previous study from several locations around Malaysia. The result shows an increase in the values of electromagnetic field radiation. The result of this study could be used for health ...

  19. Magnetic fields driven by tidal mixing in radiative stars

    Science.gov (United States)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  20. Parametric instability producing broad symmetrical structure in the spectrum of ionospheric heating-induced radiation

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1997-01-01

    A four-wave interaction process in which an O-mode electromagnetic pump decays parametrically into a lower hybrid decay mode and two-electron Bernstein sidebands is analyzed. It is shown that the instability can be excited in a spatial region near the electron Bernstein/upper hybrid double resonance and in a narrow pump frequency range slightly below the third harmonic electron cyclotron resonance. The two electron Bernstein sidebands have about the same intensity and thus, produce Broad Symmetrical Structure (BSS) in the emission spectrum after being converted into electromagnetic radiation by scattering off background field-aligned density irregularities. The results also show that the size of the instability zone becomes very small as the pump frequency operates near a cyclotron harmonic higher than the third. Thus, the converted emission will be too weak to be detected. This explains why the BSS feature in the spectrum of stimulated electromagnetic emissions (SEEs) has only been observed in the third harmonic case. copyright 1997 American Institute of Physics

  1. Test and evaluation of semiconductor components in mixed field radiation monitoring

    International Nuclear Information System (INIS)

    Cardenas, Jose Patricio N.; Madi Filho, Tufic; Rodrigues, Leticia L.C.

    2009-01-01

    Silicon components have found extensive use in nuclear spectroscopy and counting, as described in many articles in the last three decades. These devices have found utility in radiation dosimetry because a diode, for instance, produces a current approximately 18000 times higher than any ionization chamber of equal sensitive volume. This reduces stringent requirements from the electronics used to amplify or integrate the current and / or allows approaching the ideal detector point for the mapping of radiation fields. For better performance, in the case of diodes, they are normally used with high inverse polarity to obtain a deeper barrier, less noise and shorter transit time. The aim of this work was the evaluation of these semiconductor components for application in ionizing radiation fields monitoring, in nuclear research reactors and radiotherapy facilities, for radiation protection and health physics purposes. Experimental configurations to analyze the performance of commercial semiconductors, such as silicon PIN Photodiodes and Silicon Surface Barrier Detectors, were developed and the performance of three different configurations of charge preamplifier with silicon components was also studied. Components were evaluated for application as neutron detectors, using some types of radiators (converters). The radiation response of these silicon components to neutron fields from nuclear research reactors IEA-R1 and IPEN-MB1 (thermal, epithermal and fast neutrons), from beam holes, experimental halls and AmBe neutron sources in laboratory was investigated. (author)

  2. Correlation between Auroral kilometric radiation and field-aligned currents

    International Nuclear Information System (INIS)

    Green, J.L.; Saflekos, N.A.; Gurnett, D.A.; Potemra, T.A.

    1982-01-01

    Simultaneous observations of field-aligned currents (FAC) and auroral kilometric radiation (AKR) are compared from the polar-orbiting satellites Triad and Hawkeye. The Triad observations were restricted to the evening-to-midnight local time sector (1900 to 0100 hours magnetic local time) in the northern hemisphere. This is the region in which the most intense storms of AKR are believed to originate. The Hawkeye observations were restricted to when the satellite was in the AKR emission cone in the northern hemisphere and at radial distances > or =7R/sub E/ (earth radii) to avoid local propagation cutoff effects. A(R/7R/sub E/) 2 normalization to the power flux measurements of the kilometric radiation from Hawkeye is used to take into account the radial dependence of this radiation and to scale all intensity measurements so that they are independent of Hawkeye's position in the emission cone. Integrated field-aligned current intensities from Triad are determined from the observed transverse magnetic field disturbances. There appears to be a weak correlation between AKR intensity and the integrated current sheet intensity of field-aligned currents. In general, as the intensity of auroral kilometric radiation increases so does the integrated auroral zone current sheet intensity increase. Statistically, the linear correlation coefficient between the log of the AKR power flux and the log of the current sheet intensity is 0.57. During weak AKR bursts ( - 18 W m - 2 Hz - 1 ), Triad always observed weak FAC'S ( - 1 ), and when Triad observed large FAC's (> or =0.6 A m - 1 ), the AKR intensity from Hawkeye was moderately intense (10 - 5 to 10 - 14 W m - 2 Hz - 1 ) to intense (>10 - 14 W m - 2 Hz - 1 ). It is not clear from these preliminary results what the exact role is that auroral zone field-aligned currents play in the generation or amplification of auroral kilometric radiation

  3. Analysis of radiation fields in tomography on diffusion gaseous sound

    International Nuclear Information System (INIS)

    Bekman, I.N.

    1999-01-01

    Perspectives of application of equilibrium and stationary variants of diffusion tomography with radioactive gaseous sounds for spatial reconstruction of heterogeneous media in materials technology were considered. The basic attention were allocated to creation of simple algorithms of detection of sound accumulation on the background of monotonically varying concentration field. Algorithms of transformation of two-dimensional radiation field in three-dimensional distribution of radiation sources were suggested. The methods of analytical elongation of concentration field permitting separation of regional anomalies on the background of local ones and vice verse were discussed. It was shown that both equilibrium and stationary variants of diffusion tomography detect the heterogeneity of testing material, provide reduction of spatial distribution of elements of its structure and give an estimation of relative degree of defectiveness

  4. Radiation pretreatment of cellulosic wastes and immobilization of cells producing cellulase for their conversion to glucose

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1988-01-01

    Radiation pretreatment of cellulosic wastes such as saw dust and chaff was studied by using electron beam accelerator, in which irradiation effect was increased by increasing irradiation dose and dose rate, by after heating irradiated materials at 100∼140deg C, and by irradiation in the addition of alkaline solution. Trichoderma reesei cells producing cellulase were immobilized by using fibrous porous carrier obtained from radiation polymerization. The filter paper, cellobiose, and CMC activities in the immobilized growing cells were higher than those in free cells. The activity in the immobilized cells obtained with hydrophobic carrier was higher than that obtained with hydrophilic one. Durability of the immobilized cells was examined by repeated batch culture. It was found that the enzyme solution produced in the culture of the immobilized cells can hydrolyze effectively saw dust pretreated by radiation. (author)

  5. Wind field forecast for accidental release of radiative materials

    International Nuclear Information System (INIS)

    Kang Ling; Chen Jiayi; Cai Xuhui

    2003-01-01

    A meso-scale wind field forecast model was designed for emergency environmental assessment in case of accidental release of radiative materials from a nuclear power station. Actual practice of the model showed that it runs fast, has wind field prediction function, and the result given is accurate. With meteorological data collected from weather stations, and pre-treated by a wind field diagnostic model, the initial wind fields at different times were inputted as initial values and assimilation fields for the forecasting model. The model, in turn, worked out to forecast meso-scale wind field of 24 hours in a horizontal domain of 205 km x 205 km. And then, the diagnostic model was employed again with the forecasting data to obtain more detail information of disturbed wind field by local terrain in a smaller domain of 20.5 km x 20.5 km, of which the nuclear power station is at the center. Using observation data in January, April, July and October of 1996 over the area of Hangzhou Bay, wind fields in these 4 months were simulated by different assimilation time and number of the weather stations for a sensitive test. Results indicated that the method used here has increased accuracy of the forecasted wind fields. And incorporating diagnostic method with the wind field forecast model has greatly increased efficiency of the wind field forecast for the smaller domain. This model and scheme have been used in Environmental Consequence Assessment System of Nuclear Accident in Qinshan Area

  6. New theory of radiative energy transfer in free electromagnetic fields

    International Nuclear Information System (INIS)

    Wolf, E.

    1976-01-01

    A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon

  7. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    Science.gov (United States)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  8. Ways of providing radiation resistance of magnetic field semiconductor sensors

    CERN Document Server

    Bolshakova, I A; Holyaka, R; Matkovskii, A; Moroz, A

    2001-01-01

    Hall magnetic field sensors resistant to hard ionizing irradiation are being developed for operation under the radiation conditions of space and in charged particle accelerators. Radiation resistance of the sensors is first determined by the properties of semiconductor materials of sensitive elements; we have used microcrystals and thin layers of III-V semiconductors. Applying complex doping by rare-earth elements and isovalent impurities in certain proportions, we have obtained magnetic field sensors resistant to irradiation by fast neutrons and gamma-quanta. Tests of their radiation resistance were carried out at IBR-2 at the Joint Institute for Nuclear Research (Dubna). When exposed to neutrons with E=0.1-13 MeV and intensity of 10 sup 1 sup 0 n cm sup - sup 2 s sup - sup 1 , the main parameter of the sensors - their sensitivity to magnetic fields - changes by no more than 0.1% up to fluences of 10 sup 1 sup 4 n cm sup - sup 2. Further improvement of radiation resistance of sensor materials is expected by ...

  9. Accreditation of laboratories in the field of radiation protection

    International Nuclear Information System (INIS)

    Galjanic, S.; Franic, Z.

    2005-01-01

    This paper gives a review of requirements and procedures for the accreditation of test and calibration laboratories in the field of radiation protection, paying particular attention to Croatia. General requirements to be met by a testing or calibration laboratory to be accredited are described in the standard HRN EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories. The quality of a radiation protection programme can only be as good as the quality of the measurements made to support it. Measurement quality can be assured by participation in measurement assurance programmes that evaluate the appropriateness of procedures, facilities, and equipment and include periodic checks to assure adequate performance. These also include internal consistency checks, proficiency tests, intercomparisons and site visits by technical experts to review operations. In Croatia, laboratories are yet to be accredited in the field of radiation protection. However, harmonisation of technical legislation with the EU legal system will require some changes in laws and regulations in the field of radiation protection, including the ones dealing with the notification of testing laboratories and connected procedures. Regarding the notification procedures for testing laboratories in Croatia, in the regulated area, the existing accreditation infrastructure, i.e. Croatian Accreditation Agency is ready for its implementation, as it has already established and further developed a consistent accreditation system, compatible with international requirements and procedures.(author)

  10. A characteristic scale in radiation fields of fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W.; Cahalan, R.; Davis, A.; Marshak, A. [Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    The wavenumber spectrum of Landsat imagery for marine stratocumulus cloud shows a scale break when plotted on a double log plot. We offer an explanation of this scale break in terms of smoothing by horizontal radiative fluxes, which is parameterized and incorporated into an improved pixel approximation. We compute the radiation fields emerging from cloud models with horizontally variable optical depth fractal models. We use comparative spectral and multifractal analysis to qualify the validity of the independent pixel approximation at the largest scales and demonstrate it`s shortcomings on the smallest scales.

  11. Obligations and responsibilities in radiation protection in the medical field

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  12. Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field

    Science.gov (United States)

    Loukitcheva, M.; White, S. M.; Solanki, S. K.; Fleishman, G. D.; Carlsson, M.

    2017-05-01

    Aims: We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free radiation at millimeter and submillimeter wavelengths (mm/submm). Methods: The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. Results: The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10% is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Conclusions: Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.

  13. Energy dependence of an ionization chamber with parallel plates in standard gamma and x-radiation fields

    International Nuclear Information System (INIS)

    Batistella, M.A.; Caldas, L.V.E.

    1988-09-01

    The characteristics of low energy X-radiation standard fields were determined and the energy dependence of a ionization chamber of the superficial type, with parallel plates and fixed volume, normally utilized in the dosimetry at the Radiotherapy level was studied. The possibility of adaptation of this chamber type for use in gamma radiation dosimetry was verified. Different thickness Lucite build-up caps, from 2.0 up to 5.5 mm, were produced and tested in 60 Co and 137 Cs gamma radiation fields. This type of detector, with the adequate build-up cap, presented a performance comparable to that of the thimble type ionization chamber. It was concluded that it is not necessary to use different kinds of chambers for each high and mean energy interval. The superficial chamber, specially produced to detect low energy X-radiation, may be adapted to detect gamma radiation. (author) [pt

  14. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  15. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  16. Proportional relationship between intercepted solar radiation and dry matter production in a mulberry [Morus] field

    International Nuclear Information System (INIS)

    Aqueel, S.A.; Ito, D.; Naoi, T.

    1999-01-01

    In order to investigate the relationship between dry matter production (DMP) and the amount of intercepted solar radiation (S), and to analyze the fluctuations in the radiation conversion efficiency (DMP/S), summer-pruned mulberry (Morus alba L.) trees under a standard planting density were subjected to a shading treatment using a cheesecloth. Then, using a non-destructive method, DMP was examined for 5 plants from each plot every 15 days from July to September. DMP was also examined for mulberry trees under a high planting density. Rates of radiation that penetrated onto the ground and beneath the cheesecloth were measured to calculate S from the incoming solar radiation. In the shading plots, DMP decreased depending on the degree of shading throughout the experimental period. Compared with the control plot, 70 and 60 % DMP were produced finally under 71 and 53 % S. Therefore, DMP was considered to be almost proportional to S even in a broad-leaf population like mulberry. Radiation conversion efficiency gradually decreased with growth regardless of the planting density. At the late growth stage, radiation conversion efficiency was lower in the densely planted field than in the standard density field

  17. A Computational Model of Cellular Response to Modulated Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  18. A Computational Model of Cellular Response to Modulated Radiation Fields

    International Nuclear Information System (INIS)

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O’Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-01-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  19. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles

    International Nuclear Information System (INIS)

    Kozlov, V.A.; Kozlovski, V.V.

    2001-01-01

    One of the modern methods for modifying semiconductors using beams of protons and alpha particles is analyzed; this modification is accomplished by the controlled introduction of radiation defects into the semiconductor. It is shown that doping semiconductors with radiation defects produced by irradiation with light ions opens up fresh opportunities for controlling the properties of semiconducting materials and for the development of new devices designed for optoelectronics, microelectronics, and nanoelectronics based on these materials; these devices differ favorably from those obtained by conventional doping methods, i.e., by diffusion, epitaxy, and ion implantation

  20. Theory of electron degradation and yields of initial molecular species produced by ionizing radiation

    International Nuclear Information System (INIS)

    Inokuti, M.; Dillon, M.A.; Kimura, M.

    1987-01-01

    Ionizing radiations generate in matter a large number of energetic electrons, which in turn collide with molecules in matter, produce ions and excited states, and thereby degrade in energy. The description of the consequences of many collision processes to the electrons and to matter is the goal of the electron degradation theory. They summarize the current understanding of this topic, which is important as a basis of radiation chemistry and biology. In addition, they present an initial report of their new work, namely, a generalization of the Spencer-Fano theory to time-dependent cases

  1. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  2. Graphene Field Effect Transistor-Based Detectors for Detection of Ionizing Radiation

    International Nuclear Information System (INIS)

    Jovanovic, Igor; Cazalas, Edward; Childres, I.; Patil, A.; Koybasi, O.; Chen, Y-P.

    2013-06-01

    We present the results of our recent efforts to develop novel ionizing radiation sensors based on the nano-material graphene. Graphene used in the field effect transistor architecture could be employed to detect the radiation-induced charge carriers produced in undoped semiconductor absorber substrates, even without the need for charge collection. The detection principle is based on the high sensitivity of graphene to ionization-induced local electric field perturbations in the electrically biased substrate. We experimentally demonstrated promising performance of graphene field effect transistors for detection of visible light, X-rays, gamma-rays, and alpha particles. We propose improved detector architectures which could result in a significant improvement of speed necessary for pulsed mode operation. (authors)

  3. Computerized dosimetric system for studying radiation fields of afterloading apparatus

    International Nuclear Information System (INIS)

    Andryushin, O.S.; Gorshkov, M.I.

    1988-01-01

    Works on designing a computerized dosimetric scanner (CODOS) for studying radiation fields of remote therapeutic apparatus, providing dosimetric data input from semiconductor transducers and ionization chambers directly into the computer memory were carried out. The basic problems were to provide reproducibility and accuracy of the initial dosimetric data, formation of the data bank on LUEhV-15M1 accelerator bremsstrahlung and electron radiation fields. An extra problem was to provide isodose curves for manual scheduling of radiotherapy. The 15 VUMS-28-025 complex based on Elektronika-60 computer was chosen as a host computer, photodiodes were used as a semiconductor detector, the 70108 rod chamber and VA-J-18 dosemeters were used as an ionization chamber. The results of studies with the CODOS system have been shown that it meets the dosimetric requirements for therapeutic apparatus

  4. Neutron and photon spectrometry in mixed radiation fields

    International Nuclear Information System (INIS)

    Jancar, A.; Kopecky, Z.; Veskrna, M.

    2014-01-01

    Spectrometric measurements of the mixed fields of neutron and photon radiation in the workplaces with the L-R-0 research reactor located in the UJV Rez and with the Van de Graaff accelerator, located in the UTEF laboratories Prague, are presented in this paper. The experimental spectrometric measurements were performed using a newly developed digital measuring system, based on the technology of analog-digital converters with a very high sampling frequency (up to 2 GHz), in connection with organic scintillation detector, type BC-501A, and stilbene detector. The results of experimental measurements show high quality of spectrometry mixed fields of neutron and photon radiation across the wide dynamic range of measured energy. (authors)

  5. Fiber optic components compatibility with the PWR containment radiation field

    International Nuclear Information System (INIS)

    Breuze, G.; Serre, J.

    1990-01-01

    Present and future applications of fiber optics transmission in the nuclear industrial field are emphasized. Nuclear acceptance criteria for relevant electronic equipments in terms of radiation dose rate, integrated dose and required reliability are given. Ambient conditions of PWR containment are especially considered in the present paper. Experimental results of optical fibers and end-components exposed to 60 Co gamma rays are successively shown. Main radiation response characteristics up to 10 4 Gy (with dose rates of about 100 Gy.h -1 ) of both multimodal fiber families (step index and gradient index fibers) are compared. Predominant features of pure silica core fibers are: * an efficient photobleaching with near IR light from LED and LD commonly used in transmission data links, * a radiation hardening reducing induced losses down to 10 dB.km -1 in fine fibers up to date with latest developments. Dose rate effect on induced losses is also outlined for these fibers. Optoelectronic fiber-end components radiation response is good only for special LED (AsGa) and PD (Si). Radiation behavior of complex pigtailed LDM (laser diode + photodiode + Peltier element + thermistor) is not fully acceptable and technological improvements were made. Preliminary results are given. Two applications of fiber links transmitting data in a PWR containment and a hot cell are described. Hardening levels obtained and means required are given

  6. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  7. HOTSPOT, Field Evaluation of Radiation Release from Nuclear Accident

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculational tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. Four general programs, PLUME, EXPLOSION, FIRE, and RESUSPENSION, calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from inhalation of any one of the radionuclides listed in the database of radionuclides, calibrate a radiation survey instrument for ground survey measurements, and screening of plutonium uptake in the lung. The HOTSPOT codes are fast, portable, easy to use, and fully documented. HOTSPOT supports color high resolution monitors and printers for concentration plots and contours. The codes have been extensively used by the DOS community since 1985. Version 8 allows users to add their own custom radionuclide library and to create custom radionuclide mixtures. It also includes wet deposition to approximate the enhanced plume depletion and ground deposition due to the effects of rain. Additional release geometry options for TRITIUM RELEASE and GENERAL PLUME were added, as well as several other enhancements and improvements. See info (f1) from the main HOTSPOT menu for additional

  8. Field profile tailoring in a-Si:H radiation detectors

    International Nuclear Information System (INIS)

    Fujieda, I.; Cho, G.; Conti, M.; Drewery, J.; Kaplan, S.N.; Perez-Mendez, V.; Quershi, S.; Wildermuth, D.; Street, R.A.

    1990-03-01

    The capability of tailoring the field profile in reverse-biased a-Si:H diodes by doping and/or manipulating electrode shapes opens a way to many interesting device structures. Charge collection in a-Si:H radiation detectors is improved for high LET particle detection by inserting thin doped layers into the i-layer of the usual p-i-n diode. This buried p-i-n structure enables us to apply higher reverse-bias and the electric field is enhanced in the mid i-layer. Field profiles of the new structures are calculated and the improved charge collection process is discussed. Also discussed is the possibility of field profile tailoring by utilizing the fixed space charges in i-layers and/or manipulating electrode shapes of the reverse-biased p-i-n diodes. 10 refs., 7 figs

  9. Assessment of occupational exposure to radiofrequency fields and radiation

    International Nuclear Information System (INIS)

    Cooper, T. G.; Allen, S. G.; Blackwell, R. P.; Litchfield, I.; Mann, S. M.; Pope, J. M.; Van Tongeren, M. J. A.

    2004-01-01

    The use of personal monitors for the assessment of exposure to radiofrequency fields and radiation in potential future epidemiological studies of occupationally exposed populations has been investigated. Data loggers have been developed for use with a commercially available personal monitor and these allowed personal exposure records consisting of time-tagged measurements of electric and magnetic field strength to be accrued over extended periods of the working day. The instrumentation was worn by workers carrying out tasks representative of some of their typical daily activities at a variety of radio sites. The results indicated significant differences in the exposures of workers in various RF environments. A number of measures of exposure have been examined with a view to assessing possible exposure metrics for epidemiological studies. There was generally a good correlation between a given measure of electric field strength and the same measure of magnetic field strength. (authors)

  10. Utilization of solar energy in the photodegradation of gasoline in water and of oil-field-produced water.

    Science.gov (United States)

    Moraes, José Ermírio F; Silva, Douglas N; Quina, Frank H; Chiavone-Filho, Osvaldo; Nascimento, Cláudio Augusto O

    2004-07-01

    The photo-Fenton process utilizes ferrous ions (Fe2+), hydrogen peroxide (H2O2), and ultraviolet (UV) irradiation as a source of hydroxyl radicals for the oxidation of organic matter present in aqueous effluents. The cost associated with the use of artificial irradiation sources has hindered industrial application of this process. In this work, the applicability of solar radiation for the photodegradation of raw gasoline in water has been studied. The photo-Fenton process was also applied to a real effluent, i.e., oil-field-produced water, and the experimental results demonstrate the feasibility of employing solar irradiation to degrade this complex saturated-hydrocarbon-containing system.

  11. Radiation fields, dosimetry, biokinetics and biophysical models for cancer induction by ionising radiation 1996-1999. Executive summary

    International Nuclear Information System (INIS)

    Jacob, P.; Paretzke, H.G.; Roth, P.

    2000-01-01

    The Association Contract covers a range of research domains that are important to the Radiation Protection Research Action, especially in the areas 'Evaluation of Radiation Risks' and 'Understanding Radiation Mechanisms and Epidemiology'. Three research projects concentrate on radiation dosimetry research and two projects on the modelling of radiation carcinogenesis. The following list gives an overview on the topics and responsible scientific project leaders of the Association Contract: Study of radiation fields and dosimetry at aviation altitudes. Biokinetics and dosimetry of incorporated radionuclides. Dose reconstruction. Biophysical models for the induction of cancer by radiation. Experimental data for the induction of cancer by radiation of different qualities. (orig.)

  12. The right choice: extremity dosemeter for different radiation fields

    International Nuclear Information System (INIS)

    Brasik, N.; Stadtmann, H.; Kindl, P.

    2005-01-01

    Full text: Measurements of weakly penetrating radiation in personal dosimetry present problems in the design of suitable detectors and in the interpretation of their readings. For the measurement of the individual beta radiation dose, personal dosemeter for the fingers/tips are required. In general, the dosemeters currently used for personal monitoring of beta and low energy photon doses suffer from an energy threshold problem because the detector and/or the filter are too thick. TLDs of a standard thickness can seriously underestimate personal skin doses, especially in external fields of weakly penetrating radiation fields. LiF:Mg, Cu, P is a promising TL material which allows the production of thin detectors with sufficient sensitivity. Dosimetric properties of two different types of extremity dosemeters, designed to measure the personal dose equivalent Hp(0.07), have been compared: LiF:Mg, Ti (TLD100) and LiF:Mg, Cu, P (TLD700H). The first one consists of 100 mg.cm -2 LiF:Mg, Ti (TLD 100) chip and a 35mg. cm -2 cap, the other consists of a 7mg. cm -2 layer of LiF:Mg, Cu, P (TLD-700H) powder and a 5mg. cm -2 cap. The evaluation was done in two steps: performance tests (ISO-12794) and measurements in real workplaces. In the first step type test results for beta calibration were compared. In addition calibration for low energy photon radiation according to ISO 4037-3 was carried out. In the second step, simultaneous measurements with both types of dosemeters were performed at workplaces, where radiopharmaceuticals containing different radioisotopes are prepared and applied. Practices in these fields are characterized by handling of high activities at very small distances between source and skin. The results from the comparison of the two dosemeter types are presented and analyzed with respect to different radiation fields. Experiments showed a satisfactory sensitivity for the thinner dosemeter (TLD 700H) for detecting beta radiation at protection levels and a good

  13. Observations of visual sensations produced by Cerenkov radiation from high-energy electrons

    International Nuclear Information System (INIS)

    Steidley, K.D.; Eastman, R.M.; Stabile, R.J.

    1989-01-01

    Ten cancer patients whose eyes were therapeutically irradiated with 6-18 MeV electrons reported visual light sensations. Nine reported seeing blue light and one reported seeing white light. Controls reported seeing no light. Additionally, tests with patients ruled out the x-ray contamination of the electron beam as being important. The photon yield due to Cerenkov radiation produced by radium and its daughters for both electrons and gamma rays was calculated; it was found to account for a turn-of-the-century human observation of the radium phosphene. We conclude that the dominant mechanism of this phosphene is Cerenkov radiation, primarily from betas. From our own patient data, based on the color seen and the Cerenkov production rates, we conclude that the dominant mechanism is Cerenkov radiation and that high-energy electrons are an example of particle induced visual sensations

  14. Systems and methods for imaging using radiation from laser produced plasmas

    Science.gov (United States)

    Renard-Le Galloudec, Nathalie; Cowan, Thomas E.; Sentoku, Yasuhiko; Rassuchine, Jennifer

    2009-06-30

    In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

  15. Stability of cellulose radicals produced by radiation in spices as studied by the EPR spectroscopy

    International Nuclear Information System (INIS)

    Lehner, K.; Stachowicz, W.

    2003-01-01

    The results are presented of EPR measurements on the stability of cellulose radicals produced in 26 popular spices irradiated with a dose of 7 kGy of gamma rays. EPR measurements were done with the use of an EPR spectrometer EPR-10 MINI at X band (microwave radiation of frequency 9.5 GHz), produced by St. Petersburg Instruments Ltd. The aim of the work was to prove the applicability of the EPR method for the control of irradiation in the investigated spices. (author)

  16. Twelve years of cooperation in the field of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grapengiesser, Sten; Bennerstedt, Torkel

    2005-06-01

    SSI has pursued an international cooperation program since 1992 within the field of radiation protection and emergency preparedness for radiation accidents with the three Baltic countries as main beneficiaries. As the Baltic countries are members of the EU since May 2004, this bilateral support will now be phased out and replaced with other forms of cooperation. During the years passed, a large number of activities have been launched with a total budget of some 14 million ECU. The Baltic radiation protection authorities have played a big role in the cooperation and Baltic ministries, universities, nuclear technology installations and other industries using radiation have also been engaged in the projects. SKI, SKB, Studsvik and the Swedish nuclear power plants should be mentioned as major cooperation partners on the Swedish side. During autumn 2004 when such a large coordinated work program was coming to an end, SSI decided to hold a seminar with the purpose to follow up experiences from the work and discuss coming forms of cooperation. The seminar took place on the 18 of November 2004 and gathered some 80 participants, 29 of which from the Baltic countries. It was opened by Lars-Erik Holm, the SSI Director General, and the three Baltic countries then presented their views and impressions from the passed years of cooperation. The seminar was concluded with a panel discussion on 'How to proceed from today's situation'. The result was that SSI invited to a new coordination meeting during autumn 2005 to follow up and discuss coordination of radiation protection around the Baltic Sea together with the other Nordic radiation protection authorities.

  17. Twelve years of cooperation in the field of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grapengiesser, Sten; Bennerstedt, Torkel

    2005-06-01

    SSI has pursued an international cooperation program since 1992 within the field of radiation protection and emergency preparedness for radiation accidents with the three Baltic countries as main beneficiaries. As the Baltic countries are members of the EU since May 2004, this bilateral support will now be phased out and replaced with other forms of cooperation. During the years passed, a large number of activities have been launched with a total budget of some 14 million ECU. The Baltic radiation protection authorities have played a big role in the cooperation and Baltic ministries, universities, nuclear technology installations and other industries using radiation have also been engaged in the projects. SKI, SKB, Studsvik and the Swedish nuclear power plants should be mentioned as major cooperation partners on the Swedish side. During autumn 2004 when such a large coordinated work program was coming to an end, SSI decided to hold a seminar with the purpose to follow up experiences from the work and discuss coming forms of cooperation. The seminar took place on the 18 of November 2004 and gathered some 80 participants, 29 of which from the Baltic countries. It was opened by Lars-Erik Holm, the SSI Director General, and the three Baltic countries then presented their views and impressions from the passed years of cooperation. The seminar was concluded with a panel discussion on 'How to proceed from today's situation'. The result was that SSI invited to a new coordination meeting during autumn 2005 to follow up and discuss coordination of radiation protection around the Baltic Sea together with the other Nordic radiation protection authorities.

  18. Twelve years of cooperation in the field of radiation protection

    International Nuclear Information System (INIS)

    Grapengiesser, Sten; Bennerstedt, Torkel

    2005-06-01

    SSI has pursued an international cooperation program since 1992 within the field of radiation protection and emergency preparedness for radiation accidents with the three Baltic countries as main beneficiaries. As the Baltic countries are members of the EU since May 2004, this bilateral support will now be phased out and replaced with other forms of cooperation. During the years passed, a large number of activities have been launched with a total budget of some 14 million ECU. The Baltic radiation protection authorities have played a big role in the cooperation and Baltic ministries, universities, nuclear technology installations and other industries using radiation have also been engaged in the projects. SKI, SKB, Studsvik and the Swedish nuclear power plants should be mentioned as major cooperation partners on the Swedish side. During autumn 2004 when such a large coordinated work program was coming to an end, SSI decided to hold a seminar with the purpose to follow up experiences from the work and discuss coming forms of cooperation. The seminar took place on the 18 of November 2004 and gathered some 80 participants, 29 of which from the Baltic countries. It was opened by Lars-Erik Holm, the SSI Director General, and the three Baltic countries then presented their views and impressions from the passed years of cooperation. The seminar was concluded with a panel discussion on 'How to proceed from today's situation'. The result was that SSI invited to a new coordination meeting during autumn 2005 to follow up and discuss coordination of radiation protection around the Baltic Sea together with the other Nordic radiation protection authorities

  19. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  20. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  1. Torque density measurements on vortex fluids produced by symmetry-breaking rational magnetic fields.

    Science.gov (United States)

    Solis, Kyle J; Martin, James E

    2014-09-07

    We have recently reported on the discovery that an infinite class of triaxial magnetic fields is capable of producing rotational flows in magnetic particle suspensions. These triaxial fields are created by applying a dc field orthogonally to a rational biaxial field, comprised of orthogonal components whose frequencies form a rational ratio. The vorticity axis can be parallel to any of the three field components and can be predicted by a careful consideration of the symmetry of the dynamic field. In this paper we not only test the field-symmetry predictions, but also quantify fluid vorticity as a function of the field parameters (strength, frequency ratio, phase angle and relative dc field strength) and particle shape. These measurements validate the symmetry predictions and demonstrate that rational fields are as effective as vortex fields for producing strong fluid mixing, yet have the advantage that small changes in the frequency of one of the field components can change the vorticity axis. This approach extends the possibilities for noncontact control of fluid flows and should be useful in areas such as microfluidics, and the manipulation and mixing of microdroplets.

  2. Application of γ field theory based calculation method to the monitoring of mine nuclear radiation environment

    International Nuclear Information System (INIS)

    Du Yanjun; Liu Qingcheng; Liu Hongzhang; Qin Guoxiu

    2009-01-01

    In order to find the feasibility of calculating mine radiation dose based on γ field theory, this paper calculates the γ radiation dose of a mine by means of γ field theory based calculation method. The results show that the calculated radiation dose is of small error and can be used to monitor mine environment of nuclear radiation. (authors)

  3. Analysis of radiation pneumonitis outside the radiation field in breast conserving therapy for early breast cancer

    International Nuclear Information System (INIS)

    Ogo, Etsuyo; Fujimoto, Kiminori; Hayabuchi, Naofumi

    2002-01-01

    In a retrospective study of radiation-induced pulmonary changes for patients with breast conserving therapy for early breast cancer, we sent questionnaires to the main hospitals in Japan. In this study, we analyzed pulmonary changes after tangential whole-breast irradiation. The purpose of this study was to determine the incidence and risk factors for radiation pneumonitis outside the radiation field. The questionnaires included patients data, therapy data, and lung injury information between August 1999 and May 2000. On the first questionnaires, answer letters were received from 107 institutions out of 158 (67.7%). On the second questionnaires, response rate (hospitals which had radiation pneumonitis outside the radiation field) was 21.7% (23/106). We could find no risk factors of this type of pneumonitis. We suggested that lung irradiation might trigger this type of pneumonitis which is clinically similar to BOOP (bronchiolitis obliterans organizing pneumonia). It developed in 1.5-2.1% among the patients with breast conserving surgery and tangential whole-breast irradiation. And it is likely appeared within 6 months after radiotherapy. (author)

  4. Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Arun S., E-mail: asw@anl.gov [Environmental Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Sayenko, S.Yu.; Dovbnya, A.N.; Shkuropatenko, V.A.; Tarasov, R.V.; Rybka, A.V.; Zakharchenko, A.A. [National Science Center, Kharkov Institute of Physics and Technology, Kharkov (Ukraine)

    2015-07-15

    Highlights: • It incorporates all suggestions by the reviewers. • Explanation to each new term is provided and suitable references are given. • Sample identities have been streamlined by revising the text and the tables. • Some figures have been redrawn. - Abstract: Ceramicrete™, a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid–base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete’s tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond™, has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry.

  5. Evidence for a devil's staircase in holmium produced by an applied magnetic field

    International Nuclear Information System (INIS)

    Cowley, R.A.; Jehan, D.A.; McMorrow, D.F.; McIntyre, G.J.

    1991-01-01

    The magnetic structure of holmium has been studied using neutron diffraction when a magnetic field is applied along the c axis. The field has the effect of suppressing the onset of the commensurate cone phase found at low temperatures in zero field, and instead produces a series of spin-slip structures. In contrast to the zero-field diffraction experiments, where a continuous variation of the magnetic wave vector q was observed, we find that below ∼15 K the wave vector q is always commensurate and forms a devil's staircase with increasing field

  6. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  7. Radiation corrections to quantum processes in an intense electromagnetic field

    International Nuclear Information System (INIS)

    Narozhny, N.B.

    1979-01-01

    A derivation of an asymptotic expression for the mass correction of order α to the electron propagator in an intense electromagnetic field is presented. It is used for the calculation of radiation corrections to the electron and photon elastic scattering amplitudes in the α 3 approximation. All proper diagrams contributing to the amplitudes and containing the above-mentioned correction to the propagator were considered, but not those which include vertex corrections. It is shown that the expansion parameter of the perturbation theory of quantum electrodynamics in intense fields grows not more slowly than αchi/sup 1/3/ at least for the electron amplitude, where chi = [(eF/sub μν/p/sub ν/) 2 ] 12 /m 3 , p is a momentum of the electron, and F is the electromagnetic field tensor

  8. Finite-element-analysis of fields radiated from ICRF antenna

    International Nuclear Information System (INIS)

    Yamanaka, Kaoru; Sugihara, Ryo.

    1984-04-01

    In several simple geometries, electromagnetic fields radiated from a loop antenna, on which a current oscillately flows across the static magnetic field B-vector 0 , are calculated by the finite element method (FEM) as well as by analytic methods in a cross section of a plasma cylinder. A finite wave number along B-vector 0 is assumed. Good agreement between FEM and the analytic solutions is obtained, which indicates the accuracy of FEM solutions. The method is applied to calculations of fields from a half-turn antenna and reasonable results are obtained. It is found that a straightforward application of FEM to problems in an anisotropic medium may bring about erroneous results and that an appropriate coordinate transformation is needed for FEM to become applicable. (author)

  9. Controlling radiation fields in siemans designed light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R.; Marchl, T. [Siemens Power Generation Group, Erlangen (Germany)

    1995-03-01

    An essential item for the control of radiation fields is the minimization of the use of satellites in the reactor systems of Light Water Reactors (LWRs). A short description of the qualification of Co-replacement materials will be followed by an illustration of the locations where these materials were implemented in Siemens designed LWRs. Especially experiences in PWRs show the immense influence of reduction of cobalt sources on dose rate buildup. The corrosion and the fatique and wear behavior of the replacement materials has not created concern up to now. A second tool to keep occupational radiation doses at a low level in PWRs is the use of the modified B/Li-chemistry. This is practized in Siemens designed plants by keeping the Li level at a max. value of 2 ppm until it reaches a pH (at 300{degrees}C) of {approximately}7.4. This pH is kept constant until the end of the cycle. The substitution of cobalt base alloys and thus the removal of the Co-59 sources from the system had the largest impact on the radiation levels. Nonetheless, the effectiveness of the coolant chemistry should not be neglected either. Several years of successful operation of PWRs with the replacement materials resulted in an occupational radiation exposure which is below 0.5 man-Sievert/plant and year.

  10. EVIDOS: Individual dosimetry in mixed neutron and photon radiation fields

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2006-01-01

    The EVIDOS project (partly funded by the European Commission RTD Programme: Nuclear Energy, Euratom Framework Programme V, 1998-2002, Contract No FIKR-CT-2001-00175) aimed at improving individual monitoring in mixed neutron-photon radiation fields by evaluating the performance of routine and novel personal dosimeters for mixed radiation, and by giving guidelines for deriving sufficiently accurate values of personal dose equivalent from the readings of area survey instruments and dosimeters. The main objective of EVIDOS was to evaluate different methods for individual dosimetry in mixed neutron-photon work-places in nuclear industry. This implied a determination of the capabilities and limitations of personal dosimeters and the establishment of methods to enable sufficiently accurate values of personal dose equivalent from spectrometers, area survey instruments and routine personal dosimeters. Also novel electronic personal dosimeters were investigated. To this end spectrometric and dosimetric investigations in selected representative workplaces in nuclear industry where workers can receive significant neutron doses were performed. As part of this project, a number of tasks were executed, in particular: (1) the determination of the energy and direction distribution of the neutron fluence; (2) the derivation of the (conventionally true) values of radiation protection quantities; (3) the determination of the readings of routine and innovative personal dosimeters and of area monitors; and (4) the comparison between dosimeter readings and values of the radiation protection quantities

  11. High ionization radiation field remote visualization device - shielding requirements

    International Nuclear Information System (INIS)

    Fernandez, Antonio P. Rodrigues; Omi, Nelson M.; Silveira, Carlos Gaia da; Calvo, Wilson A. Pajero

    2011-01-01

    The high activity sources manipulation hot-cells use special and very thick leaded glass windows. This window provides a single sight of what is being manipulated inside the hot-cell. The use of surveillance cameras would replace the leaded glass window, provide other sights and show more details of the manipulated pieces, using the zoom capacity. Online distant manipulation may be implemented, too. The limitation is their low ionizing radiation resistance. This low resistance also limited the useful time of robots made to explore or even fix problematic nuclear reactor core, industrial gamma irradiators and high radioactive leaks. This work is a part of the development of a high gamma field remote visualization device using commercial surveillance cameras. These cameras are cheap enough to be discarded after the use for some hours of use in an emergency application, some days or some months in routine applications. A radiation shield can be used but it cannot block the camera sight which is the shield weakness. Estimates of the camera and its electronics resistance may be made knowing each component behavior. This knowledge is also used to determine the optical sensor type and the lens material, too. A better approach will be obtained with the commercial cameras working inside a high gamma field, like the one inside of the IPEN Multipurpose Irradiator. The goal of this work is to establish the radiation shielding needed to extend the camera's useful time to hours, days or months, depending on the application needs. (author)

  12. Zinc injection helps reduce radiation field buildup in BWRs

    International Nuclear Information System (INIS)

    Wood, C.

    1991-01-01

    The injection of zinc into the reactor water of BWRs (Boiling Water Reactors) was a technique developed by General Electric (GE) and the Electric Power Research Institute (EPRI) to control the buildup of radiation fields from cobalt-60 on out-of-core piping. The presence of 5-10ppb zinc in the reactor water reduces the growth of oxide films on stainless steel surfaces, thereby reducing the number of sites available for the incorporation of cobalt; zinc also competes with cobalt for the sites. In September 1990, EPRI organized a workshop at the request of several US utilities to provide a forum to discuss experiences with zinc injection. The meeting focused on six main issues: the effect of zinc on radiation fields in normal water chemistry; the radiation buildup in hydrogen water chemistry, with and without zinc; the effects of zinc-65; the corrosion of fuel cladding and structural materials; the performance of zinc injection and monitoring equipment; and planning for zinc injection. (author)

  13. Study on quantities of radiation protection in medical X-rays radiation field with polyhedron phantom

    International Nuclear Information System (INIS)

    Yuan Shuyu; Dai Guangfu; Zhang Liangan

    1997-01-01

    The author have studied tissue-equivalent material with the elemental composition recommended by report No.44 of ICRU. Three different calibration phantoms in shape have been prepared with the tissue-equivalent material in order to study the influence of the angular dependence factor R(d,α) in the radiation field of X-rays on the calibration of individual dose equivalent Hp(d). The requirement of mono-genous radiation field to calibrate several dosimeters on one phantom at the same time can be met by application of dodecahedron phantom, which is difficult on ICRU sphere. Angular dependence factor R(d,α) of 0 degree∼90 degree and conversion coefficients between individual dose equivalent Hp(0.07, α) and the exposure of radiation of different energies and different angles have been established by taking advantage of the dodecahedron. Besides, the authors have studied the variation relation between the individual dose equivalent Hp (10,α) and Hp(0.07,α) in the medical X-rays radiation field

  14. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  15. Relativistic derivation of the ponderomotive force produced by two intense laser fields

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1985-01-01

    The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-γm 10 16 -W/cm 2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired lasermatter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive

  16. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  17. A new multistack radiation boundary condition for FDTD based on self-teleportation of fields

    International Nuclear Information System (INIS)

    Diaz, Rodolfo E.; Scherbatko, Igor

    2005-01-01

    In [Electromagnetics 23 (2003) 187], a technique for injecting perfect plane waves into finite regions of space in FDTD was reported. The essence of the technique, called Field Teleportation, is to invoke the principle of equivalent sources using FDTDs discrete definition of the curl to copy any field propagating in one FDTD domain to a finite region of another domain. In this paper, we apply this technique of Field Teleportation to the original domain itself to create a transparent boundary across which any outward traveling FDTD field produces an exact negative copy of itself. When this copied field is teleported one cell ahead and one cell forward in time it causes significant self-cancelation of the original field. Illustrative experiments in two-dimensions show that a two-layer (10-cell thick) multi-stack Radiation Boundary Condition (RBC) with a simplest Huygens's termination readily yields reflection coefficients of the order of -80 dB up to grazing incidence for all the fields radiated by a harmonic point source (λ = 30 cells) in free space located 20 cells away from the boundary. Similarly low levels of artificial reflection are demonstrated for a case in which the RBC cuts through five different magnetodielectric materials

  18. Pin Diode Detector For Radiation Field Monitoring In A Current Mode

    International Nuclear Information System (INIS)

    Beck, A.; Wengrowicz, U.; Kadmon, Y.; Tirosh, D.; Osovizky, A.; Vulasky, E.; Tal, N.

    1999-01-01

    Thus paper presents calculations and tests made for a detector based on a bare Pin diode and a Pin diode coupled to a plastic scintillator. These configurations have a variety of applications in radiation field monitoring. For example, the Positron Emission Tomography (PET) technology which becomes an established diagnostic imaging modality. Flour-18 is one of the major isotopes being used by PET imaging. The PET method utilizes short half life β + radioisotopes which, by annihilation, produce a pair of high energy photons (511 keV). Fluoro-deoxyglucose producers are required to meet federal regulations and licensing requirements. Some of the regulations are related to the production in chemistry modules regarding measuring the Start Of Synthesis (SOS) activity and verifying the process repeatability. Locating a radiation detector based on Pin diode inside the chemistry modules is suitable for this purpose. The dimensions of a Pin diode based detector can be small, with expected linearity over several scale decades

  19. Behaviour of radiation fields in the Spanish PWR by the changes in coolant chemistry and primary system materials

    International Nuclear Information System (INIS)

    Llovet, R.; Fernandez Lillo, E.

    1995-01-01

    The Spanish PWR Owners Group established a program to evaluate the behavior of ex-core radiation fields and discriminate the effects of changes in coolant chemistry and primary system materials. Data from Vandellos, Asco, Almaraz and Trillo NPPs were analyzed Vandellos 2 was chosen as the lead plant and its data were thoroughly studied. The dose-rates evolution could be explained at each plant as a consequence of this sucessful program.Actions derived from the developed knowledge on this field have produced the stabilization or even reduction of radiation fields at these plants

  20. Characteristics of radiation field in living environment, 2

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Sakamoto, Ryuichi; Tsutsumi, Masahiro; Saito, Kimiaki; Moriuchi, Shigeru

    1990-01-01

    A series of environmental radiation survey was carried out on train lines within Tokyo metropolitan area to clarify the characteristics of radiation field in living environment. Eleven JR, 18 private and 10 subway lines were surveyed, which cover 97% of whole train lines in Tokyo district in terms of annual number of passengers. The characteristics of environmental radiation field on train lines were discussed. The mean absorbed dose rate in air due to γ-rays on the subway lines was higher than those on the JR and private lines. It is due to the difference in the radioactivity concentration and the distribution of surrounding materials as the γ-ray sources. On the other hand, the mean dose rate due to cosmic-rays on the subway lines was lower than those on the JR and private lines. It is due to the shielding effect of the upper materials such as soil or building materials of tunnels. The mean dose rates for the JR, private and subway lines were calculated using these obtained data. Though the ratio of mean dose rate of γ-rays to that of cosmic-rays for the subway lines was different from those for the JR and private lines, the sum of γ- and cosmic-ray dose rates for the JR, private and subway lines were comparable, 40∼50 nGy/h for any of them. These data will be useful for a precise and realistic evaluation of collective dose, considering the life style of the public and the variation characteristics of environmental radiation. (author)

  1. Remanent radiation fields around medical linear accelerators due to the induced radionuclides

    International Nuclear Information System (INIS)

    Sabol, J.; Khalifa, O.; Berka, Z.; Stankus, P.; Frencl, L.

    1998-01-01

    Radiation fields around two linear accelerators, Saturn 43 and a Saturn 2 Plus, installed at radiotherapy department is Prague, were measured and interpreted. The measurements included the determination of the dose equivalent rate resulting from photons emitted by induced radionuclides produced in reactions of high-energy photons with certain elements present in air and accelerator components as well as in the shielding and building materials in the treatment rooms, which are irradiated by high-energy X-rays, and due to radionuclides formed by capture of photoneutrons. While scattered photons and photoneutrons are only present during the accelerator operation, residual radioactivity creates a remanent radiation field persisting for some time after the instrument shutdown. The activity induced in the accessories is also an important source of exposure. (P.A.)

  2. Field Deployable Gamma Radiation Detectors for DHS Use

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  3. Field Deployable Gamma Radiation Detectors for DHS Use

    International Nuclear Information System (INIS)

    Sanjoy Mukhopadhyay

    2007-01-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER(trademark), which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack(trademark) that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  4. Characteristics of outage radiation fields around various reactor components

    International Nuclear Information System (INIS)

    Verzilov, Y.; Husain, A.; Corbin, G.

    2008-01-01

    Full text: Activity monitoring surveys, consisting of gamma spectroscopy and dose rate measurements, of various CANDU station components such as the reactor face, feeder cabinet, steam generators and moderator heat exchangers are often performed during shutdown in order to trend the transport of activity around the primary heat transport and moderator systems. Recently, the increased dose expenditure for work such as feeder inspection and replacement in the reactor vault has also spurred interest in improved characterization of the reactor face fields to facilitate better ALARA decision making and hence a reduction in future dose expenditures. At present, planning for reactor face work is hampered by insufficient understanding of the relative contribution of the various components to the overall dose. In addition to the increased dose expenditure for work at the reactor face, maintenance work associated with horizontal flux detectors and liquid injection systems has also resulted in elevated dose expenditures. For instance at Darlington, radiation fields in the vicinity of horizontal flux detectors (HFD) and Liquid Injection Shutdown System (LISS) nozzle bellows are trending upwards with present contact fields being in the range 16-70 rem/h and working distance fields being in the range 100-500 mrem/h. This paper presents findings based on work currently being funded by the CANDU Owners Group. Measurements were performed at Ontario Power Generation's Pickering and Darlington nuclear stations. Specifically, the following are addressed: Characteristics of Reactor Vault Fields; Characteristics of Steam Generator Fields; Characteristics of Moderator Heat Exchanger Fields. Measurements in the reactor vault were performed at the reactor face, along the length of end fittings, along the length of feeders, at the bleed condenser and at the HFD and LISS nozzle bellows. Steam generator fields were characterized at various elevations above the tube sheet, with and without the

  5. Recent developments in the field of radiation processing

    International Nuclear Information System (INIS)

    Andrzej, G. Chmielewski

    2006-01-01

    Full text: Radiation has been discovered more than one hundred years ago. Since than, properties of radiation to modify physico-chemical properties of materials have found many applications. Radiation technologies applying gamma sources and electron accelerators for material processing are well established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. They are being widely used for sterilization, food irradiation and polymer processing. New developments in the field of radiation sources engineering are compact size gamma irradiators, high power electron accelerators (medium energy range) for environmental applications and other types (high energy range) for materials' processing, with direct e-/X conversion. Future applications of low energy, inexpensive EB processing systems are foreseen. Electron beam lithography for microelectronics is a well-established technique. The already tested e-/X system equipped in an accelerator of 700 kW power opens new horizons for this kind of application. The developments described above need introduction of new computational methods that facilitate prediction of dose distribution, even in containers filled with complex products of varying densities. This technique provides good solutions for homeland security applications which may be complemented by mobile system applications. Technologies to be developed besides environmental applications could be nano materials, structure engineered materials (sorbents, the composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation processed polysaccharides have already been commercialized in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environment protection - radiation technology being a clean and environment friendly process, helps to curb pollutants' emission as

  6. Radiation protection in the field of environmental protection

    International Nuclear Information System (INIS)

    Zhao Yamin

    2003-01-01

    The relationship of radiation protection with environmental protection, the sources that may give rise to the environmental radiation contamination, and the system of radiation protection and the fundamental principles and requirements for radiation environmental management are introduced. Some special radiation protection problems faced with in the radiation environmental management are discussed. (author)

  7. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  8. Numerical study of primordial magnetic field amplification by inflation-produced gravitational waves

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2010-01-01

    We numerically study the interaction of inflation-produced magnetic fields with gravitational waves, both of which originate from quantum fluctuations during inflation. The resonance between the magnetic field perturbations and the gravitational waves has been suggested as a possible mechanism for magnetic field amplification. However, some analytical studies suggest that the effect of the inflationary gravitational waves is too small to provide significant amplification. Our numerical study shows more clearly how the interaction affects the magnetic fields and confirms the weakness of the influence of the gravitational waves. We present an investigation based on the magnetohydrodynamic approximation and take into account the differences of the Alfven speed.

  9. Innovative Approaches to Enhance Safety and Radiation Protection on a PET RI/RF Producing Facility for Occupationally Exposed Personnel

    International Nuclear Information System (INIS)

    Avila-Sobarzo, M.J.; Tenreiro, C.; Sadeghi, M.

    2011-01-01

    The explosive demand for positron emission tomography (PET) and, recently introduced, fusion technology (PET/CT and soon commercially available PET/MRI) as non-invasive diagnostic tools of choice for clinical imaging, results on a world wide PET centers and PET RI/RF production facilities remarkably increment . A charged particle accelerator when operated for PET radionuclides production produces ionizing radiation. The multi curies radionuclides from the accelerator and the radiopharmaceuticals synthesized are ionizing radiations emitters open sources. Therefore, the probability of unexpected radiation exposure is always present along full production line, from target loading for irradiation to final dose dispensing.Improving safety working conditions requires permanent radiological risks assessment associated with the production process for accelerator operators, radio chemist and hot cell assistants as well as other occupationally exposed personnel.In this work we present some of the experimental improvements added to our Cyclone 18/9 operation and routinely 18 FDG production process to improve personnel radioprotection. These approaches apply for professionals working on other accelerator field such as non-destructive analytical and tracer technicians at research and industrial levels with charged particle accelerators

  10. On the evaluation of rectangular plane-extended sources and their associated radiation fields

    International Nuclear Information System (INIS)

    Oner, Feda

    2007-01-01

    The objective of this paper is to provide an efficient and reliable analytical procedure for the evaluation of rectangular plane-extended sources and their associated radiation fields. Integrals with integer and non-integer values appear in the evaluation of the radiation field distribution. The latter results from a homogeneous rectangular plane target bombarded by hollow-cylindrical ion beams, the elementary areas anisotropically emitting in non-dispersive media, and fast neutrons produced in non-dispersive media by sealed-off neutron generating tubes (NGT) in an axi-symmetric situation [Hubbell, J.H., Bach, R.L., Lamkin, J.C., 1960. Radiation from a rectangular source. J. Res. NBS 64C (2), 121-137; Hubbell, J.H., 1963a. A power series buildup factor formulation. Application to rectangular and offaxis disk source problems. J. Res. NBS 67C, 291-306, Hubbell, J.H., 1963b. Dose fields from plane sources using point-source data. Nucleonics 21 (8), 144-148; Timus et al., 2005a. Plane rectengular tritium target response to excitation by uniform distributed normal accelerated deuteron beam. Appl. Radiat. Isot. 63, 823-839; Timus et al., 2005b. Analytical characterization of radiation fields generated by certain witch-type distributed axi-symmetrical ion beams. Arab J. Nucl. Sci. Appl. 38(I) 253-264]. In these references, the resulting expressions are represented as infinite linear combinations of basic J q (a, b, z) integrals. With the help of relation for J q (a, b, z), we can evaluate the high terms of energy expressions, which have been proposed in the above-mentioned references. The extensive test calculations show that the proposed algorithm in this work is the most efficient one in practical computations

  11. Field experience in use of radiation instruments in Cirus reactor

    International Nuclear Information System (INIS)

    Ramesh, N.; Sharma, R.C.; Agarwal, S.K.; Sawant, D.K.; Yadav, R.K.B.; Prasad, S.K.

    2005-01-01

    Cirus, located at Bhabha Atomic Research Centre, is a 40 MW (Th) research reactor fuelled by natural uranium, moderated by heavy water and cooled by de-mineralized light water. Graphite is used as reflector in this reactor. The reactor, commissioned in the year 1960, was in operation with availability factor of about 70% till early nineties. There after signs of ageing started surfacing up. After ageing studies, refurbishment plan was finalized and executed during the period from 1997-2002. after successful refurbishment, the reactor is in operation at full power. A wide range of radiation instruments have been used at Cirus for online monitoring of the radiological status of various process systems and environmental releases. Also, variety of survey meters, counting systems and monitors have been used by the health physics unit of the reactor for radiation hazard control. Many of these instruments, which were originally of Canadian design, have undergone changes due to obsolescence or as part of upgradation. This paper describes the experience with the radiation instruments of Cirus, bringing out their effectiveness in meeting the design intent, difficulties faced in their field use, and modifications carried out based on the performance feed back. Also, this paper highlights the areas where further efforts are needed to develop nuclear instrumentation to further strengthen monitoring and surveillance. (author)

  12. Romanian Radiation Protection Training Experience in Medical Field

    International Nuclear Information System (INIS)

    Steliana Popescu, F.; Milu, C.; Naghi, E.; Calugareanu, L.; Stroe, F. M.

    2003-01-01

    Studies conducted by the Institute of Public Health Bucharest during the last years emphasised the need of appropriate radioprotection training in the medical field. With the assistance of the International Atomic Energy Agency in Vienna, the Pilot Centre on Clinical Radio pathology in the Institute of Public Health-Bucharest, provided, from 2000 a 7 modular courses (40 hours each), covering the basic topics of ionizing radiation, biological and physical dosimetry, effects of exposure to ionising radiation, radioprotection concepts, planning and medical response in case of a nuclear accident or radiological emergency. The courses are opened for all health specialists, especially for occupational health physicians, focusing on health surveillance of radiation workers and medical management of overexposed workers. Each module is followed up by an examination and credits. The multidisciplinary team of instructors was trained within several train-the-trainers courses, organised by IAEA. The paper discusses the evaluation of these 3 years experience in training and its feedback impact, the aim of the program being to develop a knowledge in the spirit of the new patterns of radiological protection, both for safety and communication with the public. (Author)

  13. Reproducibility of irregular radiation fields for malignant lymphoma

    International Nuclear Information System (INIS)

    Mock, U.; Dieckmann, K.; Poetter, R.; Molitor, A.M.; Haverkamp, U.

    1998-01-01

    Purpose: Radiation treatment for malignant lymphoma requires large field irradiation with irregular blocks according to the individual anatomy and tumor configuration. For determination of safety margins (PTV) we quantitatively analysed the accuracy of field and block placement with regard to different anatomical regions. Patients and Methods: Forty patients with malignant lymphoma were irradiated using the classical supra-/infradiaphragmatic field arrangements. Treatment was performed with 10-MeV photons and irregularly shaped, large opposing fields. We evaluated the accuracy of field and block placements during the treatment courses by comparing the regularly performed verification - with the simulation films. Deviations were determined with respect to the field edges and the central axis, along the x- and z-axis. Results: With regard to the field edges, mean deviations of 2.0 mm and 3.4 mm were found along the x- and z-axis. The corresponding standard deviations were 3.4 mm and 5.5 mm, respectively. With regard to the shielding blocks, mean displacement along the x- and z-axis was 2.2 mm and 3.8 mm. In addition, overall standard deviations of 5.7 mm (x-axis) and 7.1 mm (z-axis) were determined. During the course of time an improved accuracy of block placement was notable. Conclusion: Systematic analysis of port films gives information for a better defining safety margins in external radiotherapy. Evaluation of verification films on a regular basis improves set-up accuracy by reducing displacements. (orig.) [de

  14. Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok [Dept. of Radiological Tecknology, Daegu Health College, Daegu (Korea, Republic of)

    2011-12-15

    As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

  15. Difference in Understanding of the Need for Using Radiation in Various Fields between Students Majoring in Radiation and Non-Radiation Related Studies

    International Nuclear Information System (INIS)

    Han, Eun Ok

    2011-01-01

    As a way of improving social receptivity of using radiation, this study looked into the difference of understanding the need of using radiation in various fields between students majoring in radiation and non-radiation related studies, who will influence public opinion in the long term. This study also provides data needed for developing efficient strategies for projects promoting the public's awareness of using radiation. Of the students in the 79 schools sampled, 24%(177) were in 4 year colleges and 146 were junior colleges in educational statistics service (http://cesi.kedi.re.kr) In November 2010 1,945 students were selected as a sample, and they were given surveys on the need of using radiation in different fields. As a result, both between students majoring in radiation and non-radiation related studies showed a high level of understanding the need for radiation in the medical field and showed a low level of understanding of the need for radiation in the agricultural field. In all 6 fields of radiation use, students majoring in radiation related studies showed higher levels of understanding for the need to use radiation than students majoring in radiation and non-radiation related studies. In each field, male students and those who have experience medical radiation and relevant education had higher level of understanding. This shows we need to improve the understanding of the cases of female students and those who have not had experiences with medical radiation and to provide relevant education through various kinds of information. The characteristics of the groups that are shown in the results of this study are considered to be helpful for efficiently for project promoting the public's awareness of using radiation.

  16. Performance of neutron and gamma personnel dosimetry in mixed radiation fields

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1981-01-01

    From 1974 to 1980, six personnel dosimetry intercomparison studies (PDIS) were conducted at the Oak Ridge National Laboratory (ORNL) to evaluate the performance of personnel dosimeters in a variety of neutron and gamma fields produced by operating the Health Physics Research Reactor (HPRR) in the steady state mode with and without spectral modifying shields. A total of 58 different organizations participated in these studies which produced approximately 2000 measurements of neutron and gamma dose equivalents on anthropomorphic phantoms for five different reactor spectra. Based on these data, the relative performance of three basic types of neutron dosimeters [nuclear emulsion film, thermoluminescent (TLD), and track-etch] and two basic types of gamma dosimeters (film and TLD) in mixed radiation fields was assessed

  17. Determination of cosmic ray produced radionuclides by means of background radiation counting system, 3

    International Nuclear Information System (INIS)

    1976-01-01

    This is the third report of the progress report series on studies of cosmic ray produced radionuclides by means of low background radiation counting system. In Part I some characteristics of a low beta-gamma coincidence spectrometer are described -- counter system, electronics, background spectra, counting efficiencies -- and studies on radioactive impurities in materials for scientific research are also described. In Part II, suitable solvents for a large scale liquid scintillation counter were examined and best combinations of solvents, solutes and naphthalene are shown. In Part III, miscellaneous topics are reported. (auth.)

  18. Direct measurement of macroscopic electric fields produced by collective effects in electron-impact experiments

    International Nuclear Information System (INIS)

    Velotta, R.; Avaldi, L.; Camilloni, R.; Giammanco, F.; Spinelli, N.; Stefani, G.

    1996-01-01

    The macroscopic electric field resulting from the space charge produced in electron-impact experiments has been characterized by using secondary electrons of well-defined energy (e.g., Auger or autoionizing electrons) as a probe. It is shown that the measurement of the kinetic-energy shifts suffered by secondary electrons is a suitable tool for the analysis of the self-generated electric field in a low-density plasma. copyright 1996 The American Physical Society

  19. Development of regulatory technologies of key issues of radiation sources in the medical and industrial fields

    International Nuclear Information System (INIS)

    Lee, Jae Seong; Kim, Byung Soo; Ku, Bon Chul

    2006-08-01

    The aim of this research is to provide with rational bases to address the key issues raising up during the expansion of RI/RG usage in the medical and industrial fields, thus eventually contribute to enhancing the effectiveness of national regulatory systems. Related key issues that are introduced in the medical and industrial fields are analyzed and some outcomes are produced. The following results are attained. - Estimation Methodology Development of Regulatory Effects for the Use of Radioactive Substances, - Survey on Domestic Status of Nuclear Materials and Review on Domestic/Foreign Regulatory System for Nuclear Materials Regulation, - Comparative Analysis of KSTAR and Fusion Facilities of Advanced Countries, - Radiological Characteristics of Proton Therapy and Analysis of Foreign Cases and Systems, - Detection and Safety Analysis of Leak Radiation of High Energy Medical Generators, - Survey and Analysis on Usage and Requirements of Sealed Sources, - Incidents/Accidents Reporting System for RI-related Facilities, - Development of Audio-Visual Education Materials for Radiation Workers, - Development of Major Safety Procedures for Portable RIs, - Expansion of Existing DB for Radiation Devices including New Domestic Ones, - Survey of Foreign Status of Quality Maintenance System for Radiation equipment

  20. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    Science.gov (United States)

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  2. Formation of comets by radiation pressure in the outer protosun. III. Dependence on the anisotropy of the radiation field

    International Nuclear Information System (INIS)

    Hills, J.G.; Sandford, M.T. Jr.

    1983-01-01

    A two-dimensional, radiation-hydrodynamic code with dust was used to study the effect of an anisotropic radiation field on the formation of comets in the outer protosun by the radiation pressure from the Sun and surrounding protostars. If the radiation field is isotropic, the results are very similar to those found earlier by analytic models. When the dust cloud is flanked on two sides by luminous walls of equal strength but with no radiation entering the cloud from the azimuthal direction (a radiation vise), most of the dust eventually squeezes out the sides of the vise. The sides are open to outward streaming radiation which carries the dust with it. However, the entrance of even a small amount of radiation from the sides causes the dust to drift inward to form the comet. The work given in this paper indicates that a highly anisotropic radiation field is not likely to prevent the formation of a comet. It distorts the shape of the inward drifting dust cloud. Initially, faster inward drift occurs along radii having the strongest inward radiation flux. This in turn causes the optical depth to increase faster along the perpendicular radii where the radiation field is the weakest. The increase in the optical depth eventually compensates for the low radiation flux, so as the cloud shrinks the radiation pressure increases faster at the surface of the cloud along those radius vectors where the radiation flux has a minimum. Although the dust cloud in the anisotropic radiation field attains a very irregular shape, eventually all parts of the cloud contract in unison and arrive at the center of the cloud at about the same time

  3. Radiation field characterization and shielding studies for the ELI Beamlines facility

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A., E-mail: a.ferrari@hzdr.de [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Amato, E. [Department of Radiological Sciences, Messina University (Italy); Margarone, D. [ELI Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); PALS Centre, Za Slovankou, 18200 Prague (Czech Republic); Cowan, T. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Korn, G. [ELI Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2013-05-01

    The ELI (Extreme Light Infrastructure) Beamlines facility in the Czech Republic, which is planned to complete the installation in 2015, is one of the four pillars of the ELI European project. Several laser beamlines with ultrahigh intensities and ultrashort pulses are foreseen, offering versatile radiation sources in an unprecedented energy range: laser-driven particle beams are expected to range between 1 and 50 GeV for electrons and from 100 MeV up to 3 GeV for protons. The number of particles delivered per laser shot is estimated to be 10{sup 9}–10{sup 10} for the electron beams and 10{sup 10}–10{sup 12} for the proton beams. The high energy and current values of the produced particles, together with the potentiality to operate at 10 Hz laser repetition rate, require an accurate study of the primary and secondary radiation fields to optimize appropriate shielding solutions: this is a key issue to minimize prompt and residual doses in order to protect the personnel, reduce the radiation damage of electronic devices and avoid strong limitations in the operational time. A general shielding study for the 10 PW (0.016 Hz) and 2 PW (10 Hz) laser beamlines is presented here. Starting from analytical calculations, as well as from dedicated simulations, the main electron and proton fields produced in the laser-matter interaction have been described and used to characterize the “source terms” in full simulations with the Monte Carlo code FLUKA. The secondary radiation fields have been then analyzed to assess a proper shielding. The results of this study and the proposed solutions for the beam dumps of the high energy beamlines, together with a cross-check analysis performed with the Monte Carlo code GEANT4, are presented.

  4. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    Science.gov (United States)

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  5. Biological effect produced by ionizing radiations on occupational workers in Carlos Andrade Marin Hospital

    International Nuclear Information System (INIS)

    Arias Pullaguari, Ines Yolanda

    2003-01-01

    The objective of this study was to establish the biological effects on occupational workers. In this study, have made a bibliographic review of the changes on skin of 217 professionals; between 21 and 70 years radiologists, X-ray technicians, radioisotope workers, nurses and others, which were exposed to ionizing radiation, in the departments of Diagnosis and Treatment of the Hospital Carlos Andrade Marin of the Quito city. From this universe 133 workers were excluded of the analysis. From the totality of lesions produced on the skin; the depilation constituted 40.18%, hyper pigmentation 19.34%, hypo pigmentation 9 %, capillary fragility 13.39%, erythema 13.39%, alopecia 5.37%. From the totality of lesions produced in blood: the leukopenia constituted 20.23% between all workers. The percentage method was used for statical calculation. A bibliographic update is done and the most relevant clinical aspects are reviewed. (The author)

  6. EM Modeling of Far-Field Radiation Patterns for Antennas on the GMA-TT UAV

    Science.gov (United States)

    Mackenzie, Anne I.

    2015-01-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  7. An ICF system based on Z-pinch radiation produced by an explosive magnetic generator

    International Nuclear Information System (INIS)

    Garanin, S.G.; Ivanovsky, A.V.; Mkhitariyan, L.S.

    2011-01-01

    It is known that a thermonuclear target can be ignited by an implosion accomplished with X-radiation generated by means of laser radiation conversion or by a Z pinch formed by a high-power current pulse. For these purposes laser facility NIF has been constructed in the USA, 'Megajoule' is being constructed in France and there is a project of laser facility UFL in Russia. The project of stationary facility X has been developed in SNL USA to produce a Z pinch capable of generating an x-ray pulse with parameters close to the ignition threshold. There is a great chance, however, that the already tested technologies, including disc explosive magnetic generators (DEMG), systems of current peaking based on electrically exploded foil opening switches and high-voltage switching devices, allow the intriguing problem of the ignition feasibility to be solved and the quickest and cheapest way to accomplish this to be provided. To explore this possibility, the paper will sequentially analyse the ignition conditions. The required parameters of Z pinch X-radiation and the size of the DEMG-based facility to obtain these parameters will be evaluated. Capabilities of the new current sources based on the DEMG and of the devices shaping a current pulse will be presented and compared with those required for the ignition.

  8. Manual of plant producers and services in environmental protection. Database in the field of environmental protection

    International Nuclear Information System (INIS)

    Serve, C.

    1992-01-01

    On the basis of an enquiry, the Stuttgart Chamber of Industry and Commerce produced a database of the services offered by regional and supraregional companies in the field of environmental protection. The data are presented in this manual, classified as follows: noise protection systems; sanitation systems and services; other systems and services. (orig.) [de

  9. Remark on the gravitational field produced by an infinite straight string

    International Nuclear Information System (INIS)

    Francisco, G.; Matsas, G.E.A.

    1989-01-01

    The results predicted by Newtonian gravity and general relativity are compared regarding the field produced by an infinite gauge string with constant density λ. A simple gedankenexperiment is suggested to stress the remarkable differences between these two theories. The existence of the usual Newtonian limit is discussed in this case

  10. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.; Hull, J.R.; Almer, J.D. (Argonne National Lab., IL (United States)); Rossing, T.D. (Northern Illinois Univ., De Kalb, IL (United States))

    1992-01-01

    Experiments have been performed to further understand the forces acting on magnets moving along and over the edge of a continuous conducting sheet and to produce a comprehensive data set for the validation of analysis methods. Mapping the magnetic field gives information about the eddy currents induced in the conductor, which agrees with numerical calculations.

  11. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.; Hull, J.R.; Almer, J.D. [Argonne National Lab., IL (United States); Rossing, T.D. [Northern Illinois Univ., De Kalb, IL (United States)

    1992-04-01

    Experiments have been performed to further understand the forces acting on magnets moving along and over the edge of a continuous conducting sheet and to produce a comprehensive data set for the validation of analysis methods. Mapping the magnetic field gives information about the eddy currents induced in the conductor, which agrees with numerical calculations.

  12. Study of magnetic field expansion using a plasma generator for space radiation active protection

    International Nuclear Information System (INIS)

    Jia Xianghong; Jia Shaoxia; Wan Jun; Wang Shouguo; Xu Feng; Bai Yanqiang; Liu Hongtao; Jiang Rui; Ma Hongbo

    2013-01-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power. (authors)

  13. Is more profound knowledge in the field of radiation nece--ssary for doctors

    International Nuclear Information System (INIS)

    Klener, V.

    1981-01-01

    Reasons are listed why doctors should have more profound knowledge in the field of radiation. Despite imperceptibility by human senses of ionizing radiation, the parameters characterizing irradiation can accurately be measured. The units of the said parameters are listed and characterized and the relationships are explained of the radiation dose and non-stochastic and stochastic radiation effects. (Ha)

  14. Regulatory inspections in nuclear plants in the field of radiation protection

    International Nuclear Information System (INIS)

    Hort, M.; Fuchsova, D.

    2014-01-01

    State Office for Nuclear Safety executes state administration and performs inspections at peaceful use of nuclear energy and ionizing radiation in the field of radiation protection and nuclear safety. Inspections on radiation protection at nuclear power plants are secured by inspectors of the Department of Radiation Protection in Fuel Cycle, who work at the Regional centre Brno and Ceske Budejovice. (authors)

  15. Classical calculation of radiative lifetimes of atomic hydrogen in a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Horbatsch, M.W.; Hessels, E.A.; Horbatsch, M.

    2005-01-01

    Radiative lifetimes of hydrogenic atoms in a homogeneous magnetic field of moderate strength are calculated on the basis of classical radiation. The modifications of the Keplerian orbits due to the magnetic field are incorporated by classical perturbation theory. The model is complemented by a classical radiative decay calculation using the radiated Larmor power. A recently derived highly accurate formula for the transition rate of a field-free hydrogenic state is averaged over the angular momentum oscillations caused by the magnetic field. The resulting radiative lifetimes for diamagnetic eigenstates classified by n,m and the diamagnetic energy shift C compare well with quantum results

  16. Techniques to maximize software reliability in radiation fields

    International Nuclear Information System (INIS)

    Eichhorn, G.; Piercey, R.B.

    1986-01-01

    Microprocessor system failures due to memory corruption by single event upsets (SEUs) and/or latch-up in RAM or ROM memory are common in environments where there is high radiation flux. Traditional methods to harden microcomputer systems against SEUs and memory latch-up have usually involved expensive large scale hardware redundancy. Such systems offer higher reliability, but they tend to be more complex and non-standard. At the Space Astronomy Laboratory the authors have developed general programming techniques for producing software which is resistant to such memory failures. These techniques, which may be applied to standard off-the-shelf hardware, as well as custom designs, include an implementation of Maximally Redundant Software (MRS) model, error detection algorithms and memory verification and management

  17. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Igumenshchev, I.; Stoeckl, C.; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  18. Scattering in an intense radiation field: Time-independent methods

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1977-01-01

    The standard time-independent formulation of nonrelativistic scattering theory is here extended to take into account the presence of an intense external radiation field. In the case of scattering by a static potential the extension is accomplished by the introduction of asymptotic states and intermediate-state propagators which account for the absorption and induced emission of photons by the projectile as it propagates through the field. Self-energy contributions to the propagator are included by a systematic summation of forward-scattering terms. The self-energy analysis is summarized in the form of a modified perturbation expansion of the type introduced by Watson some time ago in the context of nuclear-scattering theory. This expansion, which has a simple continued-fraction structure in the case of a single-mode field, provides a generally applicable successive approximation procedure for the propagator and the asymptotic states. The problem of scattering by a composite target is formulated using the effective-potential method. The modified perturbation expansion which accounts for self-energy effects is applicable here as well. A discussion of a coupled two-state model is included to summarize and clarify the calculational procedures

  19. Method and apparatus for producing average magnetic well in a reversed field pinch

    International Nuclear Information System (INIS)

    Ohkawa, T.

    1983-01-01

    A magnetic well reversed field plasma pinch method and apparatus produces hot magnetically confined pinch plasma in a toroidal chamber having a major toroidal axis and a minor toroidal axis and a small aspect ratio, e.g. < 6. A pinch current channel within the plasma and at least one hyperbolic magnetic axis outside substantially all of the plasma form a region of average magnetic well in a region surrounding the plasma current channel. The apparatus is operated so that reversal of the safety factor q and of the toroidal magnetic field takes place within the plasma. The well-producing plasma cross section shape is produced by a conductive shell surrounding the shaped envelope and by coils. A shell is of copper or aluminium with non-conductive breaks, and is bonded to a thin aluminium envelope by silicone rubber. (author)

  20. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    International Nuclear Information System (INIS)

    Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L

    2016-01-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)

  1. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler

    International Nuclear Information System (INIS)

    Hyodo, K.; Ando, M.; Oku, Y.; Yamamoto, S.; Takeda, T.; Itai, Y.; Ohtsuka, S.; Sugishita, Y.; Tada, J.

    1998-01-01

    A two-dimensional clinical intravenous coronary angiography system, comprising a large-size View area produced by asymmetrical reflection from a silicon crystal using intense synchrotron radiation from a multipole wiggler and a two-dimensional detector with an image intensifier, has been completed. An advantage of the imaging system is that two-dimensional dynamic imaging of the cardiovascular system can be achieved due to its two-dimensional radiation field. This world-first two-dimensional system has been successfully adapted to clinical applications. Details of the imaging system are described in this paper

  2. Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, K.; Ando, M. [High Energy Accelerator Research Organization, Inst. of Material Structure Sciences, Tsukuba (Japan); Oku, Y.; Yamamoto, S. [Graduated School for Advanced Sciences, Tsukuba (Japan); Takeda, T.; Itai, Y.; Ohtsuka, S.; Sugishita, Y. [The Univ. of Tsukuba, Inst. of Clinical Medicine, Tsukuba (Japan); Tada, J. [The Univ. of Tsukuba, Inst. of Basic Medical Sciences, Tsukuba (Japan)

    1998-05-01

    A two-dimensional clinical intravenous coronary angiography system, comprising a large-size View area produced by asymmetrical reflection from a silicon crystal using intense synchrotron radiation from a multipole wiggler and a two-dimensional detector with an image intensifier, has been completed. An advantage of the imaging system is that two-dimensional dynamic imaging of the cardiovascular system can be achieved due to its two-dimensional radiation field. This world-first two-dimensional system has been successfully adapted to clinical applications. Details of the imaging system are described in this paper. 18 refs.

  3. GRAIN ALIGNMENT INDUCED BY RADIATIVE TORQUES: EFFECTS OF INTERNAL RELAXATION OF ENERGY AND COMPLEX RADIATION FIELD

    International Nuclear Information System (INIS)

    Hoang, Thiem; Lazarian, A.

    2009-01-01

    Earlier studies of grain alignment dealt mostly with interstellar grains that have strong internal relaxation of energy which aligns the grain axis of maximum moment of inertia (the axis of major inertia) with respect to the grain's angular momentum. In this paper, we study the alignment by radiative torques for large irregular grains, e.g., grains in accretion disks, for which internal relaxation is subdominant. We use both numerical calculations and the analytical model of a helical grain introduced by us earlier. We demonstrate that grains in such a regime exhibit more complex dynamics. In particular, if initially the grain axis of major inertia makes a small angle with angular momentum, then radiative torques can align the grain axis of major inertia with angular momentum, and both the axis of major inertia and angular momentum are aligned with the magnetic field when attractors with high angular momentum (high-J attractors) are available. For alignment without high-J attractors, beside the earlier studied attractors with low angular momentum (low-J attractors), there appear new low-J attractors. In addition, we also study the alignment of grains in the presence of strong internal relaxation, but induced not by a radiation beam as in earlier studies but instead induced by a complex radiation field that can be decomposed into dipole and quadrupole components. We found that in this situation the parameter space q max , for which high-J attractors exist in trajectory maps, is more extended, resulting in the higher degree of polarization expected. Our results are useful for modeling polarization arising from aligned dust grains in molecular clouds.

  4. Trapped-Ion Quantum Logic with Global Radiation Fields.

    Science.gov (United States)

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  5. Calibration of extremity dosemeters for gamma radiation fields

    International Nuclear Information System (INIS)

    Papadopulos, S.B.; Gregori, B.N.; Cruzate, J.A.

    1998-01-01

    In this work the kerma conversion factor are free in air, dose equivalent H(d,0 ) are presented, they were obtained theoretical and experimentally in finger and arm for gamma radiation fields. Extremity dosemeters put on surface finger and arm phantom have been irradiated. The finger phantom is a solid cylinder of PMMA polymethylmethacrylate 19 mm diameter and 300 mm height. The arm phantom is a 73 mm external diameter cylinder with PMMA walls 2.5 mm thick fill with water and 300 mm height. The radiation sources were cobalt 60 and cesium 137 from the Regional Center of Reference (CRR) of the National Commission of Atomic Energy (CNEA) and the Nuclear Regulatory Authority (ARN). Also in ISO wide X ray spectra W60, W110 and W200 have been irradiated. The results obtained show a good correlation with those published, they have a difference less than 7%. The factors will be applied to the evaluation of the equivalent doses coming from workers whose main irradiated zone is in the hands. (author)

  6. ARM West Antarctic Radiation Experiment (AWARE) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Daniel [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Bromwich, David H [Ohio State University; Vogelmann, Andrew M [Brookhaven National Lab. (BNL), Upton, NY (United States); Verlinde, Johannes [Pennsylvania State Univ., University Park, PA (United States); Russell, Lynn M [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography

    2017-09-15

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) is the most technologically advanced atmospheric and climate science campaign yet fielded in Antarctica. AWARE was motivated be recent concern about the impact of cryospheric mass loss on global sea level rise. Specifically, the West Antarctic Ice Sheet (WAIS) is now the second largest contributor to rising sea level, after the Greenland Ice Sheet. As steadily warming ocean water erodes the grounding lines of WAIS components where they meet the Amundsen and Bellingshausen Seas, the retreating grounding lines moving inland and downslope on the underlying terrain imply mechanical instability of the entire WAIS. There is evidence that this point of instability may have already been reached, perhaps signifying more rapid loss of WAIS ice mass. At the same time, the mechanical support provided by adjacent ice shelves, and also the fundamental stability of exposed ice cliffs at the ice sheet grounding lines, will be adversely impacted by a warming atmosphere that causes more frequent episodes of surface melting. The surface meltwater damages the ice shelves and ice cliffs through hydrofracturing. With the increasing concern regarding these rapid cryospheric changes, AWARE was motivated by the need to (a) diagnose the surface energy balance in West Antarctica as related to both summer season climatology and potential surface melting, and (b) improve global climate model (GCM) performance over Antarctica, such that future cryospheric projections can be more reliable.

  7. Ultrafast outflows disappear in high-radiation fields

    Science.gov (United States)

    Pinto, C.; Alston, W.; Parker, M. L.; Fabian, A. C.; Gallo, L. C.; Buisson, D. J. K.; Walton, D. J.; Kara, E.; Jiang, J.; Lohfink, A.; Reynolds, C. S.

    2018-05-01

    Ultrafast outflows (UFOs) are the most extreme winds launched by active galactic nuclei (AGN) due to their mildly relativistic speeds (˜0.1-0.3c) and are thought to significantly contribute to galactic evolution via AGN feedback. Their nature and launching mechanism are however not well understood. Recently, we have discovered the presence of a variable UFO in the narrow-line Seyfert 1 IRAS 13224-3809. The UFO varies in response to the brightness of the source. In this work we perform flux-resolved X-ray spectroscopy to study the variability of the UFO and found that the ionization parameter is correlated with the luminosity. In the brightest states the gas is almost completely ionized by the powerful radiation field and the UFO is hardly detected. This agrees with our recent results obtained with principal component analysis. We might have found the tip of the iceberg: the high ionization of the outflowing gas may explain why it is commonly difficult to detect UFOs in AGN and possibly suggest that we may underestimate their actual feedback. We have also found a tentative correlation between the outflow velocity and the luminosity, which is expected from theoretical predictions of radiation-pressure-driven winds. This trend is rather marginal due to the Fe XXV-XXVI degeneracy. Further work is needed to break such degeneracy through time-resolved spectroscopy.

  8. A Shared Compliance Control for Application in High Radiation Fields

    International Nuclear Information System (INIS)

    Ahn, Sung Ho; Jung, Hoan Sung; Lee, Kye Hong; Kim, Young Ki; Kim, Hark Rho

    2005-01-01

    Bilateral control systems present a technical alternative for intelligent robotic systems performing dexterous tasks in unstructured environments such as a nuclear facility, outer space and underwater. A shared compliance control scheme is proposed for application in high radiation fields in which the force sensor can not be installed because of a radiation effect. A position difference between the master system and the slave system is treated as an equivalent contact force and used for an input to the compliance controller. The compliance controller is implemented by a first order low pass filter and it modifies the position of the master to the reference position. Thus the compliance control task is shared by both the human operator's direct manual control and the autonomous compliance control of the slave system. Consequently, the position of a slave system tracks well the reference position and the compliance of the slave system is autonomously controlled in a contact condition. The simulation results show the excellence of the proposed scheme

  9. Optimum Water Chemistry in radiation field buildup control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien, C. [Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1995-03-01

    Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of low exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.

  10. An example of remote maintenance in high radiation fields

    International Nuclear Information System (INIS)

    Pothier, N.E.; Brisbois, L.U.

    Six auxiliary low pressure small (diameter <=5.0 cm) pipes located inside the reactor vault of the Douglas Point Nuclear Generating Station failed due to fretting wear at U-bolt supports: two had worn through the wall and developed leaks, and the others had worn <= 50% through the pipe wall. Human entry into the vault was not possible because of high radiation fields; hence, hands-on repair was not possible. The pipes were repaired and resupported to prevent further fretting wear failures during February-September, 1980. The repair work was performed using custom designed and developed remotely operated tooling and closed-circuit TV viewing. Three main groups were involved in the repair work: Atomic Energy of Canada Engineering Company (AECEC) - the reactor owner; Ontario Hydro - the reactor operator; and, Chalk River Nuclear Laboratories (CRNL). In this report, the contributions made by CRNL are summarized and discussed

  11. Theory of radiative transfer in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, S [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A theory is presented of the radiative transfer in a magnetized plasma with the opacity determined by the Thomson scattering. The Thomson cross section in the magnetic field is highly anisotropic and polarization-dependent. In order to cope with this situation, it is found useful to deal directly with the scattering amplitude (2x2 matrix in the polarization vector space) rather than the intensity. In this way it is possible to take into account the coherent superposition of the forward multiple-scattering amplitudes as a photon propagates. The equation of transfer is established accordingly and approximate solutions are found in the limits of small and large optical thickness. The latter solution is used to find the intensity and the polarization of thermal X-rays from a magnetic dipole star. The concept of mean free path is discussed and also it is shown that the Faraday rotation naturally comes about as a result of the multiple forward scattering.

  12. System decontamination as a tool to control radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R.; Bertholdt, H.O. [Siemens Power Generation Group, Erlangen (Germany)

    1995-03-01

    Since chemical decontamination of the Reactor Coolant Systems (RCS) and subsystems has the highest potential to reduce radiation fields in a short term this technology has gained an increasing importance. The available decontamination process at Siemens, i.e., the CORD processes, will be described. It is characterized by using permanganic acid for preoxidation and diluted organic acid for the decontamination step. It is a regenerative process resulting in very low waste volumes. This technology has been used frequently in Europe and Japan in both RCS and subsystems. An overview will be given i.e. on the 1993 applications. This overview will include plant, scope, date of performance, system volume specal features of the process removed activities, decon factor time, waste volumes, and personnel dose during decontamination. This overview will be followed by an outlook on future developments in this area.

  13. Effects produced by nuclear radiation in powdery milk; Efectos producidos por radiaciones nucleares en leches en polvo

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F; Reyes G, A [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The objective of this work is to determine the chemical effects produced by the gamma rays and beta particles radiations on the powdery milk. This work treats on the Pre-dose analysis, sampling radiating, electron spin resonance, acidity, proteins, aminoacids, lactose, fatty acids, peroxides, as well as its experimental results. (Author)

  14. Highlights of IAEA activities in the field of radiation application

    International Nuclear Information System (INIS)

    Machi, S.

    1994-01-01

    In IAEA's major programme of Nuclear Applications, the activities performed are divided into four areas: food and agriculture, industry and earth science, human health, and physical and chemical sciences. These activities involve co-operation with FAO, WHO, UNIDO and UNEP, and have close link with the technical assistance programme. About 60% of the technical assistance projects are implemented in the field of nuclear applications. The purpose of the nuclear application programme is to develop technologies useful for environmental protection and sustainable development, to support R and D programmes of developing countries, to develop new applications of nuclear techniques. Major activities in food and agriculture are the application of radiation and isotopes, controling insects, preserving food, soil fertility and crop production, and improving animal production and the use of radiation with biotechnology for plant mutation breeding aiming at environmentally friendly and sustainable food production. In the human health programme emphasis is given to nuclear medicine, cancer therapy and nutrition. Today, only 35% of all developing countries have radiotherapy facilities. Activities, therefore, focus on strengthening clinical radiotherapy in such countries. In the field of industry and earth science, flue gas cleaning by electron beams, pollution monitoring using nuclear analytical techniques, nucleonic control systems for industries, and water resource exploration are major projects assisting developing countries. As of 1994 the IAEA will launch 12 new and promising Model Projects for developing Member States which will be of benefit to their economies and raising of their standard of living. In this paper the highlights of the above mentioned IAEA activities are presented. (author)

  15. Field test of a post-closure radiation monitor

    International Nuclear Information System (INIS)

    Reed, S.; Christy, C.E.; Heath, R.E.

    1995-01-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy's Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. A prototype LPRMS probe was built, and B ampersand W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE's Office of Technology Development (EM-50) through METC. The system was used to measure soil and water with known uranium contamination levels, both in drums and in situ at depths up to 3 meters. For comparison purposes, measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics. This paper presents a description and the results of the field tests. The results were used to characterize the lower detection limits, precision and bias of the system, which allowed the DOE to judge the monitoring system's ability to meet its long-term post-closure radiation monitoring needs. Based on the test results, the monitoring system has been redesigned for fabrication and testing in a potential Phase III of this program. If the DOE feels that this system can meet its needs and chooses to continue into Phase III of this program, this redesigned full scale prototype system will be built and tested for a period of approximately a year. Such a system can be used at a variety of radioactively contaminated sites

  16. Neutronics and radiation field studies for the RIA fragmentation target area

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)]. E-mail: reyes20@llnl.gov; Boles, Jason L. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kw for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  17. Neutronics and radiation field studies for the RIA fragmentation target area

    Science.gov (United States)

    Reyes, Susana; Boles, Jason L.; Ahle, Larry E.; Stein, Werner

    2006-06-01

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kW for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  18. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination

    Science.gov (United States)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoonsoo; O'Donnell, Colm P.

    2016-05-01

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer avoid harvesting fecal contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil, and spinach leaves are compared. A common aperture imager designed with two identical monochromatic cameras, a beam splitter, and optical filters was used to simultaneously capture two-spectral images of leaves contaminated with both fecal matter and soil. The optical filters where 10 nm full width half maximum bandpass filters, one at 690 nm and the second at 710 nm. These were mounted in front of the object lenses. New images were created using the ratio of these two spectral images on a pixel by pixel basis. Image analysis results showed that the fecal matter contamination could be distinguished from soil and leaf on the ratio images. The use of this technology has potential to allow detection of fecal contamination in produce fields which can be a source of foodbourne illnesses. It has the added benefit of mitigating cross-contamination during harvesting and processing.

  19. Modification of a scanning electron microscope to produce Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Kapp, Oscar H.; Sun, Yin-e; Kim, Kwang-Je; Crewe, Albert V.

    2004-01-01

    We have modified a scanning electron microscope (SEM) in an attempt to produce a miniature free electron laser that can produce radiation in the far infrared region, which is difficult to obtain otherwise. This device is similar to the instrument studied by the Dartmouth group and functions on the basic principles first described by Smith and Purcell. The electron beam of the SEM is passed over a metal grating and should be capable of producing photons either in the spontaneous emission regime or in the superradiance regime if the electron beam is sufficiently bright. The instrument is capable of being continuously tuned by virtue of the period of the metal grating and the choice of accelerating voltage. The emitted Smith-Purcell photons exit the instrument via a polyethylene window and are detected by an infrared bolometer. Although we have obtained power levels exceeding nanowatts in the spontaneous emission regime, we have thus far not been able to detect a clear example of superradiance

  20. Cellulose gels produced in room temperature ionic liquids by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, Atsushi; Nagasawa, Naotsugu; Taguchi, Mitsumasa

    2014-01-01

    Cellulose-based gels were produced in room temperature ionic liquids (RTILs) by ionizing radiation. Cellulose was dissolved at the initial concentration of 20 wt% in 1-ethyl-3-methylimidazolium (EMI)-acetate or N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEMA)-formate with a water content of 18 wt%, and irradiated with γ-rays under aerated condition to produce new cellulose gels. The gel fractions of the cellulose gels obtained in EMI-acetate and DEMA-formate at a dose of 10 kGy were 13% and 19%, respectively. The formation of gel fractions was found to depend on the initial concentration of cellulose, water content, and irradiation temperature. The obtained gel readily absorbed water, methanol, ethanol, dichloromethane, N,N-dimethylacetamide, and RTILs. - Highlights: • Cellulose gels were produced in room temperature ionic liquids (RTILs). • Water plays a crucial role in the cross-linking reaction. • Cellulose gels swollen with RTILs show good electronic conductivity (3.0 mS cm −1 )

  1. Questions concerning radiation protection in the field of radiometry

    International Nuclear Information System (INIS)

    Gruen, W.; Quednau, F.; Wels, Ch.

    1987-01-01

    Based on legal regulations, guidelines, and standards valid in the German Democratic Republic 105 questions concerning radiation protection are answered covering subjects indicated by the following key words and headings: radiometric gages, radiation protection measures, working within protected areas, legal provisions, responsible staff member, radiation protection officer, operating personnel, radiation protection instructions, safe keeping of radiation sources, leak testing, unusual occurrence, transport of radioactive materials, and ceasing of operation

  2. Situation in the radiation protection field in Costa Rica

    International Nuclear Information System (INIS)

    Pacheco Jimenez, R.E.

    2001-01-01

    The report describes the radiation protection infrastructure in Costa Rica and makes reference to the existing legal framework. The national inventory of significant radiation sources and structure of the Ministry of Health as the national regulatory authority for radiation safety is illustrated; information is also provided on the radiation monitoring equipment available, on programme activities related to the control of radiation sources by authorization and inspection, and on technical support services. (author)

  3. Combination transition radiation in a medium excited by an electromagnetic field

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.

    1976-01-01

    The radiation emitted by a uniformly moving charged particle in a medium excited by an electromagnetic field is considered by taking into account the interaction between the electromagnetic waves and optical phonon wave. The frequencies are found, in the vicinity of which the two-wave approximation should be applied in order to determine the radiation field. It is shown that in the vicinity of these frequencies the radiation considerably differs from the Cherenkov radiation

  4. Hawking radiation of five-dimensional charged black holes with scalar fields

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2017-09-01

    Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  5. The wave properties of matter and the zeropoint radiation field

    International Nuclear Information System (INIS)

    Pena, L. de la; Cetto, A.M.

    1994-01-01

    The origin of the wave properties of matter is discussed from the point of view of stochastic electrodynamics. A nonrelativistic model of a changed particle with an effective structure embedded in the random zeropoint radiation field reveals that the field induces a high-frequency vibration on the particle; internal consistency of the theory fixes the frequency of this jittering at mc 2 /h. The particle is therefore assumed to interact intensely with stationary zeropoint waves of this frequency as seen from its proper frame of reference; such waves, identified here as de Broglie's phase waves, give rise to a modulated wave in the laboratory frame, with de Broglie's wavelength and phase velocity equal to the particle velocity. The time-independent equation that describes this modulated wave is shown to be the stationary Schroedinger equation (or the Klein-Gordon equation in the relativistic version). In a heuristic analysis applied to simple periodic cases, the quantization rules are recovered from the assumption that for a particle in a stationary state there must correspond a stationary modulation. Along an independent and complementary line of reasoning, an equation for the probability amplitude in configuration space for a particle under a general potential V(x) is constructed, and it is shown that under conditions derived from stochastic electrodynamics it reduces to Schroedinger's equation. This equation reflects therefore the dual nature of the quantum particles, by describing simultaneously the corresponding modulated wave and the ensemble of particles

  6. Field study to evaluate radiation doses in dental practices

    International Nuclear Information System (INIS)

    Panzer, W.; Scheurer, C.

    1984-05-01

    An inexpensive and simple test device was developed and used in a field study to evaluate entrance dose, dose to an intra-oral film, filtration and field size under routine conditions in more than 150 dental practices. The test device consists of two films of different speed and a set of 5 thin copper filters for a filter analytical determination of the radiation quality. Dentists voluntarily participating in the study were asked to expose the test device like they usually do when examining a molar tooth. The main result was the evidence of a significant dose reduction compared to the findings of similar studies performed in 1970 and 1976. This reduction is due to a general shift to lower values and a complete disappearance of values above 45 mGy (5 R) which in 1970 were still more than 15%. In the same way the number of facilities showing insufficient filtration or collimation had decreased. Nevertheless, a large spread of dose values could still be observed, ranging from less than 0.45 mGy (50 mR) to more than 26 mGy (3 R), for the entrance dose. The most striking result, however, was that such an important parameter like the speed of the films used at the respective unit turned out to have no impact on the entrance dose. (orig./HP)

  7. Extractable proteins from field radiation vulcanized natural rubber latex

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Duclerc F. [Chemical and Environmental Centre, Nuclear Energy Research Institute, Av. Lineu Prestes, 2242-CEP Sao Paulo (Brazil)]. E-mail: dfparra@ipen.br; Pinto Martins, Carlos Felipe [Chemical and Environmental Centre, Nuclear Energy Research Institute, Av. Lineu Prestes, 2242-CEP Sao Paulo (Brazil); Collantes, Hugo D.C. [Chemical and Environmental Centre, Nuclear Energy Research Institute, Av. Lineu Prestes, 2242-CEP Sao Paulo (Brazil); Lugao, Ademar B. [Chemical and Environmental Centre, Nuclear Energy Research Institute, Av. Lineu Prestes, 2242-CEP Sao Paulo (Brazil)

    2005-07-01

    The type I allergy associated with the use of natural rubber latex (NRL) products is caused by the NRL proteins leached by the sweat or other body fluids. Makuuchi's group proposed for the first time the proteins removal by the addition of water-soluble polymers (WSP) on radiation vulcanization of natural rubber latex (RVNRL) that is a promising process under development in many countries. In this study, Brazilian field natural rubber was irradiated with a {sup 60}Co gamma source to reduce the content of WSP in the final product. WSP was used as additive to improve the extraction of protein. After irradiation the RVNRL was centrifuged to extract the WSP and proteins. The analytical methodology for protein content was based on the modified Lowry method according to ASTM D5712. Protein determination was carried out in serum of latex and in the extracts of the gloves. The concentration of extractable water-soluble proteins in serum of irradiated field NRL (NRL1), not irradiated one (NRL2); of twice centrifuged sample with polymer additive NRL (NRL3) and of the glove manufactured (NRLG) are compared with commercial glove (CG). The irradiation process increases the extractable water-soluble proteins, EP, as reported in the literature. In this study the use of polymeric additive on the bi-centrifugation process to remove protein was successful and the EP of the glove obtained in NRL3 was at around 40% of the commercial glove.

  8. The conducting shell stellarator: A simple means for producing complicated fields

    International Nuclear Information System (INIS)

    Sheffield, G.V.

    1997-01-01

    One of the main characteristics of stellarators, both helical and modular, is that their coil sets must take difficult shapes in order to produce the complicated stellarator magnetic fields. The complex coil shapes make fabrication difficult and costly compared to say the toroidal field, TF, coil set of a tokamak. The conducting shell stellarator, CSS, configuration described in this report shows that complicated stellarator fields can be produced by inducing eddy currents in a conducting shell from a simple TF coil set (a field that varies like 1/R). This technique is applicable not only to a pulsed system at room or cryogenic temperatures, but can be implemented for a superconducting TF with a superconducting shell in a stellarator reactor. The CSS has the added benefit that within this device the metallic shell which can be made up of discrete plates can be changed out and replaced with new plates to create a different stellarator configuration within the same TF coil set. The work of creating the complicated magnetics is done by the passive conductor reshaping the simple TF field

  9. Effects of a static inhomogeneous magnetic field acting on a laser-produced carbon plasma plume

    Directory of Open Access Journals (Sweden)

    M. Favre

    2017-08-01

    Full Text Available We present time- and space-resolved observations of the dynamics of a laser-produced carbon plasma, propagating in a sub-Tesla inhomogeneous magnetic field, with both, axial and radial field gradients. An Nd:YAG laser pulse, 340 mJ, 3.5 ns, at 1.06 μm, with a fluence of 7 J/cm2, is used to generate the plasma from a solid graphite target, in vacuum. The magnetic field is produced using two coaxial sets of two NeFeB ring magnets, parallel to the laser target surface. The diagnostics include plasma imaging with 50 ns time resolution, spatially resolved optical emission spectroscopy and Faraday cup. Based on our observations, evidence of radial and axial plasma confinement due to magnetic field gradients is presented. Formation of C2 molecules, previously observed in the presence of a low pressure neutral gas background, and enhanced on-axis ion flux, are ascribed to finite Larmor radius effects and reduced radial transport due to the presence of the magnetic field.

  10. Smith-Purcell experiment utilizing a field-emitter array cathode: measurements of radiation

    International Nuclear Information System (INIS)

    Ishizuka, H.; Kawamura, Y.; Yokoo, K.; Shimawaki, H.; Hosono, A.

    2001-01-01

    Smith-Purcell (SP) radiation at wavelengths of 350-750 nm was produced in a tabletop experiment using a field-emitter array (FEA) cathode. The electron gun was 5 cm long, and a 25 mmx25 mm holographic replica grating was placed behind the slit provided in the anode. A regulated DC power supply accelerated electron beams in excess of 10 μA up to 45 keV, while a small Van de Graaff generator accelerated smaller currents to higher energies. The grating had a 0.556 μm period, 30 deg. blaze and a 0.2 μm thick aluminum coating. Spectral characteristics of the radiation were measured both manually and automatically; in the latter case, the spectrometer was driven by a stepping motor to scan the wavelength, and AD-converted signals from a photomultiplier tube were processed by a personal computer. The measurement, made at 80 deg. relative to the electron beam, showed good agreement with theoretical wavelengths of the SP radiation. Diffraction orders were -2 and -3 for beam energies higher than 45 keV, -3 to -5 at 15-25 keV, and -2 to -4 in between. The experiment has thus provided evidence for the practical applicability of FEAs to compact radiation sources

  11. Effect of γ-rays radiation pretreatment on enzymatic hydrolysis of corn straw for producing sugar

    International Nuclear Information System (INIS)

    Tang Hongtao; Ha Yiming; Wang Feng

    2011-01-01

    The effect of γ-rays radiation pretreatment on enzymatic of corn straw for producing sugar was studied. The relationship between irradiation-dosage and content of reducing sugar was investigated in DNS method. After 1000 kGy irradiation, the content of reducing sugar reached about 317.35%. A synergistic effect between irradiation and enzyme was observed. The reducing sugar yield after enzymatic hydrolysis reached 20.51% when the corn straw powder (0.15 mm) irradiated with a dose of 1000 kGy. The result shows that the irradiation had significant influence on enzymatic hydrolysis of corn straw. At the 500 kGy pre-irradiation, compared with initial yield, the maximum sugar yield of sample had increased by 13.68% while the irradiated corn straw stored in 20 days. (authors)

  12. Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments

    Directory of Open Access Journals (Sweden)

    L. Pommarel

    2017-03-01

    Full Text Available The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.

  13. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Influence of NORMs on the natural background radiation level in petroleum-producing countries

    International Nuclear Information System (INIS)

    Ali, F.M.

    2002-01-01

    Naturally occurring radioactive materials (NORMs) which are found in the Earth's crust, in the form of 226 Ra and 228 Ra and their associated radionuclides, are brought to the surface of the ground as a result of oil production processes, and are known under the name of technologically enhanced natural radioactivity (TENR). These represent a potential hazard of significant scale. 226 Ra, an α emitter, represents a potential internal radiation exposure hazard to both workers and members of the public, arising from the inhalation and ingestion of the dust produced during cleaning operations for the descaling of pipes and separator tanks. In addition to this, a higher than normal background γ exposure rate is to be observed both around and directly at the areas where the mud from the separator tanks and pipe cleaning operations was routinely dumped. Therefore, the aim of this work was to present the data on radiation levels measured in contaminated areas located near to a number of oilfields in Egypt and in Syria. The decontamination processes undertaken and the precautions necessary to ensure elimination of the possible transport mechanisms for contaminated dust into public areas by wind are presented. (orig.)

  15. Gamma-radiation produces abnormal Bergmann fibers and ectopic granule cells in mouse cerebellar cortex

    International Nuclear Information System (INIS)

    Inouye, Minoru; Hayasaka, Shizu; Funahashi, Atsushi; Yamamura, Hideki

    1992-01-01

    Morphological changes in Bergmann glial fibers in the developing cerebellar cortex produced by exposure to gamma-rays were investigated in association with ectopic granule cells. Six-day-old mice that had been exposed to 3 Gy of gamma-radiation were killed 6 hours after exposure or at 7 through 30 days of age. Their cerebella were examined histologically and immunohistochemically for glial fibrillary acidic protein in Bergmann fibers. Extensive cell death took place in the external granular layer (EGL) of the cerebellum from 6 through 24 hours after exposure. This led to the thinning of the EGL and a decrease in the number of migrating cells in the molecular layer. The number of Bergmann cells was not decreased, but the fibers in the molecular layer were distorted; whereas, in the control these fibers were straight and perpendicular to the pial surface. The EGL began to recover 2 days after exposure, and abnormally oriented migrating cells were seen. At 17 days of age, some cell clustering was observed in the molecular layer of the irradiated cerebellum. Distortion of the Bergmann fibers was marked in regions where ectopic granule cells appeared at 30 days of age. These findings suggest that the distortion of Bergmann fibers leads to the production of ectopic granule cells after exposure to gamma-radiation. (author)

  16. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  17. Accuracy of field alignment in abdominal radiation therapy

    International Nuclear Information System (INIS)

    Kortmann, R. D.; Hess, C. F.; Meisner, C.; Schmidberger, H.; Bamberg, M.

    1996-01-01

    Purpose: To assess the accuracy of field alignment in a homogeneous group of patients undergoing radiotherapy of the abdomen (adjuvant treatment of the paraaortic region in Stage I testicular seminoma). To evaluate the predictive value of the first verification on field placement errors during subsequent treatment delivery. Methods and Materials: In 45 patients, linear and rotational discrepancies were measured between simulation and first check and between 10 consecutive verification films. Results: For the total group of patients, the distribution of all deviations showed mean values between 2.3 mm and -2.7 mm with standard deviations of 3.9 mm to 4.7 mm for linear discrepancies, and -0.5 deg. to 0.3 deg. with standard deviations of 1.2 deg. to 2.1 deg. for rotational discrepancies, respectively. For all patients, deviations for the transition from simulator to the treatment machine were similar to deviations during subsequent treatment delivery, with 95% of all absolute deviations < 10.0 mm and 4 deg. , respectively. When performing correlation analysis between deviations at first check and during treatment delivery, a correlation for lateral displacements and a borderline correlation for caudal displacements could be found. There was no correlation for cranial and rotational displacements. Conclusions: Although a trend of deviations for subsequent treatment delivery may be shown at first check, our analysis indicates that the first verification cannot reliably predict inaccuracies during treatment delivery. Random fluctuations of field displacements of up to 1.0 cm prevail. They must be considered when prescribing the safety margins of the planned target volume and determining cutoff points for corrective actions in abdominal radiation therapy

  18. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, B.; Parys, P.; Wolowski, J.; Pisarek, M.

    2009-01-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 10 10 W/cm 2 ) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES

  19. Visualization research of 3D radiation field based on Delaunay triangulation

    International Nuclear Information System (INIS)

    Xie Changji; Chen Yuqing; Li Shiting; Zhu Bo

    2011-01-01

    Based on the characteristics of the three dimensional partition, the triangulation of discrete date sets is improved by the method of point-by-point insertion. The discrete data for the radiation field by theoretical calculation or actual measurement is restructured, and the continuous distribution of the radiation field data is obtained. Finally, the 3D virtual scene of the nuclear facilities is built with the VR simulation techniques, and the visualization of the 3D radiation field is also achieved by the visualization mapping techniques. It is shown that the method combined VR and Delaunay triangulation could greatly improve the quality and efficiency of 3D radiation field visualization. (authors)

  20. Radiated sound and turbulent motions in a blunt trailing edge flow field

    International Nuclear Information System (INIS)

    Shannon, Daniel W.; Morris, Scott C.; Mueller, Thomas J.

    2006-01-01

    The dipole sound produced by edge scattering of pressure fluctuations at a trailing edge is most often an undesirable effect in turbomachinery and control surface flows. The ability to model the flow mechanisms associated with the production of trailing edge acoustics is important for the quiet design of such devices. The objective of the present research was to experimentally measure flow field and acoustic variables in order to develop an understanding of the mechanisms that generate trailing edge noise. The results of these experiments have provided insight into the causal relationships between the turbulent flow field, unsteady surface pressure, and radiated far field acoustics. Experimental methods used in this paper include particle image velocimetry (PIV), unsteady surface pressures, and far field acoustic pressures. The model investigated had an asymmetric 45 o beveled trailing edge. Reynolds numbers based on chord ranged from 1.2 x 10 6 to 1.9 x 10 6 . It was found that the small-scale turbulent motions in the vicinity of the trailing edge were modulated by a large scale von Karman wake instability. The broadband sound produced by these motions was also found to be dependant on the 'phase' of the wake instability

  1. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    International Nuclear Information System (INIS)

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Rémi; Fourquet, Alain

    2012-01-01

    We wanted to evaluate a simplified “field-in-field” technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347–1472) for SFF vs. 779 mL (range, 349–1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0–63) for SFF and 1.9 mL (range, 0–57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  2. Radiation-produced electron migration along 5-bromouracil-substituted DNA in cells and in solutions

    International Nuclear Information System (INIS)

    Beach, C.M.

    1981-01-01

    Results of work by other investigators support the theory of charge migration in DNA. Charge transfer between nucleotides and electron and energy migration in solid state DNA have been detected, but no previous experiments have demonstrated charge migration in aqueous solutions of DNA or in DNA inside an E. coli cell. Such experiments were performed by substituting different amounts of 5-bromouracil (BU) for thymine in E. coli DNA and assaying for the amount of bromide given off from the reaction of bromouracil with hydrated electrons produced by ionizing radiation to form uracil-5-yl radicals and free bromide. By varying the amount of BU incorporated in the DNA, the average distance between the BU bases was varied, and because the number of BU/electron reactions was monitored by the amount of bromide released, the maximum average electron migration distance along the BU-DNA was estimated. Charge migration was demonstrated, and the maximum average electron migration distance in aqueous solutions of BU-DNA was measured to be 8 to 10 base distances (assuming only intrastrand migration). Only 11 to 16% of the electrons produced attacked BU-DNA in aqueous solution, and only 1% resulted in bromide release from BU-DNA inside E. coli. Charge migration was demonstrated in BU-DNA inside E. coli, and the maximum average migration distance was measured to be 5 to 6 base distances

  3. Thermo tolerant and ethanol producing saccharomyces cerevisiae mutants using gamma radiation

    International Nuclear Information System (INIS)

    Karima, H.M.; Ismail, A.A.; El-Batal, A.I.

    1997-01-01

    Gene manipulation now plays the main role in fermentation industries. However, throughout ethanol production processes, it appeared the requirements for the selection of higher-producing isolate(s) associated, at the same time, with heat-resistant to overcome higher degrees above 30-35 degree, a step which, actually, will reduce final - producing costs. A total of 43 yeast isolates were selected, after exposure of the strain saccharomyces cervisiae to different doses of gamma radiation. Isolated varied in colony size from the original strain as well as among themselves. These isolates were screened for their ability to grow on glucose and supplemented cane molasses media at 30 degree and 40 degree. Out fo them, only 13 isolates proved to grow well on 40 degree. Furthermore, determination of ethanol production by each of these mutants revealed that yielded in general, 16 to 52.0% increase in alcohol production at 40 degree on cane molasses medium (17.5% w/v initial sugars), compared to the original strain. At 40 degree, maximum ethanol yield was 0.63 coupled with 9.5% ethanol concentration and 85.1% sugar conversion which represents 40, 46.2 and 3.4% increase, respectively from the parental strain

  4. High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding

    International Nuclear Information System (INIS)

    Guan Chunyun; Liu Chunlin; Chen Sheyuan

    2006-01-01

    High oleic acid content rapeseed breeding has great significance, because high oleic acid oil is a healthy and nutritious oil, which is of a long shelflife and also propitious to producing biodiesel fuel. The high oleic acid content breeding materials of rapeseed (B. napus) were obtained by 80-100 kR ~(60)Co gamma ray ionizing radiation treatment of dry seeds and continuous selection. The results showed that the oleic acid contents of M (2), M (3) and M (4) progenies increased by different grades. Moreover, the oleic acid content of M (5) progeny increased greatly. The oleic acid contents were higher than 70% in the most of the plants and the highest one reached 93.5 %. The base G was transited by base A in fad (2) gene at the 270 site of high oleic acid mutation (M(6) 04-855). The location is at the beta folding area and conservative area of this protein. Base mutation at sites 1 044 and 1 062 also led to produce a stop condon. These changes in structure led to loss the function of fad (2). According to molecular mechanism of gene mutation, no matter what transvertion or transition happens, several replications are needed. That is to say several generations are needed. That was also the reason why high oleic acid content mutation occurred in later generations

  5. Violin f-hole contribution to far-field radiation via patch near-field acoustical holography.

    Science.gov (United States)

    Bissinger, George; Williams, Earl G; Valdivia, Nicolas

    2007-06-01

    The violin radiates either from dual ports (f-holes) or via surface motion of the corpus (top+ribs+back), with no clear delineation between these sources. Combining "patch" near-field acoustical holography over just the f-hole region of a violin with far-field radiativity measurements over a sphere, it was possible to separate f-hole from surface motion contributions to the total radiation of the corpus below 2.6 kHz. A0, the Helmholtz-like lowest cavity resonance, radiated essentially entirely through the f-holes as expected while A1, the first longitudinal cavity mode with a node at the f-holes, had no significant f-hole radiation. The observed A1 radiation comes from an indirect radiation mechanism, induced corpus motion approximately mirroring the cavity pressure profile seen for violinlike bowed string instruments across a wide range of sizes. The first estimates of the fraction of radiation from the f-holes F(f) indicate that some low frequency corpus modes thought to radiate only via surface motion (notably the first corpus bending modes) had significant radiation through the f-holes, in agreement with net volume changes estimated from experimental modal analysis. F(f) generally trended lower with increasing frequency, following corpus mobility decreases. The f-hole directivity (top/back radiativity ratio) was generally higher than whole-violin directivity.

  6. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves.

    Science.gov (United States)

    Gregori, G; Ravasio, A; Murphy, C D; Schaar, K; Baird, A; Bell, A R; Benuzzi-Mounaix, A; Bingham, R; Constantin, C; Drake, R P; Edwards, M; Everson, E T; Gregory, C D; Kuramitsu, Y; Lau, W; Mithen, J; Niemann, C; Park, H-S; Remington, B A; Reville, B; Robinson, A P L; Ryutov, D D; Sakawa, Y; Yang, S; Woolsey, N C; Koenig, M; Miniati, F

    2012-01-25

    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

  7. Contribution to the theoretical study of a high power microwave radiation produced by a relativistic electron beam

    International Nuclear Information System (INIS)

    Sellem, F.

    1997-01-01

    This thesis is dedicated to the study of microwave radiation produced by relativistic electron beams. The vircator (virtual cathode oscillator) is a powerful microwave source based on this principle. This device is described but the complexity of the physical processes involved makes computer simulation necessary before proposing a simplified model. The existent M2V code has been useful to simulate the behaviour of a vircator but the representation of some phenomena such as hot points, the interaction of waves with particles lacks reliability. A new code CODEX has been written, it can solve Maxwell equations on a double mesh system by a finite difference method. The electric and magnetic fields are directly computed from the scalar and vectorial potentials. This new code has been satisfactorily tested on 3 configurations: the bursting of an electron beam in vacuum, the evolution of electromagnetic fields in diode and the propagation of waves in a wave tube. CODEX has been able to simulate the behaviour of a vircator, the frequency and power are well predicted and some contributions to the problem of origin of microwave production have been made. It seems that the virtual cathode is not directly involved in the microwave production. (A.C.)

  8. Chemical effects produced by the ionizing radiation in the mercury beating heart reaction

    International Nuclear Information System (INIS)

    Castillo-Rojas, S.; Burillo, G.; Gonzalez-Chavez, J.L.; Vicente, L.

    2002-01-01

    Complete text of publication follows. In a recent paper we have shown the existence of complex modes of oscillation in the study of the extinction dynamics of the mercury beating heart reaction. It was proposed that one of the species responsible for the oscillatory movements of this reaction is the mercury(I), in anyone in their forms, either free or molecular. the formation of Hg 2 2+ from γ irradiation of 60 Co to the system Hg 0 /H 2 SO 4 (6M) allowed to elucidate the probable mechanism of reaction. The objective of this work is to study how the ionizing radiation affects the dynamics of extinction of this reaction, which is related with the existence of certain chemical species. The study was carried out in 2 ways: a) Method I: H 2 SO 4 (6M) was first irradiated and to the irradiated solution the Hg 0 was added and b) Method II: the system Hg 0 /H 2 SO 4 (6M) was irradiated. The different irradiated systems were put into reaction with Fe 0 to investigate if there were differences between the two irradiated systems and how the complex modes of oscillation of the reaction were affected. The quantity of Hg 2 2+ produced by method I is bigger than in method II. This is explained because the majority species produced by radiolysis of H 2 SO 4 are sulfate radical and H 2 O 2 that act as oxidizer agents and their potential values allow to suppose that these substances react with Hg 0 to produce Hg 2 2+ . On the other hand, by method II mercury clusters (Hg 4 3+ ) are formed as was reported by Sukhov and Ershov in pulse radiolysis of aqueous Hg 2 2+ solutions. We assume that the formation of these mercury clusters has to be observed with the decrease of the Hg 2 2+ concentration when one makes the radiolysis by method II. In general, the preliminary studies allow establishing that the ionizing radiation does not affect the extinction dynamics but it increases the half-life of this reaction

  9. The Deep Physics Hidden within the Field Expressions of the Radiation Fields of Lightning Return Strokes

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-01-01

    Full Text Available Based on the electromagnetic fields generated by a current pulse propagating from one point in space to another, a scenario that is frequently used to simulate return strokes in lightning flashes, it is shown that there is a deep physical connection between the electromagnetic energy dissipated by the system, the time over which this energy is dissipated and the charge associated with the current. For a given current pulse, the product of the energy dissipated and the time over which this energy is dissipated, defined as action in this paper, depends on the length of the channel, or the path, through which the current pulse is propagating. As the length of the channel varies, the action plotted against the length of the channel exhibits a maximum value. The location of the maximum value depends on the ratio of the length of the channel to the characteristic length of the current pulse. The latter is defined as the product of the duration of the current pulse and the speed of propagation of the current pulse. The magnitude of this maximum depends on the charge associated with the current pulse. The results show that when the charge associated with the current pulse approaches the electronic charge, the value of this maximum reaches a value close to h/8π where h is the Plank constant. From this result, one can deduce that the time-energy uncertainty principle is the reason for the fact that the smallest charge that can be detected from the electromagnetic radiation is equal to the electronic charge. Since any system that generates electromagnetic radiation can be represented by a current pulse propagating from one point in space to another, the result is deemed valid for electromagnetic radiation fields in general.

  10. Radiation-produced electron migration along 5-bromouracil-substituted DNA in cells and in solutions

    International Nuclear Information System (INIS)

    Beach, C.M.

    1981-01-01

    Results of work by other investigators support the theory of charge migration in DNA. Charge transfer between nucleotides and electron and energy migration in solid state DNA have been detected, but no previous experiments have demonstrated charge migration in aqueous solutions of DNA or in DNA inside an E. coli cell. Such experiments were performed by substituting different amounts of 5-bromouracil (BU) for thymine in E. coli DNA and assaying for the amount of bromide given off from the reaction of bromouracil with hydrated electrons produced by ionizing radiation to form uracil-5-yl radicals and free bromide. By varying the amount of BU incorporated in the DNA, the average distance between the BU bases was varied, and because the number of BU/electron reactions was monitored by the amount of bromide released, the maximum average electron migration distance along the BU-DNA was estimated. Hydrated electrons, e/sub aq/, were shown to react with BU in BU-DNA with the resultant release of bromide with G(-BR - ) = 0.519 +- 0.062. OH radicals were half as reactive as e/sub aq/ toward producing bromide from BU-DNA. O 2 , which has been shown to transfer charge to BU in aqueous solution, did not transfer charge to BU-DNA. The CO 2 radical was shown to cause the release of bromide from BU-DNA at least as effectively as e/sub aq/. Charge migration was demonstrated, and the maximum average electron migration distance in aqueous solutions of BU-DNA was measured to be 8 to 10 base distances (assuming only intrastrand migration). Only 11% to 16% of the electrons produced attacked BU-DNA in aqueous solution, and only 1% resulted in bromide release from BU-DNA inside E. coli. Charge migration was demonstrated in BU-DNA inside E. coli., and the maximum average migration distance was measured to be 5 to 6 base distances

  11. Development of rubber material for high radiation field

    International Nuclear Information System (INIS)

    Nakatsukasa, Sadayoshi; Tabasaki, Takeshi; Yoshida, Akihiro; Kadowaki, Yoshito

    2013-01-01

    Generally flexible polymeric materials exposed to radiation can't be used because they soften or harden remarkably in high radiation environment. Aromatic polymers such as PEEK, PI, and PES are also known as radiation-proof polymeric materials. Aromatic polymers are very hard, they can't be used for products like a packing where flexibility is required. We developed a new vulcanized rubber compound by the use of various additives and polymer blend. This developed rubber compound has a high radiation-proof performance by reaction balance of cross-linking and decomposition in this rubber. This rubber compound has a rubber elasticity even if exposed to radiation of MGy level, and its radiation proof is more than 5 times as high as conventional polymeric materials. This rubber compound is much more flexible than the aromatic polymers which are the used as conventional radiation-proof polymers. (author)

  12. Application of radiation processing to produce biotic elicitor for sugarcane in Vietnam

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien; Tran, Tich Canh; Truong, Thi Hanh; Vo, Thi Kim Lang; Dang, Van Phu; Cao, Anh Duong

    2007-01-01

    Sugarcane is the main raw material for production of sugar and ethanol. In Vietnam, it was reported in 1998 that the area for sugarcane growth was about 257,000ha. Up to now, the biotic elicitor, oligosaccharide has not been used for sugarcane yet. This study has been carried out to investigate the elicitation and the growth promotion effect of irradiated chitosan (oligochitosan) for sugarcane. The field test results indicated that alpha chitosan (shrimp shell) and beta chitosan (squid pen) samples with the content of water soluble oligomer of about 70% were the most effective. The disease ratio of sugarcane tree-trunk treated with irradiated chitosan before harvesting time decreased to 30-40% compared to non-treated one (100%). In addition, the productivity of sugarcane increased to about 20%. The combination of metal ion (Zn ++ , Cu ++ ) with oligochitosan did not show the synergic elicitation effect. The results revealed that biotic elicitor made from chitosan by radiation degradation method is very promising for field application not only for protection of disease infection but also for growth promotion of plants. It is believed that this biotic elicitor could be largely used for safe and sustainable development of agriculture. (author)

  13. Analytical characterization of radiation fields generated by certain witch-type distributed axi-symmetrical ion beams

    International Nuclear Information System (INIS)

    Timus, D.M.; Kalla, S.L.; Abbas, M.I.

    2005-01-01

    Increasing interest is being shown in obtaining accurate predictions concerning radiation fields produced by ion beams impinging on homogeneous plane targets, the effect of this process being exothermic nuclear reactions. Previous theoretical studies made by the authors have focused on radiation fields generated by homogeneous plane disk- or ring-shaped sources, based on a unified treatment of the radiation field distribution developed by Hubbell and co-workers. In the case of an equivalent homogeneous source anisotropically emitting in non dispersive media, the Legendre polynomial series expansion method for specific emissivity function can be successfully applied when conditions for the convergence of the approximating series are satisfied. We have developed an analytical expression for the radiation field distribution around a homogeneous disk-shaped target bombarded by Witch-type distributed (in transverse plane) ion beams whose elementary areas anisotropically emit following a cos-type law in non dispersive media. Results of this investigation can be extended to various experimental situations in which the assumption of an angular omni-directional as well as of a constant space distribution of nuclear reaction emissivity over the accelerator target surface or other kinds of axi-symmetric plane sources of radiation is no longer valid. Animated 3 D graphics visualization is suggested

  14. Electron beam extraction system with a ring radiation field

    International Nuclear Information System (INIS)

    Auslender, V.L.; Kuksanov, N.K.; Polyakov, V.A.; Salimov, R.A.; Chertok, I.L.

    1979-01-01

    Description and results of testings of two electron beam extraction systems for shaping of a circular irradiation field are given. One of the systems contains three 20 cm long outlet windows arranged at 120 deg angle with respect to each other. Tests at the ILU-6 accelerator have shown that the given system provides 150 mm zone irradiation from three sides. Beam utilization factor when irradiating three 40 mm dia tubes amounted to 35% which provides capacity of 2.5 txMrad/h at 20 kW beam power. The other extraction system includes two C-form magnets producing nonuniform and opposing magnetic fields. This system tests at the EhLV-2 accelerator have shown that at 0.8-1.5 MeV electron energy it is possible to irradiate of 60 and 100 mm dia objects, accordingly. The system may be used together with both constant-action and pulse-action accelerators having extraction with linear scanning [ru

  15. Electron equilibrium for parallel plate ionization chambers in gamma radiation fields

    International Nuclear Information System (INIS)

    Caldas, L.; Albuquerque, M. da P.P.

    1989-08-01

    Parallel plate ionization chambers, designed and constructed for use in low energy X-radiation fields, were tested in gamma radiation beams ( 6 Co and 137 Cs) of two different Calibration Laboratories, in order to study the electron equilibrium occurrence and to verify the possibility of their use for the detection of the kind of radiation too. (author) [pt

  16. Toward 3-D E-field visualization in laser-produced plasma by polarization-spectroscopic imaging

    International Nuclear Information System (INIS)

    Kim, Yong W.

    2004-01-01

    A 3-D volume radiator such as laser-produced plasma (LPP) plumes is observed in the form of a 2-D projection of its radiative structure. The traditional approach to 3-D structure reconstruction relies on multiple projections but is not suitable as a general method for unsteady radiating objects. We have developed a general method for 3-D structure reconstruction for LPP plumes in stages of increasing complexity. We have chosen neutral gas-confined LPP plumes from an aluminum target immersed in high-density argon because the plasma experiences Rayleigh-Taylor instability. We make use of two time-resolved, mutually orthogonal side views of a LPP plume and a front-view snapshot. No symmetry assumptions are needed. Two scaling relations are invoked that connects the plasma temperature and pressure to local specific intensity at selected wavelength(s). Two mutually-orthogonal lateral luminosity views of the plume at each known distance from the target surface are compared with those computed from the trial specific intensity profiles and the scaling relations. The luminosity error signals are minimized to find the structure. The front-view snapshot is used to select the initial trial profile and as a weighting function for allocation of the error signal into corrections for specific intensities from the plasma cells along the line of sight. Full Saha equilibrium for multiple stages of ionization is treated, together with the self-absorption, in the computation of the luminosity. We show the necessary optics for determination of local electric fields through polarization-resolved imaging. (author)

  17. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  18. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    Science.gov (United States)

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  19. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    Science.gov (United States)

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  20. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  1. Television imaging transducers for use in radiation fields

    International Nuclear Information System (INIS)

    Konyaev, V.M.; Krasovskij, S.S.; Surikov, I.N.

    1989-01-01

    For optical television equipment widely used in nuclear energetics it appears to be importance to account for various radiation effects on the device material and units aiming at diminishing negative effects of radiation upon the devices operation. Basing on the experimental results (along with the analysis of literature data) the authors propose a mechanism of radiation effect upon television imaging sensors (TIS). Operation principles and construction of up-to date TIS are briefly described, as well as the characteristics of radiation conditions. Various radiation effects upon the TIS material and construction have been considered. Optimal radiation conditions and levels have been suggested for the equipment operation. The efficiencies of various TIS are compared. 230 refs.; 86 figs.; 4 tabs

  2. Investigation of the exposure level of electromagnetic fields produced by mobile telephone base stations

    International Nuclear Information System (INIS)

    Abukassem, I.; Kharita, M.H.

    2011-01-01

    The electromagnetic field levels in the surrounding of different samples of mobile phone base station were investigated in order to cover residential zones of Damascus and her environs. Measurements were achieved according to the emission direction and to the studied positions environment. Results showed that the signal level in all measured points is lower than the International Commission on Non Ionizing Radiation Protection (ICNIRP) restriction level, but for few measurement points the detected microwave level has relatively important values. The signal level inside building situated partially in the emission direction of the base station transmitters decreases stepwise and walls reduce considerably the signal intensity. This study showed the importance of achieving a transparent collaboration between research laboratory and mobile phone companies in order to improve the protection level.(author)

  3. Response dependence of a ring ionization chamber response on the size of the X radiation field

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Caldas, Linda V.E.

    2009-01-01

    A ring monitor ionization chamber was developed at the IPEN-Sao Paulo, Brazil, fixed on a system of collimators which determine the dimension of the radiation field size. This work verified that the ring chamber response depends on the exponential form with the size of de radiation field

  4. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    International Nuclear Information System (INIS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  5. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.

    2005-01-01

    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  6. Utilization of radiation in industrial, agricultural and medical fields and its perspective

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2008-01-01

    The current status for the utilization of radiation in Japan was given from the view point of the economic scale. The topics which will be developed in near future such as lithography, radiation processing, radiation analysis in the industry, mutation breeding, sterile insect technique, food irradiation in agriculture, and radiation diagnosis, radiation therapy in medical field were presented. The important techniques for the further development of utilization of radiation will be the techniques related to the fabrication of semiconductor, developments of small accelerators and compact neutron generators. (author)

  7. Electromagnetic radiation of protons in edge fields of synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Smolyakov, N.V.

    1986-01-01

    Effect of the edge shape of magnetic field of a dipole on the short-wave part of electromagnetic radiation spectrum of a proton beam is investigated. In some cases short-wave photons are shown to be shaped in the ranges of largest edge curvature of the magnetic field. Universality of edge radiation spectrum is proved. Spectral characteristics of proton edge radiation in a superconducting magnetic dipole of the storage-accelerator complex are obtained

  8. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  9. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Offenberger, A.A.; Cervenan, M.R.; Smy, P.R.

    1976-01-01

    A 1-GW CO 2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  10. Smith-Purcell radiation experiment using a field-emission array cathode

    International Nuclear Information System (INIS)

    Ishizuka, H.; Kawamura, Y.; Yokoo, K.; Shimawaki, H.; Hosono, A.

    2000-01-01

    We have recently started an experiment on visible Smith-Purcell (SP) radiation to examine practical applicability of a field-emission array (FEA) cathode to compact free electron lasers, placing emphasis on safe operation of the cathode as well as beam quality. The electron beam was generated by a 5 cm long triode which employed either a single- or double-gated FEA. Accelerating voltages of up to -40 and -100 kV were applied to the cathode by a regulated power supply and a small Van der Graaff generator, respectively. A 25 μA beam of up to 45 keV was routinely produced and a 5 μA 80 keV beam was also attained. The beam passed through a 1 mm wide slit in the anode and grazed the surface of a 2.5 cm long replica grating with a period of either 0.56 or 0.83 μm. The SP radiation has not been identified owing to irrelevant luminescence caused by the beam at the grating. Still it was confirmed that the FEA cathode is adequately durable and electron beams generated therefrom are sufficiently stable to be used for systematic measurements of radiation

  11. Smith-Purcell experiment utilizing a field-emitter array cathode measurements of radiation

    CERN Document Server

    Ishizuka, H; Yokoo, K; Shimawaki, H; Hosono, A

    2001-01-01

    Smith-Purcell (SP) radiation at wavelengths of 350-750 nm was produced in a tabletop experiment using a field-emitter array (FEA) cathode. The electron gun was 5 cm long, and a 25 mmx25 mm holographic replica grating was placed behind the slit provided in the anode. A regulated DC power supply accelerated electron beams in excess of 10 mu A up to 45 keV, while a small Van de Graaff generator accelerated smaller currents to higher energies. The grating had a 0.556 mu m period, 30 deg. blaze and a 0.2 mu m thick aluminum coating. Spectral characteristics of the radiation were measured both manually and automatically; in the latter case, the spectrometer was driven by a stepping motor to scan the wavelength, and AD-converted signals from a photomultiplier tube were processed by a personal computer. The measurement, made at 80 deg. relative to the electron beam, showed good agreement with theoretical wavelengths of the SP radiation. Diffraction orders were -2 and -3 for beam energies higher than 45 keV, -3 to -5 ...

  12. Carcinoma of the cervical esophagus treated with radiation therapy using a four-field box technique

    International Nuclear Information System (INIS)

    Mendenhall, W.M.; Million, R.R.; Bova, F.J.

    1982-01-01

    This is a retrospective analysis of 16 patients with carcinoma of the cervical esophagus treated with radiation therapy at the University of Florida between September 1966 and March 1979. There is a minimum 2-year followup. Analysis of local control revealed 1/1 T1, 0/3 T2, 2/8 T3, and 1/2 TX lesions that were controlled by radiation therapy for 33, 47, 55, and 80 months. Two patients died less than 2 years after treatment without evidence of cancer. Excluding the sole T1 lesion, there were no local controls below 6700 rad; 3 of 5 lesions were controlled at doses in excess of 6700 rad. Late complications were stenosis (2 patients) and Lhermitte's syndrome (1 patient). An external beam technique consisting of an isocentric four-field box with a beeswax compensator has been devised in an effort to solve the technical problems in delivering high-dose radiation to the primary and regional nodes without producing myelitis

  13. Production of a rapidly rotating plasma by cross-field injection of gun-produced plasma

    International Nuclear Information System (INIS)

    Ohzu, Akira; Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi

    1984-01-01

    Cross-field plasma injection with use of a JxB plasma gun is described as a method to produce rapidly rotating plasma in a crossed electric and magnetic field system. The rotational velocity of the plasma is seriously limited by neutrals surrounding the plasma through strong interactions at the boundary layer. The concentration of neutrals can be reduced by the injection of fully or partially ionized plasma into the discharge volume instead of filling the volume with an operating gas. With use of this method, it is observed that the rotational velocity increases by a factor of 2 to 3 when compared with the conventional method of stationary gas-filling. (author)

  14. Investigation the structural and functional changes of heart in elderly soldiers who was working with radiation producing equipments

    International Nuclear Information System (INIS)

    Li Jiahua; Li Li; Cao Hongliu; Wang Quanhong; Huang Fang

    2010-01-01

    Objective: To investigate the structural and functional changes of heart in elderly soldiers who was working with radiation producing equipments. The involvement of cardiovascular system in radiation and its intensity was investigated in this study. Methods: Fifty elderly males (>60 years old) who were exposed to radiation producing equipments (exposure group) and 50 elderly (>60 years old) retired male commanders without radiation exposure history (control group) were enrolled in this study. Echocardiographic evaluation of cardiac structure and function was conducted with Siemens Sonline G60 ultrasound system. 12-lead electrocardiogram (ECG) and routine physical examination had also been done in both groups. Results: Ejection fraction, minor axis reduced rate had no distinct difference between exposure group and control group (t=1.52 and t=1.68, P>0.05). Cardiac output, cardiac stroke volume, stroke index, ventricular diastolic flow velocity E/A ratios in exposure group were lower than control group (t=11.81, t=7.11 and t=7.88, P 2 =9.72, and χ 2 =5.19, P<0.05). Conclusion: Chronic low dose radiation may have effects on the cardiovascular sys-tem, so dynamic monitoring of changes in cardiac structure and function is worth on the safety and health for persons who may exposure to radiation and help to prevent early and long-term effects of radiation. (authors)

  15. The processing of intravenous coronary angiography angiograms produced by synchrotron radiation. Ch. 20B

    International Nuclear Information System (INIS)

    Zeman, H.D.

    1991-01-01

    Intravenous coronary angiography using synchrotron radiation (SR) has been demonstrated in recent years to hold promise for performing diagnostic examinations of human patients less invasively than the presently required arterially invasive procedures. The high intensity and tunability of SR, the linearity and large dynamic range of multi-channel Si(Li) detectors, and the scatter reducing properties of a fan-beam geometry should eventually lead to intravenous images of the human heart of a quality equal to that already achieved in dogs. However, two major problems with the intravenous angiography technique remain. Contrast material in the cardiac chambers and great vessels obscures the coronary arteries overlying these structures. In addition, the contrast material in the capillary bed of the heart muscle produces a gray haze that limits the extent to which contrast enhancement can be used to bring out details in the coronary arteries without turning this haze into a black cloud. For these reasons, an image processing technique is necessary which can remove large smooth opaque structures from the angiogram, allowing the fine detail overlying them to be made visible, and allowing contrast enhancement of this detail to be performed. This chapter discusses the image processing technique and illustrates this technique by some experimental results. (author). 13 refs.; 15 figs

  16. Online detection of radiation produced in Boron-10 neutron capture reaction: preliminary studies

    International Nuclear Information System (INIS)

    Portu, A.; Galván, V.; González, S.J.; Thorp, S.; Santa Cruz, G.; Saint Martin, G.; Blostein, J.J.

    2013-01-01

    Boron microdistribution in both tumor and normal tissue sections can be studied by the autoradiography technique in solid state nuclear track detectors (SSNTD). A measurement of boron concentration in tissue is obtained through the evaluation of the density of tracks produced by alpha and lithium ions generated in the neutron capture reaction 10B(n,α) 7 Li. This knowledge is pivotal when a BNCT (Boron Neutron Capture Therapy) protocol is considered. A new methodology is proposed in order to record alpha and lithium events in real time, as light spots superimposed to the tissue section image. CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) are used as detectors, with the advantage of avoiding the superposition of events. Commercial web cams were employed for the preliminary experiments. They were partially disassembled in order to get the sensor chip uncovered. These devices were exposed to different radiation sources: 6.118 MeV alpha particles (252Cf), 0.662 MeV gamma rays ( 137 Cs) and thermal neutrons (moderated 241 Am-Be source, 103n.cm2.seg-1), to analyze the characteristics of the respective images. Pictures from tissue sections put in contact with the sensor surface were also acquired. A software was developed in Matlab to perform the image capture and processing. Early results show the feasibility of using these devices to study the distribution 10B in tissue samples. (author)

  17. Application of Gamma Radiation on Bio-oil Produced from Pyrolysis of Soybean Cake

    International Nuclear Information System (INIS)

    Pichestapong, P.; Injarean, U.; Prapakornrattana, P.; Charoen, K.

    2014-01-01

    Soybean cake residue from soy milk making can be pyrolysed to produce pyrolysis liquid or bio-oil which has potency to be used as liquid fuel. Pyrolysis of soybean cake residue with the application of gamma irradiation was investigated in a batch reactor at 450°C for 1.5 hr under nitrogen flow 250 cc/min. Feed of soybean cake residue was exposed to gamma radiation at the doses of 200 to 1,000 kGy before pyrolysing. It was found that pyrolysis liquid yield increased significantly by 12.9 to 19.3 % at the irradiation doses of 400 kGy and higher. The increment was mainly due to the increasing of aqueous phase in the pyrolysis liquid. The heating value of organic phase in the pyrolysis liquid was 7,890 kcal/kg. The organic phase from the unexposed feed was also irradiated at 20-100 kGy. The viscosity of irradiated organic phase was found to increase with the increasing irradiation dose. Irradiated organic phase was distilled at temperatures 200 and 250°C. It was found that the first distilled fraction (<200°C) corresponding to gasoline fraction increased with the increasing irradiation dose while the second distilled fraction (200-250°C) corresponding to kerosene fraction seems to decrease. The composition of organic phase was also determined by GC-MS.

  18. Transformation of solar radiation in Norway spruce stands into produced biomass - the effect of stand density

    International Nuclear Information System (INIS)

    Marková, I.; Marek, M.V.; Pokorný, R.

    2011-01-01

    The present paper is focused on the assessment of the effects of stand density and leaf area development on radiation use efficiency in the mountain cultivated Norway spruce stand. The young even-aged (17-years-old in 1998) plantation of Norway spruce was divided into two experimental plots differing in their stand density in 1995. During the late spring of 2001 next cultivating high-type of thinning of 15% intensity in a reduction of stocking density was performed. The PAR regime of investigated stands was continually measured since 1992. Total aboveground biomass (TBa) and TBa increment were obtained on the basis of stand inventory. The dynamic of LAI development showed a tendency to be saturated, i.e. the LAI value close to 11 seems to be maximal for the local conditions of the investigated mountain cultivated Norway spruce stand in the Beskids Mts. Remarkable stimuli (up to 17%) of LAI formation were started in 2002, i.e. as an immediate response to thinning. Thus, the positive effect of thinning on LAI increase was confirmed. The data set of absorbed PAR and produced TBa in the period 1998-2003 was processed by the linear regression of Monteith's model, which provided the values of the coefficient of solar energy conversion efficiency into biomass formation. The differences in biomass formation values between the dense and sparse plot after thinning amounted to 18%

  19. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2015-01-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. (paper)

  20. Nature of the Background Ultraviolet Radiation Field at High Redshifts

    Indian Academy of Sciences (India)

    tribpo

    J. Astrophys. Astr. (2000) 21, 19-27 .... to know the shape of the ionizing radiation to determine the ionization parameter from the C II to C IV ratio. ... different shapes of the background radiation spectrum as explained in the text. The solid lines.

  1. Electromagnetic radiation damping of charges in external gravitational fields (weak field, slow motion approximation). [Harmonic coordinates, weak field slow-motion approximation, Green function

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.

  2. Investigation of the exposure level of electromagnetic fields produced by mobile telephone base stations

    International Nuclear Information System (INIS)

    Abukassem, I.; Kharita, M. H.

    2010-12-01

    The aim of this work is to investigate the real values of microwave level distribution and propagation in the locality around samples of mobile phone base station, and to compare the results with the exposure restriction limits recommenced by the International Commission on Non Ionizing Radiation Protection (ICNIRP). Measurements were performed using special meters for microwaves; the first (Narda SRM-3000) is used for electromagnetic waves frequency spectrum scanning and the second (NARDA) emr 300) determine the level of electric and magnetic fields and the power density of these waves nearby any sort of transmitters. Samples of different kinds of mobile phone base station were chosen to cover important zones of Damascus, and the region around each base station was also scanned in the emission direction and according to accessibility into the studies positions. Results showed that the signal level in all measured points is lower than the ICNIRP restriction level, but for few points the detected microwave level has relatively important values. The signal level inside building situated partially in the emission direction of the base station transmitters decreases stepwise and walls reduce considerably the signal intensity. To realize these kind of field studies in the best way and obtain the maximum profits for all people, the properties and operating system of transmitters used in mobile phone base station must be known, and therefore, it is very important to achieve a transparent collaboration between research laboratory and mobile phone company. (author)

  3. Development of high-performance ER gel produced by electric-field assisted molding

    International Nuclear Information System (INIS)

    Kakinuma, Y; Aoyama, T; Anzai, H

    2009-01-01

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30∼40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  4. Development of high-performance ER gel produced by electric-field assisted molding

    Energy Technology Data Exchange (ETDEWEB)

    Kakinuma, Y; Aoyama, T [Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi Kouhoku-ku Yokohama (Japan); Anzai, H [Fujikura kasei Co., Ltd. 2-6-15 Shibakouen, Minato-ku, Tokyo (Japan)], E-mail: kakinuma@sd.keio.ac.jp

    2009-02-01

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30{approx}40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  5. PlumpyField – Network of local producers of RUF (contributed paper)

    International Nuclear Information System (INIS)

    Belete, Hilina

    2014-01-01

    Full text: Expanding coverage for the 35 million children in the world suffering from Moderate Acute Malnutrition (MAM) will require sustainably scaling up regional procurement of lipid-based RUSF products. Momentum is now building to achieve this aim through ten local ready-to-use food (RUF) producers in the PlumpyField Network, which was established by the French company Nutriset in 2005. These independently-owned factories, located in Sub-Saharan Africa, Asia, and the Caribbean, currently produce one-third of the world’s RUF supply. Overcoming substantial obstacles, they have achieved the same high quality standards of producers in Europe and the U.S., with increasingly competitive pricing. Being part of a mutually supportive and interactive network of RUF producers from around the world provides unique learning and partnership opportunities, from sharing insights on peanut supply chain development, increasingly complex quality challenges, to pooled procurement. This network system has been instrumental to the success of local production for the members of the PlumpyField Network. Historically, local producers achieving economies of scale and reliable local and international supply chains (i.e. for peanuts, oil, sugar, milk etc.) takes several years, making the cost of locally-procured products more expensive in the short term. However, there are numerous positive outcomes and externalities that cannot be ignored, such as decreased lead times (especially crucial to reach children with acute malnutrition), lower shipping costs, economic development, and maturation of the food processing and microbiological laboratory sectors. UNICEF and WFP have become leaders in local and regional procurement as they continually optimize their strategies to best meet global needs. Local production is often an important stimulant of public-private partnerships, including procurement of RUF by local governments for government-run acute malnutrition programs, furthering

  6. TLD DRD dose discrepancy: role of beta radiation fields

    International Nuclear Information System (INIS)

    Munish Kumar; Pradhan, S.M.; Bihari, R.R.; Bakshi, A.K.; Chougaonkar, M.P.; Babu, D.A.R.; Gupta, Anil

    2014-01-01

    Ionization chamber based direct reading/pocket dosimeters (DRDs), are used along with the legal dosimeters (thermoluminescent dosimeters-TLDs) for day to day monitoring and control of radiation doses received by radiation workers. The DRDs are routinely used along with the passive dosimeters (TLDs) in nuclear industry at different radiation installations where radiation levels could vary significantly and the possibility of receiving doses beyond investigation levels by radiation workers is not ruled out. Recently, recommendations for dealing with discrepancies between personal dosimeter systems used in parallel were issued by ISO. The present study was performed to measure the response of ionization chamber based pocket dosimeters to various beta sources having energy (E max ) ranging from 0.224 MeV-3.54 MeV. It is expected that the above study will be useful in resolving the disparity between TLD and DRD doses at those radiation installations where radiation workers are likely to be exposed simultaneously from photons and beta particles

  7. Countermeasure for terrorism-new field of radiation protection

    International Nuclear Information System (INIS)

    Ye Changqing

    2003-01-01

    The workers on radiation protection have been confronted with a new task-countering terrorism. The description and level of various threats threats, the potential consequences and occurrence probability of different nuclear and radiation attack events, and the responses to these threats (crisis and consequence) are introduced at two levels. At the level of crisis management, some approaches to mitigation, the works done by International Atomic Energy Agency and the tendency in United States are also presented. At the level of consequence management, the essential practices submitted by National Council on Radiation Protection and Measurements of America are listed. Finally the domest ic progress in this area is introduced too. (authors)

  8. The effect of produced water reinjection on reservoir souring in the Statfjord field

    Energy Technology Data Exchange (ETDEWEB)

    Bjoernestad, Eva Oe.; Sunde, Egil; Dinning, Anthony J.

    2006-03-15

    A produced water reinjection (PWRI) pilot test was performed in one well in the Statfjord field in the period 2000-2001. In order to establish the souring parameters and influence of PWRI in the near well area, the well was back flowed prior to PWRI, and at the end of the PWRI test period. Tracer was used for mass balance evaluations. After the PWRI pilot test was finished, the PWRI plant was upgraded at the Statfjord C platform and since 2003; two wells have been re injecting produced water. Nitrate has substituted biocides for corrosion control in the water injection system at the Statfjord B and Statfjord C platforms. Based on experience from other Statoil operated fields, nitrate will improve the corrosion control and in addition reduce the reservoir souring and hence the H2S production. In 2004, three wells were backflowed; a PWRI- injector, a seawater injector and a sea water injector with addition of nitrate. Results from the PWRI pilot test, showed that the sulphide production increased 17 times after PWRI in comparison with seawater injection. In the backflowing studies in 2004, water from the PWRI injector showed considerable higher H2S content (approximately 300 mg/l) than the well injecting only seawater (approximately 3-4 mg/l). The well injecting nitrate showed the lowest sulphide concentration in the backflowed fluids in comparison with the other wells (below 1 mg/l). This illustrates a significant increase in microbiological activity within the near injection area as a result of increased nutrient availability due to PWRI. The impact of PWRI in the lifetime of the Statfjord field has been evaluated and the PWRI strategy may be altered due to increases in souring. (Author)

  9. Characterisation of ionisation chambers for a mixed radiation field and investigation of their suitability as radiation monitors for the LHC.

    Science.gov (United States)

    Theis, C; Forkel-Wirth, D; Perrin, D; Roesler, S; Vincke, H

    2005-01-01

    Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LHC.

  10. Experimental study on the luminous radiation associated to the field emission of samples submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Luong, M.; Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    Nowadays the accelerating gradient of the RF cavities is limited by the strong field emission (FE) of electrons stemming from the metallic walls. Previous experiments evidenced luminous radiations associated with electron emission on cathodes subjected to intense DC electric field. These observations led these authors to propose new theoretical models of the field emission phenomenon. The presented experimental study extends these previous DC works to the RF case. A special copper RF cavity has been developed equipped with an optical window and a removable sample. It has been designed for measuring both electron current and luminous radiation emitted by the sample, subjected to maximum RF electric field. The optical apparatus attached to the cavity permits to characterize the radiation in terms of intensity, glowing duration and spectral distribution. The results concerning different niobium or copper samples, whom top was either scratched or intentionally contaminated with metallic or dielectric particles are summarized. (author)

  11. Experimental study on the luminous radiation associated to the field emission of samples submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Luong, M.; Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    The accelerating gradient of the RF cavities is limited by the strong field emission (FE) of electrons stemming from the metallic walls. Previous experiments evidenced luminous radiations associated with electron emission of cathodes subjected to intense DC electric field. These observations invoked the proposal of new theoretical models of the field emission phenomenon. This experimental study extends the previous DC works to the RF case. A special copper RF cavity has been developed equipped with an optical window and a removable sample. It has been designed for measuring both electron current and luminous radiation emitted by the sample, subjected to maximum RF electric field. The optical apparatus attached to the cavity permits to characterize the radiation in terms of intensity, glowing duration and spectral distribution. The results concerning different niobium or copper samples, whom top was either scratched or intentionally contaminated with metallic or dielectric particles are summarized. (author)

  12. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  13. Measurement and calculation of radiation fields of the Sandia irradiator for dried sewage solids

    International Nuclear Information System (INIS)

    Morris, M.E.

    1981-03-01

    The radiation field of the Sandia Irradiator for Dried Sewage Solids was measured. The results of the measurement are given in this report. In addition, theoretical calculations of the fields are given and then compared with the measured values. Elementary models of the radiation source geometry and irradiated product are found to be adequate and thus allow us to duplicate (through calculation) the important features of the measured fields

  14. Moessbauer radiation dynamical diffraction in crystals being subjected to the action of external variable fields

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Skadorov, V.V.

    1986-01-01

    A dynamical theory is developed of the Moessbauer radiation diffraction by crystals being subjected to an variable external field action. Equations describing the dynamical diffraction by nonstationary crystals are obtained. It is shown that the resonant interaction between Moessbauer radiation and shift field induced in the crystal by a variable external field giving rise to an effective conversion of the incident wave into a wave with changed frequency. (author)

  15. Nuclear Radiation Fields on the Mars Surface: Risk Analysis for Long-term Living Environment

    Science.gov (United States)

    Anderson, Brooke M.; Clowdsley, Martha S.; Qualls, Garry D.; Nealy, John E.

    2005-01-01

    Mars, our nearest planet outward from the sun, has been targeted for several decades as a prospective site for expanded human habitation. Background space radiation exposures on Mars are expected to be orders of magnitude higher than on Earth. Recent risk analysis procedures based on detailed dosimetric techniques applicable to sensitive human organs have been developed along with experimental data regarding cell mutation rates resulting from exposures to a broad range of particle types and energy spectra. In this context, simulated exposure and subsequent risk for humans in residence on Mars are examined. A conceptual habitat structure, CAD-modeled with duly considered inherent shielding properties, has been implemented. Body self-shielding is evaluated using NASA standard computerized male and female models. The background environment is taken to consist not only of exposure from incident cosmic ray ions and their secondaries, but also include the contribution from secondary neutron fields produced in the tenuous atmosphere and the underlying regolith.

  16. Energy-level splitting of multicharged ions due to interaction with own radiation field

    International Nuclear Information System (INIS)

    Gajnutdinov, R.Kh.; Kalashnikov, K.K.

    1991-01-01

    The overlapping of the energy levels of He-like uranium states with identical principal quantum numbers is investigated. Results are presented of a numerical calculation of the states produced as a result of mixing of the 2s 1/2 8p 1/2 and 2p 1/2 8p 1/2 states and of the respective spectral lines. It is shown that the interaction between the ion and its own radiation field splits each of the overlapping energy levels into several sublevels. The sublevels are isolated from each to other such an extent that interference effects become insignificant. The shapes of the spectral lines differ pronouncedly from the Lorentz shape and many of the line are anomaously narrow

  17. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Czech Academy of Sciences Publication Activity Database

    Meier, M.; Trompier, F.; Ambrožová, Iva; Kubančák, Ján; Matthia, D.; Ploc, Ondřej; Santen, N.; Wirtz, M.

    2016-01-01

    Roč. 6, MAY (2016), A24 ISSN 2115-7251 Institutional support: RVO:61389005 Keywords : aviation * radiation exposure of aircrew * comparison of radiation detectors * galactic cosmic radiation * ambient dose equivalent Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.446, year: 2016

  18. Calculation of radiation fields for Hanford tank riser modifications

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Carter, L.L.; Hillesland, K.E.

    1994-10-01

    A visualization process has been created to animate the dose rates from radiation sources as the source and shielding configuration are modified. This process has been illustrated with the removal of a mixer pump from a Hanford Site waste tank

  19. Radiation hygiene aspects of mixed neutron-gamma field dosimetry

    International Nuclear Information System (INIS)

    Nikodemova, O.; Hrabovcova, A.

    1982-01-01

    Various possibilities are analyzed of determining the dose equivalent of neutrons, as is the reliability of the techniques and the correct interpretation for the purposes of radiation hygiene. (author)

  20. Radiation damage produced by swift heavy ions in rare earth phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, Anton

    2017-02-13

    This work is devoted to the study of radiation damage produced by swift heavy ions in rare earth phosphates, materials that are considered as perspective for radioactive waste storage. Single crystals of rare earth phosphates were exposed to 2.1 GeV gold (Au) and 1.5 GeV xenon (Xe) ions of and analyzed mainly by Raman spectroscopy. All phosphates were found almost completely amorphous after the irradiation by 2.1 GeV Au ions at a fluence of 1 x 10{sup 13} ions/cm{sup 2}. Radiation-induced changes in the Raman spectra include the intensity decrease of all Raman bands accompanied by the appearance of broad humps and a reduction of the pronounced luminescence present in virgin samples. Analyzing the Raman peak intensities as a function of irradiation fluence allowed the calculation of the track radii for 2.1 GeV Au ions in several rare earth phosphates, which appear to be about 5.0 nm for all studied samples. Series of samples were studied to search for a trend of the track radius depending on the rare earth element (REE) cation. Among the monoclinic phosphates both Raman and small-angle X-ray scattering (SAXS) suggest no significant change of the track radius with increasing REE mass. In contrast, within the tetragonal phosphates Raman spectroscopy data suggests a possible slight decreasing trend of the track radius with the increase of REE atomic number. That finding, however, requires further investigation due to the low reliability of the qualitative Raman analysis. Detailed analysis of Raman spectra in HoPO{sub 4} showed the increase of peak width at the initial stage of the irradiation and subsequent decrease to a steady value at higher fluences. This observation suggested the existence of a defect halo around the amorphous tracks in HoPO{sub 4}. Raman peaks were found to initially shift to lower wavenumbers with reversing this trend at the fluence of 5 x 10{sup 11} for NdPO{sub 4} and 1 x 10{sup 12} ions/cm{sup 2} for HoPO{sub 4}. At the next fluence steps

  1. Radiation damage produced by swift heavy ions in rare earth phosphates

    International Nuclear Information System (INIS)

    Romanenko, Anton

    2017-01-01

    This work is devoted to the study of radiation damage produced by swift heavy ions in rare earth phosphates, materials that are considered as perspective for radioactive waste storage. Single crystals of rare earth phosphates were exposed to 2.1 GeV gold (Au) and 1.5 GeV xenon (Xe) ions of and analyzed mainly by Raman spectroscopy. All phosphates were found almost completely amorphous after the irradiation by 2.1 GeV Au ions at a fluence of 1 x 10 13 ions/cm 2 . Radiation-induced changes in the Raman spectra include the intensity decrease of all Raman bands accompanied by the appearance of broad humps and a reduction of the pronounced luminescence present in virgin samples. Analyzing the Raman peak intensities as a function of irradiation fluence allowed the calculation of the track radii for 2.1 GeV Au ions in several rare earth phosphates, which appear to be about 5.0 nm for all studied samples. Series of samples were studied to search for a trend of the track radius depending on the rare earth element (REE) cation. Among the monoclinic phosphates both Raman and small-angle X-ray scattering (SAXS) suggest no significant change of the track radius with increasing REE mass. In contrast, within the tetragonal phosphates Raman spectroscopy data suggests a possible slight decreasing trend of the track radius with the increase of REE atomic number. That finding, however, requires further investigation due to the low reliability of the qualitative Raman analysis. Detailed analysis of Raman spectra in HoPO 4 showed the increase of peak width at the initial stage of the irradiation and subsequent decrease to a steady value at higher fluences. This observation suggested the existence of a defect halo around the amorphous tracks in HoPO 4 . Raman peaks were found to initially shift to lower wavenumbers with reversing this trend at the fluence of 5 x 10 11 for NdPO 4 and 1 x 10 12 ions/cm 2 for HoPO 4 . At the next fluence steps peaks moved in the other direction, passed

  2. Optical studies of defects produced by radiation in LiF:Mg

    International Nuclear Information System (INIS)

    Ranieri, Izilda Marcia

    1979-01-01

    Lithium fluoride crystals doped with magnesium were grown from the melt by the Czochralski's method. Using the fact that the presence of Mg enhances the production of F and M color centers, the relative concentration of Mg was determined by a method devised in this work, This method utilizes the optical density of color centers in irradiated samples where the dose rate is proportional to the rate of formation of these centers. The dynamical equilibrium between F and M centers was studies after X-Rays radiation damage. Thermal treatments at 1000 K and quenches to 77 K, previously to the irradiation, showed that one can dissociate impurity aggregates formed when the crystal was grown. This dissociation implies in a decrease of the formation rate of F and M centers. It was found that isolated Mg impurities trap F centers to form Z centers. In the aggregate form, Mg impurities trap interstitial ions that are produced by the irradiation and that are the anti-centers of the F center. By this mechanism F and its anti-centers are thermally stabilized. It was observed that stoking the crystals at room temperature and well protected from the light show an increase in the M center production with a corresponding decrease in the F center production. This is because periods such as 20 hours are enough to perturb the thermodynamical equilibrium between F and M centers obtained just after the irradiation. To determine the stability of these color centers under light of different wavelengths, optical exposures were used. It was found that M center band is stable under its own wavelength's irradiation at room temperature and does not show dichroism. It was determined that the rate of formation of F and M centers at 343 and 403 K, follows the same behavior at room temperature. An Arrhenius study was made to determine the activation energies of these processes and produced 0,12 eV and 0,24 eV for the F and M centers respectively. Studies of fluorescence were also made after X and t

  3. Study on liquid composition produced by radiation degradiation of N,N-diethylhydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong

    2006-01-01

    With the development of nuclear energy, more attention has been paid on reprocessing of the spent fuel. PUREX process is the most established process for large scale reprocessing of spent fuel. In this process, Pu is separated from U by selective reducing Pu(IV). Fe(NH 2 SO 3 ) 2 and U(IV)-NH 2 NH 2 are the two common used reducing agent, the principal advantage of them is that they give very rapid reduction. However, the use of Fe(NH 2 SO 3 ) 2 increases the volume of radioactive wastes, and the use of U(IV)-NH 2 NH 2 produces dangerous hydrazoic acid. On the other hand, Np content increases with increasing burnup. Fe 2+ can't separate both Pu and Np from U, and U(IV) can't control Np valence and lead Np go to different streams. Being capable of reducing Pu(IV) and Np(VI) to Pu(III) and Np(V) rapidly, N,N-diethylhydroxylamine (DEHA) is a promising reductan for applications of spent fuel reprocessing. By gas chromatography, chemical method and UV spectrophotometry, the liquid composition produced by radiation degradation of DEHA at different condition was studied qualitatively and quantitatively. The results show that with DEHA concentration of 0.1-0.5M irradiated to 10-1000 kGy, the main liquid composition is acetaldehyde, ethanol, acetic acid and ammonium. When the concentration of DEHA was 0.1-0.2M, the concentration of acetaldehyde ethanol,acetic acid and ammonium was lower than 0.03M. When the concentration of DEHA was 0.3-0.5M, the concentration of acetaldehyde,ethanol,acetic acid changed little, but ammonium concentration increases greatly, and the maximum was 0.16M. The degradation degree of DEHA decreased with the increasing of DEHA concentration. The degradation degree was 25% with DEHA concentration of 0.5M irradiated to 1000kGy. (authors)

  4. A radiation transfer model for the Milky Way: I. Radiation fields and application to high-energy astrophysics★

    Science.gov (United States)

    Popescu, C. C.; Yang, R.; Tuffs, R. J.; Natale, G.; Rushton, M.; Aharonian, F.

    2017-09-01

    We present a solution for the ultraviolet - submillimetre (submm) interstellar radiation fields (ISRFs) of the Milky Way (MW), derived from modelling COBE, IRAS and Planck maps of the all-sky emission in the near-, mid-, far-infrared and submm. The analysis uses the axisymmetric radiative transfer model that we have previously implemented to model the panchromatic spectral energy distributions (SEDs) of star-forming galaxies in the nearby universe, but with a new methodology allowing for optimization of the radial and vertical geometry of stellar emissivity and dust opacity, as deduced from the highly resolved emission seen from the vantage point of the Sun. As such, this is the first self-consistent model of the broad-band continuum emission from the MW. In this paper, we present model predictions for the spatially integrated SED of the MW as seen from the Sun, showing good agreement with the data, and give a detailed description of the solutions for the distribution of ISRFs, as well as their physical origin, throughout the volume of the galaxy. We explore how the spatial and spectral distributions of our new predictions for the ISRF in the MW affects the amplitude and spectral distributions of the gamma rays produced via inverse Compton scattering for cosmic ray (CR) electrons situated at different positions in the galaxy, as well as the attenuation of the gamma rays due to interactions of the gamma-ray photons with photons of the ISRF. We also compare and contrast our solutions for the ISRF with those incorporated in the galprop package used for modelling the high-energy emission from CR in the MW.

  5. Computational radiation chemistry: the emergence of a new field

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Kroh, J.

    1991-01-01

    The role of the computer experiment as an information source, which is complementary to the ''real'' experiment in radiation chemistry, is discussed. The discussion is followed by a brief review of some of the simulation techniques, which have been recently applied to the problems of radiation chemistry: ion recombination in spurs and tracks of ionization, electron tunnelling in low-temperature glasses, electron localization in disordered media. (author)

  6. Studies of radiation-produced radicals and radical ions. Progress report, June 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    Williams, T.F.

    1982-01-01

    The discovery and characterization of novel radical ions produced by the γ irradiation of solids continues to be a fertile field for investigation. This Progress Report describes the generation and ESR identification of several new paramagnetic species, some of which have long been sought as important intermediates in radiation chemistry. We have also contributed to a general theoretical problem in ESR spectroscopy. Solid-state studies of electron attachment reactions, both non-dissociative and dissociative, reveal interesting structural and chemical information about the molecular nature of these processes for simple compounds. In particular, ESR measurements of the spin distribution in the products allow a fairly sharp distinction to be drawn between radical anions and radical-anion pairs or adducts. Dimer radical anion formation can also take place but the crystal structure plays a role in this process, as expected. Some radical anions undergo photolysis to give radical-anion pairs which may then revert back to the original radical anion by a thermal reaction. The chemistry of these reversible processes is made more intricate by a competing reaction in which the radical abstracts a hydrogen atom from a neighboring molecule. However, the unraveling of this complication has also served to extend our knowledge of the role of quantum tunneling in chemical reactions. The results of this investigation testify to the potential of solid-state techniques for the study of novel and frangible radical ions. Progress in this field shows no sign of abating, as witness the recent discovery of perfluorocycloalkane radical anions and alkane radical cations

  7. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    International Nuclear Information System (INIS)

    Liu, X. L.; Zhang, Z. M.

    2014-01-01

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  8. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  9. The introduction of radiation monitor produced by several nuclear instrument factories

    International Nuclear Information System (INIS)

    Yu Liying

    2005-01-01

    The paper introduce some radiation monitor products of several nuclear instrument factories include Xi'an Nuclear Instrument Factory, MGP Instruments Inc, and Canberra Industries Inc. The introduction aspects include the range, configuration, and application of products. So, the paper is reference for the designer with responsibility for radiation monitoring system of new nuclear project. (authors)

  10. Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter

    International Nuclear Information System (INIS)

    Borg, J.; Christensen, P.

    1995-01-01

    The extrapolation chamber measurement method is the basic method for the determination of dose rates in beta radiation fields and the method has been used for the establishment of beta calibration fields. The paper describes important details of the method and presents results from the measurements of depth-dose profiles from different beta radiation fields with E max values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value of the dose rate. (Author)

  11. Quality assurance procedure for assessing mechanical accuracy of a radiation field center in stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Tatsumi, Daisaku; Ienaga, Akinori; Nakada, Ryosei; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2012-01-01

    Stereotactic radiotherapy requires a quality assurance (QA) program that ensures the mechanical accuracy of a radiation field center. We have proposed a QA method for achieving the above requirement by conducting the Winston Lutz test using an electronic portal image device (EPID). An action limit was defined as three times the standard deviation. Then, the action limits for mean deviations of the radiation field center during collimator rotation, gantry rotation, and couch rotation in clockwise and counterclockwise resulted in 0.11 mm, 0.52 mm, 0.37 mm, and 0.41 mm respectively. Two years after the QA program was launched, the mean deviation of the radiation field center during gantry rotation exceeded the above action limit. Consequently, a mechanical adjustment for the gantry was performed, thereby restoring the accuracy of the radiation field center. A field center shift of 0.5 mm was also observed after a micro multi-leaf collimator was unmounted. (author)

  12. Magnetic resonance in medicine occupational exposure to static magnetic field and radiofrequency radiation

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.; Ivanovic, C.

    1997-01-01

    Medical personnel working with magnetic resonance imaging (MRI) devices could be exposed to static magnetic (M) field, time-varying M fields and radiofrequency (RF) radiation. The aim of work was to investigate the density of magnetic flux of static magnetic field and the power density of RF radiation which appear in the working environment around the 0.5 T MRI unit in one hospital. The density of magnetic flux of static magnetic field was measured with Hall Effect Gauss meter - Magnetech (Great Britain), and the power density of RF radiation was measured with broadband isotropic meter - The Narda Microwave Corp. (USA). The results of measurement show that the density of magnetic flux of static M field on working places are below threshold limit of exposure and the intensities of RF radiation are far below maximum permissible level. (author)

  13. Utilization technique of 'radiation management manual in medical field (2012).' What should be learnt from the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Kikuchi, Toru

    2014-01-01

    From the abstract of contents of the 'Radiation management manual in medical field (2012),' the utilization technique of the manual is introduced. Introduced items are as follows: (1) Exposure management; exposure management for radiation medical workers, patients, and citizens in the medical field, and exposure management for radiation workers and citizens involved in the emergency work related to the Fukushima nuclear accident, (2) Health management; health management for radiation medical workers, (3) Radiation education: Education/training for radiation medical workers, and radiation education for health care workers, (4) Accident and emergency measures; emergency actions involved in the radiation accidents and radiation medicine at medical facilities

  14. PWR radiation fields at combustion engineering plants through mid-1985: Final report

    International Nuclear Information System (INIS)

    Barshay, S.S.; Beineke, T.A.; Bradshaw, R.W.

    1987-01-01

    This report presents the results of the initial phase of the EPRI-PWR Standard Radiation Monitoring Program (SRMP) for PWR nuclear power plants with Nuclear Steam Supply Systems supplied by Combustion Engineering, Inc. The purposes of the SRMP are to provide reliable, consistent and systematic measurements of the rate of radiation-field buildup at operating PWR's; and to use that information to identify opportunities for radiation control and the consequent reduction of occupational radiation exposure. The report includes radiation surveys from seven participating power plants. These surveys were conducted at well-defined locations on the reactor coolant loop piping and steam generators, and/or inside the steam generator channel heads. In most cases only one survey is available from each power plant, so that conclusions about the rate of radiation-field buildup are not possible. Some observations are made about the distribution pattern of radiation levels within the steam generator channel heads and around the reactor coolant loops. The report discusses the relationship between out-of-core radiation fields (as measured by the SRMP) and: the pH of the reactor coolant, the concentration of lithium hydroxide in the reactor coolant, and the frequency of changes in reactor power level. In order to provide data for possible future correlations of these parameters with the SRMP radiation-field data, the report summarizes information available from participating plants on primary coolant pH, and on the frequency of changes in reactor power level. 12 refs., 22 figs., 7 tabs

  15. Behaviour of laser-produced plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Okada, Shigefumi; Sato, Kohnosuke; Sekiguchi, Tadashi.

    1979-11-01

    A column of a laser-produced plasma is successfully made in a uniform magnetic field. The radius of the column increases and then decreases (bouncing motion). On the surface of this plasma column, where the steep density gradient exists with the scale length shorter than the ion Larmor radius, an azimuthal modulation appears in the plasma luminosity. This is indicative of the flute-like instability with the azimuthal wave number; k sub(perpendicular) -- 4 x 10 3 B sup(0.8) (in the MKSA system of units). The dispersion equation based on the linearized Vlasov equation with the local approximation is derived and the occurrence of the lower-hybrid-drift instability is predicted. A fairly good agreement between the theory and experiments is seen. (author)

  16. Stabilization of Rayleigh-Taylor instability due to the spontaneous magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Ogasawara, Masatada; Takita, Masami.

    1981-08-01

    Spontaneous magnetic fields due to the temperature gradient nabla T 0 produced by a focussed laser beam on one point of a pellet are taken into account in deriving the dispersion relation of Rayleigh-Taylor instability. Growth rate γ decreases with time. Density fluctuation with wavelength shorter than 1.5(R/L sub(T)) x (n sub(s)/n 0 )sup(1/2) μm is remarkably stabilized, where R, L sub(T), n sub(s) and n 0 are the radius of a pellet, L sub(T)sup(-1) = + nabla T 0 /T 0 + , number densities of solid and the pellet. Validity condition of the theory is γt 0 >> 1 or in another form R >> L, where t 0 is the time of thermal expansion of a pellet and L -1 = + nabla n 0 /n 0 + . (author)

  17. Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter

    DEFF Research Database (Denmark)

    Borg, J.; Christensen, P.

    1995-01-01

    of depth-dose profiles from different beta radiation fields with E(max) values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high...... sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value...

  18. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    International Nuclear Information System (INIS)

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  19. The exact electromagnetic field description of photon emission, absorption, and radiation pattern. II.

    Science.gov (United States)

    Grimes, Dale M; Grimes, Craig A

    2002-10-01

    This is the second of two articles, the first of which contains a proposed explanation of quantum theory based upon electron nonlocality and classical electrodynamics. In this second article classical field theory is used to describe a unique field set for exchange of radiation between an atomic eigenstate and the far field. The radiation satisfies the thermodynamic condition of reversibility as described by Boltzmann, Planck, and Einstein. The exchanged radiation supports the kinematic properties of photons, and it can be emitted or absorbed by a vanishingly small volume.

  20. Gamma radiation and magnetic field mediated delay in effect of accelerated ageing of soybean

    International Nuclear Information System (INIS)

    Mahesh Kumar; Anand, Anjali; Singh, Bhupinder; Ahuja, Sumedha; Dahuja, Anil

    2015-01-01

    Soybean seeds were exposed to gamma radiation (0.5, 1, 3 and 5 kGy), static magnetic field (50, 100 and 200 mT) and a combination of gamma radiation and magnetic energy (0.5 kGy+200 mT and 5 kGy+50 mT) and stored at room temperature for six months. These seeds were later subjected to accelerated ageing treatment at 42°C temperature and 95-100 % relative humidity and were compared for various physical and biochemical characteristics between the untreated and the energized treatments. Energy treatment protected the quality of stored seeds in terms of its protein and oil content. Accelerated aging conditions, however, affected the oil and protein quantity and quality of seed negatively. Antioxidant enzymes exhibited a decline in their activity during aging while the LOX activity, which reflects the rate of lipid peroxidation, in general, increased during the aging. Gamma irradiated (3 and 5 kGy) and magnetic field treated seeds (100 and 200 mT) maintained a higher catalase and ascorbate peroxidase activity which may help in efficient scavenging of deleterious free radical produced during the aging. Aging caused peroxidative changes to lipids, which could be contributed to the loss of oil quality. Among the electromagnetic energy treatments, a dose of 1-5 kGy of gamma and 100 mT, 200 mT magnetic field effectively slowed the rate of biochemical degradation and loss of cellular integrity in seeds stored under conditions of accelerated aging and thus, protected the deterioration of seed quality. Energy combination treatments did not yield any additional protection advantage. (author)

  1. Studies of synthetic single crystal diamonds as reliable dosimeters for electromagnetic ionizing radiation fields

    International Nuclear Information System (INIS)

    Pillon, Mario; Angelone, Maurizio; Almaviva, Salvatore; Marinelli, Marco; Milani, Enrico; Prestopino, Giuseppe; Tucciarone, Aldo; Verona, Claudio; Verona-Rinati, Gianluca; Baccaro, Stefania

    2008-01-01

    Full text: Spatial high resolution dosimetry is very important in all areas of radiation therapy and, in particular, whenever narrow photon beams are required for Stereotactic Radiotherapy (SRT) and small field segments are used for Intensity Modulated Radiotherapy (IMRT). The available detectors are often too large with respect to the beam size considered, which is characterized by high dose gradients and lack of charged particle equilibrium. An ideal solution is represented by single crystal diamond detectors, which are small solid state devices, radiation hard, tissue equivalent and capable of real time response. In the present work, synthetic CVD single crystal diamond dosimeters (SCD), fabricated at Rome 'Tor Vergata' University Laboratories, have been characterized. The devices consist of a p-type/intrinsic/metal layered structure. They have been analyzed in terms of reproducibility, linearity, depth dose distributions, energy, dose rate and field size dependence by using 6 and 10 MV Bremsstrahlung x-ray beams, produced by a CLINAC DHX Varian accelerator and the gamma irradiation facility CALLIOPE. The gamma Calliope plant is a pool-type irradiation facility equipped with the 60 Co γ-source in a high-volume (7 x 6 x 3.9m 3 ). Maximum dose rate is 9400 Gy/h. The measurements have been compared with a calibrated ionization chamber and a Fricke dosimeter. The SCD's response is shown to be linearly correlated with the ionization chamber output over the whole dose range explored. Reproducibility, energy and dose rate dependency lower than 1% were observed. A depth dose distribution and irradiation field dependence in agreement with those obtained by reference dosimeters within 2% of accuracy were demonstrated as well. The results of this study are very encouraging about the suitability of SCD for clinical dosimetry with photon beams. (author)

  2. Investigation of the radiation level and electromagnetic field strength in sample of Damascus schools

    International Nuclear Information System (INIS)

    Shweikani, R.; Abukassem, I.; Raja, G.; Algamdi, H.

    2009-12-01

    The aim of this work is to determine radon concentration and natural gamma dose rate, and to measure the electromagnetic fields (EMFs) level produced by electric power lines and also mobile phone base station inside some elementary and preparatory schools in old town during two terms (studding terms and summer break). Results showed that most of the obtained values were less than 200 Bq/m 3 the action levels, but there were some classrooms concentrations which are more than 200 Bq/m 3 . These high values may be due to building materials, radon concentration in the soil and poor ventilation. It has been noticed that radon concentrations during the second term (summer) were higher than the first term. This may be due to the poor ventilation as schools are closed during summer break. The results showed also decreasing in radon concentration with increasing height of the floor, and radon concentration in old schools is higher than modern ones. EMFs levels in ground and first floors were higher than second floor; the maximum detected values exceeded 50 V/m and 270 mA/m for electric and magnetic field strength respectively, and 0.5 μT for magnetic flux density. Mobile microwave radiation level was relatively low in all positions, and signal increases with floor height. Finally, no observable correlation between the measured electromagnetic fields and the radon concentration were established.

  3. Small radiation field dosimetry with 2-methylalanine miniature dosimeters at K-band electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Chen, F.; Guzman Calcina, C.S.; Almeida, A. de; Almeida, C.E. de; Baffa, O.

    2007-01-01

    Minidosimeters of 2-methyalanine (2MA) with millimeter dimensions were produced and tested for small radiation field dosimetry. Their performance was assessed by measuring the relative output factor (ROF), beam profile (BP) and penumbra width values and were determined for square fields of 0.5x0.5, 1x1, 3x3, 5x5 and 10x10cm 2 . These results were compared with those obtained for Kodak X-Omat V radiographic film. The 2MA minidosimeters (mini2MA) were irradiated with 6 MV X-rays Varian/Clinac 2100 linear accelerator with SSD of 100 cm and depth of 1.5 cm (depth for build-up equilibrium). EPR measurements were made with a K-Band (24 GHz) spectrometer. The ROF and BP results demonstrate that the dimensions of the mini2MA are adequate for the field sizes used in this experiment. The results for penumbra width indicate that the spatial resolution of the mini2MA is comparable with that of radiographic film

  4. Isolation of radiation resistant fungal strains from highly radioactive field

    International Nuclear Information System (INIS)

    Adam, Y.M.; Aziz, N.H.; Attaby, H.S.H.

    1995-01-01

    This study examined the radiation resistance of fungal flora isolated from the hot-lab around the radiation sources, cobalt 137 and radium 226 . The predominant mould species were: Aspergillus flavus, A. Niger, penicillium chrysogenum, cladosporium herbarum, fusarium oxysporum and alternaria citri. The D 10 values of F. Oxysporum; 2.00 KGy, A. Flavus; 1.40 KGy, P. chrysogenum; 1.15 KGy, and A. citri; 0.95 KGy, are about 1.67, 3.10, 1.92 and 1.36 folds as the D 1 0 values of the same isolates recovered from soil

  5. Television system for verification and documentation of treatment fields during intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Fraass, B.A.; Harrington, F.S.; Kinsella, T.J.; Sindelar, W.F.

    1983-01-01

    Intraoperative radiation therapy (IORT) involves direct treatment of tumors or tumor beds with large single doses of radiation. The verification of the area to be treated before irradiation and the documentation of the treated area are critical for IORT, just as for other types of radiation therapy. A television system which allows the target area to be directly imaged immediately before irradiation has been developed. Verification and documentation of treatment fields has made the IORT television system indispensable

  6. Actual conditions of radiation control in radioisotope utilization field

    International Nuclear Information System (INIS)

    Kakihara, Koji

    1980-01-01

    It may be said that the actual conditions on radiation safety are being improved in utilizing radioisotopes or radiation in Japan. It depends greatly on the results of the voluntary effort of users and the regulations by the ''radiation injury prevention law'' and its relevant ordinances. However, the actual conditions of the strict observation of the law are much insufficient. According to the results of official inspection in 1978, 60% of whole enterprises concerned and 73% of educational and medical organizations were judged as incomplete. Such tendency should not be left as it is, but it should also be noticed that there are realities that critical accidents or injuries have not occurred even in such conditions as many violations mentioned above. Since the existing law has not been subjected to essential revision in the past two decades, it might be said that the law does not properly fit to the present conditions because the progress of related techniques was made during this period. Meanwhile, difficulties exist in measuring the low level concentration in the use of low energy radioisotopes or tracer experiments such as in the process analysis in factories or in the analysis of the movement of trace constituent in soil. Further, there is a problem on the necessity of securing the chief technicians handling radiation, and there is the contradiction that the chief technicians are useless in normal condition but are powerless in case of accidents. This situation should be improved as soon as possible. (Wakatsuki, Y.)

  7. Radiation protection measurement - spectral solutions in special fields

    International Nuclear Information System (INIS)

    Urban, F.J.; Trliber, K.H.; Schwerdn, K.; Laube, S.

    1997-01-01

    The exposition to ionizing radiation is a fact for nearly every person. One part of the exposition is due to natural or man made radioisotopes occurring in the environment. Another part exists because of technical sources. mainly x-ray machines for medical diagnostics. (authors)

  8. Dose loading mathematical modelling of moving through heterogeneous radiation fields

    International Nuclear Information System (INIS)

    Batyij, Je.V.; Kotlyarov, V.T.

    2006-01-01

    Software component for management of data on gamma exposition dose spatial distribution was created in the frameworks of the Ukryttya information model creation. Availability of state-of-the-art programming technologies (NET., ObjectARX) for integration of different models of radiation-hazardous condition to digital engineer documentation system (AutoCAD) was shown on the basis of the component example

  9. Applications of first order matricial theory to the calculation of storage ring designed for producing synchrotron radiation

    International Nuclear Information System (INIS)

    Machado, J.M.

    1984-01-01

    A review of first order matrix theory (linear approximation) used for calculating component elements of a particle accelerator employing the synchrotron principle of alternated gradient, is presented. Based on this theory, criteria for dimensioning synchrotron designed, exclusively for producing electromagnetic radiation, are established. The problem to find out optimum disposition of elements (straight line sections, quadrupolar magnetic lens, etc.) which take advantages of deflector magnets of the DCI synchrotron (Orsay Linear Accelerator Laboratory, French) aiming to construct a synchrotron designed to operate as electromagnetic radiation source, is solved. (M.C.K.) [pt

  10. Simultaneos determination of absorbed doses due to beta and gamma radiations with CaSO4: Dy produced at Ipen

    International Nuclear Information System (INIS)

    Campos, L.L.; Rosa, L.A.R. da.

    1988-07-01

    Due to the Goiania radiological accident, it was necessary to develop urgently a dosimeter in order to evaluate, simultaneously, beta and gamma absorbed doses, due to 137 Cs radiations. Therefore, the Dosimetric Material Production Laboratory of IPEN developed a simple, practical, light and low cost badge using small thickness (0,20mm) thermoluminescent CaSO 4 : Dy pellets produced by the same laboratory. This pellets are adequate for beta radiation detection. These dosimeters were worn by some IPEN technicians who worked in Goiania city, and were used to evaluate the external and internal contaminations presented by the accident victims interned at the Hospital Naval Marcilio Dias. (author) [pt

  11. Becquerel century: good and bad in radiation field

    International Nuclear Information System (INIS)

    Sandru, P.

    1996-01-01

    The purpose of this poster is to offer a synthetic as well as comprehensive image on this century of radioactivity with its beneficial and non-beneficial aspects. It is both a historical and an allegorical graphical presentation of the man's habitat, which have had in all the times a strong radioactive component. In order to paraphrase, but in a different way, another optimist message of this century perhaps we have to say that the cradle of man is radioactive and all the steps outside it should be very carefully considered. During this last century man started to challenge the nature in its intimate features, i.e. those associated to radioactivity phenomenon. In the first phase the world was fully confident on the radiation peaceful applications, then in the second phase all these beneficial aspects have been detonated toward military applications which astonished all the people by the harmful effects of radiation, finally we have been passing a new era dominated, all over the world by a spirit of harmonization and consent by which we are going to reach a globalization of radiation protection and safety principles and measures. Even if it is the latest source of energy which man has stolen from the nature, nuclear energy is now - from a technical point of view - a strong option for the human future and is going to gain more and more in the public acceptance branch. If this poster should have been confined in a phrase then the motto can be: with too much radiation we cannot be and live, but without radiation we cannot survive. (author)

  12. Ionizing radiation post-curing of objects produced by stereolithography and other methods

    Science.gov (United States)

    Howell, David H.; Eberle, Claude C.; Janke, Christopher J.

    2000-01-01

    An object comprised of a curable material and formed by stereolithography or another three-dimensional prototyping method, in which the object has undergone initial curing, is subjected to post-curing by ionizing radiation, such as an electron beam having a predetermined beam output energy, which is applied in a predetermined dosage and at a predetermined dose rate. The post-cured object exhibits a property profile which is superior to that which existed prior to the ionizing radiation post-curing.

  13. User's guide: Nimbus-7 Earth radiation budget narrow-field-of-view products. Scene radiance tape products, sorting into angular bins products, and maximum likelihood cloud estimation products

    Science.gov (United States)

    Kyle, H. Lee; Hucek, Richard R.; Groveman, Brian; Frey, Richard

    1990-01-01

    The archived Earth radiation budget (ERB) products produced from the Nimbus-7 ERB narrow field-of-view scanner are described. The principal products are broadband outgoing longwave radiation (4.5 to 50 microns), reflected solar radiation (0.2 to 4.8 microns), and the net radiation. Daily and monthly averages are presented on a fixed global equal area (500 sq km), grid for the period May 1979 to May 1980. Two independent algorithms are used to estimate the outgoing fluxes from the observed radiances. The algorithms are described and the results compared. The products are divided into three subsets: the Scene Radiance Tapes (SRT) contain the calibrated radiances; the Sorting into Angular Bins (SAB) tape contains the SAB produced shortwave, longwave, and net radiation products; and the Maximum Likelihood Cloud Estimation (MLCE) tapes contain the MLCE products. The tape formats are described in detail.

  14. Time- and dose-dependent changes in neuronal activity produced by X radiation in brain slices

    International Nuclear Information System (INIS)

    Pellmar, T.C.; Schauer, D.A.; Zeman, G.H.

    1990-01-01

    A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction

  15. A solution algorithm for calculating photon radiation fields with the aid of the Monte Carlo method

    International Nuclear Information System (INIS)

    Zappe, D.

    1978-04-01

    The MCTEST program and its subroutines for the solution of the Boltzmann transport equation is presented. The program renders possible to calculate photon radiation fields of point or plane gamma sources. After changing two subroutines the calculation can also be carried out for the case of directed incidence of radiation on plane shields of iron or concrete. (author)

  16. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  17. Dependence of radiation electric conductivity on intensity of external electric field in polymeric dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Sichkar, V P; Tyutnev, A P; Vaisberg, S E [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR)

    1975-10-01

    The radiational conductivity (Gsub(p)) at different electric field potentials (E) for a number of low- and high-density polymers was investigated. In a number of cases temperature variations were introduced. Measurements were carried out also under conditions of a single impulse of high-power radiation dose. A relationship was obtained between Gsub(p) and E.

  18. Experimental study of the counting loss in an ionization chamber in pulsed radiation fields

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.; Teixeira, A.N.

    1983-01-01

    The behavior of an ionization chamber gamma ray monitor in a pulsed radiation field at a linear electron accelerator facility was studied experiementally. A loss of sensitivity was observed as expected due to the pulsed nature of the radiation. By fitting the experiemental data to semi-empirical expressions, parameters for the correction of the counting efficiency were obtained. (Author) [pt

  19. Radiation protection medicine - a special field of health care and industrial safety

    International Nuclear Information System (INIS)

    Arndt, D.

    1988-01-01

    The definition of the term radiation protection medicine is followed by a brief account of the pathophysiology of radiation effects. Developments in the special field of general and occupational health are also described together with relevant GDR regulations. Information is provided on what is done at present at various levels in the GDR, in the context of peaceful use of nuclear energy, to provide adequate services in radiation protection medicine for all radiation workers and the population, with reference to the scope of activities of the Institute of Medicine attached to the National Board for Atomic Safety and Radiation Protection, the network of works medical officers in charge of radiation protection and the system for clinical treatment of acute radiation damage. (author)

  20. Development of Object Simulator for Radiation Field of Dental X-Rays

    International Nuclear Information System (INIS)

    Silva, L F; Ferreira, F C L; Sousa, F F; Cardoso, L X; Vasconcelos, E D S; Brasil, L M

    2013-01-01

    In dentistry radiography is of fundamental importance to the dentist can make an accurate diagnosis. For this it is necessary to pay attention to the radiological protection of both the professional and the patient and control image quality for an accurate diagnosis. In this work, quality control tests were performed on X-ray machines in private dental intraoral in the municipality of Marabá, where they measured the diameters of the radiation field to see if these machines are in accordance with the recommendations, thus preventing the patient is exposed to a radiation field higher than necessary. We will study the results of each X-ray machine evaluated. For this we created a phantom to assess the size of the radiation field of X-ray dental, where we measure the radiation field of each device to see if they are in accordance with the recommendations of the ordinance No. 453/98 – MS

  1. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps

  2. Attenuation of VHE Gamma Rays by the Milky Way Interstellar Radiation Field

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.; /Louisiana State U.; Strong, Andrew W.; /Garching, Max Planck Inst., MPE

    2006-04-19

    The attenuation of very high energy gamma rays by pair production on the Galactic interstellar radiation field has long been thought of as negligible. However, a new calculation of the interstellar radiation field consistent with multi-wavelength observations by DIRBE and FIRAS indicates that the energy density of the Galactic interstellar radiation field is higher, particularly in the Galactic center, than previously thought. We have made a calculation of the attenuation of very high energy gamma rays in the Galaxy using this new interstellar radiation field which takes into account its nonuniform spatial and angular distributions. We find that the maximum attenuation occurs around 100 TeV at the level of about 25% for sources located at the Galactic center, and is important for both Galactic and extragalactic sources.

  3. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    Science.gov (United States)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce

  4. WE-EF-BRA-08: Cell Survival in Modulated Radiation Fields and Altered DNA-Repair at Field Edges

    Energy Technology Data Exchange (ETDEWEB)

    Bartzsch, S; Oelfke, U [The Institute of Cancer Research, London (United Kingdom); Eismann, S [University of Heidelberg, Heidelberg, DE (Germany)

    2015-06-15

    Purpose: Tissue damage prognoses in radiotherapy are based on clonogenic assays that provide dose dependent cell survival rates. However, recent work has shown that apart from dose, systemic reactions and cell-cell communication crucially influence the radiation response. These effects are probably a key in understanding treatment approaches such as microbeam radiation therapy (MRT). In this study we tried to quantify the effects on a cellular level in spatially modulated radiation fields. Methods: Pancreas carcinoma cells were cultured, plated and irradiated by spatially modulated radiation fields with an X-ray tube and at a synchrotron. During and after treatment cells were able to communicate via the intercellular medium. Afterwards we stained for DNA and DNA damage and imaged with a fluorescence microscope. Results: Intriguingly we found that DNA damage does not strictly increase with dose. Two cell entities appear that have either a high or a low amount of DNA lesions, indicating that DNA damage is also a cell stress reaction. Close to radiation boundaries damage-levels became alike; they were higher than expected at low and lower than expected at high doses. Neighbouring cells reacted similarly. 6 hours after exposure around 40% of the cells resembled in their reactions neighbouring cells more than randomly chosen cells that received the same dose. We also observed that close to radiation boundaries the radiation induced cell-cycle arrest disappeared and the size of DNA repair-centres increased. Conclusion: Cell communication plays an important role in the radiation response of tissues and may be both, protective and destructive. These effects may not only have the potential to affect conventional radiotherapy but may also be exploited to spare organs at risk by intelligently designing irradiation geometries. To that end intensive work is required to shed light on the still obscure processes in cell-signalling and radiation biology.

  5. Nuclear energy - Reference beta-particle radiation - Part 2: Calibration fundamentals related to basic quantities characterizing the radiation field

    International Nuclear Information System (INIS)

    2004-01-01

    ISO 6980 consists of the following parts, under the general title Nuclear energy - Reference beta-particle radiation: Part 1: Method of production; Part 2: Calibration fundamentals related to basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of their response as a function of energy and angle of incidence. This part 2 of ISO 6980 specifies methods for the measurement of the directional absorbed-dose rate in a tissue-equivalent slab phantom in the ISO 6980 reference beta-particle radiation fields. The energy range of the beta-particle-emitting isotopes covered by these reference radiations is 0.066 to 3.54 MeV (maximum energy). Radiation energies outside this range are beyond the scope of this standard. While measurements in a reference geometry (depth of 0.07 mm at perpendicular incidence in a tissue-equivalent slab phantom) with a reference class extrapolation chamber are dealt with in detail, the use of other measurement systems and measurements in other geometries are also described, although in less detail. The ambient dose equivalent, H*(10) as used for area monitoring of strongly penetrating radiation, is not an appropriate quantity for any beta radiation, even for that penetrating a 10 mm thick layer of ICRU tissue (i.e. E max > 2 MeV). If adequate protection is provided at 0.07 mm, only rarely will one be concerned with other depths, for example 3 mm. This document is geared towards organizations wishing to establish reference-class dosimetry capabilities for beta particles, and serves as a guide to the performance of dosimetry with the reference class extrapolation chamber for beta-particle dosimetry in other fields. Guidance is also provided on the statement of measurement uncertainties

  6. A simple ionizing radiation spectrometer/dosimeter based on radiation sensing field effect transistors (RadFETs)

    International Nuclear Information System (INIS)

    Moreno, D.J.; Hughes, R.C.; Jenkins, M.W.; Drumm, C.R.

    1997-01-01

    This paper reports on the processing steps in a silicon foundry leading to improved performance of the Radiation Sensing Field Effect Transistor (RadFET) and the use of multiple RadFETs in a handheld, battery operated, combination spectrometer/dosimeter

  7. On-axis and far-field sound radiation from resilient flat and dome-shaped radiators

    NARCIS (Netherlands)

    Aarts, R.M.; Janssen, A.J.E.M.

    2009-01-01

    On-axis and far-field series expansions are developed for the sound pressure due to an arbitrary, circular symmetric velocity distribution on a flat radiator in an infinite baffle. These expansions are obtained by expanding the velocity distributions in terms of orthogonal polynomials

  8. Study on radiation degradation of hydroxylamine derivatives. Pt.2: The qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-diethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian

    2004-01-01

    The qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N,N-diethyl hydroxylamine are reported. These analyses are performed on the gas chromatography in which a porous layer open tubular column coated with aluminum oxide and a flame-ionization detector are used. When the doses are between 10 and 1000 kGy, the main hydrocarbons produced by radiation degradation of N,N-diethyl hydroxylamine are methane, ethane, ethene, propane and n-butane. The volume fraction of methane, ethane, n-butane and propane are increased with the increase of dose. The volume fraction of ethene is also increased with the increase of dose at first, however, when the absorbed dose is higher than 500 kGy. The volume fraction of ethene is decreased with the increase of dose

  9. Mapping the radiation fields at a research reactor

    International Nuclear Information System (INIS)

    Soegaard-Hansen, Jens; Warming, Lisbeth

    1999-01-01

    The DR 3 reactor at Risoe National Laboratory is a multipurpose research reactor. It has the status of a Large European Beam facility therefor its neutron scattering spectrometers are used by many visiting scientists. As a supplement to the routine health physics monitoring programmes a special survey has been made to get more detailed information of the radiation levels in the hall and of the most important sources of the radiation. The special survey consisted of three sorts of measurements: an extra set of thermoluminescence dosimeters, a set of continuous measurements of the dose rate at selected places and spot measurements with handheld instruments around the spectrometers. Some of the results from the survey are presented. (au)

  10. Improvements relating to the restriction of fields of radiation

    International Nuclear Information System (INIS)

    Flocee, R.

    1977-01-01

    A method is described for delimiting the irradiation target area in radiotherapeutic treatments. The method is based on the realisation that it is possible to modify the effective cross section of a beam of radiation by means of a device which can be regarded as a secondary diaphragm, with an aperture framed by the heavy metal powder composition, which has radiation absorption properties. The heavy metal may be W or Pb, the grains of which are held together by the binding agent. The binding agent, being of the type known as a 'pressure-sensitive adhesive'. The method has the advantage that there is no need to employ either the therapeutic unit or an expensive simulator for construction of the beam cross section modifying device, nor has the patient to be present when this step is performed. Also the device employed is reusable. An example of the manufacture of the composition is described. Notes are also included on treatment techniques. (U.K.)

  11. Electromagnetic fields produced by incubators influence heart rate variability in newborns.

    Science.gov (United States)

    Bellieni, C V; Acampa, M; Maffei, M; Maffei, S; Perrone, S; Pinto, I; Stacchini, N; Buonocore, G

    2008-07-01

    Incubators are largely used to preserve preterm and sick babies from postnatal stressors, but their motors produce high electromagnetic fields (EMFs). Newborns are chronically exposed to these EMFs, but no studies about their effects on the fragile developing neonatal structure exist. To verify whether the exposure to incubator motor electric power may alter autonomous nervous system activity in newborns. Heart rate variability (HRV) of 43 newborns in incubators was studied. The study group comprised 27 newborns whose HRV was studied throughout three 5-minute periods: with incubator motor on, off, and on again, respectively. Mean HRV values obtained during each period were compared. The control group comprised 16 newborns with constantly unrecordable EMF and exposed to changes in background noise, similar to those provoked by the incubator motor. Mean (SD) total power and the high-frequency (HF) component of HRV increased significantly (from 87.1 (76.2) ms2 to 183.6 (168.5) ms2) and the mean low-frequency (LF)/HF ratio decreased significantly (from 2.0 (0.5) to 1.5 (0.6)) when the incubator motor was turned off. Basal values (HF = 107.1 (118.1) ms2 and LF/HF = 1.9 (0.6)) were restored when incubators were turned on again. The LF spectral component of HRV showed a statistically significant change only in the second phase of the experiment. Changes in background noise did not provoke any significant change in HRV. EMFs produced by incubators influence newborns' HRV, showing an influence on their autonomous nervous system. More research is needed to assess possible long-term consequences, since premature newborns may be exposed to these high EMFs for months.

  12. Near-field radiative heat transfer between metasurfaces

    DEFF Research Database (Denmark)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.

    2016-01-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...... and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer...

  13. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Hodge, Chris A.

    2007-01-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  14. Optimal Background Attenuation for Fielded Radiation Detection Systems

    International Nuclear Information System (INIS)

    Robinson, Sean M.; Kaye, William R.; Schweppe, John E.; Siciliano, Edward R.

    2006-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to terrestrial background from the surrounding area. A low background is desired in most cases, especially when the background noise is of comparable strength to the signal of interest. The problem of shielding a generalized RPM from terrestrial background is considered. Various detector and shielding scenarios are modeled with the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to attenuate the terrestrial background to varying degrees are given, along with optimal shielding geometry to be used in areas where natural shielding is limited, and where radiation detection must occur in the presence of natural background. Common shielding solutions such as steel plating are evaluated based on the signal to noise ratio and the benefits are weighed against the incremental cost.

  15. Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Christopher Hodge, Raymond Keegan

    2007-01-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  16. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  17. Behaviour parameters of rats in the 'Open field' test under combined effect of radiation and non-radiation factors

    International Nuclear Information System (INIS)

    Kadukova, E.M.; Stashkevich, D.G.; Naumov, A.D.; Kuts, F.I.

    2015-01-01

    It was shown that exposure of electromagnetic radiation and emotional stress modifies the level of integrative reaction of CNS rats which were exposed to ionizing radiation in the 'Open field' test. (authors)

  18. INSREC: Computational System for Quantitative Analysis of Radiation Effects Covering All Radiation Field

    International Nuclear Information System (INIS)

    Dong Hoon Shin; Young Wook Lee; Young Ho Cho; Hyun Seok Ko; SukHoon Kim; YoungMin Kim; Chang Sun Kang

    2006-01-01

    In the nuclear energy field, there are so many difficult things that even people who are working in this field are not much familiar with, such as, Dose evaluation, Dose management, etc. Thus, so many efforts have been done to achieve the knowledge and data for understanding. Although some data had been achieved, the applications of these data to necessary cases were more difficult job. Moreover, the type of Dose evaluation program until now was 'Console type' which is not easy enough to use for the beginners. To overcome the above causes of difficulties, the window-based integrated program and database management were developed in our research lab. The program, called as INSREC, consists of four sub-programs as follow; INSREC-NOM, INSREC-ACT, INSREC-MED, and INSREC-EXI. In ICONE 11 conference, INSREC-program(ICONE-36203) which can evaluates on/off-site dose of nuclear power plant in normal operation was introduced. Upgraded INSREC-program which will be presented in ICONE 14 conference has three additional codes comparing with pre-presented INSREC-program. Those subprograms can evaluate on/off-site Dose of nuclear power plant in accident cases. And they also have the functions of 'Dose evaluation and management' in the hospital and provide the 'Expert system' based on knowledge related to nuclear energy/radiation field. The INSREC-NOM, one of subprograms, is composed of 'Source term evaluation program', 'Atmospheric diffusion factor evaluation program', 'Off-site dose evaluation program', and 'On-site database program'. The INSREC-ACT is composed of 'On/Off-site dose evaluation program' and 'Result analysis program' and the INSREC-MED is composed of 'Workers/patients dose database program' and 'Dose evaluation program for treatment room'. The final one, INSREC-EXI, is composed of 'Database searching program based on artificial intelligence', 'Instruction program,' and 'FAQ/Q and A boards'. Each program was developed by using of Visual C++, Microsoft Access mainly

  19. Radiation protection principles applied to conventional industries producing deleterious environmental effects

    International Nuclear Information System (INIS)

    Tadmor, J.

    1980-01-01

    Comparison of the radiation protection standards, for the population at large, with the conventional pollutants ambient standards, reveals differences in basic principles which result in more relaxed ambient standards for conventional pollutants and consequently, the penalization of the nuclear industry, due to the increased cost of its safety measures. It is proposed that radiation protection principles should be used as a prototype for pollutants having harmful environmental effects and that radiation health physicists should be active in the application of these principles of population protection. A case study of atmospheric release of SO 2 , under different conditions, is analyzed, to emphasize the importance of consideration of the size of the exposed population. (H.K.)

  20. Radiation embrittlement of WWER 440 pressure vessel steel and of some improved steels by western producers

    International Nuclear Information System (INIS)

    Koutsky, J.; Vacek, M.; Stoces, B.; Pav, T.; Otruba, J.; Novosad, P.; Brumovsky, M.

    1982-01-01

    The resistance was studied of Cr-Mo-V type steel 15Kh2MFA to radiation embrittlement at an irradiation temperature of around 288 degC. Studied was the steel used for the manufacture of the pressure vessel of the Paks nuclear reactor in Hungary. The obtained results of radiation embrittlement and hardening of steel 15Kh2MFA were compared with similar values of Mn-Ni-Mo type steels A 533-B and A 508 manufactured by leading western manufacturers within the international research programme coordinated by the IAEA. It was found that the resistance of steel 15Kh2MFA to radiation embrittlement is comparable with steels A 533-B and A 508 by western manufacturers. (author)

  1. Qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-dimethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian; Zhang Xianye; Hu Jingxin; Ye Guoan

    2004-01-01

    This paper reports the qualitative and quantitative analysis of light hydrocarbons produced by radiation degradation of N, N-dimethyl hydroxylamine. These analyses were performed on the gas chromatograph, in which porous layer open tubular column coated with aluminum oxide and flame-ionization detector are used. For the doses between 10 and 1000 kGy, the light hydrocarbons produced by radiation degradation of N,N-dimethyl hydroxylamine are methane, ethane, ethene, propane, propene and n-butane. When the concentration of N,N-dimethyl hydroxylamine is 0.2 mol/L, the volume fraction of methane is (9.996-247.5) x 10 -6 , the volume fraction of ethane, propane and n-butane is lower and that of ethene and propene is much lower. With the increase of dose the volume fraction of methane is increased but the volume fraction of ethane, ethene, propane, propene and n-butane is not obviously changed. (authors)

  2. The acute effects of ionizing radiation on DNA synthesis and the development of antibody-producing cells

    International Nuclear Information System (INIS)

    Harris, G.; Olsen, I.; Cramp, W.A.

    1981-01-01

    Ionizing radiation inhibited the development of specific haemolysin-producing cells (PFC) and depressed the incorporation of ( 3 H) thymidine by rabbit spleen explants responding to SRC in the culture medium. In contrast to these effects, the rates of incorporation of precursors for protein and RNA synthesis were much less affected. The depression of ( 3 H) thymidine incorporation was found to result from a quantitative reduction of new DNA synthesis, without any change in the proportion of labelled cells, at any time after irradiation. The DNA synthesis occurring in these cells preparing to develop antibody-producing capacity was thus radio-sensitive, but the exact nature of the defect resulting from exposure to radiation requires further study. (orig.)

  3. The role of Swedish Radiation Protection Authority in the field of public health

    International Nuclear Information System (INIS)

    Cederlund, Torsten; Finck, Robert; Mjoenes, Lars; Moberg, Leif; Soederman, Ann-Louis; Wiklund, Aasa; Yuen Katarina; Oelander Guer, Hanna

    2004-09-01

    The Swedish Government has requested the Swedish Radiation Protection Authority (SSI) to make an account of the authority's role in the field of public health. Radiation Protection consists largely of preventive actions in order to protect man and the environment against harmful effects of radiation. The SSI thus considers most of the authority's activities to be public health related. The report describes a number of radiation protection areas from a health perspective. The measures taken by the authority in these areas are also described along with planned activities. In some areas the authority also points out additional measures

  4. A field demonstration of the microbial treatment of sour produced water

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  5. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats ?

    OpenAIRE

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susc...

  6. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  7. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment.

    Science.gov (United States)

    Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo

    2018-04-16

    We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.

  8. Characterization of Line Nanopatterns on Positive Photoresist Produced by Scanning Near-Field Optical Microscope

    Directory of Open Access Journals (Sweden)

    Sadegh Mehdi Aghaei

    2015-01-01

    Full Text Available Line nanopatterns are produced on the positive photoresist by scanning near-field optical microscope (SNOM. A laser diode with a wavelength of 450 nm and a power of 250 mW as the light source and an aluminum coated nanoprobe with a 70 nm aperture at the tip apex have been employed. A neutral density filter has been used to control the exposure power of the photoresist. It is found that the changes induced by light in the photoresist can be detected by in situ shear force microscopy (ShFM, before the development of the photoresist. Scanning electron microscope (SEM images of the developed photoresist have been used to optimize the scanning speed and the power required for exposure, in order to minimize the final line width. It is shown that nanometric lines with a minimum width of 33 nm can be achieved with a scanning speed of 75 µm/s and a laser power of 113 mW. It is also revealed that the overexposure of the photoresist by continuous wave laser generated heat can be prevented by means of proper photoresist selection. In addition, the effects of multiple exposures of nanopatterns on their width and depth are investigated.

  9. The motions and wave fields produced by an ellipse moving through a stratified fluid

    Science.gov (United States)

    Hurlen, Erik Curtis

    Solid-fluid interactions are ubiquitous in nature, from leaves falling from trees to fish swimming in the ocean. This dissertation examines a certain class of these interactions, namely asymmetric objects moving through stratified fluids. In the first part, the equations of motion are derived and subsequently solved for a displaced neutrally buoyant ellipse of varying aspect ratio. This is accomplished by using a spectral numerical algorithm, although in certain specific cases the equations can also be solved analytically using Laplace transform techniques. Experiments are conducted to which these analytical and numerical results are compared. General quantitative agreement is observed between the two sets of data. The discrepancies which are observed are consistent with both previous research and expectation. In the second part, the focus is shifted from the solid to the fluid, as the primary concern is now the wave field produced by these moving bodies. The spectral method developed in the first part is easily adapted to this second situation, in which the drag forces on the solid are also easily extracted. The results from this section are compared to previous results, and match very well. The results are then expanded to cases which have not been previously studied.

  10. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    Science.gov (United States)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  11. LET spectrometry with track etch detectors-Use in high-energy radiation fields

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spurny, F.

    2008-01-01

    For assessing the risk from ionizing radiation it is necessary to know not only the absorbed dose but also the quality of the radiation; radiation quality is connected with the physical quantity linear energy transfer (LET). One of the methods of determination of LET is based on chemically etched track detectors. This contribution concerns with a spectrometer of LET based on the track detectors and discusses some results obtained at: ·high-energy radiation reference field created at the SPS accelerator at CERN; and ·onboard of International Space Station where track-etch based LET spectrometer has been exposed 273 days during 'Matrjoshka - R' experiment. Results obtained are compared with the results of studies at some lower-energy neutron sources; some conclusions on the registrability of neutrons and the ability of this spectrometer to determine dose equivalent in high-energy radiation fields are formulated

  12. Radiation Fields in High Energy Accelerators and their impact on Single Event Effects

    CERN Document Server

    García Alía, Rubén; Wrobel, Frédéric; Brugger, Markus

    Including calculation models and measurements for a variety of electronic components and their concerned radiation environments, this thesis describes the complex radiation field present in the surrounding of a high-energy hadron accelerator and assesses the risks related to it in terms of Single Event Effects (SEE). It is shown that this poses not only a serious threat to the respective operation of modern accelerators but also highlights the impact on other high-energy radiation environments such as those for ground and avionics applications. Different LHC-like radiation environments are described in terms of their hadron composition and energy spectra. They are compared with other environments relevant for electronic component operation such as the ground-level, avionics or proton belt. The main characteristic of the high-energy accelerator radiation field is its mixed nature, both in terms of hadron types and energy interval. The threat to electronics ranges from neutrons of thermal energies to GeV hadron...

  13. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  14. The need of education of biotechnical specialists in the field of radiation protection

    International Nuclear Information System (INIS)

    Kljajic, R.; Masic, Z.; Mitrovic, R.; Petrovic, B.

    1996-01-01

    Education is the base for a successful carrying out of radiation protection measures. Starting from this fact, in the field of biotechnology protection measures should be carried out by biotechnical specialists (veterinarians, agronomists, technologists). In FR Yugoslavia, at the Faculty of Veterinary Medicine a separate course 'Radiobiology and radiation hygiene' was introduced in undergraduate and postgraduate studies m 1976. However, other biotechnological specialists do not study the field of radiation protection separately at their faculties. Because of this, the Expert Group for Radiation Protection in Biotechnology formed at the Federal Ministry of Economy initiated the introducing of a course for this held m undergraduate and postgraduate studies at the faculties of agriculture and technology in FR Yugoslavia. This paper presents the basic elements of the educational plan and program of the course 'Radiobiology and radiation hygiene' for students of biotechnical faculties in FR Yugoslavia and discusses the results obtained until now. (author)

  15. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    International Nuclear Information System (INIS)

    Dong, J.; Zhao, J.M.; Liu, L.H.

    2017-01-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.

  16. Electronic radiation of a plasma in a magnetic field

    International Nuclear Information System (INIS)

    Canobbio, E.; Consoli, T.; Ichtchenko, G.; Parlance, F.

    1965-01-01

    The influence on the microwave spectrum of the number of fast electrons, density, pressure and plasma inhomogeneities, has been studied in a hot cathode reflex discharge, operating either in a steady state either in a pulsed regime. Under some conditions a strong emission is observed between the harmonics of the electron gyrofrequency. A theoretical interpretation of the results is advanced by extending a model already proposed by CANOBBIO and CROCI. In particular it is indicated that the transition radiation can be responsible for the emission observed between the harmonics. (authors) [fr

  17. Use of thermoluminescent dosimetry in gamma radiation fields studies

    International Nuclear Information System (INIS)

    Carron, W.

    1987-01-01

    The depth-dose curves for gamma rays in material of interest to agronomy were obtained using lithium fluoride thermoluminescent dosimeters. The dose conversion factors for LiF were determined from curves of the absorved dose versus depth in water, wood and soil. Mathematics equations were chosen to best fit these curves. In the view of the results we came to the conclusion that in the studied materials the absorved radiation dose presents a great variation to the depth and could be correlated through of the exponential regression. (author)

  18. Predictions of integrated circuit serviceability in space radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Khamidullina, N.M.; Kuznetsov, N.V.; Pichkhadze, K.M.; Popov, V.D

    1999-10-01

    The present paper suggests an approach to estimating and predicting the serviceability of on-board electronic equipment. It is based on the postulates of the reliability theory and accounts for total-dose and single-event radiation effects as well as other exterior destabilizing factors. The methods of determination of failure and upset rates for CMOS devices are considered. The probability of non-failure operation of a two CMOS RAM is calculated along the whole trajectory of the 'Solar Probe' spacecraft.

  19. Quantum theory of laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.; Davidovich, L.

    1982-01-01

    A system consisting of an electron in a static magnetic field, interacting with the quantized electromagnetic field, within the non-relativistic and electric dipole approximations (with a cutoff in momentum space) is considered. The Heisenberg equations of motion are solved exactly and the time evolution of the electric field is determined. The power spectrum of the scattered radiation is calculated, when the electromagnetic field is initially in a coherent state. The results for the line shape of the scattered radiation are shown to be valid for magnetic fields up to 10 12 G. The quantization of the electromagnetic field allows one to consider effects of the natural linewidth and its dependence on the magnetic field. The renormalization of the electron mass is included in these treatment, and the results remain finite when the cutoff goes to infinity. (Author) [pt

  20. Experiments performed with a functional model based on statistical discrimination in mixed nuclear radiation field

    International Nuclear Information System (INIS)

    Valcov, N.; Celarel, A.; Purghel, L.

    1999-01-01

    By using the statistical discrimination technique, the components of on ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a serially manufactured gamma-ray ratemeter was developed, as an intermediate step in the design of specialised nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method. The main characteristics of the functional model are the following: - dynamic range of measurement: >300: l; - simultaneous measurement of natural radiation background and gamma-ray fields; - accuracy (for equal exposure rates from gamma's and natural radiation background): 17%, for both radiation fields; - minimum detectable exposure rate: 2μR/h. (authors)

  1. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  2. Use of an electric field in an electrostatic liquid film radiator.

    Science.gov (United States)

    Bankoff, S G; Griffing, E M; Schluter, R A

    2002-10-01

    Experimental and numerical work was performed to further the understanding of an electrostatic liquid film radiator (ELFR) that was originally proposed by Kim et al.(1) The ELFR design utilizes an electric field that exerts a normal force on the interface of a flowing film. The field lowers the pressure under the film in a space radiator and, thereby, prevents leakage through a puncture in the radiator wall. The flowing film is subject to the Taylor cone instability, whereby a cone of fluid forms underneath an electrode and sharpens until a jet of fluid is pulled toward the electrode and disintegrates into droplets. The critical potential for the instability is shown to be as much as an order of magnitude higher than that used in previous designs.(2) Furthermore, leak stoppage experiments indicate that the critical field is adequate to stop leaks in a working radiator.

  3. Evolution of the legislation concerning the professional diseases considered as produced by ionized radiation

    International Nuclear Information System (INIS)

    Hebert, J.

    2004-01-01

    After having remind the history and structure of the classical French system of compensation of occupational diseases, conditions put to insert such of these diseases induced by ionizing radiations are studied, before to conclude by an exam of solutions that a new system introduced by an act of 27 of January 1993 could offer in some situations. (author)

  4. Specific chemical and structural damage to proteins produced by synchrotron radiation.

    Science.gov (United States)

    Weik, M; Ravelli, R B; Kryger, G; McSweeney, S; Raves, M L; Harel, M; Gros, P; Silman, I; Kroon, J; Sussman, J L

    2000-01-18

    Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage. Disulfide bridges break, and carboxyl groups of acidic residues lose their definition. Highly exposed carboxyls, and those in the active site of both enzymes, appear particularly susceptible. The catalytic triad residue, His-440, in acetylcholinesterase, also appears to be much more sensitive to radiation damage than other histidine residues. Our findings have direct practical implications for routine x-ray data collection at high-energy synchrotron sources. Furthermore, they provide a direct approach for studying the radiation chemistry of proteins and nucleic acids at a detailed, structural level and also may yield information concerning putative "weak links" in a given biological macromolecule, which may be of structural and functional significance.

  5. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions

    Science.gov (United States)

    La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.

    2014-04-01

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of

  6. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle

    Science.gov (United States)

    Pecaut, Michael J.; Haerich, Paul; Zuccarelli, Cara N.; Smith, Anna L.; Zendejas, Eric D.; Nelson, Gregory A.

    2002-01-01

    Two experiments were carried out to investigate the consequences of exposure to proton radiation, such as might occur for astronauts during space flight. C57BL/6 mice were exposed, either with or without 15-g/cm2 aluminum shielding, to 0-, 3-, or 4-Gy proton irradiation mimicking features of a solar particle event. Irradiation produced transient direct deficits in open-field exploratory behavior and acoustic startle habituation. Rotorod performance at 18 rpm was impaired by exposure to proton radiation and was impaired at 26 rpm, but only for mice irradiated with shielding and at the 4-Gy dose. Long-term (>2 weeks) indirect deficits in open-field activity appeared as a result of impaired experiential encoding immediately following exposure. A 2-week recovery prior to testing decreased most of the direct effects of exposure, with only rotorod performance at 26 rpm being impaired. These results suggest that the performance deficits may have been mediated by radiation damage to hippocampal, cerebellar, and possibly, forebrain dopaminergic function.

  7. Radiation field sizes and skin exposures in oral radiography

    International Nuclear Information System (INIS)

    Hazin, C.A.; Khoury, H.J.; Silveira, S.V.; Lopes Filho, F.J.

    1996-01-01

    The increasing use of X-rays in preventive and diagnostic dentistry in Brazil has been cause of concern because dentists, in general, are not acquainted with the basic principles of radiation protection. Recently, the Brazilian Ministry of Health has urged the Departments of Health at the state level to develop actions to register dental X-ray units in their areas of jurisdiction and to issue operating permits to those facilities which satisfy some basic technical requirements. On the basis of these recommendations the Instituto de Radioprotecao e Dosimetria of the Brazilian Commission of Nuclear Energy has initiated a postal programme to assess the performance of dental X-ray sets in the State of Rio de Janeiro. The postal kit used in that survey was similar to the one developed by the Bureau of Radiological Health of the US Dept. of Health, Education, and Welfare. In continuation to that study, the Nuclear Energy Dept. of the Federal Univ. of Pernambuco initiated a survey of dental X-ray apparatus to evaluate the operating conditions of that kind of equipment in Recife, the capital of the State of Pernambuco. The objectives of the survey were: a) to assess the degree of compliance of the equipment and procedures adopted by the dental practitioners in Recife with the accepted radiation protection standards, and b) to estimate the magnitude of the exposure to the patient resulting from a typical dental radiographic procedure. (author)

  8. Radiation field analyses in reactor vessels of PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Fukuya, Koji; Nakata, Hayato; Fujii, Katsuhiko; Kimura, Itsuro [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Ohmura, Masaki; Kitagawa, Hideo [Mitsubishi Heavy Industries, Ltd., Nuclear Energy Systems Engineering Center, Yokohama, Kanagawa (Japan); Itoh, Taku; Shin, Kazuo [Kyoto Univ. (Japan). Faculty of Engineering

    2002-09-01

    Radiation analysis in reactor vessels of PWRs were performed using three calculation codes (two dimensional transport code DORT, three dimensional transport code TORT and three dimensional Monte Carlo code MCNP) and three cross section data (ENDF/B-IV, ENDF/B-VI and JENDL3.2) to improve accuracy of estimation for neutron flux, gamma-ray flux and displacement per atom (dpa). The calculations using DORT at a surveillance position agreed with the dosimetry measurements for the three cross sections. The calculated neutron spectra using the three cross sections at the reactor vessels and the surveillance position were quite similar to each other. The difference in the cross sections gave small impacts on the fluence estimation. The ratio of the calculations to the measurements using TORT was similar to those using DORT, indicating that TORT is applicable to the radiation analysis in PWRs. The MCNP calculations resulted in a similar agreement with the dosimeter measurement to the DORT calculation while they needed a long computing time. Improvement of calculation techniques is needed for application of MCNP. The calculated dpa agreed within 10% for the three cross sections. (author)

  9. Genomic instability in mutation induction on normal human fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsuruoka, C.; Uchihori, Y.; Yasuda, H.; Fujitaka, K.

    2003-01-01

    Full text: At a time when manned space exploration is more a reality with the planned the International Space Station (ISS) underway, the potential exposure of crews in a spacecraft to chronic low-dose radiations in the field of low-flux galactic cosmic rays (GCR) and the subsequent biological effects have become one of the major concerns of space science. We have studied both in vitro life span and genomic instability in cellular effects in normal human skin fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field. Cells were cultured in a CO2 incubator, which was set in the irradiation room for the biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and irradiated with scattered radiations produced from heavy ions. Absorbed dose measured using a thermoluminescence dosimeter (TLD) and a Si-semiconductor detector was to be around 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number (tPDN) of low-dose irradiated cells was significantly smaller (79-93%) than that of unirradiated cells. The results indicate that the life span of the cell population shortens by irradiating with low-dose scattered radiations in the heavy-ion irradiation field. Genomic instability in cellular responses was examined to measure either cell killing or mutation induction in low-dose accumulated cells after exposing to X-ray challenging doses. The results showed that there was no enhanced effect on cell killing between low-dose accumulated and unirradiated cells after exposing to defined challenging doses of 200kV X rays. On the contrary, the mutation frequency on hprt locus of low-dose accumulated cells was much higher than that of unirradiated cells. The results suggested that genomic instability was induced in mutagenesis by the chronic low-dose irradiations in heavy-ion radiation field

  10. Radiation Field of a Square, Helical Beam Antenna

    DEFF Research Database (Denmark)

    Knudsen, Hans Lottrup

    1952-01-01

    square helices are used. Further, in connection with corresponding rigorous formulas for the field from a circular, helical antenna with a uniformly progressing current wave of constant amplitude the present formulas may be used for an investigation of the magnitude of the error introduced in Kraus......' approximate calculation of the field from a circular, helical antenna by replacing this antenna with an ``equivalent'' square helix. This investigation is carried out by means of a numerical example. The investigation shows that Kraus' approximate method of calculation yields results in fair agreement...

  11. Acid-producing capacity from sugars and sugar alcohols among Lactobacillus isolates collected in connection with radiation therapy.

    Science.gov (United States)

    Almståhl, Annica; Rudbäck, Helena; Basic, Amina; Carlén, Anette; Alstad, Torgny

    2017-12-01

    To investigate the acid-producing capacity from sugars and sugar alcohols of oral Lactobacillus collected in connection with radiation therapy (RT) to the head and neck region. Lactobacillus were collected from the tongue, buccal mucosa and supragingival plaque in 24 patients before, during, and after RT. The acid-producing capacity of Lactobacillus isolates (n=211) was analyzed using a colorimetric fermentation test in microtiter plates. Solutions containing 2% sugars (sucrose, glucose, fructose, lactose) or sugar-alcohols (sorbitol and xylitol) were used. After 24h of incubation, bacterial acid-producing capacity was determined as strong (pH6). Data regarding intake frequency of sugar-rich products and products with sugar-alcohols was collected. The highest acid-producing capacity using the sugars was seen for isolates collected during RT. Sorbitol was fermented to a higher extent during and post RT, especially among isolates from plaque. Lactobacillus fermenting xylitol showed the highest acid-producing capacity during RT (psugar-rich products or sugar-alcohol containing products and Lactobacillus acid-producing capacity, were found. The results suggest that Lactobacillus isolates, collected from the tongue, buccal mucosa and supragingival plaque, have a higher acid-producing capacity using sugars and sugar-alcohols during RT than one year post RT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Radiation reaction for the classical relativistic spinning particle in scalar, tensor and linearized gravitational fields

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1992-08-01

    We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs

  13. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ...

  14. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.

  15. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space

  16. Radiative Corrections from Heavy Fast-Roll Fields during Inflation

    DEFF Research Database (Denmark)

    Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S.

    2015-01-01

    to an unobservable small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation...

  17. Efficient Compression of Far Field Matrices in Multipole Algorithms based on Spherical Harmonics and Radiating Modes

    Directory of Open Access Journals (Sweden)

    A. Schroeder

    2012-09-01

    Full Text Available This paper proposes a compression of far field matrices in the fast multipole method and its multilevel extension for electromagnetic problems. The compression is based on a spherical harmonic representation of radiation patterns in conjunction with a radiating mode expression of the surface current. The method is applied to study near field effects and the far field of an antenna placed on a ship surface. Furthermore, the electromagnetic scattering of an electrically large plate is investigated. It is demonstrated, that the proposed technique leads to a significant memory saving, making multipole algorithms even more efficient without compromising the accuracy.

  18. Personal Radiation Detector Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Chris A. Hodge, Ding Yuan, Raymond P. Keegan, Michael A. Krstich

    2007-01-01

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS

  19. Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach

    International Nuclear Information System (INIS)

    Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R

    2015-01-01

    Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)

  20. Determination of patulin producing activity and radiation sensitivity of fungisolated from Korean apples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Jo, Min Ho [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-06-15

    Patulin is a mycotoxin produced by a variety of molds, especially within genera Penicillium, Aspergillus and Byssochlamys growing on various fruits. In this study, patulin producing activities and the effects of a gamma irradiation on the control and/or sterilization of fungal strains isolated from Korean apples, Malus pumila var. dulcissima, were evaluated. Nine fungal strains; five strains of genus Penicillium and one strains of genus Glomerella, Giberella, Alternaria and Galactomyces were isolated and identified by the similarity analysis based on the nucleotide sequence of the ITS5-5.8S-ITS4 region. Among the isolated strains, four Penicillium strains and a Glomerella showed patulin producing activities. The maximal patulin-producing activity of P. griseofulvum ATCC 46037, a standard strain of patulin-producing fungi, was 1,211.5 ppm in a 5-GYEP broth medium, while those of the isolated fungi reached to 27.4⁓134.2 ppm. Patulin-producing levels were dependent on the carbon sources and maximal production of the patulin by P. griseofulvum, P. crustosum, I-3, I-6, I-7 and I-8 was observed in a broth media containing glycerol, fructose, glycerol, glucose, lactose and fructose, respectively. The D10-values of the conidia of tested strains in an aqueous suspension were calculated in the range of 0.25⁓0.64 kGy. In conclusion, although the patulin producing activities of the isolated fungi were significantly lower than those of standard strains, it cannot deny the possibility of an patulin contamination of the Korean apples. Therefore, gamma ray irradiation (1.0 kGy) after harvest of apples could be applied to prevent the growth of a patulin producing molds for a safe distribution.

  1. Determination of patulin producing activity and radiation sensitivity of fungisolated from Korean apples

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Jo, Min Ho

    2017-01-01

    Patulin is a mycotoxin produced by a variety of molds, especially within genera Penicillium, Aspergillus and Byssochlamys growing on various fruits. In this study, patulin producing activities and the effects of a gamma irradiation on the control and/or sterilization of fungal strains isolated from Korean apples, Malus pumila var. dulcissima, were evaluated. Nine fungal strains; five strains of genus Penicillium and one strains of genus Glomerella, Giberella, Alternaria and Galactomyces were isolated and identified by the similarity analysis based on the nucleotide sequence of the ITS5-5.8S-ITS4 region. Among the isolated strains, four Penicillium strains and a Glomerella showed patulin producing activities. The maximal patulin-producing activity of P. griseofulvum ATCC 46037, a standard strain of patulin-producing fungi, was 1,211.5 ppm in a 5-GYEP broth medium, while those of the isolated fungi reached to 27.4⁓134.2 ppm. Patulin-producing levels were dependent on the carbon sources and maximal production of the patulin by P. griseofulvum, P. crustosum, I-3, I-6, I-7 and I-8 was observed in a broth media containing glycerol, fructose, glycerol, glucose, lactose and fructose, respectively. The D10-values of the conidia of tested strains in an aqueous suspension were calculated in the range of 0.25⁓0.64 kGy. In conclusion, although the patulin producing activities of the isolated fungi were significantly lower than those of standard strains, it cannot deny the possibility of an patulin contamination of the Korean apples. Therefore, gamma ray irradiation (1.0 kGy) after harvest of apples could be applied to prevent the growth of a patulin producing molds for a safe distribution

  2. Application of Ionizing Radiations to Produce New Polysaccharides and Proteins with Enhanced Functionality

    International Nuclear Information System (INIS)

    Al Assaf, S.

    2006-01-01

    Treatment of polysaccharides with ionizing radiation either in the solid state or in aqueous solution leads to degradation, whereas application of radiation to process synthetic polymers to introduce structural changes and special performance characteristics is now a thriving industry. Using a mediating gas associated during the radiation treatment prevents the degradation of natural polymers and enables the introduction of different molecular and functional characteristics, as previously achieved with synthetic polymers. For example, the molecular weight can be increased and standardised, protein distribution reorganised and modified to ensure better emulsification, viscosity and viscoelasticity enhanced, leading when required to hydrogel formation. More than one hydrocolloid can also be integrated into a single matrix using this process. Protein, within demineralised bone, too can be modified to give enhanced osteoinductive capacity. This experience has led to additional patented and proprietary processes, using standard food processing techniques, to promote changes in a wide range of hydrocolloids which emulates and extend those which occur naturally. The lecture will describe these structural changes and their functional role by reference to several hydrocolloids, including acacia gums, pectin, ispaghula and hyaluronan, bone morphogenic protein. Applications in food products, dietary fibre and medical products will be illustrated

  3. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    International Nuclear Information System (INIS)

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  4. Some biochemical consequences of the spatial distribution of ionizing radiation-produced free radicals

    International Nuclear Information System (INIS)

    Ward, J.F.

    1981-01-01

    Ionizing radiation deposits energy nonhomogeneously in the medium through which it passes. Mozumder and Magee (Radiat. Res. 28, 203-214(1966)) have classified the events as spurs, blobs, and short tracks. These are defined by size and amount of energy deposited. Thus the initial chemically reactive species are distributed in an inhomogeneous manner. In these volumes of high radical concentration, radical-radical reactions can occur which can only be scavenged by solutes at high concentration. Making the reasonable assumption that similar events occur intracellularly, the consequences of such events must be considered. In the case of DNA, several authors have shown that OH radicals diffuse only tens of angstroms prior to reaction. In the volume from which these radicals originate, DNA is necessarily at high concentration and consequently will interact with the radicals formed in the spur, etc. Such events are probably the source of radiation-production double-strand breaks in cellular DNA. However, the radicals cause other types of damage than strand breaks-potential strand breaks and base damage. An attempt is made to present the interrelation of multiply damaged sites - their constitution, the problems they present to cell repair mechanisms, and their possible relationship to cell survival

  5. Theory and experimental show up of axial magnetic fields self-generated in dense laser-produced plasmas

    International Nuclear Information System (INIS)

    El Tamer, M.

    1986-09-01

    The work presented in this thesis concerns the magnetic fields generated in laser produced plasma. A summary of the theoretical and experimental studies concerning the toroidal magnetic fields and realised by different groups of research is presented. Then, we present our original contribution on the generation of axial magnetic fields by the dynamo effect. The experimental work for the detection of magnetic field is based on the Faraday rotation and Zeeman effects. The experimental diagrams are detailed and discussed. The experimental results are presented and compared to the theory. Finaly, we present some consequences of the generation of the axial magnetic fields in laser produced plasma as a discussion of the thermal conductivity [fr

  6. Standardization of reference radiation field of beta for 85Kr using extrapolation chamber

    International Nuclear Information System (INIS)

    Nazaroh; Fendinugroho

    2013-01-01

    Standardization of reference radiation field of beta for 85 Kr in PTKMR-BATAN Laboratory has been performed at the SDD's 30 cm by using extrapolation chamber detector, coupled with Uni dose electrometer. The result was : (8.98±3 %) mGy/h, at 95 % confidence level. The aim of standardization of reference radiation field is to support radiation protection and safety program, provided by the International Atomic Energy Agency to its Member States, included BATAN-Indonesia, especially, PTKMR. The aim of radiation protection program and safety program is to promote an internationally harmonized approach for radiation measurement in protection level, besides for calibration of radiation measuring instrument, which users spread across Indonesia, with the number of about 795 firms in the year of 2012. These benefits can be felt by workers, communities and the environment, because by calibration, measurement survey meter, pocket dosimeter and TLD to be more accurate so that the radiation dose received by radiation workers is accurate and can be ascertained in a specified period, not to exceed a predetermined NBD by BAPETEN. The aim of this calibration is appropriate with the primary objective of calibration on IAEA/TRS16:2000. (author)

  7. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    Science.gov (United States)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  8. BWR Radiation Assessment and Control Program: assessment and control of BWR radiation fields. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    Anstine, L.D.

    1983-05-01

    This report covers work on the BWR Radiation Assessment and Control (BRAC) Program from 1978 to 1982. The major activities during this report period were assessment of the radiation-level trends in BWRs, evaluation of the effects of forward-pumped heater drains on BWR water quality, installation and operation of a corrosion-product deposition loop in an operating BWR, and analyzation of fuel-deposit samples from two BWRs. Radiation fields were found to be controlled by cobalt-60 and to vary from as low as 50 mr/hr to as high as 800 mr/hr on the recirculation-system piping. Detailed information on BWR corrosion films and system deposits is presented in the report. Additionally, the results of an oxygen-injection experiment and recontamination monitoring studies are provided

  9. SEL Hardness Assurance in a Mixed Radiation Field

    CERN Document Server

    Garcia Alia, Ruben; Danzeca, Salvatore; Ferlet-Cavrois, Veronique; Frost, Christopher; Gaillard, Remi; Mekki, Julien; Saigné, Frédéric; Thornton, Adam; Uznanski, Slawosz; Worbel, Frédéric; CERN. Geneva. ATS Department

    2015-01-01

    This paper explores the relationship between monoenergetic and mixed-field Single Event Latchup (SEL) cross sections, concluding for components with a very strong energy dependence and highly-energetic environments, test results from monoenergetic or soft mixed-field spectra can significantly underestimate the operational failure rate. We introduce a semi-empirical approach that can be used to evaluate the SEL rate for such environments based on monoenergetic measurements and information or assumptions on the respective sensitive volume and materials surrounding it. We show that the presence of high-Z materials such as tungsten is particularly important in determining the hadron cross section energy dependence for components with relatively large LET thresholds.

  10. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    International Nuclear Information System (INIS)

    Specht, Lena; Yahalom, Joachim; Illidge, Tim; Berthelsen, Anne Kiil; Constine, Louis S.; Eich, Hans Theodor; Girinsky, Theodore; Hoppe, Richard T.; Mauch, Peter; Mikhaeel, N. George; Ng, Andrea

    2014-01-01

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  11. Individual monitoring in high-energy stray radiation fields

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.

    1995-01-01

    Due to the lack of passive or active devices that could be considered as personal dosemeters in high-energy stray fields one can at present only perform individual monitoring around high energy accelerators. Of all detectors currently available it is shown that the NTA film is the most suitable method for individually monitoring the neutron exposure of more than 3000 persons regularly, reliably, and cost effectively like at CERN. (author)

  12. Radiation-reaction electromagnetic fields in metasurfaces, a complete description of their optical properties

    OpenAIRE

    Merano, Michele

    2018-01-01

    This paper derives the macroscopic electric and magnetic fields and the surface susceptibilities for a metasurface, starting from the microscopic scatterer distribution. It is assumed that these scatterers behave as electric and magnetic dipoles under the influence of the incident radiation. Interestingly not only the retarded electromagnetic fields from oscillating dipoles are relevant to pass from the microscopic to the macroscopic representation, but the advanced fields must be considered ...

  13. MRC5 and QU-DB bystander cells can produce bystander factors and induce radiation bystander effect

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2014-01-01

    Full Text Available Radiation damages initiated by radiation-induced bystander effect (RIBE are not limited to the first or immediate neighbors of the irradiated cells, but the effects have been observed in the cells far from the irradiation site. It has been postulated that bystander cells, by producing bystander factors, are actively involved in the propagation of bystander effect in the regions beyond the initial irradiated site. Current study was planned to test the hypothesis. MRC5 and QU-DB cell lines were irradiated, and successive medium transfer technique was performed to induce bystander effects in two bystander cell groups. Conditioned medium extracted from the target cells was transferred to the bystander cells (first bystander cells. After one hour, conditioned medium was substituted by fresh medium. Two hours later, the fresh medium was transferred to a second group of non-irradiated cells (second bystander cells. Micronucleated cells (MC were counted to quantify damages induced in the first and second bystander cell groups. Radiation effect was observed in the second bystander cells as well as in the first ones. Statistical analyses revealed that the number of MC in second bystander subgroups was significantly more than the corresponding value observed in control groups, but in most cases it was equal to the number of MC observed in the first bystander cells. MRC5 and QU-DB bystander cells can produce and release bystander signals in the culture medium and affect non-irradiated cells. Therefore, they may contribute to the RIBE propagation.

  14. Gamma radiation field extremity personal dosimeter. Calibration and implementation

    International Nuclear Information System (INIS)

    Papadopulos, S.B.; Gregori, B.N.; Cruzate, J.A.

    2000-01-01

    The purpose of this paper is to show the extremity dose equivalent-kerma conversion factors obtained theoretical and experimentally in arm and finger for normally incident gamma radiation. Extremity dosemeters, based on termoluminescent dosimeters (TLD) LiF 7 (TLD-700, Harshaw), have been irradiated on designed as finger and arm phantoms. The finger phantom is been characterised as a solid cylinder made of polymethylmethacrylate (PMMA) 19mm diameter and 300mm height. The arm phantom is a cylinder 73mm external diameter with PMMA walls 2.5mm thick filled with water and 300mm height. There were used several radiation sources like Co-60 and Cs-137 from the Regional Reference Dosimetry Centre (CRR) of the National Atomic Energy Commission (CNEA) and from the Nuclear Regulatory Authority (ARN) of Argentina. In the same way RX wide spectrum irradiations were made in the ISO-4037 qualities W60, W110 and W200. At the same time the conversion factors have been theoretically obtained. In order to achieve this, the finger and arm phantoms have been modelled and the photon and electron transport have been done with the Monte Carlo code MCNP-4B. There was a good agreement between the theoretical and experimental results, showing a difference less than 8%. Also the experimental results have been compared with the published data available giving a difference less than 7%. In this work is shown the performance of the extremity dosimeter usually used by the exposed workers of the ARN. It has got a similar energy response in the range of W110-Co-60 (not more than 7%) with respect to the experimental results obtained. The dose equivalent-kerma conversion factors are going to be used in the dose equivalent evaluation of workers mainly hands exposed. Related with the incident energy several applied recommendations have been made. An application is presented in nuclear medicine experiences. In the case of a thyroid treatment with 131 I, the external dose workers have been evaluated

  15. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, Kavin; et al.

    2017-05-01

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples for various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.

  16. Magnetic field dependence of microwave radiation in intermediate-length Josephson junctions

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Parmentier, R. D.; Christiansen, Peter Leth

    1984-01-01

    furnish the current and field dependence of the oscillation configuration, from which can be calculated average voltages, frequencies, and power spectra. Simulation and experimental results are in good agreement with regard to the lobe structure of the height of the first zero-field step and/or second...... Fiske step in magnetic field and the field dependence of the radiation frequency within the various lobes, including details such as hysteresis between lobes. The simulations predict an alternation of the dominant frequency component with increasing field that accounts well for the experimental...

  17. Study of the accuracy of radiation field calculations in media

    International Nuclear Information System (INIS)

    Bolyatko, V.V.; Vyrskij, M.Yu.; Ilyushkin, A.I.; Mashkovich, V.P.; Sakharov, V.K.; Stroganov, A.A.

    1981-01-01

    The sensitivity p of the radiation transport calculations to variations of input parameters Xsub(i) is theoretically analyzed, and the calculational errors induced by uncertainties of initial data are evaluated. Two calculational methods are considered: the direct substitution method using the ROZ-5 code and method using the linear perturbation theory. In order to calculate p(Xsub(i)) and bilinear convolutions of the conjugated transport equations the ZAKAT code has been developed. The calculations use the ZAKAT, ROZ-11 and APAMAKO-2F codes. As an example of practical use of the method proposed a shielding composition characteristic for fast reactors was analyzed. A plane monodirectional neutron beam of the BR-10 reactor falls onto a 5-layer stainless steel (1Kh18N10T)-carbon barrier. The sensitivily of the neutron dose absorbed in tissue to the cross sections of all the shielding constituents and to the source and detector representation functions has been calculated. A comparison of the calculations with experimental data proves the validity of the calculational method [ru

  18. Field size dependent mapping of medical linear accelerator radiation leakage

    International Nuclear Information System (INIS)

    Vu Bezin, Jérémi; De Vathaire, Florent; Diallo, Ibrahima; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric

    2015-01-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies. (paper)

  19. Technical Note: Response measurement for select radiation detectors in magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M., E-mail: michaelreynolds@ualberta.net [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division,University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  20. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2013-08-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.