WorldWideScience

Sample records for radiation dose comparison

  1. Comparison of environmental radiation doses estimated for Hanford Operations, 1977 through 1982

    International Nuclear Information System (INIS)

    McCormack, W.D.; Carlile, J.M.V.; Peloquin, R.A.; Napier, B.A.

    1983-12-01

    Offsite environmental radiation dose equivalents based on Hanford operations are compared for the years 1977 through 1981 to those calculated for 1982. The comparison revealed a downward trend in calculated offsite doses over the period 1977 through 1982, due primarily to reported reduced effluent releases, changes in effluent reporting methods, and increased Columbia River flow over this period. The calculated doses verify the surveillance program findings that potential offsite radiation doses due to Hanford Operations are small and well below our ability to detect in the environment. 11 references, 23 tables

  2. Comparison and application study on cosmic radiation dose calculation received by air crew

    International Nuclear Information System (INIS)

    Zhou Qiang; Xu Cuihua; Ren Tianshan; Li Wenhong; Zhang Jing; Lu Xu

    2009-01-01

    Objective: To facilitate evaluation on Cosmic radiation dose received by flight crew by developing a convenient and effective measuring method. Methods: In comparison with several commonly used evaluating methods, this research employs CARI-6 software issued by FAA (Federal Aviation Administration) to measure Cosmic radiation dose for flight crew members exposed to. Results: Compared with other methods, CARI-6 is capable of providing reliable calculating results on radiation dose and applicable to all flight crew of different airlines. Conclusion: Cosmic radiation received by flight crew is on the list of occupational radiation. For a smooth running of Standards for controlling exposure to cosmic radiation of air crew, CARI software may be a widely applied tool in radiation close estimation of for flight crew. (authors)

  3. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized...... by the Bureau International des Poids et Mesures, who also participated at the lowest dose level using their radiotherapy-level standard for the same quantity. The national standards are in general agreement within the standard uncertainties, which are in the range from 1 to 2 parts in 102. Evidence of a dose...

  4. [Comparison of dose calculation algorithms in stereotactic radiation therapy in lung].

    Science.gov (United States)

    Tomiyama, Yuki; Araki, Fujio; Kanetake, Nagisa; Shimohigashi, Yoshinobu; Tominaga, Hirofumi; Sakata, Jyunichi; Oono, Takeshi; Kouno, Tomohiro; Hioki, Kazunari

    2013-06-01

    Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.

  5. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    Science.gov (United States)

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  6. On dose distribution comparison

    International Nuclear Information System (INIS)

    Jiang, Steve B; Sharp, Greg C; Neicu, Toni; Berbeco, Ross I; Flampouri, Stella; Bortfeld, Thomas

    2006-01-01

    In radiotherapy practice, one often needs to compare two dose distributions. Especially with the wide clinical implementation of intensity-modulated radiation therapy, software tools for quantitative dose (or fluence) distribution comparison are required for patient-specific quality assurance. Dose distribution comparison is not a trivial task since it has to be performed in both dose and spatial domains in order to be clinically relevant. Each of the existing comparison methods has its own strengths and weaknesses and there is room for improvement. In this work, we developed a general framework for comparing dose distributions. Using a new concept called maximum allowed dose difference (MADD), the comparison in both dose and spatial domains can be performed entirely in the dose domain. Formulae for calculating MADD values for various comparison methods, such as composite analysis and gamma index, have been derived. For convenience in clinical practice, a new measure called normalized dose difference (NDD) has also been proposed, which is the dose difference at a point scaled by the ratio of MADD to the predetermined dose acceptance tolerance. Unlike the simple dose difference test, NDD works in both low and high dose gradient regions because it considers both dose and spatial acceptance tolerances through MADD. The new method has been applied to a test case and a clinical example. It was found that the new method combines the merits of the existing methods (accurate, simple, clinically intuitive and insensitive to dose grid size) and can easily be implemented into any dose/intensity comparison tool

  7. Comparison of the standards for absorbed dose to water of the ARPANSA and the BIPM for 60Co γ radiation

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Boas, J.F.; Huntley, R.B.; Wise, K.N.

    2000-10-01

    A comparison of the standards for absorbed dose to water of the Australian Radiation Protection and Nuclear Safety Agency and of the Bureau International des Poids et Mesures (BIPM) has been carried out in 60 Co gamma radiation. The Australian standard is based on a graphite calorimeter and the subsequent conversion from absorbed dose to graphite to absorbed dose to water using the photon fluence scaling theorem. The BIPM standard is ionometric using a graphite-walled cavity ionization chamber. The comparison result is 1.0024 (standard uncertainty 0.0029). (authors)

  8. Comparison of radiation doses using weight-based protocol and dose modulation techniques for patients undergoing biphasic abdominal computed tomography examinations

    Directory of Open Access Journals (Sweden)

    Livingstone Roshan

    2009-01-01

    Full Text Available Computed tomography (CT of the abdomen contributes a substantial amount of man-made radiation dose to patients and use of this modality is on the increase. This study intends to compare radiation dose and image quality using dose modulation techniques and weight- based protocol exposure parameters for biphasic abdominal CT. Using a six-slice CT scanner, a prospective study of 426 patients who underwent abdominal CT examinations was performed. Constant tube potentials of 90 kV and 120 kV were used for all arterial and portal venous phase respectively. The tube current-time product for weight-based protocol was optimized according to patient′s body weight; this was automatically selected in dose modulations. The effective dose using weight-based protocol, angular and z-axis dose modulation was 11.3 mSv, 9.5 mSv and 8.2 mSv respectively for the patient′s body weight ranging from 40 to 60 kg. For patients of body weights ranging 60 to 80 kg, the effective doses were 13.2 mSv, 11.2 mSv and 10.6 mSv respectively. The use of dose modulation technique resulted in a reduction of 16 to 28% in radiation dose with acceptable diagnostic accuracy in comparison to the use of weight-based protocol settings.

  9. A comparison of two dose calculation algorithms-anisotropic analytical algorithm and Acuros XB-for radiation therapy planning of canine intranasal tumors.

    Science.gov (United States)

    Nagata, Koichi; Pethel, Timothy D

    2017-07-01

    Although anisotropic analytical algorithm (AAA) and Acuros XB (AXB) are both radiation dose calculation algorithms that take into account the heterogeneity within the radiation field, Acuros XB is inherently more accurate. The purpose of this retrospective method comparison study was to compare them and evaluate the dose discrepancy within the planning target volume (PTV). Radiation therapy (RT) plans of 11 dogs with intranasal tumors treated by radiation therapy at the University of Georgia were evaluated. All dogs were planned for intensity-modulated radiation therapy using nine coplanar X-ray beams that were equally spaced, then dose calculated with anisotropic analytical algorithm. The same plan with the same monitor units was then recalculated using Acuros XB for comparisons. Each dog's planning target volume was separated into air, bone, and tissue and evaluated. The mean dose to the planning target volume estimated by Acuros XB was 1.3% lower. It was 1.4% higher for air, 3.7% lower for bone, and 0.9% lower for tissue. The volume of planning target volume covered by the prescribed dose decreased by 21% when Acuros XB was used due to increased dose heterogeneity within the planning target volume. Anisotropic analytical algorithm relatively underestimates the dose heterogeneity and relatively overestimates the dose to the bone and tissue within the planning target volume for the radiation therapy planning of canine intranasal tumors. This can be clinically significant especially if the tumor cells are present within the bone, because it may result in relative underdosing of the tumor. © 2017 American College of Veterinary Radiology.

  10. Comparison of the dose-effect relationship for UV radiation and ionizing radiation

    International Nuclear Information System (INIS)

    Leenhouts, H.P.; Sijsma, M.J.; Chadwick, K.H.

    1990-06-01

    Ionizing radiation and ultraviolet radiation (UV) are both physical agents with mutagenic and carcinogenic properties. However, there are some basic differences in the fundamental mechanism of their interaction with biological material that may have consequences for risk assessment. In this paper the dose-effect relationships for gamma radiation and UV at cellular level will be used to demonstrate the different radio-biological effectiveness of both agents. The results will be discussed in the framework of a biophysical model, based on the assumption that DNA doublestranded lesions are crucial for the cytotoxic action. After exposure to ionizing radiation, the lesions are fixed immediately following irradiation, but after UV exposure the lethal lesions are recognized only in the next DNA synthesis phase. The combination of this concept with the mechanism of lesion induction and the possibility of repair, leads to different dose and time relationships for the radiation effects of both agents. The possible consequences for risk assessment at low levels will be discussed. (author). 9 refs.; 5 figs

  11. Full-field digital mammography versus computed radiology mammography: comparison in image quality and radiation dose

    International Nuclear Information System (INIS)

    Zhao Yongxia; Song Shaojuan; Liu Chuanya; Qi Hengtao; Qin Weichang

    2008-01-01

    Objective: To investigate the differences in image quality and radiation dose between full- field digital mammography (FFDM) system and compute radiology mammography (CRM) system. Methods: The ALVIM mammographic phantom was exposed by FFDM system with automatic exposure control (AEC) and then exposed by CRM system with the unique imaging plank on the same condition. The FFDM system applied the same kV value and the different mAs values (14, 16, 18, 22 and 24 mAs), and the emission skin dose (ESD) and the average gland dose (AGD) were recorded for the above-mentioned exposure factors. All images were read by five experienced radiologists under the same condition and judged based on 5-point scales. And then receive operating characteristic (ROC) curve was drawn and the probability (P det ) values were calculated. The data were statistically processed with ANOVA. Results: The P det values of calcifications and lesion lump were higher with FFDM system than with CRM system at the same dose (1.36 mGy). Especially, for microcalcifications and lesion lump, the largest difference of the P det value was 0.215, and that of lesion lump was 0.245. In comparison with CRM system, the radiation dose of FFDM system could be reduced at the same P det value. The ESD value was reduced by 26%, and the ACD value was reduced by 41%. When the mAs value exceed AEC value, the P det value almost had no change, though the radiation dose was increased. Conclusions: The detection rates of microcalcifications and lesion lump with FFDM system are proven to be superior to CRM system at the same dose. The radiation dose of FFDM system was less than CRM system for the same image quality. (authors)

  12. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  13. Comparison of occupational radiation dose exposures in nuclear medicine and PET

    International Nuclear Information System (INIS)

    White, S.A.; Binns, D.S.; Johnston, V.K.; Fawcett, M.F.; Greer, B.; Hicks, R.J.

    1999-01-01

    Full text: With the increasing use of high-dose 64 Ga, 201 TI and 18 F-fluorodeoxyglucose (FDG) PET for scanning in oncology in our centre, a radiation dose survey was performed to determine the impact on staff exposure in a multi-modality department. This study was set up in part to counter 'radio-phobia' (the fear of working with radioactive patients) in allied health professionals. The patients were measured using a hand-held radiation monitor at various distances and times which replicate typical patient contact scenarios in the Diagnostic Imaging Department. An average exposure rate per hour was calculated and thus the relative radiation hazard was determined for staff who will interact with the patient outside of the hot laboratory. We present our findings from the survey and the implications these have on staff radiation exposure. In conclusion, these data suggest that emerging oncologic techniques such as PET, high-dose 67 Ga and high-dose 201 Tl do not represent a significantly greater occupational radiation hazard than conventional nuclear medicine procedures

  14. Patient radiation dose in conventional and xerographic cephalography

    International Nuclear Information System (INIS)

    Copley, R.L.; Glaze, S.A.; Bushong, S.C.; West, D.C.

    1979-01-01

    A comparison of the radiation doses for xeroradiographic and conventional film screen cephalography was made. Alderson tissue-equivalent phantoms were used for patient simulation. An optimum technique in terms of patient dose and image quality indicated that the dose for the Xerox process ranged from five to eleven times greater than that for the conventional process for entrance and exit exposures, respectively. This dose, however, falls within an acceptable range for other dental and medical radiation doses. It is recommended that conventional cephalography be used for routine purposes and that xeroradiography be reserved for situations requiring the increased image quality that the process affords

  15. Effective radiation dose from semicoronal CT of the sacroiliac joints in comparison with axial CT and conventional radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jurik, Anne Grethe; Boecker Puhakka, Katriina [Department of Radiology R, Aarhus University Hospital, Aarhus Kommunehospital, Noerrebrogade 44, 8000 Aarhus C (Denmark); Hansen, Jolanta [Department of Medical Physics, Aarhus University Hospital, Aarhus Kommunehospital, Noerrebrogade 44, 8000 Aarhus C (Denmark)

    2002-11-01

    The aim of this study was to evaluate the radiation dose given by semicoronal CT of the sacroiliac joints (SIJs) in comparison with axial CT and conventional radiography. The total effective radiation doses given by serial contiguous semicoronal and axial CT, using 5-mm slices, 120 kV and 330 mAs, were determined by measurement of organ doses using an anthropomorphic Rando Alderson phantom paced with thermoluminescence dosimeters. The doses given by conventional antero-posterior (AP) and oblique projections of the SIJs were determined similarly. In a female the total effective dose by semicoronal CT was found to be more than six times lower than by axial CT and 2.5 times lower than the dose use to obtain a conventional AP radiograph, the values being 102, 678, and 255 {mu}Sv, respectively. The effective dose by semicoronal CT was only a little higher than the dose given to obtain two oblique radiographs. In a male with lead protection of the gonads the dose by semicoronal CT was four times lower than by axial CT, but higher than by conventional radiography. In conclusion, the effective dose by semicoronal CT of the SIJs is lower than by axial CT, and in females a semicoronal CT implies a lower effective radiation dose that used to obtain an AP radiograph. (orig.)

  16. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Yerramasu, Ajay; Venuraju, Shreenidhi; Atwal, Satvir; Goodman, Dennis; Lipkin, David; Lahiri, Avijit

    2012-01-01

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  17. Radiation doses in pediatric radiology: influence of regulations and standards

    International Nuclear Information System (INIS)

    Suleiman, O.H.

    2004-01-01

    The benefits of X-ray examinations contribute to the quality of modern medicine; however the risk of using X-rays, a carcinogen, has always been a concern. This concern is heightened for pediatric patients, who have a much greater sensitivity to the carcinogenic effects of radiation than adults. The principle of as low as reasonably achievable, or ALARA, is essential for minimizing the radiation dose patients receive, especially for pediatric patients. In order to keep radiation doses ALARA, one must know the dose patients receive. The determination of radiation dose in a standard way is therefore necessary so that these doses can be compared with practice, and for meaningful comparison against voluntary standards. In extreme situations, where public health needs may require mandatory standards, or regulations, the quantitative measurement and calculation of radiation dose becomes essential. How some radiation dose metrics and standards have evolved, including the value of different metrics such as entrance air kerma, organ dose, and effective dose will be presented. Recent pediatric X-ray studies, whether or not dedicated pediatric equipment is necessary, and recent initiatives by the Food and Drug Administration for pediatric population will be discussed. (orig.)

  18. Late effects of low-dose ionizing radiation on man

    International Nuclear Information System (INIS)

    Brilliant, M.D.; Vorob'ev, A.I.; Gogin, E.E.

    1987-01-01

    One of the most important problems, being stated before the medicine by the accident, which took place in Chernobyl in 1986- the problem of the so-called ionizing radiation low dose effect on a man's organism, is considered because a lot of people were subjected to low dose action. The concept of low doses of radiaion action and specificity of its immediate action in comparison with high dose action is considered. One of the most important poit while studying low dose action is the necessity to develop a system including all irradiated people and dosimetry, and espicially to study frequencies and periods of tumor appearance in different irradiated tissues. The results obtained when examining people who survived the atomic explosion in Japan and on the Marshall islands are analyzed. They testify to the fact that radiation affets more tissues than the clinical picture about the acute radiation sickness tells, and that tumors developing in them many years after radiation action tell about radiosensitivity in some tissues

  19. Estimation of radiation dose received by the victims in a Chinese radiation accident

    International Nuclear Information System (INIS)

    Zhang, Liangan; Xu, Zhiyong; Jia, Delin; Dai, Guangfu

    2002-01-01

    In April 1999, a radiation accident happened in Henan province, China. In this accident, A 60 Co ex-service therapy radiation source was purchased by a waster purchase company, then some persons break the lead pot and taken out the stainless steel drawer with the radiation source, then sell the drawer to another small company, and the buyer reserved the drawer in his bed room until all of his family members shoot their cookies. During the event, seven persons received overdose exposure, the dose rang is about 1.0 - 6.0Gy, especially, all of the buyer family members meet with bad radiation damage. In order to assess the accident consequences and cure the patients of the bad radiation damage, it is necessary to estimate the doses of the Victims in the accident. In the dose reconstruction of the accident victims, we adopted biologic dose method, experiment-simulating method with an anthropomorphic phantom, and theory simulating method with Monte Carlo to estimate the doses of the victims. In this paper, the frame of the accident and the Monte Carlo method in our work will be described, the main dose results of the three methods mentioned above will be reported and a comparison analysis will be presented

  20. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Czech Academy of Sciences Publication Activity Database

    Meier, M.; Trompier, F.; Ambrožová, Iva; Kubančák, Ján; Matthia, D.; Ploc, Ondřej; Santen, N.; Wirtz, M.

    2016-01-01

    Roč. 6, MAY (2016), A24 ISSN 2115-7251 Institutional support: RVO:61389005 Keywords : aviation * radiation exposure of aircrew * comparison of radiation detectors * galactic cosmic radiation * ambient dose equivalent Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.446, year: 2016

  1. A comparison of Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation.

    Science.gov (United States)

    Shortt, K R; Huntley, R B; Kotler, L H; Boas, J F; Webb, D V

    2006-06-01

    Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation have been compared using transfer standard ionization chambers of types NE 2561 and NE 2611A. Whilst the primary standards of air kerma are similar, both being thick-walled graphite cavity chambers but employing different methods to evaluate the Awall correction, the primary standards of absorbed dose to water are quite different. The Australian standard is based on measurements made with a graphite calorimeter, whereas the Canadian standard uses a sealed water calorimeter. The comparison result, expressed as a ratio of calibration coefficients R=N(ARPANSA)/N(NRC), is 1.0006 with a combined standard uncertainty of 0.35% for the air kerma standards and 1.0052 with a combined standard uncertainty of 0.47% for the absorbed dose to water standards. This demonstrates the agreement of the Australian and Canadian radiation dosimetry standards. The results are also consistent with independent comparisons of each laboratory with the BIPM reference standards. A 'trilateral' analysis confirms the present determination of the relationship between the standards, within the 0.09% random component of the combined standard uncertainty for the three comparisons.

  2. Radiation dose of digital tomosynthesis for sinonasal examination: comparison with multi-detector CT.

    Science.gov (United States)

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Numano, Tomokazu; Abe, Shinji; Sabol, John M; Suzuki, Shigeru; Ueno, Eiko

    2012-06-01

    Using an anthropomorphic phantom, we have investigated the feasibility of digital tomosynthesis (DT) of flat-panel detector (FPD) radiography to reduce radiation dose for sinonasal examination compared to multi-detector computed tomography (MDCT). A female Rando phantom was scanned covering frontal to maxillary sinus using the clinically routine protocol by both 64-detector CT (120 kV, 200 mAs, and 1.375-pitch) and DT radiography (80 kV, 1.0 mAs per projection, 60 projections, 40° sweep, and posterior-anterior projections). Glass dosimeters were used to measure the radiation dose to internal organs including the thyroid gland, brain, submandibular gland, and the surface dose at various sites including the eyes during those scans. We compared the radiation dose to those anatomies between both modalities. In DT radiography, the doses of the thyroid gland, brain, submandibular gland, skin, and eyes were 230 ± 90 μGy, 1770 ± 560 μGy, 1400 ± 80 μGy, 1160 ± 2100 μGy, and 112 ± 6 μGy, respectively. These doses were reduced to approximately 1/5, 1/8, 1/12, 1/17, and 1/290 of the respective MDCT dose. For sinonasal examinations, DT radiography enables dramatic reduction in radiation exposure and dose to the head and neck region, particularly to the lens of the eye. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will causes damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 , displacement damage in silicon in terms of 1-MeV(Si) equivalent neutron fluence and fluence of thermal neutrons at several locations in ATLAS detector. In this paper design of the system, results of measurements and comparison of measured integrated doses and fluences with predictions from FLUKA simulation will be shown.

  4. Comparison of radiation doses obtained for radiation monitoring of controlled areas with radiation doses obtained for personnel dosimetry in radiodiagnosis centers

    International Nuclear Information System (INIS)

    Lescano, Roberto; Caspani, Carlos; Universidad Nacional del Litoral, Santa Fe

    2001-01-01

    In this paper we propose to search an indicator that shows, at an objective way, the quality of the radioprotection actions. The method is about to determine doses, measured in the work area, connecting them with the workload, and finally get the dose for the center. Them we make a comparison with the personal film dosimetry data. We discuss the final results, evaluating the radioprotection conditions in daily work. (author)

  5. Aircraft crew radiation workplaces: Comparison of measured and calculated ambient dose equivalent rate data using the EURADOS in-flight radiation data base

    International Nuclear Information System (INIS)

    Beck, P.; Bartlett, D.; Lindborg, L.; McAulay, I.; Schnuer, K.; Schraube, H.; Spurny, F.

    2006-01-01

    In May 2000, the chairman of the European Radiation Dosimetry Group (EURADOS) invited a number of experts with experience of cosmic radiation dosimetry to form a working group (WG 5) on aircraft crew dosimetry. Three observers from the Article 31 Group of Experts as well as one observer from the Joint Aviation Authorities (JAA) were also appointed. The European Commission funded the meetings. Full meetings were organised in January 2001 and in November 2001. An editorial group, who are the authors of this publication, started late in 2002 to finalise a draft report, which was submitted to the Article 31 Group of Experts in June 2003. The methods and data reported are the product of the work of 26 research institutes from the EU, USA and Canada. Some of the work was supported by contracts with the European Commission, Directorate General XII, Science, Research and Development. A first overview of the EC report was published late in 2004. In this publication we focus on a comparison of measured and calculated ambient dose rate data using the EURADOS In-Flight Data Base. The evaluation of results obtained by different methods and groups, and comparison of measurement results and the results of calculations were performed in terms of the operational quantity ambient dose equivalent, H*(10). Aspects of measurement uncertainty are reported also. The paper discusses the estimation of annual doses for given flight hours and gives an outline of further research needed in the field of aircraft crew dosimetry, such as the influence of solar particle events. (authors)

  6. A Novel Pairwise Comparison-Based Method to Determine Radiation Dose Reduction Potentials of Iterative Reconstruction Algorithms, Exemplified Through Circle of Willis Computed Tomography Angiography.

    Science.gov (United States)

    Ellmann, Stephan; Kammerer, Ferdinand; Brand, Michael; Allmendinger, Thomas; May, Matthias S; Uder, Michael; Lell, Michael M; Kramer, Manuel

    2016-05-01

    The aim of this study was to determine the dose reduction potential of iterative reconstruction (IR) algorithms in computed tomography angiography (CTA) of the circle of Willis using a novel method of evaluating the quality of radiation dose-reduced images. This study relied on ReconCT, a proprietary reconstruction software that allows simulating CT scans acquired with reduced radiation dose based on the raw data of true scans. To evaluate the performance of ReconCT in this regard, a phantom study was performed to compare the image noise of true and simulated scans within simulated vessels of a head phantom. That followed, 10 patients scheduled for CTA of the circle of Willis were scanned according to our institute's standard protocol (100 kV, 145 reference mAs). Subsequently, CTA images of these patients were reconstructed as either a full-dose weighted filtered back projection or with radiation dose reductions down to 10% of the full-dose level and Sinogram-Affirmed Iterative Reconstruction (SAFIRE) with either strength 3 or 5. Images were marked with arrows pointing on vessels of different sizes, and image pairs were presented to observers. Five readers assessed image quality with 2-alternative forced choice comparisons. In the phantom study, no significant differences were observed between the noise levels of simulated and true scans in filtered back projection, SAFIRE 3, and SAFIRE 5 reconstructions.The dose reduction potential for patient scans showed a strong dependence on IR strength as well as on the size of the vessel of interest. Thus, the potential radiation dose reductions ranged from 84.4% for the evaluation of great vessels reconstructed with SAFIRE 5 to 40.9% for the evaluation of small vessels reconstructed with SAFIRE 3. This study provides a novel image quality evaluation method based on 2-alternative forced choice comparisons. In CTA of the circle of Willis, higher IR strengths and greater vessel sizes allowed higher degrees of radiation dose

  7. Dose and Fractionation in Radiation Therapy of Curative Intent for Non-Small Cell Lung Cancer: Meta-Analysis of Randomized Trials

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, Johanna; Cutter, David J.; Darby, Sarah C. [Nuffield Department of Population Health, University of Oxford, Oxford, Oxfordshire (United Kingdom); Higgins, Geoff S. [Department of Oncology, University of Oxford, Oxford, Oxfordshire (United Kingdom); McGale, Paul [Nuffield Department of Population Health, University of Oxford, Oxford, Oxfordshire (United Kingdom); Partridge, Mike [CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, Oxfordshire (United Kingdom); Taylor, Carolyn W., E-mail: carolyn.taylor@ndph.ox.ac.uk [Nuffield Department of Population Health, University of Oxford, Oxford, Oxfordshire (United Kingdom)

    2016-11-15

    Purpose: The optimum dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer remains uncertain. We undertook a published data meta-analysis of randomized trials to examine whether radiation therapy regimens with higher time-corrected biologically equivalent doses resulted in longer survival, either when given alone or when given with chemotherapy. Methods and Materials: Eligible studies were randomized comparisons of 2 or more radiation therapy regimens, with other treatments identical. Median survival ratios were calculated for each comparison and pooled. Results: 3795 patients in 25 randomized comparisons of radiation therapy dose were studied. The median survival ratio, higher versus lower corrected dose, was 1.13 (95% confidence interval [CI] 1.04-1.22) when radiation therapy was given alone and 0.83 (95% CI 0.71-0.97) when it was given with concurrent chemotherapy (P for difference=.001). In comparisons of radiation therapy given alone, the survival benefit increased with increasing dose difference between randomized treatment arms (P for trend=.004). The benefit increased with increasing dose in the lower-dose arm (P for trend=.01) without reaching a level beyond which no further survival benefit was achieved. The survival benefit did not differ significantly between randomized comparisons where the higher-dose arm was hyperfractionated and those where it was not. There was heterogeneity in the median survival ratio by geographic region (P<.001), average age at randomization (P<.001), and year trial started (P for trend=.004), but not for proportion of patients with squamous cell carcinoma (P=.2). Conclusions: In trials with concurrent chemotherapy, higher radiation therapy doses resulted in poorer survival, possibly caused, at least in part, by high levels of toxicity. Where radiation therapy was given without chemotherapy, progressively higher radiation therapy doses resulted in progressively longer survival, and no

  8. Dose and Fractionation in Radiation Therapy of Curative Intent for Non-Small Cell Lung Cancer: Meta-Analysis of Randomized Trials

    International Nuclear Information System (INIS)

    Ramroth, Johanna; Cutter, David J.; Darby, Sarah C.; Higgins, Geoff S.; McGale, Paul; Partridge, Mike; Taylor, Carolyn W.

    2016-01-01

    Purpose: The optimum dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer remains uncertain. We undertook a published data meta-analysis of randomized trials to examine whether radiation therapy regimens with higher time-corrected biologically equivalent doses resulted in longer survival, either when given alone or when given with chemotherapy. Methods and Materials: Eligible studies were randomized comparisons of 2 or more radiation therapy regimens, with other treatments identical. Median survival ratios were calculated for each comparison and pooled. Results: 3795 patients in 25 randomized comparisons of radiation therapy dose were studied. The median survival ratio, higher versus lower corrected dose, was 1.13 (95% confidence interval [CI] 1.04-1.22) when radiation therapy was given alone and 0.83 (95% CI 0.71-0.97) when it was given with concurrent chemotherapy (P for difference=.001). In comparisons of radiation therapy given alone, the survival benefit increased with increasing dose difference between randomized treatment arms (P for trend=.004). The benefit increased with increasing dose in the lower-dose arm (P for trend=.01) without reaching a level beyond which no further survival benefit was achieved. The survival benefit did not differ significantly between randomized comparisons where the higher-dose arm was hyperfractionated and those where it was not. There was heterogeneity in the median survival ratio by geographic region (P<.001), average age at randomization (P<.001), and year trial started (P for trend=.004), but not for proportion of patients with squamous cell carcinoma (P=.2). Conclusions: In trials with concurrent chemotherapy, higher radiation therapy doses resulted in poorer survival, possibly caused, at least in part, by high levels of toxicity. Where radiation therapy was given without chemotherapy, progressively higher radiation therapy doses resulted in progressively longer survival, and no

  9. Registration of radiation doses

    International Nuclear Information System (INIS)

    2000-02-01

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  10. Manufacturing of different gel detectors and their calibration for spatial radiation dose measurements

    International Nuclear Information System (INIS)

    Bero, M.

    2008-05-01

    Three types of gel dosemeter have been made and their most important properties for radiation dosimetry were studied. The comparison between the three categories helps to widen knowledge in each of these detectors and to establish a method for the preparation as well as testing of this radiation sensitive materials. Experiments show the technical application possibility for using these gel detectors to measure the spatial radiation dose distribution in the range of doses given for cancer treatment. The experimental results give some important characteristic for the three gel dosemeter used in comparison to that of the traditional dosimetry systems. It also shows the simplicity of manufacturing the dosemeter from low cost materials and its radiation response to ionizing. The relationships between the dosemeter response and the dose rate as well as the radiation energy were also investigated. Important subjects that have been also taken into consideration are the effects of ambient conditions and storage likelihood of the studied materials. Recommendation was made for the use of these materials in practical applications and for handling as well as their long term storage possibility. (author)

  11. Comparison and analysis of BNCT radiation dose between gold wire and JCDS measurement

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, Hiroaki

    2006-01-01

    We compared and evaluated boron neutron capture therapy (BNCT) radiation dose between gold wire measurement and JAERI Computational Dosimetry System (JCDS). Gold wire analysis demonstrates the actual BNCT dose though it dose not reflect the real the maximum and minimum dose in tumor tissue. We can conclude that JCDS is precise and high-reliable dose planning system for BNCT. (author)

  12. Does IMRT increase the peripheral radiation dose? A comparison of treatment plans 2000 and 2010

    International Nuclear Information System (INIS)

    Salz, Henning; Eichner, Regina; Wiezorek, Tilo

    2012-01-01

    It has been reported in several papers and textbooks that IMRT treatments increase the peripheral dose in comparison with non-IMRT fields. But in clinical practice not only open fields have been used in the pre-IMRT era, but also fields with physical wedges or composed fields. The aim of this work is to test the hypothesis of increased peripheral dose when IMRT is used compared to standard conformal radiotherapy. Furthermore, the importance of the measured dose differences in clinical practice is discussed and compared with other new technologies for the cases where an increase of the peripheral dose was observed. For cancers of the head and neck, the cervix, the rectum and for the brain irradiation due to acute leukaemia, one to four plans have been calculated with IMRT or conformal standard technique (non-IMRT). In an anthropomorphic phantom the dose at a distance of 30 cm in cranio-caudal direction from the target edge was measured with TLDs using a linear accelerator Oncor registered (Siemens) for both techniques. IMRT was performed using step-and-shoot technique (7 to 11 beams), non-IMRT plans with different techniques. The results depended on the site of irradiation. For head and neck cancers IMRT resulted in an increase of 0.05 - 0.09% of the prescribed total dose (Dptv) or 40 - 70 mGy (Dptv = 65 Gy), compared to non-IMRT technique without wedges or a decrease of 0.16% (approx. 100 mGy) of the prescribed total dose compared to non-IMRT techniques with wedges. For the cervical cancer IMRT resulted in an increased dose in the periphery (+ 0.07% - 0.15% of Dptv or 30 - 70 mGy at Dptv = 45 Gy), for the rectal cancer in a dose reduction (0.21 - 0.26% of Dptv or 100 - 130 mGy at Dptv = 50 Gy) and for the brain irradiation in an increase dose (+ 0.05% of Dptv = 18 Gy or 9 mSv). In summary IMRT does not uniformly cause increased radiation dose in the periphery in the model used. It can be stated that these dose values are smaller than reported in earlier papers

  13. Measurements of surgeons' exposure to ionizing radiation dose: comparison of conventional and mini C-arm fluoroscopy.

    Science.gov (United States)

    Sung, K H; Min, E; Chung, C Y; Jo, B C; Park, M S; Lee, K

    2016-03-01

    This study was performed to measure the equivalent scattered radiation dose delivered to susceptible organs while simulating orthopaedic surgery using conventional and mini C-arm fluoroscopy. In addition, shielding effects on the thyroid, thymus, and gonad, and the direct exposure delivered to the patient's hands were also compared. A conventional and mini C-arms were installed in an operating room, and a hand and an operator phantom were used to simulate a patient's hand and a surgeon. Photoluminescence dosimeters were used to measure the equivalent dose by scattered radiation arriving at the thyroid, thymus, and gonad on a whole-body phantom in the position of the surgeon. Equivalent scattered radiation doses were measured in four groups: (1) unshielded conventional C-arm group; (2) unshielded mini C-arm group; (3) lead-shielded conventional C-arm group; and (4) lead-shielded mini C-arm group. Equivalent scattered radiation doses to the unshielded group were significantly lower in the mini C-arm group than those in the conventional C-arm group for all organs. The gonad in the lead-shielded conventional C-arm group showed the highest equivalent dose among operator-susceptible organs, and radiation dose was reduced by approximately 96% compared with that in the unshielded group. Scattered radiation was not detected in any susceptible organ in the lead-shielded mini C-arm group. The direct radiation dose to the hand phantom measured from the mini C-arm was significantly lower than that measured from the conventional C-arm. The results show that the equivalent scattered radiation dose to the surgeon's susceptible organs and the direct radiation dose to a patient's hand can be decreased significantly by using a mini C-arm rather than a conventional C-arm. However, protective lead garments, such as a thyroid shield and apron, should be applied to minimize radiation exposure to susceptible organs, even during use of mini C-arm fluoroscopy. © The Author(s) 2015.

  14. Radiation doses to Finns

    International Nuclear Information System (INIS)

    Rantalainen, L.

    1996-01-01

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  15. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  16. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  17. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  18. Comparison of wrist and head TLD doses with whole body TLD doses during high active jobs at RAPS-5 and 6

    International Nuclear Information System (INIS)

    Sharma, Ravi Kant; Abhishek, Neel; Kakkar, Amandeep; Kumar, Rajesh

    2016-01-01

    In nuclear power plant radiation dose monitoring and assessment is done to control the individual dose and station collective doses. While performing a radioactive job on systems or equipment with significant radiation levels of non uniform and beaming radiation; there is potential of localized exposure to extremities hands in particular and lens of the eye in comparison to other body parts. Keeping in view of this, separate equivalent dose limit to the extremities (hands and feet) and lens of the eye are defined by ICRP. A study has been carried out during Biennial Shutdown (BSD) of RAPS-6 in the month of October-2015 to establish the correlation between the doses received by chest TLDs which is being used to estimate the effective whole body dose of the radiation worker and the doses received in wrist TLD and head TLDs which are being used to monitor the equivalent dose received by hands and lens of the eye with applying a suitable correction factor

  19. Radiation doses in interventional neuroradiology

    International Nuclear Information System (INIS)

    Theodorakou, C.; Butler, P.; Horrocks, J.A.

    2001-01-01

    Patient radiation doses during interventional radiology (IR) procedures may reach the thresholds for radiation-induced skin and eye lens injuries. This study investigates the radiation doses received by patients undergoing cerebral embolization. Measurements were conducted using thermoluminescent dosimeters. Radiotherapy verification films were used in order to visualise the radiation field. For each procedure the fluoroscopic and digital dose-area product, the fluoroscopic time, the total number of acquired images and entrance-skin dose calculated by the angiographic unit were recorded. In this paper, the skin, eye and thyroid glands doses on a sample of patients are presented. From a preliminary study of 13 patients having undergone cerebral embolization, it was deduced that six of them have received a dose above 1 Gy. Detailed dose data from patients undergoing IR procedures will be collected in the future with the aim of developing a model to allow estimation of the dose prior to the procedure as well as to look at techniques of dose reduction. (author)

  20. Labour cost of radiation dose

    International Nuclear Information System (INIS)

    Cook, A.; Lockett, L.E.

    1978-01-01

    In order to optimise capital expenditure on measures to protect workers against radiation it would be useful to have a means to measure radiation dose in money terms. Because labour has to be employed to perform radiation work there must be some relationship between the wages paid and the doses received. Where the next increment of radiation dose requires additional labour to be recruited the cost will at least equal the cost of the extra labour employed. This paper examines some of the factors which affect the variability of the labour cost of radiation dose and notes that for 'in-plant' exposures the current cost per rem appears to be significantly higher than values quoted in ICRP Publication 22. An example is given showing how this concept may be used to determine the capital it is worth spending on installed plant to prevent regular increments of radiation dose to workers. (author)

  1. Radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Cohnen, M.; Kemper, J.; Moedder, U.; Moebes, O.; Pawelzik, J.

    2002-01-01

    The aim of this study was to compare radiation exposure in panoramic radiography (PR), dental CT, and digital volume tomography (DVT). An anthropomorphic Alderson-Rando phantom and two anatomical head phantoms with thermoluminescent dosimeters fixed at appropriate locations were exposed as in a dental examination. In PR and DVT, standard parameters were used while variables in CT included mA, pitch, and rotation time. Image noise was assessed in dental CT and DVT. Radiation doses to the skin and internal organs within the primary beam and resulting from scatter radiation were measured and expressed as maximum doses in mGy. For PR, DVT, and CT, these maximum doses were 0.65, 4.2, and 23 mGy. In dose-reduced CT protocols, radiation doses ranged from 10.9 to 6.1 mGy. Effective doses calculated on this basis showed values below 0.1 mSv for PR, DVT, and dose-reduced CT. Image noise was similar in DVT and low-dose CT. As radiation exposure and image noise of DVT is similar to low-dose CT, this imaging technique cannot be recommended as a general alternative to replace PR in dental radiology. (orig.)

  2. Radiation dose reduction in parasinus CT by spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Sedlmair, Martin; Allmendinger, Thomas [Siemens Healthcare GmbH, Forchheim (Germany)

    2017-02-15

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR{sub eye} {sub globe/air} did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  3. Radiation dose reduction in parasinus CT by spectral shaping

    International Nuclear Information System (INIS)

    May, Matthias S.; Brand, Michael; Lell, Michael M.; Uder, Michael; Wuest, Wolfgang; Sedlmair, Martin; Allmendinger, Thomas

    2017-01-01

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR_e_y_e _g_l_o_b_e_/_a_i_r did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality. (orig.)

  4. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  5. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  6. Radiation doses and risks from internal emitters

    International Nuclear Information System (INIS)

    Harrison, John; Day, Philip

    2008-01-01

    This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent and effective dose, and that more attention should be paid to uncertainties in dose and risk estimates and their implications. The new ICRP recommendations provide explanations of the calculation and intended purpose of the protection quantities, but further advice on their use would be helpful. The new recommendations refer to the importance of understanding uncertainties in estimates of dose and risk, although methods for doing this are not suggested. Dose coefficients (Sv per Bq intake) for the inhalation or ingestion of radionuclides are published as reference values without uncertainty. The primary purpose of equivalent and effective dose is to enable the summation of doses from different radionuclides and from external sources for comparison with dose limits, constraints and reference levels that relate to stochastic risks of whole-body radiation exposure. Doses are calculated using defined biokinetic and dosimetric models, including reference anatomical data for the organs and tissues of the human body. Radiation weighting factors are used to adjust for the different effectiveness of different radiation types, per unit absorbed dose (Gy), in causing stochastic effects at low doses and dose rates. Tissue weighting factors are used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, providing a simple set of rounded values chosen on the basis of age- and sex-averaged values of relative detriment. While the definition of absorbed dose has the scientific rigour required of a basic physical quantity

  7. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  8. Enteroclysis and small bowel series: Comparison of radiation dose and examination time

    International Nuclear Information System (INIS)

    Thoeni, R.F.; Gould, R.G.

    1991-01-01

    Respective radiation doses and total examination and fluoroscopy times were compared for 50 patients; 25 underwent enteroclysis and 25 underwent small bowel series with (n = 17) and without (n = 8) an examination of the upper gastrointestinal (GI) tract. For enteroclysis, the mean skin entry radiation dose (12.3 rad [123 mGy]) and mean fluoroscopy time (18.4 minutes) were almost 1 1/2 times greater than those for the small bowel series with examination of the upper GI tract (8.4 rad [84 mGy]; 11.4 minutes) and almost three times greater than those for the small bowel series without upper GI examination (4.6 rad [46 mGy]; 6.3 minutes). However, the mean total examination completion time for enteroclysis (31.2 minutes) was almost half that of the small bowel series without upper GI examination (57.5 minutes) and almost four times shorter than that of the small bowel series with upper GI examination (114 minutes). The higher radiation dose of enteroclysis should be considered along with the short examination time, the age and clinical condition of the patient, and the reported higher accuracy when deciding on the appropriate radiographic examination of the small bowel

  9. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    International Nuclear Information System (INIS)

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-01-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio® treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  10. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  11. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  12. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  13. Natural radiation dose of small mammalians in beech forest of Rokkasho, Japan

    International Nuclear Information System (INIS)

    Ohtsuka, Yoshihito; Iyogi, Takashi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2008-01-01

    Full text: Protection of the environment itself from radiation hazards is recognized as important as that of humans. Actual data on the background natural radiation dose, which is necessary to evaluate the effect of radiation, are very few, especially in the terrestrial environment. Forests around the Japan's first large scale nuclear fuel reprocessing plant in Rokkasho were selected as the research field for evaluating the background natural radiation to the environment. Data observed will be used in future for the comparison with the radiation dose from radionuclides released from the plant. Small mammalians, mouse (Apodeums argentus) and mole (Urotrichus talpoides), were selected as representative animals of the forests in this study, and it was planned to measure their radiation doses from natural sources; environmental γ-rays, Rn and internal radionuclides. The forests around the plant were classified into three types: beech, oak and coniferous. We have been measuring the natural radiation to the mammalians in each of those forests one by one and report the data for the beech forest here. The mammalians caught in traps in the beech forest during June-October, 2006 were analyzed for their natural radionuclides burdens ( 210 Pb, 210 Po, 40 K, 87 Rb, 226 Ra, 238 U and 232 Th) in 11 organs and carcass. Radiation dose rates from environmental γ-rays and atmospheric concentration of Rn in the forest were also measured during August-December, 2006. Mean internal dose rates of mouse and mole caught in June, 2006 were estimated to be 0.036 μGy h -1 and 0.28 μGy h -1 , respectively, from mean concentrations of the nuclides in a total body and internal dose conversion coefficients by FASSET. The difference of the dose between the two mammalian species was attributed to higher contribution of 210 Po in mole, in which dose reached 0.25 μGy h -1 in contrast to that in mouse of 0.016 μGy h -1 . The concentration of 210 Po in kidney of mole (0.37 Bq g -1 wet) was

  14. Dose Recalculation and the Dose-Guided Radiation Therapy (DGRT) Process Using Megavoltage Cone-Beam CT

    International Nuclear Information System (INIS)

    Cheung, Joey; Aubry, Jean-Francois; Yom, Sue S.; Gottschalk, Alexander R.; Celi, Juan Carlos; Pouliot, Jean

    2009-01-01

    Purpose: At University of California San Francisco, daily or weekly three-dimensional images of patients in treatment position are acquired for image-guided radiation therapy. These images can be used for calculating the actual dose delivered to the patient during treatment. In this article, we present the process of performing dose recalculation on megavoltage cone-beam computed tomography images and discuss possible strategies for dose-guided radiation therapy (DGRT). Materials and Methods: A dedicated workstation has been developed to incorporate the necessary elements of DGRT. Patient image correction (cupping, missing data artifacts), calibration, completion, recontouring, and dose recalculation are all implemented in the workstation. Tools for dose comparison are also included. Examples of image correction and dose analysis using 6 head-and-neck and 2 prostate patient datasets are presented to show possible tracking of interfraction dosimetric endpoint variation over the course of treatment. Results: Analysis of the head-and-neck datasets shows that interfraction treatment doses vary compared with the planning dose for the organs at risk, with the mean parotid dose and spinal cord D 1 increasing by as much as 52% and 10%, respectively. Variation of the coverage to the target volumes was small, with an average D 5 dose difference of 1%. The prostate patient datasets revealed accurate dose coverage to the targeted prostate and varying interfraction dose distributions to the organs at risk. Conclusions: An effective workflow for the clinical implementation of DGRT has been established. With these techniques in place, future clinical developments in adaptive radiation therapy through daily or weekly dosimetric measurements of treatment day images are possible.

  15. Measurement of radiation dose to ovaries from CT of the head and trunk

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habdhan, M.A.M.; Kinsara, A.R. [King Abdul Aziz Univ., Nuclear Engineering Dept., Jeddah (Saudi Arabia)

    2001-07-01

    With the rise in concern about doses received by patients over recent years, there has been a growing requirement for information on typical doses and the range of dose received during Computerized Tomography (CT). This study was performed for the assessment of radiation dose to the ovaries from various CT protocols for head and trunk imaging. Thermo luminescent dosimeters (TLD) were used for the dosimetry measurement in an anthropomorphic Rando Alderson phantom. The wanted (obligatory) and unwanted (non-useful) radiation doses delivered to the ovaries during CT examinations of head, facial bone, orbits, abdomen, chest, pelvis, neck, nasopharynx, cervical spine, lumber spine and sacroiliac joint were assessed. The results are compared with the corresponding values published in the literature. A comparison of the received dose from CT examinations and general radiography examinations by the ovaries was made. It is found that relatively high doses of unwanted radiation are delivered with computerized tomography. (author)

  16. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Maliev, V.; Popov, D.; Jones, J.; Gonda, S.; Prasad, K.; Viliam, C.; Haase, G.; Kirchin, V.; Rachael, C.

    2006-01-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  17. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  18. Comparison of Radiation Dose Rates with the Flux to Dose Conversion Factors Recommended in ICRP-74 and ICRP-116

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Kil, A Reum; Lee, Jo Eun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae

    2016-01-01

    The evaluation of radiation shielding has been performed for the design and maintenance of various facilities using radioactive sources such as nuclear fuel, accelerator, and radionuclide. The conversion of flux to dose mainly used in nuclear and radiation fields has been generally made with the dose coefficients presented in ICRP Publication 74 (ICRP- 74), which are produced based on ICRP Publication 60. On the other hand, ICRP Publication 116 (ICRP-116), which adopts the protection system of ICRP Publication 103, has recently been published and provides the dose conversion coefficients calculated with a variety of Monte Carlo codes. The coefficients have more than an update of those in ICRP-74, including new particle types and a greatly expanded energy range. In this study, a shielding evaluation of a specific container for neutron and gamma sources was performed with the MCNP6 code. The dose rates from neutron and gamma-ray sources were calculated using the MCNP6 codes, and these results were based on the flux to dose conversion factors recommended in ICRP-74 and ICRP-116. As a result, the dose rates evaluated with ICRP-74 were generally shown higher than those with ICRP-116. For neutrons, the difference is mainly occurred by the decrease of radiation weighting factors in a part of energy ranges in the ICRP-116 recommendations. For gamma-rays, the ICRP-74 recommendation applied with the kerma approximation leads to overestimated results than the other assessment

  19. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  20. Doses in radiation accidents investigated by chromosome aberration analysis

    International Nuclear Information System (INIS)

    Lloyd, D.C.; Purrott, R.J.; Prosser, J.S.; Dolphin, G.W.; Tipper, P.A.; Reeder, E.J.; White, C.M.; Cooper, S.J.; Stephenson, B.D.

    1977-01-01

    Results from cytogenetic investigations into 66 cases of suspected over-exposure to radiation during 1976 are reviewed. This report is the sixth in an annual series which together contain data on 272 studies. Previous results were published in NRPB-R5, R10, R23, R35 and R41. Results from all investigations have been pooled for general analysis. Brief accounts are given in an appendix of the circumstances behind the past year's investigations and, where possible, physical estimates of dose have been included for comparison. A short review is given of the laboratory's recently published dose response data for several energies of neutron radiation. A description is also given of the group's collaboration in an international experiment in which comparisons were made between a variety of dosemeters exposed to a controlled criticality pulse. In a second appendix two experiments are described in which inter- and intra-donor effects on chromosome aberration yields were examined. It was found that differences in dicentric yields were small whereas acentric aberrations were more variable. (author)

  1. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    International Nuclear Information System (INIS)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J.; Xu, J.

    2010-01-01

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 ± 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  2. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  3. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    Science.gov (United States)

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  4. Application of low-dose radiation protocols in survey CT scans

    International Nuclear Information System (INIS)

    Fu Qiang; Liu Ting; Lu Tao; Xu Ke; Zhang Lin

    2009-01-01

    Objective: To characterize the protocols with low-dose radiation in survey CT scans for localization. Methods: Eighty standard adult patients, head and body phantoms were recruited. Default protocols provided by operator's manual setting were that all the tube voltage for head, chest, abdomen and lumbar was 120 kV; the tube currents were 20,10,20 and 40 mA, respectively. Values of kV and mA in the low-dose experiments were optimized according to the device options. For chest and abdomen, the tube position were compared between default (0 degree) and 180 degree. Phantoms were scanned with above protocols, and the radiation doses were measured respectively. Paired t-test were used for comparisons of standard deviation in CT value, noise and exposure surface dose (ESD) between group with default protocols and group with optimized protocols. Results: The optimized protocols in low-dose CT survey scans were 80 kV, 10 mA for head, 80 kV, 10 mA for chest, 80 kV, 10 mA for abdomen and 100 kV, 10 mA for lumbar. The values of ESD for phantom scan in default and optimized protocols were 0.38 mGy/0.16 mGy in head, 0.30 mGy/0.20 mGy in chest, 0.74 mGy/0.30 mGy in abdomen and 0.81 mGy/0.44 mGy in lumbar, respectively. Compared with default protocols, the optimized protocols reduced the radiation doses 59%, 33%, 59% and 46% in head, chest, abdomen and lumbar. When tube position changed from 0 degree to 180 degree, the ESD were 0.24 mGy/0.20 mGy for chest; 0.37 mGy/0.30 mGy for abdomen, and the radiation doses were reduced 20% and 17%. Conclusion: A certain amount of image noise is increased in low-dose protocols, but image quality is still acceptable without problem in CT localization. The reduction of radiation dose and the radiation harm to patients are the superiority. (authors)

  5. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  6. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Murzin, Vyacheslav [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Nguyen, Tanya T. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Dale, Anders M. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-04-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  7. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    International Nuclear Information System (INIS)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael; Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke; Murzin, Vyacheslav; Nguyen, Tanya T.; Moiseenko, Vitali; Brewer, James B.; McDonald, Carrie R.; Dale, Anders M.; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  8. Radiation oncology: what can we achieve by optimized dose delivery?

    International Nuclear Information System (INIS)

    Lawrence, T.

    2003-01-01

    Spectacular technical advances have marked the last twenty years in radiation oncology. This revolution began with CT-based planning which was followed by 3D conformal therapy. The latter approach produced two important capabilities. The most obvious was that tumors could be viewed in their true location with respect to normal tissues and treated with beams that were not in the axial plane. A second equally important advance was the development of 3D planning tools such as dose volume histograms. These tools permitted quantitative comparison of treatment plans and have supported the development of models relating normal tissue irradiation to the risk of complication. The '3D hypothesis' - that 3D treatment planning would permit higher doses of radiation to be safely delivered-has been proven. Dose escalation studies have been successfully conducted in the lung (= 100 Gy), liver (= 90 Gy), brain (= 90 Gy), and prostate (= 78 Gy). Prospective phase II and phase III trials suggest improved outcome using these higher doses for tumors in the liver and prostate compared to doses considered acceptable in the 2D era. The next technical revolution is underway, with advances in '4D' radiotherapy (accounting fully for organ motion) and in intensity-modulated radiation therapy (IMRT) to further improve the conformality and accuracy of treatment. Proton therapy will improve dose distributions still further. These improved dose distributions can be combined with more accurate tumor delineation provided by functional imaging to offer the potential for additional dose escalation without toxicity and for improved tumor control. These developments permit us to ask if we are approaching the limits of dose optimization and how (if?) research in radiation delivery should proceed

  9. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    International Nuclear Information System (INIS)

    Lepej, L.; Messingerova, M.

    1995-01-01

    In this paper the values of mean effective dose equivalents per unit activity (H E/1Bq ) were used for the calculation of mean effective dose equivalents for one examination (H E ). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S ER ) and global collective effective dose equivalent for department for all radiopharmaceuticals (S E ) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H E and S E during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H min ) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H min from all examinations - patient's radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs

  10. Application of the personnel photographic monitoring method to determine equivalent radiation dose beyond proton accelerator shielding

    International Nuclear Information System (INIS)

    Gel'fand, E.K.; Komochkov, M.M.; Man'ko, B.V.; Salatskaya, M.I.; Sychev, B.S.

    1980-01-01

    Calculations of regularities to form radiation dose beyond proton accelerator shielding are carried out. Numerical data on photographic monitoring dosemeter in radiation fields investigated are obtained. It was shown how to determine the total equivalent dose of radiation fields beyond proton accelerator shielding by means of the photographic monitoring method by introduction into the procedure of considering nuclear emulsions of division of particle tracks into the black and grey ones. A comparison of experimental and calculational data has shown the applicability of the used calculation method for modelling dose radiation characteristics beyond proton accelerator shielding [ru

  11. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  12. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    Lavoie, Ch.; Rasuli, P.

    2001-01-01

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  13. Fourth IRMF comparison of calibrations of portable gamma-ray dose- rate monitors 2001-2002 Ionising radiation

    CERN Document Server

    Lewis, V E

    2002-01-01

    The Ionising Radiations Metrology Forum (IRMF) organised a fourth comparison of calibrations of gamma-ray dose-rate monitors in which fifteen establishments in the UK participated. The exercise involved the circulation of three gamma-ray monitors for calibration in the fields produced using sup 1 sup 3 sup 7 Cs, sup 2 sup 4 sup 1 Am and sup 6 sup 0 Co. The instruments used were an Electra with MC 20 probe, a Mini-Instruments Mini-rad 1000 and a Siemens electronic personal dosemeter Mk 2 (EPD). The responses relative to 'true' dose equivalent rate were calculated by the individual participants and submitted to the for analysis along with details of the facilities and fields employed. Details of the estimated uncertainties were also reported. The results are compared and demonstrate generally satisfactory agreement between the participating establishments. However, the participants' treatment of uncertainties needs improvement and demonstrates a need for guidance in this area.

  14. Inconsistencies and open questions regarding low-dose health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Nussbaum, R.H.; Koehnlein, W.

    1994-01-01

    The state of knowledge of health effects from low-dose exposures to ionizing radiation has recently been reviewed in extensive reports by three prestigious national and international commissions of scientific and medical experts with partially overlapping membership, known by their acronyms UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), BEIR V (Biological Effects of Ionizing Radiation), and ICRP (International Commission on Radiological Protection). Publication of these reports was followed by a number of summaries in scientific journals, authored by recognized radiation experts, that purport to present a scientific consensus of low-dose effects in a more accessible format for health professionals. A critical comparison between various presentations of accepted views, however, reveals inconsistencies regarding open-quotes establishedclose quotes facts and unsettled questions

  15. Radiation dose in vertebroplasty

    International Nuclear Information System (INIS)

    Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.; Abdo, G.; Martin, J.B.; Viera, J.M.; Ruefenacht, D.A.

    2004-01-01

    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256 mGy outside and 0.01-0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5 mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurements. (orig.)

  16. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  18. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  19. Analysis of CT radiation dose based on radiation-dose-structured reports

    International Nuclear Information System (INIS)

    Wang Weipeng; Zhang Yi; Zhang Menglong; Zhang Dapeng; Song Shaojuan

    2014-01-01

    Objective: To analyse the CT radiation dose statistically using the standardized radiation-dose-structured report (RDSR) of digital imaging and communications in medicine (DICOM). Methods: Using the self-designed software, 1230 RDSR files about CT examination were obtained searching on the picture archiving and communication system (PACS). The patient dose database was established by combination of the extracted relevant information with the scanned sites. The patients were divided into adult group (over 10 years) and child groups (0-1 year, 1-5 years, 5-10 years) according to the age. The average volume CT dose index (CTDI vol ) and dose length product (DLP) of all scans were recorded respectively, and then the effective dose (E) was estimated. The DLP value at 75% quantile was calculated and compared with the diagnostic reference level (DRL). Results: In adult group, CTDI vol and DLP values were moderately and positively correlated (r = 0.41), the highest E was observed in upper abdominal enhanced scan, and the DLP value at 75% quantile was 60% higher than DRL. In child group, their CTDI vol in group of 5-10 years was greater than that in groups of 0-1 and 1-5 years (t = 2.42, 2.04, P < 0.05); the DLP value was slightly and positively correlated with the age (r = 0.16), while E was moderately and negatively correlated with the age (r = -0.48). Conclusions: It is a simple and efficient method to use RDSR to obtain the radiation doses of patients. With the popularization of the new equipment and the application of regionalized medical platform, RDSR would become the main tool for the dosimetric level surveying and individual dose recording. (authors)

  20. International comparison of calibration standards for exposure and absorbed dose

    International Nuclear Information System (INIS)

    Horakova, I.; Wagner, R.

    1990-01-01

    A comparison was performed of the primary calibration standards for 60 Co gamma radiation dose from Czechoslovakia (UDZ CSAV, Prague), Austria (OEFZS/BEV Seibersdorf) and Hungary (OMH Budapest) using ND 1005 (absolute measurement) and V-415 (by means of N x ) graphite ionization chambers. BEV achieved agreement better than 0.1%, OMH 0.35%. Good agreement was also achieved for the values of exposure obtained in absolute values and those obtained via N x , this for the ND 1005/8105 chamber. The first ever international comparison involving Czechoslovakia was also performed of the unit of absorbed gamma radiation in a water and/or graphite phantom. The participants included Czechoslovakia (UDZ CSAV Prague), the USSR (VNIIFTRI Moscow) and Austria (OEFZS/BEV Seibersdorf). In all measurements, the agreement was better than 1%, which, in view of the differences in methodologies (VNIIFTRI, BEV: calorimetry, UDZ, UVVVR: ionometry) and the overall inaccuracies in determining the absorbed dose values, is a good result. (author)

  1. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1997-01-01

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  2. Using RADFET for the real-time measurement of gamma radiation dose rate

    Science.gov (United States)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  3. Using RADFET for the real-time measurement of gamma radiation dose rate

    International Nuclear Information System (INIS)

    Andjelković, Marko S; Ristić, Goran S; Jakšić, Aleksandar B

    2015-01-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h −1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose. (paper)

  4. Comparison of the result of radiation alone and radiation with daily low dose cisplatin in management of locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Kim, Hun Jung; Kim, Woo Chul; Lee, Mee Jo; Kim, Chul Su; Song, Eun Seop; Loh, John J. K.

    2004-01-01

    An analysis was to compare the results of radiation alone with those of radiation with daily low dose cisplatin as a radiation sensitizer in locally advanced cervical cancer. A retrospective analysis of 59 patients diagnosed with locally advanced uterine cervix cancer between December 1996 and March 2001 was performed. Thirty one patients received radiation alone and 28 patients received daily low dose cisplatin, as a radiation sensitizer, and radiation therapy. The median follow-up period was 34 months, ranging from 2.5 to 73 months. The radiation therapy consisted of 4500 cGy external beam irradiation to the whole pelvis (midline block after 3060 cGy), a 900 ∼ 1,000 cGy boost to the involved parametrium and high dose-rate intracavitary brachytherapy (a total dose of 3,000 ∼ 3,500 cGy/500 cGy per fraction to point A, twice per week). In the chemoradiation group, 10 mg of daily intravenous cisplatin was given daily from the 1st day of radiation therapy to the 20th day of radiation therapy. According to the FIGO classification, the patients were subdivided into 51 (86.4%) and 8 (13.6%) stages IIB and stage IIIB, respectively. The overall 5 year survival rate was 65.65% and according to treatment modality were 56.75% and 73.42% in the radiation alone and chemoradiation groups, respectively (ρ = 0.180). The 5 year disease-free survival rates were 49.39% and 63.34% in the radiation alone and chemoradiation groups, respectively (ρ = 0.053). The 5 year locoregional control rates were 52.34% and 73.58% in the radiation alone and chemoradiation groups, respectively (ρ = 0.013). The 5 year distant disease-free survival rates were 59.29% and 81.46% in the radiation alone and chemoradiation groups, respectively (ρ = 0.477). Treatment related hematologic toxicity were prominent in the chemoradiation group. Leukopenia (≥ 3 grade) occurred in 3.2% and 28.5% of the radiation alone and chemoradiation groups, respectively (ρ = 0.02). There were no statistical differences

  5. Comparison of the result of radiation alone and radiation with daily low dose cisplatin in management of locally advanced cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hun Jung; Kim, Woo Chul; Lee, Mee Jo; Kim, Chul Su; Song, Eun Seop; Loh, John J. K. [Inha University Medical College, Inchon (Korea, Republic of)

    2004-09-15

    An analysis was to compare the results of radiation alone with those of radiation with daily low dose cisplatin as a radiation sensitizer in locally advanced cervical cancer. A retrospective analysis of 59 patients diagnosed with locally advanced uterine cervix cancer between December 1996 and March 2001 was performed. Thirty one patients received radiation alone and 28 patients received daily low dose cisplatin, as a radiation sensitizer, and radiation therapy. The median follow-up period was 34 months, ranging from 2.5 to 73 months. The radiation therapy consisted of 4500 cGy external beam irradiation to the whole pelvis (midline block after 3060 cGy), a 900 {approx} 1,000 cGy boost to the involved parametrium and high dose-rate intracavitary brachytherapy (a total dose of 3,000 {approx} 3,500 cGy/500 cGy per fraction to point A, twice per week). In the chemoradiation group, 10 mg of daily intravenous cisplatin was given daily from the 1st day of radiation therapy to the 20th day of radiation therapy. According to the FIGO classification, the patients were subdivided into 51 (86.4%) and 8 (13.6%) stages IIB and stage IIIB, respectively. The overall 5 year survival rate was 65.65% and according to treatment modality were 56.75% and 73.42% in the radiation alone and chemoradiation groups, respectively ({rho} = 0.180). The 5 year disease-free survival rates were 49.39% and 63.34% in the radiation alone and chemoradiation groups, respectively ({rho} = 0.053). The 5 year locoregional control rates were 52.34% and 73.58% in the radiation alone and chemoradiation groups, respectively ({rho} = 0.013). The 5 year distant disease-free survival rates were 59.29% and 81.46% in the radiation alone and chemoradiation groups, respectively ({rho} = 0.477). Treatment related hematologic toxicity were prominent in the chemoradiation group. Leukopenia ({>=} 3 grade) occurred in 3.2% and 28.5% of the radiation alone and chemoradiation groups, respectively ({rho} = 0.02). There were

  6. Maximum tolerable radiation doses recommended by the Israel Advisory Committee on nuclear safety

    International Nuclear Information System (INIS)

    Tadmor, J.; Litai, D.; Lubin, E.

    1978-01-01

    Maximum tolerable doses have been recommended by the Israel Advisory Committee on Nuclear Safety. The recommendations which are based on a comparison with risks tolerated in other human activities, are for doses to radiation workers, for individual members of the population at the fence of a nuclear installation, and for the population at large, for both normal operating and accident conditions. Tolerable whole-body doses and doses to different critical organs are listed

  7. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  8. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional ...

  9. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  10. Analysis of radiation doses to patients from diagnostic department of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Lepej, L; Messingerova, M [F.D. Rosvelt Hospital, Banska Bystrica (Slovakia). Dept. of Nuclear Medicine; Ftacnikova, S [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia)

    1996-12-31

    In this paper the values of mean effective dose equivalents per unit activity (H{sub E/1Bq}) were used for the calculation of mean effective dose equivalents for one examination (H{sub E}). The collective effective dose equivalents for each radiopharmaceutical and type of examination (S{sub ER}) and global collective effective dose equivalent for department for all radiopharmaceuticals (S{sub E}) during evaluated period were defined. The data for years from 1992 to 1994 were evaluated and compared with results in literature. The evaluation of radiation doses in nuclear medicine department is useful parameter for internal quality control. Using this method, the radiation dose in this laboratory was changed to minimum (under mean value of Slovak Republic). Unfortunately, the real data of patients radiation doses are different from the calculated one. Due to different kinetic of radiopharmaceuticals in individual patients (influenced by pathology, age, etc.) the evaluation of radiation burden to nuclear medicine patients is problematic. But this approach enable the relative comparison of the changes in values of H{sub E} and S{sub E} during the observed period. The evaluation of individual (minimal) effective dose equivalent - (H{sub min}) which represents dose calculated under physiologic conditions can be useful for indication of diagnostic examination by physicians. Therefore the systematic registration of H{sub min} from all examinations - patient`s radiation history. This is specially important in the case of children and young people. The importance of the proposed method, is in regulation of radiation dose from nuclear medicine diagnostic examinations, not only be the control of number and type of examinations, but also by selection of used radiopharmaceuticals and by the way how to use them. (J.K.) 1 fig., 2 refs.

  11. Responses of rat R-1 cells to low dose rate gamma radiation and multiple daily dose fractions

    International Nuclear Information System (INIS)

    Kal, H.B.; Bijman, J.Th.

    1981-01-01

    Multifraction irradiation may offer the same therapeutic gain as continuous irradiation. Therefore, a comparison of the efficacy of low dose rate irradiation and multifraction irradiation was the main objective of the experiments to be described. Both regimens were tested on rat rhabdomyosarcoma (R-1) cells in vitro and in vivo. Exponentially growing R-1 cells were treated in vitro by a multifraction irradiation procedure with dose fractions of 2 Gy gamma radiation and time intervals of 1 to 3 h. The dose rate was 1.3 Gy.min -1 . The results indicate that multifractionation of the total dose is more effective with respect to cell inactivation than continuous irradiation. (Auth.)

  12. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    Li Huhou

    1988-01-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  13. Annual radiation dose in thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Huhou, Li [Chinese Academy of Social Sciences, Beijing, BJ (China). Inst. of Archaeology

    1988-11-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned.

  14. A system of dose-effects relationships for the Northern wildlife: radiation protection criteria

    International Nuclear Information System (INIS)

    Sazykina, T.G.

    2004-01-01

    The key issue in the assessment system for radiation protection of wildlife is the establishment of a set of dose-effects relationships for reference representatives of natural biota, based on scientific data from a range of doses and a range of radiation effects. Risks to natural populations in particular habitats can be evaluated from a comparison of estimated doses to biota with the scale of dose-effects relationships for different types of biota. Within the frame of the EC Project EPIC 'Environmental Protection from Ionizing Contaminants' 2000-2003), a database has been created, which include the published and unpublished data relating to dose effects relationships for flora and fauna in the Northern and Arctic areas. The EPIC database contains information based exclusively on Russian/FSU experimental and field studies; chronic/lifetime exposures were the focus of the work, owing to the fact that such exposures are the most typical in radiological assessments for biota. In total, the EPIC database radiation effects on biota contains about 1600 records from 440 publications, including datasets on terrestrial and aquatic animals, plants, soil fauna and microorganisms. The EPIC database information cover a very wide range of radiation dose rates to wild flora and fauna: from below 10 -5 Gy d -1 up to more than 1 Gy d -1 . A great variety of radiation effects are registered in the EPIC database, from stimulation at low doses up to death from acute radiation syndrome at high doses. From data, compiled in the EPIC database, the dose-effects relationships were derived for different types of northern organisms. The system of dose-effects relationships forms the scale of severity of radiation effects at increasing levels of chronic radiation exposure. With its focus on the effects of low-to-moderate chronic exposure, the system of dose effects relationships provides a useful tool for scientists and decision-makers to establish safety standards for protecting the

  15. Effect of staff training on radiation dose in pediatric CT.

    Science.gov (United States)

    Hojreh, Azadeh; Weber, Michael; Homolka, Peter

    2015-08-01

    To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  17. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  18. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  19. Comparison of dose-volume histograms for Tomo therapy, linear accelerator-based 3D conformal radiation therapy, and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Choi, Seong-Kwan; Chung, Woon-Kwan; Lee, Jong-Woong

    2011-01-01

    Highlights: → Evaluation of DVH from 3D CRT, IMRT and Tomo therapy was conducted for tumor therapy. → The doses of GTV and CTV were compared using DVHs from 3D CRT, IMRT and Tomo therapy. → The GTV was higher when Tomo therapy was used, while the doses of critical organ were low. → They said that Tomo therapy satisfied the goal of radiation therapy more than the others. - Abstract: Evaluation of dose-volume histograms from three-dimensional conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and Tomo therapy was conducted. These three modalities are among the diverse treatment systems available for tumor therapy. Three patients who received tumor therapy for a malignant oligodendroglioma in the cranium, nasopharyngeal carcinoma in the cervical neck, and prostate cancer in the pelvis were selected as study subjects. Therapy plans were made for the three patients before dose-volume histograms were obtained. The doses of the gross tumor volume (GTV) and the clinical target volume (CTV) were compared using the dose-volume histograms obtained from the LINAC-based 3D CRT, IMRT planning station (Varian Eclipse-Varian, version 8.1), and Tomo therapy planning station. In addition, the doses of critical organs in the cranium, cervix, and pelvis that should be protected were compared. The GTV was higher when Tomo therapy was used compared to 3D CRT and the LINAC-based IMRT, while the doses of critical organ tissues that required protection were low. These results demonstrated that Tomo therapy satisfied the ultimate goal of radiation therapy more than the other therapies.

  20. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  1. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  2. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  3. Doses from radiation exposure

    International Nuclear Information System (INIS)

    Menzel, H-G.; Harrison, J.D.

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection’s (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP’s 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  4. Determination of the radiation dose to the body due to external radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-01-01

    Section 63 of the Radiation Protection Ordinance defines the basic requirement, determination of radiation dose to the body. The determination of dose equivalents for the body is the basic step in practical monitoring of dose equivalents or dose limits with regard to individuals or population groups, both for constant or varying conditions of exposure. The main field of monitoring activities is the protection of persons occupationally exposed to ionizing radiation. Conversion factors between body doses and radiation quantities are explained. (DG) [de

  5. A photocurrent compensation method of bipolar transistors under high dose rate radiation and its experimental research

    International Nuclear Information System (INIS)

    Yin Xuesong; Liu Zhongli; Li Chunji; Yu Fang

    2005-01-01

    Experiment using discrete bipolar transistors has been performed to verify the effect of the photocurrent compensation method. The theory of the dose rate effects of bipolar transistors and the photocurrent compensation method are introduced. The comparison between the response of hardened and unhardened circuits under high dose rate radiation is discussed. The experimental results show instructiveness to the hardness of bipolar integrated circuits under transient radiation. (authors)

  6. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  7. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  8. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  9. Application of computational models to estimate organ radiation dose in rainbow trout from uptake of molybdenum-99 with comparison to iodine-131

    International Nuclear Information System (INIS)

    Martinez, N.E.; Johnson, T.E.; Pinder, J.E.

    2016-01-01

    This study compares three anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ radiation dose and dose rates from molybdenum-99 ( 99 Mo) uptake in the liver and GI tract. Model comparison and refinement is important to the process of determining accurate doses and dose rates to the whole body and the various organs. Accurate and consistent dosimetry is crucial to the determination of appropriate dose-effect relationships for use in environmental risk assessment. The computational phantoms considered are (1) a geometrically defined model employing anatomically relevant organ size and location, (2) voxel reconstruction of internal anatomy obtained from CT imaging, and (3) a new model utilizing NURBS surfaces to refine the model in (2). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling and combined with empirical models for predicting activity concentration to estimate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of 99 Mo. The computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between all models). Values in the empirical model as well as the 14 day cumulative organ doses determined from 99 Mo uptake are compared to similar models developed previously for 131 I. Finally, consideration is given to treating the GI tract as a solid organ compared to partitioning it into gut contents and GI wall, which resulted in an order of magnitude difference in estimated dose for most organs. - Highlights: • Existing computational models for the internal dosimetry of trout are applied to 99 Mo uptake. • Consideration is given to the effect of alternate source distribution in the gut. • A hybrid computational phantom is developed. • At 14 days post-release, 99 Mo and 131 I provide similar

  10. A comparative analysis of exposure doses between the radiation workers in dental and general hospital

    International Nuclear Information System (INIS)

    Yang, Nam Hee; Chung, Woon Kwan; Dong, Kyung Rae; Ju, Yong Jin; Song, Ha Jin; Choi, Eun Jin

    2015-01-01

    Research and investigation is required for the exposure dose of radiation workers to work in the dental hospital as increasing interest in exposure dose of the dental hospital recently accordingly, study aim to minimize radiation exposure by making a follow-up study of individual exposure doses of radiation workers, analyzing the status on individual radiation exposure management, prediction the radiation disability risk levels by radiation, and alerting the workers to the danger of radiation exposure. Especially given the changes in the dental hospital radiation safety awareness conducted the study in order to minimize radiation exposure. This study performed analyses by a comparison between general and dental hospital, comparing each occupation, with the 116,220 exposure dose data by quarter and year of 5,811 subjects at general and dental hospital across South Korea from January 1, 2008 through December 31, 2012. The following are the results obtained by analyzing average values year and quarter. In term of hospital, average doses were significantly higher in general hospitals than detal ones. In terms of job, average doses were higher in radiological technologists the other workers. Especially, they showed statistically significant differences between radiological technologists than dentists. The above-mentioned results indicate that radiation workers were exposed to radiation for the past 5 years to the extent not exceeding the dose limit (maximum 50 mSv y -1 ). The limitation of this study is that radiation workers before 2008 were excluded from the study. Objective evaluation standards did not apply to the work circumstance or condition of each hospital. Therefore, it is deemed necessary to work out analysis criteria that will be used as objective evaluation standard. It will be necessary to study radiation exposure in more precise ways on the basis of objective analysis standard in the future. Should try to minimize the radiation individual dose of

  11. A comparative analysis of exposure doses between the radiation workers in dental and general hospital

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Nam Hee; Chung, Woon Kwan; Dong, Kyung Rae; Ju, Yong Jin; Song, Ha Jin [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Choi, Eun Jin [Dept. of Public Health and Medicine, Dongshin University, Naju (Korea, Republic of)

    2015-02-15

    Research and investigation is required for the exposure dose of radiation workers to work in the dental hospital as increasing interest in exposure dose of the dental hospital recently accordingly, study aim to minimize radiation exposure by making a follow-up study of individual exposure doses of radiation workers, analyzing the status on individual radiation exposure management, prediction the radiation disability risk levels by radiation, and alerting the workers to the danger of radiation exposure. Especially given the changes in the dental hospital radiation safety awareness conducted the study in order to minimize radiation exposure. This study performed analyses by a comparison between general and dental hospital, comparing each occupation, with the 116,220 exposure dose data by quarter and year of 5,811 subjects at general and dental hospital across South Korea from January 1, 2008 through December 31, 2012. The following are the results obtained by analyzing average values year and quarter. In term of hospital, average doses were significantly higher in general hospitals than detal ones. In terms of job, average doses were higher in radiological technologists the other workers. Especially, they showed statistically significant differences between radiological technologists than dentists. The above-mentioned results indicate that radiation workers were exposed to radiation for the past 5 years to the extent not exceeding the dose limit (maximum 50 mSv y{sup -1}). The limitation of this study is that radiation workers before 2008 were excluded from the study. Objective evaluation standards did not apply to the work circumstance or condition of each hospital. Therefore, it is deemed necessary to work out analysis criteria that will be used as objective evaluation standard. It will be necessary to study radiation exposure in more precise ways on the basis of objective analysis standard in the future. Should try to minimize the radiation individual dose of

  12. Comparison of adult and child radiation equivalent doses from 2 dental cone-beam computed tomography units.

    Science.gov (United States)

    Al Najjar, Anas; Colosi, Dan; Dauer, Lawrence T; Prins, Robert; Patchell, Gayle; Branets, Iryna; Goren, Arthur D; Faber, Richard D

    2013-06-01

    With the advent of cone-beam computed tomography (CBCT) scans, there has been a transition toward these scans' replacing traditional radiographs for orthodontic diagnosis and treatment planning. Children represent a significant proportion of orthodontic patients. Similar CBCT exposure settings are predicted to result in higher equivalent doses to the head and neck organs in children than in adults. The purpose of this study was to measure the difference in equivalent organ doses from different scanners under similar settings in children compared with adults. Two phantom heads were used, representing a 33-year-old woman and a 5-year-old boy. Optically stimulated dosimeters were placed at 8 key head and neck organs, and equivalent doses to these organs were calculated after scanning. The manufacturers' predefined exposure settings were used. One scanner had a pediatric preset option; the other did not. Scanning the child's phantom head with the adult settings resulted in significantly higher equivalent radiation doses to children compared with adults, ranging from a 117% average ratio of equivalent dose to 341%. Readings at the cervical spine level were decreased significantly, down to 30% of the adult equivalent dose. When the pediatric preset was used for the scans, there was a decrease in the ratio of equivalent dose to the child mandible and thyroid. CBCT scans with adult settings on both phantom heads resulted in higher radiation doses to the head and neck organs in the child compared with the adult. In practice, this might result in excessive radiation to children scanned with default adult settings. Collimation should be used when possible to reduce the radiation dose to the patient. While CBCT scans offer a valuable tool, use of CBCT scans should be justified on a specific case-by-case basis. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  13. Ionizing radiation calculations and comparisons with LDEF data

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  14. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  15. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  16. The EOS imaging system: Workflow and radiation dose in scoliosis examinations

    DEFF Research Database (Denmark)

    Mussmann, Bo; Torfing, Trine; Jespersen, Stig

    Introduction The EOS imaging system is a biplane slot beam scanner capable of full body scans at low radiation dose and without geometrical distortion. It was implemented in our department primo 2012 and all scoliosis examinations are now performed in EOS. The system offers improved possibility...... to measure rotation of individual vertebrae and vertebral curves can be assessed in 3D. Leg length Discrepancy measurements are performed in one exposure without geometrical distortion and no stitching. Full body scans for sagittal balance are also performed with the equipment after spine surgery. Purpose...... The purpose of the study was to evaluate workflow defined as scheduled time pr. examination and radiation dose in scoliosis examinations in EOS compared to conventional x-ray evaluation. Materials and Methods: The Dose Area Product (DAP) was measured with a dosimeter and a comparison between conventional X...

  17. Radiation doses of employees of a nuclear medicine department after implementation of more rigorous radiation protection methods

    International Nuclear Information System (INIS)

    Piwowarska-Bilska, H.; Supinska, A.; Listewnik, M. H.; Zorga, P.; Birkenfeld, B.

    2013-01-01

    The appropriate radiation protection measures applied in departments of nuclear medicine should lead to a reduction in doses received by the employees. During 1991-2007, at the Department of Nuclear Medicine of Pomeranian Medical University (Szczecin, Poland), nurses received on average two-times higher (4.6 mSv) annual doses to the whole body than those received by radiopharmacy technicians. The purpose of this work was to examine whether implementation of changes in the radiation protection protocol will considerably influence the reduction in whole-body doses received by the staff that are the most exposed. A reduction in nurses' exposure by ∼63% took place in 2008-11, whereas the exposure of radiopharmacy technicians grew by no more than 22% in comparison with that in the period 1991-2007. Proper reorganisation of the work in departments of nuclear medicine can considerably affect dose reduction and bring about equal distribution of the exposure. (authors)

  18. Decreasing the effective radiation dose in pediatric craniofacial CT by changing head position

    International Nuclear Information System (INIS)

    Didier, Ryne A.; Kuang, Anna A.; Schwartz, Daniel L.; Selden, Nathan R.; Stevens, Donna M.; Bardo, Dianna M.E.

    2010-01-01

    Children are exposed to ionizing radiation during pre- and post-operative evaluation for craniofacial surgery. The primary purpose of the study was to decrease effective radiation dose while preserving the diagnostic quality of the study. In this prospective study 49 children were positioned during craniofacial CT (CFCT) imaging with their neck fully extended into an exaggerated sniff position, parallel to the CT gantry, to eliminate the majority of the cervical spine and the thyroid gland from radiation exposure. Image-quality and effective radiation dose comparisons were made retrospectively in age-matched controls (n = 49). When compared to CT scans reviewed retrospectively, the prospective examinations showed a statistically significant decrease in z-axis length by 16% (P < 0.0001) and delivered a reduced effective radiation dose by 18% (P < 0.0001). The subjective diagnostic quality of the exams performed in the prospective arm was maintained despite a slight decrease in the quality of the brain windows. There was statistically significant improvement in the quality of the bone windows and three-dimensional reconstructed images. Altering the position of the head by extending the neck during pediatric craniofacial CT imaging statistically reduces the effective radiation dose while maintaining the diagnostic quality of the images. (orig.)

  19. 85Kr management trade-offs: a perspective to total radiation dose commitment

    Energy Technology Data Exchange (ETDEWEB)

    Mellinger, P.J.; Hoenes, G.R.; Brackenbush, L.W.; Greenborg, J.

    1980-01-01

    Radiological consequences arising from the trade-offs for /sup 85/Kr waste management from possible nuclear fuel resource recovery activities have been investigated. The reference management technique is to release all the waste gas to the atmosphere where it is diluted and dispersed. A potential alternative is to collect, concentrate, package and submit the gas to long-term storage. This study compares the radiation dose commitment to the public and to the occupationally exposed work force from these alternatives. The results indicate that it makes little difference to the magnitude of the world population dose whether /sup 85/Kr is captured and stored or chronically released to the environment. Further, comparisons of radiation exposures (for the purpose of estimating health effects) at very low dose rates to very large populations with exposures to a small number of occupationally exposed workers who each receive much higher dose rates may be misleading. Finally, cost studies (EPA 1976 and DOE 1979a) show that inordinate amounts of money will be required to lower this already extremely small 80-year cumulative world population dose of 0.05 mrem/person (<0.001% of natural background radiation for the same time period).

  20. Comparison of the COMRADEX-IV and AIRDOS-EPA methodologies for estimating the radiation dose to man from radionuclide releases to the atmosphere

    International Nuclear Information System (INIS)

    Miller, C.W.; Hoffman, F.O.; Dunning, D.E. Jr.

    1981-01-01

    This report presents a comparison between two computerized methodologies for estimating the radiation dose to man from radionuclide releases to the atmosphere. The COMRADEX-IV code was designed to provide a means of assessing potential radiological consequences from postulated power reactor accidents. The AIRDOS-EPA code was developed primarily to assess routine radionuclide releases from nuclear facilities. Although a number of different calculations are performed by these codes, three calculations are in common - atmospheric dispersion, estimation of internal dose from inhalation, and estimation of external dose from immersion in air containing gamma emitting radionuclides. The models used in these calculations were examined and found, in general, to be the same. Most differences in the doses calculated by the two codes are due to differences in values chosen for input parameters and not due to model differences. A sample problem is presented for illustration

  1. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  2. Occupational radiation doses during interventional procedures

    International Nuclear Information System (INIS)

    Nuraeni, N; Hiswara, E; Kartikasari, D; Waris, A; Haryanto, F

    2016-01-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits. (paper)

  3. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  4. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  5. Comparison of radiation dosimetry for several potential myocardial imaging agents

    International Nuclear Information System (INIS)

    Watson, E.E.; Stabin, M.G; Goodman, M.M.; Knapp, F.F. Jr.; Srivastava, P.C.

    1986-01-01

    Although myocardial imaging is currently dominated by Tl-201, several alternative agents with improved physiologic or radionuclidic properties have been proposed. Based on human and animal studies in the literature, the metabolism of several of these compounds was studied for the purpose of generating radiation dose estimates. Dose estimates are listed for several I-123-labeled free fatty acids, an I-123-labeled phosphonium compound, Rb-82, Cu-64, F-18 FDG (all compounds which are taken up by the normal myocardium), and for Tc-99m pyrophosphate (PYP) (which localizes in myocardial infarcts). Dose estimates could not be generated for C-11 palmitate, but his compound was included in a comparison of myocardial retention times. For the I-123-labeled compounds, I-124 was included as a contaminant in generating the dose estimates. Radiation doses were lowest for Rb-82 (gonads 0.3-0.4 Gy/MBq, kidneys 8.6 Gy/MBq). Doses for the I-123-labeled fatty acids were similar to one another, with IPPA being the lowest (gonads 15 Gy/MBq, heart wall 18 Gy/MBq). Doses for Tc-99m PYP were also low (gonads 4-7 Gy/MBq, heart wall 4 Gy/MBq, skeleton 15 Gy/MBq). The desirability of these compounds is discussed briefly, considering half-life, imaging mode and energy, and dosimetry, including a comparison of the effective whole body dose equivalents. 37 references, 11 tables

  6. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  7. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  8. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    Energy Technology Data Exchange (ETDEWEB)

    Liao, S; Wang, Y; Weng, H [Chiayi Chang Gung Memorial Hospital of The C.G.M.F, Puzi City, Chiayi County, Taiwan (China)

    2015-06-15

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiation dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.

  9. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    International Nuclear Information System (INIS)

    Liao, S; Wang, Y; Weng, H

    2015-01-01

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiation dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle

  10. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  11. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  12. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  13. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  14. Energies, health, medicine. Low radiation doses

    International Nuclear Information System (INIS)

    2004-01-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  15. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    Ahmad, N.R.; Mohiuddin, M.; Marks, G.

    1993-01-01

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  16. Doses in radiation accidents investigated by chromosome aberration analysis

    International Nuclear Information System (INIS)

    Lloyd, D.C.; Purrott, R.J.; Prosser, J.S.; White, A.D.; Dolphin, G.W.; Reeder, E.J.; Martin, L.C.; Priseman, S.J.; Gray, S.A.

    1979-01-01

    Results from cytogenetic investigations into 63 cases of suspected over-exposure to radiation during 1978 are reviewed. This report is the eighth in an annual series which together contain data on 390 studies. Results from all investigations have been pooled for general analysis. Brief accounts are given, in an appendix, of the circumstances behind the past year's investigations and, where possible, physical estimates of dose have been included for comparison. One case is described in more detail. It concerns a young man who deliberately irradiated himself with several sources of iridium-192 and received a dose of about 1.5 Gy as a fairly uniform whole body exposure. (author)

  17. Dose-effect Curve for X-radiation in Lymphocytes in Goats

    International Nuclear Information System (INIS)

    Hasanbasic, D.; Saracevic, L.; Sacirbegovic, A.

    1998-01-01

    Dose-effect curve for X-radiation was made based on the analysis of chromosome aberrations in lympocytes of goats. Blood samples from seven goats were irradiated using MOORHEAD method, slightly modified and adapted to our conditions. Linear-square model was used, and the dose-effect curves were fitted by the smallest squares method. Dose-effect curve (collective) for goats is displayed as the following expression: y(D)= 8,6639·10 -3 D + 2,9748·10 -2 D 2 +2,9475·10 -3 . Comparison with some domestic animals such as sheep and pigs showed differences not only with respect to linear-square model, but to other mathematical presentations as well. (author)

  18. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  19. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Webster, C.M.; Horrocks, J.; Hayes, D.

    2001-01-01

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm 2 and 22.5 mSv for RFCA, and 32 Gycm 2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  20. The Thule accident: Assessment of radiation doses from terrestrial radioactive contamination

    International Nuclear Information System (INIS)

    Ulbak, K.

    2011-12-01

    Risoe DTU has carried out research on the terrestrial contamination in the Thule area after the radioactive contents of four nuclear weapons were dispersed following the crash of an American B-52 bomber in 1968. The results of Risoe DTU's studies are described in the report Thule-2007 - Investigation of radioactive pollution on land, which covers all measurements that were carried out on land in Thule in the years 2003, 2006, 2007 and 2008. The present report uses Risoe DTU's report as a basis for assessing radiation doses and consequently the risk for individuals as a result of terrestrial radioactive contamination in the Thule area. The assessment of radiation doses involves a number of conservative assumptions, estimates, and measurements, all of which are subject to considerable uncertainty. In some cases, models have been used based on experiences from other contaminated areas elsewhere in the world, which are subject to climatic and other conditions that diverge from those in the Thule area. The calculated doses are thus associated with considerable uncertainty, which must be taken into account when the results are used for comparison and when the risks of staying in the Thule area are assessed. It has therefore been chosen to provide the assessed radiation doses in the form of indicative orders of magnitude, which are applicable to everyone who might stay in the area, across various age groups. If the estimated doses in this report are combined with the National Institute of Radiation Protections recommended reference level for contamination as a result of the Thule Accident of 1 mSv/year, the assessed magnitudes of radiation doses for inhalation and ingestion as exposure pathways are many orders of magnitude below the reference level (10,00010 million times smaller). The wound contamination exposure pathway has a magnitude of radiation dose that is smaller than the reference level by a factor of 101000, and it should be recalled that the probability of this

  1. The Thule accident: Assessment of radiation doses from terrestrial radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ulbak, K. (National Institute of Radiation Protection, Herlev (Denmark))

    2011-12-15

    Risoe DTU has carried out research on the terrestrial contamination in the Thule area after the radioactive contents of four nuclear weapons were dispersed following the crash of an American B-52 bomber in 1968. The results of Risoe DTU's studies are described in the report Thule-2007 - Investigation of radioactive pollution on land, which covers all measurements that were carried out on land in Thule in the years 2003, 2006, 2007 and 2008. The present report uses Risoe DTU's report as a basis for assessing radiation doses and consequently the risk for individuals as a result of terrestrial radioactive contamination in the Thule area. The assessment of radiation doses involves a number of conservative assumptions, estimates, and measurements, all of which are subject to considerable uncertainty. In some cases, models have been used based on experiences from other contaminated areas elsewhere in the world, which are subject to climatic and other conditions that diverge from those in the Thule area. The calculated doses are thus associated with considerable uncertainty, which must be taken into account when the results are used for comparison and when the risks of staying in the Thule area are assessed. It has therefore been chosen to provide the assessed radiation doses in the form of indicative orders of magnitude, which are applicable to everyone who might stay in the area, across various age groups. If the estimated doses in this report are combined with the National Institute of Radiation Protection's recommended reference level for contamination as a result of the Thule Accident of 1 mSv/year, the assessed magnitudes of radiation doses for inhalation and ingestion as exposure pathways are many orders of magnitude below the reference level (10,000-10 million times smaller). The wound contamination exposure pathway has a magnitude of radiation dose that is smaller than the reference level by a factor of 10-1000, and it should be recalled that the

  2. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  3. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  4. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    Science.gov (United States)

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  5. Radiation dose with digital breast tomosynthesis compared to digital mammography: per-view analysis.

    Science.gov (United States)

    Gennaro, Gisella; Bernardi, D; Houssami, N

    2018-02-01

    To compare radiation dose delivered by digital mammography (FFDM) and breast tomosynthesis (DBT) for a single view. 4,780 FFDM and 4,798 DBT images from 1,208 women enrolled in a screening trial were used to ground dose comparison. Raw images were processed by an automatic software to determine volumetric breast density (VBD) and were used together with exposure data to compute the mean glandular dose (MGD) according to Dance's model. DBT and FFDM were compared in terms of operation of the automatic exposure control (AEC) and MGD level. Statistically significant differences were found between FFDM and DBT MGDs for all views (CC: MGD FFDM =1.366 mGy, MGD DBT =1.858 mGy; ptomosynthesis compared to FFDM. Given the emerging role of DBT, its use in conjunction with synthetic 2D images should not be deterred by concerns regarding radiation burden, and should draw on evidence of potential clinical benefit. • Most studies compared tomosynthesis in combination with mammography vs. mammography alone. • There is some concern about the dose increase with tomosynthesis. • Clinical data show a small increase in radiation dose with tomosynthesis. • Synthetic 2D images from tomosynthesis at zero dose reduce potential harm. • The small dose increase should not be a barrier to use of tomosynthesis.

  6. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  7. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  8. Comparison of the local dose of scattered radiation of a special dental - phantom and a real human head by using a Digital Volume Tomography (DVT)

    International Nuclear Information System (INIS)

    Neuwirth, J.; Hefner, A.

    2008-01-01

    Dental Radiography Digital Volume Tomography (DVT) gains more and more importance due to its possibility of three-dimensional imaging of teeth, jaw and visercoranium and the reduced radiation dose in comparison to conventional Computer Tomography (CT). Contrary to other, well documented radiographic procedures like dental panorama X-ray imaging there are no national or international guidelines or recommendations relating to DVT which regulate the designation of areas and standardize risk assessment. This study aims to assess the parameters necessary for local radiation protection in dental practices. Measurements were carried out in dental practices in order to evaluate the local dose resulting from different DVT devices. A special dental-phantom and a real human head were used in the irradiations in order to define the local dose of scattered radiation by nominal voltage. The dental-phantom was created for conventional dental panorama X-ray devices which make use of lower nominal voltages. This poses the question if the scatter performance of the special dental-phantom is comparable to a real human head and therefore applicable to the estimation of the radiation quality of a DVT when using 120 kV. The existing guidelines for dental panorama xray are analyzed and suggestions for future recommendations concerning the designation of areas and risk assessment for DVT are then deducted by comparing both sets of measurements. The results show that the special dental-phantom is absolutely suitable for the definition of the local dose resulting from the scattered radiation of a DVT. (author)

  9. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  10. Quantitative evaluation of radiation dose by γ-H2AX on a microfluidic chip in a miniature fluorescence cytometer

    International Nuclear Information System (INIS)

    Wang, Junsheng; Song, Wendong; Song, Yongxin; Xu, Dan; Zhang, Min; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-01-01

    Evaluation of radiation dose is very important for the detection of radiation damage. γ-H2AX is a popular biological dosimeter to evaluate the radiation effect. Typically, bulky and expensive commercial flow cytometers are used to detect γ-H2AX. This paper presents a miniaturized and high sensitive cytometer using a microfluidic chip for evaluating the radiation dose by detecting the mean immunofluorescence intensity of γ-H2AX. A compact optical focusing system and a shift-phase differential amplifier are designed to improve the detection sensitivity. Sample lymphocyte cells are stained by FITC fluorescent dye after being irradiated by UVC. Comparison experiments between the developed miniature cytometer and a commercial flow cytometer were conducted under different radiation doses. The developed microfluidic cytometer also demonstrates a good linear correlation between the measured fluorescence intensity and the irradiation dose with a detection limit similar to that of the commercial flow cytometer. The developed cytometer can evaluate quantitatively the radiation dose by the mean fluorescence intensity of γ-H2AX with a significantly smaller amount of blood samples than a commercial flow cytometer. - Highlights: • A new microfluidic cytometer for evaluating irradiation dose was developed. • The utility of this biosensor is verified by comparison experiments using FCM. • The developed cytometer is small size, high sensitivity, low cost, and simple. • The cytometer can dramatically reduce sample consumption and analysis time

  11. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  12. Personal radiation monitoring and assessment of doses received by radiation workers (1991)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1992-06-01

    The Australian Radiation Laboratory has operated a Personal Radiation Monitoring Service since the early 1930's so that people working with radiation can determine the radiation doses that they receive due to their occupation. Since late 1986, all persons monitored by the Service have been registered on a data base which maintains records of the doses received by each individual wearer. Ultimately, this data base will become a National Register of the doses received within Australia. At present, the Service regularly monitors approximately 20,000 persons, which is roughly 70 percent of those monitored in Australia, and maintains dose histories of over 35,000 people. The skin dose for occupationally exposed workers can be measured by using one of the four types of monitor issued by the Service: 1. Thermoluminescent Dosemeter (TLD monitor) 2. Finger TLD 3. Neutron Monitor 4. Special TLD. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 4 figs

  13. Adjuvant radiation therapy for bladder cancer: A dosimetric comparison of techniques

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Brian C.; Noa, Kate [Department of Radiation Oncology at the University of Pennsylvania, Philadelphia, PA (United States); Wileyto, E. Paul [Department of Biostatistics and Epidemiology at the University of Pennsylvania, Philadelphia, PA (United States); Bekelman, Justin E. [Department of Radiation Oncology at the University of Pennsylvania, Philadelphia, PA (United States); Deville, Curtiland [Department of Radiation Oncology and Molecular Radiation Sciences at Johns Hopkins University School of Medicine, Baltimore, MD (United States); Vapiwala, Neha; Kirk, Maura; Both, Stefan; Dolney, Derek; Kassaee, Ali [Department of Radiation Oncology at the University of Pennsylvania, Philadelphia, PA (United States); Christodouleas, John P., E-mail: christojo@uphs.upenn.edu [Department of Radiation Oncology at the University of Pennsylvania, Philadelphia, PA (United States)

    2015-01-01

    Trials of adjuvant radiation after cystectomy are under development. There are no studies comparing radiation techniques to inform trial design. This study assesses the effect on bowel and rectal dose of 3 different modalities treating 2 proposed alternative clinical target volumes (CTVs). Contours of the bowel, rectum, CTV-pelvic sidewall (common/internal/external iliac and obturator nodes), and CTV-comprehensive (CTV-pelvic sidewall plus cystectomy bed and presacral regions) were drawn on simulation images of 7 post-cystectomy patients. We optimized 3-dimensional conformal radiation (3-D), intensity-modulated radiation (IMRT), and single-field uniform dose (SFUD) scanning proton plans for each CTV. Mixed models regression was used to compare plans for bowel and rectal volumes exposed to 35% (V{sub 35%}), 65% (V{sub 65%}), and 95% (V{sub 95%}) of the prescribed dose. For any given treatment modality, treating the larger CTV-comprehensive volume compared with treating only the CTV-pelvic sidewall nodes significantly increased rectal dose (V{sub 35%} {sub rectum}, V{sub 65%} {sub rectum}, and V{sub 95%} {sub rectum}; p < 0.001 for all comparisons), but it did not produce significant differences in bowel dose (V{sub 95%} {sub bowel}, V{sub 65%} {sub bowel}, or V{sub 35%} {sub bowel}). The 3-D plans, compared with both the IMRT and the SFUD plans, had a significantly greater V{sub 65%} {sub bowel} and V{sub 95%} {sub bowel} for each proposed CTV (p < 0.001 for all comparisons). The effect of treatment modality on rectal dosimetry differed by CTV, but it generally favored the IMRT and the SFUD plans over the 3-D plans. Comparison of the IMRT plan vs the SFUD plan yielded mixed results with no consistent advantage for the SFUD plan over the IMRT plan. Targeting a CTV that spares the cystectomy bed and presacral region may marginally improve rectal toxicity but would not be expected to improve the bowel toxicity associated with any given modality of adjuvant radiation

  14. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  15. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  16. Trend of patient radiation doses in medical examination in Japan

    International Nuclear Information System (INIS)

    Suzuki, Shoichi

    2013-01-01

    We have investigated radiation doses to patients in selected types of examinations in Japan since 1974 and have analyzed the trend of patient radiation doses during a period of 37 years. This study covered regular plain X-ray scanning (including mammography) and computed tomography (CT) scanning. Dose evaluation was performed in terms of entrance skin dose (ESD) for regular plain X-ray scanning, average glandular dose (AGD) for mammography, and volume CT dose index (CTDIvol) for CT scanning. Evaluation was performed in 26 orientations at 21 sites for regular plain X-rays, and for cranial, thoracic, and abdominal scans of children and adults for CT scanning. With the exception of chest X-rays, the dose during regular plain X-ray scanning had decreased by approximately 50% compared with scans performed in 1974. The dose during mammography had decreased to less than 10% of its former level. In scans performed in 2011, dose at all sites were within International Atomic Energy Authority (IAEA) guidance levels. The increasing use of multiple detectors in CT scanning devices was evident in CT scanning. A comparison of doses from cranial non-helical scans performed in 2007 and 2011 found that the latter were higher. An examination of changes in doses between 1997 and 2011 revealed that doses had tended to increase in cranial scans of adults, but had hardly changed at all in abdominal scans. Doses during CT scanning of children were around half those for adults in cranial, thoracic, and abdominal scans. We have ascertained changes in the doses to which patients have been exposed during X-ray scanning in Japan. (author)

  17. Analysis of T101 outage radiation dose

    International Nuclear Information System (INIS)

    Li, Zhonghua

    2008-01-01

    Full text: Collective radiation dose during outage is about 80% of annual collective radiation dose at nuclear power plants (NPPs). T 101 Outage is the first four-year outage of Unit 1 at Tianwan Nuclear Power Station (TNPS) and thorough overhaul was undergone for the 105-day's duration. Therefore, T 101 Outage has significant reference meaning to reducing collective radiation dose at TNPS. This paper collects the radiation dose statistics during T 101 Outage and analyses the radiation dose distribution according to tasks, work kinds and varying trend of the collective radiation dose etc., comparing with other similar PWRs in the world. Based on the analysis this paper attempts to find out the major factors in collective radiation dose during T 101 Outage. The major positive factor is low radiation level at workplace, which profits from low content of Co in reactor construction materials, optimised high-temperature p H value of the primary circuit coolant within the tight range and reactor operation without trips within the first fuel cycle. One of the most negative factors is long outage duration and many person-hours spent in the radiological controlled zone, caused by too many tasks and inefficient work. So besides keeping good performance of reducing radioactive sources, it should be focused on how to improve implementation of work management including work selection, planning and scheduling, work preparation, work implementation, work assessment and feedback, which can lead to reduced numbers of workers needed to perform a task, of person-hours spent in the radiological controlled zone. Moreover, this leads to reduce occupational exposures in an ALARA fashion. (author)

  18. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  19. Radiation dose estimates and hazard evaluations for inhaled airborne radionuclides: Final report

    International Nuclear Information System (INIS)

    Mewhinney, J.A.

    1987-09-01

    The project objective was to conduct confirmatory research on physical chemical characteristics of aerosols produced during manufacture of mixed plutonium and uranium oxide nuclear fuel, to determine the radiation dose distribution in tissues of animals after inhalation exposure to representative aerosols of these materials, and to provide estimates of the relationship of radiation dose and biological response in animals after such inhalation exposure. The first chapter summarizes the physical chemical characterization of samples of aerosols collected from gloveboxes at industrial facilities during normal operations. This chapter provides insights into key aerosol characteristics which are of potential importance in determining the biological fate of specific radionuclides contained in the particulates that would be inhaled by humans following accidental release. The second chapter describes the spatial and temporal distribution of radiation dose in tissues of three species of animals exposed to representative aerosols collected from the industrial facilities. These inhalation studies provide a basis for comparison of the influence of physical chemical form of the inhaled particulates and the variability among species of animal in the radiation dose to tissue. The third chapter details to relationship between radiation dose and biological response in rats exposed to two aerosol forms each at three levels of initial pulmonary burden. This study, conducted over the lifespan of the rats and assuming results to be applicable to humans, indicates that the hazard to health due to inhalation of these industrial aerosols is not different than previously determined for laboratory produced aerosol of PuO 2 . Each chapter is processed separately for the data base

  20. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  1. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  2. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  3. Involved-nodal radiation therapy leads to lower doses to critical organs-at-risk compared to involved-field radiation therapy

    International Nuclear Information System (INIS)

    Mulvihill, David J.; McMichael, Kevin; Goyal, Sharad; Drachtman, Richard; Weiss, Aaron; Khan, Atif J.

    2014-01-01

    Background: Involved field radiotherapy (IFRT) after cytotoxic chemotherapy has become the standard of care in treating pediatric patients with Hodgkin lymphoma. However, recent interest in shrinking the treatment volume to involved node radiotherapy (INRT) may allow lower doses to critical organ structures. We dosimetrically compared IFRT and INRT treatment approaches. Methods: INRT treatment plans were retrospectively constructed from 17 consecutively treated pediatric patients identified with Hodgkin lymphoma who had been previously treated with conventional IFRT. The radiation doses delivered to organs-at-risk (OARs) with virtual INRT treatment plans based on INRT field design were then compared to the original IFRT treatment plans. Metrics for comparison included mean doses to organs and volumes of organ receiving at least 50% of the original prescription dose (V50%). A one-tailed, paired t-test was then performed to verify statistical significance at an alpha level of 0.05. Results: All organs at risk compared in this investigation (kidneys, heart, thyroid, parotids, and lungs) had significantly lower doses of radiation with INRT when compared to IFRT (p < 0.05). Furthermore, the volume of the breast receiving at least 50% of the initial prescription dose was statistically lower in the INRT plans. Conclusions: Utilizing the concept of INRT results in a reduction of radiation dose to critical organ structures in pediatric patients with Hodgkin lymphoma when compared to the more traditional method of IFRT

  4. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  5. Radiation doses and cause-specific mortality among workers at a nuclear materials fabrication plant

    International Nuclear Information System (INIS)

    Checkoway, H.; Pearce, N.; Crawford-Brown, D.J.; Cragle, D.L.

    1988-01-01

    A historical cohort mortality study was conducted among 6781 white male employees from a nuclear weapons materials fabrication plant for the years 1947-1979. Exposures of greatest concern are alpha and gamma radiation emanating primarily from insoluble uranium compounds. Among monitored workers, the mean cumulative alpha radiation dose to the lung was 8.21 rem, and the mean cumulative external whole body penetrating dose from gamma radiation was 0.96 rem. Relative to US white males, the cohort experienced mortality deficits from all causes combined, cardiovascular diseases, and from most site-specific cancers. Mortality excesses of lung and brain and central nervous system cancers were seen from comparisons with national and state rates. Dose-response trends were detected for lung cancer mortality with respect to cumulative alpha and gamma radiation, with the most pronounced trend occurring for gamma radiation among workers who received greater than or equal to 5 rem of alpha radiation. These trends diminished in magnitude when a 10-year latency assumption was applied. Under a zero-year latency assumption, the rate ratio for lung cancer mortality associated with joint exposure of greater than or equal to 5 versus less than 1 rem of both types of radiation is 4.60 (95% confidence limits (CL) 0.91, 23.35), while the corresponding result, assuming a 10-year latency, is 3.05 (95% CL 0.37, 24.83). While these rate ratios, which are based on three and one death, respectively, lack statistical precision, the observed dose-response trends indicate potential carcinogenic effects to the lung of relatively low-dose radiation. There are no dose-response trends for mortality from brain and central nervous system cancers

  6. Dosimetric and Late Radiation Toxicity Comparison Between Iodine-125 Brachytherapy and Stereotactic Radiation Therapy for Juxtapapillary Choroidal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Krema, Hatem, E-mail: htmkrm19@yahoo.com [Department of Ocular Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Heydarian, Mostafa [Department of Radiation Medicine, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Beiki-Ardakani, Akbar [Department of Radiation Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Weisbrod, Daniel [Department of Ocular Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Xu, Wei [Department of Biostatistics, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada); Laperriere, Normand J.; Sahgal, Arjun [Department of Radiation Oncology, Princess Margaret Hospital/University Health Network, University of Toronto, Toronto, Ontario (Canada)

    2013-07-01

    Purpose: To compare the dose distributions and late radiation toxicities for {sup 125}I brachytherapy (IBT) and stereotactic radiation therapy (SRT) in the treatment of juxtapapillary choroidal melanoma. Methods: Ninety-four consecutive patients with juxtapapillary melanoma were reviewed: 30 have been treated with IBT and 64 with SRT. Iodine-125 brachytherapy cases were modeled with plaque simulator software for dosimetric analysis. The SRT dosimetric data were obtained from the Radionics XKnife RT3 software. Mean doses at predetermined intraocular points were calculated. Kaplan-Meier estimates determined the actuarial rates of late toxicities, and the log–rank test compared the estimates. Results: The median follow-up was 46 months in both cohorts. The 2 cohorts were balanced with respect to pretreatment clinical and tumor characteristics. Comparisons of radiation toxicity rates between the IBT and SRT cohorts yielded actuarial rates at 50 months for cataracts of 62% and 75% (P=.1), for neovascular glaucoma 8% and 47% (P=.002), for radiation retinopathy 59% and 89% (P=.0001), and for radiation papillopathy 39% and 74% (P=.003), respectively. Dosimetric comparisons between the IBT and SRT cohorts yielded mean doses of 12.8 and 14.1 Gy (P=.56) for the lens center, 17.6 and 19.7 Gy (P=.44) for the lens posterior pole, 13.9 and 10.8 Gy (P=.30) for the ciliary body, 61.9 and 69.7 Gy (P=.03) for optic disc center, and 48.9 and 60.1 Gy (P<.0001) for retina at 5-mm distance from tumor margin, respectively. Conclusions: Late radiation-induced toxicities were greater with SRT, which is secondary to the high-dose exposure inherent to the technique as compared with IBT. When technically feasible, IBT is preferred to treat juxtapapillary choroidal melanoma.

  7. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  8. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  9. 85Kr management trade-offs: a perspective to total radiation dose commitment

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Hoenes, G.R.; Brackenbush, L.W.; Greenborg, J.

    1980-01-01

    Radiological consequences arising from the trade-offs for 85 Kr waste management from possible nuclear fuel resource recovery activities have been investigated. The reference management technique is to release all the waste gas to the atmosphere where it is diluted and dispersed. A potential alternative is to collect, concentrate, package and submit the gas to long-term storage. This study compares the radiation dose commitment to the public and to the occupationally exposed work force from these alternatives. The results indicate that it makes little difference to the magnitude of the world population dose whether 85 Kr is captured and stored or chronically released to the environment. Further, comparisons of radiation exposures (for the purpose of estimating health effects) at very low dose rates to very large populations with exposures to a small number of occupationally exposed workers who each receive much higher dose rates may be misleading. Finally, cost studies (EPA 1976 and DOE 1979a) show that inordinate amounts of money will be required to lower this already extremely small 80-year cumulative world population dose of 0.05 mrem/person

  10. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  11. Osteoradionecrosis and Radiation Dose to the Mandible in Patients With Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Tsai, Chiaojung Jillian; Hofstede, Theresa M.; Sturgis, Erich M.; Garden, Adam S.; Lindberg, Mary E.; Wei Qingyi; Tucker, Susan L.; Dong Lei

    2013-01-01

    Purpose: To determine the association between radiation doses delivered to the mandible and the occurrence of osteoradionecrosis (ORN). Methods and Materials: We reviewed the records of 402 oropharyngeal cancer patients with stage T1 or T2 disease treated with definitive radiation between January 2000 and October 2008 for the occurrence of ORN. Demographic and treatment variables were compared between patients with ORN and those without. To examine the dosimetric relationship further, a nested case-control comparison was performed. One to 2 ORN-free patients were selected to match each ORN patient by age, sex, radiation type, treatment year, and cancer subsite. Detailed radiation treatment plans for the ORN cases and matched controls were reviewed. Mann-Whitney test and conditional logistic regression were used to compare relative volumes of the mandible exposed to doses ranging from 10 Gy-60 Gy in 10-Gy increments. Results: In 30 patients (7.5%), ORN developed during a median follow-up time of 31 months, including 6 patients with grade 4 ORN that required major surgery. The median time to develop ORN was 8 months (range, 0-71 months). Detailed radiation treatment plans were available for 25 of the 30 ORN patients and 40 matched ORN-free patients. In the matched case-control analysis, there was a statistically significant difference between the volumes of mandible in the 2 groups receiving doses between 50 Gy (V50) and 60 Gy (V60). The most notable difference was seen at V50, with a P value of .02 in the multivariate model after adjustment for the matching variables and dental status (dentate or with extraction). Conclusions: V50 and V60 saw the most significant differences between the ORN group and the comparison group. Minimizing the percent mandibular volume exposed to 50 Gy may reduce ORN risk.

  12. Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Stefano G. Masciullo

    2012-11-01

    Full Text Available The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID in stereotactic body radiation therapy (SBRT with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT, estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED on the target (BED = 76Gy10. Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05. Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002, secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001. This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

  13. Radiation dose to the global flying population

    International Nuclear Information System (INIS)

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  14. Radiation dose of cone-beam computed tomography compared to conventional radiographs in orthodontics.

    Science.gov (United States)

    Signorelli, Luca; Patcas, Raphael; Peltomäki, Timo; Schätzle, Marc

    2016-01-01

    The aim of this study was to determine radiation doses of different cone-beam computed tomography (CBCT) scan modes in comparison to a conventional set of orthodontic radiographs (COR) by means of phantom dosimetry. Thermoluminescent dosimeter (TLD) chips (3 × 1 × 1 mm) were used on an adult male tissue-equivalent phantom to record the distribution of the absorbed radiation dose. Three different scanning modes (i.e., portrait, normal landscape, and fast scan landscape) were compared to CORs [i.e., conventional lateral (LC) and posteroanterior (PA) cephalograms and digital panoramic radiograph (OPG)]. The following radiation levels were measured: 131.7, 91, and 77 μSv in the portrait, normal landscape, and fast landscape modes, respectively. The overall effective dose for a COR was 35.81 μSv (PA: 8.90 μSv; OPG: 21.87 μSv; LC: 5.03 μSv). Although one CBCT scan may replace all CORs, one set of CORs still entails 2-4 times less radiation than one CBCT. Depending on the scan mode, the radiation dose of a CBCT is about 3-6 times an OPG, 8-14 times a PA, and 15-26 times a lateral LC. Finally, in order to fully reconstruct cephalograms including the cranial base and other important structures, the CBCT portrait mode must be chosen, rendering the difference in radiation exposure even clearer (131.7 vs. 35.81 μSv). Shielding radiation-sensitive organs can reduce the effective dose considerably. CBCT should not be recommended for use in all orthodontic patients as a substitute for a conventional set of radiographs. In CBCT, reducing the height of the field of view and shielding the thyroid are advisable methods and must be implemented to lower the exposure dose.

  15. Comparison of internal radiation doses estimated by MIRD and voxel techniques for a ''family'' of phantoms

    International Nuclear Information System (INIS)

    Smith, T.

    2000-01-01

    The aim of this study was to use a new system of realistic voxel phantoms, based on computed tomography scanning of humans, to assess its ability to specify the internal dosimetry of selected human examples in comparison with the well-established MIRD system of mathematical anthropomorphic phantoms. Differences in specific absorbed fractions between the two systems were inferred by using organ dose estimates as the end point for comparison. A ''family'' of voxel phantoms, comprising an 8-week-old baby, a 7-year-old child and a 38-year-old adult, was used and a close match to these was made by interpolating between organ doses estimated for pairs of the series of six MIRD phantoms. Using both systems, doses were calculated for up to 22 organs for four radiopharmaceuticals with widely differing biodistribution and emission characteristics (technetium-99m pertechnetate, administered without thyroid blocking; iodine-123 iodide; indium-111 antimyosin; oxygen-15 water). Organ dose estimates under the MIRD system were derived using the software MIRDOSE 3, which incorporates specific absorbed fraction (SAF) values for the MIRD phantom series. The voxel system uses software based on the same dose calculation formula in conjunction with SAF values determined by Monte Carlo analysis at the GSF of the three voxel phantoms. Effective doses were also compared. Substantial differences in organ weights were observed between the two systems, 18% differing by more than a factor of 2. Out of a total of 238 organ dose comparisons, 5% differed by more than a factor of 2 between the systems; these included some doses to walls of the GI tract, a significant result in relation to their high tissue weighting factors. Some of the largest differences in dose were associated with organs of lower significance in terms of radiosensitivity (e.g. thymus). In this small series, voxel organ doses tended to exceed MIRD values, on average, and a 10% difference was significant when all 238 organ doses

  16. Radiation Dose to Post-Chernobyl Cleanup Workers

    Science.gov (United States)

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  17. Mechanism of suppressive effect of low dose radiation on cancer cell dissemination in mice

    International Nuclear Information System (INIS)

    Fu Haiqing; Li Xiuyi; Chen Yubing; Zhang Yingchun; Liu Shuzheng

    1997-01-01

    Influence of low dose radiation on immunity in C57 BL/6 mice injected with cancer cells was studied. In mice given 75 mGy WBI 24 h before injection of Lewis lung carcinoma cells or B 16 melanoma cells, the percentage of S-phase thymocytes and CD 3+ thymocytes, the splenic NK cell activity, IL-2 secretion and γIFN secretion were found to be potentiated 2∼8 day after irradiation in comparison with the sham-irradiation mice. The results suggest that low dose radiation might suppress cancer cell dissemination via the enhancement of immune reactivity

  18. Ambient radiation dose reduction within a newly remodeled Nuclear Medicine Department

    International Nuclear Information System (INIS)

    Lai, Y.C.; Chen, Y.W.; Huang, Y.F.

    2008-01-01

    Full text: Ambient radiation levels at the patient waiting areas have been greatly reduced after remodeling of our Nuclear Medicine Department (NMD) based on the ALARA consideration. Complete ambient radiation monitoring of our NMD before remodeling had been characterized and published earlier by the same authors elsewhere. The NMD outpatients, with an initial dose of up to 740 MBq (20 mCi) per case, may wait around and incidentally congest in one place that could cause an unexpected higher exposure level in public access areas. In this new surveillance study after remodeling, the ambient radiation time-profile, peak dose rates and daily doses have been re-evaluated by using high sensitivity, digital survey dosimeters. As a preliminary result, with our newly improved facility in operation, we have demonstrated the NMD waiting room average daily dose has dropped from about 3.0 μSv to 0.42 μSv during most of busy days in comparison. The hourly peak dose rate detected in patient waiting areas has also reduced to a factor of more than two, from maximum dose rate of 40.4 μSv/h to 15.4 μSv/h, during one worst case scenario. The great reduction of the environment dose was achieved mainly by using larger room space with thicker lead wall, from previous 2-mm to new 5-mm in lead thickness, and by increasing patient waiting rooms/areas with less chairs available in each seating location. Other NMD administrative control measure of our dose reduction program has also been emphasized in better patient routing, scheduling and less waiting time for the diagnostic patients. (author)

  19. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  20. Radiation doses from residual radioactivity

    International Nuclear Information System (INIS)

    Okajima, Shunzo; Fujita, Shoichiro; Harley, John H.

    1987-01-01

    requires knowing the location of the person to within about 200 m from the time of the explosion to a few weeks afterwards. This is an effort that might be comparable to the present shielding study for survivors. The sizes of the four exposed groups are relatively small; however, the number has been estimated only for those exposed to fallout in the Nishiyama district of Nagasaki. Okajima listed the population of Nishiyama as about 600 at the time of the bomb. No figures are available for the other three groups. The individual exposures from residual radiation may not be significant compared with the direct radiation at the time of the bomb. On the other hand, individuals with potential exposure from these sources are dubious candidates for inclusion in a cohort that was presumably not exposed. For comparison with organ doses estimated in other parts of this program, the exposure estimates are converted to absorbed dose in tissue. The first conversion of exposure to absorbed dose in air uses the factor rad in air 0.87 x exposure in R. UNSCEAR uses an average combined factor of 0.7 to convert absorbed dose in air to absorbed dose in tissue for the whole body. This factor accounts for the change in material (air to tissue) and for backscatter and the shielding afforded by other tissues of the body. No allowance for shielding by buildings has been included here. The cumulative fallout exposures given above become absorbed doses in tissue of 12 to 24 rad for Nagasaki and 0.6 to 2 rad for Hiroshima. The cumulative exposures from induced radioactivity become absorbed doses in tissue of 18 to 24 rad for Nagasaki and about 50 rad for Hiroshima. (author)

  1. The review of radiation effects of γ total dose in CMOS circuits

    International Nuclear Information System (INIS)

    Chen Panxun; Gao Wenming; Xie Zeyuan; Mi Bang

    1992-01-01

    Radiation performances of commercial and rad-hard CMOS circuits are reviewed. Threshold voltage, static power current, V in -V out characteristic and propagation delay time related with total dose are presented for CMOS circuits from several manufacturing processes. The performance of radiation-annealing of experimental circuits had been observed for two years. The comparison has been made between the CMOS circuits made in China and the commercial RCA products. 60 Co γ source can serve as γ simulator of the nuclear explosion

  2. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Cardiovascular and Interventional Radiology, Vienna (Austria); Schoepf, V. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Spitzer, E. [Bern University Hospital, Department of Cardiology, Bern (Switzerland); Feuchtner, G.M. [Innsbruck Medical University, Department of Radiology II, Innsbruck (Austria); Gyoengyoesi, M. [Medical University Vienna, Department of Cardiology, Vienna (Austria); Uyanik-Uenal, K.; Zuckermann, A. [Medical University Vienna, Department of Cardiac Surgery, Vienna (Austria)

    2015-08-15

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  3. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    International Nuclear Information System (INIS)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F.; Schoepf, V.; Spitzer, E.; Feuchtner, G.M.; Gyoengyoesi, M.; Uyanik-Uenal, K.; Zuckermann, A.

    2015-01-01

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  4. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  5. Controlled platform for the radiation dose data measured in Radiation controlled area of KOMAC

    International Nuclear Information System (INIS)

    Park, Sung Kyun; Min, Yi Sub; Park, Jeong Min; Cho, Yong Sub

    2016-01-01

    Korea multi-purpose accelerator complex (KOMAC), the branch institute of Korea atomic energy research institute (KAERI), is a multi-user facility to provide a high-intensity proton beam with the energy from 20 MeV to the 100 MeV. This proton beam is accelerated via the proton linear accelerator that is comprised of a 50-keV injector, 3-MeV radio frequency quadrupole (RFQ), and 100-MeV drift tube linac (DTL). The KOMAC site is classified into General public area and Radiation controlled area, according to the dose rate of 0.25 μSv/h. The system for the data made in Radiation controlled area should have the database to save and the data in the database could be expressed on the monitor in the any form which user wants. The control platform to satisfy these conditions will be made on the basis of the Qt program and MYSQL program. The place with the maximum average values about the alpha and beta detected is the entrance of Radiation controlled area. However, their values are very small in comparison to the criteria to decide the contamination area in KOMAC. That is, KOMAC is safe from the radioactive contamination. The reason why the radiation dose value is twice the background value in Klystron gallery is the klystron to generate the radiation. However, actually the klystron gallery is controlled by the control room when the proton beam is accelerated

  6. Controlled platform for the radiation dose data measured in Radiation controlled area of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Kyun; Min, Yi Sub; Park, Jeong Min; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea multi-purpose accelerator complex (KOMAC), the branch institute of Korea atomic energy research institute (KAERI), is a multi-user facility to provide a high-intensity proton beam with the energy from 20 MeV to the 100 MeV. This proton beam is accelerated via the proton linear accelerator that is comprised of a 50-keV injector, 3-MeV radio frequency quadrupole (RFQ), and 100-MeV drift tube linac (DTL). The KOMAC site is classified into General public area and Radiation controlled area, according to the dose rate of 0.25 μSv/h. The system for the data made in Radiation controlled area should have the database to save and the data in the database could be expressed on the monitor in the any form which user wants. The control platform to satisfy these conditions will be made on the basis of the Qt program and MYSQL program. The place with the maximum average values about the alpha and beta detected is the entrance of Radiation controlled area. However, their values are very small in comparison to the criteria to decide the contamination area in KOMAC. That is, KOMAC is safe from the radioactive contamination. The reason why the radiation dose value is twice the background value in Klystron gallery is the klystron to generate the radiation. However, actually the klystron gallery is controlled by the control room when the proton beam is accelerated.

  7. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  8. Occupational radiation doses among diagnostic radiation workers in South Korea, 1996-2006

    International Nuclear Information System (INIS)

    Lee, W. J.; Cha, E. S.; Ha, M.; Jin, Y. W.; Hwang, S. S.; Kong, K. A.; Lee, S. W.; Lee, H. K.; Lee, K. Y.; Kim, H. J.

    2009-01-01

    This study details the distribution and trends of doses of occupational radiation among diagnostic radiation workers by using the national dose registry between 1996 and 2006 by the Korea Food and Drug Administration. Dose measurements were collected quarterly by the use of thermoluminescent dosemeter personal monitors. A total of 61 732 workers were monitored, including 18 376 radiologic technologists (30%), 13 762 physicians (22%), 9858 dentists (16%) and 6114 dental hygienists (9.9%). The average annual effective doses of all monitored workers decreased from 1.75 to 0.80 mSv over the study period. Among all diagnostic radiation workers, radiologic technologists received both the highest effective and collective doses. Male radiologic technologists aged 30-49 y composed the majority of workers receiving more than 5 mSv in a quarter. More intensive monitoring of occupational radiation exposure and investigation into its health effects on diagnostic radiation workers are required in South Korea. (authors)

  9. SU-E-I-15: Comparison of Radiation Dose for Radiography and EOS in Adolescent Scoliosis Patients

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, B; Walz-Flannigan, A [Mayo Clinic, Rochester, MN (United States)

    2014-06-01

    Purpose: To estimate patient radiation dose for whole spine imaging using EOS, a new biplanar slot-scanning radiographic system and compare with standard scoliosis radiography. Methods: The EOS imaging system (EOS Imaging, Paris, France) consists of two orthogonal x-ray fan beams which simultaneously acquire frontal and lateral projection images of a standing patient. The patient entrance skin air kerma was measured for each projection image using manufacturer-recommended exposure parameters for spine imaging. Organ and effective doses were estimated using a commercially-available Monte Carlo simulation program (PCXMC, STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland) for a 15 year old mathematical phantom model. These results were compared to organ and effective dose estimated for scoliosis radiography using computed radiography (CR) with standard exposure parameters obtained from a survey of pediatric radiographic projections. Results: The entrance skin air kerma for EOS was found to be 0.18 mGy and 0.33 mGy for posterior-anterior (PA) and lateral projections, respectively. This compares to 0.76 mGy and 1.4 mGy for CR, PA and lateral projections. Effective dose for EOS (PA and lateral projections combined) is 0.19 mSv compared to 0.51 mSv for CR. Conclusion: The EOS slot-scanning radiographic system allows for reduced patient radiation dose in scoliosis patients as compared to standard CR radiography.

  10. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  11. Severe accident management: radiation dose control, Fukushima Daiichi and TMI-2 nuclear plant accidents

    International Nuclear Information System (INIS)

    Shaw, Roger

    2014-01-01

    This presentation presents valuable dose information related to the Fukushima Daiichi and Three Mile Island Unit 2 (TMI-2) Nuclear Plant accidents. Dose information is provided for what is well known for TMI-2, and what is available for Fukushima Daiichi. Particular emphasis is placed on the difference between the type of reactors involved, overarching plant damage issues, and radiation worker dose outcomes. For TMI-2, more in depth dose data is available for the accident and the subsequent recovery efforts. The comparisons demonstrate the need to understand the wide variation in potential dose management measures and outcomes for severe reactor accidents. (author)

  12. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  13. Trends in doses to some UK radiation workers

    International Nuclear Information System (INIS)

    Best, R.J.; Kendall, G.M.; Pook, E.A.; Saunders, P.J.

    1990-01-01

    The NRPB runs a Personal Monitoring Service which issues dosemeters and keeps radiation dose records for over 10 000 workers. This database is a valuable source of information on occupational exposure to radiation though it is likely that in future the Central Index of Dose Information (CIDI) will provide more comprehensive statistics, albeit restricted to radiation workers in the sense of Ionising Radiation Regulations. This note describes doses incurred to the end of 1987 with some preliminary figures for 1988. It does not cover the same ground as earlier reports but gives more details of the structure of the monitored population by age and sex and examines evidence that mean radiation doses are decreasing with time. (author)

  14. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie; Haidar, Salwa; Moineddin, Rahim

    2006-01-01

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  15. High background radiation area: an important source of exploring the health effects of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Wei Luxin

    1997-01-01

    Objective: For obtaining more effective data from epidemiological investigation in high background radiation areas, it is necessary to analyze the advantages, disadvantages, weak points and problems of this kind of radiation research. Methods: For epidemiological investigation of population health effects of high background radiation, the author selected high background radiation areas of Yangjiang (HBRA) and a nearby control area (CA) as an instance for analysis. The investigation included classification of dose groups, comparison of the confounding factors in the incidence of mutation related diseases, cancer mortalities and the frequencies of chromosomal aberrations between HBRA and CA. This research program has become a China-Japan cooperative research since 1991. Results: The confounding factors above-mentioned were comparable between HBRA and CA, and within the dose groups in HBRA, based on a systematic study for many years. The frequencies of chromosomal aberrations increased with the increase of cumulative dose, but not for children around or below 10 years of age. The relative risks (RR) of total and site-specific cancer mortalities for HBRA were lower or around 1.00, compared with CA. The incidence of hereditary diseases and congenital deformities in HBRA were in normal range. The results were interpreted preliminarily by the modified 'dual radiation action' theory and the 'benefit-detriment competition' hypothesis. Conclusions: The author emphasizes the necessity for continuing epidemiological research in HBRA, especially for international cooperation. He also emphasizes the importance of combination of epidemiology and radiobiology

  16. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  17. A comparison of radiation dose to the neurovascular bundles in men with and without prostate brachytherapy-induced erectile dysfunction

    International Nuclear Information System (INIS)

    Merrick, Gregory S.; Butler, Wayne M.; Dorsey, Anthony T.; Lief, Jonathan H.; Donzella, Joseph G.

    2000-01-01

    Purpose: The etiology of erectile dysfunction after definitive local therapy for carcinoma of the prostate gland represents a multifactorial phenomenon including neurogenic compromise, venous insufficiency, local trauma, and psychogenic causes. It has been suggested that impotence after prostate brachytherapy is a consequence of excessive radiation dose to the neurovascular bundles (NVB). Herein we evaluate the potential relationship between radiation dose to the NVB and the development of erectile dysfunction following prostate brachytherapy. Methods and Materials: The radiation dose to the NVB was evaluated for 33 patients who developed erectile dysfunction (ED) following brachytherapy plus 21 additional patients who were potent before and subsequent to brachytherapy. Of the 54 patient study group, the median follow up was 37 months, and 25 patients were managed with 125 I as a monotherapeutic approach and 29 received 103 Pd as a boost following 45 Gy of external beam radiation therapy. Radiographic localization of the NVB was performed via a two-dimensional geometric model that placed 3-NVB calculation points on the left and right posterolateral side of each 5-mm CT slice. Parameters evaluated included dose-surface histograms, dose parameters via point doses on each slice, the magnitude of the dose in relationship to the distance from the base, and the relationship between NVB radiation dose in patients with and without ED, patient response to sildenafil and case sequence number. Results: In terms of percent prescribed minimum peripheral dose (% mPD), there was no significant difference in mean neurovascular bundle dose between potent and impotent patients, between the isotopes ( 125 I or 103 Pd), mono- or boost therapy, or side of the prostate for which the overall average was 217% ± 55% of mPD. There was also no significant dosimetric difference in terms of response to sildenafil based on a multivariate analysis which included % mPD and various dose

  18. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  19. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  20. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  1. Comparison of the ionizing radiation effects on cochineal, annatto and turmeric natural dyes

    International Nuclear Information System (INIS)

    Cosentino, Helio M.; Takinami, Patricia Y.I.; Mastro, Nelida L. del

    2016-01-01

    As studies on radiation stability of food dyes are scarce, commercially important natural food grade dyes were evaluated in terms of their sensitivity against gamma ionizing radiation. Cochineal, annatto and turmeric dyes with suitable concentrations were subjected to increasing doses up to 32 kGy and analyzed by spectrophotometry and capillary electrophoresis. The results showed different pattern of absorbance versus absorbed dose for the three systems. Carmine, the glucosidal coloring matter from the scale insect Coccus cacti L., Homoptera (cochineal) remained almost unaffected by radiation up to doses of about 32 kGy (absorbance at 494 nm). Meanwhile, at that dose, a plant-derived product annatto or urucum (Bixa orellana L.) tincture presented a nearly 58% reduction in color intensity. Tincture of curcumin (diferuloylmethane) the active ingredient in the eastern spice turmeric (Curcuma longa) showed to be highly sensitive to radiation when diluted. These data shall be taken in account whenever food products containing these food colors were going to undergo radiation processing. - Highlights: • Comparison of radiosensitivity of food colors was performed. • Carmine showed the highest resistance to radiation. • Annatto and turmeric behaved sensitive to radiation when diluted. • Turmeric was the most affected by ionizing radiation.

  2. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  3. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Colgan, P.A.; Organo, C.; Hone, C.; Fenton, D.

    2008-05-01

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  4. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  5. Comments on 'Reconsidering the definition of a dose-volume histogram'-dose-mass histogram (DMH) versus dose-volume histogram (DVH) for predicting radiation-induced pneumonitis

    International Nuclear Information System (INIS)

    Mavroidis, Panayiotis; Plataniotis, Georgios A; Gorka, Magdalena Adamus; Lind, Bengt K

    2006-01-01

    In a recently published paper (Nioutsikou et al 2005 Phys. Med. Biol. 50 L17) the authors showed that the use of the dose-mass histogram (DMH) concept is a more accurate descriptor of the dose delivered to lung than the traditionally used dose-volume histogram (DVH) concept. Furthermore, they state that if a functional imaging modality could also be registered to the anatomical imaging modality providing a functional weighting across the organ (functional mass) then the more general and realistic concept of the dose-functioning mass histogram (D[F]MH) could be an even more appropriate descriptor. The comments of the present letter to the editor are in line with the basic arguments of that work since their general conclusions appear to be supported by the comparison of the DMH and DVH concepts using radiobiological measures. In this study, it is examined whether the dose-mass histogram (DMH) concept deviated significantly from the widely used dose-volume histogram (DVH) concept regarding the expected lung complications and if there are clinical indications supporting these results. The problem was investigated theoretically by applying two hypothetical dose distributions (Gaussian and semi-Gaussian shaped) on two lungs of uniform and varying densities. The influence of the deviation between DVHs and DMHs on the treatment outcome was estimated by using the relative seriality and LKB models using the Gagliardi et al (2000 Int. J. Radiat. Oncol. Biol. Phys. 46 373) and Seppenwoolde et al (2003 Int. J. Radiat. Oncol. Biol. Phys. 55 724) parameter sets for radiation pneumonitis, respectively. Furthermore, the biological equivalent of their difference was estimated by the biologically effective uniform dose (D-bar) and equivalent uniform dose (EUD) concepts, respectively. It is shown that the relation between the DVHs and DMHs varies depending on the underlying cell density distribution and the applied dose distribution. However, the range of their deviation in terms of

  6. Investigation of natural radiation background and assessment of its population dose in China

    International Nuclear Information System (INIS)

    1989-01-01

    This paper presents the nationwide survey in 1984-1988 of environmental external radiation by integrating measurements, and the assessment of population doses from obtained data. Thermoluminescent dosimeters (TLD) model ETLD-80 with CaSO 4 : Dy were used. The survey was conducted in two different scales. In general survey, TLDs were distributed in whole area of every investigated provinces; and in local survey, one city and one village within each province were selected and investigated for the purpose of comparison of the natural radiation levels between the rural and urban areas. A marked characteristics was noted that the level of natural environmental radiation in south China seems to be higher than that in north China. It may be attributed to the geological difference in both parts. The annual individual average and collective effective dose equivalents to population of China from natural environmental radiation were estimated to be 780 μSv and 8.1 x 10 5 man. Sv, based on the model recommended by UNSCEAR 1988 Report

  7. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  8. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  9. Reducing Radiation Dose in Coronary Angiography and Angioplasty Using Image Noise Reduction Technology.

    Science.gov (United States)

    Kastrati, Mirlind; Langenbrink, Lukas; Piatkowski, Michal; Michaelsen, Jochen; Reimann, Doris; Hoffmann, Rainer

    2016-08-01

    This study sought to quantitatively evaluate the reduction of radiation dose in coronary angiography and angioplasty with the use of image noise reduction technology in a routine clinical setting. Radiation dose data from consecutive 605 coronary procedures (397 consecutive coronary angiograms and 208 consecutive coronary interventions) performed from October 2014 to April 2015 on a coronary angiography system with noise reduction technology (Allura Clarity IQ) were collected. For comparison, radiation dose data from consecutive 695 coronary procedures (435 coronary angiograms and 260 coronary interventions) performed on a conventional coronary angiography system from October 2013 to April 2014 were evaluated. Patient radiation dosage was evaluated based on the cumulative dose area product. Operators and operator practice did not change between the 2 evaluated periods. Patient characteristics were collected to evaluate similarity of patient groups. Image quality was evaluated on a 5-grade scale in 30 patients of each group. There were no significant differences between the 2 evaluated groups in gender, age, weight, and fluoroscopy time (6.8 ± 6.1 vs 6.9 ± 6.3 minutes, not significant). The dose area product was reduced from 3195 ± 2359 to 983 ± 972 cGycm(2) (65%, p technology. Image quality was graded as similar between the evaluated systems (4.0 ± 0.7 vs 4.2 ± 0.6, not significant). In conclusion, a new x-ray technology with image noise reduction algorithm provides a substantial reduction in radiation exposure without the need to prolong the procedure or fluoroscopy time. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Quantitative radiation dose-response relationships for normal tissues in man. II. Response of the salivary glands during radiotherapy

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1983-01-01

    A quantitative dose-response curve for salivary gland function in patients during radiotherapy is presented. Salivary-function data used in this study were obtained from four previously published reports. All patients were treated with 60 Co teletherapy to the head and neck using conventional treatment techniques. Salivary dysfunction was determined at specific dose levels by comparing salivary flow rates before therapy with flow rates at specific dose intervals during radiotherapy up to a total dose of 6000 cGy. Fifty percent salivary dysfunction occurred after 1000 cGy and eighty percent dysfunction was observed by the end of the therapy course (6000 cGy). The salivary-function curve was also compared to the previously published dose-response curve for taste function. Comparisons of the two curves indicate that salivary dysfunction precedes taste loss and that the shapes of the dose-response curves are different. A new term, tissue tolerance ratio, defined as the ratio of responses of two tissues given the same radiation dose, was used to make the comparisons between gustatory and salivary gland tissue effects. Measurements of salivary gland function and analysis of dose-response curves may be useful in evaluating chemical modifiers of radiation response

  11. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  12. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N D

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  13. Dose received by radiation workers in Australia, 1991

    International Nuclear Information System (INIS)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs

  14. Evaluation of Patient Radiation Dose during Orthopedic Surgery

    International Nuclear Information System (INIS)

    Osman, H; Elzaki, A.; Sam, A.K.; Sulieman, A.

    2013-01-01

    The number of orthopedic procedures requiring the use of the fluoroscopic guidance has increased over the recent years. Consequently the patient exposed to un avoidable radiation doses. The aim of the current study was to evaluate patient radiation dose during these procedures.37 patients under went dynamic hip screw (DHS) and dynamic cannulated screw (DCS) were evaluated using calibrated Thermolumincent Dosimeters (TLDs), under carm fluoroscopic machines ,in three centers in Khartoum-Sudan. The mean Entrance Skin Dose (ESD) was 7.9 m Gy per procedure. The bone marrow and gonad organ exposed to significant doses. No correlation was found between ESD and Body Mass Index (BMI), or patient weight. Well correlation was found between kilo voltage applied and ESD. Orthopedic surgeries delivered lower radiation dose to patients than cardiac catheterization or hysterosalpingraphy (HSG) procedures. More study should be implemented to follow radiation dose before surgery and after surgery

  15. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2005-01-01

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  16. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  17. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Egeblad, M.; Gottlieb, E.

    1975-01-01

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections [fr

  18. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  19. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    Hori, Y.; Yoshikawa, N.; Ohmori, S.

    1975-01-01

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  20. Offsite radiation doses from Hanford Operations for the years 1983 through 1987: A comparison of results calculated by two methods

    International Nuclear Information System (INIS)

    Soldat, J.K.

    1989-10-01

    This report compares the results of the calculation of potential radiation doses to the public by two different environmental dosimetric systems for the years 1983 through 1987. Both systems project the environmental movement of radionuclides released with effluents from Hanford operations; their concentrations in air, water, and foods; the intake of radionuclides by ingestion and inhalation; and, finally, the potential radiation doses from radionuclides deposited in the body and from external sources. The first system, in use for the past decade at Hanford, calculates radiation doses in terms of 50-year cumulative dose equivalents to body organs and to the whole body, based on the methodology defined in ICRP Publication 2. This system uses a suite of three computer codes: PABLM, DACRIN, and KRONIC. In the new system, 50-year committed doses are calculated in accordance with the recommendations of the ICRP Publications 26 and 30, which were adopted by the US Department of Energy (DOE) in 1985. This new system calculates dose equivalent (DE) to individual organs and effective dose equivalent (EDE). The EDE is a risk-weighted DE that is designed to be an indicator of the potential health effects arising from the radiation dose. 16 refs., 1 fig., 38 tabs

  1. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  2. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  3. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  4. Radiation Dose to Newborns in Neonatal Intensive Care Units

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M. T.; Malekzadeh, M.

    2012-01-01

    With the increase of X-ray use for medical diagnostic purposes, knowing the given doses is necessary in patients for comparison with reference levels. The concept of reference doses or diagnostic reference levels has been developed as a practical aid in the optimization of patient protection in diagnostic radiology. To assess the radiation doses to neonates from diagnostic radiography (chest and abdomen). This study has been carried out in the neonatal intensive care unit of a province in Iran. Entrance surface dose was measured directly with thermoluminescent dosimeters. The population included 195 neonates admitted for a diagnostic radiography, in eight NICUs of different hospital types. The mean entrance surface dose for chest and abdomen examinations were 76.3 μGy and 61.5 μGy, respectively. Diagnostic reference levels for neonate in NICUs of the province were 88 μGy for chest and 98 μGy for abdomen examinations that were slightly higher than other studies. Risk of death due to radiation cancer incidence of abdomens examination was equal to 1.88 × 10 -6 for male and 4.43 × 10 -6 for female. For chest X-ray, it was equal to 2.54 × 10 -6 for male and 1.17 × 10 -5 for female patients. Diagnostic reference levels for neonates in our province were slightly higher than values reported by other studies such as European national diagnostic reference levels and the NRPB reference dose. The main reason was related to using a high mAs and a low kVp applied in most departments and also a low focus film distance. Probably lack of collimation also affected some exams in the NICUs.

  5. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications

    International Nuclear Information System (INIS)

    Loubele, M.; Bogaerts, R.; Van Dijck, E.; Pauwels, R.; Vanheusden, S.; Suetens, P.; Marchal, G.

    2009-01-01

    Objectives: To compare the effective dose levels of cone beam computed tomography (CBCT) for maxillofacial applications with those of multi-slice computed tomography (MSCT). Study design: The effective doses of 3 CBCT scanners were estimated (Accuitomo 3D, i-CAT, and NewTom 3G) and compared to the dose levels for corresponding image acquisition protocols for 3 MSCT scanners (Somatom VolumeZoom 4, Somatom Sensation 16 and Mx8000 IDT). The effective dose was calculated using thermoluminescent dosimeters (TLDs), placed in a Rando Alderson phantom, and expressed according to the ICRP 103 (2007) guidelines (including a separate tissue weighting factor for the salivary glands, as opposed to former ICRP guidelines). Results: Effective dose values ranged from 13 to 82 μSv for CBCT and from 474 to 1160 μSv for MSCT. CBCT dose levels were the lowest for the Accuitomo 3D, and highest for the i-CAT. Conclusions: Dose levels for CBCT imaging remained far below those of clinical MSCT protocols, even when a mandibular protocol was applied for the latter, resulting in a smaller field of view compared to various CBCT protocols. Considering this wide dose span, it is of outmost importance to justify the selection of each of the aforementioned techniques, and to optimise the radiation dose while achieving a sufficient image quality. When comparing these results to previous dosimetric studies, a conversion needs to be made using the latest ICRP recommendations.

  6. Conventional and CT angiography in children: dosimetry and dose comparisons

    International Nuclear Information System (INIS)

    Frush, Donald P.; Yoshizumi, Terry

    2006-01-01

    Tremendous advances have been made in imaging in children with both congenital and acquired heart disease. These include technical advances in cardiac catheterization and conventional angiography, especially with advancements in interventional procedures, as well as noninvasive imaging with MR and CT angiography. With rapid advances in multidetector CT (MDCT) technology, most recently 64-detector array systems (64-slice MDCT), have come a number of advantages over MR. However, both conventional and CT angiography impart radiation dose to children. Although the presence of radiation exposure to children has long been recognized, it is apparent that our ability to assess this dose, particularly in light of the rapid advancements, has been limited. Traditional methods of dosimetry for both conventional and CT angiography are somewhat cumbersome or involve a potential for substantial uncertainty. Recent developments in dosimetry, including metal oxide semiconductor field effect transistors (MOSFET) and the availability of anthropomorphic, tissue-equivalent phantoms have provided new opportunities for dosimetric assessments. Recent work with this technology in state-of-the-art cardiac angiography suites as well as with MDCT have offered direct comparisons of doses in infants and children undergoing diagnostic cardiac evaluation. It is with these dose data that assessment of risks, and ultimately the assessment of risk-benefit, can be better achieved. (orig.)

  7. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  8. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  9. Progress in high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.; Chadwick, K.H.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expanded applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Reference systems also include a number of chemical dose meters: ferrous sulphate, ferrous-cupric sulphate, and ceric sulphate acidic aqueous solutions. Requirements for stable and reliable transfer dose meters have led to further developments of several important high-dose systems: amino acids and saccharides analysed by ESR or lyoluminescence, thermoluminescent materials, radiochromic dyes and plastics, ceric-cerous solutions analysed by potentiometry, and ethanol-chlorobenzene solutions analysed by high-frequency oscillometry. A number of other prospective dose meters are also treated in this review. In addition, an IAEA programme of high-dose standardization and intercomparison for industrial radiation processing is described. (author)

  10. Dose effect relationships in cervical and thoracic radiation myelopathies

    International Nuclear Information System (INIS)

    Holdorff, B.

    1980-01-01

    The course and prognosis of radiation myelopathies are determined by 3 factors: the segmental (vertical) location of the lesion, the extent of the transverse syndrome (complete or incomplete) and the radiation dose. The median spinal dose in cervical radiation myelopathies with fatal outcome was higher than in survivals with an incomplete transverse syndrome. In thoracic radiation myelopathies a dose difference between complete and incomplete transverse syndromes could be found as well. Incomplete transverse syndromes as submaximum radiation injuries are more suitable for the determination of the spinal tolerance dose than complete transverse syndromes. The lowest threshold could be stated for cases following high-volume irradiation of the lymphatic system. (Auth.)

  11. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  12. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    Kettunen, A.

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose to a

  13. Systematic review on physician's knowledge about radiation doses and radiation risks of computed tomography

    International Nuclear Information System (INIS)

    Krille, Lucian; Hammer, Gael P.; Merzenich, Hiltrud; Zeeb, Hajo

    2010-01-01

    Background: The frequent use of computed tomography is a major cause of the increasing medical radiation exposure of the general population. Consequently, dose reduction and radiation protection is a topic of scientific and public concern. Aim: We evaluated the available literature on physicians' knowledge regarding radiation dosages and risks due to computed tomography. Methods: A systematic review in accordance with the Cochrane and PRISMA statements was performed using eight databases. 3091 references were found. Only primary studies assessing physicians' knowledge about computed tomography were included. Results: 14 relevant articles were identified, all focussing on dose estimations for CT. Overall, the surveys showed moderate to low knowledge among physicians concerning radiation doses and the involved health risks. However, the surveys varied considerably in conduct and quality. For some countries, more than one survey was available. There was no general trend in knowledge in any country except a slight improvement of knowledge on health risks and radiation doses in two consecutive local German surveys. Conclusions: Knowledge gaps concerning radiation doses and associated health risks among physicians are evident from published research. However, knowledge on radiation doses cannot be interpreted as reliable indicator for good medical practice.

  14. Radiation apparatus with distance mapper for dose control

    International Nuclear Information System (INIS)

    Saunders, A.M.

    1990-01-01

    The patent describes apparatus for delivering a radiation dose. It comprises: radiation source means for producing a beam of ionizing gamma ray or x-ray radiation directed so as to deliver a dose of the radiation to an area of a target surface, a light source emitting a light beam in a direction transverse to the direction of the ionizing radiation beam, a photodetector, positioned to receive light scattered from the target surface, means for scanning the light beam over the area of the target surface, means for forming a three-dimensional surface profile map of the area of the target surface without movement of the radiation source means or the light source, and means responsive to the surface profile map for adjusting the dose of radiation from the radiation source over the area of the target surface, so that the radiation source means and the light source may be operated simultaneously

  15. Occupational radiation dose in Indonesia 1981-1986

    International Nuclear Information System (INIS)

    Hiswara, E.; Ismono, A.

    1993-01-01

    Occupational radiation dose in Indonesia 1981-1986. This paper presents the occupational radiation dose in Indonesia during the period of 1981-1986. The highest collective dose accurated in 1983 was calculated to be 2.68 man-Sv, with the maximum mean dose per worker, who received dose more than zero, was around 11.07 mSv in the same year. In 1985, a relative collective dose from medical occupations of 1.88 man mSv for 10 6 population was estimated based on its total collective dose of 0.31 man-mSv. The total number of workers who received annual collective dose less than 5 mSv varied from 97.0% in 1981 to 99.5% in 1986. As a group, the industrial occupations has considerably higher risk in receiving a dose than others. (authors). 11 refs., 7 tabs

  16. Comparison of the uncertainties of several European low-dose calibration facilities

    Science.gov (United States)

    Dombrowski, H.; Cornejo Díaz, N. A.; Toni, M. P.; Mihelic, M.; Röttger, A.

    2018-04-01

    The typical uncertainty of a low-dose rate calibration of a detector, which is calibrated in a dedicated secondary national calibration laboratory, is investigated, including measurements in the photon field of metrology institutes. Calibrations at low ambient dose equivalent rates (at the level of the natural ambient radiation) are needed when environmental radiation monitors are to be characterised. The uncertainties of calibration measurements in conventional irradiation facilities above ground are compared with those obtained in a low-dose rate irradiation facility located deep underground. Four laboratories quantitatively evaluated the uncertainties of their calibration facilities, in particular for calibrations at low dose rates (250 nSv/h and 1 μSv/h). For the first time, typical uncertainties of European calibration facilities are documented in a comparison and the main sources of uncertainty are revealed. All sources of uncertainties are analysed, including the irradiation geometry, scattering, deviations of real spectra from standardised spectra, etc. As a fundamental metrological consequence, no instrument calibrated in such a facility can have a lower total uncertainty in subsequent measurements. For the first time, the need to perform calibrations at very low dose rates (< 100 nSv/h) deep underground is underpinned on the basis of quantitative data.

  17. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  18. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  19. The Dose Response Relationship for Radiation Carcinogenesis

    Science.gov (United States)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  20. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  1. Influence of radiation dose on positive surgical margins in women undergoing breast conservation therapy

    International Nuclear Information System (INIS)

    DiBiase, Steven J.; Komarnicky, Lydia T.; Heron, Dwight E.; Schwartz, Gordon F.; Mansfield, Carl M.

    2002-01-01

    Purpose: Positive surgical margins adversely influence local tumor control in breast conservation therapy (BCT). However, reports have conflicted regarding whether an increased radiation dose can overcome this poor prognostic factor. In this study, we evaluated the influence of an increased radiation dose on tumor control in women with positive surgical margins undergoing BCT. Methods and Materials: Between 1978 and 1994, 733 women with pathologic Stage I-II breast cancer and known surgical margin status were treated at Thomas Jefferson University Hospital with BCT. Of these 733 patients, 641 women had a minimal tumor bed dose of 60 Gy and had documentation of their margin status; 509 had negative surgical margins, and 132 had positive surgical margins before definitive radiotherapy. Complete gross excision of the tumor and axillary lymph node sampling was obtained in all patients. The median radiation dose to the primary site was 65.0 Gy (range 60-76). Of the women with positive margins (n=132), the influence of higher doses of radiotherapy was evaluated. The median follow-up time was 52 months. Results: The local tumor control rate for patients with negative margins at 5 and 10 years was 94% and 88%, respectively, compared with 85% and 67%, respectively, for those women with positive margins (p=0.001). The disease-free survival rate for the negative margin group at 5 and 10 years was 91% and 82%, respectively, compared with 76% and 71%, respectively, for the positive margin group (p = 0.001). The overall survival rate of women with negative margins at 5 and 10 years was 95% and 90%, respectively. By comparison, for women with positive surgical margins, the overall survival rate at 5 and 10 years was 86% and 79%, respectively (p=0.008). A comparison of the positive and negative margin groups revealed that an increased radiation dose (whether entered as a dichotomous or a continuous variable) >65.0 Gy did not improve local tumor control (p=0.776). On Cox

  2. Emissions and doses from sources of ionising radiation in the Netherlands: radiation policy monitoring

    International Nuclear Information System (INIS)

    Eleveld, H.; Pruppers, M.

    2002-01-01

    In 1997 the Ministry of Housing, Spatial Planning and the Environment requested RIVM to develop an information system for policy monitoring. One of the motives was that the European Union requires that the competent authorities of each member state ensure that dose estimates due to practices involving exposure to ionising radiation are made as realistic as possible for the population as a whole and for reference groups in all places where such groups may occur. Emissions of radionuclides and radiation to the environment can be classified as follows: (1) emissions to the atmosphere, (2) emissions to the aquatic system and (3) emission of external radiation from radioactive materials and equipment that produces ionising radiation. Released radioactivity is dispersed via exposure pathways, such as the atmosphere, deposition on the ground and farmland products, drinking water, fish products, etc. This leads to radiation doses due to inhalation, ingestion and exposure to external radiation. To assess the possible radiation doses different kinds of models are applied, varying from simple multiplications with dispersion coefficients, transfer coefficients and dose conversion coefficients to complex dispersion models. In this paper an overview is given of the human-induced radiation doses in the Netherlands. Also, trends in and the effect of policy on the radiation dose of members of the public are investigated. This paper is based on an RIVM report published recently. A geographical distribution of radiation risks due to routine releases for a typical year in the Netherlands was published earlier

  3. Tumour induction by small doses of ionised radiation

    International Nuclear Information System (INIS)

    Putten, L.M. van

    1980-01-01

    The effect of low doses of ionised radiation on tumour induction in animals is discussed. It is hypothesised that high doses of radiation can strongly advance tumour induction from the combination of a stimulated cell growth, as a reaction to massive cell killing, and damage to DNA in the cell nuclei. This effect has a limit below which the radiation dose causes a non-significant amount of dead cells. However in animals where through other reasons, a chronic growth stimulation already exists, only one effect, the damage of DNA, is necessary to induce tumours. A linear dose effect without a threshold level applies in these cases. Applying this hypothesis to man indicates that calculating low dose effects by linear extrapolation of high dose effects is nothing more than a reasonable approximation. (C.F.)

  4. Spiral CT and radiation dose

    International Nuclear Information System (INIS)

    Imhof, H.; Schibany, N.; Ba-Ssalamah, A.; Czerny, C.; Hojreh, A.; Kainberger, F.; Krestan, C.; Kudler, H.; Noebauer, I.; Nowotny, R.

    2003-01-01

    Recent studies in the USA and Europe state that computed tomography (CT) scans compromise only 3-5% of all radiological exams, but they contribute 35-45% of total radiation dose to the patient population. These studies lead to concern by several public authorities. Basis of CT-dose measurements is the computed tomography dose index (CTDI), which was established 1981. Nowadays there are several modifications of the CTDI values, which may lead to confusion. It is suggested to use the standardized CTDI-100 w. value together with the dose length product in all CT-examinations. These values should be printed on all CT-images and allows an evaluation of the individualized patient dose. Nowadays, radiologist's aim must be to work at the lowest maximal diagnostic acceptable signal to noise ratio. To decrease radiation dose radiologist should use low kV and mA, but high pitches. Newly developed CT-dose-reduction soft-wares and filters should be installed in all CT-machines. We should critically compare the average dose used for a specific examination with the reference dose used in this country and/or Europe. Greater differences should caution the radiologist. Finally, we as radiologists must check very carefully all indications and recommend alternative imaging methods. But we have also to teach our customers--patients and medical doctors who are non-radiologists--that a 'good' image is not that which show all possible information, but that which visualize 'only' the diagnostic necessary information

  5. The Study of External Radiation Dose for Radiation Worker at PRSG-BATAN Serpong

    International Nuclear Information System (INIS)

    Sunarningsih; Mashudi; A Lilik W; Yosep S

    2012-01-01

    The study of External radiation dose for radiation worker at PRSG-BATAN Serpong has been carried out. The sample is taken from the System Reactor division (BSR), Operation Reactor division, (BOR) Safety division UPN, UJM and head of PRSG by setting Thermoluminescence Dosemeter (TLD) on the chest, then is detected by a tool TLD reader model 6600. The aim of this study is to evaluate the occupational exposure dose that has been accepted by the radiation worker for the last five years. The result in average doses at BSR is 0,99 mSv, BOR is 3,27 mSv, at BK is 0,69 mSv and UPN + UJM + head of PRSG is 0,03 mSv. The result highest doses at BSR is 6,58 mSv, BOR is 28,94 mSv, BK is 4,24 mSv, and UPN UJM Head of PRSG is 0,52 mSv. Dose interval radiation worker at PRSG BATAN ttd - 28,98 mSv. To overall the external personal dose acceptant for radiation worker at PRSG BATAN one below maximum permissible dose acceptant that allowed by BAPETEN, that is 20 mSv in average every year during five years. (author)

  6. Epigenomic Adaptation to Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Michael N. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  7. Radiation dose measurement in gastrointestinal studies

    International Nuclear Information System (INIS)

    Sulieman, A.; Elzaki, M.; Kappas, C.; Theodorou, K.

    2011-01-01

    Barium studies investigations (barium swallow, barium meal and barium enema) are the basic routine radiological examination, where barium sulphate suspension is introduced to enhance image contrast of gastrointestinal tracts. The aim of this study was to quantify the patients' radiation doses during barium studies and to estimate the organ equivalent dose and effective dose with those procedures. A total of 33 investigations of barium studies were measured by using thermoluminescence dosemeters. The result showed that the patient entrance surface doses were 12.6±10, 44.5±49 and 35.7±50 mGy for barium swallow, barium meal, follow through and enema, respectively. Effective doses were 0.2, 0.35 and 1.4 mSv per procedure for barium swallow, meal and enema respectively. Radiation doses were comparable with the previous studies. A written protocol for each procedure will reduce the inter-operator variations and will help to reduce unnecessary exposure. (authors)

  8. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Wang Zhikang; Sun Jianzhong; Zhao Zudan

    2012-01-01

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  9. Radiation dose with digital breast tomosynthesis compared to digital mammography. Per-view analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gennaro, Gisella [Veneto Institute of Oncology IOV- IRCCS, Radiology Unit, Padua (Italy); Bernardi, D. [Azienda Provinciale Servizi Sanitari (APSS), U.O. Senologia Clinica e Screening Mammografico, Department of Diagnostics, Trento (Italy); Houssami, N. [University of Sydney, Screening and Test Evaluation Program (STEP), School of Public Health, Sydney Medical School, Sydney (Australia)

    2018-02-15

    To compare radiation dose delivered by digital mammography (FFDM) and breast tomosynthesis (DBT) for a single view. 4,780 FFDM and 4,798 DBT images from 1,208 women enrolled in a screening trial were used to ground dose comparison. Raw images were processed by an automatic software to determine volumetric breast density (VBD) and were used together with exposure data to compute the mean glandular dose (MGD) according to Dance's model. DBT and FFDM were compared in terms of operation of the automatic exposure control (AEC) and MGD level. Statistically significant differences were found between FFDM and DBT MGDs for all views (CC: MGD{sub FFDM}=1.366 mGy, MGD{sub DBT}=1.858 mGy; p<0.0001; MLO: MGD{sub FFDM}=1.374 mGy, MGD{sub DBT}=1.877 mGy; p<0.0001). Considering the 4,768 paired views, Bland-Altman analysis showed that the average increase of DBT dose compared to FFDM is 38 %, and a range between 0 % and 75 %. Our findings show a modest increase of radiation dose to the breast by tomosynthesis compared to FFDM. Given the emerging role of DBT, its use in conjunction with synthetic 2D images should not be deterred by concerns regarding radiation burden, and should draw on evidence of potential clinical benefit. (orig.)

  10. Radiation doses from computed tomography in Australia

    International Nuclear Information System (INIS)

    Thomson, J.E.M.; Tingey, D.R.C.

    1997-11-01

    Recent surveys in various countries have shown that computed tomography (CT) is a significant and growing contributor to the radiation dose from diagnostic radiology. Australia, with 332 CT scanners (18 per million people), is well endowed with CT equipment compared to European countries (6 to 13 per million people). Only Japan, with 8500 units (78 per million people), has a significantly higher proportion of CT scanners. In view of this, a survey of CT facilities, frequency of examinations, techniques and patient doses has been performed in Australia. It is estimated that there are 1 million CT examinations in Australia each year, resulting in a collective effective dose of 7000 Sv and a per caput dose of 0.39 mSv. This per caput dose is much larger than found in earlier studies in the UK and New Zealand but is less than 0.48 mSv in Japan. Using the ICRP risk factors, radiation doses from CT could be inducing about 280 fatal cancers per year in Australia. CT is therefore a significant, if not the major, single contributor to radiation doses and possible risk from diagnostic radiology. (authors)

  11. Radiation and radiation protection; Strahlung und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2017-04-15

    The publication of the Bundesamt fuer Strahlenschutz covers the following issues: (i) Human beings in natural and artificial radiation fields; (ii) ionizing radiation: radioactivity and radiation, radiation exposure and doses; measurement of ionizing radiation, natural radiation sources, artificial radiation sources, ionizing radiation effects on human beings, applied radiation protection, radiation exposure of the German population, radiation doses in comparison; (iii) non-ionizing radiation; low-frequency electric and magnetic fields, high-frequency electromagnetic fields, optical radiation; (iiii) glossary, (iv) units and conversion.

  12. A trial of radiation dose prescription based on dose-cell survival formula

    International Nuclear Information System (INIS)

    Allen, E.P.

    1984-01-01

    Radiation treatment has been prescribed for 379 basal cell carcinomata on the basis of a selected equivalent single dose derived from the standard multi-target dose-cell survival formula using values of m = 2 and Do = 130 rads for orthovoltage x-rays. The results suggest that the approach provides a flexible and acceptable alternative to prescription by total dose or by Nominal Standard Dose. It is submitted that Total Dose is an inadequate expression of radiobiological effects: that the NSD and related systems are valuable measures of the ability of normal tissues to recover from radiation damage: and that a parallel measure of the degree of tumour depopulation has become necessary to allow further progress in alternative fractionation schedules

  13. Radiation dose reduction in chest CT—Review of available options

    International Nuclear Information System (INIS)

    Kubo, Takeshi; Ohno, Yoshiharu; Kauczor, Hans Ulrich; Hatabu, Hiroto

    2014-01-01

    Highlights: • The present status of proliferating CT examinations was presented. • Technical improvements of CT scanners for radiation dose reduction were reviewed. • Advantage and disadvantage of methods for CT radiation dose reduction were discussed. • Evidences for safety of CT radiation dose reduction were reviewed. - Abstract: Computed tomography currently accounts for the majority of radiation exposure related to medical imaging. Although technological improvement of CT scanners has reduced the radiation dose of individual examinations, the benefit was overshadowed by the rapid increase in the number of CT examinations. Radiation exposure from CT examination should be kept as low as reasonably possible for patient safety. Measures to avoid inappropriate CT examinations are needed. Principles and information on radiation dose reduction in chest CT are reviewed in this article. The reduction of tube current and tube potential are the mainstays of dose reduction methods. Study results indicate that routine protocols with reduced tube current are feasible with diagnostic results comparable to conventional standard dose protocols. Tube current adjustment is facilitated by the advent of automatic tube current modulation systems by setting the appropriate image quality level for the purpose of the examination. Tube potential reduction is an effective method for CT pulmonary angiography. Tube potential reduction often requires higher tube current for satisfactory image quality, but may still contribute to significant radiation dose reduction. Use of lower tube potential also has considerable advantage for smaller patients. Improvement in image production, especially the introduction of iterative reconstruction methods, is expected to lower radiation dose significantly. Radiation dose reduction in CT is a multifaceted issue. Understanding these aspects leads to an optimal solution for various indications of chest CT

  14. Radiation dose reduction in chest CT—Review of available options

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takeshi, E-mail: tkubo@kuhpkyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Kauczor, Hans Ulrich, E-mail: hu.kauczor@med.uni-heidelberg.de [Diagnostic and Interventional Radiology, University Clinic Heidelberg, Im Neuenheimer Feld 110, D-69120 Heidelberg (Germany); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)

    2014-10-15

    Highlights: • The present status of proliferating CT examinations was presented. • Technical improvements of CT scanners for radiation dose reduction were reviewed. • Advantage and disadvantage of methods for CT radiation dose reduction were discussed. • Evidences for safety of CT radiation dose reduction were reviewed. - Abstract: Computed tomography currently accounts for the majority of radiation exposure related to medical imaging. Although technological improvement of CT scanners has reduced the radiation dose of individual examinations, the benefit was overshadowed by the rapid increase in the number of CT examinations. Radiation exposure from CT examination should be kept as low as reasonably possible for patient safety. Measures to avoid inappropriate CT examinations are needed. Principles and information on radiation dose reduction in chest CT are reviewed in this article. The reduction of tube current and tube potential are the mainstays of dose reduction methods. Study results indicate that routine protocols with reduced tube current are feasible with diagnostic results comparable to conventional standard dose protocols. Tube current adjustment is facilitated by the advent of automatic tube current modulation systems by setting the appropriate image quality level for the purpose of the examination. Tube potential reduction is an effective method for CT pulmonary angiography. Tube potential reduction often requires higher tube current for satisfactory image quality, but may still contribute to significant radiation dose reduction. Use of lower tube potential also has considerable advantage for smaller patients. Improvement in image production, especially the introduction of iterative reconstruction methods, is expected to lower radiation dose significantly. Radiation dose reduction in CT is a multifaceted issue. Understanding these aspects leads to an optimal solution for various indications of chest CT.

  15. Radiation Dose Contribution To The Worker Health Level At Serpong Area

    International Nuclear Information System (INIS)

    Yuwono, Indro

    2000-01-01

    Analysis of internal and external radiation doses received for radiation and non-radiation workers of P2TBDU have been done. In the period of 1997/1998 and 1998/1999 there were no significant increasing level of radiation doses received that was 0.55 mSv and highest received radiation dose was 2.66% from dose limit value. Increasing of healthy difference on the same period was 5.76%. Increasing of healthy difference no cause by increasing of radiation dose received but maybe the food consumption design

  16. Radiation dose reduction without compromise to image quality by alterations of filtration and focal spot size in cerebral angiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joon; Park, Min Keun; Jung, Da Eun; Kang, Jung Han; Kim, Byung Moon [Dept. of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Different angiographic protocols may influence the radiation dose and image quality. In this study, we aimed to investigate the effects of filtration and focal spot size on radiation dose and image quality for diagnostic cerebral angiography using an in-vitro model and in-vivo patient groups. Radiation dose and image quality were analyzed by varying the filtration and focal spot size on digital subtraction angiography exposure protocols (1, inherent filtration + large focus; 2, inherent + small; 3, copper + large; 4, copper + small). For the in-vitro analysis, a phantom was used for comparison of radiation dose. For the in-vivo analysis, bilateral paired injections, and patient cohort groups were compared for radiation dose and image quality. Image quality analysis was performed in terms of contrast, sharpness, noise, and overall quality. In the in-vitro analysis, the mean air kerma (AK) and dose area product (DAP)/frame were significantly lower with added copper filtration (protocols 3 and 4). In the in-vivo bilateral paired injections, AK and DAP/frame were significantly lower with filtration, without significant difference in image quality. The patient cohort groups with added filtration (protocols 3 and 4) showed significant reduction of total AK and DAP/patient without compromise to the image quality. Variations in focal spot size showed no significant differences in radiation dose and image quality. Addition of filtration for angiographic exposure studies can result in significant total radiation dose reduction without loss of image quality. Focal spot size does not influence radiation dose and image quality. The routine angiographic protocol should be judiciously investigated and implemented.

  17. Ultraviolet Radiation Dose National Standard of México

    Science.gov (United States)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  18. Comparative risk assessment of radiation and other mutagenic agents. Low dose relative risk of different ionizing radiations and comparison with UV-radiation

    NARCIS (Netherlands)

    Leenhouts HP; Chadwick KH; Pruppers MJM; Wijngaard E; Sijsma MJ; Bouwens BT

    1990-01-01

    This report is the final report of a research contract of RIVM in the framework of the Radiation Protection Programme of the Commission of the European Communities. The aim of the project was to investigate the nature of the dose-effect relationship for radiobiological effects after different types

  19. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  20. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    International Nuclear Information System (INIS)

    Gridley, Daila S.

    2008-01-01

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of 'dirty bombs' by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  1. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  2. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  3. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    Science.gov (United States)

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  5. The development of wireless radiation dose monitoring using smart phone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo; Jeong, Gyo Seong; Lee, Yun Jong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Chonbuk National University, Jeonju (Korea, Republic of); Lim, Chai Wan [REMTECH, Seoul (Korea, Republic of)

    2016-11-15

    Radiation workers at a nuclear facility or radiation working area should hold personal dosimeters. some types of dosimeters have functions to generate audible or visible alarms to radiation workers. However, such devices used in radiation fields these days have no functions to communicate with other equipment or the responsible personnel. our project aims at the development of a remote wireless radiation dose monitoring system that can be utilized to monitor the radiation dose for radiation workers and to notify the radiation protection manager of the dose information in real time. We use a commercial survey meter for personal radiation measurement and a smart phone for a mobile wireless communication tool and a Beacon for position detection of radiation workers using Blue tooth communication. In this report, the developed wireless dose monitoring of cellular phone is introduced.

  6. Effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice

    International Nuclear Information System (INIS)

    Meng Qingyong; Chen Shali; Liu Shuzheng

    2003-01-01

    Objective: To the effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice. Methods: The expression of proteins was analyzed by gel filtration with Sephadex G-100 and HPLC based on separation of proteins on thymocyte cytosol and nuclei after whole-body irradiation with 75 mGy X-rays and sham-irradiation, and their biological activity was examined by mouse splenocyte proliferation and chromosome aberration of human peripheral blood lymphocytes. Results: HPLC analysis showed that there was a marked increase in expression of 61.4 kD protein in the extract of thymocyte cytosol and 30.4 kD protein in the extract of thymocyte nuclei in comparison with the corresponding fractions from the sham-irradiated control mice. These protein fractions from the thymocyte cytosol and nuclei of the irradiated mice showed both stimulating effect on normal T cell proliferation and protective effect on chromosome damage induced by high dose radiation. Conclusion: These findings might have implications in study of mechanism of immunoenhancement and cytogenetic adaptive response induced by low dose radiation

  7. PET/CT-guided Interventions: Personnel Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  8. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  9. Biological indicators for radiation absorbed dose: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  10. Design and construction of a calorimeter for the measurement of radiation doses in a nuclear reactor

    International Nuclear Information System (INIS)

    Lugo R, J.F.

    1979-01-01

    The amount of energy deposited by the radiation in an absorber system, in radiation dose units was established, the Reactor Triga Mark III core of the Mexican Nuclear Center was used as radiation source. The calorimetric method was used, which gives us a direct measurement in energy units. The total dose was measured, that is, no difference was made between the different forms of radiation that operate with the system. A calorimeter was made with the following materials: stainless steel jacket, aluminium absorber material and thermometers of iron alloy. The calibration system was made for the heating and cooling technique, obtaining with the experimental data the value of the pseudo period constant. With that value and using the fit derived equation, the dose values were established for the G-21 position of the reactor core. It was established that the obtained dose is a function of the operation reactor time before the measurement, at the same a lot of propositions are presented in order to improve this technique, as for the used materials as to the obtaining the most fit equations. A comparison was made between the theoretical calculated dose and the experimentally obtained data with the calorimetric technique. (author)

  11. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    Zielinski, J. M.; Band, P. R.; Ashmore, P. J.; Jiang, H.; Shilnikova, N. S.; Tait, V. K.; Krewski, D.

    2009-01-01

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  12. Cancer and low dose responses in vivo: implications for radiation protection

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    2006-01-01

    Full text: Radiation protection practices assume that cancer risk is linearly proportional to total dose, without a threshold, both for people with normal cancer risk and for people who may be genetically cancer prone. Mice heterozygous for the Tp 53 gene are cancer prone, and their increased risk from high doses was not different from Tp 53 normal mice. However, in either Tp 53 normal or heterozygous mice, a single low dose of low LET radiation given at low dose rate protected against both spontaneous and radiation-induced cancer by increasing tumor latency. Increased tumor latency without a cancer frequency change implies that low doses in vivo primarily slow the process of genomic instability, consistent with the elevated capacity for correct DSB rejoining seen in low dose exposed cells. The in vivo animal data indicates that, for low doses and low dose rates in both normal and cancer prone adult mice, risk does not increase linearly with dose, and dose thresholds for increased risk exist. Below those dose thresholds (which are influenced by Tp 53 function) overall risk is reduced below that of unexposed control mice, indicating that Dose Rate Effectiveness Factors (DREF) may approach infinity, rather than the current assumption of 2. However, as dose decreases, different tissues appear to have different thresholds at which detriment turns to protection, indicating that individual tissue weighting factors (Wt) are also not constant, but vary from positive values to zero with decreasing dose. Measurements of Relative Biological Effect between high and low LET radiations are used to establish radiation weighting factors (Wr) used in radiation protection, and these are also assumed to be constant with dose. However, since the risk from an exposure to low LET radiation is not constant with dose, it would seem unlikely that radiation-weighting factors for high LET radiation are actually constant at low dose and dose rate

  13. Analysis of occupational doses of radiation workers in medical institutions

    International Nuclear Information System (INIS)

    Sanaye, S.S.; Baburajan, Sujatha; Joshi, V.D.; Pawar, S.G.; Nalawade, S.K.; Raman, N.V.; Kher, R.K.

    2007-01-01

    Routine monitoring of occupational radiation workers is done for controlling the doses to the individuals and to demonstrate the compliance with occupational dose limits. One of the objective of personnel monitoring program is the assessment of the radiation safety of working area and trends of exposure histories of individuals or group of workers. Computerised dose registry of all monitored radiation workers along with their personnel data helps in analyzing these trends. This in turn helps the institutions in management of their radiation safety programs. In India, annual and life time occupational dose records are maintained as National Dose Registry in the Radiological Physics and Advisory Division, Bhabha Atomic Research Centre. This paper presents analysis of occupational dose data of monitored radiation workers in medical institutions in India during last five years (i.e. 2002-2006)

  14. Radiation dose modeling using IGRIP and Deneb/ERGO

    International Nuclear Information System (INIS)

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-01-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb's ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood

  15. Potential gonadal dose from leakage radiation?

    International Nuclear Information System (INIS)

    Nicholson, R.A.

    1995-01-01

    The author draws attention to the potential dangers of leakage radiation from mobile image intensifier units, and points out that during interventional urological procedures, radiation from below the urologist's knees may irradiate male gonads without being intercepted by protective aprons. Results are presented for a Shimatzu WHA mobile II, phantom doses being measured with an ionization chamber. Dose rates measured in the male gonad position were compared with rates at waist level behind a 0.35 mm lead equivalent shielding and dose rates at collar level outside the lead apron. Results are also presented of a study on the effect on gonad dose of a) adding 0.7 mm lead shielding to the tube housing and b) adding 0.7 mm lead and removing the spacer cone to reduce scatter. Results show that it is possible for gonad doses to be comparable with those assumed for the eyes, rather than the body. (Author)

  16. Audit of radiation dose during balloon mitral valvuloplasty procedure

    International Nuclear Information System (INIS)

    Livingstone, Roshan S; Chandy, Sunil; Peace, B S Timothy; George, Paul; John, Bobby; Pati, Purendra

    2006-01-01

    Radiation doses to patients during cardiological procedures are of concern in the present day scenario. This study was intended to audit the radiation dose imparted to patients during the balloon mitral valvuloplasty (BMV) procedure. Thirty seven patients who underwent the BMV procedure performed using two dedicated cardiovascular machines were included in the study. The radiation doses imparted to patients were measured using a dose area product (DAP) meter. The mean DAP value for patients who underwent the BMV procedure from one machine was 19.16 Gy cm 2 and from the other was 21.19 Gy cm 2 . Optimisation of exposure parameters and radiation doses was possible for one machine with the use of appropriate copper filters and optimised exposure parameters, and the mean DAP value after optimisation was 9.36 Gy cm 2

  17. Exposure to low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Le Guen, B.

    2008-01-01

    The author discusses the knowledge about the effects of ionizing radiations on mankind. Some of them have been well documented (skin cancer and leukaemia for the pioneer scientists who worked on radiations, some other types of cancer for workers who handled luminescent paints, rock miners, nuclear explosion survivors, patients submitted to radiological treatments). He also evokes the issue of hereditary cancers, and discusses the issue of low dose irradiation where some surveys can now be performed on workers. He discusses the biological effects of these low doses. He outlines that many questions remain about these effects, notably the influence of dose level and of dose rate level on the biological reaction

  18. The 3D Radiation Dose Analysis For Satellite

    Science.gov (United States)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and

  19. Online radiation dose measurement system for ATLAS experiment

    International Nuclear Information System (INIS)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  20. The issue concerning the use of an annual as opposed to a committed dose limit for internal radiation protection

    International Nuclear Information System (INIS)

    Skrable, K.W.; Chabot, G.E.; Alexander, E.L.; French, C.S.

    1985-01-01

    The scientific, technical, practical, and ethical considerations that relate to the use of an annual as opposed to a committed dose limitation system for internal radiation protection are evaluated and presented. The concerns about problems associated with the more recent ICRP committed dose recommendations that have been expressed by persons who are currently operating under an annual dose limitation system are reviewed and discussed in terms of the radiation protection programme elements that are required for an effective ALARA programme. We include in this and a follow-up article a comparison of how these alternative dose limitation systems affect the economic and professional livelihood of radiation workers and the requirements that they impose upon employers. Finally, we recommend the use of an ICRP based committed dose limitation system that provides protection of workers over an entire occupational lifetime without undue impact on their livelihood and without undue requirements for employers. (author)

  1. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  2. Radiation dose in paediatric cardiac catheterisation: A systematic literature review

    International Nuclear Information System (INIS)

    Gould, R.; McFadden, S.L.; Hughes, C.M.

    2017-01-01

    Objectives: It is believed that children are more sensitive to ionising radiation than adults. This work reviewed the reported radiation dose estimates for paediatric cardiac catheterisation. A systematic literature review was performed by searching healthcare databases for studies reporting radiation dose using predetermined key words relating to children having cardiac catheterisation. The quality of publications was assessed using relevant Critical Appraisal Skills Programme questions and their reported radiation exposures were evaluated. Key findings: It is only in recent years that larger cohort observations have been undertaken. Although radiation dose from paediatric cardiac catheterisation has decreased in recent years, the literature indicated that it remains varied and potentially substantial. Conclusion: Standardisation of weight categories and procedure types such as those recommended by the PiDRL project could help compare current and future radiation dose estimates. - Highlights: • 31 articles reporting radiation dose from paediatric cardiac catheterisation were reviewed. • In recent years, larger cohorts (>1000) have been reported. • Radiation dose to children has been lowered in the last decade but remains varied. • Future dosimetry should be consistent for weight categories and procedure types.

  3. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices.

    Science.gov (United States)

    Demb, Joshua; Chu, Philip; Nelson, Thomas; Hall, David; Seibert, Anthony; Lamba, Ramit; Boone, John; Krishnam, Mayil; Cagnon, Christopher; Bostani, Maryam; Gould, Robert; Miglioretti, Diana; Smith-Bindman, Rebecca

    2017-06-01

    Radiation doses for computed tomography (CT) vary substantially across institutions. To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After

  4. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  5. Pilot website to support international collaboration for dose assessments in a radiation emergency

    International Nuclear Information System (INIS)

    Livingston, G.K.; Wilkins, R.C.; Ainsbury, E.A.

    2011-01-01

    Nuclear terrorism has emerged as a significant threat which could require timely medical interventions to reduce potential radiation casualties. Early dose assessments are critical since optimal care depends on knowing a victim's radiation dose. The dicentric chromosome aberration assay is considered the 'gold standard' to estimate the radiation dose because the yield of dicentrics correlates positively with the absorbed dose. Dicentrics have a low background frequency, are independent of age and gender and are relatively easy to identify. This diagnostic test for radiation exposure, however, is labor intensive and any single or small group of laboratories could easily be overwhelmed by a mass casualty event. One solution to this potential problem is to link the global WHO BioDoseNet members via the Internet so multiple laboratories could work cooperatively to screen specimens for dicentric chromosomes and generate timely dose estimates. Inter-laboratory comparison studies have shown that analysis of electronic chromosome images viewed on the computer monitor produces scoring accuracy equivalent to viewing live images in the microscope. This functional equivalence was demonstrated during a comparative study involving five laboratories constructing 60 Co gamma ray calibration curves and was further confirmed when comparing results of blind dose estimates submitted by each laboratory. It has been further validated in two recent WHO BioDoseNet trial exercises where 20 metaphase images were shared by e-mail and 50 images were shared on a test website created for this purpose. The Internet-based exercise demonstrated a high level of concordance among 20 expert scorers who evaluated the same 50 metaphase spreads selected to exhibit no, low, moderate and severe radiation damage. Nineteen of 20 scorers produced dicentric equivalent counts within the 95% confidence limits of the mean. The Chi-squared test showed strong evidence of homogeneity in the data (p = 0

  6. Pilot website to support international collaboration for dose assessments in a radiation emergency

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, G.K., E-mail: Gordon.Livingston@orise.orau.gov [Oak Ridge Associated Universities, REAC/TS, Radiation Emergency Medicine (REM), P.O. Box 117, Oak Ridge, TN 37831 (United States); Wilkins, R.C., E-mail: Ruth.Wilkins@hc-sc.gc.ca [Health Canada, Consumer and Clinical Radiation Protection Bureau, Ottawa, ON K1A 1C1 (Canada); Ainsbury, E.A., E-mail: liz.ainsbury@hpa.org.uk [Health Protection Agency, Radiation Protection Division, Chilton, Didcot, Oxfordshire OX11 0RQ (United Kingdom)

    2011-09-15

    Nuclear terrorism has emerged as a significant threat which could require timely medical interventions to reduce potential radiation casualties. Early dose assessments are critical since optimal care depends on knowing a victim's radiation dose. The dicentric chromosome aberration assay is considered the 'gold standard' to estimate the radiation dose because the yield of dicentrics correlates positively with the absorbed dose. Dicentrics have a low background frequency, are independent of age and gender and are relatively easy to identify. This diagnostic test for radiation exposure, however, is labor intensive and any single or small group of laboratories could easily be overwhelmed by a mass casualty event. One solution to this potential problem is to link the global WHO BioDoseNet members via the Internet so multiple laboratories could work cooperatively to screen specimens for dicentric chromosomes and generate timely dose estimates. Inter-laboratory comparison studies have shown that analysis of electronic chromosome images viewed on the computer monitor produces scoring accuracy equivalent to viewing live images in the microscope. This functional equivalence was demonstrated during a comparative study involving five laboratories constructing {sup 60}Co gamma ray calibration curves and was further confirmed when comparing results of blind dose estimates submitted by each laboratory. It has been further validated in two recent WHO BioDoseNet trial exercises where 20 metaphase images were shared by e-mail and 50 images were shared on a test website created for this purpose. The Internet-based exercise demonstrated a high level of concordance among 20 expert scorers who evaluated the same 50 metaphase spreads selected to exhibit no, low, moderate and severe radiation damage. Nineteen of 20 scorers produced dicentric equivalent counts within the 95% confidence limits of the mean. The Chi-squared test showed strong evidence of homogeneity in the data

  7. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  8. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  9. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  10. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  11. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-06-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  12. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi

    2001-01-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  13. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    Highlights: • First study on early stress responses in salmon exposed to low-dose gamma radiation. • Dramatic dose-dependent transcriptional responses characterized. • Multiple modes of action proposed for gamma radiation. - Abstract: Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48 h) exposure. Global transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes (DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the majority of differences were dose-specific. No GO functions were identified at low or medium doses, but repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response to reactive oxygen species (ROS) were observed after 280 mGy gamma exposure. Ortholog-based toxicity pathway analysis further showed that 15 mGy radiation

  14. Gamma radiation-induced Impairment of hippocampal neurogenesis, comparison of single and fractionated dose regimens

    International Nuclear Information System (INIS)

    Khoshbin khoshnazar, A. R; Jahanshahi, M; Azami, N. S

    2012-01-01

    Radiation therapy of the brain is associated with many consequences, including cognitive disorders. Pathogenesis of radiation induced cognitive disorder is not clear, but reduction of neurogenesis in hippocampus may be an underlying reason. 24 adult male rats entered to study. Radiation absorbed dose to midbrain was 10 Gy, delivered by routine cobalt radiotherapy machine which its output was measured 115.24 cGy/min. The rats were divided in four groups of sixes, including groups of control, single fraction 10 Gy, fractionated 10 Gy and finally anaesthesia sham group. Number of pyramidal nerve cells was counted in two regions of hippocampus formation (CA1 and CA3). The radiation could reduce the number of cells in two regions of hippocampus significantly (p=0.000). It seems fractionated 10 Gy irradiation to more efficient than single fraction, while role of anaesthesia drug should be cautiously assessed. Moreover the rate of neurogenesis reduction was determined the same in these regions of hippocampus meaning the same radiosensitivity of cells

  15. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  16. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    Science.gov (United States)

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Energies, health, medicine. Low radiation doses; Energies, sante, medecine. Les faibles doses de rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  18. Radiation dose electrophysiology procedures

    International Nuclear Information System (INIS)

    Hernandez-Armas, J.; Rodriguez, A.; Catalan, A.; Hernandez Armas, O.; Luque Japon, L.; Moral, S.; Barroso, L.; Rfuez-Hdez, R.

    2006-01-01

    The aim of this paper has been to measure and analyse some of the parameters which are directly related with the doses given to patients in two electrophysiology procedures: diagnosis and ablation with radiofrequency. 16 patients were considered in this study. 13 them had an ablation with radiofrequency at the Unit of Electrophysiology at the University Hospital of the Canaries, La Laguna., Tenerife. The results of skin doses, in the ablation cases, were higher than 2 Gy (threshold of some deterministic effects). The average value was 1.1 Gy. The personal doses, measured under the lead apron, for physician and nurses were 4 and 3 micro Sievert. These results emphasised the necessity of radiation protection measures in order to reduce, ad much as possible, the doses to patients. (Author)

  19. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  20. PET/CT-guided Interventions: Personnel Radiation Dose

    International Nuclear Information System (INIS)

    Ryan, E. Ronan; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-01-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0–0.13) mSv for the primary operator, 0.01 (range 0–0.05) mSv for the nurse anesthetist, and 0.02 (range 0–0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0–0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient

  1. Some human activities to decrease public radiation dose

    International Nuclear Information System (INIS)

    Pan Ziqiang; Guo Minqiang

    1994-01-01

    The necessity of studying the variations in radiation levels from the balance viewpoint is discussed. Some human activities may increase, while others may decrease, radiation dose to population. In 1988, China's investigation showed that travel by air caused a raise of population collective dose by 3.6 x 10 1 man·Sv, while travel by ship, train and vehicle lead to a drop of 5.36 x 10 2 man·Sv, and that dwellings of coal cinder brick decreased collective dose by 3.5 x 10 3 man·Sv, while buildings of reinforced concrete structure increased collective dose by 3.7 x 10 3 man·Sv. It is inadequate to only study those activities which may increase radiation levels

  2. Work practices and occupational radiation dose among radiologic technologists in Korea

    International Nuclear Information System (INIS)

    Cha, Eun Shil; Lee, Won Jin; Ha, Mina; Hwang, Seung Sik; Lee, Kyoung Mu; Jeong, Mee Seon

    2013-01-01

    Radiologic technologists are one of the occupational groups exposed to the highest dose of radiation worldwide. In Korea, radiologic technologists occupy the largest group (about 33%) among medical radiation workers and they are exposed to the highest dose of occupational dose of radiation as well (1). Although work experience with diagnostic radiation procedure of U.S. radiologic technologists was reported roughly (2), few studies have been conducted for description of overall work practices and the change by calendar year and evaluation of related factors on occupational radiation dose. The aims of the study are to describe work practices and to assess risk factors for occupational radiation dose among radiologic technologists in Korea. This study showed the work practices and occupational radiation dose among representative sample of radiologic technologists in Korea. The annual effective dose among radiologic technologists in Korea remains higher compared with those of worldwide average and varied according to demographic factors, year began working, and duration of working

  3. Audit of radiation dose during balloon mitral valvuloplasty procedure

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, Roshan S [Department of Radiology, Christian Medical College, Vellore-632004, TN (India); Chandy, Sunil [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); Peace, B S Timothy [Department of Radiology, Christian Medical College, Vellore-632004, TN (India); George, Paul [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); John, Bobby [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India); Pati, Purendra [Department of Cardiology, Christian Medical College, Vellore-632004, TN (India)

    2006-12-15

    Radiation doses to patients during cardiological procedures are of concern in the present day scenario. This study was intended to audit the radiation dose imparted to patients during the balloon mitral valvuloplasty (BMV) procedure. Thirty seven patients who underwent the BMV procedure performed using two dedicated cardiovascular machines were included in the study. The radiation doses imparted to patients were measured using a dose area product (DAP) meter. The mean DAP value for patients who underwent the BMV procedure from one machine was 19.16 Gy cm{sup 2} and from the other was 21.19 Gy cm{sup 2}. Optimisation of exposure parameters and radiation doses was possible for one machine with the use of appropriate copper filters and optimised exposure parameters, and the mean DAP value after optimisation was 9.36 Gy cm{sup 2}.

  4. Survey of environmental radiation dose rates in Tokushima prefecture

    International Nuclear Information System (INIS)

    Sakama, Minoru; Imura, Hiroyoshi; Akou, Natsuki; Takeuchi, Emi; Morihiro, Yukinori

    2004-01-01

    Survey of environmental radiation dose rates in Tokushima prefecture has been carried out using a portable NaI (Tl) scintillation survey meter and a CsI(Tl) pocket type one. To our knowledge, previous several surveys in Tokushima, for example by Abe et al. (1982) and Yoshino et al. (1991), have remained to report the environmental radiation dose rates merely about the major cities, that is Tokushima City and others along the Pacific. Up to now, there have been few efforts to survey the environmental radiation dose rates about mountain valleys in Tokushima. In this work, it is remarkable that we have for the first time made surveys of environmental radiation dose rates on the 6 routes across the Sanuki mountains and inside the pier of Onaruto Bridge, 'Naruto Uzu-no-michi', in the northern area of Tokushima. In the course of present surveys, the maximum value of the environmental radiation dose rates was 0.117±0.020 μGy/h at Higetouge in Sanuki City, and then it was found that the radiation dose rates across the Sanuki mountains tend to increase slightly with approaching Kagawa area from Tokushima one. Considering geological formation around the northern side of Sanuki mountains, there are mainly geological layers of granodiorite containing in the substantial amount of naturally occurring radionuclides, 40 K, U-series, and Th-series, than other geological rocks and it was found that the terrestrial gamma-rays have effect on the environmental radiation dose rates according to the geological formation. (author)

  5. Study of radiation dose reduction of buildings of different sizes and materials

    International Nuclear Information System (INIS)

    Furuta, Takuya; Takahashi, Fumiaki

    2015-01-01

    The dependence of radiation dose reduction on the sizes and materials of buildings was studied by numerical analyses using the Monte Carlo simulation code, PHITS. The dose rates inside the buildings were calculated by simulating gamma-ray transport from radioactive cesium deposited at the ground surface. Three building models were developed: the wooden house, the open-space concrete building, and the thin-wall building, to study the effect of building size and construction material on dose reduction inside these structures. Here the floor-area sizes of the building models were varied to clarify the influence of building configuration on dose reduction. The results demonstrated that the dose rates inside the buildings linearly decreased with increasing floor area on a logarithmic scale for all types of buildings considered. The calculated dose distribution inside a building indicated that the distance from the outer walls was a determining factor for the dose rate at each position in the building. The obtained tendency was verified by comparison with data reflecting the dose reduction of typical buildings in Japan. (author)

  6. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  7. Management of pediatric radiation dose using Philips fluoroscopy systems DoseWise: perfect image, perfect sense

    International Nuclear Information System (INIS)

    Stueve, Dick

    2006-01-01

    Although image quality (IQ) is the ultimate goal for accurate diagnosis and treatment, minimizing radiation dose is equally important. This is especially true when pediatric patients are examined, because their sensitivity to radiation-induced cancer is two to three times greater than that of adults. DoseWise is an ALARA-based philosophy within Philips Medical Systems that is active at every level of product design. It encompasses a set of techniques, programs and practices that ensures optimal IQ while protecting people in the X-ray environments. DoseWise methods include management of the X-ray beam, less radiation-on time and more dose information for the operator. Smart beam management provides automatic customization of the X-ray beam spectrum, shape, and pulse frequency. The Philips-patented grid-controlled fluoroscopy (GCF) provides grid switching of the X-ray beam in the X-ray tube instead of the traditional generator switching method. In the examination of pediatric patients, DoseWise technology has been scientifically documented to reduce radiation dose to <10% of the dose of traditional continuous fluoroscopy systems. The result is improved IQ at a significantly lower effective dose, which contributes to the safety of patients and staff. (orig.)

  8. Personal monitoring and assessment of doses received by radiation workers

    International Nuclear Information System (INIS)

    Swindon, T.N.; Morris, N.D.

    1981-12-01

    The Personal Radiation Monitoring Service operated by the Australian Radiation Laboratory is outlined and the types of monitors used for assessment of doses received by radiation workers are described. The distribution of doses received by radiation workers in different occupational categories is determined. From these distributions, the average doses received have been assessed and the maximum likely additional increase in cancer deaths in Australia as a result of occupational exposure estimated. This increase is shown to be very small. There is, however, a considerable spread of doses received by individuals within occupational groups

  9. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  10. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  11. Evaluation of radiation doses delivered in different chest CT protocols

    International Nuclear Information System (INIS)

    Gorycki, Tomasz; Lasek, Iwona; Kamiński, Kamil; Studniarek, Michał

    2014-01-01

    There are differences in the reference diagnostic levels for the computed tomography (CT) of the chest as cited in different literature sources. The doses are expressed either in weighted CT dose index (CTDI VOL ) used to express the dose per slice, dose-length product (DLP), and effective dose (E). The purpose of this study was to assess the radiation dose used in Low Dose Computer Tomography (LDCT) of the chest in comparison with routine chest CT examinations as well as to compare doses delivered in low dose chest CT with chest X-ray doses. CTDI VOL and DLP doses were taken to analysis from routine CT chest examinations (64 MDCT TK LIGHT SPEED GE Medical System) performed in 202 adult patients with FBP reconstruction: 51 low dose, 106 helical, 20 angio CT, and 25 high resolution CT protocols, as well as 19 helical protocols with iterative ASIR reconstruction. The analysis of chest X-ray doses was made on the basis of reports from 44 examinations. Mean values of CTDI VOL and DLP were, respectively: 2.1 mGy and 85.1 mGy·cm, for low dose, 9.7 mGy and 392.3 mGy·cm for helical, 18.2 mGy and 813.9 mGy·cm for angio CT, 2.3 mGy and 64.4 mGy·cm for high resolution CT, 8.9 mGy. and 317.6 mGy·cm for helical ASIR protocols. Significantly lower CTDI VOL and DLP values were observed for low dose and high resolution CT versus the remaining CT protocols; doses delivered in CT ASIR protocols were also lower (80–81%). The ratio between medial doses in low dose CT and chest X-ray was 11.56. Radiation dose in extended chest LDCT with parameters allowing for identification of mediastinal structures and adrenal glands is still much lower than that in standard CT protocols. Effective doses predicted for LDCT may exceed those used in chest X-ray examinations by a factor of 4 to 12, depending on LDCT scan parameters. Our results, as well as results from other authors, suggest a possibility of reducing the dose by means of iterative reconstruction. Efforts towards further dose

  12. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  13. Radiologist and angiographic procedures. Absorbed radiation dose

    International Nuclear Information System (INIS)

    Tryhus, M.; Mettler, F.A. Jr.; Kelsey, C.

    1987-01-01

    The radiation dose absorbed by the angiographer during angiographic procedures is of vital importance to the radiologist. Nevertheless, most articles on the subject are incomplete, and few measure gonadal dose. In this study, three TLDs were used for each of the following sites: radiologist's eyes, thyroid, gonads with and without shielding apron, and hands. The average dose during carotid angiograms was 2.6, 4.1, 0.4, 4.7, and 7.1 mrads to the eyes, thyroid, gonads with and without .5 mm of lead shielding, and hands, respectively. Average dose during abdominal and peripheral vascular angiographic procedures was 5.2, 7.5, 1.2, 8.5, and 39.9 mrads to the eyes, thyroid, gonads with and without shielding, and hands, respectively. A literature review demonstrates a significant reduction in radiation dose to the angiographer after the advent of automated injectors. Our measured doses for carotid angiography are compatible with contemporary reported values. There was poor correlation with fluoroscopy time and measured dose to the angiographer

  14. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  15. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  16. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk [Nuclear Environmental Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

  17. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR

    International Nuclear Information System (INIS)

    Kim, So Ra; Min, Byung Il; Park, Kihyun; Yang, Byung Mo; Suh, Kyung Suk

    2016-01-01

    The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment

  18. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  19. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    El-Naggar, M.A.

    1996-01-01

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  20. Radiation dose to the lens and cataract formation

    International Nuclear Information System (INIS)

    Henk, J.M.; Whitelocke, R.A.F.; Warrington, A.P.; Bessell, E.M.

    1993-01-01

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab

  1. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    Science.gov (United States)

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  2. Occupational Radiation Dose for Medical Workers at a University Hospital

    Directory of Open Access Journals (Sweden)

    M.H. Nassef

    2017-11-01

    Full Text Available Occupational radiation doses for medical workers from the departments of diagnostic radiology, nuclear medicine, and radiotherapy at the university hospital of King Abdul-Aziz University (KAU were measured and analysed. A total of 100 medical radiation workers were monitored to determine the status of their average annual effective dose. The analysis and the calibration procedures of this study were carried out at the Center for Radiation Protection and Training-KAU. The monitored workers were classified into subgroups, namely, medical staff/supervisors, technicians, and nurses, according to their responsibilities and specialties. The doses were measured using thermo luminescence dosimeters (TLD-100 (LiF:Mg,Ti placed over the lead apron at the chest level in all types of workers except for those in the cath lab, for whom the TLD was placed at the thyroid protective collar. For nuclear medicine, a hand dosimeter was used to measure the hand dose distribution. The annual average effective doses for diagnostic radiology, nuclear medicine, and radiotherapy workers were found to be 0.66, 1.56, and 0.28 mSv, respectively. The results of the measured annual dose were well below the international recommended dose limit of 20 mSv. Keywords: Occupational radiation dose, radiation workers, TLD, radiation protection

  3. Online radiation dose measurement system for ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  4. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Morishima, Hiroshige [Kinki Univ., Atomic Energy Research Institute, Osaka (Japan); Tatsumi, Kusuo [Kinki Univ., Life Science Research Institute, Osaka (Japan); Nakai, Sayaka; Sugahara, Tsutomu [Health Research Foundation, Kyoto (Japan); Yuan Yongling [Labor Hygiene Institute of Hunan Prov. (China); Wei Luxin [Laboratory of Industorial Hygiene, Ministry of Health (China)

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: (1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. (2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  5. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    International Nuclear Information System (INIS)

    Koga, Taeko; Morishima, Hiroshige; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: 1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. 2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  6. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique.

    Science.gov (United States)

    Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-10-01

    To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of

  7. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  8. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  9. Basic study on low dose radiation effect: SOD activity of immune organs and hemogram in rats

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Kaneko, Ichiro; Mizutani, Takeo; Nakano, Kazushiro; Edamatsu, Rei; Mori, Akitane.

    1989-01-01

    We examined the effect of low dose radiation on SOD activities of immune organs such as thymus, spleen, bone marrow in rats and hematological findings changes. Animals were exposed to radiation in a wholebody fashion, 4 hours before sacrifice. SOD activities in thymus and bone marrow cells from the rats X-ray irradiated at doses of 0.25∼0.50 Gy/10 min were enhanced in comparison with those of non-irradiated rats. The enhancement was also observed in spleen cells obtained from group of rats irradiated at 0.05 Gy/10 min. Radiation exposure with over 0.50 Gy/10 min gave rats inhibitory responses in those immune organs. The changes in homogram were not observed with γ-ray exposure of less than 0.10 Gy/10 min. (author)

  10. Evaluation of radiation dose received in skull radiographic examination

    International Nuclear Information System (INIS)

    Omer, Noora Elshiekh

    2014-12-01

    Diagnostic X-ray examination play an important role in the health care of the population. These examinations may involve significant irradiation of the patient and probably represent the largest mam-made source of radiation exposure for the population. This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study was performed to assess the effective dose (ED) received in skull radiographic examination and to analyze effective dose distributions among radiological department under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 50 patients. The following parameters were recorded: age, weight, height, body mass index (BMI) derived from weight (kg) and (height (m)) and exposure factors. The dose was measured for skull x-ray examinations. For effective dose calculation, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for skull AP and lateral examinations. The ED values were then calculated from the obtained ESD values using IAEA calculation methods. Effective doses were calculated from energy imparted using ED conversion factors proposed were within the normal range of exposure. The mean ED values calculated were 3.03±0.08 and 4.23±0.61 for skull AP and lateral examination, respectively. Further studies are recommended with more number of patients and using more than two modalities for comparison. (Author)

  11. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  12. Dyed grafted films for large-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rehim, F; El-Sawy, N M; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1993-07-01

    By radiation-induced polymerization of acrylic acid onto poly(ethylene-tetrafluoroethylene) (ET) copolymer film and reacting the resulted grafted film with both Rhodamine B (RB) and Malachite Green (MG), new dosimeter films have been developed for high-dose gamma radiation applications in the range of absorbed doses from 10 to 180 kGy. The radiation-induced color bleaching has been analysed with visible spectrophotometry, either at the maximum of the absorption band peaking at 559 nm (for ETRB) or that peaking at 627 nm (for ETMG). The effects of different conditions of absorbed dose rate, temperature and relative humidity during irradiation and post-irradiation storage on dosimeter performance are discussed. (author).

  13. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  14. Patient radiation exposure and dose tracking: a perspective.

    Science.gov (United States)

    Rehani, Madan M

    2017-07-01

    Much of the emphasis on radiation protection about 2 decades ago accrued from the need for protection of radiation workers and collective doses to populations from medical exposures. With the realization that individual patient doses were rising and becoming an issue, the author had propagated the concept of a smart card for radiation exposure history of individual patients. During the last 7 years, much has happened wherein radiation exposure and the dose history of individual patients has become a reality in many countries. In addition to dealing with overarching questions, such as "Why track, what to track, and how to track?," this review elaborates on a number of points such as attitudes toward tracking, review of practices in large parts of the world, description of various elements for exposure and dose tracking, how to use the information available from tracking, achievements and stumbling blocks in implementation to date, templates for implementation of tracking at different levels of health care, the role of picture archiving and communication systems and eHealth, the role of tracking in justification and optimization of protection, comments on cumulative dose, how referrers can use this information, current provisions in international standards, and future actions.

  15. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  16. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  17. Professional exposure of medical workers: radiation levels, radiation risk and personal dose monitoring

    International Nuclear Information System (INIS)

    Bai Guang

    2005-01-01

    The application of radiation in the field of medicine is the most active area. Due to the rapid and strong development of intervention radiology at present near 20 years, particularly, the medical workers become a popularize group which most rapid increasing and also receiving the must high of professional exposure dose. Because, inter alias, radiation protection management nag training have not fully follow up, the aware of radioactive protection and appropriate approach have tot fully meet the development and need, the professional exposure dose received by medical workers, especially those being engaged in intervention radiology, are more higher, as well as have not yet fully receiving the complete personal dose monitoring, the medical workers become the population group which should be paid the most attention to. The writer would advice in this paper that all medical workers who being received a professional radiation exposure should pay more attention to the safety and healthy they by is strengthening radiation protection and receiving complete personal dose monitoring. (authors)

  18. Comparison of Nordic dose models

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.

    1978-04-01

    A comparison is made between the models used in the four Nordic countries, Finland, Norway, Sweden and Denmark, for calculation of concentrations and doses from releases of radioactive material to the atmosphere. The comparison is limited to the near-zone models, i.e. the models for calculation of concentrations and doses within 50 km from the release point, and it comprises the following types of calculation: a. Concentrations of airborne material, b. External gamma doses from a plume, c. External gamma doses from radioactive material deposited on the ground. All models are based on the gaussian dispersion model (the gaussian plume model). Unit releases of specific isotopes under specific meteorological conditions are assumed. On the basis of the calculation results from the models, it is concluded that there are no essential differences. The difference between the calculation results only exceeds a factor of 3 in special cases. It thus lies within the known limits of uncertainty for the gaussian plume model. (author)

  19. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  20. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  1. Reducing radiation doses to the breast, thyroid and gonads during diagnostic radiography

    International Nuclear Information System (INIS)

    Weatherburn, G.C.

    1983-01-01

    The skin entry and exit doses on patients undergoing routine radiographic examinations of areas in which the breast, thyroid and gonads are included in the primary beam were measured using thermoluminescent dosimeters. To obtain further information about patient doses, measurements were also made on a phantom at similar skin positions and at the positions of these organs. Comparisons of the doses to these radiosensitive organs were made for the antero-posterior and postero-anterior projections. In cases where it was found that the doses were reduced by the use of non-conventional relationship between the relative positions of the patient and the film, suggestions are made for the adaptations which would have to be made to X-ray equipment to enable these projections to be taken routinely. Other techniques, such as air gap techniques and thyroid shielding, whereby patient doses can be reduced during routine radiography are also examined. Finally the implications of these results for radiation protection of patients are considered. (author)

  2. Calibration of high-dose radiation facilities (Handbook)

    International Nuclear Information System (INIS)

    Gupta, B.L.; Bhat, R.M.

    1986-01-01

    In India at present several high intensity radiation sources are used. There are 135 teletheraphy machines and 65 high intensity cobalt-60 sources in the form of gamma chambers (2.5 Ci) and PANBIT (50 Ci). Several food irradiation facilities and a medical sterilization plant ISOMED are also in operation. The application of these high intensity sources involve a wide variation of dose from 10 Gy to 100 kGy. Accurate and reproducible radiation dosimetry is essential in the use of these sources. This handbook is especially compiled for calibration of high-dose radiation facilities. The first few chapters discuss such topics as interaction of radiation with matter, radiation chemistry, radiation processing, commonly used high intensity radiation sources and their special features, radiation units and dosimetry principles. In the chapters which follow, chemical dosimeters are discussed in detail. This discussion covers Fricke dosimeter, FBX dosimeter, ceric sulphate dosimeter, free radical dosimetry, coloured indicators for irrdiation verification. A final chapter is devoted to practical hints to be followed in calibration work. (author)

  3. Preoperative chemoradiation for locally advanced rectal cancer: comparison of three radiation dose and fractionation schedules

    International Nuclear Information System (INIS)

    Park, Shin Hyung; Kim, Jae Chul

    2016-01-01

    The standard radiation dose for patients with locally rectal cancer treated with preoperative chemoradiotherapy is 45–50 Gy in 25–28 fractions. We aimed to assess whether a difference exists within this dose fractionation range. A retrospective analysis was performed to compare three dose fractionation schedules. Patients received 50 Gy in 25 fractions (group A), 50.4 Gy in 28 fractions (group B), or 45 Gy in 25 fractions (group C) to the whole pelvis, as well as concurrent 5-fluorouracil. Radical resection was scheduled for 8 weeks after concurrent chemoradiotherapy. Between September 2010 and August 2013, 175 patients were treated with preoperative chemoradiotherapy at our institution. Among those patients, 154 were eligible for analysis (55, 50, and 49 patients in groups A, B, and C, respectively). After the median follow-up period of 29 months (range, 5 to 48 months), no differences were found between the 3 groups regarding pathologic complete remission rate, tumor regression grade, treatment-related toxicity, 2-year locoregional recurrence-free survival, distant metastasis-free survival, disease-free survival, or overall survival. The circumferential resection margin width was a prognostic factor for 2-year locoregional recurrence-free survival, whereas ypN category was associated with distant metastasis-free survival, disease-free survival, and overall survival. High tumor regression grading score was correlated with 2-year distant metastasis-free survival and disease-free survival in univariate analysis. Three different radiation dose fractionation schedules, within the dose range recommended by the National Comprehensive Cancer Network, had no impact on pathologic tumor regression and early clinical outcome for locally advanced rectal cancer

  4. Preoperative chemoradiation for locally advanced rectal cancer: comparison of three radiation dose and fractionation schedules

    Energy Technology Data Exchange (ETDEWEB)

    Park, Shin Hyung; Kim, Jae Chul [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2016-06-15

    The standard radiation dose for patients with locally rectal cancer treated with preoperative chemoradiotherapy is 45–50 Gy in 25–28 fractions. We aimed to assess whether a difference exists within this dose fractionation range. A retrospective analysis was performed to compare three dose fractionation schedules. Patients received 50 Gy in 25 fractions (group A), 50.4 Gy in 28 fractions (group B), or 45 Gy in 25 fractions (group C) to the whole pelvis, as well as concurrent 5-fluorouracil. Radical resection was scheduled for 8 weeks after concurrent chemoradiotherapy. Between September 2010 and August 2013, 175 patients were treated with preoperative chemoradiotherapy at our institution. Among those patients, 154 were eligible for analysis (55, 50, and 49 patients in groups A, B, and C, respectively). After the median follow-up period of 29 months (range, 5 to 48 months), no differences were found between the 3 groups regarding pathologic complete remission rate, tumor regression grade, treatment-related toxicity, 2-year locoregional recurrence-free survival, distant metastasis-free survival, disease-free survival, or overall survival. The circumferential resection margin width was a prognostic factor for 2-year locoregional recurrence-free survival, whereas ypN category was associated with distant metastasis-free survival, disease-free survival, and overall survival. High tumor regression grading score was correlated with 2-year distant metastasis-free survival and disease-free survival in univariate analysis. Three different radiation dose fractionation schedules, within the dose range recommended by the National Comprehensive Cancer Network, had no impact on pathologic tumor regression and early clinical outcome for locally advanced rectal cancer.

  5. Radiation dose distributions due to sudden ejection of cobalt device.

    Science.gov (United States)

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. COMPARISON OF THE PERIPHERAL DOSES FROM DIFFERENT IMRT TECHNIQUES FOR PEDIATRIC HEAD AND NECK RADIATION THERAPY.

    Science.gov (United States)

    Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori

    2017-11-01

    Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Concept and computation of radiation dose at high energies

    International Nuclear Information System (INIS)

    Sarkar, P.K.

    2010-01-01

    Computational dosimetry, a subdiscipline of computational physics devoted to radiation metrology, is determination of absorbed dose and other dose related quantities by numbers. Computations are done separately both for external and internal dosimetry. The methodology used in external beam dosimetry is necessarily a combination of experimental radiation dosimetry and theoretical dose computation since it is not feasible to plan any physical dose measurements from inside a living human body

  8. The Spanish National Dose Registry and Spanish radiation passbooks

    International Nuclear Information System (INIS)

    Hernandez, A.; Martin, A.; Villanueva, I.; Amor, I.; Butragueno, J.L.

    2001-01-01

    The Spanish National Dose Registry (BDN) is the Nuclear Safety Council's (CSN) national database of occupational exposure to radiation. Each month BDN receives records of individual external doses from approved dosimetry services. The dose records include information regarding the occupational activities of exposed workers. The dose information and the statistical analysis prepared by the BDN are a useful tool for effective operational protection of occupationally exposed workers and a support for the CSN in the development and application of the ALARA principle. The Spanish radiation passbook was introduced in 1990 and since then CSN, as regulatory authority, has required that all outside workers entering controlled areas should have radiation passbooks. Nowadays, CSN has implemented improvements in the Spanish radiation Passbooks, taking into account previous experience and Directive 96/29/EURATOM. (author)

  9. Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: an intra-individual comparison.

    Science.gov (United States)

    Lee, Seung Hyun; Kim, Myung-Joon; Yoon, Choon-Sik; Lee, Mi-Jung

    2012-09-01

    To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study). We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis. Twenty-six patients (M:F=13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, PASIR studies (20.81 vs. 16.67, P=0.004), but was not different in the aorta (18.23 vs. 18.72, P=0.726). The subjective image quality demonstrated no difference between the two studies. A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Radiation doses in Sweden as a result of the Chernobyl fallout

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorson, Christor [Statens Stralskyddsinstitut, National Institute of Radiation Protection, Stockholm (Sweden)

    1986-07-01

    The radiation doses from the Chernobyl fallout originate mainly from two sources: External irradiation (ground radiation) and internal irradiation from radioactive materials accumulated in the human body via food. In addition there are an inhalation dose and a radiation dose from the radioactive cloud. The level of doses from the various sources is presented.

  11. Radiation doses in Sweden as a result of the Chernobyl fallout

    International Nuclear Information System (INIS)

    Wiktorson, Christor

    1986-01-01

    The radiation doses from the Chernobyl fallout originate mainly from two sources: External irradiation (ground radiation) and internal irradiation from radioactive materials accumulated in the human body via food. In addition there are an inhalation dose and a radiation dose from the radioactive cloud. The level of doses from the various sources is presented

  12. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  13. Estimation of radiation dose received by the radiation worker during 18F FDG injection process

    International Nuclear Information System (INIS)

    Jha, Ashish Kumar; Zade, Anand; Rangarajan, Venkatesh

    2011-01-01

    The radiation dosimetric literature concerning the medical and non-medical personnel working in nuclear medicine departments are limited, particularly radiation doses received by radiation worker in nuclear medicine department during positron emission tomography (PET) radiopharmaceutical injection process. This is of interest and concern for the personnel. To measure the radiation dose received by the staff involved in injection process of Fluorine-18 Fluorodeoxyglucose (FDG). The effective whole body doses to the radiation workers involved in injections of 1511 patients over a period of 10 weeks were evaluated using pocket dosimeter. Each patient was injected with 5 MBq/kg of 18 F FDG. The 18 F-FDG injection protocol followed in our department is as follows. The technologist dispenses the dose to be injected and records the pre-injection activity. The nursing staff members then secure an intravenous catheter. The nuclear medicine physicians/residents inject the dose on a rotation basis in accordance with ALARA principle. After the injection of the tracer, the nursing staff members flush the intravenous catheter. The person who injected the tracer then measures the post-injection residual dose in the syringe. The mean effective whole body doses per injection for the staff were the following: Nurses received 1.44 ± 0.22 μSv/injection (3.71 ± 0.48 nSv/MBq), for doctors the dose values were 2.44 ± 0.25 μSv/injection (6.29 ± 0.49 nSv/MBq) and for technologists the doses were 0.61 ± 0.10 μSv/injection (1.58 ± 0.21 nSv/MBq). It was seen that the mean effective whole body dose per injection of our positron emission tomography/computed tomography (PET/CT) staff who were involved in the 18 F-FDG injection process was maximum for doctors (54.34% differential doses), followed by nurses (32.02% differential doses) and technologist (13.64% differential doses). This study confirms that low levels of radiation dose are received by staff during 18 F-FDG injection and

  14. Radiation induced skeletal changes in beagle: dose rates, dose, and age effect analysis from 226Ra

    International Nuclear Information System (INIS)

    Momeni, M.H.; Williams, J.R.; Rosenblatt, L.S.

    1976-01-01

    Radiation-induced skeletal injury (E) and the rate of skeletal injury were studied as a function of time and dose in beagles administered 226 Ra Cl 2 in eight semimonthly iv injections starting at 2, 4, or 14 months of age. Skeletal changes were evaluated with a radiographic x-ray scoring system in 20 skeletal regions; each region was scored on a 0 to 6 scale. Bone changes in six regions of humeri were qualitatively analyzed for comparison with total skeletal changes. Skeletal changes were classified by endosteal or periosteal cortical sclerosis and thickening, fractures, osteolytic lesions, and trabecular coarsening

  15. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    International Nuclear Information System (INIS)

    Hui, Peter K.T.; Goo, Hyun Woo; Du, Jing; Ip, Janice J.K.; Kanzaki, Suzu; Kim, Young Jin; Kritsaneepaiboon, Supika; Lilyasari, Oktavia; Siripornpitak, Suvipaporn

    2017-01-01

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  16. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Peter K.T. [Hong Kong Baptist Hospital, Department of Radiology, Hong Kong, SAR (China); Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Du, Jing [Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Beijing (China); Ip, Janice J.K. [Queen Mary Hospital, Department of Radiology, Hong Kong, SAR (China); Kanzaki, Suzu [National Cerebral and Cardiovascular Center, Department of Radiology, Osaka (Japan); Kim, Young Jin [Yonsei University, Shinchon Severance Hospital, Department of Radiology, Seoul (Korea, Republic of); Kritsaneepaiboon, Supika [Songklanagarind Hospital, Prince of Songkla University, Department of Radiology, Hat Yai (Thailand); Lilyasari, Oktavia [University of Indonesia, National Cardiovascular Center Harapan Kita, Department of Cardiology, Jakarta (Indonesia); Siripornpitak, Suvipaporn [Ramathibodi Hospital, Mahidol University, Department of Radiology, Salaya (Thailand)

    2017-07-15

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  17. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  18. Annual individual doses for personnel dealing with ionizing radiation sources

    International Nuclear Information System (INIS)

    Poplavskij, K.K.

    1982-01-01

    Data on annual individual doses for personnel of national economy enterprises, research institutes, high schools, medical establishments dealing with ionizing radiation sources are presented. It is shown that radiation dose for the personnel constitutes only shares of standards established by sanitary legislation. Numeral values of individual doses of the personnel are determined by the type, character and scope of using ionizing radiation sources

  19. Ambient radioactivity levels and radiation doses. Annual report 2011

    International Nuclear Information System (INIS)

    Bernhard-Stroel, Claudia; Hachenburger, Claudia; Trugenberger-Schnabel, Angela; Peter, Josef

    2013-07-01

    The annual report 2011 on ambient radioactivity levels and radiation doses covers the following issues: Part A: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. Part B; Current data and their evaluation: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. The Appendix includes Explanations of terms, radiation doses and related units, external and internal radiation exposure, stochastic and deterministic radiation effects, genetic radiation effects, induction of malignant neoplasm, risk assessment, physical units and glossary, laws, ordinances, guidelines, recommendations and other regulations concerning radiation protection, list of selected radionuclides.

  20. Epidemiological surveys on the effects of low-level radiation dose: a comparative assessment

    International Nuclear Information System (INIS)

    Rose, K.S.B.

    1988-01-01

    In this report, the health effects of low-level doses of radiation are considered by reference to published epidemiological surveys. The work was carried out with three objectives in mind: 1. to provide a comprehensive and critical review of the subject; 2. to seek consistent indications of particular health effects by collating results and comparing with those from surveys at moderate-level doses; 3. to provide an authoritative view on the epidemiology of low-level radiation-induced health effects. Vol E (DRAFT A) is appended and contains group collation tables. Epidemiological surveys can be conveniently divided into four classes (A, B, C, D) according to the phase of life when irradiation occurs or the effect is diagnosed. The first of the classes (A) is addressed here; this class is concerned with possible effects arising from radiation received by a parent before conception. Possible effects of preconception irradiation were identified under four broad groupings. These are Down's syndrome, ''Indicators of Reproductive Damage'' (mainly Primary Sterility, Congenital Abnormalities, Sex Ratio, Fetal Mortality, Infant Mortality), Childhood Malignancies, and Chromosomal Changes in Abortuses. Information about each survey, and comparisons with results from moderate-level dose surveys, are contained in synopses that are set out in the Appendix. (author)

  1. A Voxel-Based Approach to Explore Local Dose Differences Associated With Radiation-Induced Lung Damage

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Giuseppe [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Monti, Serena [IRCCS SDN, Naples (Italy); D' Avino, Vittoria [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Conson, Manuel [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Liuzzi, Raffaele [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pressello, Maria Cristina [Department of Health Physics, S. Camillo-Forlanini Hospital, Rome (Italy); Donato, Vittorio [Department of Radiation Oncology, S. Camillo-Forlanini Hospital, Rome (Italy); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY (United States); Quarantelli, Mario [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pacelli, Roberto [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Cella, Laura, E-mail: laura.cella@cnr.it [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy)

    2016-09-01

    Purpose: To apply a voxel-based (VB) approach aimed at exploring local dose differences associated with late radiation-induced lung damage (RILD). Methods and Materials: An interinstitutional database of 98 patients who were Hodgkin lymphoma (HL) survivors treated with postchemotherapy supradiaphragmatic radiation therapy was analyzed in the study. Eighteen patients experienced late RILD, classified according to the Radiation Therapy Oncology Group scoring system. Each patient's computed tomographic (CT) scan was normalized to a single reference case anatomy (common coordinate system, CCS) through a log-diffeomorphic approach. The obtained deformation fields were used to map the dose of each patient into the CCS. The coregistration robustness and the dose mapping accuracy were evaluated by geometric and dose scores. Two different statistical mapping schemes for nonparametric multiple permutation inference on dose maps were applied, and the corresponding P<.05 significance lung subregions were generated. A receiver operating characteristic (ROC)-based test was performed on the mean dose extracted from each subregion. Results: The coregistration process resulted in a geometrically robust and accurate dose warping. A significantly higher dose was consistently delivered to RILD patients in voxel clusters near the peripheral medial-basal portion of the lungs. The area under the ROC curves (AUC) from the mean dose of the voxel clusters was higher than the corresponding AUC derived from the total lung mean dose. Conclusions: We implemented a framework including a robust registration process and a VB approach accounting for the multiple comparison problem in dose-response modeling, and applied it to a cohort of HL survivors to explore a local dose–RILD relationship in the lungs. Patients with RILD received a significantly greater dose in parenchymal regions where low doses (∼6 Gy) were delivered. Interestingly, the relation between differences in the high-dose

  2. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  3. Multilevel mechanisms of stimulatory effect of low dose radiation on immunity

    International Nuclear Information System (INIS)

    Shu-Zeng Liu

    1992-01-01

    Attention is paid to the effects of low level ionizing radiation on humans. The conference is devoted to low dose radiation and defense mechanisms of the body. Due to the importance of the immune system in body resistance, special attention has been given to host defense mechanisms following exposure to different doses of ionizing radiation. The immune system has long been known to be highly sensitive to moderate to high doses of ionizing radiation with immuno-depression as one of the most important causes of death in acute radiation syndrome. However, the dose-effect relationship of immune functions has been found to be quite different in the low dose range, especially with doses within 0.1 Gy. With doses above 0.5 Gy most immunologic parameters show a dose dependent depression. With doses between 0.1-0.5 Gy there may be no definite changes in immune functions. Doses within 0.1 Gy, given in single or chronic exposures, have been found to stimulate many immune responses. (author). 16 refs., 2 figs., 7 tabs

  4. A Comparison of Radiation Dose Between Standard and 3D Angiography in Congenital Heart Disease

    Energy Technology Data Exchange (ETDEWEB)

    Manica, João Luiz Langer, E-mail: joca.pesquisa@gmail.com; Borges, Mônica Scott; Medeiros, Rogério Fachel de; Fischer, Leandro dos Santos; Broetto, Gabriel; Rossi, Raul Ivo Filho [Instituto de Cardiologia / Fundação Universitária de Cardiologia, Porto Alegre, RS (Brazil)

    2014-08-15

    The use of three-dimensional rotational angiography (3D-RA) to assess patients with congenital heart diseases appears to be a promising technique despite the scarce literature available. The objective of this study was to describe our initial experience with 3D-RA and to compare its radiation dose to that of standard two-dimensional angiography (2D-SA). Between September 2011 and April 2012, 18 patients underwent simultaneous 3D-RA and 2D-SA during diagnostic cardiac catheterization. Radiation dose was assessed using the dose-area-product (DAP). The median patient age and weight were 12.5 years and 47.5 Kg, respectively. The median DAP of each 3D-RA acquisition was 1093µGy.m{sup 2} and 190µGy.m{sup 2} for each 2D-SA acquisition (p<0.01). In patients weighing more than 45Kg (n=7), this difference was attenuated but still significant (1525 µGy.m{sup 2} vs.413µGy.m{sup 2}, p=0.01). No difference was found between one 3D-RA and three 2D-SA (1525µGy.m{sup 2} vs.1238 µGy.m{sup 2}, p = 0.575) in this population. This difference was significantly higher in patients weighing less than 45Kg (n=9) (713µGy.m{sup 2} vs.81µGy.m{sup 2}, P = 0.008), even when comparing one 3D-RA with three 2D-SA (242µGy.m{sup 2}, respectively, p<0.008). 3D-RA was extremely useful for the assessment of conduits of univentricular hearts, tortuous branches of the pulmonary artery, and aorta relative to 2D-SA acquisitions. The radiation dose of 3D-RA used in our institution was higher than those previously reported in the literature and this difference was more evident in children. This type of assessment is of paramount importance when starting to perform 3D-RA.

  5. A comparison of newborn stylized and tomographic models for dose assessment in paediatric radiology

    International Nuclear Information System (INIS)

    Staton, R J; Pazik, F D; Nipper, J C; Williams, J L; Bolch, W E

    2003-01-01

    Establishment of organ doses from diagnostic and interventional examinations is a key component to quantifying the radiation risks from medical exposures and for formulating corresponding dose-reduction strategies. Radiation transport models of human anatomy provide a convenient method for simulating radiological examinations. At present, two classes of models exist: stylized mathematical models and tomographic voxel models. In the present study, organ dose comparisons are made for projection radiographs of both a stylized and a tomographic model of the newborn patient. Sixteen separate radiographs were simulated for each model at x-ray technique factors typical of newborn examinations: chest, abdomen, thorax and head views in the AP, PA, left LAT and right LAT projection orientation. For AP and PA radiographs of the torso (chest, abdomen and thorax views), the effective dose assessed for the tomographic model exceeds that for the stylized model with per cent differences ranging from 19% (AP abdominal view) to 43% AP chest view. In contrast, the effective dose for the stylized model exceeds that for the tomographic model for all eight lateral views including those of the head, with per cent differences ranging from 9% (LLAT chest view) to 51% (RLAT thorax view). While organ positioning differences do exist between the models, a major factor contributing to differences in effective dose is the models' exterior trunk shape. In the tomographic model, a more elliptical shape is seen thus providing for less tissue shielding for internal organs in the AP and PA directions, with corresponding increased tissue shielding in the lateral directions. This observation is opposite of that seen in comparisons of stylized and tomographic models of the adult

  6. Radiation Doses Received by the Irish Population 2014

    International Nuclear Information System (INIS)

    O'Connor, C.; Currivan, L.; Cunningham, N.; Kelleher, K.; Lewis, M.; Long, S.; McGinnity, P.; Smith, V.; McMahon, C.

    2014-06-01

    People are constantly exposed to a variety of sources of both natural and artificial radioactivity. The radiation dose received by the population from such sources is periodically estimated by the Radiological Protection Institute of Ireland RPII. This report is an update of a population dose assessment undertaken in 2008 and includes the most recent data available on the principal radiation exposure pathways. Wherever possible the collective dose and the resulting average annual dose to an individual living in Ireland, based on the most recently published figure for the population of Ireland, have been calculated for each of the pathways of exposure

  7. Radiation doses in endoscopic interventional procedures

    International Nuclear Information System (INIS)

    Tsapaki, V.; Paraskeva, K.; Mathou, N.; Aggelogiannopoulou, P.; Triantopoulou, C.; Karagianis, J.; Giannakopoulos, A.; Paspatis, G.; Voudoukis, E.; Athanasopoulos, N.; Lydakis, I.; Scotiniotis, H.; Georgopoulos, P.; Finou, P.; Kadiloru, E.

    2012-01-01

    Purpose: Extensive literature exists on patient radiation doses in various interventional procedures. This does not stand for endoscopic retrograde cholangiopancreatography (ERCP) where the literature is very limited. This study compares patient dose during ERCP procedures performed with different types of X-ray systems. Methods and Materials: Four hospitals participated in the study with the following X-ray systems: A) X-ray conventional system (X-ray tube over table), 137 pts, B) X-ray conventional system (X-ray tube under table), 114 pts, C) C-arm system, 79 pts, and D) angiography system, 57 pts. A single experienced endoscopist performed the ERCP in each hospital. Kerma Area Product (KAP), fluoroscopy time (T) and total number of X-ray films (F) were collected. Results: Median patient dose was 6.2 Gy.cm 2 (0.02-130.2 Gy.cm 2 ). Medium linear correlation between KAP and T (0.6) and F (0.4) were observed. Patient doses were 33 % higher than the reference value in UK (4.15 Gy.cm 2 with a sample of 6089 patients). Median KAP for each hospital was: A) 3.1, B) 9.2, C) 3.9 and D) 6.2 Gy.cm 2 . Median T was: A) 2.6, B) 4.1, C) 2.8 and D) 3.4 min. Median F was: A) 2, B) 7, C) 2 and D) 2 films. Conclusion: Patient radiation dose during ERCP depends on: a) fluoroscopy time and films taken, b) the type of the X-ray system used, with the C arm and the conventional over the couch systems carrying the lower patient radiation dose and the angiography system the higher. (authors)

  8. Recent trend of radiation doses of medical workers

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, I [Tokyo Univ. (Japan). Faculty of Medicine; Tanaka, M; Nakamura, S; Nawa, H; Nukazawa, A

    1981-10-01

    Radiation doses of medical workers in Japan between 1976 and 1979 were analysed based on the data provided by a film badge servicing company. Average annual radiation doses between April, 1978 and March, 1979 were 129 mrems for 2556 doctors, 108 mrems for 2074 radiographers, and 60 mrems for 1915 nurses. It was also suggested that the log-normal distribution could provide a good fit to the frequency distribution of radiation doses of these medical staffs. Time series data of monthly average doses during the period between April, 1976 and March, 1979 were analysed using a computer code named EPA that had been developed by the Japanese Economic Planning Agency. The EPA code separated the original time series data into three components, i.e., the trend and cycle factor, the seasonal factor and the irregular factor based on a multiplicative model. The results of analyses strongly suggested that there existed a significant common pattern among the trend factors of doctors, radiographers and nurses. The similar phenomenon was also observed about the seasonal factors. Some specific cases of medical workers who received considerably high radiation doses were studied, and it was pointed out that, in order to lower the doses of medical workers, the factors which are peculiar to each medical facility must be precisely examined in addition to the strengthening of general radiological protective measures.

  9. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method

    Energy Technology Data Exchange (ETDEWEB)

    Larson, David B. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States)

    2014-10-15

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach. (orig.)

  10. Radiation dose reduction in pediatric CT

    International Nuclear Information System (INIS)

    Robinson, A.E.; Hill, E.P.; Harpen, M.D.

    1986-01-01

    The relationship between image noise and radiation dose was investigated in computed tomography (CT) images of a pediatric abdomen phantom. A protocol which provided a minimum absorbed dose consistent with acceptable image noise criteria was determined for a fourth generation CT scanner. It was found that pediatric abdominal CT scans could maintain diagnostic quality with at least a 50% reduction in dose from the manufacturers' suggested protocol. (orig.)

  11. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  12. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Sulieman, A.; Habiballah, B.; Abdelaziz, I.; Alzimami, K.; Osman, H.; Omer, H.; Sassi, S. A.

    2014-08-01

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  13. Evaluation of occupational and patient radiation doses in orthopedic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Salman bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P.O. Box 422, Alkharj (Saudi Arabia); Habiballah, B.; Abdelaziz, I. [Sudan Univesity of Science and Technology, College of Medical Radiologic Sciences, P.O. Box 1908, Khartoum (Sudan); Alzimami, K. [King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, P.O. Box 10219, 11433 Riyadh (Saudi Arabia); Osman, H. [Taif University, College of Applied Medical Science, Radiology Department, Taif (Saudi Arabia); Omer, H. [University of Dammam, Faculty of Medicine, Dammam (Saudi Arabia); Sassi, S. A., E-mail: Abdelmoneim_a@yahoo.com [Prince Sultan Medical City, Department of Medical Physics, Riyadh (Saudi Arabia)

    2014-08-15

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  14. Comparison of Patient Dose in Two-Dimensional Carotid Arteriography and Three-Dimensional Rotational Angiography

    International Nuclear Information System (INIS)

    Tsapaki, Virginia; Vano, Eliseo; Mavrikou, Irini; Neofotistou, Vassiliki; Gallego, Juan Jose; Fernandez, Jose Miguel; Santos, Ernesto; Mendez, Jose

    2008-01-01

    Background and Purpose. It is known that interventional neuroradiology (IN) involves high radiation dose to both patients and staff even if performed by trained operators using modern fluoroscopic X-ray equipment and dose-reducing technology. Therefore, every new technology or imaging tool introduced, such as three-dimensional rotational angiography (3D RA), should be evaluated in terms of radiation dose. 3D RA requires a series with a large number of images in comparison with 2D angiography and it is sometimes considered a high-dose IN procedure. The literature is scarce on the 3D RA radiation dose and in particular there are no data on carotid arteriography (CA). The aim of this study was to investigate patient dose differences between 2D and 3D CA. Methods. The study included 35 patients undergoing 2D CA in hospital 1 and 25 patients undergoing 3D CA in hospital 2. Patient technical data collection included information on the kerma area product (KAP), fluoroscopy time (T), total number of series (S), and total number of acquired images (F). Results. Median KAP was 112 Gy cm 2 and 41 Gy cm 2 for hospitals 1 and 2, respectively, median T was 8.2 min and 5.1 min, median S was 13 and 4, and median F was 247 and 242. Entrance surface air-kerma rate, as measured in 'medium' fluoroscopy mode measured in 2D acquisition using a 20 cm phantom of polymethylmethacrylate, was 17.3 mGy/min for hospital 1 and 9.2 mGy/min for hospital 2. Conclusion. 3D CA allows a substantial reduction in patient radiation dose compared with 2D CA, while providing the necessary diagnostic information

  15. Comparison of the measured radiation dose-rate by the ionization chamber and G (Geiger-Mueller) counter after radioactive lodine therapy in differentiated thyroid cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    Radioactive iodine(131I) treatment reduces recurrence and increases survival in patients with differentiated thyroid cancer. However, it is important in terms of radiation safety management to measure the radiation dose rate generated from the patient because the radiation emitted from the patient may cause the exposure. Research methods, it measured radiation dose-rate according to the elapsed time from 1 m from the upper abdomen of the patient by intake of radioactive iodine. Directly comparing the changes over time, high dose rate sensitivity and efficiency is statistically significant, and higher chamber than GM counter(p<0.05). Low dose rate sensitivity and efficiency in the chamber had lower levels than gm counter, but not statistically significant(p>0.05). In this study confirmed the characteristics of calibrated ionization chamber and GM counter according to the radiation intensity during high-dose radioactive iodine therapy by measuring the accurate and rapid radiation dose rate to the patient explains, discharged patients will be reduced to worry about radiation hazard of family and others person.

  16. Comparison of Haematological Responses and Radiation Recovery in Several Mammalian Species

    Energy Technology Data Exchange (ETDEWEB)

    Alpen, E. L. [US Naval Radiological Defense Laboratory, San Francisco, CA (United States)

    1967-07-15

    The twenty-odd years since the beginning of modern radiation biology have covered a period during which our understanding of the pathology of the lethal radiation lesion has increased by tremendous bounds; however, for a number of reasons, not the least of which is the expense, the majority of these studies have been conducted on small laboratory animals. Based upon these studies, the classic picture of lymphopenia, thrombocytopenia, and granulocytopenia, occasionally accompanied by an anaemia, has been clearly documented. We have also seen the development and wide acceptance of the first-order model for exponential radiation injury recovery first formulated by Blair (1950). With the increasing body of knowledge on the effects of high doses of radiation on human beings, particularly commencing with the Marshall Islands accident, it became apparent that the generalized model of the haematological response of mammals based on rodent data, or even from data on dogs, was less than adequate. For this reason we started, about four or five years ago, to make a systematic comparison of the haematological response, the lethal dose, and the recovery kinetics of a number of mammalian species that would be broadly representative of the animal kingdom in size, dietary habits, life-span, and normal haematology. All radiations were carried out under conditions that would ensure the maximum possible precision of dosimetric measurement, and as uniform a distribution of tissue dose as could be achieved. For this purpose we used a General Electric 1-MeV resonant transformer X-ray generator. The half-value layer of the beam as it was used for these radiation exposures was 2 mm of lead, and the dose rate was 7 rad/min. It was possible to irradiate animals as large as the burro or the pig with a maximum deviation of dose rate over the field of {+-}3%. The target to animal midline distance was 2 m. For later studies a 15 kCi {sup 60}Co source was used for radiation exposures. The dose

  17. TLD DRD dose discrepancy: role of beta radiation fields

    International Nuclear Information System (INIS)

    Munish Kumar; Pradhan, S.M.; Bihari, R.R.; Bakshi, A.K.; Chougaonkar, M.P.; Babu, D.A.R.; Gupta, Anil

    2014-01-01

    Ionization chamber based direct reading/pocket dosimeters (DRDs), are used along with the legal dosimeters (thermoluminescent dosimeters-TLDs) for day to day monitoring and control of radiation doses received by radiation workers. The DRDs are routinely used along with the passive dosimeters (TLDs) in nuclear industry at different radiation installations where radiation levels could vary significantly and the possibility of receiving doses beyond investigation levels by radiation workers is not ruled out. Recently, recommendations for dealing with discrepancies between personal dosimeter systems used in parallel were issued by ISO. The present study was performed to measure the response of ionization chamber based pocket dosimeters to various beta sources having energy (E max ) ranging from 0.224 MeV-3.54 MeV. It is expected that the above study will be useful in resolving the disparity between TLD and DRD doses at those radiation installations where radiation workers are likely to be exposed simultaneously from photons and beta particles

  18. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Sulieman, A.; Alzimami, K.; Habeeballa, B.; Osman, H.; Abdelaziz, I.; Sassi, S.A.; Sam, A.K.

    2015-01-01

    This study intends to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (DHS) and (ii) Dynamic Cannula Screw (DCS) and to evaluate entrance surface Air kerma (ESAK) dose and organ doses and effective doses. Calibrated Thermoluminescence dosimeters (TLD-GR200A) were used. The mean patients’ doses were 0.46 mGy and 0.07 mGy for DHS and DCS procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean organ and effective dose for patients and staff were higher in DHS compared to DCS. Orthopedic surgeons were exposed to unnecessary radiation doses due to the lack of protection measures. The radiation dose per hip procedure is within the safety limit and less than the previous studies

  19. A conceptual framework for managing radiation dose to patients in diagnostic radiology using reference dose levels

    International Nuclear Information System (INIS)

    Almen, Anja; Baath, Magnus

    2016-01-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. (authors)

  20. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  1. Hormesis of Low Doses of Ionizing Radiation Exposure on Immune System

    International Nuclear Information System (INIS)

    Ragab, M.H.; Abbas, M.O.; El-Asady, R.S.; Amer, H.A.; El-Khouly, W.A.; Shabon, M.H.

    2015-01-01

    The effect of low doses of ionizing radiation on the immune system has been a controversial subject. To evaluate the effect of low-doses γ-irradiation exposure on immune system. An animal model, using Rattus Rattus rats was used. The rats were divided into groups exposed to either continuous or fractionated 100, 200, 300, 400 and 500 mSv of radiation and compared to control rats that did not receive radiation. All groups were exposed to a total white blood count (Wcs), lymphocyte count and serum IgG level measurement, as indicators of the function of the cell-mediated (T lymphocytes) and the humoral (B lymphocytes) immune system. The results of the current study revealed that the counts of total leukocytes (WBCs) and lymphocytes, as well as the serum level of IgG were increased significantly in rats receiving low dose radiation, indicating enhancement of immune system. The data suggests that low-dose gamma-radiation improved hematological parameters and significantly enhances immune response indices of the exposed rats. These findings are similar to the radiation adaptive responses in which a small dose of pre irradiation would induce certain radiation resistance and enhances the cell response after exposure to further irradiation doses The applied low doses used in the present study may appear effective inducing the radio adaptive response. Farooqi and Kesavan (1993) and Bravard et al. (1999) reported that the adaptive response to ionizing radiation refers to the phenomenon by which cells irradiated with low (cGy) or sublethal doses (conditioning doses) become less susceptible to genotoxic effects of a subsequent high dose (challenge dose, several Gy).

  2. Personal radiation monitoring and assessment of doses received by radiation workers (1996)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1996-12-01

    Since late 1986, all persons monitored by the Australian Radiation Laboratory have been registered on a data base which maintains records of the doses received by each individual wearer. At present, the Service regularly monitors approximately 30,000 persons, which is roughly 90 percent of those monitored in Australia, and maintains dose histories of over 75,000 people. The skin dose for occupationally exposed workers can be measured by using one of the five types of monitor issued by the Service: Thermoluminescent Dosemeter (TLD monitor), Finger TLD 3, Neutron Monitor, Special TLD and Environmental monitor. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 5 figs

  3. Radiation doses measured by TLD (thermo luminescent dosimeter) in x-ray examination

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hiraki, Motoji; Murakami, Shozo; Nishikawa, Naozo; Yagi, Takayuki

    1977-01-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field. (auth.)

  4. Research on low radiation doses - A better understanding of low doses

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation doses below 100 mSv are called low doses. Epidemiological research on the health hazards of low doses are difficult to do because numerous pathologies, particularly cancer, appear lifelong for genetical or environmental causes without any link with irradiation and it is very difficult to identify the real cause of a cancer. Another concern is that the impact on human health is weak and are observed only after a long period after irradiation. These features make epidemiological studies cumbersome to implement since they require vast cohorts and a very long-term follow-up. The extrapolation of the effects of higher doses to the domain of low doses does not meet reality and it is why the European Union takes part into the financing of such research. In order to gain efficiency, scientists work together through various European networks among them: HLEG (High Level Expert Group On European Low Dose Risk Research) or MELODI (Multidisciplinary European Low Dose Initiative). Several programs are underway or have been recently launched: -) the impact of Cesium contamination on children's health (Epice program), -) the study of the impact of medical imaging on children, -) the study of the health of children living near nuclear facilities, -) the relationship between radon and lung cancer, -) the effect of occupational low radiation doses, -) the effect of uranium dissolved in water on living organisms (Envirhom program). (A.C.)

  5. Audit of radiation dose to patients during coronary angiography

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Chandy, Sunil; Peace, Timothy B.S.; George, Paul V.; John, Bobby; Pati, Purendra

    2007-01-01

    There is a widespread concern about radiation doses imparted to patients during cardiology procedures in the medical community. The current study intends to audit and optimize radiation dose to patients undergoing coronary angiography performed using two dedicated cardiovascular machines

  6. Analysis of dose record and epidemiology for radiation workers in Korea

    International Nuclear Information System (INIS)

    Choi, S.Y.; Kim, T.H.

    2003-01-01

    This study presents data on the externally received doses and preliminary results of epidemiological survey for radiation workers. The statistical analysis was carried out in order to understand better the occupational radiation doses in Korea. Records containing dose information from 1984 to 1999 for 64,518 persons were extracted from the National Dose Registry of Korea (Korea Radioisotope Association's personal dose record). The total number of workers registered from 1984 to 1999 was 64,518. The number of workers steadily increased and the accumulated dose somewhat increased. The proportion of radiation workers by occupation was 38.4% for nuclear power plant, 20.3% for industrial organization and 12.4% for non-destructive industry, respectively. The collective annual dose of radiation workers was 31.72 man Sv in 1999. The mean annual dose by sex was 1.49 mSv for male and 0.56 mSv for female. The mean annual dose for workers was 1.41 mSv with the highest mean dose being received by non-destructive industry (3.53 mSv). Very few workers(0.8%) received more than 20 mSv and only one more than 50 mSv, the legal limit for an annual dose. There has been a steady decline in the mean dose since 1984, showing a significant decrease in dose with time. The data showed that radiation protection in Korea was improving, though annual doses were still higher than other countries. Nevertheless, this finding brings to light the necessity of the workers to pay more careful attention to radiation protection procedures and practices, and suggest the need for continuous effort to implement procedures. We are carrying out epidemiological survey in order to evaluate radiation effects on Korean workers based on radiation dose data from the year of 2000. Follow-up is carrying out in order to detect and measure directly the risks of cancer using the Korean Mortality Data, Cancer Registry and individual investigation

  7. Occupational radiation doses in Portugal from 1994 to 1998

    International Nuclear Information System (INIS)

    Alves, J.G.; Martins, M.B.; Amaral, E.M.

    2000-01-01

    This work reports on the occupational radiation doses for external radiation received in 1994-1998 by the radiation workers monitored by the Radiological Protection and Nuclear Safety Department (DPRSN) in Portugal. Individual monitoring for external radiation is carried out in Portugal by DPRSN since the 60s, and the workers are monitored on a monthly or quarterly bases. In 1995 DPRSN monitored approximately 8000 people and was the only laboratory carrying out this sort of activity in Portugal. In 1998 the number of monitored people increased to nearly 8500 from 860 facilities, which leads us to state that the results shown in this work are well representative of the universe of radiation workers in Portugal. Until 1996, the dose measurement procedure was based only on film dosimetry and the results reported for the 1994-1995 period were obtained with this methodology. Since 1996, thermoluminescent dosimetry (TLD) was gradually introduced and since then an effort has been made to transfer the monitored workers from film to TLD. In 1998, both film and TLD dosimetry systems were running simultaneously, with average numbers of 4500 workers monitored with film dosimetry, while 4000 were monitored with TLD. The data presented from 1996 to 1998 were obtained with both methodologies. This work reports the annual mean effective doses received from external radiation, for the monitored and exposed workers in the different fields of activity, namely, industry, research laboratories, health and mining. The distribution of the annual effective dose by dose intervals is also reported. The collective annual dose by field of activity is estimated and the contribution to the total annual collective dose is determined. The collective dose estimates for the period 1994 to 1998 demonstrated that the health sector is the most representative exposed group in Portugal. (author)

  8. Possible radiation dose reduction by using digital X-ray equipment

    International Nuclear Information System (INIS)

    Horvathova, M.; Nikodemova, D.; Prikazska, M.

    2001-01-01

    The radiation load of population all over the world from medical examinations clearly demonstrates the importance of the introduction of the quality assurance and quality control programmes into the activities of radiology departments. The basic aim of quality assurance program is to ensure that the radiation dose is kept as low as reasonably practicable while still providing an adequate image quality. As many other fields, the rapid development of techniques brought change-over from the conventional analogue technique to the digital technique. In this process, the conventional X-ray film is being abandoned and images are being viewed on either laser film or monitor. The main advantages of using digital equipment lay in improved image quality and diagnostic accuracy through digital image processing, reduction in patients exposure, cost reduction by reduction of the film usage, more efficient storage and retrieval of radiographic images through picture archiving. Several studies that have been conducted for comparison of various diagnostic examinations show , that there is potential for dose saving in the digital image intensifier technique. The aim of this study was to compare measured values of dose-area product for colon investigations using different X-ray equipment types, two digital and two analogue. Our material consisted of 169 randomly selected patients, 115 of them were examined with digital equipment and 54 patients with the analogue equipment. The obtained results have confirmed the dose reduction and increase of diagnostic accuracy when using the digital equipment, with the added benefit of a good image quality. (authors)

  9. Environmental policy. Ambient radioactivity levels and radiation doses in 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The report is intended as information for the German Bundestag and Bundesrat as well as for the general population interested in issues of radiological protection. The information presented in the report shows that in 1996, the radiation dose to the population was low and amounted to an average of 4 millisievert (mSv), with 60% contributed by natural radiation sources, and 40% by artificial sources. The major natural source was the radioactive gas radon in buildings. Anthropogenic radiation exposure almost exclusively resulted from application of radioactive substances and ionizing radiation in the medical field, for diagnostic purposes. There still is a potential for reducing radiation doses due to these applications. In the reporting year, there were 340 000 persons occupationally exposed to ionizing radiation. Only 15% of these received a dose different from zero, the average dose was 1.8 mSv. The data show that the anthropogenic radiation exposure emanating from the uses of atomic energy or applications of ionizing radiation in technology is very low. (orig./CB) [de

  10. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  11. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  12. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  13. Patient radiation dose during mammography procedures

    International Nuclear Information System (INIS)

    Mohamed, Swsan Awd Elkriem

    2015-11-01

    The objectives of this study were to estimate the patient dose in term of mean glandular dose and assist in optimization of radiation protection in mammographic procedures in Sudan. A total number of 107 patients were included. Four mammographic units were participated. Only one center was using automatic exposure control (AEC). The mean doses in (mGy) for the CC projection were 3.13, 1.24, 2.45 and 0.98 and for the MLO projection was 2.13, 1.26, 1.99 and 1.02 for centers A, B, C, and D, respectively. The total mean dose per breast from both projections was 5.26, 2.50, 4.44 and 1.99 mGy for centers A, B, C and D, respectively. The minimum mean glandular dose was found between the digital system which was operated under AEC and one of the manual selected exposure factors systems, this highlight possible optimization of radiation protection in the other manual selected systems. The kilo volt and the tube current time products should be selected correctly according to the breast thickness in both centers A and C. (author)

  14. Determination of the dose and dose distribution in radiation-linked polyolefins

    International Nuclear Information System (INIS)

    Andress, B.; Fischer, P.; Repp, H.H.; Roehl, P.

    1984-01-01

    The method serves the determination of the radiation dose and dose distribution in polyolefins cross-linked by electron beams; the cross-linking takes place in the presence of an additive which is inserted in the polyolefin by radiation. After the cross-linking the fraction of the additive which is not inserted will be extracted from the polyolefin and afterwards the total extinction of the polyolefin will be determined by photometry. This process allows in particular the determination of the quality of the irradiation conditions for the electron-beam cross-linking of medium-voltage cables insulated by polyolefins. (orig.) [de

  15. Study of national registration systems for health records of radiation workers. National radiation dose registration system

    International Nuclear Information System (INIS)

    Nakagawa, Haruo; Kanda, Keiji

    1999-01-01

    A national radiation dose registration system is proposed in this paper. In Japan, only one radiation dose registration system is partly effective. It is applied for workers in nuclear power plants which are under control of regulatory laws for nuclear reactors. The total system was proposed previously by the Committee for Compensation Claims of Nuclear Accidents. The reason for the delay in establishing a registration system for all radiation workers is supposedly a lack of effort to adjust differences among items in radiation protection laws and the promotion of public acceptance to atomic power. Items about dose recordings, record keeping and dose-record reporting in all of the radiation regulatory laws are compared to each other, and items were extracted for revision. (author)

  16. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, Sh.; Yagi, R.; Nakatani, M.; Suzuki, S.; Sano, A.; Ikeda, K.; Utsunomiya, K.; Harima, Y.; Sawada, S.

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution

  17. Studying and measuring the gamma radiation doses in Homs city

    International Nuclear Information System (INIS)

    Sofaan, A. H.

    2001-01-01

    The gamma radiation dose was measured in Homs city by using many portable dosimeters (electronic dosimeter and Geiger-Muller). The measurements were carried out in the indoor and outdoor buildings, for different time period, through one year (1999-2000). High purity germanium detector with low back ground radiation (HpGe) was used to determine radiation element contained in some building and the surrounding soil. The statistical analysis laws were applied to make sure that the measured dose distribution around average value is normal distribution. The measurement indicates that the gamma indoor dose varies from 312μSv/y to 511μSv/y, with the average annual dose of 385μSv/y. However the gamma outdoor dose rate varies from 307μSv/y to 366μSv/y with an average annual dose 385μSv/y. The annual outdoor gamma radiation dose is about %16 lower than the outdoor dose in Homs City. These measurements have indicated that environmental gamma doses in Homs City are relatively low. This is because that most of the soils and rocks in the area are limestone. (author)

  18. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    International Nuclear Information System (INIS)

    Wu, K.; Guo, L.; Cong, J.B.; Sun, C.P.; Hu, J.M.; Zhou, Z.S.; Wang, S.; Zhang, Y.; Zhang, X.; Shi, Y.M.

    1998-01-01

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  19. Measurement of radiation dose in paediatric micturating cystourethrography

    International Nuclear Information System (INIS)

    Hassan, N. E. A.

    2013-06-01

    Paediatrics and children have been recognized that they have a higher risk of developing cancer from the radiation than adults. Therefor, increased attention has been directed towards the dose to the patients. Micturating Cystourethrography (MCU) is a commonly use ed fluoroscopic procedure in children and commonly used to detect the vesicoureteric reflux (VUR) and show urethral and bladder and abnormalities. This study aims to measure the pediatric patients undergoing MCU. The study was carried out in two hospitals in Khartoum. The entrance surface dose (ESD) was determined determined by indirect method for 45 children. Furthermore, the mean ESD, sd and range resulting from MCU procedures has been estimated to be 0.7±.5 (0.2-2.5) mGy for the total patient population. The radiation dose to the patients is well within established safety limits, in the light of the current practice. The radiation dose results of this study are appropriate for adoption as the local initial dose reference level (DRL) value for this technique. The data presented in this study showed our doses to be approximately 50% lower than the lower mean values presented in the literature.(Author)

  20. Knowledge on radiation dose-rate for risk communication on nuclear power plants

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro

    2013-01-01

    The sense of anxiety on radiation after Fukushima Dai-ichi accident has not disappeared because of the nightmare scenario on radiation cultivated through the Cold War era starting at the atomic bomb dropping at Hiroshima and Nagasaki. In the present paper, from the viewpoint of establishing the social acceptance of nuclear power plants as well as new reasonable regulation, biological defense in depth (production of anti-oxidants, DNA repair, cell death/apoptosis, and immune defense mechanisms) found in a few decades are presented in comparison with the linear no-threshold (LNT) model for the induction of cancer in the range up to 100 mSv (as single or annual doses) applied for the present regulation. (author)

  1. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1993-01-01

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  2. Work on optimum medical radiation doses

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2010-01-01

    Every day the medical world makes use of X-rays and radioisotopes. Radiology allows organs to be visualised, nuclear medicine diagnoses and treats cancer by injecting radioisotopes, and radiotherapy uses ionising radiation for cancer therapy. The medical world is increasingly mindful of the risks of ionising radiation that patients are exposed to during these examinations and treatments. In 2009 SCK-CEN completed two research projects that should help optimise the radiation doses of patients.

  3. SMART, Radiation Dose Rates on Cask Surface

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1989-01-01

    1 - Description of program or function: SMART calculates radiation dose rate at the center of each cask surface by using characteristic functions for radiation shielding ability and for radiation current back-scattered from cask wall and cask cavity of each cask, once cask-type is specified. 2 - Method of solution: Matrix Calculation

  4. Paediatric urological investigations - dose comparison between urology-related and CT irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Page, Mark; Florescu, Cosmin [Southern Health, Diagnostic Imaging, Melbourne (Australia); Johnstone, Lilian [Monash Children' s Hospital, Department of Paediatrics, Melbourne (Australia); Habteslassie, Daniel [Monash University, Department of Medicine, Melbourne (Australia); Ditchfield, Michael [Southern Health, Diagnostic Imaging, Melbourne (Australia); Monash Children' s Hospital, Diagnostic Imaging, Melbourne (Australia); Monash University, Department of Medicine, Melbourne (Australia)

    2013-07-15

    Urological investigation in children frequently involves high radiation doses; however, the issue of radiation for these investigations receives little attention compared with CT. To compare the radiation dose from paediatric urological investigations with CT, which is commonly regarded as the more major source of radiation exposure. We conducted a retrospective audit in a tertiary paediatric centre of the number and radiation dose of CT scans, micturating cystourethrography exams and urological nuclear medicine scans from 2006 to 2011. This was compared with radiation doses in the literature and an audit of the frequency of these studies in Australia. The tertiary centre audit demonstrated that the ratio of the frequency of urological to CT examinations was 0.8:1 in children younger than 17 years. The ratio of the radiation dose of urological to CT examinations was 0.7:1. The ratio in children younger than 5 years was 1.9:1. In Australia the frequency of urological procedures compared with CT was 0.4:1 in children younger than 17 years and 3.1:1 in those younger than 5 years. The ratio of radiation-related publications was 1:9 favouring CT. The incidence and radiation dose of paediatric urological studies is comparable to those of CT. Nevertheless the radiation dose of urological procedures receives considerably less attention in the literature. (orig.)

  5. Radiation Dose for Equipment in the LHC Arcs

    CERN Document Server

    Wittenburg, K; Spickermann, T

    1998-01-01

    Collisions of protons with residual gas molecules or the beam screen installed in the vacuum chamber are the main sources for the radiation dose in the LHC arcs. The dose due to proton-gas collisions depends on gas pressure, energy and intensity of the circulating beam. The dose is about equally distributed along the arc and has been calculated in previous papers. Collisions of particles with the beam screen will take place where the beam size is largest - close to focusing quadrupole magnets. For this paper the radiation doses due to particles hitting the beam screen in a quadrupole were calculated with the shower codes GEANT3.21 and FLUKA96.

  6. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  7. A comparison of dose savings of lead and lightweight aprons for shielding of 99m-Technetium radiation

    International Nuclear Information System (INIS)

    Warren-Forward, H.; Cardew, P.; Smith, B.; Clack, L.; McWhirter, K.; Johnson, S.; Wessel, K.

    2007-01-01

    Nuclear medicine technologists (NMTs) have the highest effective doses of radiation among medical workers. With increase in the use of lightweight materials in diagnostic radiography, the aim was to compare the effectiveness of lead and lightweight aprons in shielding from 99m-Technetium ( 99m Tc) gamma rays. The doses received from a scattering phantom to the entrance, 9 cm depth and exit of a phantom were measured with LiF:Mg, Cu, P thermoluminescent dosemeters (TLDs). Doses and spectra were assessed without no shielding, with 0.5-mm lead and lightweight aprons. The lead and lightweight aprons decreased entrance surface doses by 76 and 59%, respectively. The spectral analysis showed that the lightweight apron provided better dose reduction at energies 99m Tc labelled radiopharmaceutical. (authors)

  8. Radiation-related operator's dose distribution according to LLD(recording level)

    International Nuclear Information System (INIS)

    Park, Jae Duck

    2008-01-01

    Recently, the area of radiation usage is being enlarged by the industry's advancement over the world. And, the usage of radiation generator and radioisotope is increasing every year. So, they are researching actively how to protect operators from the radiation that causes direct or indirect harmfulness to radiation-related operators of the related institutions. Therefore, in case of operator's dose, not only the main dosimeter's correctness but also the reasonal evaluation to the read values becomes the important factor. From this view, LLD's application to the read dose value is being embossed more importantly than any other thing. So, this study tried to find out what change was generated in the personal dose and the group dose when LLD was applied based on the internal real operator's read value, for 3 years, 2005 - 2007, and find out the personal dose change after dividing them into the exposure group and the supervising group based on the common people's personal dose (1 mSv/y)

  9. Radiation doses from radioactivity in incandescent mantles

    International Nuclear Information System (INIS)

    1985-01-01

    Thorium nitrate is used in the production of incandescent mantles for gas lanterns. In this report dose estimates are given for internal and external exposure that result from the use of the incandescent mantles for gas lanterns. The collective, effective dose equivalent for all users of gas mantles is estimated to be about 100 Sv per annum in the Netherlands. For the population involved (ca. 700,000 persons) this is roughly equivalent to 5% to 10% of the collective dose equivalent associated with exposure to radiation from natural sources. The major contribution to dose estimates comes from inhalation of radium during burning of the mantles. A pessimistic approach results in individual dose estimates for inhalation of up to 0.2 mSv. Consideration of dose consequences in case of a fire in a storage department learns that it is necessary for emergency personnel to wear respirators. It is concluded that the uncontrolled removal of used gas mantles to the environment (soil) does not result in a significant contribution to environmental radiation exposure. (Auth.)

  10. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy

    International Nuclear Information System (INIS)

    Jang, Joon Yung; Park, Soo Yun; Kim, Jong Sik; Choi, Byeong Gi; Song, Gi Won

    2011-01-01

    Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  12. Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Joon Yung; Park, Soo Yun; Kim, Jong Sik; Choi, Byeong Gi; Song, Gi Won [Dept. of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of)

    2011-09-15

    Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  13. Influence of dose and its distribution in time on dose-response relationships for low-LET radiation

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This book examines the influence of dose rate and magnitude on the genetic and carcinogenic effects of radiation exposure in animals and man. It systematically examines a broad range of biological effects in simple systems, plants, laboratory animals, and man with special attention given to the effects of prenatal irradiation, changes in life span, and tumorigenesis. An enormous volume of data is provided about human tumorigenesis and the data and shortcomings are summarized. There is an extended general discussion of the consideration in quantitative dose and dose rate relationships and of the limitations of the data and analyses which have led to a linear interpolation of risk at low doses and dose rates. An argument is made for dose rate dependence in tumorigenesis as being consistent with all other radiation effects and for the applicability of Dose Rate Effectiveness Factors (DREF) in providing a more realistic assessment of the risk of radiation carcinogenesis. The report is documented with 24 pages of references. There are numerous graphs and tables, all clear and to the point. This book is a superb review and summary of the data on radiation risks

  14. Thyroid neoplasia following low-dose radiation in childhood

    International Nuclear Information System (INIS)

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr.

    1989-01-01

    The thyroid gland is highly sensitive to the carcinogenic effects of ionizing radiation. Previously, we reported a significant increase of thyroid cancer and adenomas among 10,834 persons in Israel who received radiotherapy to the scalp for ringworm. These findings have now been extended with further follow-up and revised dosimetry. Overall, 98 thyroid tumors were identified among the exposed and 57 among 10,834 nonexposed matched population and 5392 sibling comparison subjects. An estimated thyroid dose of 9 cGy was linked to a fourfold (95% Cl = 2.3-7.9) increase of malignant tumors and a twofold (95% Cl = 1.3-3.0) increase of benign tumors. The dose-response relationship was consistent with linearity. Age was an important modifier of risk with those exposed under 5 years being significantly more prone to develop thyroid tumors than older children. The pattern of radiation risk over time could be described on the basis of a constant multiplication of the background rate, and an absolute risk model was not compatible with the observed data. Overall, the excess relative risk per cGy for thyroid cancer development after childhood exposure is estimated as 0.3, and the absolute excess risk as 13 per 10(6) PY-cGy. For benign tumors the estimated excess relative risk was 0.1 per cGy and the absolute risk was 15 per 10(6) PY-cGy

  15. Metrology of radiation doses in diagnostic radiology

    International Nuclear Information System (INIS)

    Leclet, H.

    2016-01-01

    This article recalls how to calculate effective and equivalent doses in radiology from the measured value of the absorbed dose. The 97/43 EURATOM directive defines irradiation standards for diagnostic radiology (NRD) as the value of the radiation dose received by the patient's skin when the diagnostic exam is performed. NRD values are standard values that can be exceeded only with right medical or technical reasons, they are neither limit values nor optimized values. The purpose of NRD values is to avoid the over-irradiation of patients and to homogenize radiologists' practices. French laws impose how and when radiologists have to calculate the radiation dose received by the patient's skin. The calculated values have to be compared with NRD values and any difference has to be justified. A table gives NRD values for all diagnostic exams. (A.C.)

  16. Ion exchange resins as high-dose radiation dosimeters

    International Nuclear Information System (INIS)

    Alian, A.; Dessouki, A.; El-Assay, N.B.

    1984-01-01

    This paper reports on the possibility of using various types of ion exchange resins as high-dose radiation dosimeters, by analysis of the decrease in exchange capacity with absorbed dose. The resins studied are Sojuzchim-export-Moscow Cation Exchanger KU-2 and Anion Exchanger AV-17 and Merck Cation Exchanger I, and Merck Anion Exchangers II and III. Over the dose range 1 to 100 kGy, the systems show linearity between log absorbed dose and decrease in resin ion exchange capacity. The slope of this response function differs for the different resins, depending on their ionic form and degree of cross-linking. The radiation sensitivity increases in the order KU-2; Exchanger I; AV-17; Exchanger II; Exchanger III. Merck resins with moisture content of 21% showed considerably higher radiation sensitivity than those with 2 to 3% moisture content. The mechanism of radiation-induced denaturing of the ion exchanger resins involves cleavage and decomposition of functional substituents, with crosslinking playing a stabilizing role, with water and its radiolytic products serving to inhibit radical recombination and interfering with the protection cage effect of crosslinking. (author)

  17. Gamma radiation dose from radionuclides in Kong Kong soil

    International Nuclear Information System (INIS)

    Leung, K.C.

    1990-01-01

    Calculations have been made of the γ dose rate at one metre above ground from the results of measurements of radionuclide concentrations in soil at various locations in Hong Kong and prior to the Chernobyl accident. The average dose rate is found to be 0.076 μGy h -1 , or 0.67 mGy year -1 . The contribution from fallout nuclides to the annual dose is shown to be small, at about 0.4% of the total. The calculated dose rate in this work is about 80% higher than the world average given by the United Nations Scientific Committee on the Effects of Atomic Radiation, in Ionizing Radiation: Sources and Biological Effects, Annex B (Exposure to natural radiation sources). A United Nations Publication, 1982. (author)

  18. Effects of small doses of ionising radiation

    International Nuclear Information System (INIS)

    Doll, R.

    1998-01-01

    Uncertainty remains about the quantitative effects of doses of ionising radiation less than 0.2 Sv. Estimates of hereditary effects, based on the atomic bomb survivors, suggest that the mutation doubling dose is about 2 Sv for acute low LET radiation, but the confidence limits are wide. The idea that paternal gonadal irradiation might explain the Seascale cluster of childhood leukaemia has been disproved. Fetal irradiation may lead to a reduction in IQ and an increase in seizures in childhood proportional to dose. Estimates that doses to a whole population cause a risk of cancer proportional to dose, with 0.1 Sv given acutely causing a risk of 1%, will need to be modified as more information is obtained, but the idea that there is a threshold for risk above this level is not supported by observations on the irradiated fetus or the effect of fallout. The idea, based on ecological observations, that small doses protect against the development of cancer is refuted by the effect of radon in houses. New observations on the atomic bomb survivors have raised afresh the possibility that small doses may also have other somatic effects. (author)

  19. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  20. Comparison of fluoro and cine coronary angiography: balancing acceptable outcomes with a reduction in radiation dose.

    Science.gov (United States)

    Olcay, Ayhan; Guler, Ekrem; Karaca, Ibrahim Oguz; Omaygenc, Mehmet Onur; Kizilirmak, Filiz; Olgun, Erkam; Yenipinar, Esra; Cakmak, Huseyin Altug; Duman, Dursun

    2015-04-01

    Use of last fluoro hold (LFH) mode in fluoroscopy, which enables the last live image to be saved and displayed, could reduce radiation during percutaneous coronary intervention when compared with cine mode. No previous study compared coronary angiography radiation doses and image quality between LFH and conventional cine mode techniques. We compared cumulative dose-area product (DAP), cumulative air kerma, fluoroscopy time, contrast use, interobserver variability of visual assessment between LFH angiography, and conventional cine angiography techniques. Forty-six patients were prospectively enrolled into the LFH group and 82 patients into the cine angiography group according to operator decision. Mean cumulative DAP was higher in the cine group vs the LFH group (50058.98 ± 53542.71 mGy•cm² vs 11349.2 ± 8796.46 mGy•cm²; Pcine group vs the LFH group (3.87 ± 5.08 minutes vs 1.66 ± 1.51 minutes; Pcine group vs the LFH group (112.07 ± 43.79 cc vs 88.15 ± 23.84 cc; Pcine and LFH angiography groups (0.66680 ± 0.19309 vs 0.54193 ± 0.31046; P=.20). Radiation doses, contrast use, and fluoroscopy times are lower in fluoroscopic LFH angiography vs cine angiography. Interclass variability of visual stenosis estimation between three operators was not different between cine and LFH groups. Fluoroscopic LFH images conventionally have inferior diagnostic quality when compared with cine coronary angiography, but with new angiographic systems with improved LFH image quality, these images may be adequate for diagnostic coronary angiography.

  1. Radiation dose measurements

    International Nuclear Information System (INIS)

    1960-01-01

    About 200 scientists from 28 countries and 5 international organizations met at a symposium on radiation dosimetry held by the International Atomic Energy Agency in June 1960. The aim of the symposium was not so much the description of a large number of measuring instruments as a discussion of the methods used, with special emphasis on those problems which had become important in the context of recent developments, such as the measurement of mixed or very large doses

  2. Comparison of radiation-induced and thermal oxidative aging of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1996-01-01

    Thermal oxidative and radiation-induced oxidative aging of inhibited polyethylene of commercial brands with known properties was studied at 60, 80 and 140 deg C. Radiation-induced oxidative aging was carried out under X-ray radiation with E max = 25 keV at dose rates providing specimen oxidation in kinetic conditions. The value of activation energy of thermal oxidative destruction of inhibited polyethylene under natural conditions of its employment at 60-140 deg C (E a = 60 kJ/mol) was obtained by comparison of data for radiation-induced and thermal oxidative destruction

  3. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  4. Charpak, Garwin, propose unit for radiation dose

    CERN Multimedia

    Feder, Toni

    2002-01-01

    Becquerels, curries, grays, rads, rems, roentgens, sieverts - even for specialists the units of radiation can get confusing. That's why two eminent physicists, Georges Charpak of France, and Richard Garwin, are proposing the DARI as a unit of radiation dose they hope will help the public evaluate the risks associated with low-level radiation exposure (1 page)

  5. Natural radiation level and doses to population in Anhui province

    International Nuclear Information System (INIS)

    1985-01-01

    The absorbed dose rates in air 1 m above the ground from natural radiation and terrestrial gamma radiation in Anhui Province were surveyed. One measurement was made in every area of 90 km 2 . The absorbed dose rates in air from terrestrial radiation range from 54 to 90 nGy.h -1 with an average of 70 nGy.h -1 . The ratios of indoors-to-outdoors and of roads-to-outdoors are 1.5 and 0.9 respectively. The annual effective dose equivalent from external radiation is 0.68-1.05 mSv. The population-weighted average values for mountain area, plain, hilly land, and the Changjiang River basin as well as the annual collective effective dose equivalent were calculated

  6. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    Science.gov (United States)

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a

  7. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nimwegen, Frederika A. van [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Cutter, David J. [Clinical Trial Service Unit, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford (United Kingdom); Schaapveld, Michael [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Rutten, Annemarieke [Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kooijman, Karen [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Krol, Augustinus D.G. [Department of Radiation Oncology, Leiden University Medical Center, Leiden (Netherlands); Janus, Cécile P.M. [Department of Radiation Oncology, Erasmus MC Cancer Center, Rotterdam (Netherlands); Darby, Sarah C. [Clinical Trial Service Unit, University of Oxford, Oxford (United Kingdom); Leeuwen, Flora E. van [Department of Psychosocial Research, Epidemiology, and Biostatistics, The Netherlands Cancer Institute, Amsterdam (Netherlands); Aleman, Berthe M.P., E-mail: b.aleman@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-05-01

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor

  8. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    1996-01-01

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  9. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    International Nuclear Information System (INIS)

    Santos, Joana; Paulo, Graciano; Foley, Shane; Rainford, Louise; McEntee, Mark F.

    2015-01-01

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  10. The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joana; Paulo, Graciano [Instituto Politecnico de Coimbra, ESTESC, DMIR, Coimbra (Portugal); Foley, Shane; Rainford, Louise [University College Dublin, School of Medicine and Medical Science, Health Science Centre, Dublin 4 (Ireland); McEntee, Mark F. [The University of Sydney, Faculty of Health Sciences, Cumberland Campus, Sydney (Australia)

    2015-11-15

    The volume of CT examinations has increased with resultant increases in collective dose values over the last decade. To analyze the impact of the tube current and voltage modulation for dose values and image quality of pediatric head CT examinations. Head CT examinations were performed on anthropomorphic phantoms and four pediatric age categories before and after the introduction of dedicated pediatric curves for tube voltage and current modulation. Local diagnostic reference levels were calculated. Visual grading characteristic image quality evaluation was performed by four pediatric neuroradiologists and image noise comparisons were performed. Pediatric-specific modulation curves demonstrated a 49% decrease in mean radiation dose for phantom examinations. The local diagnostic reference levels (CTDIvol) for clinical examinations decreased by 52%, 41%, 46% and 40% for newborn, 5-, 10- and 15-year-old patients, respectively. Visual grading characteristic image quality was maintained for the majority of age categorizations (area under the curve = 0.5) and image noise measurements did not change (P = 0.693). Pediatric-specific dose modulation curves resulted in an overall mean dose reduction of 45% with no significant differences in subjective or objective image quality findings. (orig.)

  11. Reducing ionizing radiation doses during cardiac interventions in pregnant women.

    Science.gov (United States)

    Orchard, Elizabeth; Dix, Sarah; Wilson, Neil; Mackillop, Lucy; Ormerod, Oliver

    2012-09-01

    There is concern over ionizing radiation exposure in women who are pregnant or of child-bearing age. Due to the increasing prevalence of congenital and acquired heart disease, the number of women who require cardiac interventions during pregnancy has increased. We have developed protocols for cardiac interventions in pregnant women and women of child-bearing age, aimed at substantially reducing both fluoroscopy duration and radiation doses. Over five years, we performed cardiac interventions on 15 pregnant women, nine postpartum women and four as part of prepregnancy assessment. Fluoroscopy times were minimized by simultaneous use of intracardiac echocardiography, and by using very low frame rates (2/second) during fluoroscopy. The procedures most commonly undertaken were closure of atrial septal defect (ASD) or patent foramen ovale (PFO) in 16 women, coronary angiograms in seven, right and left heart catheters in three and two stent placements. The mean screening time for all patients was 2.38 minutes (range 0.48-13.7), the median radiation dose was 66 (8.9-1501) Gy/cm(2). The median radiation dose to uterus was 1.92 (0.59-5.47) μGy, and the patient estimated dose was 0.24 (0.095-0.80) mSv. Ionizing radiation can be used safely in the management of severe cardiac structural disease in pregnancy, with very low ionizing radiation dose to the mother and extremely low exposure to the fetus. With experience, ionizing radiation doses at our institution have been reduced.

  12. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  13. Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: An intra-individual comparison

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hyun, E-mail: circle1128@yuhs.ac [Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Kim, Myung-Joon, E-mail: mjkim@yuhs.ac [Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Yoon, Choon-Sik, E-mail: yooncs58@yuhs.ac [Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Lee, Mi-Jung, E-mail: mjl1213@yuhs.ac [Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2012-09-15

    Objective: To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study). Materials and methods: We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis. Results: Twenty-six patients (M:F = 13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, P < 0.001), DLP (from 307.42 to 134.51 mGy × cm, P < 0.001), and effective dose (from 4.12 to 1.84 mSv, P < 0.001), respectively, compared with the Routine studies. The objective noise was higher in the paraspinal muscle of the ASIR studies (20.81 vs. 16.67, P = 0.004), but was not different in the aorta (18.23 vs. 18.72, P = 0.726). The subjective image quality demonstrated no difference between the two studies. Conclusion: A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality.

  14. Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: An intra-individual comparison

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Kim, Myung-Joon; Yoon, Choon-Sik; Lee, Mi-Jung

    2012-01-01

    Objective: To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study). Materials and methods: We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis. Results: Twenty-six patients (M:F = 13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, P < 0.001), DLP (from 307.42 to 134.51 mGy × cm, P < 0.001), and effective dose (from 4.12 to 1.84 mSv, P < 0.001), respectively, compared with the Routine studies. The objective noise was higher in the paraspinal muscle of the ASIR studies (20.81 vs. 16.67, P = 0.004), but was not different in the aorta (18.23 vs. 18.72, P = 0.726). The subjective image quality demonstrated no difference between the two studies. Conclusion: A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality

  15. Low-dose x-radiation and congenital anomalies

    International Nuclear Information System (INIS)

    Kameyama, Yoshiro

    1983-01-01

    Among radiation effects on developing embryos and fetuses, occurrence of germinal mutation due to exposure of the gonads and postnatal manifestation of neoplasms are considered to be stochastic effects from the aspect of radiation protection. On the other hand, somatic effects such as teratogenic and embryo-toxic effects can be regarded as nonstochastic ones with threshold doses. In experimental teratological studies with mice and rats, the lowest radiation doses for manifestation of the non-stochastic somatic effects which have been recognized so far are:5 rad for resorption of preimplantation embryos; 5-10 rad for acute cytological changes such as pyknosis, cytoplasmic degeneration and mitotic delay; 5 rad for increasing frequency of spontaneous minor anomalies of the skeleton; 15-20 rad for malformations of the eye, brain and spinal cord; 20-25 rad for histogenetic and functional disorders of the central nervous system; and 20-25 rad for impaired fertility. Pregnant women who are subject to X-ray examinations are much concerned about potential hazard of radiation to their offspring in utero. The above experimental findings suggest that the possibility of non-stochastic somatic effects of diagnostic radiation on human embryos and fetuses is extremely low, and probably negligible, given the proper dose control measures. Possible effects which should be considered for risk evaluation of diagnostic exposure are two stochastic effects, carcinogenic and mutagenic. (author)

  16. Radiation dose estimates for carbon-11-labelled PET tracers

    International Nuclear Information System (INIS)

    Aart, Jasper van der; Hallett, William A.; Rabiner, Eugenii A.; Passchier, Jan; Comley, Robert A.

    2012-01-01

    Introduction: Carbon-11-labelled positron emission tomography (PET) tracers commonly used in biomedical research expose subjects to ionising radiation. Dosimetry is the measurement of radiation dose, but also commonly refers to the estimation of health risk associated with ionising radiation. This review describes radiation dosimetry of carbon-11-labelled molecules in the context of current PET research and the most widely used regulatory guidelines. Methods: A MEDLINE literature search returned 42 articles; 32 of these were based on human PET data dealing with radiation dosimetry of carbon-11 molecules. Radiation burden expressed as effective dose and maximum absorbed organ dose was compared between tracers. Results: All but one of the carbon-11-labelled PET tracers have an effective dose under 9 μSv/MBq, with a mean of 5.9 μSv/MBq. Data show that serial PET scans in a single subject are feasible for the majority of radiotracers. Conclusion: Although differing in approach, the two most widely used regulatory frameworks (those in the USA and the EU) do not differ substantially with regard to the maximum allowable injected activity per PET study. The predictive validity of animal dosimetry models is critically discussed in relation to human dosimetry. Finally, empirical PET data are related to human dose estimates based on homogenous distribution, generic models and maximum cumulated activities. Despite the contribution of these models to general risk estimation, human dosimetry studies are recommended where continued use of a new PET tracer is foreseen.

  17. Optimization and audit of radiation dose during percutaneous transluminal coronary angioplasty

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Timothy Peace, B.S.; Chandy, Sunil; Gorge, Paul V.; Pati, Purendra

    2007-01-01

    The percutaneous transluminal coronary angioplasty (PTCA) is one of the interventional procedures which impart high radiation doses to patients compared to the other cardiologic procedures. This study intends to audit and optimize radiation dose imparted to patients undergoing PTCA. Forty-four patients who underwent PTCA involving single or multiple stent placement guided under cardiovascular X-ray machine were included in the study. Radiation doses were measured using dose area product (DAP) meter for patients undergoing single and multiple stent placements during PTCA. A dose reduction of 27-47% was achieved using copper filters and optimal exposure parameters. The mean DAP values before optimization were 66.16 and 122.68 Gy cm 2 for single and multiple stent placement respectively. These values were 48.67 and 65.44 Gy cm 2 respectively after optimization. In the present scenario, due to the increase in the number of PTCAs performed and the associated risk from radiation, periodical audit of radiation doses for interventional procedures are recommended. (author)

  18. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.

    1984-03-01

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  19. Radiation dose in the high background radiation area in Kerala, India.

    Science.gov (United States)

    Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P

    2012-03-01

    A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.

  20. Operation of the radiation dose registration system for decontamination and related works

    International Nuclear Information System (INIS)

    Ogawa, Tsubasa; Yasutake, Tsuneo; Itoh, Atsuo; Miyabe, Kenjiro

    2017-01-01

    The radiation dose registration system for decontamination and related works was established on 15 November 2013. Radiation dose registration center and primary contractors of decontamination and related works manage decontamination registration and management system. As of 31 March 2017, 384 primary contractors joined in the radiation dose registration system for decontamination and related works. 383,087 quarterly exposure dose records for decontamination and related works were registered. Based on the registered data provided by the primary contractors, radiation dose registration center has released the statistical data that represent the radiation control status for workers engaged in radiation work at the work areas of decontamination and related works, etc. The statistical data shows that there were 40,377 workers engaged in decontamination and related works in 2015. The average exposure dose for workers was 0.6 mSv in 2015. The maximum exposure dose for workers was 7.8 mSv in 2015. Dose distribution by age of workers shows the range of 60 to 64 years old were most engaged in decontamination and related works in 2015. Dose distribution by gender of workers shows 97% of workers were male in 2015. From 2012 to 2015, about 95% of workers were exposed to radiation less than 3 mSv. And about 80% of workers were exposed to radiation less than 1 mSv. The average exposure dose per year was ranged from 0.5 to 0.7 mSv. (author)

  1. Radiation doses to neonates and issues of radiation protection in a special care baby unit

    International Nuclear Information System (INIS)

    Armpilia, C.I.; Fife, I.A.J.; Croasdale, P.L.

    2001-01-01

    Radiographs are most commonly taken in the neonatal period to assist in the diagnosis and management of respiratory difficulties. Frequent accurate radiographic assessment is required and a knowledge of the radiation dose is necessary to make the justification of such exposures. A survey of radiation doses to neonates from diagnostic X-ray examinations (chest and abdomen) has been carried out in the special care baby unit (SCBU) of the Royal Free Hospital. Entrance surface dose (ESD) was calculated from Quality Control measurements on the X-ray set itself. Direct measurement of radiation doses was also performed using highly sensitive thermoluminescence dosimeters (LiF:Mg,Cu,P), calibrated and tested for consistency in sensitivity. The mean ESD per radiograph was calculated to be 36μGy (with a standard deviation of 6μGy), averaged over 95 X-ray examinations. The ESD's as derived from the TLD crystals, ranged from 18μGy to 60μGy. The mean energy imparted (EI) and the mean whole body dose per radiograph were estimated to be 14μJ and 10μGy respectively. Assuming that neonates and foetuses are equally susceptible to carcinogenic effects of radiation (it involves an overestimation of risk), the radiation risk of childhood cancer from a single radiograph was estimated to be of the order (0.3-1.3)x10 -6 . Radiation doses compared favourably with the reference value of 80μGy ESD published by CEC in 1996. (author)

  2. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  3. We can do better than effective dose for estimating or comparing low-dose radiation risks

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    The effective dose concept was designed to compare the generic risks of exposure to different radiation fields. More commonly these days, it is used to estimate or compare radiation-induced cancer risks. For various reasons, effective dose represents flawed science: for instance, the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints; and the marked and differing age and gender dependencies for different health detriment endpoints are not taken into account. This paper suggests that effective dose could be replaced with a new quantity, ‘effective risk’, which, like effective dose, is a weighted sum of equivalent doses to different tissues. Unlike effective dose, where the tissue-dependent weighting factors are a set of generic, subjective committee-defined numbers, the weighting factors for effective risk are simply evaluated tissue-specific lifetime cancer risks per unit equivalent dose. Effective risk, which has the potential to be age and gender specific if desired, would perform the same comparative role as effective dose, be just as easy to estimate, be less prone to misuse, be more directly understandable, and would be based on solid science. An added major advantage is that it gives the users some feel for the actual numerical values of the radiation risks they are trying to control.

  4. Brachytherapy radiation doses to the neurovascular bundles

    International Nuclear Information System (INIS)

    Di Biase, Steven J.; Wallner, Kent; Tralins, Kevin; Sutlief, Steven

    2000-01-01

    Purpose: To investigate the role of radiation dose to the neurovascular bundles (NVB) in brachytherapy-related impotence. Methods and Materials: Fourteen Pd-103 or I-125 implant patients were studied. For patients treated with implant alone, the prostate and margin (clinical target volume [CTV]) received a prescription dose of 144 Gy for I-125 or 115 Gy for Pd-103. Two patients received Pd-103 (90 Gy) with 46 Gy supplemental external beam radiation (EBRT). Axial CT images were acquired 2 to 4 hours postoperatively for postimplant dosimetry. Because the NVBs cannot be visualized on CT, NVB calculation points were determined according to previously published anatomic descriptions. Bilateral NVB points were considered to lie posterior-laterally, approximately 2 mm from the prostatic capsule. NVB doses were recorded bilaterally, at 0.5-cm intervals from the prostatic base. Results: For Pd-103, the average NVB doses ranged from 150 Gy to 260 Gy, or 130% to 226% of the prescription dose. For I-125, the average NVB dose ranged from 200 Gy to 325 Gy, or 140% to 225% of the prescription dose. These was no consistent relationship between the NVB dose and the distance from the prostatic base. To examine the possible effect of minor deviations of our calculation points from the true NVB location, we performed NVB calculations at points 2 mm medial or lateral from the NVB calculation point in 8 patients. Doses at these alternate calculation points were comparable, although there was greater variability with small changes in the calculation point if sources were located outside the capsule, near the NVB calculation point. Three patients who developed early postimplant impotence had maximal NVB doses that far exceeded the average values. Conclusions: In the next few years, we hope to clarify the role of high NVB radiation doses on potency, by correlating NVB dose calculations with a large number of patients enrolled in an ongoing I-125 versus Pd-103 trial for early-stage patients

  5. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  6. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity

    International Nuclear Information System (INIS)

    Kudryasheva, N.S.; Rozhko, T.V.

    2015-01-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1 – absence of effects (stress recognition), 2 – activation (adaptive response), and 3 – inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. - Highlights: • Luminous bacteria demonstrate nonlinear dose-effect relation in radioactive solutions. • Response to low-dose radiation includes 3 stages: threshold, activation, inhibition. • ROS are responsible for low-dose effects of alpha-emitting radionuclides. • Luminous marine bacteria are a convenient tool to study radiation hormesis

  7. A unique experiment. Measurement of radiation doses at Vinca

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    For the first time in the history of the peaceful applications of atomic energy, an experiment was conducted to determine the exact levels of radiation exposure resulting from a reactor incident. The experiment was made at Vinca, Yugoslavia, wherein October 1958 six persons had been subjected to high doses of neutron and gamma radiation during a brief uncontrolled run of a zero-power reactor. One of them died but the other five were successfully treated at the Curie Hospital in Paris. In the case of four of them, the treatment involved the grafting of healthy bone marrow to counteract the effects of radiation on blood-forming tissues. It was recognized that if the effects produced on the irradiated persons could be related to the exact doses of radiation they had received, it would be possible to gain immensely valuable knowledge about the biological consequences of acute and high level radiation exposure on a quantitative basis. It was suggested to the Yugoslav authorities that a dosimetry experiment be conducted at Vinca. The most accurate modern techniques of dosimetry developed at the Oak Ridge National Laboratory were employed during the experiment. Simultaneous measurements of the neutron and gamma doses were made at points where the people had been located. At these points the effects of the radiation on the salt solution in the phantoms were studied. In particular, the energy distribution of the radiation was investigated.It was the ratio between the various components of the radiation that was of special interest in these measurements because this ratio itself would help in determining the exact doses. The dose of one of the components, viz. slow neutrons, had already been determined during the treatment of the patients. If the ratio of the components could be ascertained, the doses of the fast neutrons and gamma rays could also be established because the ratio would not be affected by the power level at which the reactor was operated

  8. Investigation of the HU-density conversion method and comparison of dose distribution for dose calculation on MV cone beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Joo; Lee, Seu Ran; Suh, Tae Suk [Dept. of Biomedical Engineering, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2011-11-15

    Modern radiation therapy techniques, such as Image-guided radiation therapy (IGRT), Adaptive radiation therapy (ART) has become a routine clinical practice on linear accelerators for the increase the tumor dose conformity and improvement of normal tissue sparing at the same time. For these highly developed techniques, megavoltage cone beam computed tomography (MVCBCT) system produce volumetric images at just one rotation of the x-ray beam source and detector on the bottom of conventional linear accelerator for real-time application of patient condition into treatment planning. MV CBCT image scan be directly registered to a reference CT data set which is usually kilo-voltage fan-beam computed tomography (kVFBCT) on treatment planning system and the registered image scan be used to adjust patient set-up error. However, to use MV CBCT images in radiotherapy, reliable electron density (ED) distribution are required. Patients scattering, beam hardening and softening effect caused by different energy application between kVCT, MV CBCT can cause cupping artifacts in MV CBCT images and distortion of Houns field Unit (HU) to ED conversion. The goal of this study, for reliable application of MV CBCT images into dose calculation, MV CBCT images was modified to correct distortion of HU to ED using the relationship of HU and ED from kV FBCT and MV CBCT images. The HU-density conversion was performed on MV CBCT image set using Dose difference map was showing in Figure 1. Finally, percentage differences above 3% were reduced depending on applying density calibration method. As a result, total error co uld be reduced to under 3%. The present study demonstrates that dose calculation accuracy using MV CBCT image set can be improved my applying HU-density conversion method. The dose calculation and comparison of dose distribution from MV CBCT image set with/without HU-density conversion method was performed. An advantage of this study compared to other approaches is that HU

  9. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Abdel Hamid, S. M.

    2010-12-01

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  10. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    OpenAIRE

    Dobrescu, Lidia; Rădulescu, Gheorghe-Cristian

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase ...

  11. Gene expression, telomere and cognitive deficit analysis as a function of Chornobyl radiation dose and age: from in utero to adulthood

    International Nuclear Information System (INIS)

    Bazika, D.A.; Loganovs'kij, K.M.; Yil'jenko, Yi.M.; Chumak, S.A.; Bomko, M.O.

    2015-01-01

    The possible effects of low dose ionizing radiation on human cognitive function in adult hood and in utero was estimated. Cognitive tests, telomere length and expression of genes regulating telomere function were studied in Chornobyl cleanup workers who were exposed to doses under 500 mSv (n = 326) and subjects exposed in utero during the first days after the accident Prypiat town (n = 104). The neuro cognitive assessment covered memory, attention, language, executive and visiospatial functions. In young adults after prenatal exposure a relation ship was analyzed between a cognitive function and radiation dose to foetus, brain and thyroid gland. Internal controls were used for both groups - the group of Chornobyl cleanup workers exposed in doses less than 20 mSv and an age- matched comparison group from radioactively contaminated areas for subjects exposed in utero . This study shows that cognitive deficit in humans at a late period after radiation exposure is influenced by dose, age at exposure and gene regulation of telomere function

  12. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  13. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Damkaer, D.M.; Dey, D.B.; Heron, G.A.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm/sup -2/sub((DNA)) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm/sup -2/sub((DNA)). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation.

  14. Low doses effects of ionizing radiation on Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Durand, J.; Broock, M. van; Gillette, V.H.

    2000-01-01

    The exposure of living cells to low doses of ionizing radiation induce in response the activation of cellular protection mechanisms against subsequent larger doses of radiation. This cellular adaptive response may vary depending on radiation intensity and time of exposure, and also on the testing probes used whether they were mammalian cells, yeast, bacteria and other organisms or cell types. The mechanisms involved are the genome activation, followed by DNA repair enzymes synthesis. Due to the prompt cell response, the cell cycle can be delayed, and the secondary detoxification of free radicals and/or activation of membrane bound receptors may proceed. All these phenomena are submitted to intense scientific research nowadays, and their elucidation will depend on the complexity of the organism under study. In the present work, the effects of low doses of ionizing radiation (gamma rays) over a suspension of the yeast Saccharomyces cerevisiae (Baker's yeast) was studied, mainly in respect to survival rate and radio-adaptive response. At first, the yeast surviving curve was assessed towards increasing doses, and an estimation of Lethal Dose 50 (LD50) was made. The irradiation tests were performed at LINAC (electrons Linear Accelerator) where electron energy reached approximately 2.65 MeV, and gamma-radiation was produced for bremsstrahlung process over an aluminium screen target. A series of experiments of conditioning doses was performed and an increment surviving fraction was observed when the dose was 2.3 Gy and a interval time between this and a higher dose (challenging dose) of 27 Gy was 90 minutes. A value of 58 ± 4 Gy was estimated for LD50, at a dose rate of 0.44 ± 0.03 Gy/min These quantities must be optimized. Besides data obtained over yeast survival, an unusual increasing amount of tiny yeast colonies appeared on the agar plates after incubation, and this number increased as increasing the time exposure. Preliminary results indicate these colonies as

  15. Correlation between scatter radiation dose at height of operator's eye and dose to patient for different angiographic projections

    International Nuclear Information System (INIS)

    Leyton, Fernando; Nogueira, Maria S.; Gubolino, Luiz A.; Pivetta, Makyson R.; Ubeda, Carlos

    2016-01-01

    Studies have reported cases of radiation-induced cataract among cardiology professionals. In view of the evidence of epidemiological studies, the ICRP recommends a new threshold for opacities and a new radiation dose to eye lens limit of 20 mSv per year for occupational exposure. The aim of this paper is to report scattered radiation doses at the height of the operator's eye in an interventional cardiology facility without considering radiation protection devices and to correlate these values with different angiographic projections and operational modes. Measurements were taken in a cardiac laboratory with an angiography X-ray system equipped with flat-panel detector. PMMA plates of 30×30×5 cm were used with a thickness of 20 cm. Measurements were taken in two fluoroscopy modes (low and normal, 15 pulses/s) and in cine mode (15 frames/s). Four angiographic projections were used: anterior posterior; lateral; left anterior oblique caudal (spider); and left anterior oblique cranial, with a cardiac protocol for patients weighing between 70 and 90 kg. Measurements of phantom entrance dose rate and scatter dose rate were performed with two Unfors Xi plus detectors. The detector measuring scatter radiation was positioned at the usual distance of the cardiologist's eyes during working conditions. There is a good linear correlation between the kerma area product and scatter dose at the lens. Experimental correlation factors of 2.3, 12.0, 12.2 and 17.6 μSv/Gy cm2 were found for different projections. PMMA entrance dose rates for low and medium fluoroscopy and cine modes were 13, 39 and 282 mGy/min, respectively, for AP projection. - Highlights: • A method is presented to estimate the scatter radiation dose at operator eye height. • The method allows estimating scatter radiation dose measuring ambient dose equivalent. • Operator could exceed threshold for lens opacities if protection tools are not used. • There is a good linear correlation between kerma

  16. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs

  17. Radiation dose estimates for copper-64 citrate in man

    International Nuclear Information System (INIS)

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1986-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. The authors have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiations. 5 references, 3 tables

  18. Radiation dose and intra-articular access: comparison of the lateral mortise and anterior midline approaches to fluoroscopically guided tibiotalar joint injections

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ambrose J.; Torriani, Martin; Bredella, Miriam A.; Chang, Connie Y.; Simeone, Frank J.; Palmer, William E. [Massachusetts General Hospital, Department of Radiology, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Balza, Rene [Centro Medico de Occidente, Department of Radiology, Maracaibo (Venezuela, Bolivarian Republic of)

    2016-03-15

    To compare the lateral mortise and anterior midline approaches to fluoroscopically guided tibiotalar joint injections with respect to successful intra-articular needle placement, fluoroscopy time, radiation dose, and dose area product (DAP). This retrospective study was IRB-approved and HIPAA-compliant. 498 fluoroscopically guided tibiotalar joint injections were performed or supervised by one of nine staff radiologists from 11/1/2010-12/31/2013. The injection approach was determined by operator preference. Images were reviewed on a PACS workstation to determine the injection approach (lateral mortise versus anterior midline) and to confirm intra-articular needle placement. Fluoroscopy time (minutes), radiation dose (mGy), and DAP (μGy-m{sup 2}) were recorded and compared using the student's t-test (fluoroscopy time) or the Wilcoxon rank sum test (radiation dose and DAP). There were 246 lateral mortise injections and 252 anterior midline injections. Two lateral mortise injections were excluded from further analysis because no contrast was administered. Intra-articular location of the needle tip was documented in 242/244 lateral mortise injections and 252/252 anterior midline injections. Mean fluoroscopy time was shorter for the lateral mortise group than the anterior midline group (0.7 ± 0.5 min versus 1.2 ± 0.8 min, P < 0.0001). Mean radiation dose and DAP were less for the lateral mortise group than the anterior midline group (2.1 ± 3.7 mGy versus 2.5 ± 3.5 mGy, P = 0.04; 11.5 ± 15.3 μGy-m{sup 2} versus 13.5 ± 17.3 μGy-m{sup 2}, P = 0.006). Both injection approaches resulted in nearly 100 % rates of intra-articular needle placement, but the lateral mortise approach used approximately 40 % less fluoroscopy time and delivered 15 % lower radiation dose and DAP to the patient. (orig.)

  19. Evaluation of apoptosis and apoptosis proteins as possible markers of radiation at doses 0.1-2 Gy, in comparison to the micronucleus assay in three cell lines

    International Nuclear Information System (INIS)

    Jaworska, A.; Angelis, P. de

    1997-01-01

    In recent years the interest in apoptosis as possible indicator of radiation damage has increased. Studies have been done to examine the induction of apoptosis after ionizing radiation using morphological criteria, characteristic DNA damage pattern(ladders), early DNA damage using flow cytometry and/or expression of the proteins involved in apoptosis. But the picture which emerges from these investigations is unclear. Some researchers suggest that apoptosis studies can be used as potential assays of biological dosimetry, others doubt if apoptosis can be used as a marker of irradiation at all. Most studies have been done using relatively high doses of radiation. In this study we focus on apoptosis induction after relatively small doses (0,1-2 Gy). We detected apoptosis with the in situ terminal deoxynucleotidyl transferase assay by flow cytometry, and measured the expression of proteins that regulate apoptosis (Bcl-2, Bax, P53) with Western blotting. As comparison we used the cytokinesis-block micronucleus assay as a reference. The studies were carried out in three lymphoid cell lines: the mouse lymphoma L5178Y resistant and sensitive cell lines widely used in radiobiological studies, and the human pre-B cell leukemia Reh cells. Our results indicate that we can not consider the examined parameters of apoptosis as markers of radiation in these cell lines. (author)

  20. Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.

    Science.gov (United States)

    Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan

    2011-03-01

    Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield

  1. Comparison of the effects of radiation and hyperthermia on prenatal retardation of brain growth of guinea-pigs

    International Nuclear Information System (INIS)

    Wanner, R.A.; Edwards, M.J.

    1983-01-01

    On day 21 of pregnancy guinea-pigs were exposed to hyperthermia or #betta# radiation. The effects on prenatal growth and especially brain growth of offspring were compared. Doses of 0.04-0.99 Gy of radiation produced a dose-dependent and irreversible reduction of brainweight in the offspring, but had little effect on body weight. Treatment with hyperthermia resulting in maternal temperatures of 41.8-43.9 0 C after exposure in a heated incubator for an hour also produced a dose-related micrencephaly in the offspring. Comparison of the two agents showed that a dose increment of 0.525 Gy of radiation produced a deficit in brain weight equivalent to an elevation of 1 0 C in maternal temperature. Using this guinea-pig brain weight assay system a threshold was detected of between 0.05 and 0.10 Gy for retardation of brain growth. (author)

  2. Patient radiation doses in upper GI examinations: a comparison between conventional and double-contrast techniques.

    Science.gov (United States)

    Bankvall, G; Owman, T

    1982-01-01

    A total of 60 patients, divided into 3 groups with 20 patients in each, were examined with 3 different techniques: group 1 -- conventional technique, exposure at 120 kV; group 2 -- double-contrast technique (hypotonic gastrography, HG), exposure at 80 kW; group 3 -- HG, exposure at 120 kV. All examinations were performed in the same examination room and by the same radiologist. Absorbed doses to skin, thyroid, breasts, and gonads as well as energy imparted were measured. The only significant dose enhancements found when using double-contrast instead of conventional technique were in the female breasts and then only if the voltage was in the lower range. With exposure at 120 kV there was little difference in absorbed dose, but a significant advantage with respect to energy was imparted when using a double-contrast technique instead of a conventional technique. The testes doses were very low in all 3 types of examinations, and it seems that use of a testes shield is hardly motivated. With regard to both diagnostic accuracy and patient radiation dose, there can be no reason to use a conventional technique for upper GI examinations.

  3. Dose measurement, its distribution and individual external dose assessments of inhabitants in the high background radiation areas in China

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2000-01-01

    As a part of the China-Japan cooperative research on natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external exposure to natural radiation in the high background radiation areas (HBRA) of Yangjiang in Guangdong province and in the control areas (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by personal dosimeters, an indirect method was applied in which the exposed individual doses were estimated from the environmental radiation doses measured by survey meters and the occupancy factors of each hamlet. We analyzed the dose in the hamlets and the variation in the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and several hamlets of different dose levels in HBRA and Hampizai hamlet in CA. With these parameters, we estimated individual dose rates and compared them with those obtained from direct measurement using dosimeters carried by selected individuals. The results obtained are as follows. The environmental radiation doses are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiations. The indoor radiation doses were due to exposure from the natural radioactive nuclides in the building materials and were about two times as large as the outdoor radiation doses. The difference between indoor and outdoor doses was not observed in CA. The occupancy factor was influenced by the age of individuals and by the season of the year. The occupancy factor was higher for infants and aged individuals than for other age groups. This lead to higher dose rates of exposure to those age groups. A good correlation was observed between the dose assessed indirectly and that measured directly and the

  4. Dose measurement, its distribution and individual external dose assessments of inhabitants in the high background radiation areas in China

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, Hiroshige; Koga, Taeko [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2000-10-01

    As a part of the China-Japan cooperative research on natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external exposure to natural radiation in the high background radiation areas (HBRA) of Yangjiang in Guangdong province and in the control areas (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by personal dosimeters, an indirect method was applied in which the exposed individual doses were estimated from the environmental radiation doses measured by survey meters and the occupancy factors of each hamlet. We analyzed the dose in the hamlets and the variation in the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and several hamlets of different dose levels in HBRA and Hampizai hamlet in CA. With these parameters, we estimated individual dose rates and compared them with those obtained from direct measurement using dosimeters carried by selected individuals. The results obtained are as follows. The environmental radiation doses are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiations. The indoor radiation doses were due to exposure from the natural radioactive nuclides in the building materials and were about two times as large as the outdoor radiation doses. The difference between indoor and outdoor doses was not observed in CA. The occupancy factor was influenced by the age of individuals and by the season of the year. The occupancy factor was higher for infants and aged individuals than for other age groups. This lead to higher dose rates of exposure to those age groups. A good correlation was observed between the dose assessed indirectly and that measured directly and the

  5. Patient doses and radiation risks in film-screen mammography in Finland

    International Nuclear Information System (INIS)

    Servomaa, A.; Parviainen, T.; Komppa, T.

    1995-01-01

    Screen-film mamography is the most sensitive method for the early detection of breast cancer. Breast doses in mamography should be measured for several reasons, especially for the evaluation of patient risk in a screening programme, but also for the assessment and comparison of imaging techniques and equipment performance. In this study, the factors affecting patient doses were assessed by making performance and patient dose measurements; about 50 mammographic units used for screening were included in the study. The lifetime risk as a function of age at exposure was calculated using the average glandular dose, the relative risk model shown in the BEIR V report, and the breast cancer mortality in Finland. The mean surface dose of a 4.5 cm thick phantom was 6.3 mGy, and the mean glandular dose 1.0 mGy. Analysis of the surface dose with respect to film optical density, relative speed of film processing, sensitivity of image receptors, and antiscatter grid showed that the mean surface dose could be decreased by more than 50%. For the screened age group of 50 to 59 years, the risk of exposure-induced death (REID) of breast cancer is about 1.4 x 10 -6 mSv -1 , and the average loss of life expectancy due to the radiation-induced breast cancer deaths (LLE/REID) is about 9.5 years. (Author)

  6. Study of External Radiation Expose Dose on Hands of Nuclear Medicine Workers

    International Nuclear Information System (INIS)

    Park, Jun Chul; Pyo, Sung Jae

    2012-01-01

    The aims of this study are to assess external radiation exposed doses of body and hands of nuclear medicine workers who handle radiation sources, and to measure radiation exposed doses of the hands induced by a whole body bone scan with high frequency and handling a radioactive sources like 99m Tc-HDP and 18 F-FDG in the PET/CT examination. Skillful workers, who directly dispense and inject from radiation sources, were asked to wear a TLD on the chest and ring finger. Then, radiation exposed dose and duration exposed from daily radiation sources for each section were measured by using a pocket dosimeter for the accumulated external doses and the absorbed dose to the hands. In the survey of four medical institutions in Incheon Metropolitan City, only one of four institutions has a radiation dosimeter for local area like hands. Most of institutions uses radiation shielding devices for the purpose of protecting the body trunk, not local area. Even some institutions were revealed not to use such a shielding device. The exposed doses on the hands of nuclear medicine workers who directly handles radioactive sources were approximately twice as much as those on the body. The radiation exposure level for each section of the whole body bone scan with high frequency and that of the PET/CT examination showed that radiation doses were revealed in decreasing order of synthesis of radioactive medicine and installation to a dispensing container, dispensing, administering and transferring. Furthermore, there were statistically significant differences of radiation exposure doses of the hands before and after wearing a syringe shielder in administration of a radioactive sources. In this study, although it did not reach the permissible effective dose for nuclear medicine, the occupational workers were exposed by relatively higher dose level than the non-occupational workers. Therefore, the workers, who closely exposed to radioactive sources should be in compliance with safety

  7. Interaction of Low Doses of Ionizing Radiation, Potassium Dichromate and Cadmium Chloride in Artemia franciscana Biotest

    Directory of Open Access Journals (Sweden)

    K. Beňová

    2007-01-01

    Full Text Available The influence of cadmium chloride (at concentrations of 100 and 200 mg l-1 and potassium dichromate (at a concentration of 50 mg l-1 along with the effect of gamma radiation 60Co (at a dose of 10 and 50 Gy on lethality to Artemia franciscana was investigated. Four different interactions were studied, namely, those of potassium dichromate and gamma radiation, cadmium chloride and gamma radiation, and combinations of potassium dichromate and cadmium chloride in interaction with gamma radiation. A significant (α = 0.05 decrease was observed in lethality due to exposure to radiation (10 Gy in comparison with action of only potassium dichromate and cadmium chloride or their combination without exposure to gamma rays. These results support the theory of hormesis.

  8. Influence of radiation dose and dose-rate on modification of barley seed radiosensitivity by post-treatment with caffeine

    International Nuclear Information System (INIS)

    Sharma, G.J.

    1987-01-01

    Influence of radiation doses (100, 150 and 200 Gy) and dose-rates (1.27-0.023 Gy/Sec) on the modification of oxic and anoxic radiation damage by caffeine at different concentrations has been investigated using metabolizing barley seeds as test system. As the radiation dose increases from 100 to 200 Gy, the magnitude of oxic and anoxic damages increase at all the dose-rates. Caffeine is able to afford partial radioprotection against the oxic damage, at the same time potentiating the anoxic damage. However, caffeine effect against the oxic and anoxic components of damage depend largely upon the dose of radiation applied and also on the dose-rate used. The possible mechanism of action of caffeine in bringing about the differential modification of oxic and anoxic damages has been discussed. 19 refs., 2 tables. (author)

  9. On revision of definition of doses for radiation protection in ICRP 1990 recommendations

    International Nuclear Information System (INIS)

    Yoshizawa, Michio

    1995-01-01

    The recommendation of ICRP is to give the guideline to the organizations and experts concerned to radiation protection including regulatory authorities on the basic rule which becomes the basis of proper radiation protection, and the radiation protection in respective countries has been carried out, respecting this ICRP recommendation. In 1990, ICRP revised this basic recommendation, and published as Publication 60. In this 1990 recommendation, as the matters that give impact to the dose evaluation of external exposure, the introduction of the new concept of dose, namely radiation weighting factor and equivalent dose, the revision of radiation quality factor and so on are enumerated. As to the 1990 recommendation, absorbed dose and organ dose, radiation weighting factor, equivalent dose, effective dose, quality factor-LET relation, the summation with the former quantities and the operational quantity of ICRU are described. The reason why radiation weighting factor and equivalent dose were introduced are discussed, including the inference of the author. (K.I.)

  10. Dose rate effect on material aging due to radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shin-ichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Hayakawa, Chikara; Takeya, Chikashi

    1982-12-01

    Although many reports have been presented on the radiation aging of the organic materials for electric cables, those have been based on the experiments carried out at high dose rate near 1 x 10/sup 6/ rad/h, assuming that aging effect depends on only radiation dose. Therefore, to investigate the aging behaviour in low dose rate range is an important subject to predict their practical life time. In this report, the results of having investigated the aging behaviour of six types of materials are described, (polyethylene for general insulation purpose, chemically cross-linked polyethylene, fire-retardant chemically cross-linked polyethylene, fire-retardant ethylene-propylene rubber, fire-retardant chloro-sulfonated polyethylene for sheaths, and fire-retardant, low hydrochloric acid, special heat-resistant vinyl for insulation purpose or chloroclean). They were irradiated with /sup 60/Co ..gamma..-ray at the dose from 5 x 10/sup 3/ to 1 x 10/sup 6/ rad/h, and their deterioration was tested for the items of elongation, tensile strength, resistivity, dielectric tangent and gel fraction. The aging mechanism and dose rate effect were also considered. The dose rate effect appeared or did not appear depending on the types of materials and also their properties. The materials that showed the dose rate effect included the typical ones whose characteristics degraded with the decreasing dose rate, and the peculiar ones whose deterioration of characteristics did not appear constantly. Aging mechanism may vary in the case of high dose rate and low dose rate. Also, if the life time at respective dose rate in relatively higher dose rate region is clarified, the life time in low dose rate region may possibly be predicted.

  11. Evaluation of the Entrance Surface Dose (ESD and Radiation Dose to the Radiosensitive Organs in Pediatric Pelvic Radiography

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2017-06-01

    Full Text Available Background Patients' dosimetry is crucial in order to enhance radiation protection optimization and to deliver low radiation dose to the patients in a radiological procedure. The aim of this study was to assess the entrance surface dose (ESD and radiation dose to the radiosensitive organs in pediatric pelvic radiography. Materials and Methods The studied population included 98 pediatric patients of both genders referred to anteroposterior (AP projection of pelvic radiography. The radiation dose was directly measured using high radiosensitive cylindrical lithium fluoride thermo-luminescent dosimeters (TLD-GR200. Two TLDs were placed at the center point of the radiation field to measure the ESD of pelvis. Moreover for each patient, 2 TLDs were placed upon each eyelid, 2 TLDs upon each breast, 2 TLDs upon the surface anatomical position of the thyroid gland and finally 2 TLDs at the surface anatomical position of the gonads to measure the received dose. Results The ESD ± standard deviation for AP pelvic radiography was obtained 591.7±76 µGy. Statistically significant difference was obtained between organs located outside and inside of the radiation field with respect to dose received (P

  12. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  13. Radiation dose to the eye lens

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; D. Nielsen, Kamilla

    2015-01-01

    Radiation Dose to the Eye Lens: Does Positioning Really Matter? C. Baun1, K. Falch1, K.D. Nielsen2, S. Shanmuganathan1, O. Gerke1, P.F. Høilund-Carlsen1 1Department of Nuclear Medicine, Odense University Hospital, Odense C, Denmark. 2University College Lillebaelt, Odense, Denmark. Aim: The scan...... field in oncology patients undergoing eyes-to-thighs PET/CT must always include the base of the scull according to department guidelines. The eye lens is sensitive to radiation exposure and if possible it should be avoided to scan the eye. If the patient’s head is kipped backwards during the scan one...... might avoid including the eye in the CT scan without losing sufficient visualization of the scull base. The aim of this study was to evaluate the possibility of decreasing the radiation dose to the eye lens, simply by changing the head position, when doing the PET/CT scan from the base of the scull...

  14. Problems linked to effects of ionizing radiations low doses

    International Nuclear Information System (INIS)

    Anon.

    1995-10-01

    The question of exposure to ionizing radiations low doses and risks existing for professional and populations has been asked again, with the recommendations of the International Commission of Radiation Protection (ICRP) to lower the previous standards and agreed as guides to organize radiation protection, by concerned countries and big international organisms. The sciences academy presents an analysis which concerned on epidemiological and dosimetric aspects in risk estimation, on cellular and molecular aspects of response mechanism to irradiation. The observation of absence of carcinogen effects for doses inferior to 200 milli-sieverts and a re-evaluation of data coming from Nagasaki and Hiroshima, lead to revise the methodology of studies to pursue, to appreciate more exactly the effects of low doses, in taking in part, particularly, the dose rate. The progress of molecular and cellular biology showed that the extrapolation from high doses to low doses is not in accordance with actual data. The acknowledge of DNA repair and carcinogenesis should make clearer the debate. (N.C.). 61 refs., 9 annexes

  15. Radiation doses from computed tomography practice in Johor Bahru, Malaysia

    International Nuclear Information System (INIS)

    Karim, M.K.A.; Hashim, S.; Bradley, D.A; Bakar, K.A.; Haron, M.R.; Kayun, Z.

    2016-01-01

    Radiation doses for Computed Tomography (CT) procedures have been reported, encompassing a total of 376 CT examinations conducted in one oncology centre (Hospital Sultan Ismail) and three diagnostic imaging departments (Hospital Sultanah Aminah, Hospital Permai and Hospital Sultan Ismail) at Johor hospital's. In each case, dose evaluations were supported by data from patient questionnaires. Each CT examination and radiation doses were verified using the CT EXPO (Ver. 2.3.1, Germany) simulation software. Results are presented in terms of the weighted computed tomography dose index (CTDI w ), dose length product (DLP) and effective dose (E). The mean values of CTDI w , DLP and E were ranged between 7.6±0.1 to 64.8±16.5 mGy, 170.2±79.2 to 943.3±202.3 mGy cm and 1.6±0.7 to 11.2±6.5 mSv, respectively. Optimization techniques in CT are suggested to remain necessary, with well-trained radiology personnel remaining at the forefront of such efforts. - Highlights: • We investigate radiation doses received by patients from CT scan examinations. • We compare data with current national diagnostic reference levels and other references. • Radiation doses from CT were influenced by CT parameter, scanning techniques and patient characteristics.

  16. Comparison of the two different standard flux-to-dose rate conversion factors

    International Nuclear Information System (INIS)

    Metghalchi, M.; Ashrafi, R.

    1983-01-01

    A very useful and simple way of obtaining the dose rate associated with neutron or photon fluxes is to multiply these fluxes by the appropriate flux-to-dose rate conversion factors. Two basic standard flux-to-dose rate conversion factors. are being used in all over the world, those recommended by the International Commission on Radiation Protection (ICRP) and the American National Standars (ANS). The purpose of this paper is to compare these two standard with each other. The comparison proved that the dose rate associated with a specific neutron flux, obtained by the ANS flux-to-dose rate conversion factors is usually higher than those calculated by the ICRP's conversion factors. Whereas in the case of the photon, in all energies, the difference between the dose rates obtained by these two standard flux-to-dose rate conversion factors are noticeable, and the ANS results are higher than the ICRP ones. So, it should be noted that for a specific neutron or photon flux the dose rate obtained by the ANS flux-to-dose rate conversion factors are more conservative than those obtained by the ICRP's. Therefore, in order to establish a more reasonable new standard flux-to-dose rate conversion factors, more work should be done. (author)

  17. Radiation dose and late failures in prostate cancer

    International Nuclear Information System (INIS)

    Morgan, Peter B.; Hanlon, Alexandra L.; Horwitz, Eric M.; Buyyounouski, Mark K.; Uzzo, Robert G.; Pollack, Alan

    2007-01-01

    Purpose: To quantify the impact of radiation dose escalation on the timing of biochemical failure (BF) and distant metastasis (DM) for prostate cancer treated with radiotherapy (RT) alone. Methods: The data from 667 men with clinically localized intermediate- and high-risk prostate cancer treated with three-dimensional conformal RT alone were retrospectively analyzed. The interval hazard rates of DM and BF, using the American Society for Therapeutic Radiology and Oncology (ASTRO) and Phoenix (nadir + 2) definitions, were determined. The median follow-up was 77 months. Results: Multivariate analysis showed that increasing radiation dose was independently associated with decreased ASTRO BF (p < 0.0001), nadir + 2 BF (p = 0.001), and DM (p = 0.006). The preponderance (85%) of ASTRO BF occurred at ≤4 years after RT, and nadir + 2 BF was more evenly spread throughout Years 1-10, with 55% of BF in ≤4 years. Radiation dose escalation caused a shift in the BF from earlier to later years. The interval hazard function for DM appeared to be biphasic (early and late peaks) overall and for the <74-Gy group. In patients receiving ≥74 Gy, a reduction occurred in the risk of DM in the early and late waves, although the late wave appeared reduced to a greater degree. Conclusion: The ASTRO definition of BF systematically underestimated late BF because of backdating. Radiation dose escalation diminished and delayed BF; the delay suggested that local persistence may still be present in some patients. For DM, a greater radiation dose reduced the early and late waves, suggesting that persistence of local disease contributed to both

  18. Personalized Feedback on Staff Dose in Fluoroscopy-Guided Interventions: A New Era in Radiation Dose Monitoring.

    Science.gov (United States)

    Sailer, Anna M; Vergoossen, Laura; Paulis, Leonie; van Zwam, Willem H; Das, Marco; Wildberger, Joachim E; Jeukens, Cécile R L P N

    2017-11-01

    Radiation safety and protection are a key component of fluoroscopy-guided interventions. We hypothesize that providing weekly personal dose feedback will increase radiation awareness and ultimately will lead to optimized behavior. Therefore, we designed and implemented a personalized feedback of procedure and personal doses for medical staff involved in fluoroscopy-guided interventions. Medical staff (physicians and technicians, n = 27) involved in fluoroscopy-guided interventions were equipped with electronic personal dose meters (PDMs). Procedure dose data including the dose area product and effective doses from PDMs were prospectively monitored for each consecutive procedure over an 8-month period (n = 1082). A personalized feedback form was designed displaying for each staff individually the personal dose per procedure, as well as relative and cumulative doses. This study consisted of two phases: (1) 1-5th months: Staff did not receive feedback (n = 701) and (2) 6-8th months: Staff received weekly individual dose feedback (n = 381). An anonymous evaluation was performed on the feedback and occupational dose. Personalized feedback was scored valuable by 76% of the staff and increased radiation dose awareness for 71%. 57 and 52% reported an increased feeling of occupational safety and changing their behavior because of personalized feedback, respectively. For technicians, the normalized dose was significantly lower in the feedback phase compared to the prefeedback phase: [median (IQR) normalized dose (phase 1) 0.12 (0.04-0.50) µSv/Gy cm 2 versus (phase 2) 0.08 (0.02-0.24) µSv/Gy cm 2 , p = 0.002]. Personalized dose feedback increases radiation awareness and safety and can be provided to staff involved in fluoroscopy-guided interventions.

  19. measurement of high dose radiation using yellow perspex dosimeter

    International Nuclear Information System (INIS)

    Thamrin, M Thoyib; Sofyan, Hasnel

    1996-01-01

    Measurement of high dose radiation using yellow perspex dosemeter has been carried out. Dose range used was between 0.1 to 3.0 kGy. Measurement of dose rate against Fricke dosemeter as a standard dose meter From the irradiation of Fricke dosemeter with time variation of 3,6,9,12,15 and 18 minute, it was obtained average dose rate of 955.57 Gy/hour, linear equation of dose was Y= 2.333+15.776 X with its correlation factor r = 0.9999. Measurement result using yellow perspex show that correlation between net optical density and radiation dose was not linear with its equation was ODc exp. [Bo + In(dose).Bi] Value of Bo = -0.215 and Bi=0.5020. From the experiment it was suggested that routine dosimeter (yellow perspex) should be calibrated formerly against standard dosemeters

  20. Population doses from naturally occurring radiation in Norway

    International Nuclear Information System (INIS)

    Stranden, E.

    The main purpose of this work was to study the radiological consequences of the introduction of building materials with high concentrations of radioactivity and to analyse the impact of a reduction of the ventilation rates in houses on the population dose from inhalation of natural airborne radioactivity. The general problems of radioactivity in building materials are discussed. Measurements of radioactivity in building materials from different parts of the country are reported, together with theoretical calculations of the gamma doses in houses. These calculations are compared with experimental results and earlier measurements of the indoor gamma radiation in Norway. Measurements of the outdoor gamma radiation in different parts of Norway are presented. These results are used together with earlier measurements of the gamma radiation inside houses to calculate the average, and variations of population dose from this radiation. An experimental study on the radon concentrations inside different types of dwellings, and a discussion of the respiratory dose received by the inhalation of radon daughters is presented. Some factors that may have influence upon the radon concentrations are also discussed. A method for measurement of radon and thoron daughters in air is discussed. The possible radiological effects of an increased radon concentration in houses are discussed. (Auth.)

  1. Securing safe and informative thoracic CT examinations—Progress of radiation dose reduction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takeshi, E-mail: tkubo@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Seo, Joon Beom [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, 207 Uehara, Nishinara, Okinawa 903-0215 (Japan); Kalender, Willi A. [Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen (Germany); Lee, Chang Hyun [Department of Radiology, Seoul National University Hospital, 28 Yeongeon-dong, Jongno-gu, Seoul (Korea, Republic of); Lynch, David A. [Department of Radiology, National Jewish Health, 1400 Jackson St, A330 Denver, Colorado 80206 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)

    2017-01-15

    Highlights: • Various techniques have led to substantial radiation dose reduction of chest CT. • Automatic modulation of tube current has been shown to reduce radiation dose. • Iterative reconstruction makes significant radiation dose reduction possible. • Processing time is a limitation for full iterative reconstruction, currently. • Validation of diagnostic accuracy is desirable for routine use of low dose protocols. - Abstract: The increase in the radiation exposure from CT examinations prompted the investigation on the various dose-reduction techniques. Significant dose reduction has been achieved and the level of radiation exposure of thoracic CT is expected to reach the level equivalent to several chest X-ray examinations. With more scanners with advanced dose reduction capability deployed, knowledge on the radiation dose reduction methods has become essential to clinical practice as well as academic research. This article reviews the history of dose reduction techniques, ongoing changes brought by newer technologies and areas of further investigation.

  2. The biological effects of low doses of radiation: medical, biological and ecological aspects

    International Nuclear Information System (INIS)

    Gun-Aajav, T.; Ajnai, L.; Manlaijav, G.

    2007-01-01

    Full text: The results of recent studies show that low doses of radiation make many different structural and functional changes in a cell and these changes are preserved for a long time. This phenomenon is called as effects of low doses of radiation in biophysics, radiation biology and radiation medicine. The structural and functional changes depend on doses and this dependence has non-linear and bimodal behaviour. More detail, the radiation effect goes up and reaches its maximum (Low doses maximum) in low doses region, then it goes down and takes its stationary means (there is a negative effect in a few cases). With increases in doses and with further increases it goes up. It is established that low dose's maximum depends on physiological state of a biological object, radiation quality and dose rate. During the experiments another special date was established. This specialty is that many different physical and chemical factors are mutually connected and have synergetic behaviour. At present, researches are concentrating their attention on the following three directions: 1. Direct and indirect interaction of radiation's low doses: 2. Interpretation of its molecular mechanism, regulation of the positive effects and elaboration of ways o removing negative effects: 3. Application of the objective research results into practice. In conclusion the authors mention the current concepts on interpretation of low doses effect mechanism, forward their own views and emphasize the importance of considering low doses effects in researches of environmental radiation pollution, radiation medicine and radiation protection. (author)

  3. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Buchori; Dadong Iskandar

    2007-01-01

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  4. An energy-independent dose rate meter for beta and gamma radiation

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Keller, M.

    1986-01-01

    An easy to handle dose rate meter has been developed at the Juelich Nuclear Research Centre with a small probe for the energy-independent determination of the dose rate in mixed radiation fields. The dose rate meter contains a small ionisation chamber with a volume of 15.5 cm 3 . The window of the ionisation chamber consists of an aluminised plastic foil of 7 mg.cm -2 . The dose rate meter is suitable for determining the dose rate in skin. With a supplementary depth dose cap, the dose rate can be determined in tissue at a depth of 1 cm. The dose rate meter is energy-independent within +-20% for 147 Pm, 204 Tl and 90 Sr/ 90 Y beta radiation and for gamma radiation in the energy range above 35 keV. (author)

  5. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  6. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  7. Assessment of population external irradiation doses with consideration of Rospotrebnadzor bodies equipment for monitoring of photon radiation dose

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available This paper provides review of equipment and methodology for measurement of photon radiation dose; analysis of possible reasons for considerable deviation between the Russian Federation population annual effective external irradiation doses and the relevant average global value. Data on Rospotrebnadzor bodies dosimetry equipment used for measurement of gamma radiation dose are collected and systematized. Over 60 kinds of dosimeters are used for monitoring of population external irradiation doses. Most of dosimeters used in the country have gas-discharge detectors (Geiger-Mueller counters, minor biochemical annunciators, etc. which have higher total values of own background level and of space radiation response than the modern dosimeters with scintillation detectors. This feature of dosimeters is apparently one of most plausible reasons of a bit overstating assessment of population external irradiation doses. The options for specification of population external irradiation doses assessment are: correction of gamma radiation dose measurement results with consideration of dosimeters own background level and space radiation response, introduction of more up-to-date dosimeters with scintillation detectors, etc. The most promising direction of research in verification of population external irradiation doses assessment is account of dosimetry equipment.

  8. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  9. Radiation dose to neonates on a Special Care Baby Unit

    International Nuclear Information System (INIS)

    Faulkner, K.; Barry, J.L.; Smalley, P.

    1989-01-01

    The skin entrance dose to neonates on a special care baby unit was estimated from a knowledge of the technique factors, X-ray tube output and backscatter factors. Normalized organ dose data were employed to estimate radiation dose to a number of critical organs. Methods of reducing radiation dose to neonates were investigated. Initially, this involved changing the radiographic technique factors and introducing a lead rubber adjustable collimator, placed on top of the incubator, in addition to light beam diaphragms on the X-ray tube. These modifications to the examination technique appeared to reduce average entrance dose per radiograph from 92 μGy, to 58 μGy, a reduction of 37%. Later, a rare-earth film-screen combination was introduced to replace existing fast calcium tungstate screens. This enabled average entrance dose per radiograph to be reduced to 39 μGy, a further reduction of 33%. The mean radiation dose to a neonate is mainly determined by the number of radiographs. (author)

  10. Radiation dose to neonates on a Special Care Baby Unit

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, K.; Barry, J.L.; Smalley, P.

    1989-03-01

    The skin entrance dose to neonates on a special care baby unit was estimated from a knowledge of the technique factors, X-ray tube output and backscatter factors. Normalized organ dose data were employed to estimate radiation dose to a number of critical organs. Methods of reducing radiation dose to neonates were investigated. Initially, this involved changing the radiographic technique factors and introducing a lead rubber adjustable collimator, placed on top of the incubator, in addition to light beam diaphragms on the X-ray tube. These modifications to the examination technique appeared to reduce average entrance dose per radiograph from 92 ..mu..Gy, to 58 ..mu..Gy, a reduction of 37%. Later, a rare-earth film-screen combination was introduced to replace existing fast calcium tungstate screens. This enabled average entrance dose per radiograph to be reduced to 39 ..mu..Gy, a further reduction of 33%. The mean radiation dose to a neonate is mainly determined by the number of radiographs.

  11. An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring.

    Science.gov (United States)

    Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa

    2011-04-01

    The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.

  12. Studies of health effects of low dose radiation and its application to medicare

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Ishida, Kenji; Iwasaki, Toshiyasu; Koana, Takao; Magae, Junji; Watanabe, Masami; Sakamoto, Kiyohiko

    2008-01-01

    The articles contain following 7 topics of low dose radiation effects. Studies of Health Effects of Low dose Radiation and Its Application to Medicare'', describes the indication of Rn therapy and investigations of its usefulness mechanism mainly in Misasa Spa, Okayama Pref. ''Challenges for the Paradigm Shift (CRIEPI Studies)'', introduces studies against the paradigm that radiation dose is linearly and proportionally hazardous. ''Studies of High Background Radiation Area (CRIEPI Studies)'', describes global HBRA studies on chromosome affection and effect of smoking in HBRA. ''Is the Radiation Effect on Man Proportional to Dose? (CRIEPI Studies)'', describes studies of immature sperm irradiated at low dose against Linear-Non-threshold Theory (LNT) hypothesis. ''Induction of Radiation Resistance by Low Dose Radiation and Assessment of Its Effect in Models of Human Diseases (CRIEPI Studies)'', explains the adoptive response in radiation effect, suppression of carcinogenesis and immune regulation by previous low dose radiation in the mouse, and improvement of diabetes in the db/db mouse. ''Modulation of Biological Effects of Low Dose Radiation: Adoptive Response, Bystander Effect, Genetic Instability and Radiation Hormesis'', summarizes findings of each item. ''Cancer Treatment with Low dose Radiation to the Whole Body'', describes basic studies in the mouse tumor in relation to suppression of carcinogenesis and metastasis, immune activation and treatment, and successful clinical studies in patients with ovary, colon cancers and malignant lymphoma where survival has been significantly improved: a base of recent European Organization for Research and Treatment of Cancer (EORTC) clinical trials. The mechanism is essentially based on immune activation of patients to cure the disease. (R.T.)

  13. External radiation dose from patients received diagnostic doses of 201 T1-Chloride and 99 Tc-MIBI

    International Nuclear Information System (INIS)

    Dadashzadeh, S.; Sattari, A.; Nasiroghli, G.A.

    2002-01-01

    Patients receiving diagnostic doses of radiopharmaceuticals become a source of contamination and exposure for those who come in contact with them, such as nuclear medicine technologists, relatives and nurses. Therefore, the measurement of external radiation dose from these patients is necessary. In this study, the dose rates at distances of 10, 50 and 100 cm from 70 patients who received diagnostic amounts of 201 T1-Chloride and 99 Tc-MIBI was measures. The results showed that the maximum external radiation dose rates for 201 T1 and 99 Tc-MIBI were 18.4 and 75.0 μ Sv.h -1 , respectively, at 5 cm distance from the patients. The average radiation dose received by nuclear medicine technologists, considering their close contact during one working day was 12.5 ± 3.4μ Sv. The highest received dose was 22.7 μSv, which was well below the acceptable dose limit

  14. Assessment of effective dose from cone beam CT imaging in SPECT/CT examination in comparison with other modalities

    International Nuclear Information System (INIS)

    Tonkopi, Elena; Ross, Andrew A.

    2016-01-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose. (authors)

  15. Radiation absorbed dose to the human fetal thyroid

    International Nuclear Information System (INIS)

    Watson, E.E.

    1992-01-01

    The embryo/fetus is recognized to be particularly susceptible to damage from exposure to radiation. Many advisory groups have studied available information concerning radiation doses and radiation effects with the goal of reducing the risk to the embryo/fetus. Of particular interest are radioactive isotopes of iodine. Radioiodine taken into the body of a pregnant woman presents a possible hazard for the embryo/fetus. The fetal thyroid begins to concentrate iodine at about 13 weeks after conception and continues to do so throughout gestation. At term, the organic iodine concentration in the fetal blood is about 75% of that in the mother's blood. This paper presents a review the models that have been proposed for the calculation of the dose to the fetal thyroid from radioisotopes of iodine taken into the body of the pregnant woman as sodium iodide. A somewhat different model has been proposed, and estimates of the radiation dose to the fetal thyroid calculated from this model are given for each month of pregnancy from 123 I , 124 I , 125 I , and 131 I

  16. Assessment and recording of radiation doses to workers

    International Nuclear Information System (INIS)

    1986-01-01

    The assessment and recording of the radiation exposure of workers in activities involving radiation risks are required for demonstrating compliance with institutional dose limitations and for a number of other complementary purposes. A significant proportion of the labor force involved in radiation work is currently represented by those specialised workers who operate as itinerant contractors for different nuclear installations and in different countries. In order to ensure that the exposure of these workers is adequately and consistently controlled and kept within acceptable limits, there is a need for the criteria and methods for dose assessment and recording to be harmonised throughout the different countries. An attempt in that direction has been made in this report, which has been prepared by a group of experts convened by the Committee on Radiation Protection and Public Health of the OECD Nuclear Energy Agency. Its primary purpose is to describe recommended technical procedures for an unified approach to the assessment and recording of worker doses. The report is published under the responsibility of the Secretary-General of the OECD, and does not commit Member governments

  17. Injury of the blood-testies barrier after low-dose-rate chronic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Hoon; Bae Min Ji; Lee, Chang Geun; Yang, Kwang Mo; Jur, Kyu; Kim, Jong Sun [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-04-15

    The systemic effect of radiation increases in proportionally with the dose and dose rate. Little is known concerning the relationships between harmful effects and accumulated dose, which is derived from continuous low-dose rate radiation exposure. Recent our studies show that low-dose-rate chronic radiation exposure (3.49 mGy/h) causes adverse effects in the testis at a dose of 2 Gy (6 mGy/h). However, the mechanism of the low-dose-rate 2 Gy irradiation induced testicular injury remains unclear. The present results indicate that low-dose rate chronic radiation might affect the BTB permeability, possibly by decreasing levels of ZO-1, Occludin-1, and NPC-2. Furthermore, our results suggest that there is a risk of male infertility through BTB impairment even with low-dose-rate radiation if exposure is continuous.

  18. Comparison of image quality and radiation dose between combined automatic tube current modulation and fixed tube current technique in CT of abdomen and pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghee (Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine (Korea, Republic of)); Yoon, Sang-Wook; Yoo, Seung-Min; Kim, Kyoung Ah; Kim, Sang Heum; Lee, Jong Tae (Dept. of Diagnostic Radiology, CHA Bundang Medical Center, CHA Univ. (Korea, Republic of)), email: jansons@cha.ac.kr; Ji, Young Geon (Preventive Medicine, CHA Bundang Medical Center, CHA Univ. (Korea, Republic of))

    2011-12-15

    Background. Tube current is an important determinant of radiation dose and image quality in X-ray-based examination. The combined automatic tube current modulation technique (ATCM) enables automatic adjustment of the tube current in various planes (x-y and z) based on the size and attenuation of the body area scanned. Purpose. To compare image quality and radiation dose of the ATCM with those of a fixed tube current technique (FTC) in CT of the abdomen and pelvis performed with a 16-slice multidetector row CT. Material and Methods. We reviewed 100 patients in whom initial and follow-up CT of the abdomen and pelvis were performed with FTC and ATCM. All acquisition parameters were identical in both techniques except for tube current. We recorded objective image noise in liver parenchyma, subjective image noise and diagnostic acceptability by using a five-point scale, radiation dose, and body mass index (BMI, kg/m2). Data were analyzed with parametric and non-parametric statistical tests. Results. There was no significant difference in image noise and diagnostic acceptability between two techniques. All subjects had acceptable subjective image noise in both techniques. The significant reduction in radiation dose (45.25% reduction) was noted with combined ATCM (P < 0.001). There was a significant linear statistical correlation between BMI and dose reduction (r = -0.78, P < 0.05). Conclusion. The ATCM for CT of the abdomen and pelvis substantially reduced radiation dose while maintaining diagnostic image quality. Patients with lower BMI showed more reduction in radiation dose

  19. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    International Nuclear Information System (INIS)

    Reynaldo, S. R.; Benavente C, J. A.; Da Silva, T. A.

    2015-10-01

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the 90 Sr/ 90 Y and 85 Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the 90 Sr/ 90 Y and -0.3% for the 85 Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  20. Biological evidence of low ionizing radiation doses; Biologischer Nachweis niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mirsch, Johanna

    2017-03-17

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was