WorldWideScience

Sample records for radiation effects test

  1. Status and update of the National Ignition Facility radiation effects testing program

    International Nuclear Information System (INIS)

    Davis, J F; Serduke, F J; Wuest, C R.

    1998-01-01

    We are progressing in our efforts to make the National Ignition Facility (NIF) available to the nation as a radiation effects simulator to support the Services needs for nuclear hardness and survivability testing and validation. Details of our program were summarized in a paper presented at the 1998 HEART Conference [1]. This paper describes recent activities and updates plans for NIF radiation effects testing. research. Radiation Effects Testing

  2. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  3. Identification of Radiation Effects on Carcinogenic Food Estimated by Ames Test

    International Nuclear Information System (INIS)

    Afifi, M.; Eid, I.; El - Nagdy, M.; Zaher, R.; Abd El-Karem, H.; Abd EL Karim, A.

    2016-01-01

    A major concern in studies related to carcinogenesis is the exposure to the exogenous carcinogens that may occur in food in both natural and polluted human environments. The purpose of the present study is to examine some of food products by Ames test to find out if food products carcinogenic then expose food to gamma radiation to find out the effect of radiation on it as a treatment. In this study, the food samples were examined by Ames test (Salmonella typhimurium mutagenicity test) to find out that a food product could be carcinogenic or highly mutated. Testing of chemicals for mutagenicity is based on the knowledge that a substance which is mutagenic in the bacterium is more likely than not to be a carcinogen in laboratory animals, and thus , by extension, present a risk of cancer to humans. After that food products that showed mutagenicity exposed to gamma radiation at different doses to examine the effect of gamma radiation on food products. This study represent γ radiation effect on carcinogenic food by using Ames test in the following steps: Detect food by Ames test using Salmonella typhimurium strains in which the colony count /plate for each food sample will show if food is slightly mutated or highly mutated or carcinogenic. If food is highly mutated or carcinogenic with high number of colonies /plate, then the carcinogenic food or highly mutated food exposed to different doses of radiation The applied doses in this study were 0, 2.5, 5, and 10 (KGy). Detect the radiation effect on food samples by Ames test after irradiation. The study shows that mutated and carcinogenic food products estimated by Ames test could be treated by irradiation

  4. The manufacture of system for testing static random access memory radiation effect

    International Nuclear Information System (INIS)

    Chen Rui; Yang Chen

    2008-01-01

    Space radiation effects will lead to single event upset, event latch up and other phenomena in SRAM devices. This paper introduces the hardware, software composition and related testing technology of SRAM radiation effect testing device. Through to the SRAM chip current detection and power protection, it has solved the SRAM chip damage question in the SRAM experiment. It has accessed to the expected experimental data by using the device in different source of radiation conducted on SRAM Experimental study of radiation effects. It provides important references in the assessment of operational life and reinforcement of the memory carried in the satellites. (authors)

  5. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    Science.gov (United States)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  6. Testing the effects from dark radiation

    International Nuclear Information System (INIS)

    Zhang Yi; Gong Yungui

    2013-01-01

    In this paper, the effects of dark radiation (DR) are tested. Theoretically, the phase-space analysis method is applied to check whether the model is consist with the history of our universe which shows positive results. Observationally, by using the observational data (SuperNovae Legacy Survey (SNLS), Wilkinson Microwave Anisotropy Probe 9 Years Result (WMAP9), Planck First Data Release (PLANCK), baryon acoustic oscillations (BAO), Hubble parameter data (H(z)) and Big Bang nucleosynthesis (BBN)), the DR is found to have the effect of wiping out the tension between the SNLS data and the other data in a flat ΛCDM model. The effects of DR also make the best fit value of N eff slightly larger than 3.04. (paper)

  7. Algae as test organisms of harmful effects of various radiations

    International Nuclear Information System (INIS)

    Necas, J.

    1989-01-01

    The report describes a complex biotest in which algae serve as the test organisms and where a variety of algal characteristics are employed as indicators of the effects of harmful radiations on the cultures and single organisms. Rules for a successful choice of a suitable algal organism are discussed and the preparation of the latter for the test as well as the growth and morphogenic tests and some physiological responses of algae to harmful radiation are described. The survival and lethality are related to the interpretation of the test results particularly from the physiological and genetic points of view. The complex biotest concerns not only toxic but also mutagenic effects of the factors tested. Some easily detectable mutations in algae are mentioned and their spectra are recommended. The stability of the mutations and the possibility of their delayed manifestation are considered. The possibility of occurrence of teratogenic effects is also dealt with and the negative role of phenocopies in the correct evaluation of the mutation effects is mentioned. Advice for the breeding and laboratory maintenance of suitable algal strains for the biotest is given. Practical use of the biotest is demonstrated on the results of a test using modified samples of waste water from uranium industries. It is recommended that biotests confined to the evaluation of single characteristics of the test organism be replaced by this complex biotest whose results can be interpreted more extensively and exhibit a higher reliability. (author). 268 refs., 1 tab., 9 figs

  8. Radiation effects testing at the 88-Inch Cyclotron at LBNL

    International Nuclear Information System (INIS)

    McMahan, Margaret A.; Koga, Rokotura

    2002-01-01

    The effects of ionizing particles on sensitive microelectronics is an important component of the design of systems as diverse as satellites and space probes, detectors for high energy physics experiments and even internet server farms. Understanding the effects of radiation on human cells is an equally important endeavor directed towards future manned missions in space and towards cancer therapy. At the 88-Inch Cyclotron at the Berkeley Laboratory, facilities are available for radiation effects testing (RET) with heavy ions and with protons. The techniques for doing these measurements and the advantages of using a cyclotron will be discussed, and the Cyclotron facilities will be compared with other facilities worldwide. RET of the same part at several facilities of varying beam energy can provide tests of the simple models used in this field and elucidate the relative importance of atomic and nuclear effects. The results and implications of such measurements will be discussed

  9. Deep space test bed for radiation studies

    International Nuclear Information System (INIS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan; Kuznetsov, Evgeny; Milton, Martha; Myers, Jeremy; O'Brien, Sue; Seaquist, Jim; Smith, Edward A.; Smith, Guy; Warden, Lance; Watts, John

    2007-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation, flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status

  10. Radiation pressure actuation of test masses

    International Nuclear Information System (INIS)

    Garoi, F; Ju, L; Zhao, C; Blair, D G

    2004-01-01

    In this paper, we investigate the use of radiation pressure force as test mass actuation for laser interferometer gravitational wave detectors. It is shown that it is viable to provide radiation pressure control on test masses for frequencies above ∼0.2 Hz in high performance vibration isolation systems. A very low mass, low frequency resonator has been used to verify that radiation pressure force is not corrupted by other forces such as due to radiometer effects

  11. Orbiter radiator panel solar focusing test

    Science.gov (United States)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  12. Report on the Radiation Effects Testing of the Infrared and Optical Transition Radiation Camera Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    Presented in this report are the results tests performed at Argonne National Lab in collaboration with Los Alamos National Lab to assess the reliability of the critical 99Mo production facility beam monitoring diagnostics. The main components of the beam monitoring systems are two cameras that will be exposed to radiation during accelerator operation. The purpose of this test is to assess the reliability of the cameras and related optical components when exposed to operational radiation levels. Both X-ray and neutron radiation could potentially damage camera electronics as well as the optical components such as lenses and windows. This report covers results of the testing of component reliability when exposed to X-ray radiation. With the information from this study we provide recommendations for implementing protective measures for the camera systems in order to minimize the occurrence of radiation-induced failure within a ten month production run cycle.

  13. Application of complex programmable logic devices in memory radiation effects test system

    International Nuclear Information System (INIS)

    Li Yonghong; He Chaohui; Yang Hailiang; He Baoping

    2005-01-01

    The application of the complex programmable logic device (CPLD) in electronics is emphatically discussed. The method of using software MAX + plus II and CPLD are introduced. A new test system for memory radiation effects is established by using CPLD devices-EPM7128C84-15. The old test system's function are realized and, moreover, a number of small scale integrated circuits are reduced and the test system's reliability is improved. (authors)

  14. Radiation Effects and Component Hardening testing program at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Draper, J.V.; Weil, B.S.; Chesser, J.B.

    1993-01-01

    This paper describes Phase II of the Radiation Effects and Component Hardening (REACH) testing program, performed as part of the joint collaborative agreement between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, Components and materials were submitted to 10 5 R/hr gamma radiation fields for 10,000 hr, producing accumulated doses of 10 9 R; most performed as expected

  15. Radiation damage testing at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Chinowsky, W.; Thun, R.

    1990-06-01

    A Task Force on Radiation Damage Testing met at the SSC Laboratory on March 5--6, 1990. This Task Force was asked to assess the availability of appropriate facilities for radiation damage tests of SSC detector materials and components. The Task Force was also instructed to review the techniques and standards for conducting such tests. Semiconductors were considered separately from other detector materials. Radiation damage test of electronic devices generally require exposures to both ionizing radiation and neutrons, whereas non-electric components such as plastic scintillating materials, adhesives, cable insulation, and other organic polymers are adequately tested with ionizing radiation only. Test standards are discussed with respect to irradiation techniques, environmental factors, dosimetry, and mechanisms whereby various materials are damaged. It is emphasized that radiation sources should be chosen to duplicate as much as possible the expected SSC environment and that the effects from ionizing particles and from neutrons be investigated separately. Radiation damage tests at reactors must be designed with particular care complex spectra of neutrons and gamma rays are produced at such facilities. It is also essential to investigate dose-rate effects since they are known to be important in many cases. The required irradiations may last several months and are most easily carried out with dedicated radioactive sources. Environmental factors such as the presence of oxygen when testing plastic scintillators, or temperature when measuring semiconductor annealing effects, must also be taken into account. The importance of reliable dosimetry is stressed and suitable references cited. Finally, it is noted that an understanding of the mechanisms for radiation damage in semiconductor and other materials is important in planning irradiations and evaluating results

  16. Test on radiation-withstanding properties of sensors

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Kakuta, Tsunemi; Ara, Katsuyuki

    1986-01-01

    In order to use for the remote operation system or in-line measuring system in the facilities handling radioactive substances, the development of the sensors having strengthened radiation-withstanding performance has been advanced. As a part of it, efforts have been exerted to phenomenologically grasp the radiation effect on various sensors and their materials, and to acquire the basic data. Irradiation test was carried out on solid image pick-up elements, optical parts eddy current sensors, pressure sensitive rubber, photo-electric proximity sensors and others, and the knowledge on their deterioration was obtained. Besides, the sensors and video-cameras having improved radiation-withstanding performance were made for trial, and the performance was tested. The interim report on these test results is made. By a series of the irradiation tests reported here, the basic data required for giving the guideline to the development of radiation withstanding sensors were able to be obtained. But in the present irradiation test, the number of specimens was too small to assure the radiation withstanding performance. In order to improve further the radiation withstanding performance of these sensors, it is necessary to carry out the irradiation test on such elements as condensers, diodes and ICs to accumulate the basic data. (Kako, I.)

  17. Effect of Miradol (Sulpiride) on radiation sickness studied by a double-blind test

    International Nuclear Information System (INIS)

    Murakami, Yuko; Morita, Shinroku

    1981-01-01

    Effect of Miradol on radiation sickness was investigated by a double-blind test. The rate of ''effective'' was 66.7% of the patients given Miradol and 20.1% of those given placebo (p < 0.01). The drug was especially effective on the patients chiefly complaining of nausea and vomiting. Placebo was also effective in some of the cases with appetite loss etc. (Ueda, J.)

  18. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  19. Standards for Radiation Effects Testing: Ensuring Scientific Rigor in the Face of Budget Realities and Modern Device Challenges

    Science.gov (United States)

    Lauenstein, J M.

    2015-01-01

    An overview is presented of the space radiation environment and its effects on electrical, electronic, and electromechanical parts. Relevant test standards and guidelines are listed. Test standards and guidelines are necessary to ensure best practices, minimize and bound systematic and random errors, and to ensure comparable results from different testers and vendors. Test standards are by their nature static but exist in a dynamic environment of advancing technology and radiation effects research. New technologies, failure mechanisms, and advancement in our understanding of known failure mechanisms drive the revision or development of test standards. Changes to standards must be weighed against their impact on cost and existing part qualifications. There must be consensus on new best practices. The complexity of some new technologies exceeds the scope of existing test standards and may require development of a guideline specific to the technology. Examples are given to illuminate the value and limitations of key radiation test standards as well as the challenges in keeping these standards up to date.

  20. Verification test for radiation reduction effect and material integrity on PWR primary system by zinc injection

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H.; Nagata, T.; Yamada, M. [Nuclear Power Engineering Corp. (Japan); Kasahara, K.; Tsuruta, T.; Nishimura, T. [Mitsubishi Heavy Industries, Ltd. (Japan); Ishigure, K. [Saitama Inst. of Tech. (Japan)

    2002-07-01

    Zinc injection is known to be an effective method for the reduction of radiation source in the primary water system of a PWR. There is a need to verify the effect of Zn injection operation on radiation source reduction and materials integrity of PWR primary circuit. In order to confirm the effectiveness of Zn injection, verification test as a national program sponsored by Ministry of Economy, Trade and Industry (METI) was started in 1995 for 7-year program, and will be finished by the end of March in 2002. This program consists of irradiation test and material integrity test. Irradiation test as an In-Pile-Test managed by AEAT Plc(UK) was performed using the LVR-15 reactor of NRI Rez in Check Republic. Furthermore, Out-of-Pile-Test using film adding unit was also performed to obtain supplemental data for In-Pile-Test at Takasago Engineering Laboratory of NUPEC. Material Integrity test was planned to perform constant load test, constant strain test and corrosion test at the same time using large scale Loop and slow strain extension rate testing (SSRT) at Takasago Engineering Laboratory of NUPEC. In this paper, the results of the verification test for Zinc program at present are discussed. (authors)

  1. Nuclear technology in materials testing and radiation protection

    International Nuclear Information System (INIS)

    Neider, R.

    1975-01-01

    A report of the 1974 activities of the laboratories for physical and measuring technical fundamentals, radiation effects and radiation protection, application of radionuclides and testing of radioactive materials of the Bundesanstalt fuer Materialpruefung (BAM) is given. (RW/LH) [de

  2. Tests of the linearity assumption in the dose-effect relationship for radiation-induced cancer

    International Nuclear Information System (INIS)

    Cohen, A.F.; Cohen, B.L.

    1978-01-01

    The validity of the BEIR linear extrapolation to low doses of the dose-effect relationship for radiation induced cancer is tested by use of natural radiation making use of selectivity on type of cancer, sex, age group, geographic area, and time period. For lung cancer, a linear interpolation between zero dose-zero effect and the data from radon-induced cancers in miners over-estimates the total number of observed lung cancers in many countries in the early years of this century; the discrepancy is substantially increased if the 30-44 year age range and/or if only females are considered, and by the fact that many other causes of lung cancer are shown to have been important at that time. The degree to which changes of diagnostic efficiency with time can influence the analysis is considered at some length. It is concluded that the linear relationship substantially over-estimates effects of low radiation doses. A similar analysis is applied to leukemia induced by natural radiation, applying selectivity by age, sex, natural background level, and date, and considering other causes. It is concluded that effects substantially larger than those obtained from linear extrapolation are excluded. The use of the selectivities mentioned above is justified by the fact that the incidence of cancer or leukemia is an upper limit on the rate at which it is caused by radiation effects; in determining upper limits it is justifiable to select situations which minimize it. (author)

  3. Use of micronucleus test in the assessment of radiation effects in aquatic environments

    International Nuclear Information System (INIS)

    Araujo, Edvaldo F. de; Silva, Luanna R.S.; Lima, Pedro A. de S.; Amancio, Francisco F.; Melo, Ana Maria M. de A.; Silva, Edvane B. da; Silva, Ronaldo C. da

    2011-01-01

    The study of the effects of radioactive substances on the environment is accomplished by radioecology. This science has played an important role in combating all forms of pollution. The uncontrolled use of physical and chemical agents has been a concern for environmental regulatory agencies, due to the serious damage to ecosystems. Aquatic organisms are exposed to a variety of pollutants harmful to aquatic systems. The mollusks Biomphalaria glabrata has been featured as a bioindicator to possess characteristics such as short reproductive cycle ease of maintenance in the laboratory and low maintenance cost. The micronucleus assay has been shown to be a great test to identify mutagenic effects caused by physical and chemical agents. In this study the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to high doses of 60 Co gamma radiation contributing to a further standardization of this test as an indicator of the presence of radioactive contamination in aquatic environments. The young adult snails of Biomphalaria glabrata were divided into groups and subjected to a dose of 0 (control), 40 and 60 Gy of gamma radiation. The results showed that snails irradiated with 40 Gy showed a smaller number of haemocytes, whereas those exposed to 60 Gy had a greater quantity of these cells compared to control group. It can be concluded that the morphological analysis and the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to 60 Co gamma radiation may be used in studies of the action of high doses of radiation in aquatic environments (author)

  4. Effects of radiation on photographic film. A study

    International Nuclear Information System (INIS)

    Dutton, D.M.

    1971-01-01

    This study of the effects of radiation on photographic film is related to the Nevada Test Site's underground nuclear testing program, which has been active since implementation of the Limited Test Ban Treaty of 1963. Residual radioactivity, which has accidentally been released on several tests, adversely affects the photographic film used in test data acquisition. The report defines this problem in terms of radiation-caused image degradation, radiation/matter interactions, types of radiation released by accidental venting, and the photographic effects of gamma and x radiation. Techniques and experimental findings are documented that may be useful in recovering information from radiation-fogged film. Techniques discussed include processing methods, shielding, image enhancement techniques, and operational handling of potentially irradiated film. (U.S.)

  5. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  6. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    International Nuclear Information System (INIS)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-01-01

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption

  7. Six-Tube Freezable Radiator Testing and Model Correlation

    Science.gov (United States)

    Lilibridge, Sean T.; Navarro, Moses

    2012-01-01

    Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.

  8. The effects of radiation on various materials and the qualification tests required for their use in medical devices

    International Nuclear Information System (INIS)

    Landfield, H.

    1980-01-01

    Many polymers used in the medical field show various degrees of degradation after radiation exposure either by visual or physical measurements. The general effects of radiation on such medical polymers are reviewed and discussed as well as the tests used to qualify their performance. (author)

  9. Modifiers of radiation effects in the eye

    Science.gov (United States)

    Kleiman, Norman J.; Stewart, Fiona A.; Hall, Eric J.

    2017-11-01

    World events, including the threat of radiological terrorism and the fear of nuclear accidents, have highlighted an urgent need to develop medical countermeasures to prevent or reduce radiation injury. Similarly, plans for manned spaceflight to a near-Earth asteroid or journey to Mars raise serious concerns about long-term effects of space radiation on human health and the availability of suitable therapeutic interventions. At the same time, the need to protect normal tissue from the deleterious effects of radiotherapy has driven considerable research into the design of effective radioprotectors. For more than 70 years, animal models of radiation cataract have been utilized to test the short and long-term efficacy of various radiation countermeasures. While some compounds, most notably the Walter Reed (WR) class of radioprotectors, have reported limited effectiveness when given before exposure to low-LET radiation, the human toxicity of these molecules at effective doses limits their usefulness. Furthermore, while there has been considerable testing of eye responses to X- and gamma irradiation, there is limited information about using such models to limit the injurious effects of heavy ions and neutrons on eye tissue. A new class of radioprotector molecules, including the sulfhydryl compound PrC-210, are reported to be effective at much lower doses and with far less side effects. Their ability to modify ocular radiation damage has not yet been examined. The ability to non-invasively measure sensitive, radiation-induced ocular changes over long periods of time makes eye models an attractive option to test the radioprotective and radiation mitigating abilities of new novel compounds.

  10. Experimental test of the shadowing effect in Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Naumenko, G.A.; Potylitsyn, A.P.; Popov, Yu.A.; Shevelev, M.V

    2011-01-01

    The observation of a shadowing effect of a relativistic electron Coulomb field for the Smith-Purcell radiation generation is presented in this paper. For this purpose the surface current from the closest surface of grating element to the electron beam was measured for a downstream one shadowed by upstream element. The experimental results showed that shadowing effect for Smith-Purcell radiation depends on grating geometry.

  11. Radiation Resistance Test of Wireless Sensor Node and the Radiation Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liqan; Sur, Bhaskar [Atomic Energy of Canada Limited, Ontario (Canada); Wang, Quan [University of Western Ontario, Ontario (Canada); Deng, Changjian [The University of Electronic Science and Technology, Chengdu (China); Chen, Dongyi; Jiang, Jin [Applied Physics Branch, Ontario (Korea, Republic of)

    2014-08-15

    A wireless sensor network (WSN) is being developed for nuclear power plants. Amongst others, ionizing radiation resistance is one essential requirement for WSN to be successful. This paper documents the work done in Chalk River Laboratories of Atomic Energy of Canada Limited (AECL) to test the resistance to neutron and gamma radiation of some WSN nodes. The recorded dose limit that the nodes can withstand before being damaged by the radiation is compared with the radiation environment inside a typical CANDU (CANada Deuterium Uranium) power plant reactor building. Shielding effects of polyethylene, cadmium and lead to neutron and gamma radiations are also analyzed using MCNP simulation. The shielding calculation can be a reference for the node case design when high dose rate or accidental condition (like Fukushima) is to be considered.

  12. Standard Test Method for Measuring Dose for Use in Linear Accelerator Pulsed Radiation Effects Tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers a calorimetric measurement of the total dose delivered in a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode) used as an ionizing source in radiation-effects testing. The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated are“thin” compared to the range of these electrons in the materials of which they are constructed. 1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy (matl) (500 rd (matl)) or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. Matl refers to the material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity...

  13. Current clinical trials testing combinations of immunotherapy and radiation.

    Science.gov (United States)

    Crittenden, Marka; Kohrt, Holbrook; Levy, Ronald; Jones, Jennifer; Camphausen, Kevin; Dicker, Adam; Demaria, Sandra; Formenti, Silvia

    2015-01-01

    Preclinical evidence of successful combinations of ionizing radiation with immunotherapy has inspired testing the translation of these results to the clinic. Interestingly, the preclinical work has consistently predicted the responses encountered in clinical trials. The first example came from a proof-of-principle trial started in 2001 that tested the concept that growth factors acting on antigen-presenting cells improve presentation of tumor antigens released by radiation and induce an abscopal effect. Granulocyte-macrophage colony-stimulating factor was administered during radiotherapy to a metastatic site in patients with metastatic solid tumors to translate evidence obtained in a murine model of syngeneic mammary carcinoma treated with cytokine FLT-3L and radiation. Subsequent clinical availability of vaccines and immune checkpoint inhibitors has triggered a wave of enthusiasm for testing them in combination with radiotherapy. Examples of ongoing clinical trials are described in this report. Importantly, most of these trials include careful immune monitoring of the patients enrolled and will generate important data about the proimmunogenic effects of radiation in combination with a variety of immune modulators, in different disease settings. Results of these studies are building a platform of evidence for radiotherapy as an adjuvant to immunotherapy and encourage the growth of this novel field of radiation oncology. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Compilation of radiation damage test data. Pt. 3

    International Nuclear Information System (INIS)

    Beynel, P.; Maier, P.; Schoenbacher, H.

    1982-01-01

    This handbook gives the results of radiation damage tests on various engineering materials and components intended for installation in radiation areas of the CERN high-energy particle accelerators. It complements two previous volumes covering organic cable-insulating materials and thermoplastic and thermosetting resins. The irradiation have been carried out at various radiation sources and the results of the different tests are reported, sometimes illustrated by tables and graphs to show the variation of the measured property with absorbed radiation dose. For each entry, an appreciation of the radiation resistance is given, based on measurement data, indicating the range of damage (moderate to severe) for doses from 10 to 10 8 Gy. Also included are tables, selected from published reports, of general relative radiation effects for several groups of materials, to which there are systematic cross-references in the alphabetical part. This third and last volume contains cross-references to all the materials presented up to now, so that it can be used as a guide to the three volumes. (orig.)

  15. Radiation testing of electronics for the CMS endcap muon system

    Energy Technology Data Exchange (ETDEWEB)

    Bylsma, B. [Ohio State University (United States); Cady, D.; Celik, A. [Texas A and M University, College Station, TX 77843 (United States); Durkin, L.S. [Ohio State University (United States); Gilmore, J., E-mail: gilmore@tamu.edu [Texas A and M University, College Station, TX 77843 (United States); Haley, J. [Northeastern University (United States); Khotilovich, V.; Lakdawala, S. [Texas A and M University, College Station, TX 77843 (United States); Liu, J.; Matveev, M.; Padley, B.P.; Roberts, J. [Rice University (United States); Roe, J.; Safonov, A.; Suarez, I. [Texas A and M University, College Station, TX 77843 (United States); Wood, D. [Northeastern University (United States); Zawisza, I. [Texas A and M University, College Station, TX 77843 (United States)

    2013-01-11

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  16. Radiation testing of electronics for the CMS endcap muon system

    Science.gov (United States)

    Bylsma, B.; Cady, D.; Celik, A.; Durkin, L. S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B. P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the innermost portion of the CMS detector, with 8900 rad over 10 years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment.

  17. Radiation Testing of Electronics for the CMS Endcap Muon System

    CERN Document Server

    INSPIRE-00070357; Celik, A.; Durkin, L.S.; Gilmore, J.; Haley, J.; Khotilovich, V.; Lakdawala, S.; Liu, J.; Matveev, M.; Padley, B.P.; Roberts, J.; Roe, J.; Safonov, A.; Suarez, I.; Wood, D.; Zawisza, I.

    2013-01-01

    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels o...

  18. Radiation effects and radioprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, R.K., E-mail: dr_rajendra_purohit@yahoo.co.in [Radiation Biology Laboratory, Department of Zoology, Govt. Dungar College, Bikaner (India); Bugalia, Saroj [Department of Zoology, S.K. Kalyan College, Sikar (India); Dakshene, Monika [Department of Chemistry, Govt. College, Kota (India)

    2012-07-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  19. Radiation effects and radioprotectors

    International Nuclear Information System (INIS)

    Purohit, R.K.; Bugalia, Saroj; Dakshene, Monika

    2012-01-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  20. General gamma-radiation test of TGC detectors

    CERN Document Server

    Smakhtin, V P

    2004-01-01

    The TGC detectors are expected to provide the Muon trigger for the ATLAS detector in the forward region of the ATLAS Muon Spectrometer. The TGC detectors have to provide a trigger signal within 25 ns of the LHC accelerator bunch spacing, with an efficiency exceeding 95%, while exposed to an effective)photon and neutron background ranging from 30 to 150 Hz/cm/sup 2/. In order to test TGC detectors in high rate environment every detector was irradiated at 2500 Cu Co-60 source in Radiation Facility of Weizmann Institute of Science at nominal operating voltage and at photon rate several times above the expected background. This radiation test was succeeded in diagnostics of the hot spots inside detectors. The present publication refers to the test results of 800 TGC detectors produced in the Weizmann Institute of Science. (1 refs).

  1. Animal Effects from Soviet Atmospheric Nuclear Tests

    Science.gov (United States)

    2008-03-01

    describes the effect on animal models of atmospheric nuclear weapons tests performed by the Soviet Union at the Semipalatinsk Test Site . Part I describes...understand the pathogenic mechanisms of injury and the likelihood of efficacy of proposed treatment measures. 15. SUBJECT TERMS Semipalatinsk Test Site ...the Semipalatinsk Test Site . Part 1 describes the air blast and thermal radiation effects. Part 2 covers the effects of primary (prompt) radiation and

  2. Radiated Emissions Test Approach

    Science.gov (United States)

    2015-10-02

    1. Draft Department of Transportation (DOT) Test Plan to Develop : Interference Tolerance Masks for GNSS Receivers in the L1 : Radiofrequency Band (1559 1610 MHz) provides high level : overview of radiated emissions test setup : 2. Presenta...

  3. Prospective evaluation of the effect of ionizing radiation on the bladder tumor-associated (BTA) urine test

    International Nuclear Information System (INIS)

    Crane, Christopher H.; Clark, Maureen M.; Bissonette, Eric A.; Theodorescu, Dan

    1999-01-01

    Purpose: To prospectively evaluate the effect of ionizing radiation on the results of the bladder tumor-associated antigen (BTA) test. By examining this question, we sought to determine its potential use as a monitoring test for the detection of recurrent transitional carcinoma of the bladder in patients who have received prior radiotherapy for bladder preservation. Materials and Methods: Between February 1996 and April 1997, 18 patients with nonbladder pelvic malignancies and no history of bladder cancer, received irradiation to the bladder. These patients were prospectively evaluated using the BTA test at the end of the external-beam radiation (EBRT) and at 3-month follow-up intervals. Urine cytology was analyzed in 16 of the 18 patients at the end of EBRT. A median of 3 separate measurements were made (range 1-6) on each patient. The median dose of EBRT was 50.4 Gy (range 30-68Gy). Seven patients underwent brachytherapy as part of their treatment course. BTA results and time intervals were recorded and analyzed using univariate and Kaplan-Meyer methodologies. Results: A total of 10 (56%) of the 18 patients had a positive BTA test at some time following completion of EBRT. Of the 10 positive tests, 9 returned to negative in a median of 42 weeks from completion of EBRT. Treatment with chemotherapy, brachytherapy, calculated bladder dose, and total external beam dose did not significantly influence either the number of positive tests or the time to resolution of the positive test in this small group of patients. All screened urine samples were negative for malignant cells and 11 (69%) of 16 showed changes consistent with ionizing radiation. Conclusion: Our findings support the hypothesis that ionizing radiation can cause transient positive results in the BTA test, but that these normalize with time. Although it requires further testing, it seems that the BTA test may be useful in the detection of recurrence in patients with bladder cancer who have been treated with

  4. Radiation from Cardiac Imaging Tests

    Science.gov (United States)

    ... his or her test will be performed with attention paid to keeping radiation exposure low. Two Questions ... based, whereby less radiation is used to take pictures of skinnier patients. Questions for CT Angiograms Do ...

  5. Tests of the linearity assumption in the dose-effect relationship for radiation-induced cancer

    International Nuclear Information System (INIS)

    Cohen, A.F.; Cohen, B.L.

    1980-01-01

    The validity of the BEIR linear extrapolation to low doses of the dose-effect relationship for radiation induced cancer is tested by use of natural radiation making use of selectivity on type of cancer, smoking habits, sex, age group, geographic area and/or time period. For lung cancer, a linear interpolation between zero dose-zero effect and the data from radon-induced cancers in miners implies that the majority of all lung cancers among non-smokers are due to radon; since lung cancers in miners are mostly small-cell undifferentiated (SCU), a rather rare type in general, linearity over predicts the frequency of SCU lung cancers among non smokers by a factor of 10, and among non-smoking females age 25-44 by a factor of 24. Similarly, linearity predicts that the majority of all lung cancers early in this century were due to radon even after due consideration is given to cases missed by poor diagnostic efficiency (this matter is considered in some detail). For the 30-40 age range, linearity over predicts the total lung cancer rate at that time by a factor of 3-6; for SCU lung cancer, the over-prediction is by at least a factor of 10. Other causes of lung cancer are considered which further enhance the degree to which the linearity assumption over-estimates the effects of low level radiation. A similar analysis is applied to leukemia induced by natural radiation. It is concluded that the upper limit for this is not higher than estimates from the linearity hypothesis. (author)

  6. Guidelines for testing sealed radiation sources

    International Nuclear Information System (INIS)

    1989-01-01

    These guidelines are based on article 16(1) of the Ordinance on the Implementation of Atomic Safety and Radiation Protection dated 11 October 1984 (VOAS), in connection with article 36 of the Executory Provision to the VOAS, of 11 October 1984. They apply to the testing of sealed sources to verify their intactness, tightness and non-contamination as well as observance of their fixed service time. The type, scope and intervals of testing as well as the evaluation of test results are determined. These guidelines also apply to the testing of radiation sources forming part of radiation equipment, unless otherwise provided for in the type license or permit. These guidelines enter into force on 1 January 1990

  7. Low level radiation testing of micro-electronic components. Pt. 1

    International Nuclear Information System (INIS)

    Farren, J.; Stephen, J.H.; Mapper, D.; Sanderson, T.K.; Hardman, M.

    1984-05-01

    A review of the existing literature has been carried out, dealing with the current technology relating to low level radiation testing of microelectronic devices, as used in space satellite systems. After consideration of the space radiation environment, the general effects of cosmic radiation on MOSFET structures and other MOS devices have been assessed. The important aspect of annealing phenomena in relation to gamma-ray induced damage has also been reviewed in detail. The experimental and theoretical aspects of radiation testing have been assessed, with particular reference to the Harwell LORAD low level irradiation test facility. In addition, a review of modern dosimetry methods has been carried out, with specific regard to the problems of accurately measuring low radiation fields (1 to 10 R/hour) over periods of many months. Finally, a detailed account of the proposed experimental programme to be carried out in the LORAD facility is presented, and aspects of the experimental set-up discussed. The particular types of test circuits to be studied are dealt with, and full consideration is given to the various CMOS memory devices of special interest in the ESA space satellite programme. (author)

  8. Solar Radiation effect on the bituminous binder

    International Nuclear Information System (INIS)

    Tadeo Rico, A.; Torres Perez, A.

    2010-01-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  9. Radiation effects on custom MOS devices

    International Nuclear Information System (INIS)

    Harris, R.

    1999-05-01

    This Thesis consists of four chapters: The first is primarily for background information on the effects of radiation on MOS devices and the theory of wafer bonding; the second gives a full discussion of all practical work carried out for manufacture of Field Effect test Capacitors, the third discusses manufacture of vacuum insulator Field Effect Transistors (FET's) and the fourth discusses the testing of these devices. Using a thermally bonded field effect capacitor structure, a vacuum dielectric was studied for use in high radiation environments with a view to manufacturing a CMOS compatible, micro machined transistor. Results are given in the form of high frequency C-V curves before and after a 120 kGy(Si), 12 MRad(Si), dose from a Co 60 source showing a 1 Volt shift. The work is then extended to the design and manufacture of a micro machined, under-etch technique, Field Effect Transistor for use in high radiation areas. Results are shown for Threshold, Subthreshold and Transfer characteristics before and after irradiation up to a total dose of 100kGy or 10MRad. The conclusion from this work is that it should be possible to commercially manufacture practical vacuum dielectric field effect transistors which are radiation hard to at least 120 kGy(Si). (author)

  10. Behaviour parameters of rats in the 'Open field' test under combined effect of radiation and non-radiation factors

    International Nuclear Information System (INIS)

    Kadukova, E.M.; Stashkevich, D.G.; Naumov, A.D.; Kuts, F.I.

    2015-01-01

    It was shown that exposure of electromagnetic radiation and emotional stress modifies the level of integrative reaction of CNS rats which were exposed to ionizing radiation in the 'Open field' test. (authors)

  11. Radiation effect characterization and test methods of single-chip and multi-chip stacked 16Mbit DRAMs

    International Nuclear Information System (INIS)

    LaBel, K.A.; Gates, M.M.; Moran, A.K.; Kim, H.S.; Seidleck, C.M.; Marshall, P.; Kinnison, J.; Carkhuff, B.

    1996-01-01

    This paper presents radiation effects characterization performed by the NASA Goddard Space Flight Center (GSFC) on spaceflight candidate 16Mbit DRAMs. This includes heavy ion, proton, and Co60 irradiations on single-chip devices as well as proton irradiation of a stacked DRAM module. Lastly, a discussion of test methodology is undertaken

  12. Radiation legacy of nuclear tests at the Semipalatinsk test site in the light of requirements ensuring radiation safety performance

    International Nuclear Information System (INIS)

    Logachev, V.A.; Logacheva, L.A.

    2005-01-01

    Peculiarities of nuclear tests radiation legacy at the Semipalatinsk test site (STS) are shown in the light of performance of requirements ensuring radiation safety, decrease radiation contamination levels in environment and minimize exposure of radiation for population residing contaminated areas by radioactive fallout. The paper provides data on characterization of peculiarities of the STS operation legacy based on review of archival data of the former 3-d General Administration under USSR Ministry of Health. (author)

  13. SP-100 GES/NAT radiation shielding systems design and development testing

    International Nuclear Information System (INIS)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.; Reese, J.C.; Thomas, K.; Wiltshire, F.

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned

  14. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  15. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Paar, H.

    1993-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  16. Effects of solar radiation on glass

    Science.gov (United States)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  17. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  18. The use of bacteriological preparates to test processes in radiation sterilization

    International Nuclear Information System (INIS)

    Gazso, L.; Igali, S.; Kovacs, A.

    1976-01-01

    Environmental factors influencing the irradiation sensitivity of micro-organisms, bacterium stocks being suitable for biological checking up and spore test organism used nowadays are reviewed. According to the tests made on Bacillus pumilus E601 and Bacillus sphaericus Csub(I)A stockes with Noratom, PX-γ-30 and 60 Co radiation sources the irradiation sensitivity of the same products irradiated with the same dose can differ in the function of the radiation source and the dose rate. It seems necessary to produce the test preparates in the same way in a central laboratory and to calibrate them to single radiation sources. It is advisable to check up the factual microbicidal effect of the nominal dosage by a biological dosimeter. The method reviewed potentiates a much higher confidence than that of conventional sterility tests and its additional advantage is the cheapness. (K.A.)

  19. Radiation Belt Test Model

    Science.gov (United States)

    Freeman, John W.

    2000-10-01

    Rice University has developed a dynamic model of the Earth's radiation belts based on real-time data driven boundary conditions and full adiabaticity. The Radiation Belt Test Model (RBTM) successfully replicates the major features of storm-time behavior of energetic electrons: sudden commencement induced main phase dropout and recovery phase enhancement. It is the only known model to accomplish the latter. The RBTM shows the extent to which new energetic electrons introduced to the magnetosphere near the geostationary orbit drift inward due to relaxation of the magnetic field. It also shows the effects of substorm related rapid motion of magnetotail field lines for which the 3rd adiabatic invariant is violated. The radial extent of this violation is seen to be sharply delineated to a region outside of 5Re, although this distance is determined by the Hilmer-Voigt magnetic field model used by the RBTM. The RBTM appears to provide an excellent platform on which to build parameterized refinements to compensate for unknown acceleration processes inside 5Re where adiabaticity is seen to hold. Moreover, built within the framework of the MSFM, it offers the prospect of an operational forecast model for MeV electrons.

  20. Radiation Testing on State-of-the-Art CMOS: Challenges, Plans, and Preliminary Results

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2009-01-01

    At GOMAC 2007 and 2008, we discussed a variety of challenges for radiation testing of modern semiconductor devices and technologies [1, 2]. In this presentation, we provide more specific details in this on-going investigation focusing on out-of-the-box lessons observed for providing radiation effects assurances as well as preliminary test results.

  1. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  2. GfW-handbook for irradiation test guidelines for radiation hardness of electronic components

    International Nuclear Information System (INIS)

    Braeunig, D.; Wulf, F.; Gaebler, W.; Boden, A.

    1982-12-01

    The purpose of the report is to propose irradiation test methods so that a standardized application of the methods can lead to a better comparison of test results. The interaction of different radiation species with matter - ionization and displacement - is described. Application of appropriate radiation sources, dosimetry problems, and shielding for simulating space radiation effects by laboratory testing is discussed. The description and characteristics of the irradiation sources are presented. Flowcharts of the planning and running of irradiation tests are given. Guidelines for running the tests are established, test methods and test circuits are proposed. The test system offers the capability of measuring devices also of high complexity up to microprocessors. The test results are collected regularly and are published in GfW-Handbook TN53/08, 'Data Compilation of Irradiation Tested Electronic Components'. (orig./HP) [de

  3. Kazakhstan-Japan joint study on health effects of radiation in residents in and around former Semipalatinsk Nuclear Test Site

    International Nuclear Information System (INIS)

    Toshiaki Ogiu; Yoshiro Aoki; Sadayoshi Kobayashi; Shizuyo Kusumi; Jiro Inaba; Kenzhina, G.; Berezin, S.; Zhotabaev, Zh.; Berezina, M.; Sekerbayev, A.; Lukashenko, S.

    2008-01-01

    Full text: The National Nuclear Center of the Republic of Kazakhstan (NNC RK) and the Radiation Effects Association (REA, Japan) are now jointly carrying out 'Study on Health Effects of Radiation in Residents in and around the Former Semipalatinsk Nuclear Test Site (STS)' commissioned by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japanese Government. This joint study between Kazakhstan and Japan was initiated in 2001 in response to the request from the government of the Republic of Kazakhstan and to the resolution of the 53rd United Nations General Assembly in 1998 for providing the Kazakhstan with medical, environmental, economical and humanitarian assistance to the residents in and around Semipalatinsk Test Site. The purpose of the study is to obtain scientific evidence on the health effects of chronic and repeated long-term exposure to low level mixed (external and internal) radiation in residents in and around Semipalatinsk Test Site, and thereby to provide fundamental scientific information on the nature and extent of health effects that might have been incurred by such exposures. The mode of this type of exposure (chronic long-term mixed radiation) is conceivable in the current situation of exposure such as occupational exposure, but different from those of Hiroshima and Nagasaki in Japan where the exposure was mainly acute and external. In this study, exposed populations are consisting of residents of Dolon, Znamenka, Karaul, and Kainar (Semipalatinsk population - 1) and that of Southern Beskaragai Region including Mostik, Cheremushki, Bol'shaya Vladimirovka, Malaya Vladimirovka, Budene, Semenovka, etc. (Semipalatinsk population - 2). Control populations are consisting of residents of Kenzhekol, Kenes and Zhanaaul (Pavlodar Population - 1) and that of Kachiry, Irtyshsk and Sherbakty (Pavlodar Population - 2). As of the end of July, 2008, personal data (date of birth, gender, race, etc.) were collected for 117,300 persons

  4. Laboratory methods used for testing the effect of radiation sterilization and preservation procedures on bone allografts

    International Nuclear Information System (INIS)

    Dziedzic-Goclawska, A.

    1999-01-01

    Sterilization of tissue allografts with ionizing radiation introduced in the mid of 1950s is more and more frequently used in tissue banking practice. The dose of 25 kGy is currently recommended and commonly used by many tissue banks in the world with the exception of the Central Tissue Bank in Warsaw where the dose of 33 kGy + 10 % has been routinely used since 1963, and from 1997 the dose of 35 kGy + 10 % has been introduced. To study the effect of radiation-sterilization on bone allografts the interdisciplinary investigations have been undertaken and several techniques have been implemented in our tissue bank. The electron paramagnetic resonance (EPR) spectroscopy has been applied to investigate the amount, origin and stability of free radicals and other paramagnetic entities induced in radiation-sterilized bone allografts. This technique has been also utilized for quantitative evaluation of remodeling process of radiation-sterilized bone allografts and for estimation of the absorbed dose of ionizing radiation using bone tissue as a dosimeter. A model of heterotopically induced osteogenesis after transplantation of devitalized bone matrix into the muscle (described by Urist in 1965) is very useful in tissue banking practice. It allows one to determine the contribution the graft itself makes to osteogenesis. This model is routinely used in our tissue bank to evaluate the effect of various sterilization and preservation procedures on osteoinductive properties of bone allografts. The solubility in vitro of collagen - a carrier for bone morphogenetic proteins (BMPS) and a major constituent of bone and the other connective tissue grafts, has been studied by measuring the amount of extracted neutral, acid and total soluble collagen from bone grafts preserved by different methods at irradiated at vanous experimental conditions. A positive correlation between collagen solubility in vitro and the rate of graft resorption in vivo has been observed. The high doses of

  5. Modern instrumentation for radiation introscopic testing of welding quality

    International Nuclear Information System (INIS)

    Sosnin, F.R.

    1985-01-01

    Modern instrumenlation used for radiation introscopy of welded joints is discussed. the absolute (relative) sensitivity of radiation testing, resolution range, efficiency are considered as basic parameters of introscopes. The characteristics of fluoroscopes, radiation-television installations with the external scintillator and radiative image converter as well as with X-ray vidicons are given. The characterisitcs of radiation introscopes with manipulators to move objects being tested are analysed as well as digitized radiation introscopes

  6. Irradiation tests of radiation resistance optical fibers for fusion diagnostic application

    Science.gov (United States)

    Kakuta, Tsunemi; Shikama, Tatsuo; Nishitani, Takeo; Yamamoto, Shin; Nagata, Shinji; Tsuchiya, Bun; Toh, Kentaro; Hori, Junichi

    2002-11-01

    To promote development of radiation-resistant core optical fibers, the ITER-EDA (International Thermonuclear Experimental Reactor-Engineering Design Activity) recommended carrying out international round-robin irradiation tests of optical fibers to establish a reliable database for their applications in the ITER plasma diagnostics. Ten developed optical fibers were irradiation-tested in a Co-60 gamma cell, a Japan Materials Testing Reactor (JMTR). Also, some of them were irradiation tested in a fast neutron irradiation facility of FNS (Fast Neutron Source), especially to study temperature dependence of neutron-associated irradiation effects. Included were several Japanese fluorine doped fibers and one Japanese standard fiber (purified and undoped silica core), as well as seven Russian fibers. Some of Russian fibers were drawn by Japanese manufactures from Russian made pre-form rods to study effects of manufacturing processes to radiation resistant properties. The present paper will describe behaviors of growth of radiation-induced optical transmission loss in the wavelength range of 350-1750nm. Results indicate that role of displacement damages by fast neutrons are very important in introducing permanent optical transmission loss. Spectra of optical transmission loss in visible range will depend on irradiation temperatures and material parameters of optical fibers.

  7. Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip

    International Nuclear Information System (INIS)

    Casas, L.M. Jara; Ceresa, D.; Kulis, S.; Christiansen, J.; Francisco, R.; Miryala, S.; Gnani, D.

    2017-01-01

    A Digital RADiation (DRAD) test chip has been specifically designed to study the impact of Total Ionizing Dose (TID) (<1 Grad) and Single Event Upset (SEU) on digital logic gates in a 65 nm CMOS technology. Nine different versions of standard cell libraries are studied in this chip, basically differing in the device dimensions, V t flavor and layout of the device. Each library has eighteen test structures specifically designed to characterize delay degradation and power consumption of the standard cells. For SEU study, a dedicated test structure based on a shift register is designed for each library. TID results up to 500 Mrad are reported.

  8. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  9. Compilation of radiation damage test data

    International Nuclear Information System (INIS)

    Schoenbacher, H.; Tavlet, M.

    1989-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: Ethylene-propylene rubbers, polyethylenes, polyurethanes, silicone rubbers, and copolymers based on polyethylene. The materials have been irradiated either in a nuclear reactor, or with a cobalt-60 source, or in the CERN accelerators, at different dose rates. The absorbed doses were between 10 3 and 5x10 6 Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples, according to the recommendations of the International Electrotechnical Commission. The results are presented in the form of tables and graphs to show the effect of the absorbed dose on the measured properties. (orig.)

  10. Health effects in residents of high background radiation regions

    International Nuclear Information System (INIS)

    Hanson, G.P.

    1984-01-01

    Although the health effects of radiation doses in occupationally exposed persons had received attention, it was not until the 1950s, when the atmospheric atom bomb tests of the United States and the Soviet Union had raised the level of environmental radioactivity, that the long-term effects of low-level radiation dosage became a matter of popular concern throughout the world. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was created, and the World Health Organization (WHO) appointed an expert committee to provide advice concerning radiation and human health. In its first report, the WHO expert committee identified several areas of high natural radiation where studies of the exposed population might possibly provide information concerning the effects of chromic low-level radiation dosage

  11. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  12. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  13. Compilation of radiation damage test data. I

    International Nuclear Information System (INIS)

    Schoenbacher, H.; Stolarz-Izycka, A.

    1979-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: ethylene-propylene rubber, Hypalon, neoprene rubber, polyethylene, polyurethane, polyvinylchloride, silicone rubber, etc. The materials have been irradiated in a nuclear reactor to integrated absorbed doses from 5 X 10 5 to 5 X 10 6 Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples. The results are presented in the form of tables and graphs, to show the effect of the absorbed dose on the measured properties. (Auth.)

  14. The transient radiation effects and hardness of programmed device

    International Nuclear Information System (INIS)

    Du Chuanhua; Xu Xianguo; Zhao Hailin

    2014-01-01

    A review and summary of research and development in the investigation of transient ionizing radiation effects in device and cirviut is presented. The transient ionizing radiation effects in two type of programmed device, that's 32 bit Microcontroller and antifuse FPGA, were studied. The expeiment test data indicate: The transient ionizing radiation effects of 32 bit Microcontroller manifested self-motion restart and Latchup, the Latchup threshold was 5 × 10"7 Gy (Si)/s. The transient ionizing radiation effects of FPGA was reset, no Latchup. The relationship of circuit effects to physical mechanisms was analized. A new method of hardness in circiut design was put forward. (authors)

  15. An experimental test of the linear no-threshold theory of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1990-01-01

    There is a substantial body of quantitative information on radiation-induced cancer at high dose, but there are no data at low dose. The usual method for estimating effects of low-level radiation is to assume a linear no-threshold dependence. if this linear no-threshold assumption were not used, essentially all fears about radiation would disappear. Since these fears are costing tens of billions of dollars, it is most important that the linear no-threshold theory be tested at low dose. An opportunity for possibly testing the linear no-threshold concept is now available at low dose due to radon in homes. The purpose of this paper is to attempt to use this data to test the linear no-threshold theory

  16. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    Kaur, Harbhajan; Lata, Poonam; Sharma, Ankush

    2012-01-01

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  17. Mortality in Zarinsk area of Altai Krai as a territory exposed to radiation as a result of nuclear tests at the Semipalatinsk test site

    OpenAIRE

    Kolyado I.; Plugin S.

    2017-01-01

    In Altai krai, there exists a regional segment of the National Radiation Epidemiological Register. The most numerous contingent are victims of nuclear tests at the Semipalatinsk testing site. The new method of calculation of cumulative total effective whole-body radiation dose in patients exposed to radiation as a result of nuclear testing at the Semipalatinsk test site allowed expanding this contingent, to a large extent - due to the inhabitants of Zarinsk area of Altai Krai. The given artic...

  18. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  19. Effects of phenobarbital on taste aversion induced by x-radiation

    International Nuclear Information System (INIS)

    Jolicoeur, F.B.; Wayner, M.J.; Rondeau, D.B.; Merkel, A.D.; Bassano, D.A.

    1979-01-01

    The effects of phenobarbital on taste aversion induced by x-radiation were examined. Rats were adapted to a 23 hr 50 min water deprivation schedule. On the Treatment Day animals were given a novel 0.125% Na saccharin solution during the 10 min drinking session and were then exposed to 100 rads of x-radiation. The saccharin solution was presented again on six subsequent Test Days. Phenobarbital in doses of 20, 40, 60 and 80 mg/kg was adminstered 15 min prior to drinking on the first Test Day. Results demonstrate the phenobarbital in all doses tested has a significant attenuating effect on radiation induced taste aversion

  20. Biological radiation effects

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1976-01-01

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed [pt

  1. Radiation consequences of the nuclear tests on the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Logachev, V.A.; Logacheva, L.A.

    2001-01-01

    In the paper the results of retrospective evaluation for radiation situation and radiation doses of population in the zones of the Semipalatinsk test site activity influence are presented. For the measurements the data obtained during analysis, study and summarizing of the archival materials including information on nuclear tests on this site and results of radiation surveys, those were carried out after each test were used. The information testifying most substantial environment contamination taking place after four surface explosions (29.08.1949, 24.09.1951, 12.08.1953, 24.08.1956) is presented as well. After these dose-forming explosions the irradiation doses of the population inhabiting out the regime zone have been exceeded the maximum permissible levels. Results of analysis of archival materials were used for assessment of doses of internal and external irradiation of residents of inhabited points situated on the both the territory of the Republic of Kazakhstan - mainly close to the test site - and the territories of a number of regions of the Russian Federation are locating on the little distance from the tests site

  2. Evaluation of methods to leak test sealed radiation sources

    International Nuclear Information System (INIS)

    Arbeau, N.D.; Scott, C.K.

    1987-04-01

    The methods for the leak testing of sealed radiation sources were reviewed. One hundred and thirty-one equipment vendors were surveyed to identify commercially available leak test instruments. The equipment is summarized in tabular form by radiation type and detector type for easy reference. The radiation characteristics of the licensed sources were reviewed and summarized in a format that can be used to select the most suitable detection method. A test kit is proposed for use by inspectors when verifying a licensee's test procedures. The general elements of leak test procedures are discussed

  3. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  4. Radiation effects on testes. XI. Studies on glycogen and its metabolizing enzymes following radiation-induced atrophy

    International Nuclear Information System (INIS)

    Gupta, G.S.; Bawa, S.R.

    1977-01-01

    Effect of radiation on enzymes of carbohydrate metabolism has been studied. It is observed that hexokinase of testis is highly sensitive to radiation damage. Reduced hexokinase activity seems to be related to those parts of the testis (spermatocytes and spermatids) which depend upon glucose for their functioning. Radiation-induced atrophic testis is rich in glycogen content. The observations on the inhibition of gluocose-6-phosphatase and phosphorylase may explain the higher levels of the polysaccharide although a possibility of enhanced glycogenesis due to the activation of glycogen synthetase has also been suggested. The presence of glucose-6-phosphate isomerase and glycogen in atrophied testis in 11-month-treated rats indicate the higher glycolytic activity with hyperplastic testicular interstitium. The results suggest that the accumulated glycogen is acting as a reserve substrate in nongerminal cells

  5. Ceramics radiation effects issues for ITER

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1993-01-01

    The key radiation effects issues associated with the successful operation of ceramic materials in components of the planned International Thermonuclear Experimental Reactor (ITER) are discussed. Radiation-induced volume changes and degradation of the mechanical properties should not be a serious issue for the fluences planned for ITER. On the other hand, radiation-induced electrical degradation effects may severely limit the allowable exposure of ceramic insulators. Degradation of the loss tangent and thermal conductivity may also restrict the location of some components such as ICRH feedthrough insulators to positions far away from the first wall. In-situ measurements suggest that the degradation of physical properties in ceramics during irradiation is greater than that measured in postirradiation tests. Additional in-situ data during neutron irradiation are needed before engineering designs for ITER can be finalized

  6. The Lemna minor growth inhibition test as basis to evaluate radiation or radionuclide-induced effects on freshwater plants

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Van Hees, M.; Van Hoeck, A.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium)

    2014-07-01

    The setting of radiation protection criteria for wildlife is based on tiered Environmental Risk Assessments (ERA) methods. At various points in such a tiered ERA robust and transparent benchmark values are needed to indicate the levels of exposure that are considered safe to the environment. Although not ideal these benchmark values are today mainly based on laboratory-based experiments in which the toxic effects of radiation or radionuclides to one selected species exposed under standardised growth conditions is studied. As such an eco-toxicity test has been developed for the floating macrophyte Lemna minor that can be used to test the effect of different chemicals in freshwater. Here the use of this test to estimate effects of radiation or radionuclides and its relevance to the environment will be discussed. First single dose response curves are shown that were set up according to the guidelines for gamma, uranium and as a reference also cadmium. According to the guidelines growth inhibition can be calculated on different endpoints like frond number and frond area. The choice of this endpoint seems to be of major importance as dependent on the stressor significant shifts in the EC50 values, the concentration giving 50% effect, were observed. For gamma radiation a recovery experiment was set up in irradiated plants were allowed to grow again for 7 days in control conditions. It was shown that plant growth rate did not catch up with that of the non-irradiated group. On the contrary, plant cultures that showed a growth inhibition above 40% immediately after irradiation completely collapsed during the recovery period indicating no recovery from the gamma induced damage and resulting in a 3-fold lower EC50 value after 7 days recovery. The relevance of these data to the environment will be further discussed. Finally the influence of different cations on the uranium speciation and toxicity are studied. These experiments are the first steps to set up a biotic ligand

  7. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  8. Biophysical radiation effects

    International Nuclear Information System (INIS)

    Fidorra, J.

    1982-07-01

    The biological effectiveness of ionizing radiation is based upon the absorption of energy in molecular structures of a cell. Because of the quantum nature of radiation large fluctuations of energy concentration in subcellulare regions has to be considered. In addition both the spatial distribution of a sensitive molecular target and cellulare repair processes has to be taken into consideration for an assessment of radiation action. In radiation protection the difference between the quality factor and the Relative Biological Effectiveness has a fundamental meaning and will be discussed in more detail. The present report includes a short review on some relevant models on radiation action and a short discussion on effects of low dose irradiation. (orig.) [de

  9. Ionizing radiation and the conceptus: neurophysiologic effects of prenatal X-radiation on offspring

    International Nuclear Information System (INIS)

    Jensh, R.P.

    1985-01-01

    A brief review of the literature precedes the presentation of a radiation behavioral teratology study. The various types of radiation and the units of measure used in radiation biology are discussed. The concept of the radiation-induced teratogenic ''triad'' of growth retardation, malformation, and death is presented. A discussion of stage- and dose-dependent sensitivity to prenatal irradiation is followed by an introduction to behavioral teratology as a new interdisciplinary area of investigation, emphasizing postnatal psychophysiologic analyses of the effects of prenatal exposure. In the present study, rats were exposed to an acute dosage level of 0.6 Gy (60 RAD) X-radiation on day 9 or 17 of gestation. The neonates were given five neonatal reflex tests, observed for the appearance of four physiologic markers, and, as young adults, subjected to three of six behavioral tests. The irradiated offspring exhibited retarded postnatal growth and altered reflex and behavioral activity. These results indicate that irradiation at a dosage level which does not cause overt morphologic malformations at birth does result in altered postnatal growth and psychophysiologic development

  10. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  11. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  12. Effects of radiation on MOS structures and silicon devices

    International Nuclear Information System (INIS)

    Braeunig, D.; Fahrner, W.

    1983-02-01

    A comprehensive view of radiation effects on MOS structures and silicon devices is given. In the introduction, the interaction of radiation with semiconductor material is presented. In the next section, the electrical degradation of semiconductor devices due to this interaction is discussed. The commonly used hardening techniques are shown. The last section deals with testing of radiation hardness of devices. (orig.) [de

  13. Radiation-related monitoring and environmental research at the Nevada Test Site

    International Nuclear Information System (INIS)

    Anspaugh, L.R.; Patton, S.E.; Shinn, J.H.; Black, S.C.; Costa, C.F.; Elle, D.R.; Essington, E.H.; Gilbert, R.O.; Gonzalez, D.A.; Hunter, R.B.; Medica, P.A.; McArthur, R.D.; Thompson, C.B.; O'Farrell, T.P.; Romney, E.M.

    1990-01-01

    Beginning with the first nuclear-weapons-related tests at the Nevada Test Site (NTS) in 1951, a radiation-related monitoring program was established to determine the levels and distribution of radionuclides released. Primary methods involved survey-meter-equipped field-monitoring teams and placement of film badges and air-sampling devices at fixed locations. Beginning in the mid-1950s, more stringent standards, the results of this monitoring program, and the results of related research programs led to increased engineering efforts to reduce local fallout. With passage of the National Environmental Policy Act and increased concern about possible effects of radiation exposure, environmental activities related to the NTS increased. There is now an extensive monitoring program at the NTS to assess radiological conditions resulting from past tests and from continued testing of nuclear-weapons devices. In populated areas near NTS, there is also a monitoring effort that relies on assistance from local communities. Other efforts include reconstruction of radiation doses received by offsite residents during the 1950s and 1960s, determination of the current inventory and distribution of radionuclides in surface soil, and studies of the movement of radionuclides in the desert ecosystem

  14. Lap Shear Testing of Candidate Radiator Panel Adhesives

    Science.gov (United States)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  15. Change of notch impact strength depending on radiation dose and test temperature

    Directory of Open Access Journals (Sweden)

    Martin Bednarik

    2017-01-01

    Full Text Available The main purpose of this paper has been determine the effect of radiation crosslinking on the notch impact strength of polyamides filled with fiberglass. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 66 and 132 kGy were compared and on the test temperature (23–150 °C.

  16. Latch-up and radiation integrated circuit--LURIC: a test chip for CMOS latch-up investigation

    International Nuclear Information System (INIS)

    Estreich, D.B.

    1978-11-01

    A CMOS integrated circuit test chip (Latch-Up and Radiation Integrated Circuit--LURIC) designed for CMOS latch-up and radiation effects research is described. The purpose of LURIC is (a) to provide information on the physics of CMOS latch-up, (b) to study the layout dependence of CMOS latch-up, and (c) to provide special latch-up test structures for the development and verification of a latch-up model. Many devices and test patterns on LURIC are also well suited for radiation effects studies. LURIC contains 86 devices and related test structures. A 12-layer mask set allows both metal gate CMOS and silicon gate ELA (Extended Linear Array) CMOS to be fabricated. Six categories of test devices and related test structures are included. These are (a) the CD4007 metal gate CMOS IC with auxiliary test structures, (b) ELA CMOS cells, (c) field-aided lateral pnp transistors, (d) p-well and substrate spreading resistance test structures, (e) latch-up test structures (simplified symmetrical latch-up paths), and (f) support test patterns (e.g., MOS capacitors, p + n diodes, MOS test transistors, van der Pauw and Kelvin contact resistance test patterns, etc.). A standard probe pattern array has been used on all twenty-four subchips for testing convenience

  17. Design and radiation tests on a LED based emergency evacuation directional lighting

    CERN Document Server

    Trikoupis, Nikolaos

    2017-01-01

    A LED (Light Emitting Diode) based directional lighting system has been designed to indicate the best evacuation direction for applications like the Large Hadron Collider (LHC) tunnel. The design includes constraints for redundancy required by safety systems and for components selection by radiation effects. Most of the literature for radiation effects on LEDs concern digital communications systems, although some recent reports do exist for visible spectrum power LEDs and the reduction in light output versus dose is coherent with the results presented in this paper. Prototype lighting units were irradiated in CERN’s CHARM facility up to a Total Integrated Dose (TID) of 870 Gy and no failures were observed. This paper describes the basic design, presents field tests and the effects of radiation on the LEDs luminance.

  18. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  19. Loading Effect on Tire Noise Radiation

    OpenAIRE

    Cao, Rui; Bolton, J Stuart

    2016-01-01

    Noise radiated by tires is a prominent noise pollution source and it is affected by many different parameters. Here, the effect of static load on tire noise radiation in a laboratory environment was investigated. The measurement was conducted by using the Tire Pavement Testing Apparatus (TPTA), on which a loaded tire can be run at speeds up to 50 km/hr; the tire noise was measured using a nearfield microphone method. The tire loading was varied from 500 to 900 pounds, and several different co...

  20. Indirect radiation effects related to the environmental structure of targets

    International Nuclear Information System (INIS)

    Frankenberg, D.

    1976-01-01

    It is supposed, that in biological systems there are direct as well as indirect radiation effects. Their contributions to lethal effects depend mainly on two different kinds of structures within irradiated systems: the microscopic energy deposition patterns of radiation and the environmental structures of targets. The approach to determine these contributions of the lethal action of ionizing radiation in yeast cells was, to use chemical compounds, which specifically change the radical spectrum of water radiolysis. The efficiency of such chemical compounds in scavenging specifically water radicals was tested in aqueous solutions of thymine molecules, in which indirect radiation effects occur exclusively. The main result is, that the OH'-radical is by far the most effective radical to destroy thymine molecules. The relative contributions of direct and indirect radiation effects to lethal actions of ionizing radiation was investigated in yeast cells. The radical spectrum of water radiolysis was changed by bubbling the cell suspensions with different gases. The main result is, that there are no lethal radiation effects du to the action of water radicals

  1. Radiation effects on the integrity of paper

    International Nuclear Information System (INIS)

    Otero D'Almeida, Maria Luiza; Medeiros Barbosa, Patricia de Souza; Boaratti, Marcelo Fernando Guerra; Borrely, Sueli Ivone

    2009-01-01

    Books and documents attacked by fungi and insects have already been treated by radiation for disinfestations purposes. However, there is still need to investigate the influence of radiation on the cellulose paper structure. The aim of this research was to study the effects of radiation on paper properties, especially those related to strength and appearance. Paper sheets for this study were prepared in the laboratory, using bleached eucalyptus pulp as raw material. No additives were used to concentrate the attention only on the effects of irradiation on the pure cellulose matrix. The samples were irradiated at IPEN's 60 Co Gammacell irradiator with six radiation doses, from 3 to 15 kGy at the dose rate 0.817 Gy/s. The properties of paper sheets were tested after irradiation and compared with unirradiated samples according to ISO methods. No significant changes were detected in paper samples irradiated up to 15 kGy.

  2. Radiation Testing of PICA at the Solar Power Tower

    Science.gov (United States)

    White, Susan

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  3. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  4. [Effects of electromagnetic radiation on health and immune function of operators].

    Science.gov (United States)

    Li, Yan-zhong; Chen, Shao-hua; Zhao, Ke-fu; Gui, Yun; Fang, Si-xin; Xu, Ying; Ma, Zi-jian

    2013-08-01

    To investigate the effects of electromagnetic radiation on the physiological indices and immune function of operators. The general conditions and electromagnetic radiation awareness rate of 205 operators under electromagnetic radiation were evaluated using a self-designed questionnaire. Physical examination, electrocardiography, and routine urine test were performed in these operators. Peripheral blood was collected from the operators under electromagnetic radiation for blood cell counting and biochemical testing, and their peripheral blood lymphocytes were cultured for determination of chromosomal aberrant frequency and micronucleus frequency. The data from these operators (exposure group) were compared with those of 95 ordinary individuals (control group). The chief complaint of giddiness, tiredness, dizziness, and amnesia showed significant differences between the exposure group and control group (P electromagnetic radiation damage was significantly higher in the exposure group than in the control group. The difference in bradycardia was significant between the two groups (P Electromagnetic radiation may lead to the changes in physiological indices, genetic effects, and immune function and affect the health and immune function in operators. The adverse effects are increased as the working years increase. So it is important to strengthen occupational protection of operators under electromagnetic radiation.

  5. Effects of gamma radiation on commercial operational amplifiers

    International Nuclear Information System (INIS)

    Claro, Luiz H.; Santos, Jose A. dos

    2009-01-01

    The operational amplifiers are widely used in nuclear instrumentation. Their applications span the signal conditioning circuits, analog instrumentation, amplifiers, converters, oscillators and others. If an operational amplifier is used to work in a radiation environment, the device suffers degradation in its performance leading to the bad work in the systems. Some of these devices are designed as rad-hard components and therefore the effects of radiation damage are minimized, however its main disadvantage is the high cost and difficult to find in the market. As an alternative one can use the conventional electronic components available in the market and named COTS (Commercially Available Off-The-Shelf) but they must be tested under a radiation environment. In this work the effect of the radiation damage is studied in two typical operational amplifiers. Some electric parameters of these devices were measured for different gamma radiation doses and they were working at different input signal frequencies. A 60 Co isotopic radiation source was used and the results show that there is a certain degradation of the device depending on the radiation absorbed dose. (author)

  6. Experimental test of liquid droplet radiator performance

    Science.gov (United States)

    Mattick, A. T.; Simon, M. A.

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.

  7. Combined effect of gamma radiation and stress cracking in polystyrene

    International Nuclear Information System (INIS)

    Amorim, Fernando A.; Rabello, Marcelo S.; Silva, Leonardo G.A.

    2011-01-01

    This study aimed to evaluate the combined effect of gamma radiation and stress cracking in polystyrene. Three different grades of polystyrene were analysed. The material was submitted to tensile tests and relaxation, analysis of molecular weight and determination of crosslinking. The results showed an increase in tensile strength in the specimens that had been exposed to radiation. The higher the molecular weight polystyrene showed better mechanical properties and after suffering the effects of gamma radiation there was an increase of 5.67% in the resistance to stress cracking effects. (author)

  8. Predicting the effect of ionising radiation on biological populations: testing of a non-linear Leslie model applied to a small mammal population

    International Nuclear Information System (INIS)

    Monte, Luigi

    2013-01-01

    The present work describes the application of a non-linear Leslie model for predicting the effects of ionising radiation on wild populations. The model assumes that, for protracted chronic irradiation, the effect-dose relationship is linear. In particular, the effects of radiation are modelled by relating the increase in the mortality rates of the individuals to the dose rates through a proportionality factor C. The model was tested using independent data and information from a series of experiments that were aimed at assessing the response to radiation of wild populations of meadow voles and whose results were described in the international literature. The comparison of the model results with the data selected from the above mentioned experiments showed that the model overestimated the detrimental effects of radiation on the size of irradiated populations when the values of C were within the range derived from the median lethal dose (L 50 ) for small mammals. The described non-linear model suggests that the non-expressed biotic potential of the species whose growth is limited by processes of environmental resistance, such as the competition among the individuals of the same or of different species for the exploitation of the available resources, can be a factor that determines a more effective response of population to the radiation effects. -- Highlights: • A model to assess the radiation effects on wild population is described. • The model is based on non-linear Leslie matrix. • The model is applied to small mammals living in an irradiated meadow. • Model output is conservative if effect-dose factor estimated from L 50 is used. • Systemic response to stress of populations in competitive conditions may be more effective

  9. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity

    International Nuclear Information System (INIS)

    Kudryasheva, N.S.; Rozhko, T.V.

    2015-01-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1 – absence of effects (stress recognition), 2 – activation (adaptive response), and 3 – inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. - Highlights: • Luminous bacteria demonstrate nonlinear dose-effect relation in radioactive solutions. • Response to low-dose radiation includes 3 stages: threshold, activation, inhibition. • ROS are responsible for low-dose effects of alpha-emitting radionuclides. • Luminous marine bacteria are a convenient tool to study radiation hormesis

  10. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.; Johnson, M. B.; Hodgkinson, A.; Loew, T.; Benitez, J. Y.; Todd, D. S.; Xie, D. Z.; Perry, T.; Phair, L.; Bernsteiny, L. A.; Bevins, J.; Brown, J. A.; Goldblum, B. L.; Harasty, M.; Harrig, K. P.; Laplace, T. A.; Matthews, E. F.; Bushmaker, A.; Walker, D.; Oklejas, V.; Hopkins, A. R.; Bleuel, D. L.; Chen, J.; Cronin, S. B.

    2017-10-01

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiation testing of carbon nanotube field effect transistor will be discussed.

  11. Single-event effect ground test issues

    International Nuclear Information System (INIS)

    Koga, R.

    1996-01-01

    Ground-based single event effect (SEE) testing of microcircuits permits characterization of device susceptibility to various radiation induced disturbances, including: (1) single event upset (SEU) and single event latchup (SEL) in digital microcircuits; (2) single event gate rupture (SEGR), and single event burnout (SEB) in power transistors; and (3) bit errors in photonic devices. These characterizations can then be used to generate predictions of device performance in the space radiation environment. This paper provides a general overview of ground-based SEE testing and examines in critical depth several underlying conceptual constructs relevant to the conduct of such tests and to the proper interpretation of results. These more traditional issues are contrasted with emerging concerns related to the testing of modern, advanced microcircuits

  12. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  13. Health effects of low level radiation

    International Nuclear Information System (INIS)

    Hattori, Sadao

    1998-01-01

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted 'Radiation Hormesis' on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm 'is it true or not?' After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey's claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  14. Health effects of low level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1998-12-31

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted `Radiation Hormesis` on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm `is it true or not?` After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey`s claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  15. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  16. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  17. Radiation Effects in the Space Telecommunications Environment

    International Nuclear Information System (INIS)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  18. Radiation Effects on Ytterbium-doped Optical Fibers

    Science.gov (United States)

    2014-06-02

    conducted on Er- doped fiber amplifiers (Lezius, et al., 2012; Ahrens, et al., 1999; Ahrens, Jaques , LuValle, DiGiovanni, & Windeler, 2001; Ott, 2004...Ahrens, R. G., Abate, J. A., Jaques , J. J., Presby, H. M., Fields, A. B., DiGiovanni, D. J., LuValle, M. J. (1999). Radiation reliability of rare... Jaques , J. J., LuValle, M. J., DiGiovanni, D. J., & Windeler, R. S. (2001). Radiation effects on optical fibers and amplifiers. Testing, Reliability

  19. Cobalt-60 simulation of LOCA [loss of coolant accident] radiation effects

    International Nuclear Information System (INIS)

    Buckalew, W.H.

    1989-07-01

    The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs

  20. Confirmation of soil radiation damping from test versus analysis

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Mukhim, G.S.; Desmond, T.P.

    1987-01-01

    The work was performed to demonstrate that soil-structure interaction effects for nuclear plant structures can be accurately (and conservatively) predicted using the finite element or soil spring methods of soil-structure interaction analysis. Further, the work was done to investigate the relative importance of soil radiation versus soil material damping in the total soil damping analytical treatment. The analytical work was benchmarked with forced vibration tests of a concrete circular slab resting on the soil surface. The applied loading was in the form of a suddenly applied pulse load, or snapback. The measured responses of the slap represent the free vibration of the slab after the pulse load has been applied. This simplifies the interpretation of soil damping, by the use of the logarithmic decay formulation. To make comparisons with the test results, the damping data calculated from the analytical models is also based on the logarithmic decay formulation. An attempt is made to differentiate the observed damped behavior of the concrete slab as being caused by soil radiation versus soil material damping. It is concluded that both the traditional soil radiation and material damping analytical simplifications are validated by the observed responses. It is concluded that arbitrary 'conservative' assumptions traditionally made in nuclear plant soil-structure interaction analyses are indeed arbitrary, and not born out by physical evidence. The amount of conservatism introduced by limiting total soil damping to values like 5% to 10% can be large. For the test slab sizes investigated, total soil damping is about 25%. For full size nuclear plant foundations, total soil damping is commonly in the 35% to 70% range. The authors suggest that full soil damping values (the combined radiation and material damping) should be used in the design, backfit and margin assessment of nuclear plants. (orig./HP)

  1. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-05-01

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  2. Failure modes induced by natural radiation environments on DRAM memories: study, test methodology and mitigation technique

    International Nuclear Information System (INIS)

    Bougerol, A.

    2011-05-01

    DRAMs are frequently used in space and aeronautic systems. Their sensitivity to cosmic radiations have to be known in order to satisfy reliability requirements for critical applications. These evaluations are traditionally done with particle accelerators. However, devices become more complex with technology integration. Therefore new effects appear, inducing longer and more expensive tests. There is a complementary solution: the pulsed laser, which triggers similar effects as particles. Thanks to these two test tools, main DRAM radiation failure modes were studied: SEUs (Single Event Upset) in memory blocks, and SEFIs (Single Event Functional Interrupt) in peripheral circuits. This work demonstrates the influence of test patterns on SEU and SEFI sensitivities depending on technology used. In addition, this study identifies the origin of the most frequent type of SEFIs. Moreover, laser techniques were developed to quantify sensitive surfaces of the different effects. This work led to a new test methodology for industry, in order to optimize test cost and efficiency using both pulsed laser beams and particle accelerators. Finally, a new fault tolerant technique is proposed: based on DRAM cell radiation immunity when discharged, this technique allows to correct all bits of a logic word. (author)

  3. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  4. Effects of radiation-counselling convergence education on radiation awareness

    International Nuclear Information System (INIS)

    Seoung, Youl Hun

    2017-01-01

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit

  5. Effects of radiation-counselling convergence education on radiation awareness

    Energy Technology Data Exchange (ETDEWEB)

    Seoung, Youl Hun [Dept. of Radiological Science, College of Health Science, Cheongju University, Cheongju (Korea, Republic of)

    2017-06-15

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit.

  6. Effect of ionizing radiation on DNA-mediated gene transfer efficiency

    International Nuclear Information System (INIS)

    Rubin, J.S.; Hall, E.J.; Hei, T.K.

    1986-01-01

    Ionizing radiation causes a number of molecular changes in cells including DNA damage and gene amplification. In this study the authors examined whether radiation can effect the efficiency of integration and expression of exogenous DNA sequences. They examined both 137 Cs γ rays and various monoenergetic neutron beams. This enabled them to test whether the LET or RBE of the radiation had any effect. Rat2 cells were transfected with various amounts of the bacterial plasmid pSV2-GPT along with carrier DNA for 24 hours

  7. Compilation of radiation damage test data cable insulating materials

    CERN Document Server

    Schönbacher, H; CERN. Geneva

    1979-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: ethylene- propylene rubber, Hypalon, neoprene rubber, polyethylene, polyurethane, polyvinylchloride, silicone rubber, etc. The materials have been irradiated in a nuclear reactor to integrated absorbed doses from 5*10/sup 5/ to 5*10/sup 6/ Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples. The results are presented in the form of tables and graphs, to show the effect of the absorbed dose on the measured properties. (13 refs).

  8. PEP radiation shielding tests in SLAC A Beam

    International Nuclear Information System (INIS)

    Ash, W.; DeStaebler, H.; Harris, J.; Jenkins, T.; Murray, J.

    1977-09-01

    Radiation shielding tests designed to simulate possible conditions in and around the PEP experimental halls were conducted. The SLAC A Beam was targeted in the block tunnel at a point about midway between End Station A and Beam Dump East. At that site it was relatively easy to rearrange the concrete block structure to simulate the various shielding configurations under consideration for PEP. Extensive surveys of neutron and ionizing radiation were made. Complete results of the shielding tests are given

  9. Biological radiation effects

    International Nuclear Information System (INIS)

    Kiefer, J.

    1989-01-01

    The book covers all aspects of biological radiation effects. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects)

  10. Design, fabrication, and dynamic testing of a V-groove radiator mechanical development unit

    Science.gov (United States)

    Petrick, S. Walter; Bard, Steven

    1988-01-01

    This paper describes the design, fabrication, and dynamic testing of a V-groove radiator development unit. The intended goal was to survive the dynamic environment of the Mars Observer mission. The development unit was designed to achieve a temperature of 80 K with a heat load of about 80 milliwatts. An analysis was performed to predict the thermal performance of the development unit. The radiator with a mass mockup of a Gamma Ray Spectrometer detector, the most massive of the candidate Mars Observer instrument detectors (1.7 Kg), passed vibration and acoustic testing to the Mars Observer requirements in effect at that time.

  11. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  12. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  13. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  14. Biological effects of particle radiation

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko

    1988-01-01

    Conventional radiations such as photons, gamma rays or electrons show several physical or biological disadvantages to bring tumors to cure, therefore, more and more attentions is being paid to new modalitie such as fast neutrons, protons, negative pions and heavy ions, which are expected to overcome some of the defects of the conventional radiations. Except for fast neutrons, these particle radiations show excellet physical dose localization in tissue, moreover, in terms of biological effects, they demonstrate several features compared to conventional radiations, namely low oxygen enhancement ratio, high value of relative biological effectiveness, smaller cellular recovery, larger therapeutic gain factor and less cell cycle dependency in radiation sensitivity. In present paper the biological effects of particle radiations are shown comparing to the effects of conventional radiations. (author)

  15. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Valevich, M.I.

    1984-01-01

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  16. Biological effects of ionising radiation

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper reports the proceedings of a conference organised jointly by Friends of the Earth (U.K.) and Greenpeace (International). The aim of the conference was to discuss the effects of low level radiation, particularly on man, within the terms of dose/risk relationships. The topics discussed included: sources of radiation, radiation discharges from nuclear establishments, predictive modelling of radiation hazards, radiation effects at Hiroshima, low dose effects and ICRP dose limits, variation in sensitivity to radiation, and the link between childhood cancer and nuclear power. (U.K.)

  17. In situ mechanical-radiation effects test capsule for simulating fusion material environments

    International Nuclear Information System (INIS)

    Christensen, K.E.; Bennett, G.A.; Sommer, W.F.

    1981-01-01

    Conditions of radiation and simultaneous cyclic stress on materials are inherent in advanced energy source designs such as inertially and magnetically confined controlled thermonuclear reactors. A test capsule capable of applying a cyclic stress to test specimens while they are being irradiated in the 800-MeV proton beam at the Clinton P. Anderson Los Alamos Meson Physics Facility has been developed. The design and performance of this device are discussed in this report. This machine has facilities for seven pairs of differential samples; one sample of a pair receives an applied cyclic stress and its companion in an identical flux will be the unstressed control. Control of the sample temperature and in situ monitoring of sample elongation and load are provided in the design. Results of an earlier experiment will be discussed, along with those of preliminary bench tests of the redesigned capsule

  18. Design of offline measuring system for radiation damage effects on linear CCD

    International Nuclear Information System (INIS)

    Zhang Yong; Tang Benqi; Xiao Zhigang; Wang Zujun; Huang Fang; Huang Shaoyan

    2004-01-01

    The paper discusses the hardware design of offline measuring system for radiation damage effects on linear CCD. Some credible results were achieved by using this system. The test results indicate that the system is available for the study of the radiation damage effects on linear CCD. (authors)

  19. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  20. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    Science.gov (United States)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  1. Radiation effects and radiation risks

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.

    1988-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig./MG) With 8 maps in appendix [de

  2. Biological radiation effects

    International Nuclear Information System (INIS)

    Sejourne, Michele.

    1977-01-01

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man [fr

  3. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  4. The combined effect of gamma radiation and stress cracking in polycarbonate

    International Nuclear Information System (INIS)

    Melo, Raphaela N. de; Rabello, Marcelo S.

    2009-01-01

    In this work the combined effect of gamma irradiation and stress cracking was studied in polycarbonate (PC). Tensile test bars were produced by injection moulding and then exposed to different doses of gamma radiation. After that they were submitted to the contact with isopropanol, the stress cracking agent used in this work. The specimens were tested for mechanical properties, viscosity molecular weight and fractography. The results indicated that the previous radiation intensified the stress cracking effects, as evidenced by the reduction in tensile properties and surface damage caused to the samples. (author)

  5. Notes on radiation effects on materials

    International Nuclear Information System (INIS)

    Anno, J.N.

    1984-01-01

    The effects of radiation from nuclear reactions on various classes of materials are examined in an introductory textbook for students of nuclear engineering. Topics discussed include the units and general scale of radiation damage, fundamental interactions of neutrons and gamma rays with materials, transient radiation effects on electrical components, radiation effects on organic materials and on steels, nuclear fission effects, surface effects of nuclear radiations, radiation effects on biological material, and neutron and gamma-ray dosimetry. Graphs, diagrams, tables of numerical data, and problems for each chapter are provided. 122 references

  6. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  7. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan.

    Science.gov (United States)

    Grosche, Bernd; Zhunussova, Tamara; Apsalikov, Kazbek; Kesminiene, Ausrele

    2015-01-01

    The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today's radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  8. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  9. Study of effect ultraviolet radiation on Aspergillus Flavus and Aspergillus Parasiticus

    International Nuclear Information System (INIS)

    Ghafourian, H.; Kafaei, F.; Raouf, J.B.

    2000-01-01

    In this article the results of ultraviolet radiation effects on Aspergillus Flavus and Aspergillus parasiticus to reach the quality control standards are presented. The purpose was to test the effect of ultraviolet radiation in 254 nanometer wavelength for fungi decontamination with respect to the exposure time of radiation and the distance between samples and radiation source. The ultraviolet radiation effects on plates containing Aspergillus Flavus and Aspergillus Parasiticus fungi were studied in the exposure time duration of 30, to 360 seconds of a fixed distance, and also for variable distances from 10 to 40 cm at a given exposure time. It is shown that in the exposure time of more than 360 second the ultraviolet radiation exposure highly decreases the number of Aspergillus Flavus and Aspergillus Parasiticus fungi colonies. By reducing the distance, the number of colonies decreases and it is minimized at a 10 cm distance in the time exposure of 360 second. The above results show that the ultraviolet radiation is an effective method for food decontamination and can be used in industry

  10. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  11. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  12. A-bomb radiation effects digest

    International Nuclear Information System (INIS)

    Shigematsu, Itsuzo; Akiyama, Mitoshi; Sasaki, Hideo; Ito, Chikako; Kamada, Nanao.

    1993-01-01

    This publication is the digest of the book 'Genbaku Hoshasen no Jintai Eikyo (Effects of A-bomb Radiation on the Human Body)' (365p.), published in Japanese by Hiroshima International Council for Medical Care of the Radiation-Exposed. Following a brief description on the damage of the atomic bomb, the subjects of malignant tumors, endocrine and metabolic deseases, ocular lesions, dermatologic effects, prenatal exposure, chromosoal aberrations, mutations, sensitivity to radiation, immune function, genetic effects and other effects of radiation are summarized. (J.P.N.)

  13. Report of the actual conditions of the radiation exposed residents near the former Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Kawano, Noriyuki; Taooka, Yasuyuki; Hiraoka, Takashi; Hoshi, Masaharu; Shaimardanovich, Z.Z.

    2004-01-01

    Hiroshima Peace Science Consortium, established in 2002 as part of the local cooperation project of Hiroshima University for peace science, conducted a field research in Semipalatinsk and related areas in 2002 to collect and analyze data on health effects of radiation experiences of people exposed to nuclear test radiation. This book is a report of the research and contains Introductory remarks; 6 chapters of Overview of the study, Medical information analysis on the radiation exposed residents near the former Semipalatinsk nuclear test site using questionnaire, Content analysis of testimonies written by hibakusha near the nuclear test site of Semipalatinsk, Comments on the interview, Significance of collecting testimonies of those exposed to radiation in Semipalatinsk, Kazakhstan/in comparison with those of Hiroshima and Nagasaki, and Future tasks and prospective; Conclusion; and 2 Appendices of Research on the conditions of radiation exposure survey response sheet and Testimonies. (N.I.)

  14. Effects of radiation and porphyrin on mitosis and chromosomes in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Tan, J.C.; Huang, C.C.; Fiel, R.J.

    1976-01-01

    The effect on mitosis of a human hematopoietic cell line RPMI-1788 treated with a metal chelate (Zn ++ ) of meso-tetra (p-carboxyphenyl) porphine (Zn-TCPP) alone at various concentrations or in combination with gamma-irradiation at various doses were studied. The results showed that both Zn-TCPP and radiation were effective in interfering with normal mitosis and that the effect of radiation was relatively more effective. Data also suggest interacting effects between Zn-TCPP and gamma-irradiation. At low doses of radiation, Zn-TCPP potentiated the effect of radiation. The reverse seemed to be true at a high dose of radiation. The effects of two porphyrins (Zn-TCPP and hematoporphyrin) and radiation on chromosomes were also studied. Chromosomal aberrations characteristic of radiation were observed. The porphyrins were found not to be effective chromosome-breaking agents under the experimental conditions tested

  15. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  16. Radiation effects at ISABELLE

    International Nuclear Information System (INIS)

    Sanger, P.A.; Danby, G.T.

    1975-01-01

    Shielding, radiation damage, and radiation heating at the planned ISABELLE storage rings were considered. Radiation shielding studies were reviewed and were found to be adequate for present day dosage limits. Radiation damage could be encountered in some extreme cases, but is not expected to limit the performance of the superconducting magnets. Experiments to study the effect of radiation heating on actual magnets are recommended

  17. A screening model for depleted uranium testing using environmental radiation monitoring data

    International Nuclear Information System (INIS)

    Dunfrund, F.L.; Ebinger, M.H.; Hansen, W.R.

    1996-01-01

    Information from an ecological risk assessment of depleted uranium test areas at Yuma Proving Ground (YPG) was used to update the required environmental radiation monitoring (ERM) plan. Data to be collected for the ERM can also be used to evaluate the potential for adverse radiological and toxicological effects to terrestrial reptiles and mammals in the affected areas. We developed a spreadsheet-based screening model that incorporates the ERM data and associated uncertainties. The purpose of the model is to provide a conservative estimate of radiological exposure of terrestrial, biota to DU using the ERM data. The uncertainty in the estimate is also predicted so that the variation in the radiological exposure can be used in assessing potential adverse effects from DU testing. Toxicological effects are evaluated as well as radiological effects in the same program using the same data. Our presentation shows an example data set, model calculations, and the report of expected radiation dose rates and probable kidney burdens of select mammals and reptiles. The model can also be used in an inverse mode to calculate the soil concentration required to give either a radiological dose that would produce a potential adverse effect such as fatal cancer or a toxicological dose that would result in nephrotoxic effects in mammals

  18. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  19. Evaluating shielding effectiveness for reducing space radiation cancer risks

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2006-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDFs are used in significance tests for evaluating the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDFs. Competing mortality risks and functional correlations in radiation quality factor uncertainties are included in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the upper value of 95% confidence interval (CI) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions ( 180d) or Mars missions, GCR risks may exceed radiation risk limits that are based on acceptable levels of risk. For example, the upper 95% CI exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

  20. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Hodge, Chris A.

    2007-01-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  1. Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Christopher Hodge, Raymond Keegan

    2007-01-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  2. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  3. The effect of γ-radiation on smoked fish using short-term mutagenicity assays

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.; Banzon, R.B.

    1989-01-01

    The effect of γ-radiation on the mutagenicity potential of wood-smoked fish was investigated. Smoked fish were irradiated with radiation doses of 2.0, 4.0, 6.0 and 8.0 kGy. The DMSO extracts of non-radiated and irradiated smoked fish were tested for mutagenicity using the Ames plate incorporation assay, host-mediated assay, and the micronucleus test. It was observed that γ-irradiation did not induce any significant increase in the number of revertants of TA98, TA100 and TA104 as compared with the non-radiated smoked fish. Results of the host-mediated assay and the micronucleus test showed no difference in the mutagenic response of non-radiated in irradiated smoked fish. The results indicate thet γ-radiation does not introduce mutagens in smoked fish. (author). 17 refs.; 6 tabs

  4. Photonuclear and Radiation Effects Testing with a Refurbished 20 MeV Medical Electron Linac

    CERN Document Server

    Webb, Timothy; Beezhold, Wendland; De Veaux, Linda C; Harmon, Frank; Petrisko, Jill E; Spaulding, Randy

    2005-01-01

    An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.

  5. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  6. Radiation effect on implanted pacemakers

    International Nuclear Information System (INIS)

    Pourhamidi, A.H.

    1983-01-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator

  7. Influence of γ ionizing radiation on anti-oxidative effect of vegetables polyphenolic parts

    International Nuclear Information System (INIS)

    Stuyck, S.; Connaulte, J.; Lesgards, G.; Prost, M.; Raffi, J.

    1998-01-01

    Ionizing radiation of vegetables is a cleaning up and preservation physical treatment which consists in submitting them to γ radiation, X radiation or electrons beam. This study deals with the influence of γ radiation on anti-oxidative effect of vegetables polyphenolic parts. In that purpose, we use a simple biological test based on erythrocytes hemolysis. (authors)

  8. The effects and control of radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1982-12-01

    The subject is discussed under the headings: introduction; ionising radiation (alpha and beta particles, gamma- and X-radiation, neutrons, half-life, sources of radiation); biological effects; risk estimates (somatic) (early effects, delayed effects); risk estimates (hereditary); control of radiation; risk estimates (accidents). (U.K.)

  9. Microwave radiation is effective at disinfecting dental stone surfaces without changing their physical properties.

    Science.gov (United States)

    Bona, Ariel José; Amaral-Brito, Mauro Gustavo; Rodrigues, José Augusto; Peruzzo, Daiane Cristina; França, Fabiana Mantovani Gomes

    2017-01-01

    The aims of this study were to evaluate the effectiveness of different microwave radiation regimens for disinfection of type IV dental stone surfaces and to assess the influence of these regimens on surface roughness and dimensional change following disinfection. Three hundred cylindrical (20 × 2-mm) test specimens were made in type IV stone and divided into subgroups of 20 according to the microorganisms tested (Staphylococcus aureus, Escherichia coli, or Candida albicans) and the 900-W microwave radiation protocol (cycles of 3, 5, or 7 minutes; a positive control; or a negative control). To test physical changes, 80 test specimens were made with the same dimensions except that they had 2 parallel and symmetrical indentations measuring 8 × 4 mm. These specimens were divided into 4 subgroups of 20 each (a subgroup for each radiation time and a negative control). The mean dimensional change and roughness data were analyzed by mixed models for repeated measures and Tukey-Kramer tests. Disinfection was analyzed with descriptive statistics. For E coli and C albicans, all radiation times proved effective at sterilizing the test specimens. For S aureus, sterilization was achieved with 5 and 7 minutes of exposure; however, colonies were observed in 10 Petri dishes (50%) exposed to 3 minutes of microwave radiation. No statistically significant difference in dimensional change or surface roughness was observed for any radiation regimen (P > 0.05).

  10. Radiation Requirements and Testing of Cryogenic Thermometers for the Ilc

    Science.gov (United States)

    Barnett, T.; Filippov, Yu. P.; Filippova, E. Yu.; Mokhov, N. V.; Nakao, N.; Klebaner, A. L.; Korenev, S. A.; Theilacker, J. C.; Trenikhina, J.; Vaziri, K.

    2008-03-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox® and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results.

  11. Radiation requirements and testing of cryogenic thermometers for the ILC

    International Nuclear Information System (INIS)

    Barnett, T.; Filippov, Yu.P.; Mokhov, N.V.; Nakao, N.; Klebaner, A.L.; Korenev, S.A.; Theilacker, J.C.; Trenikhina, J.; Vaziri, K.

    2007-01-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox(reg s ign) and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results

  12. Radiation Therapy Side Effects

    Science.gov (United States)

    Radiation therapy has side effects because it not only kills or slows the growth of cancer cells, it can also affect nearby healthy cells. Many people who get radiation therapy experience fatigue. Other side effects depend on the part of the body that is being treated. Learn more about possible side effects.

  13. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1990 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory -- Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release

  14. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation.

    Science.gov (United States)

    Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N

    2018-06-01

    The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50  > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50  solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Over-the-air Radiated Testing of Millimeter-Wave Beam-steerable Devices in a Cost-Effective Measurement Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Rumney, Moray

    2018-01-01

    antenna selection scheme is proposed. This setup is suitable for evaluation of beam-steerable devices, including both base station (BS) and user equipment (UE) devices. The requirements for the test system design are analyzed, including the measurement range, number of OTA antennas, number of active OTA...... conditions. In this article, radiated testing methods are reviewed, with a focus on their principle and applicability for beam steerable mmWave devices. To explore the spatial sparsity of mmWave channel profiles, a cost-effective simplified 3D sectored multi-probe anechoic chamber (MPAC) system with an OTA......With the severe spectrum congestion of sub-6GHz cellular systems, large-scale antenna systems in the millimeter-wave (mmWave) bands can potentially meet the high data rate envisioned for fifth generation (5G) communications. Performance evaluation of antenna systems is an essential step...

  16. Effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1981-01-01

    The available evidence on the effects of radiation on man and the predictions that have been made of possible low level effects are reviewed. Data from United Nations Scientific Committee of the Effects of Atomic Radiation (UNSCEAR) and the committee on the Biological Effects of Ionising Radiation (BEIR) is used to illustrate the acute, delayed and hereditary effects of high dose levels. The effects of low dose levels are discussed on the assumption that both somatic and hereditary effects can be predicted on the basis of linear extrapolation from high dose effects. (U.K.)

  17. Radiation effect of gate controlled lateral PNP BJTs

    International Nuclear Information System (INIS)

    Xi Shanbin; Zhou Dong; Lu Wu; Ren Diyuan; Wen Lin; Sun Jing; Wang Zhikuan

    2012-01-01

    Design and fabricate a new test structure of bipolar device: the gate controlled later PNP bipolar transistor (GCLPNP BJT), then sealed it together with the normal lateral PNP bipolar transistor which is made under the same manufacture process. Then 60 Co-γ radiation effects and annealing behaviors of these two structures are investigated. The results show that the response about base current, collector current, access base current and normalized current gain of GCLPNP bipolar transistor are almost identical to the normal one. Radiation induced defects in the GCLPNP bipolar transistor is separated quantitatively. Studying on the quantitative change of radiation induced defects in the domestic gate controlled bipolar transistor should be a useful way to research the change of radiation induced charges of normal PNP bipolar transistor. (authors)

  18. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    Science.gov (United States)

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. An evaluation of the effect of natural background radiation on cancer incidence

    International Nuclear Information System (INIS)

    Cohen, Jerry J.

    1978-01-01

    Previous studies on the relationship between levels of natural background radiation and cancer incidence indicate no significant correlation. This observation is shown to be consistent with certain predicted effect levels of ionizing radiation on malignancy production (BEIR, ICRP). Other theoretical predictions on the effects of ionizing radiation indicate induction rates to be as high as 8 x 10 -3 cancers/person-rem. Assuming this factor were correct, then roughly one-half of the cancer incidence in the USA could be attributed to exposure to natural background radiation. By statistically testing various hypothetically assigned cancer induction rates against observed data, it is possible to develop a probabilistic perspective on the cause-effect relationship. Tests have been performed using normalized (by age, death rate, etc.) cancer incidence by state against levels of background radiation. This evaluation allows for the determination of the probability of observing the actual data given that the hypotheses were correct. Graphic relationships between hypothetically assigned radiation induced cancer rates vs. the probability of observing the actual incidence are developed and presented. It is shown that if the cancer induction rate were in excess of ∼10 -3 cancers/person-rem, it would be highly improbable that there would, in fact, be a lack of correlation between the rates of natural background radiation and cancer incidence. (author)

  20. Current research in Canada on biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1980-05-01

    A survey of current research in Canada on the biological effects of ionizing radiation has been compiled. The list of projects has been classified according to structure (organizational state of the test system) as well as according to the type of effects. Using several assumptions, ballpark estimates of expenditures on these activities have been made. Agencies funding these research activities have been tabulated and the break-down of research in government laboratories and in academic institutions has been designated. Wherever possible, comparisons have been made outlining differences or similarities that exist between the United States and Canada concerning biological radiation research. It has been concluded that relevant research in this area in Canada is inadequate. Wherever possible, strengths and weaknesses in radiation biology programs have been indicated. The most promising course for Canada to follow is to support adequately fundamental studies of the biological effects of radiation. (auth)

  1. The biological effects of radiation

    International Nuclear Information System (INIS)

    Sykes, D.A.

    1979-01-01

    The hazards of radiations to man are briefly covered in this paper. The natural background sources of radiations are stated and their resulting doses are compared to those received voluntarily by man. The basis of how radiations cause biological damage is given and the resulting somatic effects are shown for varying magnitude of dose. Risk estimates are given for cancer induction and genetic effects are briefly discussed. Finally four case studies of radiation damage to humans are examined exemplifying the symptoms of large doses of radiations [af

  2. Radiation loading effect proportional chamber on the performances

    International Nuclear Information System (INIS)

    Alekseev, T.D.; Kalinina, N.A.; Karpukhin, V.V.; Kruglov, V.V.; Khazins, D.M.

    1980-01-01

    The effect of a space charge which appears under the effect of radiation loading on counting characteristics of a proportional chamber, is experimentally investigated. Calculations are made which take into account the effect of a space charge of positive ions formed in the chamber. The investigations have been carried out on the test board which consists of a one-coordinate proportional chamber, a telescope of two scintillation counters and a collimated 90 Sr β-source. The proportional chamber has the 160x160 mm dimensions. The signal wires with the 50 μm diameter are located with the step of s=10 mm. High-voltage planes are coiled with a wire with the 100 μm diameter and a 2 mm step. The distance between high-voltage planes are 18 mm. The chamber is blown through with a gaseous mixture, its composition is 57% Ar+38% CH 4 +5% (OCH 3 ) 2 CH 2 . When carrying out measurements in wide ranges, the density of radiation loading and the amplifier threshold are changed. The experimental results show a considerable effect of radiation loading and the value of amplifier threshold on the value of a counting characteristic. This should be taken into account when estimating the performance of a proportional chamber according to board testing using radioactive sources, as conditions for investigations are usually different from those of a physical experiment on an accelerator

  3. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  4. Protective effect of Hongxue tea mixture against radiation injury in mice

    International Nuclear Information System (INIS)

    Zhao Chun; Zhang Xuehui; Wang Qi

    2005-01-01

    Objective: To develop health food of anti-radiation among biological source in Yunnan. Methods: Screening test was done of the health food of biological source of anti-radiation injury in mice. It is indicated that Hong-Xue Tea Mixture among the biological source has the effect against radiation injury, observing experiment of dose-effect of Hong-Xue Tea Mixture was done. Micronuclei in the bone marrow polychromatophilic erythrocytes in each dose group of mice were examined, leucocytes number and 30 day survival rate of mice following whole-body 5.0 Gy γ irradiation were also determined. Results: Research showed that Hong-Xue Tea Mixture and Spirulina Platensis Mixture among the biological source have protective effect against radiation injury in mice. Observing experiment of dose-effect of Hong-Xue Tea Mixture show that low, medium and high dose of Hong-Xue Tea Mixture can significantly decrease bone marrow PECMN rate of mice, increase leucocytes number and 30 day survival rate. Conclusion: Hong-Xue Tea Mixture has potent protective effects against radiation injury in mice. (authors)

  5. Radiation effects on polyaniline

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kondo, Kenjiro; Suzuki, Takenori; Numajiri, Masaharu; Miura, Taichi; Doi, Shuji; Ohnishi, Toshihiro.

    1992-01-01

    Effects of γ-irradiation on electrical conductivity of polyaniline were investigated. A drastic increase of the conductivity due to radiation-induced doping was observed in combined systems of polyaniline films and halogen-containing polymers. This effect can be applied to measure an integrated radiation dose. (author)

  6. Untargeted effects of ionizing radiation: Implications for radiation pathology

    International Nuclear Information System (INIS)

    Wright, Eric G; Coates, Philip J

    2006-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, radiation-induced genomic instability in vivo may not necessarily be a reflection of genomically unstable cells. Rather the damage may reflect responses to ongoing production of damaging signals; i.e. bystander responses, but not in the sense used to describe the rapidly induced effects resulting from direct interaction of irradiated and non-irradiated cells. The findings are consistent with a delayed and long-lived tissue reaction to radiation injury characteristic of an inflammatory response with the potential for persisting bystander-mediated damage. An important implication of the findings is that contrary to conventional radiobiological dogma and interpretation of epidemiologically-based risk estimates, ionizing radiation may contribute to malignancy and particularly childhood leukaemia by promoting initiated cells rather than being the initiating agent. Untargeted mechanisms may also contribute to other pathological consequences

  7. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  8. Topical Day on Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Baatout, S.; Jacquet, P.

    1997-01-01

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  9. Protective role of Tinospora cordifolia extract against radiation-induced qualitative, quantitative and biochemical alterations in testes

    International Nuclear Information System (INIS)

    Sharma, Priyanka; Parmar, Jyoti; Sharma, Priyanka; Verma, Preeti; Goyal, P.K.

    2012-01-01

    In today's changing global scenario, ionizing radiation is considered as most potent cause of oxidative stress mediated by free radical flux which induces severe damage at various hierarchical levels in the organization in the living organisms. Testis is a highly prolific tissue with fast cellular renewal and poor antioxidant defense; therefore it becomes an easy target for the radiation-induced free radicals that have long been suggested as major cause of male infertility. Chemical radioprotection is an important strategy to countermeasure the deleterious effects of radiation. Several Indian medicinal plants are rich source of antioxidants and these have been used for the treatment of ailments. Tinospora cordifolia, commonly known as amrita, is one of the plants that have several pharmacological and therapeutic properties. Therefore, the present study was performed to evaluate the deleterious effects of semi lethal dose of gamma radiation on testicular tissue and their possible inhibition by Tinospora cordifolia root extract (TCE). For this purpose, healthy Swiss albino male mice were selected from an inbred colony and divided into four groups. Group I (normal) was administered double distilled water (DDW) volume equal to TCE (75 mg/kg.b.wt/animal) by oral gavage. Group II was orally supplemented TCE as 75 mg/kg. b.wt once daily for 5 consecutive days. Group III (irradiated control) received DDW orally equivalent to TCE for 5 days then exposed to 5 Gy gamma radiation. Group IV (experimental) was administered TCE as in Group II and exposed to radiation (as in Group III). Irradiation resulted into significant decrease in the frequency of different spermatogenic cell counts along with severe histo-pathological lesions up to 7th day of irradiation in testes of irradiated control animals, thereafter, recovery followed towards the normal architecture. TCE pretreatment effectively prevented radiation induced such alterations in cellular counts and testicular injuries by

  10. The effect of low radiation doses on DNA repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1978-08-01

    Error free DNA repair processes are an important preprequisite for the maintenance of genetic integrity of cells. They are of special importance for persons therapeutically or occupationally exposed to radiation. Therefore the effect of radiation therapy and elevated natural background radiation on unscheduled DNA synthesis was tested in peripheral lymphocytes of exposed persons. Both, autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine uptake into double stranded and single-strand containing DNA fractions revealed an increase of capacity for DNA repair. (author)

  11. Influence of size effects on the radiation stability of nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimenko, N. N.; Smirnov, D. I., E-mail: rmta@miee.ru [National Research University of Electronic Technology “MIET” (Russian Federation); Medetov, N. A. [Kostanai Social and Technical University (Kazakhstan); Zaporozhan, O. A. [National Research University of Electronic Technology “MIET” (Russian Federation)

    2014-12-15

    The data reported in publications are analyzed, and on this basis, problems arising in studies of the radiation stability of nanostructures and nanomaterials are formulated. A phenomenological model of the radiation stability of such objects is considered. The model is based on the concept of the behavior of close Frenkel pairs. To test the model proposed in the study, the effect of the size factor on the degree of structural degradation in nanoporous silicon samples when irradiated with phosphorus ions is studied. The effect of elastic strains on the radiation stability of the structures is established.

  12. Radiation effects on electronic equipment: a designers'/users' guide for the nuclear power industry

    International Nuclear Information System (INIS)

    Sharp, R.E.; Garlick, D.R.

    1994-01-01

    The Designers'/Users' Guide to the effects of radiation on electronics is published by the Radiation Testing Service of AEA Technology. The aim of the Guide is to document the available information that we have generated and collected over some ten years whilst operating as a radiation effects and design consultancy to the nuclear power industry. We hope that this will enable workers within the industry better to understand the likely effects of radiation on the system or plant being designed and so minimise the problems that can arise. (Author)

  13. Radiation hardness tests of SiPMs for the JLab Hall D Barrel calorimeter

    International Nuclear Information System (INIS)

    Qiang, Yi; Zorn, Carl; Barbosa, Fernando; Smith, Elton

    2013-01-01

    We report on the measurement of the neutron radiation hardness of silicon photomultipliers (SiPMs) manufactured by Hamamatsu Corporation in Japan and SensL in Ireland. Samples from both companies were irradiated by neutrons created by a 1 GeV electron beam hitting a thin lead target at Jefferson Lab Hall A. More tests regarding the temperature dependence of the neutron radiation damage and self-annealing were performed on Hamamatsu SiPMs using a calibrated Am–Be neutron source from the Jefferson Lab Radiation Control group. As the result of irradiation both dark current and dark rate increase linearly as a function of the 1 MeV equivalent neutron fluence and a temperature dependent self-annealing effect is observed.

  14. Strong effects of ionizing radiation from Chernobyl on mutation rates.

    Science.gov (United States)

    Møller, Anders Pape; Mousseau, Timothy A

    2015-02-10

    In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material.

  15. Design and development of semi-automatic radiation test and calibration facility

    International Nuclear Information System (INIS)

    Yadav, Ashok Kumar; Chouhan, V.K.; Narayan, Pradeep

    2008-01-01

    Semi-automatic gamma radiation test and calibration facility have been designed, developed and commissioned at Defence Laboratory Jodhpur (DLJ). The facility comprises of medium and high dose rate range setup using 30 Ci Cobalt-60 source, in a portable remotely operated Techops camera and a 15000 Ci 60 Co source in a Tele-therapy machine. The radiation instruments can be positioned at any desired position using a computer controlled positioner having three translational and one rotational motion. User friendly software helps in positioning the Device Under Test (DUT) at any desired dose rate or distance and acquire the data automatically. The servo and stepper motor controlled positioner helps in achieving the required precision and accuracy for the radiation calibration of the instruments. This paper describes the semi-automatic radiation test and calibration facility commissioned at DLJ. (author)

  16. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  17. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Experiments with small animals, tissue cultures, and inanimate materials help with understanding the effects of ionizing radiation that occur at the molecular level and cause the gross effects observed in man. Topics covered in this chapter include the following: Radiolysis of Water; Radiolysis of Organic Compounds; Radiolysis in Cells; Radiation Exposure and Dose Units; Dose Response Curves; Radiation Effects in Animals; Factors Affecting Health Risks. 8 refs., 3 figs., 5 tabs

  18. Research of pulse gamma ray radiation effect on microcontroller system

    International Nuclear Information System (INIS)

    Yang Shanchao; Ma Qiang; Jin Xiaoming; Li Ruibin; Lin Dongsheng; Chen Wei; Liu Yan

    2012-01-01

    An experimental result of power chip LM7805 and microcontroller EE80C196KC20 based on the EE80C196KC20 testing system was presented. The pulse gamma ray radiation effect was investigated using 'Qiangguang-Ⅰ' accelerator. Latchup threshold of the microcontroller was obtained, and the relationship of supply current and I/O output with the transient dose rate was observed. The result shows that the restrainability of power chip on pulse gamma ray radiation induces microcontroller latchup effect. (authors)

  19. Radiation hazards and biological effects of ionising radiation on man

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2004-01-01

    The contents of this chapter are follows - Mechanism of damage: direct action of radiation, indirect action of radiation. Classification of effects: somatic effect, induction of cancer, factors, affecting somatic effects, genetic effect, inherited abnormalities, induced effects, early effects, late effects, deterministic effect, stochastic effect. Effect of specific group: development abnormality, childhood Cancer, fertile women, risk and uncertainty, comparison of risk

  20. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    Science.gov (United States)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  1. Effects of radiations on electronic components - Course IN2P3, release 6

    International Nuclear Information System (INIS)

    2007-01-01

    As many off-the-shelf electronic components are now present onboard satellites, launchers and planes, this course proposes an overview of effects radiations can have on these components, notably in space applications. A first part proposes an overview of radiative environments, and more particularly presents the space radiative environment (solar wind, solar flares, cosmic radiation, radiation belts). It also presents the atmospheric and Earth radiative environment due to cosmic radiation, the alpha radiation (origin of particles, particle flow), the radiative environment within an accelerator. The second part addresses the effects of these radiative environments on electronic components, and the associated standards and tests. It addresses cumulative effects and proposes a detailed analysis of the effects of an ionizing dose on a MOS transistor, an analysis of the effects of ionising dose rate on a bipolar NPN or PNP vertical or lateral transistor, an analysis of the effects of atomic displacements, and a discussion of structure modifications. The next part describes various single events: the Single Event Upset (SEU) and the Multiple Bit Upset (MBU) in the case of a SRAM, the SEL (Single Event Latch-up) phenomenon, the SEGR (Single Event Gate Rupture) phenomenon in the case of a Power MOSFET, and the SEB (Single Event Burnout) phenomenon in the case of a Power MOSFET

  2. Effectiveness of eye drops protective against ultraviolet radiation.

    Science.gov (United States)

    Daxer, A; Blumthaler, M; Schreder, J; Ettl, A

    1998-01-01

    To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.

  3. Radiation effects on materials in high-radiation environments

    International Nuclear Information System (INIS)

    Weber, W.J.; Mansur, L.K.; Clinard, F.W. Jr.; Parkin, D.M.

    1991-01-01

    A workshop on Radiation Effects on Materials in High-Radiation Environments was held in Salt Lake City, Utah (USA) from August 13 to 15, 1990 under the auspices of the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy. The workshop focused on ceramics, alloys, and intermetallics and covered research needs and capabilities, recent experimental data, theory, and computer simulations. It was concluded that there is clearly a continuing scientific and technological need for fundamental knowledge on the underlying causes of radiation-induced property changes in materials. Furthermore, the success of many current and emerging nuclear-related technologies critically depend on renewed support for basic radiation-effects research, irradiation facilities, and training of scientists. The highlights of the workshop are reviewed and specific recommendations are made regarding research needs. (orig.)

  4. Radiation effects on cultured human lymphoid cells

    International Nuclear Information System (INIS)

    Johansson, L.; Nilsson, K.; Carlsson, J.; Larsson, B.; Jakobsson, P.

    1981-01-01

    The cloning efficiency of human normal and malignant lymphoid cells is usually low. Radiation effects in vitro on such cells can therefore not be analysed with conventional cloning. However, this problem can be circumscribed by using the growth extrapolation method. A panel of human leukemia-lymphoma cell-lines representing Epstein-Barr virus carrying lymphoblastoid cells of presumed non-neoplastic derivation and neoplastic T- and B-lymphocytes was used to test the efficiency of this method. The sensitivity to radiation could be determined for all these cell types. The growth extrapolation method gave generally the same result as conventional cloning demonstrated by comparison with one exceptional cell-line with capacity for cloning in agar. The sensitivity varied largely between the different cell types. A common feature was that none of the cell lines had a good capacity to accumulate sublethal radiation injury. (Auth.)

  5. Sensitivity tests of combination treatment with interleukin-2 and radiation against renal cell carcinoma using in vivo like growing culture system

    International Nuclear Information System (INIS)

    Onishi, Tetsuro; Machida, Toyohei; Asano, Kouji; Hatano, Takashi; Sawada, Takuko.

    1992-01-01

    We studied the effect of the combined therapy with interleukin-2 (IL-2) and radiation on renal cell carcinoma using an in vivo like growing culture system. We tested renal cell carcinoma obtained at surgery. After tumors were sliced into 2-mm square specimens, they were placed on a collagen gel-matrix filled with medium, and cultured for 7 days. 5 and 10 Gy were irradiated 3 days after the beginning of cell cultures. We also tested 100 JRU/ml of IL-2 added to each culture medium. The killing activity of each treatment was measured by the rate of 3 H-thymidine uptake. In the 5 Gy groups (n=9), we observed a significant effect in one treated with radiation alone (11.1%) and in 4 treated with the combined therapy (44.4%). Of these 4 having a significant effect with the combined therapy, one also had it with either radiation alone or combined therapy. The combined therapy was significantly effective compared with radiation alone. One had a significant effect with the combined therapy, and the remaining 2 had a significant effect by either combined therapy or radiation alone. In the 10 Gy group (n=12), a significant effect was seen in one with IL-2 treatment alone (8.3%), one with radiation alone (8.3%), and 4 with the combined therapy (33.3%). Of these 4 cases having a significant effects with the combined therapy, one had it by either radiation alone or the combined therapy, and the combined therapy was more effective than radiation alone. Two cases had a significant effect by the combined therapy, and the remaining one had it by either the combined therapy or radiation alone. We conclude that the combined therapy with IL-2 and radiation is effective for renal carcinoma, especially in the group irradiated with 5 Gy. (J.P.N.)

  6. Testing of the effect of the entry beam tube windows of the silicon detectors of the ionisation radiation

    International Nuclear Information System (INIS)

    Kopestansky, J.; Tykva, R.; Stanek, S.

    1995-01-01

    This paper deals with testing of the entry beam tube windows of the silicon detectors of the ionisation radiation with surface barrier.The influence of the parameters of basic material and modified technologic preparation on the size and homogeneity of the windows was tested

  7. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Sisko Salomaa

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  8. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  9. Effect of radiation on certain animal viruses in liquid swine manure

    International Nuclear Information System (INIS)

    Simon, J.; Mocsari, E.; Di Gleria, M.; Felkai, V.

    1983-01-01

    The virucidal effect of 60 Co γ-radiation was studied in cell culture medium and in liquid swine manure involving the most important porcine viruses that can be spread by liquid manure. The radiation doses, 20 and 30 kGy, were determined in preliminary experiments. At a radiation dose of 30 kGy, the activity of extracellular and cell-associated test viruses, except swine vesicular disease virus (SVDV), was completely destroyed both in cell culture medium and in liquid swine manure. The infectivity of SVDV decreased significantly (P 10 TCID 50 , both in cell culture medium and in liquid manure and this value corresponded to the international effectiveness demand for a disinfectant. The results showed that the safe disinfection virus in liquid swine manure by ionizing radiation requires a radiation dose of 30 kGy. (author)

  10. Effects after prenatal radiation exposures

    International Nuclear Information System (INIS)

    Streffer, C.

    2001-01-01

    The mammalian organism is highly radiosensitive during all prenatal developmental periods. For most effects a dose relationship with a threshold is observed. These threshold doses are generally above the exposures from medical diagnostic procedures. The quality and extent of radiation effects are very much dependent on the developmental stage during which an exposure takes place and on the radiation dose. An exposure during the preimplantation period will cause lethality. Malformations are usually induced after exposures during the major organogenesis. Growth retardation is also possible during the late organogenesis and foetal periods. The lower limits of threshold doses for these effects are in the range of 100 mGy. A radiation exposure during the early foetal period can lead to severe mental retardation and impairment of intelligence. There are very serious effects with radiation doses above 0.3 Gy. Carcinogenesis can apparently occur after radiation exposures during the total prenatal development period. The radiation risk factor up to now has not been clear, but it seems that it is in the range of risk factors for cancer that are observed after exposures during childhood. For radiation doses that are used in radiological diagnostics the risk is zero or very low. A termination of pregnancy after doses below 100 mGy should not be considered. (author)

  11. Ionising radiation - physical and biological effects

    International Nuclear Information System (INIS)

    Holter, Oe.; Ingebretsen, F.; Parr, H.

    1979-01-01

    The physics of ionising radiation is briefly presented. The effects of ionising radiation on biological cells, cell repair and radiosensitivity are briefly treated, where after the effects on man and mammals are discussed and related to radiation doses. Dose limits are briefly discussed. The genetic effects are discussed separately. Radioecology is also briefly treated and a table of radionuclides deriving from reactors, and their radiation is given. (JIW)

  12. Beam and radiation tests of a fast, warm liquid open-quotes swimming poolclose quotes calorimeter

    International Nuclear Information System (INIS)

    Kadyk, J.

    1993-09-01

    A fast, warm liquid calorimeter module with lead absorber immersed in tetramethyl pentane (TMP) as the liquid medium (i.e. a open-quotes swimming poolclose quotes configuration) has been built and tested in a high energy beam at FNAL, and exposed to intense radiation from a strong Co 60 source. A two-tower prototype, incorporating the concept of the electrostatic transformer for fast readout, exhibited very good uniformity and small cross-talk in the beam test. This same calorimeter was exposed to over 10 Mrad of radiation from the Co 60 source, and the electron drift lifetime was measured as a function of accumulated dose. The lifetime improved significantly with small doses of radiation, up to a few hundred krad, then decreased gradually at higher doses, and extrapolated to a minimum useful lifetime of 0.1 μs at over 150 Mrad. This result was confirmed by measurements on a small single-electrode test cell which was irradiated to more than 25 Mrad. In this case, the lifetime decreased from 10μs to 0.1 μs when extrapolated to a dose of over 600 Mrad. This cell was also used to measure the effect of positive ion open-quotes space chargeclose quotes buildup under intense radiation. The results suggest that such effects are small even at the highest intensity available, about 1.3 Mrad/day, for applied fields ≥25 kV/cm

  13. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  14. Radiation effects on living systems

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1980-10-01

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. (auth)

  15. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  16. Effect of laser radiation on rat radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Laprun, I.B.

    1979-03-01

    Quite a few experimental data have been obtained to date indicating that radioresistance of the organism is enhanced under the influence of electromagnetic emissions in the radiofrequency and optical ranges. But no studies were made of the possible radioprotective properties of coherent laser radiation. At the same time, it was demonstrated that the low-energy emission of optical quantum generators (lasers) in the red band stimulates the protective forces of the organism and accelerates regenerative processes; i.e., it induces effects that are the opposite of that of ionizing radiation. Moreover, it was recently demonstrated that there is activation of catalase, a radiosensitive enzyme that plays an important role in the metabolism of peroxide compounds, under the influence of lasers. For this reason, the effect of pre-exposure to laser beams on radiosensitivity of rats was tested.

  17. Radiation effects on semiconductor devices in high energy heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Belousov, Anton

    2014-10-20

    Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy Ion Research are becoming more and more significant with the increase of beam intensity due to upgrades. Moreover a new accelerator is being constructed on the basis of GSI within the project of facility for antiproton and ion research (FAIR). Beam intensities will be increased by factor of 100 and energies by factor of 10. Radiation fields in the vicinity of beam lines will increase more than 2 orders of magnitude and so will the effects on semiconductor devices. It is necessary to carry out a study of radiation effects on semiconductor devices considering specific properties of radiation typical for high energy heavy ion accelerators. Radiation effects on electronics in accelerator environment may be divided into two categories: short-term temporary effects and long-term permanent degradation. Both may become critical for proper operation of some electronic devices. This study is focused on radiation damage to CCD cameras in radiation environment of heavy ion accelerator. Series of experiments with irradiation of devices under test (DUTs) by secondary particles produced during ion beam losses were done for this study. Monte Carlo calculations were performed to simulate the experiment conditions and conditions expected in future accelerator. Corresponding comparisons and conclusions were done. Another device typical for accelerator facilities - industrial Ethernet switch was tested in similar conditions during this study. Series of direct irradiations of CCD and MOS transistors with heavy ion beams were done as well. Typical energies of the primary ion beams were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 10{sup 9} ions/spill with spill length of 200-300 ns. Criteria of reliability and lifetime of DUTs in specific radiation conditions were formulated, basing on experimental results of the study. Predictions of electronic device reliability and lifetime were

  18. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  19. Radiation exposure and health damage of residents at Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Tolebay, Rakhypbekov; Noso, Yoshihiro; Takechi, Nobuo

    2016-01-01

    Although the nuclear test site of Semipalatinsk (former Soviet Union and presently the Republic of Kazakhstan) stopped nuclear tests 25 years ago, there are presumably more than 200,000 victims near the site, including persons with a low dose and a high dose. Semey Medical University and Shimane University, together with the Kazakh Scientific Institute for Radiation Medicine and Ecology, have been conducting the measurement of radiation concentration of soil and the thyroid screening of residents. The following were surveyed: (1) chromosomal abnormality for 55 female residents (average 45 years in age) in heavily polluted areas and 25 female residents (average 42 years in age) in non-polluted areas, (2) mental abnormality of residents in polluted areas and non-polluted areas of Semey City, and (3) changes in the frequency of surgery cases for cancer between 1989 and 2014 at Semey Medical University Cancer Center. As for chromosomal abnormality, 3-5 times many mutation cases were observed in heavily polluted areas than in non-polluted areas. The nodules of thyroid gland were four times more frequent in heavily polluted areas. The frequency of a whole variety of cancers was nearly twice in polluted areas compared with in non-polluted areas, most of which were digestive system cancer, lung cancer, and breast cancer in the order. The frequency of mental abnormality has also increased nearly twice as compared to non-polluted areas, and it included neurological disorder, adjustment disorder, neuralgia, moderate depression, and learning disability. These results suggest that some physical effects can be caused by exposure. In the future, this study will investigate the effects of radiation exposure at the nuclear test site. (A.O.)

  20. Effect on intelligence test score of prenatal exposure to ionizing radiation in Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Schull, W.J.; Otake, Masanori; Yoshimaru, Hiroshi.

    1988-10-01

    Analyses of intelligence test scores (Koga) at 10-11 years of age of individuals exposed prenatally to the atomic bombing of Hiroshima and Nagasaki using estimates of the uterine absorbed dose based on the recently introduced system of dosimetry, the Dosimetry System 1986 (DS86), reveal the following: 1) there is no evidence of a radiation-related effect on intelligence among those individuals exposed within 0-7 weeks after fertilization or in the 26th or subsequent weeks; 2) for individuals exposed at 8-15 weeks after fertilization, and to a lesser extent those exposed at 16-25 weeks, the mean tests scores but not the variances are significantly heterogeneous among exposure categories; 3) the cumulative distribution of test scores suggests a progressive shift downwards in individual scores with increasing exposure; and 4) within the group most sensitive to the occurrence of clinically recognizable severe mental retardation, individuals exposed 8 through 15 weeks after fertilization, the regression of intelligence score on estimated DS86 uterine absorbed dose is more linear than with T65DR fetal dose, the diminution in intelligence score under the linear model is 21-29 points at 1Gy. The effect is somewhat greater when the controls receiving less than 0.01 Gy are excluded, 24-33 points at 1 Gy. These findings are discussed in the light of the earlier analysis of the frequency of occurrence of mental retardation among the prenatally exposed survivors of the A-bombing of Hiroshima and Nagasaki. It is suggested that both are the consequences of the same underlying biological process or processes. (author)

  1. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  2. Testing of ionizing radiation applicability in storing vegetables and fruit

    International Nuclear Information System (INIS)

    Salkova, Z.

    1980-01-01

    The results are briefly summarized of experimental testing the radiation inhibition of onion, garlic and potatoes germination. The results achieved in studying radiation pasteurization of soft fruit are also discussed. The results are evaluated especially from the standpoint of germination inhibition, reducing material losses, phytopathogenic microbiota suppression and storage extension of vegetables and fruit. The factors are analyzed affecting the final results and the conditions are examined of testing pilot-plant radurization techniques for onion and garlic. (author)

  3. Testing of ionizing radiation applicability in storing vegetables and fruit

    Energy Technology Data Exchange (ETDEWEB)

    Salkova, Z.

    1980-01-01

    The results are briefly summarized of experimental testing the radiation inhibition of onion, garlic and potatoes germination. The results achieved in studying radiation pasteurization of soft fruit are also discussed. The results are evaluated especially from the standpoint of germination inhibition, reducing material losses, phytopathogenic microbiota suppression and storage extension of vegetables and fruit. The factors are analyzed affecting the final results and the conditions are examined of testing pilot-plant radurization techniques for onion and garlic.

  4. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  5. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  6. Diffusion effects in undulator radiation

    Directory of Open Access Journals (Sweden)

    Ilya Agapov

    2014-11-01

    Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.

  7. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  8. Combined environment aging effects: radiation-thermal degradation of polyvinylchloride and polyethylene

    International Nuclear Information System (INIS)

    Clough, R.L.; Gillen, K.T.

    1981-01-01

    Results are presented for a case of polymer aging in which powerful synergisms are found between radiation and temperature. This effect was observed with formulations of polyvinylchloride and polyethylene and occurred in simultaneous and sequential radiation-thermal experiments. Dose rate dependencies, which appear to be mechanistically related to the synergism, were also found. The evidence indicates that these aging effects are mediated by a thermally induced breakdown of peroxides initially formed by the radiation. Similar effects could be important to material degradation in a variety of other types of combined-stress environment. A new technique, which uses PH 3 treatment of intact polymer specimens to test for the importance of peroxides in the pathway that leads to changes in macroscopic tensile properties, is described

  9. Single Event Effects Test Facility Options at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [ORNL; Gallmeier, Franz X [ORNL; Dominik, Laura J [ORNL

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of integrated circuits (ICs) and systems for use in radiation environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.

  10. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  11. Effect of electron beam radiations on anxiety in experimental animal models

    International Nuclear Information System (INIS)

    Deepa, B; Suchetha Kumari; Sanjeev, Ganesh; Rao, Satheesh

    2013-01-01

    Exposures to ionizing radiation have been an inevitable part of the environment. This type of radiation can disrupt atoms, creating positive and negative charged particles, and cause biological harm. Ionizing radiation includes X-rays, gamma rays, alpha particles, beta particles and neutrons. They have the potential to cause both beneficial and harmful effects. There are concerns about these radiations as they are widely used in hospitals for treatment and diagnosis of various diseases. The present work was designed to test the effect of whole body electron beam radiation on anxiety in mice using the Elevated plus maze and Light dark arena, the commonly used models for assessing anxiety in rodents. Mice were irradiated with three different doses (2 Gy, 4 Gy and 6 Gy) of electron beam radiations. Statistical analysis revealed that whole body irradiation of the moderate dose range (2-6 Gy) of electron beam leads to a significant (p<0.001) anxiogenic activity in irradiated mice. Electron beam induced anxiety can be due to radiation induced reactive oxygen species in brain. (author)

  12. Radiation effects on active pixel sensors (APS)

    International Nuclear Information System (INIS)

    Cohen, M.; David, J.P.

    1999-01-01

    Active pixel sensor (APS) is a new generation of image sensors which presents several advantages relatively to charge coupled devices (CCDs) particularly for space applications (APS requires only 1 voltage to operate which reduces considerably current consumption). Irradiation was performed using 60 Co gamma radiation at room temperature and at a dose rate of 150 Gy(Si)/h. 2 types of APS have been tested: photodiode-APS and photoMOS-APS. The results show that photoMOS-APS is more sensitive to radiation effects than photodiode-APS. Important parameters of image sensors like dark currents increase sharply with dose levels. Nevertheless photodiode-APS sensitivity is one hundred time lower than photoMOS-APS sensitivity

  13. Biological effects of radiation and estimation of risk to radiation workers

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1987-01-01

    The biological effects of radiation have three stages: physical, chemical and biological. A precise mathematical description of biological effects and of one-to-one correspondence between the initial energy absorption and final effect has not been possible, because several factors are involved in biological effects and their manifestation period varies from less than one second to several years. The mechanism of biological radiation effects is outlined. The two groups of these effects are (1) immediate and (2) delayed. The main aim of radiation protection programme is to eliminate the risk of non-stochastic effects to an acceptable level. The mean annual dose for 30,000 radiation workers in India is 2.7 m Sv. Estimated risk of fatal cancer from this dose is about 50 cases of cancer per year per million workers which is well below the ICRP standard for safe occupation stipulated at fatality rate less than or equal to 100 per year per milion workers. When compared with risk in other occupations, the risk to radiation workers is much less. (M.G.B.)

  14. Radiation monitoring around United States nuclear test areas, calendar year 1989

    International Nuclear Information System (INIS)

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs

  15. Radiation monitoring around United States nuclear test areas, calendar year 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs.

  16. Infrared radiation has potential antidepressant and anxiolytic effects in animal model of depression and anxiety.

    Science.gov (United States)

    Tanaka, Yoshihiro; Akiyoshi, Jotaro; Kawahara, Yoshinari; Ishitobi, Yoshinobu; Hatano, Koji; Hoaki, Nobuhiko; Mori, Ayumi; Goto, Shinjiro; Tsuru, Jusen; Matsushita, Hirotaka; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Kitamura, Hirokazu; Fujikura, Yoshihisa

    2011-04-01

    Bright light therapy has been shown to have antidepressant and anxiolytic effects in humans. The antidepressant and anxiolytic effects of infrared radiation were evaluated using an experimental animal model. Rats were randomly assigned to either an acutely or chronically exposed infrared radiation group or to a nonexposed control group. Acutely exposed rats were treated with an infrared radiation machine for one session, whereas chronically exposed animals were treated with an infrared radiation for 10 sessions. Control group rats were exposed to the sound of the infrared radiation machine as a sham treatment. After infrared radiation or control exposure, rats underwent behavioral evaluation, including elevated plus maze test, light/dark box, and forced swim test. Chronic infrared radiation exposure decreased indicators of depression- and anxiety-like behavior. No significant effect on general locomotor activity was observed. The number of BrdU-positive cells in CA1 of the hippocampus was significantly increased in both acutely and chronically exposed infrared radiation groups compared with the control group. These results indicate that chronic infrared radiation might produce antidepressant- and anxiolytic-like effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Design and testing of an innovative solar radiation measurement device

    International Nuclear Information System (INIS)

    Badran, Omar; Al-Salaymeh, Ahmed; El-Tous, Yousif; Abdala, Wasfi

    2010-01-01

    After review of studies conducted on the solar radiation measuring systems, a new innovative instrument that would help in measuring the accurate solar radiation on horizontal surfaces has been designed and tested. An advanced instrument with ease of use and high precision that would enable the user to take the readings in terms of solar intensity (W/m 2 ) has been tested. Also, the innovative instrument can record instantaneous readings of the solar intensities as well as the averages value of the solar radiation flux during certain periods of time. The instrument based in its design on being programmed by programmable interfacing controller (PIC). Furthermore, the power supply circuit is fed by the solar energy cells and does not need an external power source.

  18. Effects of ionizing radiation on gelatine films added with antioxidant

    International Nuclear Information System (INIS)

    Kraide, Felipe H.; Inamura, Patricia Y.; Mastro, Nelida L. del

    2011-01-01

    This work evaluates the effect of ionizing radiation on the gelatin films in presence of antioxidant. Gelatin solutions of glycerine and poly vinil alcohol, with and without the addition were prepared until the complete homogenization. The films were irradiated with 20 and 40 kGy in a electron accelerator, in the presence of air and at the room temperature. The use of ionizing radiation and the addition of antioxidant changed the properties of the film. The result of water absorption test revealed that with increasing of radiation dose occurred a reduction in the absorption, suggesting that happen a reticulation

  19. Nevada Test Site Radiation Protection Program - Revision 1

    International Nuclear Information System (INIS)

    Nevada Test Site Radiological Control Managers' Council

    2008-01-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material

  20. Nevada Test Site Radiation Protection Program - Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  1. Synergistic effects of radiation and immobilization of hind limb on bone in rats

    International Nuclear Information System (INIS)

    Fukuda, Satoshi; Ikeda, Mizuyo; Nakamura, Mariko

    2008-01-01

    Synergistic effects of radiation (x-ray) and immobilization of hind limbs on bone in rats were examined, and the preventive effect of milk basic protein (MBP) on radiation effects was tested. One hundred and twenty female rats were divided into three large groups and then each group was divided into four small groups such as the no treatment, oral administered MBP, immobilization (IM) of hind limb, and IM+MBP groups. The rats of two large groups were exposed to a whole-body dose of 3 Gy or 6 Gy of x-ray. Half of the rats of each large group were sacrificed at 1 and 3 months, respectively. Muscle weights and bone mineral density decreased significantly in the IM groups following radiation, and bone volume in the proximal metaphysis of the tibia decreased significantly in all of the radiation groups and most in the radiation+IM group at 1 month. The bone volume recovered in all of the radiation groups except for the radiation+IM groups. The results indicated that the bone damages increased more as a result of the synergistic effects of radiation and IM than as a result of either of IM or radiation alone, and the harmful damage caused by IM was much greater than that of radiation. (author)

  2. Test equipment used for radiation protection type testing of aerosol filters at the National Board of Nuclear Safety and Radiation Protection (SAAS)

    International Nuclear Information System (INIS)

    Ullmann, W.; Przyborowski, S.

    1977-01-01

    Following a description of the overall design of test equipment developed in the SAAS for radiation protection type testing of aerosol filters, the most important physical and technical details concerning the preparation and measurement of test aerosols as well as the sampling procedure upstream and downstream of the filter to the tested, are comprehensively discussed. Furthermore, experiences gained during several years with different devices for mixing and diluting the aerosols are reported. (author)

  3. Radiation effects on living systems

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1984-04-01

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be updated regularly

  4. Effects of radiation upon gastrointestinal motility

    Institute of Scientific and Technical Information of China (English)

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  5. Non controlled effect of ionizing radiations : involvement for radiation protection

    International Nuclear Information System (INIS)

    Little, J. B.

    2005-01-01

    It is widely accepted that damage to DNA is the critical event on irradiated cells, and that double strand breaks are the primary DNA lesions responsible for the biological effects of ionizing radiation. This has lead to the long standing paradigm that these effects, be they cytotoxicity, mutagenesis or malignant transformation, occur in irradiated cells as a consequences of the DNA damage they incur. Evidence has been accumulating over the past decade, however, to indicate that radiation may induce effects that ar not targeted to the irradiated cells itself. Two non-targeted effects will be described in this review. The first, radiation-induced genomic instability, is a phenomenon whereby signals are transmitted to the progeny of the irradiated cell over many generations, leading to the occurrence of genetic effects such as mutations and chromosomal aberrations arising in the distant descendants of the irradiated cell. Second, the bystander effect, is a phenomenon whereby irradiated cells transmit damage signals to non-irradiated cells in a mixed population, leading to genetic effects arising in these bystander cells that received no radiation exposure. the model system described in this review involves dense monolayer cultures exposed to very low fluences of alpha particles. The potential implications of these two phenomena for the analysis of the risk to the human population of exposure to low levels of ionising radiation is discussed. (Author) 111 refs

  6. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  7. Effect of 60 Co gamma radiation on crystalline proteins

    International Nuclear Information System (INIS)

    Bernardes, D.M.L.

    1991-01-01

    In order to study the effects of 6 0 Co gamma radiation on crystalline proteins an in vitro system was set up. For that, aqueous solutions from bovine crystalline were used irradiated with 0, 5.000, 10.000, 15.000, 20.000 and 25.000 Gy. The treatment led to protein alterations determined by different methods. By turbidimetry the formation of aggregates that increased with the radiation dose was revealed. The same observation was done from viscosity data and from the UV spectrum of the samples. From amino acid analysis and fluorimetry determinations, tryptophan appeared as the most sensitive amino acid. An increase in the free-S H-groups was also observed. After the standardization of the method, the radio modifier capability of glutathione, amino ethyl thiourea, mercapto ethyl alanine and dimethyl sulfoxide was tested. The results showed that in the presence of those substances the radiation effect was diminished. (author)

  8. Radiation effects and radiation risks. 2. ed.

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.G.

    1990-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig.) With 10 maps in appendix [de

  9. Retinal, optic nerve and chiasmal function following radiation therapy demonstrated by visual evoked response testing

    International Nuclear Information System (INIS)

    Soni, A.B.; Constine, L.S.; Smith, D.; Palisca, M.; Ojomo, K.; Muhs, A.

    1997-01-01

    Purpose: To evaluate the tolerance of the retina, optic nerve, and optic chiasm to radiation doses conventionally used to treat patients with primary brain or pituitary tumors and to explore the character of detectable radiation effects. Visual evoked response (VER) testing is a noninvasive and sensitive method for identifying radiation injury to the visual system due to alterations in small vessel or myelin integrity. Such evaluations may increase our understanding of the threshold for and the pathogenesis of radiation injury. Materials and Methods: Twenty-four patients irradiated for brain or pituitary tumors between 1972 and 1996 had VER testing. Patients were included in study if the retina, optic nerves or chiasm were in the radiation (RT) field. At the time of RT patients ranged in age from 1.5 to 55 years (median 33). Mean doses were as follows: right retina, 29 Gy (range 10 - 60 Gy); left retina, 29.5 Gy (range 10 - 60 Gy); right optic nerve, 42.9 Gy (range 10 - 60 Gy); left optic nerve, 42.6 Gy (range 10 - 60 Gy); and optic chiasm, 48.2 Gy (range 10 - 65 Gy). Daily fractionation ranged from 1.5 to 1.8 Gy. Pattern VER testing distinguishes compressive or ischemic effects of tumor on the visual system from radiation retinopathy or optic neuropathy on the basis of the conduction amplitude and delay pattern. Prechiasm, chiasm, and postchiasm injuries are distinguishable by analyzing VER changes. Four evoked responses were obtained for each eye, each representing the average of 100 stimulus reversals. Results: VER was normal in 11 patients and abnormal in 13 patients. Only 2 patients (8%) had VER evidence of radiation injury to the visual system, one of whom had visual compromise. The other 11 abnormal patients had characteristic VER changes attributable to tumor or surgical damage. There was no significant difference in the radiation doses given to any subgroup. The one patient with radiation retinopathy had received 55-60 Gy to the posterior globe. Ten years

  10. Effects of radiation on erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Harriss, E B

    1971-04-01

    Since the pioneer work of Heineke (1903; 1905) many workers have studied the effect of radiation on haemopoiesis. Their work has been reviewed by Bloom (1948), by Jacobson (1954) and more recently by Bond et al. (1965). The subject continues to stimulate much interest but is now more concerned with the effects of radiation on the multipotential stem cell pool than on radiation damage to the erythropoietic cells themselves. Death from haemopoietic failure following an LD{sub 50/30} dose of radiation is probably not attributable to failure of erythropoiesis; while damage to the erythropoietic system certainly plays a part in the syndrome, it is not a major factor contributing to the death of the animal. Although the severity and time course of the response vary with the species studied, the general effects of radiation on erythropoiesis are similar in all mammalian bone marrow studied to date. Likewise, though the severity of the reaction varies somewhat with the energy of the radiation and has been used to compare the relative biological effectiveness of different types of radiation (Sinclair et al., 1962; Sztanyik, 1967), the response is different only in degree and not in its fundamental pattern. The initial syndrome of depression and recovery will therefore be described largely by reference to work performed on the response of the rat to single acute exposures of either whole-body or partial-body irradiation with conventional X-rays.

  11. Effects of fetal microwave radiation exposure on offspring behavior in mice

    International Nuclear Information System (INIS)

    Zhang Yanchun; Li Zhihui; Gao Yan; Zhang Chenggang

    2015-01-01

    The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5–18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects. (author)

  12. Man and radiation effects

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    The book describes the effects of ionizing radiation on man in a simple, popular, detailed and generally valid manner and gives a comprehensive picture of the concepts, elements, principles of function, and perspectives of medical radiobiology. Radiobiology in general is explained, and its application in research on the causes of radiolesions and radiation diseases as well as a radiotherapy and radiation protection is discussed in popular form. (orig./MG) [de

  13. Standardization of penetrating radiation testing system

    International Nuclear Information System (INIS)

    Wiley, P.A.; Aronson, H.L.

    1979-01-01

    Standardization is provided to control system gain of a penetrating radiation testing system by periodically inspecting a reference object in the same manner as the product samples so as to generate a stabilization signal which is compared to a reference signal. The difference, if any, between the stabilization signal and the reference signal is integrated and the integrated signal is used to correct the gain of the system

  14. The Semipalatinsk nuclear test site: a first assessment of the radiological situation and the test-related radiation doses in the surrounding territories.

    Science.gov (United States)

    Gusev, B I; Abylkassimova, Z N; Apsalikov, K N

    1997-09-01

    As a result of atmospheric nuclear tests at the Semipalatinsk test site 'Polygon', adjacent territories were contaminated by radionuclide fallout. The population of some districts in the Semipalatinsk oblast were exposed to elevated levels of radiation. Contamination and exposure mostly resulted from early atmospheric tests. The radiological situation of the Semipalatinsk oblast is described. Effective dose estimates due to external and internal exposure attributable to the 1949 and 1953 tests in villages near the Polygon range from 70 mSv to 4470 mSv.

  15. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  16. Investigation of radiation damage effects in neutron irradiated CCD

    International Nuclear Information System (INIS)

    Brau, James E.; Igonkina, Olga; Potter, Chris T.; Sinev, Nikolai B.

    2005-01-01

    A Charge Coupled Devices (CCD)-based vertex detector is a leading option for vertex detection at the future linear collider. A major issue for this application is the radiation hardness of such devices. Tests of radiation hardness of CCDs used in the SLD vertex detector, VXD3, have been reported earlier. The first measurements of 1998 involved a spare VXD3 CCD that was irradiated with neutrons from a radioactive source (Pu-Be), and from a nuclear reactor. In 2003, we had the opportunity to disassemble the VXD3 detector and study the nature of the radiation damage it incurred during 3 years of operation at SLC. In the preparation for this study, additional experiments with the spare VXD3 CCD were performed. These included measurements of trapping times in neutron irradiated CCDs. Results, reported here, will help us better understand the mechanism of radiation damage effects and develop techniques to minimize performance degradation due to radiation damage

  17. Ecological impacts of umbrella effects of radiation on the individual members

    International Nuclear Information System (INIS)

    Doi, Masahiro; Kawaguchi, Isao

    2007-01-01

    In order to study the interactions in a model aquatic microcosm, an individual-based computer simulation model was developed. The microcosm consists of Euglena gracilis as an autotroph algae, Tetrahymena thermophila as a heterotroph protozoa and Escherichia coli as a saprotroph bacteria. There exists a strong interaction between Tetrahymena and E. coli as the first is the predator of the second. Ecological toxicity tests were conducted to test the population level impacts of the biological effects of radiation and toxicants on the lethality and mobility factors that influence directly or indirectly growth and reproduction. Radiological effects on lethality of E. coli individuals were translated to the reduction of the equilibrium population of Tetrahymena. A synergistic effect at the community level was also observed by the simulation of a combined exposure of radiation and a toxicant which reduced the feeding efficiency of Tetrahymena

  18. Radiation effects on radiation-hardened KU and KS-4V optical fibres

    International Nuclear Information System (INIS)

    Ivanov, A.A.; Tugarinov, S.N.; Kaschuck, Y.A.; Krasilnikov, A.V.; Bender, S.E.

    1999-01-01

    The aim of this work was to test the un-pretreated and the hardened (H 2 -loaded and pre-irradiated) KS-4V and KU optical fibres in reactor environment by in-situ measurements of both the radiation-induced loss and the luminescence in the visible spectral region. Both the radio-luminescent and the transmission spectra were in-situ detected during irradiation by charge-coupled-device (CCD) linear detector in the visible spectral region of 400 to 700 nm. The radiation induced loss spectra at the fast neutron fluence of 2*10 6 n/cm 2 shows the hardened, H 2 -loading and pre-irradiating effects in the both KU and KS-4V fibres. KU un-pretreated fibre shows a big radiation absorption band of non-bridging oxygen centered at the wavelength of 630 nm. It appears that the KS-4V hardened fibre has a specific point in the loss spectrum in the vicinity of 460 nm. Other measurements were performed, particularly after reactor shutdown and at 3 different neutron fluences with constant neutron flux after restarting

  19. Effect of sublethal levels of ionizing radiation on a predator-prey interaction

    International Nuclear Information System (INIS)

    Chee, P.C.

    1976-01-01

    The predator-prey interaction studied was that between the largemouth bass (Micropterus salmoides) and the fathead minnow (Pimephales promelas) in an artificial test environment. Experiments were first conducted to determine the 50% lethal dose at 30 days of the minnow. Three different dose rates were used to test the effect of dose rate on the 50% lethal dose value. After the 50% lethal dose was determined the predator-prey interaction experiment was conducted using 30% of the 50% lethal dose as the highest radiation dose, this dose being considered the upper limit to sublethal radiation levels. A 4 x 4 Latin square design was chosen for the experiment, with four treatment levels (control plus three radiation levels) and four replicates. In each test 10 prey minnow were offered to one predator bass and the number of prey left after 14 days was the parameter of interest. A predator-prey interaction experiment using a single high level of radiation and two types of controls as conducted to ascertain the ability of the test environment to detect changes in the predator-prey interaction. The two types of controls were irradiated prey not exposed to predation and non-irradiated prey exposed to predation. An experiment was also conducted to test the correlation between the physical activity patterns of minnow and different doses of radiation. At a dose rate of 37.8 rad/min the 50% lethal dose at 30 days for minnow was found to be 2650 rad. It was found that dose rate had a strong influence on the 50% lethal dose. In the predator-prey interaction test it was found that the 14-day survival rate of prey was unaffected by sublethal levels of ionizing radiation. No significant correlation was detected between the physical activity patterns of minnow and radiation dose

  20. Decontamination for radiators by friction effect

    International Nuclear Information System (INIS)

    Nojima, Takeshi; Yoshida, Yuji

    2016-01-01

    Radiators are equipped with cars, vending machines and outdoor units of air conditioners. Aluminum metal surfaces in their heat exchange part have been contaminated by radioactive material taking in dust after the nuclear accident. The dust adhering to the metal surface could be removed by flushing with water immediately after scattering radioactive material. But radioactive material such as cesium cannot be removed by water washing, because of growth of the oxide film and transfer of the nuclides in the metal surface due to aging. On the other hand, we have verified the effect of decontamination of radiators by friction cleaning using a cross flow shredder (CFS) and solvent washing of crushed metallic chips, as a different approach to high-pressure washing decontamination, and confirmed a certain decontamination effect. This paper describes the results of program, “Processing Technology of Radioactive Material Removal by Cross Flow Shredder,” in August to December 2015, on support of FY 2015 Demonstration Test Project for Decontamination and Volume Reduction of Ministry of the Environment. (author)

  1. Radiation effects for high-energy protons and X-ray in integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M.A.G.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Medina, N.H.; Added, N.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cirne, K.H. [Empresa Brasileira de Aeronautica S.A. (EMBRAER), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    Full text: Electronic circuits are strongly influenced by ionizing radiation. The necessity to develop integrated circuits (IC's) featuring radiation hardness is largely growing to meet the stringent environment in space electronics [1]. This work aims to development a test platform to qualify electronic devices under the influence of high radiation dose, for aerospace applications. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them heavy ions, alpha particles, protons, gamma and X-rays. Radiation effects on the ICs are usually divided into three categories: Total Ionizing Dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; Single Events Effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits and Displacement Damage (DD) which can change the arrangement of the atoms in the lattice [2]. In this study we are investigating the radiation effects in rectangular-gate and circular-gate MOSFETs, manufactured with standard CMOS fabrication process, using particle beams produced in electrostatic tandem accelerators and X-rays. Initial tests for TID effects were performed using the 1.7 MV 5SDH tandem Pelletron accelerator of the Instituto de Fisica da USP with a proton beam of 2.6 MeV. The devices were exposed to different doses, varying the beam current, and irradiation time with the accumulated dose reaching up to Grad. To study the effect of X-rays on the electronic devices, an XRD-7000 (Shimadzu) X-ray setup was used as a primary X-ray source. The devices were irradiated with a total dose from krad to Grad using different dose rates. The results indicate that changes of the I-V characteristic curve are strongly dependents on the geometry of the devices. [1] Duzellier, S., Aerospace Science and Technology 9, p. 93

  2. Genetic and somatic effects of ionizing radiation

    International Nuclear Information System (INIS)

    1986-01-01

    This is the ninth substantive report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) to the General Assembly. This report contains reviews on three special topics in the field of biological effects of ionizing radiation that are among those presently under consideration by the Committee: genetic effects of radiation, dose-response relationships for radiation-induced cancer and biological effects of pre-natal irradiation

  3. Multiplied effect of heat and radiation in chemical stress relaxation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1981-01-01

    About the deterioration of rubber due to radiation, useful knowledge can be obtained by the measurement of chemical stress relaxation. As an example, the rubber coating of cables in a reactor containment vessel is estimated to be irradiated by weak radiation at the temperature between 60 and 90 deg C for about 40 years. In such case, it is desirable to establish the method of accelerated test of the deterioration. The author showed previously that the law of time-dose rate conversion holds in the case of radiation. In this study, the chemical stress relaxation to rubber was measured by the simultaneous application of heat and radiation, and it was found that there was the multiplied effect of heat and radiation in the stress relaxation speed. Therefore the factor of multiplication of heat and radiation was proposed to describe quantitatively the degree of the multiplied effect. The chloroprene rubber used was offered by Hitachi Cable Co., Ltd. The experimental method and the results are reported. The multiplication of heat and radiation is not caused by the direct cut of molecular chains by radiation, instead, it is based on the temperature dependence of various reaction rates at which the activated species reached the cut of molecular chains through complex reaction mechanism and the temperature dependence of the diffusion rate of oxygen in rubber. (Kako, I.)

  4. Bystander effects of radiation

    International Nuclear Information System (INIS)

    Umar, Neethu Fathima; Daniel, Nittu

    2013-01-01

    The Radiation-Induced Bystander Effect is the phenomenon in which unirradiated cells show irradiated effects due to the signals received from nearby irradiated cells. Evidence suggests that targeted cytoplasmic irradiation results in mutation in the nucleus of the hit cells. Cells that are not directly hit by an alpha particle, but are in the vicinity of one that is hit, also contribute to the genotoxic response of the cell population. When cells are irradiated, and the medium is transferred to unirradiated cells, these unirradiated cells show bystander responses when assayed for clonogenic survival and oncogenic transformation. The demonstration of a bystander effect in human tissues and, more recently, in whole organisms have clear implication of the potential relevance of the non-targeted response to human health. This effect may also contribute to the final biological consequences of exposure to low doses of radiation. The radiation-induced bystander effect represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation, in that extranuclear and extracellular events may also contribute to the final biological consequences of exposure to low doses of radiation. Multiple pathways are involved in the bystander phenomenon, and different cell types respond differently to bystander signalling. Using cDNA microarrays, a number of cellular signalling genes, including cyclooxygenase-2 (CQX-2), have been shown to be casually linked to the bystander phenomenon. The observation that inhibition of the phosphorylation of extracellular signal-related kinase (ERK) suppressed the bystander response further confirmed the important role of the mitogen-activated protein kinase (MAPK) signalling cascade in the bystander process. The cells deficient in mitochondrial DNA showed a significantly reduced response to bystander signalling, suggesting a functional role of mitochondria in the signalling process. (author)

  5. Multiparametric assessment of radiation effects for the individual radiation sensitivity estimation

    International Nuclear Information System (INIS)

    2006-01-01

    The effects of low dose irradiation are highly relevant for radiation protection in the public. The sensitivity to clastogenic and tumorigenic effects of ionizing radiation (IR) varies considerably amongst individuals. Examples for genetically determined enhanced sensitivity are well known in some hereditary diseases: patients with chromosomal instability syndromes, Ataxia telangiectasia (A-T), Nijmegen Breakage Syndrome (NBS) and Bloom Syndrome (BS) show strongly enhanced sensitivity towards IR, severe immunodeficiencies, and a high incidence for developing leukemias and lymphomas. This obvious coincidence of enhanced radiosensitivity and tumor risk, and the frequently observed enhanced radiosensitivity of genetically non-defined tumor patients indicate that tumor patients may constitute a subpopulation with enriched genetical predisposition for enhanced radiosensitivity. Furthermore, a subpopulation of radiosensitive individuals may be part of the probably inconspicuous total population. For example, individuals heterozygous for the above mentioned genes (and possibly some other genes) show enhanced radiosensitivity if compared with the normal population. In general, heterozygous carriers of those hereditary deficiencies are clinically inconspicuous, but due an haploinsufficiency their tumour risk may be enhanced. This has been shown for mice carrying an heterozygous Nbs1 mutation (J.-Q. Wang, Lyon, pers. Communication). Our findings concerning enhanced radiation-induced chromosomal aberrations in heterozygous Nbs1 cell lines support this notion. The identification of high risk groups with enhanced radiosensitivity is therefore an important task for radioprotection. This project aimed at establishing a procedure which allows to test various cellular parameters as indicators for effects of radiation. A standard protocol for the isolation and cryoconservation of primary blood cells was developed. DNA repair analysis (Comet Assay) and radiation-induced apoptosis

  6. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    without allowing for the uncertain possibility of a universal low-dose threshold, concludes that the evidence does not favour the existence of such a universal threshold. Consequently, radiation protection measures ought to be applied to radiation exposure situations involving low radiation doses; 2) They are improvable at individual level. The effect occurrence on specific individuals is not demonstrable on a yes-no basis. Its reality is axiomatic: namely taken by granted as self-evident, solely based on the acceptance of the LNT hypothesis as the only true basis for argument or inference. It is unfeasible to demonstrate the existence of the effects by uncontestable evidence: the truth, validity, or genuineness of their diagnosis for specific individuals cannot be tested and the diagnostic correctness cannot be checked; 3) Their individual causation is counterfactual. The proposition 'a radiation exposure situation caused a health effect on an individual' cannot be explained in terms of the counterfactual conditional 'if the radiation exposure situation had not occurred, then the health effect would not have occurred'; 4) Their occurrence is not individually attestable. In addition to their improvability, any formal proof of the existence of a radiation health effect on any specific individual is generally absent and impossible to obtain at low radiation doses and cannot be established through scientific evidence. The papers winds up that attributability, namely the assumption that some health effect occurs as the result of a given low-dose radiation exposure situation, are distinct notions at the collective and individual level. It then concludes the following: - Increases in the effect (collective) prevalence can be attributable in the sense that the radiological impact on a population can, under certain conditions, be ascribed, namely credited, assigned, and imputed to a specific exposure situation as its cause or source. Attributability is only conditional on the

  7. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    without allowing for the uncertain possibility of a universal low-dose threshold, concludes that the evidence does not favour the existence of such a universal threshold. Consequently, radiation protection measures ought to be applied to radiation exposure situations involving low radiation doses. (ii) They are improvable at individual level. The effect occurrence on specific individuals is not demonstrable on a yes-no basis. Its reality is axiomatic: namely taken by granted as self-evident, solely based on the acceptance of the LNT hypothesis as the only true basis for argument or inference. It is unfeasible to demonstrate the existence of the effects by uncontestable evidence: the truth, validity, or genuineness of their diagnosis for specific individuals cannot be tested and the diagnostic correctness cannot be checked. (iii) Their individual causation is counterfactual. The proposition 'a radiation exposure situation caused a health effect on an individual' cannot be explained in terms of the counterfactual conditional 'if the radiation exposure situation had not occurred, then the health effect would not have occurred'. (iv) Their occurrence is not individually attestable. In addition to their improvability, any formal proof of the existence of a radiation health effect on any specific individual is generally absent and impossible to obtain at low radiation doses and cannot be established through scientific evidence. The papers winds up that attributability, namely the assumption that some health effect occurs as the result of a given low-dose radiation exposure situation, are distinct notions at the collective and individual level. It then concludes the following: - Increases in the effect (collective) prevalence can be attributable in the sense that the radiological impact on a population can, under certain conditions, be ascribed, namely credited, assigned, and imputed to a specific exposure situation as its cause or source. Attributability is only conditional on

  8. Study of radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Kuboyama, Satoshi; Shindou, Hiroyuki; Ikeda, Naomi; Iwata, Yoshiyuki; Murakami, Takeshi

    2004-01-01

    Fine structure of the recent semiconductor devices has made them more sensitive to the space radiation environment with trapped high-energy protons and heavy ions. A new failure mode caused by bulk damage had been reported on such devices with small structure, and its effect on commercial synchronous dynamic random access memory (SDRAMs) was analyzed from the irradiation test results performed at Heavy ion Medical Accelerator in Chiba (HIMAC). Single event upset (SEU) data of static random access memory (SRAMs) were also collected to establish the method of estimating the proton-induced SEU rate from the results of heavy ion irradiation tests. (authors)

  9. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  10. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairlelisgoncalez@gmail.com, E-mail: adriane.acm@hotmail.com, E-mail: evaldocarlosjr@gmail.com [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  11. Effects of cosmic radiation on devices and embedded systems in aircrafts

    International Nuclear Information System (INIS)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L.

    2013-01-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  12. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  13. Effect of radiation on anaerobic corrosion of iron

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel elements for geological disposal, SKB of Sweden are considering using the Advanced Cold Process Canister, which consists of an outer copper canister and a cast iron insert. A programme of work has been carried out to investigate a range of corrosion issues associated with the canister, including measurements of gas generation due to the anaerobic corrosion of ferrous materials (carbon steel and cast iron) over a range of conditions. To date, all this work has been conducted in the absence of a radiation field. SKB asked Serco Assurance to carry out a set of experiments designed to investigate the effect of radiation on the corrosion of steel in repository environments. This report describes the experimental programme and presents the results that were obtained. The measurements were carried out in the type of gas cell used previously, in which the change in gas pressure was measured using a liquid-filled manometer. The test cells were placed in a radiation cell and positioned so that the received radiation dose was equivalent to that expected in the repository. Control cells were used to allow for any gas generation caused by radiolytic breakdown of the construction materials and the water. Tests were carried out at two temperatures (30 deg C and 50 deg C), two dose rates (11 Gray/hr and 300 Gray/hr), and in two different artificial groundwaters. A total of four tests were carried out, using carbon steel wires as the test material. The cells were exposed for a period of several months, after which they were dismantled and the corrosion product on one wire from each test cell was analysed using Raman spectroscopy. The report presents the results from the gas generation tests and compares the results obtained under irradiated conditions to results obtained previously in the absence of radiation. Radiation was found to enhance the corrosion rate at both dose rates but the greatest enhancement occurred at the

  14. Standard Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers recommended procedures for the use of dosimeters, such as thermoluminescent dosimeters (TLD's), to determine the absorbed dose in a region of interest within an electronic device irradiated using a Co-60 source. Co-60 sources are commonly used for the absorbed dose testing of silicon electronic devices. Note 1—This absorbed-dose testing is sometimes called “total dose testing” to distinguish it from “dose rate testing.” Note 2—The effects of ionizing radiation on some types of electronic devices may depend on both the absorbed dose and the absorbed dose rate; that is, the effects may be different if the device is irradiated to the same absorbed-dose level at different absorbed-dose rates. Absorbed-dose rate effects are not covered in this practice but should be considered in radiation hardness testing. 1.2 The principal potential error for the measurement of absorbed dose in electronic devices arises from non-equilibrium energy deposition effects in the vicinity o...

  15. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  16. Effects of ionizing radiation on vitamins

    International Nuclear Information System (INIS)

    Thayer, D.W.; Fox, J.B. Jr.; Lakritz, L.

    1991-01-01

    Vitamins are known to be sensitive to the effects of ionizing radiation. Since most foods contain a large proportion of water, the most probable reaction of the ionizing radiation would be with water; and as vitamins are present in very small amounts compared with other substances in the food they will be affected indirectly by the radiation. This chapter discusses the effect of ionizing radiation on water soluble vitamins and fat soluble vitamins. (author)

  17. Transient radiation effects in GaAs semiconductor devices

    International Nuclear Information System (INIS)

    Chang, J.Y.; Stauber, M.; Ezzeddine, A.; Howard, J.W.; Constantine, A.G.; Becker, M.; Block, R.C.

    1988-01-01

    This paper describes an ongoing program to identify the response of GaAs devices to intense pulses of ionizing radiation. The program consists of experimental measurements at the Rensselaer Polytechnic Institute's RPI electron linear accelerator (Linac) on generic GaAs devices built by Grumman Tachonics Corporation and the analysis of these results through computer simulation with the circuit model code SPICE (including radiation effects incorporated in the variations TRISPICE and TRIGSPICE and the device model code PISCES IIB). The objective of this program is the observation of the basic response phenomena and the development of accurate simulation tools so that results of Linac irradiations tests can be understood and predicted

  18. Radiation protection type testing and licensing of diagnostic X-ray equipment in the GDR

    International Nuclear Information System (INIS)

    Taschner, P.; Poulheim, K.F.; Feldheim, W.

    1987-01-01

    The results of more than 10 years experience in type testing and type licensing of diagnostic X-ray equipment with respect to meeting radiation protection requirements as well as the implications for the conduct of these procedures resulting from the introduction of new radiation protection legislation in 1983 and 1984, are described. At present an updated version of the 'Regulation of 16 December 1977 concerning radiation protection type testing and licensing of sealed radiation sources and equipment emitting ionizing radiation' is being prepared. (author)

  19. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F. [CNRS-IN2P3-IPN Orsay, Orsay (France)

    2007-07-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators ({approx}24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: {approx}20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T{approx}4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35{mu}A) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose ({approx}20%): a neutrons fluence of more than 10{sup 14} n/cm{sup 2} is achieved in {approx}20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T{approx}4.2 K. This new apparatus allows on-line automatic measurements

  20. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    International Nuclear Information System (INIS)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F.

    2007-01-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators (∼24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: ∼20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T∼4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35μA) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose (∼20%): a neutrons fluence of more than 10 14 n/cm 2 is achieved in ∼20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T∼4.2 K. This new apparatus allows on-line automatic measurements of actuators characteristics and the

  1. Radiation proctitis. Clinical and pathological manifestations, therapy and prophylaxis of acute and late injurious effects of radiation on the rectal mucosa

    International Nuclear Information System (INIS)

    Zimmermann, F.B.; Feldmann, H.J.

    1998-01-01

    Background: Often the rectum is the dose-limiting organ in curative radiation therapy of pelvic malignancies. It reacts with serous, mucoid, or more rarely bloody diarrhea. Methods: A research for reports on prophylactic and supportive therapies of radiation-induced proctitis was performed (Medline, Cancerlit, and others). Results: No proven effective prophylactic local or systemic therapies of radiation proctitis exist. Also, no reasonable causal medication is known. In the treatment of late radiation sequelae no clinically tested certain effective therapy exists, too. Antiinflammatory, steroidal or non-steroidal therapeutics as well as sucralfate can be used as topical measures. They will be successful in some patients. Side effects are rare and the therapy is cost-effective. Treatment failures can be treated by hyperbaric oxygen. This will achieve good clinical results in about 50% of the cases. Single or few mucosal telangiectasias with rectal bleeding can be treated sufficiently by endoscopic cautherization. Conclusion: Besides clinical studies acute proctitis should be treated just symptomatically. Radical surgery should be performed only when all conventional treatments have been uneffective, although no certain effective therapies of radiation-induced late proctitis exist. (orig.) [de

  2. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  3. Principles and techniques of radiation hardening. Volume 2. Transient radiation effects in electronics (TREE)

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 2 deals with the following topics: radiation effects on quartz crystals, tantalum capacitors, bipolar semiconductor devices and integrated circuits, field effect transistors, and miscellaneous electronic devices; hardening electronic systems to photon and neutron radiation; nuclear radiation source and/or effects simulation techniques; and radiation dosimetry

  4. RBE [relative biological effectiveness] of tritium beta radiation to gamma radiation and x-rays analyzed by both molecular and genetic methods

    International Nuclear Information System (INIS)

    Lee, W.R.

    1988-01-01

    The relative biological effectiveness (RBE) of tritium beta radiation to 60 Co gamma radiation was determined using sex-linked recessive lethals (SLRL) induced in Drosophila melanogaster spermatozoa as the biological effect. The SLRL test, a measure of mutations induced in germ cells transmitted through successive generations, yields a linear dose-response curve in the range used in these experiments. From these ratios of the slopes of the 3 H beta and the 60 Co gamma radiation linear dose response curves, an RBE of 2.7 is observed. When sources of error are considered, this observation suggests that the tritium beta particle is 2.7 ± 0.3 times more effective per unit of energy absorbed in inducing gene mutations transmitted to successive generation than 60 Co gamma radiation. Ion tracks with a high density of ions (high LET) are more efficient than tracks with a low ion density (low LET) in inducing transmissible mutations, suggesting interaction among products of ionization. Molecular analysis of x-ray induced mutations shows that most mutations are deletions ranging from a few base pairs as determined from sequence data to multi locus deletions as determined from complementation tests and Southern blots. 14 refs., 1 fig

  5. Effects of prenatal exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Miller, R.W.

    1990-01-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities

  6. Effects of prenatal exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.W. (National Cancer Institute, Bethesda, MD (USA))

    1990-07-01

    Prenatal exposure to ionizing radiation induces some effects that are seen at birth and others that cannot be detected until later in life. Data from A-bomb survivors in Hiroshima and Nagasaki show a diminished number of births after exposure under 4 wk of gestational age. Although a wide array of congenital malformations has been found in animal experimentation after such exposure to x rays, in humans only small head size (exposure at 4-17 wk) and mental retardation (exposure primarily at 8-15 wk) have been observed. In Hiroshima, small head size occurred after doses of 0.10-0.19 Gy or more, and an excess of mental retardation at 0.2-0.4 Gy or more. Intelligence test scores were reduced among A-bomb survivors exposed at 8-15 wk of gestational age by 21-29 IQ points per Gy. Other effects of in-utero exposure to atomic radiation include long-lasting complex chromosome abnormalities.

  7. Radiation effects in charge coupled devices

    International Nuclear Information System (INIS)

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  8. Radiation effects in metal-oxide-semiconductor capacitors

    International Nuclear Information System (INIS)

    Collins, J.L.

    1987-01-01

    The effects of various radiations on commercially made Al-SiO 2 -Si Capacitors (MOSCs) have been investigated. Intrinsic dielectric breakdown in MOSCs has been shown to be a two-stage process dominated by charge injection in a pre-breakdown stage; this is associated with localised high-field injection of carriers from the semiconductor substrate to interfacial and bulk charge traps which, it is proposed, leads to the formation of conducting channels through the dielectric with breakdown occurring as a result of the dissipation of the conduction band energy. A study of radiation-induced dielectric breakdown has revealed the possibility of anomalous hot-electron injection to an excess of bulk oxide traps in the ionization channel produced by very heavily ionizing radiation, which leads to intrinsic breakdown in high-field stressed devices. This is interpreted in terms of a modified model for radiation-induced dielectric breakdown based upon the primary dependence of breakdown on charge injection rather than high-field mechanisms. A detailed investigation of charge trapping and interface state generation due to various radiations has revealed evidence of neutron induced interface states, and the generation of positive oxide charge in devices due to all the radiations tested. The greater the linear energy transfer of the radiation, the greater the magnitude of charge trapped in the oxide and the number of interface states generated. This is interpreted in terms of Si-H and Si-OH bond-breaking at the Si-SiO 2 interface which is enhanced by charge carrier transfer to the interface and by anomalous charge injection to compensate for the excess of charge carriers created by the radiation. (author)

  9. BARTTest: Community-Standard Atmospheric Radiative-Transfer and Retrieval Tests

    Science.gov (United States)

    Harrington, Joseph; Himes, Michael D.; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.

    2018-01-01

    Atmospheric radiative transfer (RT) codes are used both to predict planetary and brown-dwarf spectra and in retrieval algorithms to infer atmospheric chemistry, clouds, and thermal structure from observations. Observational plans, theoretical models, and scientific results depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least community-verified results. We therefore present the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest. BARTTest has four categories of tests: analytically verified RT tests of simple atmospheres (single line in single layer, line blends, saturation, isothermal, multiple line-list combination, etc.), community-verified RT tests of complex atmospheres, synthetic retrieval tests on simulated data with known answers, and community-verified real-data retrieval tests.BARTTest is open-source software intended for community use and further development. It is available at https://github.com/ExOSPORTS/BARTTest. We propose this test suite as a standard for verifying atmospheric RT and retrieval codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G, NASA Astrophysics Data Analysis Program grant NNX13AF38G, and NASA Exoplanets Research Program grant NNX17AB62G.

  10. Implementation and testing of a multivariate inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John; Mitchell, Dean J.

    2012-01-01

    Detection, identification, and characterization of special nuclear materials (SNM) all face the same basic challenge: to varying degrees, each must infer the presence, composition, and configuration of the SNM by analyzing a set of measured radiation signatures. Solutions to this problem implement inverse radiation transport methods. Given a set of measured radiation signatures, inverse radiation transport estimates properties of the source terms and transport media that are consistent with those signatures. This paper describes one implementation of a multivariate inverse radiation transport solver. The solver simultaneously analyzes gamma spectrometry and neutron multiplicity measurements to fit a one-dimensional radiation transport model with variable layer thicknesses using nonlinear regression. The solver's essential components are described, and its performance is illustrated by application to benchmark experiments conducted with plutonium metal. - Highlights: ► Inverse problems, specifically applied to identifying and characterizing radiation sources . ► Radiation transport. ► Analysis of gamma spectroscopy and neutron multiplicity counting measurements. ► Experimental testing of the inverse solver against measurements of plutonium.

  11. Radiation exposure on residents due to semipalatinsk nuclear tests

    International Nuclear Information System (INIS)

    Takada, J.; Hoshi, M.; Nagatomo, T.

    2000-01-01

    Accumulated external radiation doses for residents near Semipalatinsk nuclear test site of the former USSR are presented as a results of the first study by thermoluminescence technique for bricks sampled at several settlements between 1995 and 1997. The external doses which we evaluated from brick dose were up to ∼100 cGy for resident. The external doses at several points in the center of Semipalatinsk city were ∼60 cGy that was remarkably high comparing with the previously reported value based on the military data. A total of 459 nuclear explosions were conducted by the former Union of Soviet Socialist Republics (USSR) from 1949 to 1989 at the Semipalatinsk nuclear test site (SNTS) Kazakhstan, including 87 atmospheric, 26 on the ground, and 364 underground explosions. Total energy release of about 18 Mt equivalent of trinitrotoluene is eleven hundreds times of Hiroshima atomic bomb. However previous reports concerning the effects of radiation on residents near the SNTS based on data provided by the Defense Department of the former USSR do not have direct experimental data concerning effective equivalent dose. They just measured some doses for particular settlements after some nuclear explosions. These do not indicate integrated dose for the residents due to the whole explosions. The technique of thermoluminescence dosimetry (TLD) which had been successfully applied to the dosimetry on Hiroshima and Nagasaki atomic bombs, enabled us to evaluate accumulated external gamma ray doses at specific places due to whole nuclear explosions in the Semipalatinsk test site. TLD technique is well-established one for not only instantaneous exposure like in A-bombs (Hiroshima and Nagasaki) but also prolonged exposure like in dating. Moreover this technique was applicable for dosimetry study of radioactive fallout as shown in studies of Chernobyl accident. The way of external dose estimation from TLD doses for brick will be discussed in case of radioactive fallout. We will

  12. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  13. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  14. Health effects assessment of staff involved in medical practices of radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, I.A.; Lacob, O. [Institute of Public Health Iasi, Radiation Hygiene Lab. (Romania); Roman, I.; Havarneanu, D. [Institute of Public Health Iasi, Occupational Medicine Dept. (Romania)

    2006-07-01

    This study aimed, starting from new national recommendation appearance, to detect health effects of medical staff from six counties of Moldavia region involved in radiation practices and to create a national register data for radiation-induce cancer. Staff involved in medical ionizing radiation uses in Romania - health care level I are monitored on recent new recommendations for three years. The micro nuclei high levels and morphological lymphocytes changes vs. clinical diagnostic can be considered as early possible malignant signs. The micro nuclei test, although unspecific, as a new exam in our legislation can bring useful information on staff exposure and provides a guidance to occupational physician in making his medical recommendations. This cytogenetic test does not seem to correlate with smoking habit or length of exposure. Micro nuclei test both in oral mucous epithelial cells and peripheral culture lymphocytes can be considered of much specificity and correlates with a recent acute exposure level. The conclusions of individual health status surveillance and assessment of personal dose equivalent are very useful data for recording in the radiation cancer-induced register.

  15. Health effects assessment of staff involved in medical practices of radiation exposures

    International Nuclear Information System (INIS)

    Popescu, I.A.; Lacob, O.; Roman, I.; Havarneanu, D.

    2006-01-01

    This study aimed, starting from new national recommendation appearance, to detect health effects of medical staff from six counties of Moldavia region involved in radiation practices and to create a national register data for radiation-induce cancer. Staff involved in medical ionizing radiation uses in Romania - health care level I are monitored on recent new recommendations for three years. The micro nuclei high levels and morphological lymphocytes changes vs. clinical diagnostic can be considered as early possible malignant signs. The micro nuclei test, although unspecific, as a new exam in our legislation can bring useful information on staff exposure and provides a guidance to occupational physician in making his medical recommendations. This cytogenetic test does not seem to correlate with smoking habit or length of exposure. Micro nuclei test both in oral mucous epithelial cells and peripheral culture lymphocytes can be considered of much specificity and correlates with a recent acute exposure level. The conclusions of individual health status surveillance and assessment of personal dose equivalent are very useful data for recording in the radiation cancer-induced register

  16. Genetic effects of radiation and prediction of hereditary pathology of population of areas around the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Bigaliev, A.B.

    1998-01-01

    Epidemiological analysis of diseases and mortality of the population living in areas around Semipalatinsk test site is not only theoretically interesting in terms of the human being genetics, but is important for the health-care in practice, since it allows correct planning the score of medical social aid to the sick people and their families, including measures. Assessment of posterior consequences of low dose radiation effect on health of the population of the areas around the former Semipalatinsk nuclear test site is of special interest. Many underground, atmospheric and above-ground tests of nuclear weapon resulted in a significant increase of the oncologic and blood diseases rate among several generations of the effected people. Moreover, consequences of the above-ground and atmospheric tests of nuclear and hydrogen weapon will show up in the next century, taking into account the fact that the 'open' tests were ceased only at the middle of 60-th. The birth rate of children with the inherent intelligence defects was determined according to the accounting records of the new-born children within 1986-1992 years. Analysis of perinatal mortality was carried out based on the records on autopsy within 1985-1992 years. The two-fold increase of the onco diseases rate was revealed among children. The rate of spontaneous aborts in the Eginbulak district was 9.99% and exceeded the average rate in the region and indexes of other regions

  17. Stimulatory effects of low ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Kurisu, Y.; Murata, I.; Takahashi, A. [Department of Nuclear Engineering, Osaka Univ., Suita, Osaka (Japan); Masui, H.; Iida, T. [Department of Electronic, Information Systems and Energy Engineering, Osaka Univ., Suita, Osaka (Japan); Yamamoto, T. [Radioisotope Research Center, Osaka Univ., Suita, Osaka (Japan)

    2000-05-01

    Recently, the study for radiation hormesis was strongly carried out for animals and plants; subharmful dose of radiation may stimulate any organism. The concept of radiation hormesis effect consists of 1) biopositive effects of low dose radiation; influence caused by low dose radiation is totally different from one caused by high dose radiation, low dose radiation produces physiological useful effects against high dose radiation, and 2) radio-adaptive response; radiation also acts the organism as stress. Irradiated with small dose radiation previously, it raises its own defense response against the stress (radiation), resulting in the phenomenon that radiation influence decreases in appearance. In this paper we have investigated the phenomenon of radiation hormesis effects for plants through irradiation experiments with neutrons and gamma-rays to find out the mechanism. In the present experiment, dry seeds of Raphanus sativus were irradiated with D-T neutrons (10 {mu}Gy {approx} 100 kGy), D-D neutrons (1 mGy {approx} 100 mGy), thermal and fast neutrons (irradiation in a nuclear reactor: 100 {mu}Gy {approx} 10 Gy), 60Co gamma-rays (10 {mu}Gy {approx} 10 Gy). To confirm existence of the radiation hormesis effects, germination percentage, length of hypocotyl, length of root and total weight of seed leaf were measured at 7th day after starting cultivation. We estimated relative effectiveness as the hormesis effect, that is the ratio of mean values of measured subjects for the irradiated and control groups. For Raphanus sativus, the hormesis effect on seed leaf growth has been observed in the seed group irradiated by D-T neutrons and D-D neutrons. The observed hormesis effect is from 5 to 25 percents. (author)

  18. Irradiation tests of a small-sized motor with radiation resistance

    International Nuclear Information System (INIS)

    Nakamichi, M.; Ishitsuka, E.; Shimakawa, S.; Kan, S.

    2007-01-01

    In the Test Blanket Module (TBM) of the International Thermonuclear Experimental Reactor (ITER), tritium production and release behavior will be studied using neutrons from fusion reactions, as the blanket development for a demonstration (DEMO) reactor. For development of the TBM, in-pile functional tests are planned, including an integrated irradiation experiment of a fusion blanket mock-up for pulsed operation simulating the ITER operation mode, using the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Agency (JAEA).Due to be installed in an irradiation rig, a small-sized motor has to be developed for rotating a neutron absorber with a window to realize the simulated pulse operation. Since degradation of materials of the motor may be caused by radiation damage due to neutron and gamma-ray irradiation, it is important to examine the soundness of the motor materials under the neutron and gamma irradiation.In the present study, a small-sized motor with increased radiation resistance was developed as follows. A design of a commercial alternate current (AC) servomotor was adopted in the base structure, and some components of the motor were replaced by those made of radiation-proof materials, through elimination of organic materials. Polyester-coated wire for field coil and epoxy for fixed resin were replaced by polyimide-coated wire and polysiloxane filled with MgO and Al 2 O 3 , respectively. Furthermore, inorganic lubricant (Mo-based coating of 4 micro meter in thickness) was treated on the surface of a gear, instead of organic (polyphenylether) oil.Radiation-induced degradation of the components of the developed small-sized motor was examined using JMTR and the Japan Research Reactor No.4 (JRR-4) of JAEA. The motor was operating normally up to a gamma-ray dose of 7 x 10 8 Gy, a fast neutron (E>1 MeV) fluence of 2 x 10 21 m -2 and a thermal neutron (E 22 m -2 . The irradiated gamma-ray dose for this motor is about 700 times as high as the operation

  19. Irradiation tests of critical components for remote handling in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Henjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1994-08-01

    Since the fusion power core of a D-T fusion reactor will be highly activated once it starts operation, personnel access will be prohibited so that assembly and maintenance of the components in the reactor core will have to be totally conducted by remote handling technology. Fusion experimental reactors such as ITER require unprecedented remote handling equipments which are tolerable under gamma radiation of more than 10 6 R/h. For this purpose, the Japan Atomic Energy Research Institute (JAERI) has been developing radiation hard components for remote handling purpose and a number of key components have been tested over 10 9 rad at a radiation dose rate of around 10 6 R/h, using Gamma Ray Radiation Test Facility in JAERI-Takasaki Establishment. This report summarizes the irradiation test results and the latest status of AC servo motor, potentiometer, optical elements, lubricant, sensors and cables, which are key elements of the remote handling system. (author)

  20. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  1. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  2. Heat effect of pulsed Er:YAG laser radiation

    Science.gov (United States)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  3. Epidemiological and immunological studies of radiation accidents and nucleare tests participants

    International Nuclear Information System (INIS)

    Shubik, V. M.; Bronstein, I. E.; Koroleva, T.M.; Strelnicova, T.M.; Sukalskay, S. J.

    2004-01-01

    Results of long term studies of epidemiological and immunological problems after radiation accidents in Ural. At Chernobyl and nuclear weapons tests in Semi-palatinsk and Novaya Zemlya nuclear tests sites are presented. Changes in Health and immunity status of emergency team workers (liquida-tors) and participants on nuclear weapon tests were recorded in long term studies af-ter 10 and more years after radiation exposure. Some changes (decrease in ly-sozyme activity, disimmunoglobulinemia) could be attributed to the old age of exam-ined persons and concomitant cardiovasculatory, respiratory and other diseases An-other ones were related to the autoimmune syndromes. Humoral and cellular auto-immune changes were more pronounced in liquidators and participants then in controls. concentrations of antitissue antibodies in exposed cohort was three times higher than in control. Level of antibodies to thyroid antigens (microsoms and thy-roglobulines) were five times higher in liquidators of Chernobyl accident. The pos-sible role of humoral and cell autoimmune changes in the development of cardiovascular, liver, kidney and thyroid is considered. Considerable increase in some cytocine concentrations in blood of participants was found. For example increased concentration of TNF was recorded in half of par-ticipants from Novaya Zemlya in comparison to similar changes in only twenty pro-cents of controls. In half of participants from Semipalatinsk site the virus antigens in epithelium of higher respiratory tract (mostly adenoviruses) were found, with 22% in control group. In health and immunity studies of population from the contaminated areas after accidents and nuclear tests (Ural, Bryansk, Russian arktics) the demographics changes, mortality structure changes, oncological mortality and immunological deficiencies were found. The recorded effects might by considered as a results of combined effect of ra-diological and non-radiological factors. The potentiated effect of chronic

  4. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  5. Effects of ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1984-08-01

    After recalling radiation-matter interaction, influence on radiation effects of chemical composition, structure, irradiation atmosphere, dose rate, temperature of organic materials and evolution of electrical, mechanical and physical properties are reviewed. Then behaviour under irradiation of main organic materials: elastomers, thermoplastics, thermosetting plastics, oils and paints are examined. 68 refs [fr

  6. Effect of radiation environment on radiation use efficiency and growth of sunflower

    International Nuclear Information System (INIS)

    Bange, M.P.; Hammer, G.L.; Rickert, K.G.

    1997-01-01

    The level of incident radiation and the proportion of radiation that is diffuse affects radiation use efficiency (RUE) in crops. However, the degree of this effect, and its importance to growth and yield of sunflower (Helianthus annuus L.) have not been established. A field experiment was conducted to investigate the effects of radiation environment on RUE, growth, and yield of sunflower. A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and was exposed to three distinct radiation environments. In two treatments, the level of incident radiation was reduced by 14 and 20% by suspending two different types of polyethylene plastic films well above the crop. In addition to the reductions in incident radiation, the proportion of radiation that was diffuse was increased by about 14% in these treatments. Lower incident radiation and increased proportion of diffuse radiation had no effect on total biomass, phenology, leaf area, and the canopy light extinction coefficient (k = 0.89). However, yield was reduced in shaded treatments due to smaller grain size and lower harvest index. Although crop RUE measured over the entire crop cycle (1.25 g/MJ) did not differ significantly among treatments, there was a trend where RUE compensated for less intercepted incident radiation. Theoretical derivations of the response of RUE to different levels of incident radiation supported this finding. Shaded sunflower crops have the ability to produce biomass similar to unshaded crops by increasing RUE, but have lower harvest indices

  7. Development of measurement system for radiation effect on static random access memory based field programmable gate array

    International Nuclear Information System (INIS)

    Yao Zhibin; He Baoping; Zhang Fengqi; Guo Hongxia; Luo Yinhong; Wang Yuanming; Zhang Keying

    2009-01-01

    Based on the detailed investigation in field programmable gate array(FPGA) radiation effects theory, a measurement system for radiation effects on static random access memory(SRAM)-based FPGA was developed. The testing principle of internal memory, function and power current was introduced. The hardware and software implement means of system were presented. Some important parameters for radiation effects on SRAM-based FPGA, such as configuration RAM upset section, block RAM upset section, function fault section and single event latchup section can be gained with this system. The transmission distance of the system can be over 50 m and the maximum number of tested gates can reach one million. (authors)

  8. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    Loken, M.K.

    1983-01-01

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  9. Radiobiologic effects at low radiation levels

    International Nuclear Information System (INIS)

    Casarett, G.W.

    1975-01-01

    Data are reviewed on the effects of low radiation doses on mammals. Data from the 1972 report on the Biological Effects of Ionizing Radiation issued by the Advisory Committee of the National Academy of Sciences and National Research Council are discussed. It was concluded that there are certain radiosensitive systems in which low doses of radiation may cause degenerative effects, including gametogenic epithelium, lens of the eye, and developing embryos. Despite extensive investigation of genetic effects, including chromosomal effects, neither the amount of change that will be caused by very low levels of irradiation nor the degree of associated detriment is known

  10. Technical critique on radiation test facilities for the CTR surface and materials program

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1975-02-01

    Major radiation test facilities will be necessary in the near-term (5 years) and long-term (greater than 10 years) future for the timely development and understanding of fusion confinement systems and of prototype fusion power reactors. The study includes the technical justifications and requirements for CTR Neutron and Plasma Radiation Test Facilities. The initial technical critique covers the feasibility and design problems: in upgrading the performance of the accelerator-rotating (solid TiT) target systems, and in transforming the accelerator-supersonic jet target concept into a radiation testing facility. A scoping assessment on the potential of a pulsed high-beta plasma device (dense plasma focus) is introduced to explore plasma concepts as near-term neutron and plasma radiation sources for the CTR Surface and Materials Program. (U.S.)

  11. Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant

    International Nuclear Information System (INIS)

    Keller, L.C.; Maxcy, R.B.

    1984-01-01

    Physiological age-dependent variation in radiation resistance was studied for three bacteria that are highly radiation resistant: Micrococcus radiodurans, Micrococcus sp. isolate C-3, and Moraxella sp. isolate 4. Stationary-phase cultures of M. radiodurans and isolate C-3 were much more resistant to gamma radiation than were log-phase cultures. This pattern of relative resistance was reversed for isolate 4. Resistance of isolate 4 to UV light was also greater during log phase, although heat resistance and NaCl tolerance after heat stresses were greater during stationary phase. Radiation-induced injury of isolate 4 compared with injury of Escherichia coli B suggested that the injury process, as well as the lethal process, was affected by growth phase. The hypothesis that growth rate affects radiation resistance was tested, and results were interpreted in light of the probable confounding effect of methods used to alter growth rates of bacteria. These results indicate that dose-response experiments should be designed to measure survival during the most resistant growth phase of the organism under study. The timing is particularly important when extrapolations of survival results might be made to potential irradiation processes for foods. 17 references

  12. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Science.gov (United States)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  13. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  14. Effects if 60Co γ rays radiation on seed vigor and young seedling growth of phyllostachys edulis

    International Nuclear Information System (INIS)

    Cai Chunju; Gao Jian; Mu Shaohua

    2007-01-01

    The dry seeds of Phyllostachys edulis were irradiated by different doses of 60 Co γ rays, the effects of the radiation on seed vigor and seedling growth characters were investigated by four testing methods, i.e. germination testing indoor, electrical conductivity, TTC vigor testing and growth classification of saddling. Results showed that the germination process and germination rate could be accelerated by doses of 60 Co γ rays (≤100 Gy), and higher doses of 60 Co γ rays (>100 Gy) could obviously inhibit the germination process and reduce seed vigor, while induce seed embryo broken, cell division, growth restrained, the height of young seedling and length of root decreasing. The inhibition effects were significantly increased with radiation dose increase. The optimal range of radiation dose for radiation breeding of Phyllostachys edulis dry seeds was 100 to 175 Gy. Linear relationships were existed in electrical conductivity after dipping in water for 24h in germination rate (G), germination index (GI), vigor index (VI), height of seedlings and length of root. EC after 24h and height of seedlings were chosen to test the change of seeds vigor and the effect of the radiation of 60 Co γ rays on Phyllostachys edulis. (authors)

  15. Radiation hormesis. Stimulatory effects of low level ionizing radiation on plant

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shigenobu; Masui, Hisashi; Yoshida, Shigeo; Murata, Isao [Osaka Univ., Suita (Japan). Faculty of Engineering

    1999-04-01

    Recently, the study for radiation hormesis has been executed against animals and plants; subharmful doses of radiation may evoke a stimulatory response in any organism. We executed irradiating experiments of dry seeds with fusion (D-T) neutron, fission neutron, cobalt-60 gamma-ray and investigated existence of the radiation hormesis effects by measuring germination, the length of a stalk and the total weight of a seed leaf on the 7th day after starting cultivation. And we estimated radiation hormesis effects by relative effectiveness, the ratio of the mean value of measurement subjects for the irradiated group to that of non-irradiated group. In relation to Raphanus sativus, the hormesis effects on seed leaf growth from irradiated seeds have only turned up in seed groups irradiated by the fusion (D-T) neutron. We have confirmed that absorbed dose range which revealed the effects is from 1 cGy to 10 Gy and the increasing rate is from 5 percent to 25 percent against a control group. (author)

  16. The HAW-Project. Test disposal of highly radioactive radiation sources in the Asse salt mine. Final report

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Cuevas, C. de las; Donker, H.; Feddersen, H.K.; Garcia-Celma, A.; Gies, H.; Goreychi, M.; Graefe, V.; Heijdra, J.; Hente, B.; Jockwer, N.; LeMeur, R.; Moenig, J.; Mueller, K.; Prij, J.; Regulla, D.; Smailos, E.; Staupendahl, G.; Till, E.; Zankl, M.

    1995-01-01

    In order to improve the final concept for the disposal of high-level radioactive waste (HAW) in boreholes drilled into salt formation plans were developed a couple of years ago for a full scale testing of the complete technical system of an underground repository. To satisfy the test objectives, thirty highly radioactive radiation sources were planned to be emplaced in six boreholes located in two test galleries at the 800-m-level in the Asse salt mine. A duration of testing of approximately five years was envisaged. Because of licensing uncertainties the German Federal Government decided on December 3rd, 1992 to stop all activities for the preparation of the test disposal immediately. In the course of the preparation of the test disposal, however, a system, necessary for handling of the radiation sources was developed and installed in the Asse salt mine and two non-radioactive reference tests with electrical heaters were started in November 1988. These tests served for the investigation of thermal effects in comparison to the planned radioactive tests. An accompanying scientific investigation programme performed in situ and in the laboratory comprises the estimation and observation of the thermal, radiation-induced, and mechanical interaction between the rock salt and the electrical heaters and the radiation sources, respectively. The laboratory investigations are carried out at Braunschweig (FRG), Petten (NL), Saclay (F) and Barcelona (E). As a consequence of the premature termination of the project the working programme was revised. The new programme agreed to by the project partners included a controlled shutdown of the heater tests in 1993 and a continuation of the laboratory activities until the end of 1994. (orig.)

  17. In-beam test of a DIRC Cherenkov radiator with SiPM

    International Nuclear Information System (INIS)

    Kroeck, B.; Hayrapetyan, A.; Foehl, K.; Merle, O.; Dueren, M.; Roy, B.J.; Peters, K.

    2009-01-01

    One of the crucial points for any high energy physics experiment is to obtain a good pion/kaon separation i.e. particle identification (PID). For particles in minimum ionising range, the conventional methods of PID using energy loss and time of flight become insufficient. In such a situation, the measurement of velocity of particles using Cherenkov radiation is an effective tool for PID in combination with momentum information from a tracking detector. The PANDA experiment at FAIR/ GSI plans to use a novel technique for PID with detection of internally reflected Cherenkov (DIRC) light. DIRC uses, in contrast to the conventional gas Cherenkov detectors, a solid radiator and total internal reflection to guide Cherenkov photons onto a detection plane where it will be detected by advanced photon counters. A SiPM is a very new generation photon counter that has several advantages over conventional PMTs. Several prototype Cherenkov detectors with different readout systems are being developed for R and D studies. One such prototype detector with Geiger-APD readout has been built at Giessen and was tested in-beam at GSI. The present report provides details of the very first test measurement

  18. Preliminary assays for lemongrass essential oil ecotoxicological test in D. similis and C. silvestrii submitted to gamma radiation

    International Nuclear Information System (INIS)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Rogero, Jose R.; Cruz, Aurea S.

    2011-01-01

    Pharmaceutical products are of great interest in ecotoxicological studies due to being found some of these products in the superficial waters and sediments, water and sewage treatment effluents. It was verified an increase of insect repellent chemical products in the aquatic environment because of the increase of diseases transmitted by mosquitoes like dengue. As these compounds show toxicity, the use of essential oils natural products with repellent properties is increasing and the literature about the impact in the aquatic environment is scarce. The hydric frame would suffer natural radiation and radiations from energy generation nuclear plants impacts fall out of tests and nuclear accidents. There is no universal definition of environmental protection and there are few studies on radiation effects in the aquatic environment. In this study was determined the lemon grass essential oil toxicity level as well as the lethal dose of ionizing radiation, LD 50 , in aquatic organisms. Cytotoxicity test was performed by in vitro neutral red uptake method in NCTC clone L929 cell line. In the LD 50 test aquatic organisms were submitted to gamma radiation. The essential oil of lemongrass Cymbopogon flexuosus showed cytotoxicity index IC 50 about 50μg.mL -1 . The LD 50 for Daphnia similis was 242 Gy and Ceriodaphnia silvestrii about 525 Gy. Studies will be continued with acute and chronic ecotoxicological tests of lemongrass essential oil in natural organisms and in organisms submitted to gamma radiation, utilizing the results obtained in this work. (author)

  19. Solar Radiation effect on the bituminous binder; Efecto de la radiacion solar sobre el ligante bituminoso

    Energy Technology Data Exchange (ETDEWEB)

    Tadeo Rico, A.; Torres Perez, A.

    2010-07-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  20. Assessment of the Radiation Enclosure Models in SPACE and RELAP5 with GOTA Test 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. B.; Lee, G. W.; Choi, T. S. [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    SPACE (Safety and Performance Analysis Code) for nuclear power plant has been developed to calculate the transient thermal-hydraulic response of PWRs that can contain multiple types of fluids. Without explaining 3-D effects such as the change of fuel rod/guide tube thermal behavior as a result of the radiation heat transfer, the 1-D code could predict an unrealistically high peak clad temperature. A useful function to simulate the wall-to-wall radiation heat transfer is implemented in the SPACE and RELAP5 codes. This paper discusses the assessment results of the radiation enclosure model of SPACE and RELAP5. The capability of handling wall-to-wall radiation problem of the SPACE and the RELAP5 codes has been evaluated using the experimental data from the GOTA test facility. At the top of the bundle, the maximum errors of SPACE and RELAP5 are less than 1.6% and 2.3%, respectively. As noted, there is a small discrepancy between the calculated results and experimental data except for the predictions near the top of the test section. The SPACE code is based on the version 2.16 distributed by KHNP. In order to perform the simulation of the GOTA test 27, it was necessary to modify the SPACE code. There was the subroutine for an input process corresponding to the radiation model, the inp{sub c}heck function of the RadEncData Class, contained in a vulnerable algorithm to figure out the reciprocity rule of the view factor.

  1. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  2. Utilization of radiation in non destructive tests

    International Nuclear Information System (INIS)

    Lopes, R.T.; Jesus, E.F.O. de; Junqueira, M.M.; Matos, J.A. de; Castello Branco, L.M.; Barros Junior, J.D.; Borges, J.C.

    1987-01-01

    The Nuclear Instrumentation Laboratory from COPPE/UFRJ has been developed techniques for using nuclear radiations to obtain images for non-destructive materials testing and medicine. With this objective, some prototypes of transmission computerized tomography systems using parallel beans and fan beans, with computer automation, including the mathematical process of image reprocessing and presentation in videos or printers are constructed [pt

  3. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  4. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1991-12-01

    Ionizing radiation effects on the gem cells, which can result in genetic abnormalities, are described. The basic mechanisms of radiation interactions with chromosomes, or specifically DNA, which can result in radiation induced mutation are discussed. Methods of estimating genetic risks, and some values for quantitative risk estimates are given. (U.K.). 13 refs., 2 figs., 1 tab

  5. Synergistic effects of interstitial impurities and radiation defects on mechanical characteristics of ferritic steels

    International Nuclear Information System (INIS)

    Charit, I.; Seok, C.S.; Murty, K.L.

    2007-01-01

    Ferritic steels are generally used in pressure vessels and various reactor support structures in light water reactors. They are known to exhibit radiation embrittlement in terms of decreased toughness and increased ductile-brittle transition temperature as a result of exposure to neutron radiation. The superimposed effects of strain aging due to interstitial impurity atoms on radiation embrittlement were considered first by Wechsler, Hall and others. Here we summarize some of our efforts on the investigation of synergistic effects between interstitial impurity atoms (IIAs) and radiation-induced point defects, which result in interesting effects at appropriate temperature and strain rate conditions. Two materials, a mild steel and a pressure vessel steel (A516 Gr.70), are evaluated using tensile and three-point bend tests

  6. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  7. Radiation effects on ion exchange materials

    International Nuclear Information System (INIS)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references

  8. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rosado, P.H.G.; Cunha, P.G. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  9. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    International Nuclear Information System (INIS)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da; Rosado, P.H.G.; Cunha, P.G.

    2017-01-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  10. Assessment of the biological effects of 'strange' radiation

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Tryapitsina, G.A.; Urutskoyev, L.I.; Akleyev, A.V.

    2006-01-01

    from explosion of Ti foils in water and aqueous solutions has the capacity to produce a biological effect. 2. The biological effect of 'strange' radiation is manifested by a 13% increase in the number of nucleated cells in the bone marrow, as compared to that in controls, after exposure of the animals to 10 explosions within 3 days of the experiment. 3. The assessment of micronucleus rate in the bone marrow erythrocytes did not reveal the genotoxic effect of 'strange' radiation. 4. The exposure of mice to 'strange' radiation resulting from 10 explosions carried out within 3 days leads to 1.5 fold decrease of genotoxic effect resulting from additional gamma-irradiation (2 Gy). Such reaction may be described as an adaptive response. 5. 'strange' radiation resulting from 10 explosions carried out within 3 days after the gamma irradiation (6 Gy) leads to decrease of bone marrow repopulation. 6. The exposure to 'strange' radiation can bring about an increase in the proportion of neutrophils in the peripheral blood of experimental animals. 7. It can be suggested by the results of the test exposures that 'strange' radiation can affect human health. 8. It has been shown by these preliminary studies that in order to gain an insight into the biological effects of 'strange' radiation further investigation would be necessary. (authors)

  11. Radiation exposures from nuclear tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, G M

    1958-12-01

    A summary of the pertinent data on radiation exposures from nuclear tests in Nevada is presented. The data are presented in categories of external ..gamma.. radiation, activity concentrations in air, and activity concentrations in water. Methods used to estimate exposure and to evaluate data are described. The data are tabulated. The maximum external exposure was 7 to 8 r for 15 persons involved. In terms of relatively large populations, the average exposure for the 1,000,000 people living nearest the site was at the rate of 1/2 r/30 yr. The highest concentration of fallout activity in the air was about 1.3 ..mu..c/m/sup 3/ averaged over the 30 hr that the activity was present in significant quantities. The highest concentration of fallout activity in a potential drinking water supply was about 1.4 x 10/sup -/ ..mu..c/me extrapolated to D + 3 days. Evaluation of these data is given.

  12. Protective effect of plant polysaccharides against radiation injury

    International Nuclear Information System (INIS)

    Wang Bingji; Huang Shafei; Cheng Lurong

    1989-01-01

    A series of polysaccharides have been isolated from Chinese traditional medicinal herbs and tested in mice subjected to ionizing radiation for their protective action. The polysaccharides from different origins showed various degrees of radioprotection. Those isolated from Hericium erinaceus and Armillaria mellea showed a higher radioprotective effect than some other polysaccharides. They could increase the survival rate of irradiated mice to 60%. But the polysaccheride separated from Apocynum venetum has negligible effect. In general, most of these polysaccharides are effective only on administration before irradiation. No apparent protection was observed when given post irradiation. The polysaccharide isolated from Armillaria venetum could raise the survival rate of mice irradiated by lethal dose of γ-rays to 58%. It is effective even when administered after irradiation. Some work has been carried out to clarify the mechanism of radioprotective action of polysaccharides. Protection of hemapoietic organs, regulation of immunological system, induction of release of some endogeneous bioactive substances in the organism and reduction of oxygen tension in some vital tissues may be correlated with the protection of organism against radiation injury

  13. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  14. Radiation effects at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Gilchriese, M.G.D. [ed.] [Superconducting Super Collider Lab., Dallas, TX (United States)

    1988-06-01

    This report contains a preliminary study of the effects of the radiation levels expected at the SSC on potential detector components and a subset of materials to be used in the SSC accelerators. The report does not contain a discussion of radiation damage to electronics components that may be used at the SSC. We have investigated many of the effects of radiation on silicon detectors, on wire chambers, on scintillating materials and the associated readout, on optical fibers for data transmission and on structural or other materials to be used in detector or accelerator components. In the SSC accelerator complex, in particular the storage rings, radiation damage will not present significant problems different than those now faced by existing high energy accelerators. We find that the effects of radiation damage on SSC detector components will be significant at the design luminosity of the ssc and will limit, or determine, many of the options for different detector components. In this regard the reader should keep in mind that, in the absence of a specific detector design, it is not possible to form definitive conclusions regarding the viability of the detector components. Since the radiation levels in experiments at the SSC will depend on the geometry and composition of the apparatus, simple yes /no generalizations about the feasibility of a detector component are not possible.

  15. The effects of ionizing radiation on man

    International Nuclear Information System (INIS)

    Watson, G.M.

    1975-08-01

    This paper describes the major effects of ionizing radiation on man and the relationship between such effects and radiation dose, with the conclusion that standards of radiological safety must be based on the carcinogenetic and mutagenic properties of ionizing radiation. Man is exposed to radiation from natural sources and from man-made sources. Exposure from the latter should be regulated but, since there is little observational or experimental evidence for predicting the effects of the very small doses likely to be required for adequate standards of safety, it is necessary to infer them from what is seen at high doses. Because the formal relationship between dose and effect is not fully understood, simplifying assumptions are necessary to estimate the effects of low doses. Two such assumptions are conventionally used; that there is a linear relationship between dose and effect at all levels of dose, and that the rate at which a dose of radiation is given does not alter the magnitude of the effect. These assumptions are thought to be conservative, that is they will not lead to an underestimation of the effects of small radiation doses although they may give an over-estimate. (author)

  16. Normal tissue adverse side effects in radiotherapy cancer patients and applicability of predictive radiosensitivity tests for new radiation treatment decision

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Radl, Analia; Sardi, Mabel

    2008-01-01

    Full text: Around 5 % -7 % of cancer patients develop adverse side effects, which include acute effects, late effects and cancer induction to radiation therapy in normal tissues in the treatment field. Such effects are of particular interest as the cancer patient population that reaches prolonged survival has increased with the improvements in cancer therapy and health care. These adverse reactions are mainly influenced by deficiencies in DNA repair pathways. However, tissue response to IR could be modified by several treatment- and patient- related factors. Numerous studies have been carried out to evaluate the correlation between clinical and cellular radiosensitivity, by in vitro tests. Previous own studies, characterizing DNA repair capacity in peripheral lymphocytes of cancer patients through cytokinesis blocked micronucleus test and alkaline single-cell microgel electrophoresis (comet), indicated that such assays correlated with the clinical radiation signs of radiosensitivity and showed the predictive potential of both techniques in the identification of radiosensitivity subgroups. In this paper, retrospective studies are conducted in 10 representative cases, which had developed acute or late toxicity in previous treatments and at present require new radiation treatments due to secondary malignancies or recurrence. Samples were in vitro irradiated with 2 Gy. MN data were analyzed comparing expected MN frequencies with values observed after in vitro irradiation. DNA repair capacity was evaluated through comet assay for initial damage and after specific times of repair (0-120 minutes). Captured images were analyzed by CASP image analysis software. Repair capacity was quantified by the Olive tail moment. Weibull alpha parameter was applied to describe DNA damage at the different evaluated repair times after in vitro irradiation and fitted by a mono-exponential model to describe the kinetic profile. In every evaluated patient a correlation between mean half

  17. Normal tissue adverse side effects in radiotherapy cancer patients and applicability of predictive radiosensitivity tests for new radiation treatment decision

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.; Sardi, M.

    2011-01-01

    Around 5%-7% of cancer patients develop adverse side effects, which include acute effects, late effects and cancer induction to radiation therapy in normal tissues in the treatment field. Such effects are of particular interest as the cancer patient population that reaches prolonged survival has increased with the improvements in cancer therapy and health care. These adverse reactions are mainly influenced by deficiencies in DNA repair pathways. However, tissue response to IR could be modified by several treatment- and patient- related factors. Numerous studies have been carried out to evaluate the correlation between clinical and cellular radiosensitivity, by in vitro tests. Previous own studies, characterizing DNA repair capacity in peripheral lymphocytes of cancer patients through cytokinesis blocked micronucleus test and alkaline single-cell microgel electrophoresis (comet), indicated that such assays correlated with the clinical radiation signs of radiosensitivity and showed the predictive potential of both techniques in the identification of radiosensitivity subgroups. In this paper, retrospective studies are conducted in 10 representative cases, which had developed acute or late toxicity in previous treatments and at present require new radiation treatments due to secondary malignancies or recurrence. Samples were in vitro irradiated with 2 Gy. MN data were analyzed comparing expected MN frequencies with values observed after in vitro irradiation. DNA repair capacity was evaluated through comet assay for initial damage and after specific times of repair (0-120 minutes). Captured images were analyzed by CASP image analysis software. Repair capacity was quantified by the Olive tail moment. Weibull alpha parameter was applied to describe DNA damage at the different evaluated repair times after in vitro irradiation and fitted by a mono-exponential model to describe the kinetic profile. In every evaluated patient a correlation between mean half-time (T1/2) and

  18. Handbook of radiation effects

    International Nuclear Information System (INIS)

    Holmes-Siedle, A.; Adams, L.

    1993-01-01

    This handbook is intended to serve as a tool for designers of equipment and scientific instruments in cases where they are required to ensure the survival of the equipment in radiation environments. High-technology materials, especially semiconductors and optics, tend to degrade on exposure to radiation in many different ways. Intense high-energy radiation environments are found in nuclear reactors and accelerators, machines for radiation therapy, industrial sterilization, and space. Some engineers have to build equipment which will survive a nuclear explosion from a hostile source. Proper handling of a disaster with radioactive materials requires equipment which depends utterly on semiconductor microelectronics and imaging devices. Thus the technology of radiation-tolerant electronics is an instrument for good social spheres as diverse as disaster planning and the exploration of Mars. In order to design equipment for intense environments like those described above, then degradation from high-energy irradiation must be seen as a basic design parameter. The aim of this handbook is to assist the engineer or student in that thought; to make it possible to write intelligent specifications; to offer some understanding of the complex variety of effects which occur when high-technology components encounter high-energy radiation; and to go thoroughly into the balance of choices of how to alleviate the effects and hence achieve the design aims of the project. Separate abstracts were prepared for 15 chapters of this book

  19. Comparison of measured and calculated radiation doses in granite around emplacement holes in the spent-fuel test: Climax, Nevada Test Site

    International Nuclear Information System (INIS)

    van Konynenburg, R.A.

    1982-01-01

    Lawrence Livermore National Laboratory (LLNL) has emplaced eleven spent nuclear-reactor fuel assemblies in the Climax granite at the Nevada Test Site as part of the DOE Nevada Nuclear-Waste Storage Investigations. One of our objectives is to study radiation effects on the rock. The neutron and gamma-ray doses to the rock have been determined by MORSE-L Monte Carlo calculations and measurements using optical absorption and thermoluminescence dosimeters and metal foils. We compare the results to date. Generally, good agreement is found in the spatial and time dependence of the doses, but some of the absolute dose results appear to differ by more than the expected uncertainties. Although the agreement is judged to be adequate for radiation effects studies, suggestions for improving the precision of the calculations and measurements are made

  20. Potassium cyanate-induced modification of toxic and mutagenic effects of gamma-radiation and benzo(A)-pyrene

    International Nuclear Information System (INIS)

    Serebryanyj, A.M.; Sal'nikova, L.E.; Bakhitova, L.M.; Pashin, Yu.V.; AN SSSR, Moscow

    1989-01-01

    In experiments with CHO-AT3-2 cell culture, a study was made of the effect of potassium cyanate (KNCO) on the effect of gamma-radiation and benzo(a)pyrene (BP) by the following tests: cell viability, induction of cells with micronuclei and fragmentated nuclei and mutations by thymidinekinase (TK) and Na + /K + -ATPase loci. Some tests have revealed the increase in the effect of gamma-radiation and BP produced by potassium cyanate. It is suggested that sensitizing effects are related to repair system inhibition and/or changes in the cell chromatin structure produced by KNCO

  1. Personal Radiation Detector Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Chris A. Hodge, Ding Yuan, Raymond P. Keegan, Michael A. Krstich

    2007-01-01

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS

  2. Genetically uniform strains of fish as laboratory models for experimental studies of the effects of ionizing radiation

    International Nuclear Information System (INIS)

    Woodhead, A.D.; Setlow, R.B.; Hart, R.W.

    1979-01-01

    The advantages are discussed of using a genetically uniform test animal such as the amazon molly, Poecilia formosa, to reduce the biotic variability in experimental determination of the effects of ionizing radiation on aquatic ecosystems. Besides a cost reduction from using less organisms for these radiation-effect studies, another significant advantage of the higher precision responses due to homozygous genetic material is the assessment of radiation effects at the molecular and cellular levels. (author)

  3. Effects of radiation therapy on neuropsychological functioning in patients with nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lee, P.W.H.; Hung, B.K.M.; Woo, E.K.W.; Tai, P.T.H.; Choi, D.T.K.

    1989-01-01

    Sixteen patients who had a nasopharyngeal carcinoma (NPC) who were treated with radiation therapy were followed up after a median duration of 5.5 years and given a battery of neuropsychological tests. Results were compared with a comparable group of newly diagnosed NPC patients awaiting radiation therapy. The irradiated group was significantly poorer in overall IQ, non-verbal memory recall, and reported a substantially greater number of memory related complaints. These results contrast with the complacent general assumption that radiation therapy has a negligible effect on adult functioning. (author)

  4. The Effects of Ionizing Radiation on Mammalian Cells.

    Science.gov (United States)

    Biaglow, John E.

    1981-01-01

    Discusses the effects of radiation on dividing cells and factors influencing these effects; also briefly reviews the radical mechanism for radiation damage. Emphasizes the importance of oxygen in radiation effects. (CS)

  5. Some characteristics and effects of natural radiation

    International Nuclear Information System (INIS)

    Mc Laughlin, J.P.

    2015-01-01

    Since life first appeared on the Earth, it has, in all its subsequent evolved forms including human, been exposed to natural radiation in the environment both from terrestrial and extra-terrestrial sources. Being an environmental mutagen, ionising natural radiation may have played a role of some significance in the evolution of early life forms on Earth. It has been estimated by United Nations Scientific Committee on the Effects of Atomic Radiation that at the present time, exposure to natural radiation globally results in an annual average individual effective dose of about 2.4 mSv. This represents about 80 % of the total dose from all sources. The three most important components of natural radiation exposure are cosmic radiation, terrestrial radioactivity and indoor radon. Each of these components exhibits both geographical and temporal variabilities with indoor radon exposure being the most variable and also the largest contributor to dose for most people. In this account, an overview is given of the characteristics of the main components of the natural radiation environment and some of their effects on humans. In the case of cosmic radiation, these range from radiation doses to aircrew and astronauts to the controversial topic of its possible effect on climate change. In the case of terrestrial natural radiation, accounts are given of a number of human exposure scenarios. (author)

  6. Ionizing radiation effect on enzymes. I

    International Nuclear Information System (INIS)

    Libicky, A.; Chottova, O.; Fidlerova, J.; Urban, J.

    1980-01-01

    The effect was studied of gamma radiation on the proteolytic activity of pancreatin prepared either by separating enzymes from an activated extract of the pancreas, containing 2.15% of lipids, or by drying the not completely activated ground pancreas, containing 6.14% of lipids. A part of the first sample in which the proportion of lipids was additionally increased to 16.55% was also irradiated. The moisture content was practically the same in all three samples. The source of radiation was 60 Co, the dose rate 1.27 kGy/h. The samples of pancreatin in test-tubes were irradiated at 25 degC, doses ranging from 1x10 4 to 12x10 4 Gy. The results were statistically evaluated and are given in tables, and converted to the dried lipid-free substance they are expressed in graphs. The technological procedure of pancreatin preparation and the content of lipids do not influence the decrease in proteolytic activity (Graph 3). (author)

  7. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  8. The effect of ionizing radiation and radionuclides on the embrional development of fish

    International Nuclear Information System (INIS)

    Dabrowski, K.

    1975-01-01

    The work is an attempt to review the bibliography on the effect of ionizing radiation on embrional development of fish, based mainly on Russian literature. The effect of ionizing radiation from exterior sources, as also of radioactive elements in a solution on successive fish embrional development was examined. A list of works on studies carried out with different radioactive elements affecting selected fish species is given. From several indices expressing the effects of radiation, the following are discussed in detail: survival rate, normality of development, histological changes, chromosomal changes, biochemical and physiological indexes. It is pointed out that due to varying experimental conditions it is impossible to compare the results of different authors. The phenomenon of stimulating effect of radiation on production of sex hormones, development of sexual products, survival rate of progeny, and heredity of such features, observed by several authors is still unexplained. Nevertheless, embrional development of fish remains a very sensitive biological element, suitable for testing the toxicity of radioactive substance. (author)

  9. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  10. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  11. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  12. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  13. In situ radiation measurements at the former Soviet Nuclear Test Site

    International Nuclear Information System (INIS)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good

  14. Effect of ionizing radiation on platelet function in vitro

    International Nuclear Information System (INIS)

    Kalovidouris, A.E.; Papayannis, A.G.

    1981-01-01

    The effect of ionizing radiation on platelet function was investigated in vitro. Platelet-rich plasma (300x10 9 /l) was irradiated with doses of 1, 4, 10, 20 and 50 Gy. Platelet function tests were performed on both irradiated and control (non-irradiated) platelet samples. The platelet function tests were (1) platelet aggregation by ADP (1, 2, 4 μmol final concentration), adrenaline and collagen, (2) ADP-release from platelets, (3) clot retraction and (4) platelet factor-3 availability. It was found that roentgen irradiation of platelets in vitro did not affect these platelet function tests. (Auth.)

  15. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    Kaul, Alexander; Burkart, Werner; Grosche, Bernd; Jung, Thomas; Martignoni, Klaus; Stephan, Guenther

    1997-01-01

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  16. The effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    Available evidence on the effects of high levels of radiation on man and the predictions which have been made on possible low level effects, by extrapolation of the high level data, are summarised. The factors which influence the biological effects of radiation are examined and acute, delayed, somatic and hereditary effects as reported in the literature, are discussed. (U.K.)

  17. Radiation effect on rocket engine performance

    Science.gov (United States)

    Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.

    1990-01-01

    Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.

  18. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Boas, J.F.; Solomon, S.B.

    1990-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 10 6 person-years at risk per WLM (range 5-15 x 10 -6 PYR -1 WLM -1 ). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  19. Overview of radiation effects research in photonics

    Science.gov (United States)

    Webb, Robert C.; Cohn, Lewis M.; Taylor, Edward W.; Greenwell, Roger A.

    1995-05-01

    A brief overview of ongoing radiation effects research in photonics is presented focusing on integrated optic and acousto-optic components. A short summary of radiation-induced effects in electro-optic modulators, detector arrays, and other photonic technologies is presented along with extensive references. The coordinated radiation effects studies among researchers within the Tri-Service Organizations and international experimental teams are beginning to demonstrate consistent measurements of radiation-induced effects in photonic components and confirming earlier reported data. This paper will present an overview of these coordinated investigations and focus on key research being conducted with the AFMC Phillips Laboratory, Naval Research Laboratory, Defence Nuclear Agency, NATO Nuclear Effects Task Group, and the Tri-Service Photonics Coordinating Committee.

  20. Computer modelling of radiation-induced bystander effect

    International Nuclear Information System (INIS)

    Khvostunov, Igor K.; Nikjoo, Hooshang

    2002-01-01

    Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)

  1. Irradiation of: MOS field effect structures effect of the radiation dose

    International Nuclear Information System (INIS)

    Leray, J.L.

    1989-01-01

    The radiation effects on the structure and the operation of a metal-oxide semiconductor (MOS) are studied. The phenomenology of the radiation damage is analyzed as a function of the accumulated radiation dose and the time. The chronology of the phenomena which takes place in the oxide and the radiation transient phases in MOS structures are discussed. The equivalence of different radiations on SiO2 and other semiconductors is analyzed. The models applied to the study of the radiation permanent effects are reviewed [fr

  2. Test beam performance of a tracking TRD [Transition Radiation Detector] prototype

    International Nuclear Information System (INIS)

    Shank, J.T.; Whitaker, J.S.; Polychronakos, V.A.; Radeka, V.; Stephani, D.; Beker, H.; Bock, R.K.; Botlo, M.; Fabjan, C.W.; Pfennig, J.; Price, M.J.; Willis, W.J.; Akesson, T.; Chernyatin, V.; Dolgoshein, B.; Nevsky, P.; Potekhin, M.; Romanjuk, A.; Sosnovtsev, V.; Gavrilenko, I.; Muravjev, S.; Shmeleva, A.

    1990-01-01

    A Tracking Transition Radiation Detector prototype has been constructed and tested. It consists of 240 straw tubes, 4 mm in diameter, imbedded in a polyethylene block acting as the radiator. Its performance as an electron identifier as well as a tracking device for minimum ionizing particles has been determined. 2 refs., 6 figs

  3. Preliminary assays for lemongrass essential oil ecotoxicological test in D. similis and C. silvestrii submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Rogero, Jose R., E-mail: gtgimiliani@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil). Culturas Celulares

    2011-07-01

    Pharmaceutical products are of great interest in ecotoxicological studies due to being found some of these products in the superficial waters and sediments, water and sewage treatment effluents. It was verified an increase of insect repellent chemical products in the aquatic environment because of the increase of diseases transmitted by mosquitoes like dengue. As these compounds show toxicity, the use of essential oils natural products with repellent properties is increasing and the literature about the impact in the aquatic environment is scarce. The hydric frame would suffer natural radiation and radiations from energy generation nuclear plants impacts fall out of tests and nuclear accidents. There is no universal definition of environmental protection and there are few studies on radiation effects in the aquatic environment. In this study was determined the lemon grass essential oil toxicity level as well as the lethal dose of ionizing radiation, LD{sub 50}, in aquatic organisms. Cytotoxicity test was performed by in vitro neutral red uptake method in NCTC clone L929 cell line. In the LD{sub 50} test aquatic organisms were submitted to gamma radiation. The essential oil of lemongrass Cymbopogon flexuosus showed cytotoxicity index IC{sub 50} about 50{mu}g.mL{sup -1}. The LD{sub 50} for Daphnia similis was 242 Gy and Ceriodaphnia silvestrii about 525 Gy. Studies will be continued with acute and chronic ecotoxicological tests of lemongrass essential oil in natural organisms and in organisms submitted to gamma radiation, utilizing the results obtained in this work. (author)

  4. Medical response to effects of ionising radiation

    International Nuclear Information System (INIS)

    Crosbie, W.A.; Gittus, J.H.

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK)

  5. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  6. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  7. [Effects of radiation exposure on human body].

    Science.gov (United States)

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  8. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Wilfred [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Yusoff, Wan Yusmawati Wan [Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  9. Long-term effects of radiation

    International Nuclear Information System (INIS)

    Smith, J.; Smith, T.

    1981-01-01

    It is pointed out that sources of long-term damage from radiation are two-fold. People who have been exposed to doses of radiation from initial early fallout but have recovered from the acute effects may still suffer long-term damage from their exposure. Those who have not been exposed to early fallout may be exposed to delayed fallout, the hazards from which are almost exclusively from ingesting strontium, caesium and carbon isotopes present in food; the damage caused is relatively unimportant compared with that caused by the brief doses from initial radiation and early fallout. A brief discussion is presented of the distribution of delayed long-lived isotope fallout, and an outline is sketched of late biological effects, such as malignant disease, cataracts, retarded development, infertility and genetic effects. (U.K.)

  10. Joint additive effects of temperature and UVB radiation on zoeae of the crab Taliepus dentatus

    KAUST Repository

    Carreja, B

    2016-04-06

    Warming and enhanced ultraviolet B (UVB) radiation are 2 global stressors acting across the ocean. We tested their effects on the survival and performance (consumption rates and activity) on the zoea I stage of the Chilean kelp crab Taliepus dentatus. Our goal was to resolve whether these stressors, when acting concurrently, had additive or interactive effects, either synergistic or antagonistic. A multifactorial experiment of 4 temperatures and 3 UVB irradiance levels was run. The larvae showed a significant increase in mortality with increasing temperature. Exposure to UVB reduced the thermal tolerance of the larvae by a significant increase of their mortality rate. Oxygen consumption increased as temperature increased. When exposed to UVB radiation, larval oxygen consumption increased significantly for all the temperatures tested. Two statistical models of joint effects confirmed that the combined effect of both stressors was additive, with no interaction, either synergistic or antagonistic. One of them, the independent action (IA) model, also revealed that concurrent effects on mortality remained additive when doubling the UVB dose. Additivity of the stressors improved the predictability of their effects on larval mortality. Exposure to UVB radiation increased mortality rates by 1.5 times at any temperature tested, independently of the dose. © The authors 2016.

  11. Joint additive effects of temperature and UVB radiation on zoeae of the crab Taliepus dentatus

    KAUST Repository

    Carreja, B; Ferná ndez, M; Agusti, Susana

    2016-01-01

    Warming and enhanced ultraviolet B (UVB) radiation are 2 global stressors acting across the ocean. We tested their effects on the survival and performance (consumption rates and activity) on the zoea I stage of the Chilean kelp crab Taliepus dentatus. Our goal was to resolve whether these stressors, when acting concurrently, had additive or interactive effects, either synergistic or antagonistic. A multifactorial experiment of 4 temperatures and 3 UVB irradiance levels was run. The larvae showed a significant increase in mortality with increasing temperature. Exposure to UVB reduced the thermal tolerance of the larvae by a significant increase of their mortality rate. Oxygen consumption increased as temperature increased. When exposed to UVB radiation, larval oxygen consumption increased significantly for all the temperatures tested. Two statistical models of joint effects confirmed that the combined effect of both stressors was additive, with no interaction, either synergistic or antagonistic. One of them, the independent action (IA) model, also revealed that concurrent effects on mortality remained additive when doubling the UVB dose. Additivity of the stressors improved the predictability of their effects on larval mortality. Exposure to UVB radiation increased mortality rates by 1.5 times at any temperature tested, independently of the dose. © The authors 2016.

  12. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  13. Online fault diagnostics and testing of area gamma radiation monitor using wireless network

    Science.gov (United States)

    Reddy, Padi Srinivas; Kumar, R. Amudhu Ramesh; Mathews, M. Geo; Amarendra, G.

    2017-07-01

    Periodical surveillance, checking, testing, and calibration of the installed Area Gamma Radiation Monitors (AGRM) in the nuclear plants are mandatory. The functionality of AGRM counting electronics and Geiger-Muller (GM) tube is to be monitored periodically. The present paper describes the development of online electronic calibration and testing of the GM tube from the control room. Two electronic circuits were developed, one for AGRM electronic test and another for AGRM detector test. A dedicated radiation data acquisition system was developed using an open platform communication server and data acquisition software. The Modbus RTU protocol on ZigBee based wireless communication was used for online monitoring and testing. The AGRM electronic test helps to carry out the three-point electronic calibration and verification of accuracy. The AGRM detector test is used to verify the GM threshold voltage and the plateau slope of the GM tube in-situ. The real-time trend graphs generated during these tests clearly identified the state of health of AGRM electronics and GM tube on go/no-go basis. This method reduces the radiation exposures received by the maintenance crew and facilitates quick testing with minimum downtime of the instrument.

  14. Evaluation of the effectiveness of lamination for preventing discoloration and fading of radiation warning signs posted on the exterior of radiation facilities

    International Nuclear Information System (INIS)

    Hiroi, Tomoko; Ootaki, Masanori; Nawa, Yukino; Kuwabara, Rie; Tatsunami, Shinobu; Matsui, Hiroaki; Kumazawa, Yutaka; Yamamoto, Takio

    2014-01-01

    Radiation warning signs posted on the exterior of radiation facilities become faded and discolored with time. There are various types of commercially available laminating films for protecting signs from ultraviolet light. We examined the protection effect of polyvinyl chloride (PVC), acrylic resin and fluororesin films applied to the surface of radiation warning signs. The laminated signs were exposed to direct sunlight on the wall of an air filter chamber of a radiation facility for 1200 days. Simultaneously, another set of laminated signs was exposed to light from a xenon-arc weatherometer for 1200 hours. After exposure, the colors on the surface of each sign were evaluated digitally by using a spectrum colorimeter. The results indicated that lamination with a film that blocks ultraviolet light is effective for protecting the signs from fading and discoloration. For long-term protection under direct sunlight, PVC was the most effective among the three materials tested. (author)

  15. Non-targeted effects of radiation: applications for radiation protection and contribution to LNT discussion

    International Nuclear Information System (INIS)

    Belyakov, O.V.; Folkard, M.; Prise, K.M.; Michael, B.D.; Mothersill, C.

    2002-01-01

    According to the target theory of radiation induced effects (Lea, 1946), which forms a central core of radiation biology, DNA damage occurs during or very shortly after irradiation of the nuclei in targeted cells and the potential for biological consequences can be expressed within one or two cell generations. A range of evidence has now emerged that challenges the classical effects resulting from targeted damage to DNA. These effects have also been termed non-(DNA)-targeted (Ward, 1999) and include radiation-induced bystander effects (Iyer and Lehnert, 2000a), genomic instability (Wright, 2000), adaptive response (Wolff, 1998), low dose hyper-radiosensitivity (HRS) (Joiner, et al., 2001), delayed reproductive death (Seymour, et al., 1986) and induction of genes by radiation (Hickman, et al., 1994). An essential feature of non-targeted effects is that they do not require a direct nuclear exposure by irradiation to be expressed and they are particularly significant at low doses. This new evidence suggests a new paradigm for radiation biology that challenges the universality of target theory. In this paper we will concentrate on the radiation-induced bystander effects because of its particular importance for radiation protection

  16. Chronic radiation effects on dental hard tissue (''radiation carries''). Classification and therapeutic strategies

    International Nuclear Information System (INIS)

    Groetz, K.A.; Brahm, R.; Al-Nawas, B.; Wagner, W.; Riesenbeck, D.; Willich, N.; Seegenschmiedt, M.H.

    2001-01-01

    Objectives: Since the first description of rapid destruction of dental hard tissues following head and neck radiotherapy 80 years ago, 'radiation caries' is an established clinical finding. The internationally accepted clinical evaluation score RTOG/EORTC however is lacking a classification of this frequent radiogenic alteration. Material and Methods: Medical records, data and images of radiation effects on the teeth of more than 1,500 patients, who underwent periradiotherapeutic care, were analyzed. Macroscopic alterations regarding the grade of late lesions of tooth crowns were used for a classification into 4 grades according to the RTOG/EORTC guidelines. Results: No early radiation effects were found by macroscopic inspection. In the first 90 days following radiotherapy 1/3 of the patients complained of reversible hypersensitivity, which may be related to a temporary hyperemia of the pulp. It was possible to classify radiation caries as a late radiation effect on a graded scale as known from RTOG/EORTC for other organ systems. This is a prerequisite for the integration of radiation caries into the international nomenclature of the RTOG/EORTC classification. Conclusions: The documentation of early radiation effects on dental hard tissues seems to be neglectable. On the other hand the documentation of late radiation effects has a high clinical impact. The identification of an initial lesion at the high-risk areas of the neck and incisal part of the tooth can lead to a successful therapy as a major prerequisite for orofacial rehabilitation. An internationally standardized documentation is a basis for the evaluation of the side effects of radiooncotic therapy as well as the effectiveness of protective and supportive procedures. (orig.) [de

  17. Radiation effects and hardness of semiconductor electronic devices for nuclear industry

    International Nuclear Information System (INIS)

    Payat, R.; Friant, A.

    1988-01-01

    After a brief review of industrial and nuclear specificity and radiation effects in electronics components (semiconductors) the need for a specific test methodology of semiconductor devices is emphasized. Some studies appropriate for nuclear industry at D. LETI/DEIN/CEN-SACLAY are related [fr

  18. A scintillation testing technology at a viewpoint of optical test. At a memory of winning of the Radiation Prize (Prize of Encouragement)

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki

    2000-01-01

    In a 'summer school' held at Matsushima, a series of developmental results had been introduced on a wavelength shift type beta-ray detector and others recently progressed by author at a viewpoint of 'new reconsideration on scintillation testing, one of the oldest radiation testing technology for an optical testing'. As a chance to write this theme again was obtained at present, here were introduced on trial and errors, backgrounds on ideas, pains for trial production and so forth at a process of putting together them for actual technologies and products under combining a series of ideas with their needs. Here were newly introduced on developmental backgrounds, points for practicability, and so forth on optical radiation testing technology which had been developed by authors. By upgrading of radiation resistance on the optical fibers themselves, developments for not only radiation testing but also instrumentation in storage vessel specific to nuclear instrumentation are considered in future. And, some findings on new elements and techniques, such as application of radiation to refractive index change due to much minute exotherm, application of Cherenkov phenomenon in glass, fiber grating and interference test assembles a minute diffraction lattice into a core, and so forth are found recently, which will be expected for their future developments. (G.K.)

  19. A scintillation testing technology at a viewpoint of optical test. At a memory of winning of the Radiation Prize (Prize of Encouragement)

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Tatsuyuki [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-04-01

    In a 'summer school' held at Matsushima, a series of developmental results had been introduced on a wavelength shift type beta-ray detector and others recently progressed by author at a viewpoint of 'new reconsideration on scintillation testing, one of the oldest radiation testing technology for an optical testing'. As a chance to write this theme again was obtained at present, here were introduced on trial and errors, backgrounds on ideas, pains for trial production and so forth at a process of putting together them for actual technologies and products under combining a series of ideas with their needs. Here were newly introduced on developmental backgrounds, points for practicability, and so forth on optical radiation testing technology which had been developed by authors. By upgrading of radiation resistance on the optical fibers themselves, developments for not only radiation testing but also instrumentation in storage vessel specific to nuclear instrumentation are considered in future. And, some findings on new elements and techniques, such as application of radiation to refractive index change due to much minute exotherm, application of Cherenkov phenomenon in glass, fiber grating and interference test assembles a minute diffraction lattice into a core, and so forth are found recently, which will be expected for their future developments. (G.K.)

  20. Radiation effects on junction field-effect transistors (JFETS), MOSFETs, and bipolar transistors, as related to SSC circuit design

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Alley, G.T.; Britton, C.L. Jr.; Skubic, P.L.; Gray, B.; Wu, A.

    1990-01-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular, at currents ≤1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier

  1. Radiation tests at cryogenic temperature on selected organic materials for LHC

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Szeless, B.; Tavlet, M.

    1997-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets in which organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, epoxy resins and composites were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen, i.e. at 80 K, and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results are compared with the ones obtained at cryogenic temperature. They show that within the selected dose range, a number of organic materials are suitable for use in radiation fields of the LHC at cryogenic temperature

  2. Non Volatile Flash Memory Radiation Tests

    Science.gov (United States)

    Irom, Farokh; Nguyen, Duc N.; Allen, Greg

    2012-01-01

    Commercial flash memory industry has experienced a fast growth in the recent years, because of their wide spread usage in cell phones, mp3 players and digital cameras. On the other hand, there has been increased interest in the use of high density commercial nonvolatile flash memories in space because of ever increasing data requirements and strict power requirements. Because of flash memories complex structure; they cannot be treated as just simple memories in regards to testing and analysis. It becomes quite challenging to determine how they will respond in radiation environments.

  3. Evaluation of the anode heel effect on the testes dose during pelvic radiography

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2017-05-01

    Full Text Available Background: Anode heel effect refers to reduction of radiation intensity in the anode side of X-ray tube. This variation in radiation intensity across the anode-cathode of X-ray tube can be benefited for decrease radiation exposure in some radiological examinations. The aim of this study was to evaluate the effect of anode heel orientation on the radiation dose received by the testes in male patients undergoing pelvic radiography. Methods: This is a cross-sectional study, conducted at one of the teaching hospitals of Ahvaz, Jundishapur University of Medical Science Ahvaz, Iran, from September 2015 to March 2016. In order to measure the profile of radiation intensity variation, 13 paired sets of high radiosensitive cylindrical lithium fluoride thermo-luminescent dosimeters (TLD aligned on the cathode-anode central axis upon the table and then irradiated using routine exposure parameters. The anode of X-ray tube was positioned toward the feet for 40 patients and toward the head for 39 patients undergoing pelvic radiography. For measure the entrance skin dose (ESD, 8 TLD chips were located on the central point of the radiation field and 5 TLDs were located on the testes position to measure the dose received. Results: Radiation intensity profile showed that radiation intensity decrease from the cathode to the anode side. Discrepancy of radiation intensity on central axis of cathode-anode was calculated about 35%. The radiation dose received by the testes was 26.74% lower for patients the anode directed toward the feet, compared to the patients in which the anode directed toward the head (FTC: 1.260±0.296 mGy, FTA: 0.923±0.167 mGy, P<0.05. There was no meaningful difference for the measured ESD of pelvis between two groups of patients (FTC: 1.256±0.315 mGy, FTA: 1.195±0.205 mGy, P=0.788. Conclusion: In pelvic radiography, positioning of testes directed to the anode of X-ray tube can decrease the receive dose.

  4. Evidence for radiation-induced Bystander effects and relevance to radiotherapy and to radiation protection

    International Nuclear Information System (INIS)

    Georgieva, R.

    2006-01-01

    Full text: There are two major arms of radiation science in which Bystander effects (ByEff) could be of practical importance: radiotherapy and risk assessment. Basic biological principles, including dose-response relationships that have become dogma in the context of targeted effects of IR must now be reconsidered. The direct effects of radiation and the bystander components had to be reinvestigated to show the difference between them. It may be necessary to introduce a factor for ByEff's when calculating dose to both normal tissues and tumor. Presumably the relative effects on normal or tumor tissues could be different and that difference may not be always predictable. In relation to radiation protection, the existence of RIByEff's raises important questions for the way radiation dose is measured and modeled. The biological effect of exposure to low-doses radiation is likely to vary between individuals and between organs in one the same individual. Further studies on non-targeted effects should contribute to the establishment of adequate environmental and occupational radiation protection standards. This lecture looks at the history, the current data and controversies that are now beginning to resolve the questions concerning the mechanisms underlying the induction and transmission of ByEff. Especially, effects on radiotherapy and radiation protection are discussed

  5. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  6. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    Science.gov (United States)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  7. Low-level radiation effects: a fact book

    International Nuclear Information System (INIS)

    Brill, A.B.; Adelstein, S.J.; Saenger, E.L.; Webster, E.W.

    1982-01-01

    Low Level Raidation Effects: A Fact Book, prepared by the Society of Nuclear Medicine Subcommittee on the Risks of Low-Level Ionizing Radiation, attempts to examine the health effects of small doses of radiation. For immediate questions, this work provides a well-organized brief summary of recent radiologic data from refereed scientific literature and from the publications of advisory groups such as the National Council of Radiation Protection and Measurement (NCRP), the International Commission on Radiological Protection (ICRP), the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the National Academy of Sciences (NAS). Since it consists almost entirely of tables and graphs from the above-mentioned sources along with summary paragraphs, the Fact Book is very useful in the preparation of lectures. The book is divided into seven sections. Chapter One, Glossary, Units and Conversion Factors, is useful because nearly all data given in the rest of the book is in conventional units and should be converted to SI units for future technical audiences. Chapter 2, Radiobiology, covers the fundamental principles of the field. Chapter 3, Radiation Doses, can be used to help an audience appreciate the relative magnitudes of radiation exposures they may read about or encounter. Chapter 4, Late Somatic Effects of Low Doses of Ionizing Radiation, gives data concerning cancer induction and embryonic effects, and Chapter 5 provides data on genetic effects Chapter 6, Risks, Statistical Facts and Public Perception can be used to compare the risks of radiation exposure with more commonly encountered risks

  8. Ionizing radiation effect on human reproduction

    International Nuclear Information System (INIS)

    Jirous, J.

    1987-01-01

    A review is presented of the existing knowledge on the adverse effects of ionizing radiation on human reproduction. Some interesting findings have been obtained by interapolating the results of studies in mouse embryos to humans, important knowledge has been obtained in studies involving the population of Hiroshima and Nagasaki. The review summarizes the knowledge in the following conclusions: (1) prior to the blastocyst stage, the mammalian embryo is insensitive to teratogenic and growth retarding radiation effects but is highly sensitive to the lethal radiation effect; (2) in the early organogenesis, the embryo is very sensitive to growth retarding, teratogenic and lethal radiation effects. It can, however, partly offset growth retardation in the post-natal period; (3) in the early fetal development stage, the fetus shows reduced sensitivity to teratogenic damage of many organs; sensitivity of the central nervous system and growth retardation remain which can only be compensated post-natally with difficulties; (4) in the late stage of pregnancy the fetus is not significantly deformed as a result of irradiation but permanent cellular depletion can result in various organs and tissues post-natally if radiation doses are high. (L.O.). 22 refs

  9. Effect of ionizing radiation on the respiration intensity of pears during storage

    International Nuclear Information System (INIS)

    Al Bachir, Mahfouz; Sass, P.

    1989-01-01

    According to the results of a 3-year series of experiments on the effect of ionizing radiation (gamma radiation and X radiation, respectively) on the storage life of fruits a relationship exists between the radiation doses (40, 60, 100, 500, 1000, 1500 Gy) and the changes in the quality of the fruit varieties. Radiation was generally found to stimulate the ripening process. The acceleration of ripening takes place for a short time (5-7 days) immediately after irradiation, as proved by respiration and enzyme activity tests. It can be concluded that on removal from storage, the rate of respiration of the treated fruits was lower both in controlled and in constant atmosphere which suggests that irradiated fruits can be stored for a longer time. (author) 14 refs.; 4 figs.; 6 tabs

  10. Radiation monitoring for the HTTR rise-to-power test (1) and (2)'

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Takashi; Yoshino, Toshiaki; Yasu, Katsuji; Ashikagaya, Yoshinobu; Kikuchi, Toshiki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-02-01

    The High Temperature Engineering Test Reactor (HTTR) is the first high temperature gas-cooled research reactor in Japan. This reactor is a helium-gas-cooled and graphite-moderated reactor with a thermal output of 30 MW. The rated operation temperature of the outlet coolant is 850degC. (During high temperature test operation, this reaches 950degC). The first criticality of the HTTR was attained in November 1998. The single loaded, parallel loaded operation with a thermal output of 9 MW (called the HTTR Rise-to-Power Test (1)) was completed between September 16, 1999 and July 8, 2000. The single loaded, parallel loaded continuous operation with a thermal output of 20 MW (called the HTTR Rise-to-Power Test (2)) has also been carried out, but it was shutdown at the halfway stage by a single from the reactor, when the thermal output was 16.5 MW and the reactor outlet coolant temperature was 500degC. This report describes the radiation monitoring carried out during the HTTR Rise-to-Power Tests (1) and (2)'. The data measured by the various radiation monitors is also reported. These data will be used for the estimation of radiation levels (such as the radiation dose equivalent rate, the radioactive concentration in effluents, etc.) for the next HTTR Rise-to-Power Test, and for periodic inspections. (author)

  11. Health effects of atomic-bomb radiation

    International Nuclear Information System (INIS)

    Nakamura, Nori

    2000-01-01

    This review described carcinogenic and genetic effects of A-bomb radiation. Effects have been investigated on 120,000 exposed people for their life span, 20,000 for health examinations, 3,000 people exposed in the womb and 80,000 second-generations of the exposed people. Epidemiological data revealed the presence of carcinogenic effects: Cancer death amounted to 9% from 1950 to 1990. However, carcinogenic mechanism is unknown yet. Genetic effects have been studied from the points of lesion at birth, sex ratio, chromosome aberration, biochemical test and mortality rate of children of exposed people and, although the effects have been experimentally shown in animals, are not observed in those children. This may be derived from the fact that there are few people who were exposed to such a high dose as used experimentally (0.2 Sv exposure to people within 2.5 km diameter-area from the explosion point vs >3 Sv in animals). Data are presented in Research Foundation home page. (K.H.)

  12. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Sijsma, M.J.; Chadwick, K.H.

    1990-06-01

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  13. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  14. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    Experimental data are presented concerning the effects of relatively low doses of x radiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the manifold influence of radiation-induced membrane phenomenon on the development and regeneration of radiation injuries. (author)

  15. The HAW Project. Test disposal of highly radioactive radiation sources in the Asse salt mine

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Mueller-Lyda, I.; Raynal, M.; Major, J.C.

    1993-01-01

    In order to prove the safe disposal of high-level radioactive waste (HAW) in salt a five years test disposal of thirty highly radioactive canisters is planned in the Asse salt mine in the Federal Republic of Germany. The thirty canisters containing the radionuclides Caesium 137 and Strontium 90 in quantities sufficient to cover the bandwith of heat generation and gamma radiation of real HAW will be emplaced in six boreholes located in two galleries at the 800-m-level. Two electrical heater tests were already started in November 1988 and are continuously surveyed in respect of the thermomechanical and geochemical response of the rock mass. Also the handling system necessary for the emplacement of the radioactive canisters was developed and successfully tested. A laboratory investigation programme on radiation effects in salt is being performed in advance to the radioactive canister emplacement. This programme includes the investigation of thermally and radiolytically induced water and gas release from the rock salt and the radiolytical decomposition of salt minerals. For gamma dose and dose rate measurements in the test field measuring systems consisting of ionization chambers as well as solid state dosemeters were developed and tested. 70 refs

  16. The protective effect of lycopene against radiation injury to the small intestine of abdominally radiated mice

    International Nuclear Information System (INIS)

    Itoh, Youko; Kurabe, Teruhisa; Ishiguchi, Tsuneo

    2004-01-01

    To reduce the side effects of radiotherapy, radioprotective effects of lycopene on villi and crypts in the small intestine of abdominally radiated mice (15 Gy) were examined with administration pre-, continuous and post-radiation. In the lycopene group, the ratio of the villus length to the crypt was significantly increased in comparison with the radiation only group at 2 days after radiation. At 7 days after radiation, the ratio of necrotic cells in crypt/total was significantly decreased and the ratio of necrotic cells in villus/total was significantly increased by lycopene administration, which indicated an acceleration of the recovery from the radiation injury with lycopene. Each lycopene administered group showed a significant radioprotective effect, with the pre-radiation administration inducing a smaller effect than that of continuous and post-radiation administration. Radiation induced apoptosis was also decreased by lycopene administration. It is concluded that pre-, continuous and post-radiation administration of lycopene protects against radiation injury of the small intestine and accelerate the recovery. (author)

  17. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  18. Life after Chernobyl. Radiation burden - radiation effects - risks. Leben nach Tschernobyl. Belastung - Wirkung - Risiko

    Energy Technology Data Exchange (ETDEWEB)

    Haury, H J; Ullmann, C

    1986-01-01

    The book is intended to help dissolving the feelings of helplessness and discomfiture among the population, by providing the information needed to avoid unnecessary worries, and to take the right decisions. The authors have collected the scientific knowledge available today of radioactive radiation and its effects on the biological environment and the human body. Taking into account the measured data and other insight obtained from previous accidents like the one at Seveso, e.g., or from the atmospheric nuclear weapons tests and the resulting fallout, the authors present advice and proposals that have been weighed with a view to a reasonable risk-benefit relation. The authors think that a well-informed person can today assess his own personal radiation risk after careful consideration of personal habits, and keep the radiation burden as low as possible. Apart from the variety of practical hints and advice given, the authors also discuss the confusion created by officials and authorities through their meager information policy, which finally led to the credibility gap in public opinion. The book is completed by an annex containing a survey of the Atomic Energy Laws, the Radiation Protection Ordinance, resolutions of the Strahlenschutzkommission (SSK), a literature index, and a comprehensive subject index.

  19. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  20. Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs

    Science.gov (United States)

    Gudipati, Murthy; Henderson, Bryana; Bateman, Fred

    2017-10-01

    MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet

  1. Ionizing radiation test results for an automotive microcontroller on board the Schiaparelli Mars lander

    Science.gov (United States)

    Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti

    2016-04-01

    The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.

  2. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  3. Bystander effects of ionizing radiation can be modulated by signaling amines

    International Nuclear Information System (INIS)

    Poon, R.C.C.; Agnihotri, N.; Seymour, C.; Mothersill, C.

    2007-01-01

    Actual risk and risk management of exposure to ionizing radiation are among the most controversial areas in environmental health protection. Recent developments in radiobiology especially characterization of bystander effects have called into question established dogmas and are thought to cast doubt on the scientific basis of the risk assessment framework, leading to uncertainty for regulators and concern among affected populations. In this paper we test the hypothesis that small signaling molecules widely used throughout the animal kingdom for signaling stress or environmental change, such as 5-Hydroxytryptamine (5-HT, serotonin), L-DOPA, glycine or nicotine are involved in bystander signaling processes following ionizing radiation exposure. We report data which suggest that nano to micromolar concentrations of these agents can modulate bystander-induced cell death. Depletion of 5-HT present in tissue culture medium, occurred following irradiation of cells. This suggested that 5-HT might be bound by membrane receptors after irradiation. Expression of 5-HT type 3 receptors which are Ca 2+ ion channels was confirmed in the cells using immunocytochemistry and receptor expression could be increased using radiation or 5-HT exposure. Zofran and Kitryl, inhibitors of 5-HT type 3 receptors, and reserpine a generic serotonin antagonist block the bystander effect induced by radiation or by serotonin. The results may be important for the mechanistic understanding of how low doses of radiation interact with cells to produce biological effects

  4. Non-targeted bystander effects induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, William F.; Sowa, Marianne B.

    2007-01-01

    Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said 'well what are the critical questions that should be addressed, and so what?', we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure

  5. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  6. Radiation effects in electronics for the CMS tracking detector

    International Nuclear Information System (INIS)

    Fulcher, Jonathan Richard

    2001-01-01

    This thesis presents a study into the CMS tracker analogue front-end amplifier readout chip (APV), which during the period of the study was fabricated in three different VLSI technologies. The early versions were fabricated in a total dose radiation hardened Harris 1.2μm process. Later it was transferred to a DMILL 0.8μm process and the latest version is in a 0.25μm technology. Part of this thesis describes a test system which was designed to thoroughly test APV chips on the silicon wafer and produce a comprehensive data set for each chip to enable confident selection of good chips. The main study is on the effects that large dose radiation environments can cause in the individual parts of the chip. With the chips fabricated in different technologies it was possible to make some comparisons of the magnitude of the effects between the Harris and the 0.25μm technologies, but most of the work was aimed towards understanding the effects within the 0.25μm technology. Single Event Upset (SEU) was the main consideration behind the experimental and simulation work. The study had two main goals: the first was to investigate how SEU would affect the operation of the CMS detector in the expected high radiation environment of the Large Hadron Collider (LHC). The second goal was to look at SEU from a more academic viewpoint, enabling a full understanding of how it is caused and what factors affect its magnitude. Simulations were performed in order to reconstruct the conditions brought about by highly ionising particles striking certain parts of the sensitive circuits, along with careful consideration of the mechanisms behind the effect such as: ionised charge collection within the semiconductor parts of the chip, how this charge deposition affects the circuit and how the effects manifest themselves within larger devices. A good set of results was collected from specially designed experiments, from which a confirmation of the theoretical effect was produced. (author)

  7. Nuclear explosives, ionizin.o. radiation and the effects on the biota of the natural environment

    International Nuclear Information System (INIS)

    Schultz, Vincent; Ward Whicker, F.

    1980-01-01

    After giving a general discussion of nuclear explosives, weapons testing and peaceful use of nuclear explosives under Plowshare project, ecological studies carried out at weapon test sites and Plowshare project sites in United States are reviewed. It is noted that though considerable data are available on the behaviour of radionuclides in natural environments on these sites, only a few observations of effects of ionizing radiations on the biota of the natural environments of these sites have been made. The major effects on the natural environments of these sites have been attributed to physical effects of nuclear detonations and site preparation. These effects are physical destruction of plants and animals and habitat modification such as soil disturbances. Recolonization of ground zeros and adjacent areas is observed to follow the successional pattern unique to the site. Observed effects of ionizing radiation on shrubs in the vicinity of cratering tests appear to be inconsequential when one considers the ecosystem as a whole. (M.G.B.)

  8. Possibility of use of plant test systems for estimation of degree risk at radiation influence

    International Nuclear Information System (INIS)

    Gogebashvili, M.E; Ivanishvili, N.I.

    2011-01-01

    (in some cases, frequency of occurrence) negative event (irradiation), a damage (number of deviations from norm or deadly outcomes) at event realization. The biological model offered by us in essence is a version of expert judgments of an estimation of risk, at radiating influence. Thus from positions of practical application of this test system to become important and that, how much this influence is modified by various concomitant factors.In whole, as a result of the spent researches it is shown, that the given model can serve as convenient test system at studying of the remote effects of radiation and definition of degree of risk at their formation.

  9. Radiation exposure of inhabitants around Semipalatinsk nuclear weapon test site

    International Nuclear Information System (INIS)

    Takada, Jun; Hoshi, Masaharu

    1997-01-01

    This paper described and reviewed the data reported by Russia and Kazakhstan and authors' studies on the exposed doses as follows. History of nuclear explosion tests in Semipalatinsk: From 1949 to 1989 in old Russia, 459 explosion tests involving 26 on the ground, 87 in the air and 346 in underground were performed, of which TNT equivalence was 0.6 Mt, 6 Mt and 11 Mt, respectively. A mystery in the reports of radiation doses by Russia and Kazakhstan. Present status of the regions after the end of nuclear weapon tests: Environment radiation doses in μSv/h in following regions were 0.06 in Mostik, 0.1 in Dolon and Semipalatinsk, 0.07 in Izvyestka and Znamenka, 0.08 in Tchagan and 21 in Atomic Lake. Evaluation of external exposure dose of the living regions with thermoluminescence method: External exposure dose was estimated to be about 90 cGy in a certain village and 40 cGy in Semipalatinsk which being 150 km far from the test site. (K.H.)

  10. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    Science.gov (United States)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  11. Compilation of radiation damage test data. II

    International Nuclear Information System (INIS)

    Schoenbacher, H.; Stolarz-Izycka, A.

    1979-01-01

    This report summarizes radiation damage test data on thermosetting and thermoplastic resins, with the main emphasis on epoxy resins used for magnet coil insulations. Also, other materials such as polyesters, phenolics, polyurethanes, silicones, etc., are represented. The materials have been irradiated in a nuclear reactor to integrated absorbed doses between 5x10 6 Gy and 1x10 8 Gy. The mechanical properties, e.g. the flexural strength, deflection at break, and tangent modulus of elasticity, have been measured on irradiated and non-irradiated samples. The results are given as variation of these parameters versus absorbed dose and are presented in the form of tables and graphs. The tested materials are catalogued in alphabetical order. (Auth.)

  12. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings.

    Science.gov (United States)

    Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua

    2015-02-01

    Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

  13. Influence of ionizing radiation on the catalytic properties of oxide catalysts tested by hydrogen peroxide decomposition

    International Nuclear Information System (INIS)

    Mucka, V.

    1987-01-01

    Results of a study of some physical and catalytic properties of different oxide catalysts as affected by ionizing radiation (γ, n, e - ) and tested by the decomposition of hydrogen peroxide in aqueous solution are presented in this paper. The oxidation state of the active component present on the catalyst surface was found to be one of the most sensitive properties to the ionizing radiation. Changes of this state induced by γ-irradiation were found to be positive in most cases; electron pre-irradiation of the oxides leads, as a rule, to negative effects and the effects of neutron irradiation may be positive or negative. On the other hand, changes in the catalytic activity of the oxides after γ-or electron-irradiation seem to be mostly negative and positive, respectively; the effects of fast neutrons seem to vary here. Neither quantitative or qualitative correlation was found between the radiation-induced changes in these two quantities. The results give evidence that ionizing radiation principally affects the surface concentration of the catalytic sites. Both the character and magnitude of the changes in surface oxidation abilities and in catalytic activities of the oxide catalysts seem to be dependent upon the actual state of the catalyst surface. (author)

  14. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  15. Radiation effects

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    An important cause of deterioration in superconducting magnets intended for high-energy physics and fusion-reactor applications is radiation damage. The present chapter deals chiefly with the effects of electron, proton, gamma and neutron irradiation on the properties of stabilized Ti-Nb-base composite superconductors. The authors examine the particle-accelerator environment, electron irradiation of Ti-Nb superconductor, proton irradiation of Ti-Nb superconductor and its stabilizer, and deuteron irradiation of Ti-Nb superconductor. A section discussing the fusion reactor environment in general is presented, and the two principal classes of fusion reactor based on the magnetic-confinement concept, namely the tokamak and the mirrormachine are examined. Also discussed is neutron irradiation of Cu/TiNb composite superconductors and critical current density of neutronirradiated Ti-Nb. Finally, radiation damage to stabilizer and insulating materials is described

  16. Effect of HALS on radiation discoloration of PE

    International Nuclear Information System (INIS)

    Wang Huiliang; Wang Chun; Chen Wenxiu

    2001-01-01

    The effects of hindered amine light stabilizers (HALS) on the radiation-induced discoloration of polyethylene (PE) are studied by measuring the yellowness index (YI) of PE. It is found that all the HALS used are effective in preventing PE from radiation-induced discoloration. The YI of PE added pentamethyl HALS (PMPM, PPMPM) is a little higher than that of PE added corresponding tetramethyl HALS (TMPM, PTMPM) when radiation dose is low than 100 kGy, but when the radiation dose is higher than 100 kGy, the YI of PE added pentamethyl HALS is lower. Pentamethyl HALS is more effective in preventing PE from radiation-induced discoloration when radiation dose is higher. It is also found that polymeric HALS is more effective in preventing PE from radiation-induced discoloration than corresponding monomeric HALS when radiation dose is higher than 200 kGy. The formation of alkyl free radical, carbonyl after irradiation is measured. It is found that the relative concentration of free radical formed in PE added TMPM is higher than that of PE added PMPM when radiation dose is relatively high. The carbonyl index of PE containing pentamethyl HALS is less than that of PE containing tetramethyl HALS when radiation is relatively low, but the results is contrary when radiation dose is relatively high. It is believed that HALS prevents PE from radiation-induced discoloration by scavenging free radicals formed in irradiated PE

  17. Types and effects of radiation coming from nuclear weapons

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1974-01-01

    The article shows which effects can be expected from an atomic explosion, such as neutron and gamma rays, pressure surge, thermal radiation and at which KT-values and at which distance from the centre influence the individual noxious substances is most pronounced. Combined effects and delayed effects are discussed. The results of the numerous studies on the effects of the A-bomb dropping on Hiroshima and Nagazaki are shown. Results of animal experiments are used for explanation. Furthermore, the effect of radioactive fallout is described. As an example, the author points out the Marshall islands on which radioactive fallout was noticed after a nuclear weapon test by the Americans. (MG) [de

  18. Radiation Effects in Advanced Multiple Gate and Silicon-on-Insulator Transistors

    Science.gov (United States)

    Simoen, Eddy; Gaillardin, Marc; Paillet, Philippe; Reed, Robert A.; Schrimpf, Ron D.; Alles, Michael L.; El-Mamouni, Farah; Fleetwood, Daniel M.; Griffoni, Alessio; Claeys, Cor

    2013-06-01

    The aim of this review paper is to describe in a comprehensive manner the current understanding of the radiation response of state-of-the-art Silicon-on-Insulator (SOI) and FinFET CMOS technologies. Total Ionizing Dose (TID) response, heavy-ion microdose effects and single-event effects (SEEs) will be discussed. It is shown that a very high TID tolerance can be achieved by narrow-fin SOI FinFET architectures, while bulk FinFETs may exhibit similar TID response to the planar devices. Due to the vertical nature of FinFETs, a specific heavy-ion response can be obtained, whereby the angle of incidence becomes highly important with respect to the vertical sidewall gates. With respect to SEE, the buried oxide in the SOI FinFETs suppresses the diffusion tails from the charge collection in the substrate compared to the planar bulk FinFET devices. Channel lengths and fin widths are now comparable to, or smaller than the dimensions of the region affected by the single ionizing ions or lasers used in testing. This gives rise to a high degree of sensitivity to individual device parameters and source-drain shunting during ion-beam or laser-beam SEE testing. Simulations are used to illuminate the mechanisms observed in radiation testing and the progress and needs for the numerical modeling/simulation of the radiation response of advanced SOI and FinFET transistors are highlighted.

  19. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  20. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  1. Possibility of use of plat test systems for estimation of degree risk at radiation influence

    International Nuclear Information System (INIS)

    Gogebashvili, M.E.; Ivanishvili, N.I.

    2010-01-01

    . The biological model in essence is a version of expert judgments of an estimation of risk, at radiating influence. Thus from positions of practical application of this test system to become important and that, how much this influence is modified by various concomitant factors. In whole, as a result of the spent researches it is shown, that the given model can serve as convenient test system at studying of the remote effects of radiation and definition of degree of risk at their formation.

  2. Effect of gamma radiation on lipids by the TBARS and NMR

    International Nuclear Information System (INIS)

    Silva, Adriana Cristina de Oliveira; Cortez, Marco Antonio Sloboda; Marsico, Eliane Teixeira; Guimaraes, Carlos Frederico; Jesus, Edgar Francisco Oliveira de

    2011-01-01

    The aim of this work was to study the effect of gamma radiation on lipids by TBARS and NMR. The samples of raw whole milk were subjected to gamma radiation from Co 60 in doses of 1, 2 and 3 kGy and the production of rancidity was studied through Nuclear Magnetic Resonance (NMR) and Thiobarbituric Acid Test (2-TBARS). The TBARS values increased according to the intensity of the radiation dose applied at the samples, demonstrating correlation between the radiation dose and the production of lipid oxidation. This was confirmed by NMR with the formation of peaks of aldehydes and ketones that were small and similar in the doses of 1 and 2 kGy. In the dose of 3 kGy, the total degradation of milk fat was observed. A correlation between the NMR and 2-TBA was detected. (author)

  3. Effect of gamma radiation on lipids by the TBARS and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriana Cristina de Oliveira; Cortez, Marco Antonio Sloboda, E-mail: vetdri@gmail.com [Lab. de Inspecao e Tecnologia de Leite e Derivados Lacteos, Faculdade de Medicina Veterinaria, Universidade Federal Fluminense, Niteroi - RJ (Brazil); Marsico, Eliane Teixeira; Guimaraes, Carlos Frederico [Laboratorio de Controle Fisico-Quimico de Produtos de Origem Animal, Faculdade de Medicina Veterinaria, Universidade Federal Fluminense, Niteroi - RJ (Brazil); Jesus, Edgar Francisco Oliveira de [Laboratorio de Instrumentacao Nuclear, Instituto Alberto Luiz Coimbra de Pos-graduacao e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ (Brazil)

    2011-11-15

    The aim of this work was to study the effect of gamma radiation on lipids by TBARS and NMR. The samples of raw whole milk were subjected to gamma radiation from Co{sup 60} in doses of 1, 2 and 3 kGy and the production of rancidity was studied through Nuclear Magnetic Resonance (NMR) and Thiobarbituric Acid Test (2-TBARS). The TBARS values increased according to the intensity of the radiation dose applied at the samples, demonstrating correlation between the radiation dose and the production of lipid oxidation. This was confirmed by NMR with the formation of peaks of aldehydes and ketones that were small and similar in the doses of 1 and 2 kGy. In the dose of 3 kGy, the total degradation of milk fat was observed. A correlation between the NMR and 2-TBA was detected. (author)

  4. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    Science.gov (United States)

    Lee, Steve A.; Leimkuehler, Thomas O.; Stephan, Ryan; Le, Hung V.

    2010-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PC1V1) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  5. Radiation protection standards: a summary of the biological effects of ionising radiation and principles of radiation protection

    International Nuclear Information System (INIS)

    1994-01-01

    This leaflet in the NRPB At-a-Glance-Series briefly summarises the biological effects of radiation, harm and sensitivity to radiation, radiation protection principles, acceptability of risk and the control of doses to workers, the public and in medical procedures in the UK. (UK)

  6. Experimental research on transient ionizing radiation effects of CMOS microcontroller

    International Nuclear Information System (INIS)

    Jin Xiaoming; Fan Ruyu; Chen Wei; Wang Guizhen; Lin Dongsheng; Yang Shanchao; Bai Xiaoyan

    2010-01-01

    This paper presents an experimental test system of CMOS microcontroller EE80C196KC20. Based on this system, the transient ionizing radiation effects on microcontroller were investigated using 'Qiangguang-I' accelerator. The gamma pulse width was 20 ns and the dose rate (for the Si atom) was in the range of 6.7 x 10 6 to 2.0 x 10 8 Gy/s in the experimental study. The disturbance and latchup effects were observed at different dose rate levels. Latchup threshold of the microcontroller was obtained. Disturbance interval and the system power supply current have a relationship with the dose rate level. The transient ionizing radiation induces photocurrent in the PN junctions that are inherent in CMOS circuits. The photocurrent is responsible for the electrical and functional degradation. (authors)

  7. Development and testing of a thermoluminescent dosemeter for mixed neutron-photon-beta radiation fields

    International Nuclear Information System (INIS)

    Zummo, J.J.; Liu, J.C.

    1998-08-01

    A new four-element thermoluminescent (TL) dosemeter and dose evaluation algorithm have been developed and tested to better characterize personnel exposure in mixed neutron-photon-beta radiation fields. The prototype dosemeter is based on a commercially available TL card (with three LiF-7 chips and one LiF-6 chip) and modified filtration elements. The new algorithm takes advantage of the high temperature peak characteristics of the LiF-6 element to better quantify the neutron dose component. The dosemeter was tested in various radiation fields, consisting of mixtures of two radiation types typically used for dosemeter performance testing, as well as mixtures of three radiation types to simulate possible exposure conditions. The new dosemeter gave superior performance, based on the tolerance levels, when using the new algorithm as compared to a conventional algorithm that did not use the high temperature peak methodology. The limitations and further improvements are discussed

  8. Radiation effects in ice: New results

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Fama, M.; Loeffler, M.J.; Raut, U.; Shi, J.

    2008-01-01

    Studies of radiation effects in ice are motivated by intrinsic interest and by applications in astronomy. Here we report on new and recent results on radiation effects induced by energetic ions in ice: amorphization of crystalline ice, compaction of microporous amorphous ice, electrostatic charging and dielectric breakdown and correlated structural/chemical changes in the irradiation of water-ammonia ices

  9. Cumulative radiation effect

    International Nuclear Information System (INIS)

    Kirk, J.; Cain, O.; Gray, W.M.

    1977-01-01

    Cumulative Radiation Effect (CRE) represents a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Computer calculations have been used to simplify the evaluation of problems associated with the applications of the CRE-system in radiotherapy. In a general appraisal of the applications of computers to the CRE-system, the various problems encountered in clinical radiotherapy have been categorised into those involving the evaluation of a CRE at a point in tissue and those involving the calculation of CRE distributions. As a general guide, the computer techniques adopted at the Glasgow Institute of Radiotherapeutics for the solution of CRE problems are presented, and consist basically of a package of three interactive programs for point CRE calculations and a Fortran program which calculates CRE distributions for iso-effect treatment planning. Many examples are given to demonstrate the applications of these programs, and special emphasis has been laid on the problem of treating a point in tissue with different doses per fraction on alternate treatment days. The wide range of possible clinical applications of the CRE-system has been outlined and described under the categories of routine clinical applications, retrospective and prospective surveys of patient treatment, and experimental and theoretical research. Some of these applications such as the results of surveys and studies of time optimisation of treatment schedules could have far-reaching consequences and lead to significant improvements in treatment and cure rates with the minimum damage to normal tissue. (author)

  10. Radiation-induced genomic instability and bystander effects: inter-related inflammatory-type non-targeted effects of exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, E.G. (Molecular and Cellular Pathology Laboratories, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee, Scotland (United Kingdom))

    2008-12-15

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that have communicated with neighbouring irradiated cells (radiation-induced bystander effects). There are also reports of long-range signals in vivo, known as clastogenic factors, with the capacity to induce damage in unirradiated cells. Clastogenic factors may be related to the inflammatory responses that have been implicated in some of the pathological consequences of radiation exposures. The phenotypic expression of untargeted effects reflects a balance between the type of signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. There is accumulating evidence that untargeted effects in vitro involve inter-cellular signalling, production of cytokines and free radical generation. These are also features of inflammatory responses in vivo that are known to have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. At present it is far from clear how untargeted effects contribute to overall cellular radiation responses and in vivo consequences but it is possible that the various untargeted effects may reflect inter-related aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures. (orig.)

  11. Radiation-induced genomic instability and bystander effects: inter-related inflammatory-type non-targeted effects of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Wright, E.G.

    2008-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that have communicated with neighbouring irradiated cells (radiation-induced bystander effects). There are also reports of long-range signals in vivo, known as clastogenic factors, with the capacity to induce damage in unirradiated cells. Clastogenic factors may be related to the inflammatory responses that have been implicated in some of the pathological consequences of radiation exposures. The phenotypic expression of untargeted effects reflects a balance between the type of signals produced and the responses of cell populations to such signals, both of which may be significantly influenced by cell type and genotype. There is accumulating evidence that untargeted effects in vitro involve inter-cellular signalling, production of cytokines and free radical generation. These are also features of inflammatory responses in vivo that are known to have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. At present it is far from clear how untargeted effects contribute to overall cellular radiation responses and in vivo consequences but it is possible that the various untargeted effects may reflect inter-related aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures. (orig.)

  12. Radiation Bystander Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Shokohzaman Soleymanifard

    2009-06-01

    Full Text Available Introduction: Radiation Induced Bystander Effect (RIBE which cause radiation effects in non-irradiated cells, has challenged the principle according to which radiation traversal through the nucleus of a cell is necessary for producing biological responses. What is the mechanism of this phenomenon? To have a better understanding of this rather ambiguous concept substantial number of original and reviewed article were carefully examined. Results: Irradiated cells release molecules which can propagate in cell environment and/or transmit through gap junction intercellular communication. These molecules can reach to non-irradiated cells and transmit bystander signals. In many investigations, it has been confirmed that these molecules are growth factors, cytokines, nitric oxide and free radicals like reactive oxygen species (ROS. Transmission of by stander signal to neighboring cells persuades them to produce secondary growth factors which in their turn cause further cell injuries. Some investigators suggest, organelles other than nucleus (mitochondria and cell membrane are the origin of these signals.  There is another opinion which suggests double strand breaks (DSB are not directly generated in bystander cells, rather they are due to smaller damage like single strand breaks which accumulate and end up to DSB. Although bystander mechanisms have not been exactly known, it can be confirmed that multiple mechanisms and various pathways are responsible for this effect. Cell type, radiation type, experimental conditions and end points identify the dominant mechanism. Conclusion: Molecules and pathways which are responsible for RIBE, also cause systemic responses to other non-irradiation stresses. So RIBE is a kind of systemic stress or innate immune responses, which are performed by cell microenvironment. Irradiated cells and their signals are components of microenvironment for creating bystander effects.

  13. Effects of ionizing radiation on cryogenic infrared detectors

    Science.gov (United States)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  14. Ionizing radiation biological effects and the proper protective measures against it's harmful effects

    International Nuclear Information System (INIS)

    Hhalel, A.M.

    1990-01-01

    This book intrduces a good knowledge in specifications of ionizing radiation biological effects and the proper protective measures againest harmful effectes. The book is devided in to five main sections, the first one introduces the hostorical bachground of the contributions of a number of scietists in the basic knolwledge of radiation and its biological effects. The second section deals with the physical and chemical principles of radiation the third one talks about radiation detection. While the fourth section talks (via seven chapter) about the effectes of ionizing radiation on living organisms molecules cells, tissues organs systems and the living organism the fifth section talks about the uses of radiation sources, the probability of radiation accidents, protective measures, international recommendations related to doses and safe use of ionizing radiation. (Abed Al-wali Al-ajlouni). 53 refs., 107 figs., 13 tabs

  15. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  16. Dynamic testing for radiation induced failures in a standard CMOS submicron technology pixel front-end

    International Nuclear Information System (INIS)

    Venuto, D. de; Corsi, F.; Ohletz, M.J.

    1999-01-01

    A testing method for the detection of performance degradation induced by high-dose irradiation in high-energy experiments has been developed. The method used is based on a fault signature generation defined on the basis of the state-space analysis for linear circuits. By sampling the response of the circuit under test (CUT) to a single rectangular pulse, a set of parameters α are evaluated which are functions of the circuit singularities and constitute a signature for the CUT. Amplitude perturbations of these parameters engendered by element drift failure indicate a possible faulty condition. The effects of radiation induced faults in the analogue CMOS front-end of a silicon pixel detector employed in high energy physics experiments has been investigated. The results show that, even for the 800 krad dose, the test devised is able to detect the degradation of the amplifier performances. The results show also that hardened devices do not necessarily produce high circuit immunity to radiation and the proposed test method provides a mean to detect these performance deviations and to monitor them during the operating life of the chip. (A.C.)

  17. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  18. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  19. Radiation effects in wild terrestrial vertebrates - the EPIC collection.

    Science.gov (United States)

    Sazykina, Tatiana; Kryshev, Ivan I

    2006-01-01

    The paper presents data on radiation effects in populations of wild vertebrate animals inhabiting contaminated terrestrial ecosystems. The data were extracted from the database "Radiation effects on biota", compiled within the framework of the EC Project EPIC (2000-2003). The data collection, based on publications in Russian, demonstrates radiation effects in the areas characterized with high levels of radionuclides (Kyshtym radioactive trace; "spots" of enhanced natural radioactivity in the Komi region of Russia; territories contaminated from the Chernobyl fallout). The data covers a wide range of exposures from acute accidental irradiation to lifetime exposures at relatively low dose rates. Radiation effects include mortality, changes in reproduction, decrease of health, ecological effects, cytogenetic effects, adaptation to radiation, and others. Peculiarities of radiation effects caused by different radionuclides are described, also the severity of effects as they appear in different organisms (e.g. mice, frogs, birds, etc.).

  20. Radiation effects in wild terrestrial vertebrates - the EPIC collection

    International Nuclear Information System (INIS)

    Sazykina, Tatiana; Kryshev, Ivan I.

    2006-01-01

    The paper presents data on radiation effects in populations of wild vertebrate animals inhabiting contaminated terrestrial ecosystems. The data were extracted from the database 'Radiation effects on biota', compiled within the framework of the EC Project EPIC (2000-2003). The data collection, based on publications in Russian, demonstrates radiation effects in the areas characterized with high levels of radionuclides (Kyshtym radioactive trace; 'spots' of enhanced natural radioactivity in the Komi region of Russia; territories contaminated from the Chernobyl fallout). The data covers a wide range of exposures from acute accidental irradiation to lifetime exposures at relatively low dose rates. Radiation effects include mortality, changes in reproduction, decrease of health, ecological effects, cytogenetic effects, adaptation to radiation, and others. Peculiarities of radiation effects caused by different radionuclides are described, also the severity of effects as they appear in different organisms (e.g. mice, frogs, birds, etc.)

  1. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    International Nuclear Information System (INIS)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history

  2. Tests for radiation protection in X-Ray mammography room for professional and non-professional exposure

    International Nuclear Information System (INIS)

    Naidenov, I.; Skocheva, A.

    2006-01-01

    Full text: Control tests for radiation protection of medical diagnostic rooms in our country are based on the guidelines to the use of x-rays in medicine and on the basic safety standards for radiation protection. The mammography room tests are not supported by basic data (such as normal conditions for testing and secondary limits) which to allow the developing of methods as the case is with the conventional x-ray rooms. The material presents and discusses over the situation of the matter with the aim to find solution of the problem. In mammography units the space distribution of the dose field of the object scattering radiation is not symmetrical, the maximum being in a direction opposite to the primary beam. Control tests were made for stray radiation in major (in the plane of beam rotation) test points in five rooms with mammography units of different producers and generation, under angles of scattering from the direction of the beam of 900 (horizontal table - 0 deg projection) and 1630 (tilt table - 730 deg projection). The results on the stray radiation show up to four times higher values in the 730 projection, the remaining conditions being the same. Normalization to the week loading used in the shielding design, like the comparison with secondary limits as published in the available norms do not give unambiguous idea. It is advisable to use this projection in control tests for radiation protection and the values shall be compared with the secondary limits of the corresponding standard loading

  3. Synchrotron radiation losses in Engineering Test Reactors (ETRs)

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1987-11-01

    In next-generation Engineering Test Reactors (ETRs), one major objective is envisioned to be a long-pulse or steady-state burn using noninductive current drive. At the high temperatures needed for efficient current drive, synchrotron radiation could represent a large power loss, especially if wall reflectivity (R) is very low. Many INTOR-class ETR designs [Fusion Engineering Reactor (FER), Next European Torus (NET), OTR, Tokamak Ignition/Burn Engineering Reactor (TIBER), etc.] call for carbon-covered surfaces for which wall reflectivity is uncertain. Global radiation losses are estimated for these devices using empirical expressions given by Trubnikov (and others). Various operating scenarios are evaluated under the assumption that the plasma performance is limited by either the density limit (typical of the ignition phase) or the beta limit (typical of the current drive phase). For a case with ≥90% wall reflectivity, synchrotron radiation is not a significant contribution to the overall energy balance (the ratio of synchrotron to alpha power is less than 10 to 20%, even at ∼ 30 keV) and thus should not adversely alter performance in these devices. In extreme cases with 0% wall reflectivity, the ratio of synchrotron radiation to alpha power may approach 30 to 60% (depending on the device and limiting operating scenario), adversely affecting the performance characteristics. 12 refs., 7 tabs

  4. D-xylose test of resorption as a method to determine radiation side effects in small intestine

    International Nuclear Information System (INIS)

    Koest, S.; Keinert, K.; Glaser, F.H.

    1998-01-01

    Background: The D-xylose test is the most important method to determine a disorder of carbohydrates resorption in proximal small intestine. The application is based on an impaired resorption due to pathological change of small intestine surface, leading to a decreased blood level or decreased excretion in urine. Patients and Method: D-xylose test was applied in 91 patients before, shortly after, 1/2 and 1 year after radiotherapy. All patients received an abdominal radiotherapy. We determined the blood level of D-xylose by a capillary blood sample 1 hour after oral D-xylose administration. Results: A significant decrease of the mean blood level of D-xylose to 1.88 mmol/l was determined after radiotherapy in comparison with 2.17 mmol/l before radiotherapy. Half a year after radiotherapy the mean blood level of D-xylose returned to normal. Regarding a threshold value of D-xylose blood level of 1.70 mmol/l 29 patients (32%) showed a pathologically decreased D-xylose resorption after radiotherapy. Twenty out of the 29 patients already showed a normal resorption half a year after the determination of the resorption disorder, 5 patients after 1 year and 4 patients after 1 1/2 years. There was no correlation between the detection of a disorder of D-xylose resorption and of a loss of body weight. The acute clinical side effects seemed to be more marked in connection with a disorder of D-xylose resorption, but this correlation is not significant. Eleven or 14 of the 29 patients, respectively, with pathologically decreased D-xylose resorption only had complaints of lower or upper gastrointestinal tract, respectively, and 10 patients did not have abdominal complaints at all. Conclusions: The D-xylose test is an important and simple method for determination of radiogen induced carbohydrate malabsorption in proximal small intestine. By means of its radiation side effects on small intestine can also be determined in patients who are otherwise free of complaints. (orig.) [de

  5. Effectiveness estimation of camouflage measures with solar radiation and longwave radiation considered

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.S. [LG Electronics Corporation (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea); Yoo, H.S. [Soongsil University, Seoul (Korea)

    1998-11-01

    Camouflage measures in military purpose utilizes the apparent temperature difference between the target and background, so it is essential to develop thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict apparent temperature as well as physical temperature exactly. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage, clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage. (author). 12 refs., 6 figs., 1 tab.

  6. Laser radiation effect on radiation-induced defects in heavy ion tracks in dielectrics

    International Nuclear Information System (INIS)

    Egorov, A.N.; Zhiryakov, B.M.; Kushin, V.V.; Lyapidevskij, V.K.; Khokhlov, N.B.

    1988-01-01

    Possibility of laser radiation resonance effect on radiation-induced defects in heavy ion tracks in dielectric materials is investigated. Absorption spectra in infrared, visible and ultraviolet ranges for cellulose nitrate samples irradiated by 6 MeV/nucleon 58 Ni ions and reactor gamma radiation are measured. Absorption spectra for irradiated and reference samples are presented. Two absorption bands λ 1 =0.33 μm (E 1 =3.9 eV) and λ 2 =0.72 μm (E 2 =1.7 eV) are detected. Etching rate decrease in a track under laser radiation effect is noticed. 3 refs.; 1 fig

  7. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  8. Gamma radiation effects on liofilized human serum

    International Nuclear Information System (INIS)

    Padron Soler, E.; Romay Penabad, Z.; Chavez Ardanza, A.; Hernandez Gonzalez, C.; Martin Gonzalez, O.; Garcia Gonzalez, I.; Prieto Miranda, E.

    1995-01-01

    Human freeze dried serum was artificially contaminated with Flavobacterium sp. for studying the effects of gamma radiation of it. The radiobiological parameters of the contaminator were determined and the sterilization dose was set. The quality of the product irradiated at both, calculated sterilization dose (8.5 kGy) an another one about 25 kGy was determined. It was made according to: sterility testing, total proteins, pH enzymes (alanina-aminotransferase, aspartato-aminotransferase, alkaline phosphatase), protein electrophoresis, fast performance liquid chromatographic and effect on the cellular growth. From the latter was concluded that the calculated sterilization dose was adequate form keeping the biological properties and viability of the irradiated serum. Nevertheless, the dose of 25 k Gy was not adequate because of its dangerous effects on the cell culture

  9. Effects of neutrons and gamma radiation on high polymer epoxy adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H W; Bui, V T; Poirier, P E [Royal Military Coll. of Canada, Kingston, ON (Canada)

    1996-12-31

    The effect of irradiation in a SLOWPOKE-2 reactor on the adhesive strength of epoxy resins was studied using the ASTM D897 standard testing procedure. Initial weakening, up to 50%, ascribed to chain-scission, is followed by strengthening, ascribed to radiation-induced crosslinking. 7 refs., 1 tab., 14 figs.

  10. Effects of neutrons and gamma radiation on high polymer epoxy adhesives

    International Nuclear Information System (INIS)

    Bonin, H.W.; Bui, V.T.; Poirier, P.E.

    1995-01-01

    The effect of irradiation in a SLOWPOKE-2 reactor on the adhesive strength of epoxy resins was studied using the ASTM D897 standard testing procedure. Initial weakening, up to 50%, ascribed to chain-scission, is followed by strengthening, ascribed to radiation-induced crosslinking. 7 refs., 1 tab., 14 figs

  11. Dose rate effect on material aging due to radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shin-ichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Hayakawa, Chikara; Takeya, Chikashi

    1982-12-01

    Although many reports have been presented on the radiation aging of the organic materials for electric cables, those have been based on the experiments carried out at high dose rate near 1 x 10/sup 6/ rad/h, assuming that aging effect depends on only radiation dose. Therefore, to investigate the aging behaviour in low dose rate range is an important subject to predict their practical life time. In this report, the results of having investigated the aging behaviour of six types of materials are described, (polyethylene for general insulation purpose, chemically cross-linked polyethylene, fire-retardant chemically cross-linked polyethylene, fire-retardant ethylene-propylene rubber, fire-retardant chloro-sulfonated polyethylene for sheaths, and fire-retardant, low hydrochloric acid, special heat-resistant vinyl for insulation purpose or chloroclean). They were irradiated with /sup 60/Co ..gamma..-ray at the dose from 5 x 10/sup 3/ to 1 x 10/sup 6/ rad/h, and their deterioration was tested for the items of elongation, tensile strength, resistivity, dielectric tangent and gel fraction. The aging mechanism and dose rate effect were also considered. The dose rate effect appeared or did not appear depending on the types of materials and also their properties. The materials that showed the dose rate effect included the typical ones whose characteristics degraded with the decreasing dose rate, and the peculiar ones whose deterioration of characteristics did not appear constantly. Aging mechanism may vary in the case of high dose rate and low dose rate. Also, if the life time at respective dose rate in relatively higher dose rate region is clarified, the life time in low dose rate region may possibly be predicted.

  12. Study of biological effect of radiation

    International Nuclear Information System (INIS)

    Li Guisheng

    1992-01-01

    The some progress on the study of biological effect for protract exposure to low dose rate radiation is reported, and it is indicated that the potential risk of this exposure for the human health and the importance of the routine monitoring of radiation dose for various nuclear installations. The potential exposure to the low dose rate radiation would attract people's extra attention

  13. Molecular and cellular effects of radiations

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.; Ito, A.; Roth, R.M.

    1985-01-01

    This program is concerned with the basic nature of the biological effects of mutagenic and carcinogenic environmental radiations, including those solar ultraviolet and visible radiations responsible for the most common form of human cancer: cancer of the skin. Concentrating on the damages to DNA caused by these radiations, the program attempts to delineate the basic mechanisms whereby such damage may occur. 14 refs

  14. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  15. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  16. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation.

    Science.gov (United States)

    Ma, Ting Martin; Grimm, Jimm; McIntyre, Riley; Anderson-Keightly, Heather; Kleinberg, Lawrence R; Hales, Russell K; Moore, Joseph; Vannorsdall, Tracy; Redmond, Kristin J

    2017-11-01

    To prospectively evaluate hippocampal radiation dose volume effects and memory decline following cranial irradiation. Effects of hippocampal radiation over a wide range of doses were investigated by combining data from three prospective studies. In one, adults with small cell lung cancer received hippocampal-avoidance prophylactic cranial irradiation. In the other two, adults with glioblastoma multiforme received neural progenitor cell sparing radiation or no sparing with extra dose delivered to subventricular zone. Memory was measured by the Hopkins Verbal Learning Test-Revised Delayed Recall (HVLT-R DR) at 6 months after radiation. Dose-volume histograms were generated and dose-response data were fitted to a nonlinear model. Of 60 patients enrolled, 30 were analyzable based on HVLT-R DR testing completion status, baseline HVLT-R DR and intracranial metastasis/recurrence or prior hippocampal resection status. We observed a dose-response of radiation to the hippocampus with regard to decline in HVLT-R DR. D50% of the bilateral hippocampi of 22.1 Gy is associated with 20% risk of decline. This prospective study demonstrates an association between hippocampal dose volume effects and memory decline measured by HVLT-R DR over a wide dose range. These data support a potential benefit of hippocampal sparing and encourage continued trial enrollment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Health Effects of Non-Ionizing Radiation on Human

    International Nuclear Information System (INIS)

    Zubaidah-Alatas; Yanti Lusiyanti

    2001-01-01

    Increases of development and use of equipment that procedures non-ionizing radiant energy such as laser, radar, microwave ovens, power lines and hand phones, bring about public concern about the possible health effects owing to the non-ionizing radiation exposure. Non ionizing electromagnetic radiation compared to ionizing radiation, has longer wavelength, lower frequency, and lower photon energy in its interaction with body tissues. The term on non-ionizing radiation refers to the groups of electromagnetic radiations with energies less than about 10 eV corresponding to wavelengths in the ultraviolet, visible, infra red microwave and radiofrequency spectral regions. This paper describes the current state of knowledge about types of non-ionizing radiation and the health effects at molecular and cellular levels as well as its effects on human health. (author)

  18. Effects of dust accumulation and removal on radiator surfaces on Mars

    International Nuclear Information System (INIS)

    Gaier, J.R.; Perez-Davis, M.E.; Rutledge, S.K.; Hotes, D.; Olle, R.

    1991-01-01

    Tests were carried out to assess the impact of wind blown dust accumulation and abrasion on radiator surfaces on Mars. High emittance arc-textured copper (Cu) and niobium-1%-zirconium (Nb-1%Zr) samples were subjected to basaltic dust laden wind at Martian pressure (1000 Pa) at speeds varying from 19 to 97 m/s in the Martian Surface Wind Tunnel at NASA Ames Research Center. The effect of accumulated dust was also observed by pre-dusting some of the samples before the test. Radiator degradation was determined by measuring the change in the emittance after dust was deposited and/or removed. The principal mode of degradation was abrasion. Arc-textured Nb-1%Zr proved to be more susceptible to degradation than Cu, and pre-dusting appeared to have lessened the abrasion

  19. Radiation effects on optical components of a laser radar sensor designed for remote metrology in ITER

    International Nuclear Information System (INIS)

    Menon, M.M.; Grann, E.B.; Slotwinski, A.

    1997-09-01

    A frequency modulated laser radar is being developed for in-vessel metrology and viewing of plasma-facing surfaces. Some optical components of this sensor must withstand intense gamma radiation (3 x 10 6 rad/h) during operation. The authors have tested the effect of radiation on a silica core polarization maintaining optical fiber and on TeO 2 crystals at doses up to ∼ 10 9 rad. Additional tests are planned for evaluating the performance of a complete acousto-optic (AO) scanning device. The progress made in these tests is also described

  20. Radiation Effects in M and NEMS

    Science.gov (United States)

    2016-03-31

    electrical basis of operation of M&NEM structures? In particular, cumulative damage by non - ionizing energy loss can, in principle, alter the... Radiation Effects in M&NEMS Michael Alles, Kirill Bolotin, Alex Zettl, Brian Homeijer, Jim Davidson, Ronald Schrimpf, Robert Reed, Dan Fleetwood...understanding radiation effects on the relevant properties of the constituent materials and structures, particularly advanced 2D materials, and the

  1. Instrumentation measurement and testing complex for detection and identification of radioactive materials using the emitted radiation

    International Nuclear Information System (INIS)

    Samossadny, V.T.; Dmitrenko, V.V.; Kadlin, V.V.; Kolesnikov, S.V.; Ulin, S.E.; Grachev, V.M.; Vlasik, K.F.; Dedenko, G.L.; Novikov, D.V.; Uteshev, Z.M.

    2006-01-01

    Simultaneous measurement of neutron and gamma radiation is a very usefull method for effective nuclear materials identification and control. The gamma-ray-neutron complex described in the paper is based on two multi-layer 3 He neutrons detectors and two High Pressure Xenon gamma-ray spectrometers assembled in one unit. All these detectors were callibrated on neutron and gamma-ray sources. The main characteristics of the instrumentation , its testing results and gamma-ray and neutron radiation parameters, which have been measured are represented in the paper. The gamma-neutron sources and fissile materials reliable detection and identification capability was demonstrated

  2. Effects of weightlessness, gravity compensation and radiation on the flour beetle, Tribolium confusum

    International Nuclear Information System (INIS)

    Yang, C.H.; Silver, I.L.; Tobias, C.A.

    1975-10-01

    Tribolium confusum, the flour beetle; was chosen as a test organism for determination of possible synergistic effects of radiation and space environment in the inertial flight of Biosatellite-II. The organism subjected to weightlessness and radiation during the flight exhibited greater than expected wing abnormalities. However, a postflight vibration control experiment produced anomalous results, and some doubt remained with respect to assigning weightlessness as the sole cause of the increased wing abnormalities. Results are reported from experiments performed on the interaction of gravity compensation, radiation, and Tribolium development. It was found that gravity compensation together with heavy ion irradiation did not cause more wing abnormalities than those caused by radiation alone. However, radiation and gravity compensation plus high temperature did cause an increased percentage of wing abnormalities. Two possible reasons are discussed

  3. Targeted and non-targeted effects of ionizing radiation

    Directory of Open Access Journals (Sweden)

    Omar Desouky

    2015-04-01

    Full Text Available For a long time it was generally accepted that effects of ionizing radiation such as cell death, chromosomal aberrations, DNA damage, mutagenesis, and carcinogenesis result from direct ionization of cell structures, particularly DNA, or from indirect damage through reactive oxygen species produced by radiolysis of water, and these biological effects were attributed to irreparable or misrepaired DNA damage in cells directly hit by radiation. Using linear non-threshold model (LNT, possible risks from exposure to low dose ionizing radiation (below 100 mSv are estimated by extrapolating from data obtained after exposure to higher doses of radiation. This model has been challenged by numerous observations, in which cells that were not directly traversed by the ionizing radiation exhibited responses similar to those of the directly irradiated cells. Therefore, it is nowadays accepted that the detrimental effects of ionizing radiation are not restricted only in the irradiated cells, but also to non-irradiated bystander or even distant cells manifesting various biological effects.

  4. Irradiation tests of critical components for remote handling system in gamma radiation environment

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1996-03-01

    This report covers the gamma ray irradiation tests according to the Agreement of ITER R and D Task (T35) in 1994 and describes radiation hardness of the standard components for the ITER remote handling system which are categorized into the robotics (Subtask-1), the viewing system (Subtask-2) and the common components (Subtask-3). The gamma ray irradiation tests have been conducted using No.2 and No.3 cells at the cobalt building of Takasaki Establishment in JAERI. The radiation source is cobalt sixty (Co-60), and the maximum dose rate of No.2 and No.3 cells is about 1x10 6 R/h and 2x10 6 R/h, respectively. The environmental conditions of the irradiation tests are described below and all of components excepting electrical wires have been tested in the No.2 cell. [No.2 cell : Atmosphere and ambient temperature No.3 cell : Nitrogen gas and 250degC] As a whole, many of components have been irradiated up to the rated dose of around 1x10 10 rads and the following main results are obtained. The developed AC servo motor and periscope for radiation use have shown excellent durability with the radiation hardness tolerable for more than 10 9 rads. An electrical connector compatible with remote operation has also shown no degradation of electrical characteristics after the irradiation of 10 10 rads. As for polyimide insulated wires, the mechanical and electrical characteristics are not degradated after the irradiation of 10 9 rads and more radiation hardness can be expected than the anticipation. On the contrary, standard position sensors such as rotary encoder show extremely low radiation hardness and further efforts have to be made for improvements. (J.P.N.)

  5. The effects of radiation treatment on drugs and pharmaceutical additives. Pt. 5

    International Nuclear Information System (INIS)

    Schnell, R.; Boegl, W.

    1982-01-01

    The sterilization of medical instruments (e.g. catheters, one-way syringes) with ionizing radiation is successfully practiced in many countries. Simultaneously, the results of many experiments involving the sterilization of pharmaceuticals and aiding substances with radiation have been published during the past years. Experiences have shown that radiation treatment in many cases has brought about aberrations in the irradiated substances. In this bibliographic study (Part I-V), the results of 275 radiation tested pharmaceuticals are discussed and evaluated. The substances were treated with ionizing radiation in their pure form (solid substance or liquid), as aqueous or alcohol solution, as emulsion or in compound form, almost exclusively with gamma radiation from cobalt-60 sources. The radiation doses applied amounted from some krd to about 100 Mrd. The results of the original papers analyzed in this Part V are not summarized separately since the final Part VII of the study on the effects of irradiation of drugs and drug additives will contain a survey for all essential data discussed in Parts I to VI. (orig.) [de

  6. 60Co gamma radiation effect on AlGaN//AlN/GaN HEMT devices

    International Nuclear Information System (INIS)

    Wang Yanping; Luo Yinhong; Wang Wei; Zhang Keying; Guo Hongxia; Guo Xiaoqiang; Wang Yuanming

    2013-01-01

    The testing techniques and experimental methods of the 60 Co gamma irradiation effect on AlGaN/AlN/GaN high electron mobility transistors (HEMTs) are established. The degradation of the electrical properties of the device under the actual radiation environment are analyzed theoretically, and studies of the total dose effects of gamma radiation on AlGaN/AlN/GaN HEMTs at three different radiation bias conditions are carried out. The degradation patterns of the main parameters of the AlGaN/AlN/GaN HEMTs at different doses are then investigated, and the device parameters that were sensitive to the gamma radiation induced damage and the total dose level induced device damage are obtained. (authors)

  7. Radiation effects of ion beams on polymers

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1993-01-01

    Recent progress in the radiation effects of ion beams on polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on polystyrene thin films on silicon wafers and time resolved emission studies on polymers are described. (orig.)

  8. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  9. STUDIES CONCERNING THE EFFECT OF GAMMA RADIATION AND MAGNETIC FIELD EXPOSURE ON GLADIOLUS

    Directory of Open Access Journals (Sweden)

    M CANTOR

    2003-04-01

    Full Text Available Gladiolus (Gladiolus sp. is one of the most floral species cultivated over in the world and in Romania. There are many studies concerning the effect of gamma radiation on ornamental plants but little is known about the synergetic effect of gamma radiation and exposure to magnetic fields on Gladiolus. In our investigation we have tested the effect of gamma irradiation and magnetic field exposure of gladiolus corms and cormels of the cultivars: Her Majesty, Applause and Speranţa. The corms and cormels were irradiated for 72 hrs with 137 Cs gamma source on cylindrical exposure geometry. At medium dose of 1 Gy has been accumulated for each corm and cormel. For each variety we used 10 corms and 30 cormels in five variants. The comportment of various varieties was evaluated by recording the following characteristics: length of roots and growth tip. Significant effect was obtained at the variants which was irradiated with 1 Gy gamma radiation and 3 Gauss magnetic fields.

  10. Effect of exposure to radiation on the inflammatory process and its influence by diclofenac

    International Nuclear Information System (INIS)

    El-Ghazaly, M.; Kenawy, S.; Khayyal, M.T.; Roushdy, H.; Saleh, S.

    1985-01-01

    The effect of radiation exposure on the inflammatory process was studied in rats using the carrageenan-induced paw oedema and adjuvant-induced arthritis tests. Irradiation (0.5,1 and 2 Grays) resulted in a significant augmentation of the tissue response to carrageenan and the early phase of adjuvant-induced arthritis, but suppressed the late phase. Diclofenac(1-5 mg kg -1 ) effectively reduced the exaggerated inflammatory response in irradiated animals in both the carrageenan paw oedema and adjuvant-induced arthritis tests. The drug also had a prophylactic value in guarding against the induction of radiation damage. The inflammatory responses produced by irradiation and the benefits obtained by drug treatment may be related to changes in tissue prostaglandin levels and/or changes in the immune system. (author)

  11. Field test of a post-closure radiation monitor

    International Nuclear Information System (INIS)

    Reed, S.; Christy, C.E.; Heath, R.E.

    1995-01-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy's Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. A prototype LPRMS probe was built, and B ampersand W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE's Office of Technology Development (EM-50) through METC. The system was used to measure soil and water with known uranium contamination levels, both in drums and in situ at depths up to 3 meters. For comparison purposes, measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics. This paper presents a description and the results of the field tests. The results were used to characterize the lower detection limits, precision and bias of the system, which allowed the DOE to judge the monitoring system's ability to meet its long-term post-closure radiation monitoring needs. Based on the test results, the monitoring system has been redesigned for fabrication and testing in a potential Phase III of this program. If the DOE feels that this system can meet its needs and chooses to continue into Phase III of this program, this redesigned full scale prototype system will be built and tested for a period of approximately a year. Such a system can be used at a variety of radioactively contaminated sites

  12. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  13. Radiation effect of polyether-urethane under action of different ionizing radiation

    International Nuclear Information System (INIS)

    Huang Wei; Chen Xiaojun; Gao Xiaoling; Xu Yunshu; Fu Yibei

    2006-01-01

    The research concerns in the radiation effect of γ-ray and electron beam on polyether-urethane. The thermal property and radical intensity were determined by differential thermal gravimetric analysis and electron spin resonance. The composition and content of gas products from samples irradiated by different ionizing radiation were analyzed by gas chromatography. The action mechanism of these two radiation resources of γ-ray and electron beam are same, but the means of energy deposit is different. It results in the differences of radical intensity and the thermal property of polyether-urethane as well as its gas products from the radiation decomposition. (authors)

  14. View of environmental radiation effects from the study of radiation biology in C. elegans

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya

    2011-01-01

    Caenorhabditis (C.) elegans is a non-parasitic soil nematode and is well-known as a unique model organism, because of its complete cell-lineage, nervous network and genome sequences. Also, C. elegans can be easily manipulated in the laboratory. These advantages make C. elegans as a good in vivo model system in the field of radiation biology. Radiation effects in C. elegans have been studied for three decades. Here, I briefly review the current knowledge of the biological effects of ionizing irradiation in C. elegans with a scope of environmental radiation effects. Firstly, basic information of C. elegans as a model organism is described. Secondly, historical view is reported on the study of radiation biology in C. elegans. Thirdly, our research on learning behavior is presented. Finally, an opinion of the use of C. elegans for environmental radiation protection is referred. I believe that C. elegans may be a good promising in vivo model system in the field of environmental radiation biology. (author)

  15. Radiation effects on JFETS, MOSFETS, and bipolar transistors, as related to SSC circuit design

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, E J; Gray, B; Wu, A [Dept. of Electrical and Computer Engineering, Univ. of Tennessee, Knoxville, TN (United States); Alley, G T; Britton, Jr, C L [Oak Ridge National Lab., TN (United States); Skubic, P L [Univ. of Oklahoma, Dept. of Physics and Astronomy, Norman, OK (United States)

    1991-10-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular at currents {<=} 1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier. (orig.).

  16. [Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications].

    Science.gov (United States)

    Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna

    2009-08-18

    It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a

  17. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  18. What Reliability Engineers Should Know about Space Radiation Effects

    Science.gov (United States)

    DiBari, Rebecca

    2013-01-01

    Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the

  19. Effects of radiations on ornamental fish

    International Nuclear Information System (INIS)

    Anita; Kalyankar, Amol D.; Ohlyan, Sunita; Gupta, R.K.

    2012-01-01

    Radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiations: ionizing and non-ionizing. Ultraviolet, X-rays, and gamma rays are some examples of radiation. 'Ornamental fish' is designed for aquatic hobbyists and the aquatic industry for several purposes. UV light has two primary uses in fish culture: Controlling green water and disinfecting the water supply. Many proponents of UV disinfection sometimes overlook the additional benefits relating to ornamental fish; those being that cleaner water reduces the stress on the fish by not having to fight off diseases, thus enhancing its immune system and leading to faster growth and more brilliant colors. Ultraviolet sterilizers are often used in aquaria to help control unwanted microorganisms in the water. UV radiation also ensures that exposed pathogens cannot reproduce, thus decreasing the likelihood of a disease outbreak in an aquarium. Despite of these benefits, the ill-effects of radiations cannot be ruled out. Ultraviolet Radiation-induced DNA Damage is seen in the skin of the Platyfish Xiphophorus. Higher radiation doses may cause the gastrointestinal syndrome that leads to defects of the intestinal mucosa barrier with successive contamination of musculature. Exposure to UV radiation can kill the fish and induce sublethal effects in embryos, larvae and adults. The change in skin includes irregularity of skin surface, epidermal oedema, necrosis etc. Irradiation may badly influence the textural attributes of fish muscle. (author)

  20. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    Science.gov (United States)

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  1. A cross section study on low-dose lonization radiation and health effects in different sex subgroups of occupational population

    International Nuclear Information System (INIS)

    Li Jiayuan; Yang Fei; Huang Zhonghang; Lu Xiaoqing; Liu Hui; Jiang Di; Yang Yuan

    2009-01-01

    Objective: To explore the relationship between long-time exposure to low-dose ionization radiation and health effects. Methods: 1052 occupational subjects exposed to ionization radiation in Chengdu city were recruited in monitoring cohort in 2007, including 785 men (74.62%) and 267 women (25.38%). Individual exposure dose were monitored by Thermoluminescent Measurement. Health effects include blood routine examination, Chromosomal aberration, eye lens test, etc. Variance Analysis (ANOVA), χ 2 Test and Univariate Procedure of General Liner Model (Covariance Analysis) were implemented to test the difference among subgroups with SPSS 13.0 software. Results: Annual average of exposure dose of male and female were (0.76 ± 0.65) mSv and (0.75 ± 0.64) mSv. There is no statistical significant between sex subgroups (F= (0.136, P = 0.712). In females subgroup, the frequencies and ratios with low WBC, Low platelet, high RBC and high HGB were 30 (11.2%), 45(16.9%), 4(1.5%) and 3(1.1%) respectively. And in male subgroup, frequencies and ratios of above index were 32 (4.1%), 147 (18.7%), 64 (8.2%) and 115 (14.6%) respectively. Except low platelet, the distribution differences of the rest three blood indexes between sex subgroups were statistically significant (χ 2 test, P<0.01). Either in male or in female subgroups, no statistically significant difference of all health indexes(RBC, WBC, Platelet, HGB, and Chromosomal aberration) was observed in different radiation dose teams. Conclusion: In this monitoring cohort, the health effects were related to hormesis and adaptive response as well as radiation damage accumulation effect of low-dose ionization radiation. Females were the sensitive group to suffer adverse effects, while blood indexes were the sensitive indexes for monitoring radiation exposure. (authors)

  2. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  3. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Sorimachi, Masami

    2010-02-01

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  4. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    radiation . 3.6.1 Ionizing Radiation Damage. Some of the ROS’ discussed in Section 3.3 cause indirect damage to the spore’s DNA. They can produce... ionizing radiation damage has focused on the effects of charged particles in their tracks. The charged particles create radiation - induced products and...3.8.1 Reaction-Diffusion of ROS Within the Spore. A demonstrative scenario will be explored in order to simulate the indirect effects of ionizing

  5. Effect of dihydroxyanthraquinone (DHAQ) and radiation on the survival of cultured Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Kimler, B.F.

    1983-01-01

    Dihydroxyanthraquinone (DHAQ) is currently being tested as a cancer chemotherapeutic agent because of its structural similarity to Adriamycin (ADR) and other DNA-intercalating antibiotics. The interaction of DHAQ and ionizing radiation on the induction of cell lethality was investigated in Chinese hamster ovary cells in culture. In asynchronous populations of cells, DHAQ produced a slight enhancement of radiation-induced cell lethality as evidenced by changes in both shoulder and slope of the radiation dose-survival curves. However, DHAQ had no effect on either the extent or time course of recovery from sublethal radiation damage. In synchronous populations of cells treated at various times before or after selection in mitosis, the combination of DHAQ and radiation produced greater cell killing than that predicted based on simple additivity of effect, with a decided enhancement for cells treated during S phase. These results indicate that DHAQ is similar to other DNA-intercalating antibiotics in regard to the interaction with ionizing radiation to produce cell lethality

  6. Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    1979-01-01

    The last day of March 1978 marked the completion of the first 3 years of operation of the Radiation Effects Research Foundation in Hiroshima and Nagasaki. RERF was established on 1 April 1975 as successor to the Atomic Bomb Casualty Commission which had been in continuous operation since 1947. This record of the first 3 years of operation consists of selected reports and other documents prepared in the course of conducting the business of RERF and includes a brief history, a late radiation effects that might be conducted at RERF. The wisdom and thought given to the research program and its operation by the Scientific Council and the Board of Directors is reflected in the minutes of their meetings which are included in the Appendix. (Mori, K.)

  7. Non-destructive testing and radiation in industry

    International Nuclear Information System (INIS)

    Woodford, C; Ashby, P.

    2001-01-01

    Non-destructive testing (NDT) is a little known discipline which uses non-invasive and passive techniques to investigate the condition of materials and structures. Some of these techniques employ the use of radioisotopes. The penetrating radiations produced by these materials are applied in various ways to obtain the required information. This presentation is an overview of the application of radioisotopes within the scope of NDT. Notwithstanding the well established use of traditional materials, new forms of radioisotopes are being developed which will extend their capabilities

  8. Combined effect of gamma radiation and some plant extracts on spodoptera littoralis

    International Nuclear Information System (INIS)

    Ibrahim, R.S.H.

    2012-01-01

    The present investigation was carried out to study the effects of exposure of male full-grown pupae of the cotton leaf worm Spodoptera littoralis to sub sterilizing doses of gamma radiation (100,150 or 300 Gy), treating larval diet with different concentrations of Terminalia arjuna , Erythrine caffra, Taxodium distichum or Melaleuca cajuputi plant extracts on certain biological aspects of the parental (P 1 ),F 1 generation and combined effect of Taxodium distichum(1.25 ethanol , 2.5% water extracts) and 100 Gy of gamma radiation on also, the certain biological aspects of the parental (P 1 ) and first filial (F 1 ) generations. The biological aspects included the effect on fecundity, egg hatchability, mating ability, and malformation, beside larval survival until adult emergence and sex ratio of the produced adult at different mating crosses between treated and untreated or treated other sex. Special attention was given to inherited sterility of treated male. In addition, the studies also explained the effect of gamma radiation and different concentration of plant extracts of Taxodium disticum and combined effect of both on three tested enzymes (TOC,TAC and Cytochrom p 450 ) . In addition the effect of them on the free testosterone .Using radiation in combination with Taxodium disticum gave synergistic effect by decreasing the activity of these enzymes among F 1 adult male.This means that these treatments also interfered in the functions of these enzymes and hormone.

  9. Biological Effects of Interaction between Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Kyung Man; Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2009-05-15

    The organisms are exposed to natural radiations from cosmic or terrestrial origins. Radiation is known to cause cell death, mainly due to its ability to produce reactive oxygen species in cells. The combined action between radiation and various chemicals is a distinguishing feature of modern life. Mercury chloride is a widespread environmental pollutant that is known to have toxic effects. Synergistic effects of radiation and HgCl{sub 2} on human cells was previously reported. NAC is a well-known sulfhydryl-containing antioxidant whose role in radioprotection has been explored in several studies. There has been an increasing interest of studying the role of NAC as a radioprotective substance. The present study was designed not only to assess the synergistic effects between radiation and HgCl{sub 2}, but also to investigate protective effects of NAC on cells.

  10. Fusion-relevant basic radiation effects: theory and experiment

    International Nuclear Information System (INIS)

    Mansur, L.K.; Coghlan, W.A.; Farrell, K.; Horton, L.L.; Lee, E.H.; Lewis, M.B.; Packan, N.H.

    1983-01-01

    A summary is given of results of the basic radiation effects program at Oak Ridge National Laboratory, which are relevant to fusion reactor materials applications. The basic radiation effects program at ORNL is a large effort with the dual objectives of understanding the atomic and microstructural defect mechanisms underlying radiation effects and of determining principles for the design of radiation resistant materials. A strength of this effort is the parallel and integrated experimental and theoretical approaches in each major research area. The experimental effort is active in electron microscopy, ion irradiations and ion-beam techniques, neutron irradiations, surface analysis and in other areas. The theoretical effort is active in developing the theory of radiation effects for a broad range of phenomena and in applying it to the design and interpretation of experiments and to alloy design

  11. Evaluation of effects of ionizing radiation on materials used in dental restorations

    International Nuclear Information System (INIS)

    Maio, Mireia Florencio

    2009-01-01

    This work consisted of quantitative studies of the effects caused by ionizing radiation on materials used in dental restorations (Titanium, Amalgam, Resin Composite and Glass Ionomer) aiming the deleterious effects of radiotherapy when patients with tumors in head and neck, arising when the teeth are restored within in the field of radiation. Samples were submitted to X-ray beams of 6 MV from a linear accelerator, VARIAN 2100C model. The samples were analyzed by X-ray fluorescence techniques to compare the chemical composition before and after the irradiation. The sample were submitted to Geiger-Mueller detectors and the ionization chambers in order to verify any residual radiation in the samples. The samples were also analyzed by gamma spectrometry by a Germanium detector. These tests were performed to determine small changes in the composition in the samples due to the radiation interaction. The results of this study may encourage the development of new research for alternative materials in dental restorations that can contribute to improve the quality of life of those patients with tumors of the mouth. (author)

  12. Radiation and man - evaluation of biological and environmental low level radiation effects

    International Nuclear Information System (INIS)

    Riklis, E.

    1977-01-01

    The harmful effects of acute radiation cannot be resolved by statistical means and require clearer knowledge of mechanisms of action and much wider collection of human experience before any definite sound stand can be taken. Much information has accumulated from animal experiments, and still the interpretations are not always clearcut, but for human experience it is only the occasional accident which can give a direct answer. Some of the phenomena attributed to low dose radiation are summarized. There are regions of radiation exposure about which we have only limited positive knowledge, an all low-dose risk estimates have been based on effects observed at relatively high doses. Much information has been gathered which does not support the severity of former basic principles, especially our knowledge of mechanisms of repair existing in most cells as natural defence against the damages caused by radiation as well as by many chemicals which act as mutagenic and carcinogenic agents. Understanding these mechanism, their scope of action and their availability to a damaged cell and organism will lead towards modification of the acceptable permissible exposures, in some cases towards severity, but in most cases towards leniency and higher values. For the evaluation of the effects of low level low dose-rate radiations, whether external, or from internal deposition of isotopes, only late somatic and genetic effects should be considered. (B.G.)

  13. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    Science.gov (United States)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http

  14. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  15. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Salomaa, S.

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  16. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  17. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  18. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    The mutagenic effects of ionising radiation on germ cells with resulting genetic abnormalities in subsequent generations, are considered. Having examined a simple model to explain the interaction of ionising radiation with genetic material and discussed its limitations, the methods whereby mutations are transmitted are discussed. Methods of estimating genetic risks and the results of such studies are examined. (U.K.)

  19. Radiation-effects state of the art 1965-1966

    Energy Technology Data Exchange (ETDEWEB)

    Hamman, D.J.; Drennan, J.E.; Veazie, W.H.; Shober, F.R.; Leach, E.R.

    1966-06-30

    Developments in the field of radiation effects on electronic components including semiconductors, polymetric materials, lubricants, flotation fluids, hydraulic fluids, structural metals and alloys, ceramics, space radiation environment, dosimetry, and ceramic and metallic fuel materials are reviewed. Programs currently being conducted in radiation effects are briefly given for each section of the report.

  20. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    International Nuclear Information System (INIS)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-01-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO 2 , H 2 O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame. - Highlights: • A Monte Carlo–based nongray radiation solver is developed to study effects of radiation. • Radiation alters the lift-off height, and the distribution of temperature andspecies for the target flame. • Radiation alters the heat transfer mechanism of medium