Diffusion approximation for modeling of 3-D radiation distributions
International Nuclear Information System (INIS)
Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.
1985-01-01
A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs
An anisotropic diffusion approximation to thermal radiative transfer
International Nuclear Information System (INIS)
Johnson, Seth R.; Larsen, Edward W.
2011-01-01
This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)
Guermond, Jean-Luc; Kanschat, Guido
2010-01-01
We revisit some results from M. L. Adams [Nu cl. Sci. Engrg., 137 (2001), pp. 298- 333]. Using functional analytic tools we prove that a necessary and sufficient condition for the standard upwind discontinuous Galerkin approximation to converge to the correct limit solution in the diffusive regime is that the approximation space contains a linear space of continuous functions, and the restrictions of the functions of this space to each mesh cell contain the linear polynomials. Furthermore, the discrete diffusion limit converges in the Sobolev space H1 to the continuous one if the boundary data is isotropic. With anisotropic boundary data, a boundary layer occurs, and convergence holds in the broken Sobolev space H with s < 1/2 only © 2010 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Arridge, Simon R; Kaipio, Jari P
2005-01-01
In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the domain. The two equations are coupled through their boundary conditions and they are solved simultaneously using the finite element method. The streamline diffusion modification is used to avoid the ray-effect problem in the finite element solution of the radiative transfer equation. The proposed method is tested with simulations. The results of the coupled model are compared with the finite element solutions of the radiative transfer equation and the diffusion approximation and with results of Monte Carlo simulation. The results show that the coupled model can be used to describe photon migration in turbid medium with low-scattering and non-scattering regions more accurately than the conventional diffusion model
Diffusion effects in undulator radiation
Directory of Open Access Journals (Sweden)
Ilya Agapov
2014-11-01
Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.
Forms of Approximate Radiation Transport
Brunner, G
2002-01-01
Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.
'LTE-diffusion approximation' for arc calculations
International Nuclear Information System (INIS)
Lowke, J J; Tanaka, M
2006-01-01
This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode
Energy Technology Data Exchange (ETDEWEB)
Tetsu, Hiroyuki; Nakamoto, Taishi, E-mail: h.tetsu@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)
2016-03-15
Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton–Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas and Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.
THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT
International Nuclear Information System (INIS)
Liebendoerfer, M.; Whitehouse, S. C.; Fischer, T.
2009-01-01
Astrophysical observations originate from matter that interacts with radiation or transported particles. We develop a pragmatic approximation in order to enable multidimensional simulations with basic spectral radiative transfer when the available computational resources are not sufficient to solve the complete Boltzmann transport equation. The distribution function of the transported particles is decomposed into a trapped particle component and a streaming particle component. Their separate evolution equations are coupled by a source term that converts trapped particles into streaming particles. We determine this source term by requiring the correct diffusion limit for the evolution of the trapped particle component. For a smooth transition to the free streaming regime, this 'diffusion source' is limited by the matter emissivity. The resulting streaming particle emission rates are integrated over space to obtain the streaming particle flux. Finally, a geometric estimate of the flux factor is used to convert the particle flux to the streaming particle density, which enters the evaluation of streaming particle-matter interactions. The efficiency of the scheme results from the freedom to use different approximations for each particle component. In supernovae, for example, reactions with trapped particles on fast timescales establish equilibria that reduce the number of primitive variables required to evolve the trapped particle component. On the other hand, a stationary-state approximation considerably facilitates the treatment of the streaming particle component. Different approximations may apply in applications to stellar atmospheres, star formation, or cosmological radiative transfer. We compare the isotropic diffusion source approximation with Boltzmann neutrino transport of electron flavor neutrinos in spherically symmetric supernova models and find good agreement. An extension of the scheme to the multidimensional case is also discussed.
Bent approximations to synchrotron radiation optics
International Nuclear Information System (INIS)
Heald, S.
1981-01-01
Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors
Models of diffuse solar radiation
Energy Technology Data Exchange (ETDEWEB)
Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)
2008-04-15
For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan; Radwan, Hany; Dalcin, Lisandro; Calo, Victor M.
2011-01-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity
Temperature jump boundary conditions in radiation diffusion
International Nuclear Information System (INIS)
Alonso, C.T.
1976-12-01
The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes
Approximate radiative solutions of the Einstein equations
International Nuclear Information System (INIS)
Kuusk, P.; Unt, V.
1976-01-01
In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)
Characterization of supersonic radiation diffusion waves
International Nuclear Information System (INIS)
Moore, Alastair S.; Guymer, Thomas M.; Morton, John; Williams, Benjamin; Kline, John L.; Bazin, Nicholas; Bentley, Christopher; Allan, Shelly; Brent, Katie; Comley, Andrew J.; Flippo, Kirk; Cowan, Joseph; Taccetti, J. Martin; Mussack-Tamashiro, Katie; Schmidt, Derek W.; Hamilton, Christopher E.; Obrey, Kimberly; Lanier, Nicholas E.; Workman, Jonathan B.; Stevenson, R. Mark
2015-01-01
Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope. - Highlights: • The supersonic, diffusion of x-rays through sub-solid density materials is studied. • The data are more diffusive and of higher velocity than any prior work. • Scaled 1D analytic diffusion models reproduce the heat front evolution. • Refined radiation transport approximations are tested in numerical simulations. • Simulations match the data if material properties are adjusted within uncertainties
The quasi-diffusive approximation in transport theory: Local solutions
International Nuclear Information System (INIS)
Celaschi, M.; Montagnini, B.
1995-01-01
The one velocity, plane geometry integral neutron transport equation is transformed into a system of two equations, one of them being the equation of continuity and the other a generalized Fick's law, in which the usual diffusion coefficient is replaced by a self-adjoint integral operator. As the kernel of this operator is very close to the Green function of a diffusion equation, an approximate inversion by means of a second order differential operator allows to transform these equations into a purely differential system which is shown to be equivalent, in the simplest case, to a diffusion-like equation. The method, the principles of which have been exposed in a previous paper, is here extended and applied to a variety of problems. If the inversion is properly performed, the quasi-diffusive solutions turn out to be quite accurate, even in the vicinity of the interface between different material regions, where elementary diffusion theory usually fails. 16 refs., 3 tabs
Analytic approximate radiation effects due to Bremsstrahlung
Energy Technology Data Exchange (ETDEWEB)
Ben-Zvi I.
2012-02-01
The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.
Analytic approximate radiation effects due to Bremsstrahlung
International Nuclear Information System (INIS)
Ben-Zvi, I.
2012-01-01
The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R and D Energy Recovery Linac.
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
Slab-diffusion approximation from time-constant-like calculations
International Nuclear Information System (INIS)
Johnson, R.W.
1976-12-01
Two equations were derived which describe the quantity and any fluid diffused from a slab as a function of time. One equation is applicable to the initial stage of the process; the other to the final stage. Accuracy is 0.2 percent at the one point where both approximations apply and where accuracy of either approximation is the poorest. Characterizing other rate processes might be facilitated by the use of the concept of NOLOR (normal of the logarithm of the rate) and its time dependence
Leaky-box approximation to the fractional diffusion model
International Nuclear Information System (INIS)
Uchaikin, V V; Sibatov, R T; Saenko, V V
2013-01-01
Two models based on fractional differential equations for galactic cosmic ray diffusion are applied to the leaky-box approximation. One of them (Lagutin-Uchaikin, 2000) assumes a finite mean free path of cosmic ray particles, another one (Lagutin-Tyumentsev, 2004) uses distribution with infinite mean distance between collision with magnetic clouds, when the trajectories have form close to ballistic. Calculations demonstrate that involving boundary conditions is incompatible with spatial distributions given by the second model.
Approximate models for broken clouds in stochastic radiative transfer theory
International Nuclear Information System (INIS)
Doicu, Adrian; Efremenko, Dmitry S.; Loyola, Diego; Trautmann, Thomas
2014-01-01
This paper presents approximate models in stochastic radiative transfer theory. The independent column approximation and its modified version with a solar source computed in a full three-dimensional atmosphere are formulated in a stochastic framework and for arbitrary cloud statistics. The nth-order stochastic models describing the independent column approximations are equivalent to the nth-order stochastic models for the original radiance fields in which the gradient vectors are neglected. Fast approximate models are further derived on the basis of zeroth-order stochastic models and the independent column approximation. The so-called “internal mixing” models assume a combination of the optical properties of the cloud and the clear sky, while the “external mixing” models assume a combination of the radiances corresponding to completely overcast and clear skies. A consistent treatment of internal and external mixing models is provided, and a new parameterization of the closure coefficient in the effective thickness approximation is given. An efficient computation of the closure coefficient for internal mixing models, using a previously derived vector stochastic model as a reference, is also presented. Equipped with appropriate look-up tables for the closure coefficient, these models can easily be integrated into operational trace gas retrieval systems that exploit absorption features in the near-IR solar spectrum. - Highlights: • Independent column approximation in a stochastic setting. • Fast internal and external mixing models for total and diffuse radiances. • Efficient optimization of internal mixing models to match reference models
Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion
International Nuclear Information System (INIS)
Limić, Nedžad
2011-01-01
Consider a non-symmetric generalized diffusion X(⋅) in ℝ d determined by the differential operator A(x) = -Σ ij ∂ i a ij (x)∂ j + Σ i b i (x)∂ i . In this paper the diffusion process is approximated by Markov jump processes X n (⋅), in homogeneous and isotropic grids G n ⊂ℝ d , which converge in distribution in the Skorokhod space D([0,∞),ℝ d ) to the diffusion X(⋅). The generators of X n (⋅) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d≥3 can be applied to processes for which the diffusion tensor {a ij (x)} 11 dd fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X n (⋅). For piece-wise constant functions a ij on ℝ d and piece-wise continuous functions a ij on ℝ 2 the construction and principal algorithm are described enabling an easy implementation into a computer code.
Diffuse Cosmic Infrared Background Radiation
Dwek, Eli
2002-01-01
The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan
2011-05-14
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.
Adaptive weak approximation of reflected and stopped diffusions
Bayer, Christian
2010-01-01
We study the weak approximation problem of diffusions, which are reflected at a subset of the boundary of a domain and stopped at the remaining boundary. First, we derive an error representation for the projected Euler method of Costantini, Pacchiarotti and Sartoretto [Costantini et al., SIAM J. Appl. Math., 58(1):73-102, 1998], based on which we introduce two new algorithms. The first one uses a correction term from the representation in order to obtain a higher order of convergence, but the computation of the correction term is, in general, not feasible in dimensions d > 1. The second algorithm is adaptive in the sense of Moon, Szepessy, Tempone and Zouraris [Moon et al., Stoch. Anal. Appl., 23:511-558, 2005], using stochastic refinement of the time grid based on a computable error expansion derived from the representation. Regarding the stopped diffusion, it is based in the adaptive algorithm for purely stopped diffusions presented in Dzougoutov, Moon, von Schwerin, Szepessy and Tempone [Dzougoutov et al., Lect. Notes Comput. Sci. Eng., 44, 59-88, 2005]. We give numerical examples underlining the theoretical results. © de Gruyter 2010.
Flux-limited diffusion models in radiation hydrodynamics
International Nuclear Information System (INIS)
Pomraning, G.C.; Szilard, R.H.
1993-01-01
The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs
Radiation Diffusion: An Overview of Physical and Numerical Concepts
International Nuclear Information System (INIS)
Graziani, F R
2005-01-01
An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed
SEE rate estimation based on diffusion approximation of charge collection
Sogoyan, Armen V.; Chumakov, Alexander I.; Smolin, Anatoly A.
2018-03-01
The integral rectangular parallelepiped (IRPP) method remains the main approach to single event rate (SER) prediction for aerospace systems, despite the growing number of issues impairing method's validity when applied to scaled technology nodes. One of such issues is uncertainty in parameters extraction in the IRPP method, which can lead to a spread of several orders of magnitude in the subsequently calculated SER. The paper presents an alternative approach to SER estimation based on diffusion approximation of the charge collection by an IC element and geometrical interpretation of SEE cross-section. In contrast to the IRPP method, the proposed model includes only two parameters which are uniquely determined from the experimental data for normal incidence irradiation at an ion accelerator. This approach eliminates the necessity of arbitrary decisions during parameter extraction and, thus, greatly simplifies calculation procedure and increases the robustness of the forecast.
Method for manufacturing nuclear radiation detector with deep diffused junction
International Nuclear Information System (INIS)
Hall, R.N.
1977-01-01
Germanium radiation detectors are manufactured by diffusing lithium into high purity p-type germanium. The diffusion is most readily accomplished from a lithium-lead-bismuth alloy at approximately 430 0 C and is monitored by a quartz half cell containing a standard composition of this alloy. Detectors having n-type cores may be constructed by converting high purity p-type germanium to n-type by a lithium diffusion and subsequently diffusing some of the lithium back out through the surface to create a deep p-n junction. Production of coaxial germanium detectors comprising deep p-n junctions by the lithium diffusion process is described
Discrete diffusion Lyman α radiative transfer
Smith, Aaron; Tsang, Benny T.-H.; Bromm, Volker; Milosavljević, Miloš
2018-06-01
Due to its accuracy and generality, Monte Carlo radiative transfer (MCRT) has emerged as the prevalent method for Lyα radiative transfer in arbitrary geometries. The standard MCRT encounters a significant efficiency barrier in the high optical depth, diffusion regime. Multiple acceleration schemes have been developed to improve the efficiency of MCRT but the noise from photon packet discretization remains a challenge. The discrete diffusion Monte Carlo (DDMC) scheme has been successfully applied in state-of-the-art radiation hydrodynamics (RHD) simulations. Still, the established framework is not optimal for resonant line transfer. Inspired by the DDMC paradigm, we present a novel extension to resonant DDMC (rDDMC) in which diffusion in space and frequency are treated on equal footing. We explore the robustness of our new method and demonstrate a level of performance that justifies incorporating the method into existing Lyα codes. We present computational speedups of ˜102-106 relative to contemporary MCRT implementations with schemes that skip scattering in the core of the line profile. This is because the rDDMC runtime scales with the spatial and frequency resolution rather than the number of scatterings—the latter is typically ∝τ0 for static media, or ∝(aτ0)2/3 with core-skipping. We anticipate new frontiers in which on-the-fly Lyα radiative transfer calculations are feasible in 3D RHD. More generally, rDDMC is transferable to any computationally demanding problem amenable to a Fokker-Planck approximation of frequency redistribution.
Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling
Yudovsky, Dmitry; Durkin, Anthony J.
2011-07-01
Accurate and rapid estimation of fluence, reflectance, and absorbance in multilayered biological media has been essential in many biophotonics applications that aim to diagnose, cure, or model in vivo tissue. The radiative transfer equation (RTE) rigorously models light transfer in absorbing and scattering media. However, analytical solutions to the RTE are limited even in simple homogeneous or plane media. Monte Carlo simulation has been used extensively to solve the RTE. However, Monte Carlo simulation is computationally intensive and may not be practical for applications that demand real-time results. Instead, the diffusion approximation has been shown to provide accurate estimates of light transport in strongly scattering tissue. The diffusion approximation is a greatly simplified model and produces analytical solutions for the reflectance and absorbance in tissue. However, the diffusion approximation breaks down if tissue is strongly absorbing, which is common in the visible part of the spectrum or in applications that involve darkly pigmented skin and/or high local volumes of blood such as port-wine stain therapy or reconstructive flap monitoring. In these cases, a model of light transfer that can accommodate both strongly and weakly absorbing regimes is required. Here we present a model of light transfer through layered biological media that represents skin with two strongly scattering and one strongly absorbing layer.
International Nuclear Information System (INIS)
Sentis, R.
1984-07-01
The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms
Multiple Scattering in Random Mechanical Systems and Diffusion Approximation
Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun
2013-10-01
This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.
An approximation method for diffusion based leaching models
International Nuclear Information System (INIS)
Shukla, B.S.; Dignam, M.J.
1987-01-01
In connection with the fixation of nuclear waste in a glassy matrix equations have been derived for leaching models based on a uniform concentration gradient approximation, and hence a uniform flux, therefore requiring the use of only Fick's first law. In this paper we improve on the uniform flux approximation, developing and justifying the approach. The resulting set of equations are solved to a satisfactory approximation for a matrix dissolving at a constant rate in a finite volume of leachant to give analytical expressions for the time dependence of the thickness of the leached layer, the diffusional and dissolutional contribution to the flux, and the leachant composition. Families of curves are presented which cover the full range of all the physical parameters for this system. The same procedure can be readily extended to more complex systems. (author)
Berkel, van M.; Zwart, Heiko J.; Tamura, N.; Hogeweij, G.M.D.; Inagaki, S.; de Baar, M.R.; Ida, K.
2014-01-01
In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The
Anti-diffusive radiation flow in the cooling layer of a radiating shock
International Nuclear Information System (INIS)
McClarren, Ryan G.; Paul Drake, R.
2010-01-01
This paper shows that for systems with optically thin, hot layers, such as those that occur in radiating shocks, radiation will flow uphill: radiation will flow from low to high radiation energy density. These are systems in which the angular distribution of the radiation intensity changes rapidly in space, and in which the radiation in some region has a pancaked structure, whose effect on the mean intensity will be much larger than the effect on the scalar radiation pressure. The salient feature of the solution to the radiative transfer equation in these circumstances is that the gradient of the radiation energy density is in the same direction as the radiation flux, i.e. radiation energy is flowing uphill. Such an anti-diffusive flow of energy cannot be captured by a model where the spatial variation of the Eddington factor is not accounted for, as in flux-limited diffusion models or the P 1 equations. The qualitative difference between the two models leads to a monotonic mean intensity for the diffusion model whereas the transport mean intensity has a global maximum in the hot layer. Mathematical analysis shows that the discrepancy between the diffusion model and the transport solution is due to an approximation of exponential integrals using a simple exponential.
Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding
Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.
2009-01-01
The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater
Wang, Xiaohu; Lu, Kening; Wang, Bixiang
2018-01-01
In this paper, we study the Wong-Zakai approximations given by a stationary process via the Wiener shift and their associated long term behavior of the stochastic reaction-diffusion equation driven by a white noise. We first prove the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximations of stochastic reaction-diffusion equation. Then, we show that the attractors of Wong-Zakai approximations converges to the attractor of the stochastic reaction-diffusion equation for both additive and multiplicative noise.
Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation
International Nuclear Information System (INIS)
Mazumder, Surasree; Bhattacharyya, Trambak; Abir, Raktim
2016-01-01
We calculate the soft gluon radiation spectrum off heavy quarks (HQs) interacting with light quarks (LQs) beyond small angle scattering (eikonality) approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP) phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.
International Nuclear Information System (INIS)
Cartier, J.
2006-04-01
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Effects of scattering anisotropy approximation in multigroup radiation shielding calculations
International Nuclear Information System (INIS)
Altiparmakov, D.
1983-01-01
Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)
Magdziarz, M.; Mista, P.; Weron, A.
2007-05-01
We introduce an approximation of the risk processes by anomalous diffusion. In the paper we consider the case, where the waiting times between successive occurrences of the claims belong to the domain of attraction of alpha -stable distribution. The relationship between the obtained approximation and the celebrated fractional diffusion equation is emphasised. We also establish upper bounds for the ruin probability in the considered model and give some numerical examples.
DEFF Research Database (Denmark)
Thygesen, Uffe Høgsbro
2016-01-01
We consider organisms which use a renewal strategy such as run–tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has ....... The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion....
An approximate method for nonlinear diffusion applied to enzyme inactivation during drying
Liou, J.K.
1982-01-01
An approximate model was developed for nonlinear diffusion with a power-function variation of the diffusion coefficient with concentration. This model may serve for the computation of desorption times and concentration profiles in non-shrinking or shrinking slabs, cylinders or spheres, under
Sandberg, Mattias
2015-01-07
The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with log normal distributed diffusion coefficients, e.g. modelling ground water flow. Typical models use log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. This talk will address how the total error can be estimated by the computable error.
Hall, Eric
2016-01-09
The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with lognormal distributed diffusion coefficients, e.g. modeling ground water flow. Typical models use lognormal diffusion coefficients with H´ older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. We address how the total error can be estimated by the computable error.
Radiation enhanced diffusion in FCC alloys
International Nuclear Information System (INIS)
Schuele, W.
1982-01-01
In many alloys vacancies and interstitials can be identified in a straight forward way by measurements of radiation enhanced diffusion. In some alloys, however, quenching experiments are also necessary for the identification of these defects. Results for two characteristic alloys in which the transformation rate during high energy particle irradiation is determined by an interstitialcy and by a vacancy diffusion mechanism only, are discussed. It is also shown that a decrease of the migration energy of defects due to an interaction of the high energy particles with the lattice atoms must be taken into account in the interpretation of the results. (author)
Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates
Directory of Open Access Journals (Sweden)
Marcus C. Christiansen
2013-10-01
Full Text Available In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.
Light transmittance under diffuse radiation circumstances
International Nuclear Information System (INIS)
Kieboom, A.M.G. van den; Stoffers, J.A.
1985-01-01
For a grower it is important to know the light transmittance of a greenhouse. With this date (and many others) he is able to make a decision about which greenhouse and covering is the most economical in his situation. It is absolute impossible for a grower to use figures that are functions of: • the orientation of the greenhouse, • the relation between direct and global radiation, • the amount of radiation, etc. • He needs one comparable figure. As a comparable figure for light transmittance of a greenhouse we use the transmittance factor that is estimated with a diffuse radiation source. This figure will be the same as the mean transmittance over one year for that greenhouse, even with extreme direct radiation and independent of the orientation of the greenhouse. (author)
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Multigroup Approximation of Radiation Transfer in SF6 Arc Plasmas
Directory of Open Access Journals (Sweden)
Milada Bartlova
2013-01-01
Full Text Available The first order of the method of spherical harmonics (P1-approximation has been used to evaluate the radiation properties of arc plasmas of various mixtures of SF6 and PTFE ((C2F4n, polytetrafluoroethylene in the temperature range (1000 ÷ 35 000 K and pressures from 0.5 to 5 MPa. Calculations have been performed for isothermal cylindrical plasma of various radii (0.01 ÷ 10 cm. The frequency dependence of the absorption coefficients has been handled using the Planck and Rosseland averaging methods for several frequency intervals. Results obtained using various means calculated for different choices of frequency intervals are discussed.
Origin of the diffuse background gamma radiation
International Nuclear Information System (INIS)
Stecker, F.W.; Puget, J.L.
1974-05-01
Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy formation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given. (U.S.)
Finite element approximation for time-dependent diffusion with measure-valued source
Czech Academy of Sciences Publication Activity Database
Seidman, T.; Gobbert, M.; Trott, D.; Kružík, Martin
2012-01-01
Roč. 122, č. 4 (2012), s. 709-723 ISSN 0029-599X R&D Projects: GA AV ČR IAA100750802 Institutional support: RVO:67985556 Keywords : measure-valued source * diffusion equation Subject RIV: BA - General Mathematics Impact factor: 1.329, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-finite element approximation for time - dependent diffusion with measure-valued source.pdf
Multigroup neutron transport equation in the diffusion and P{sub 1} approximation
Energy Technology Data Exchange (ETDEWEB)
Obradovic, D [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)
1970-07-01
Investigations of the properties of the multigroup transport operator, width and without delayed neutrons in the diffusion and P{sub 1} approximation, is performed using Keldis's theory of operator families as well as a technique . recently used for investigations into the properties of the general linearized Boltzmann operator. It is shown that in the case without delayed neutrons, multigroup transport operator in the diffusion and P{sub 1} approximation possesses a complete set of generalized eigenvectors. A formal solution to the initial value problem is also given. (author)
Medium-induced gluon radiation beyond the eikonal approximation
Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A
2014-01-01
In this work we improve existing calculations of radiative energy loss by computing corrections that implement energy-momentum conservation, previously only implemented a posteriori, in a rigorous way. Using the path-integral formalism, we compute in-medium splittings allowing transverse motion of all particles in the emission process, thus relaxing the assumption that only the softest particle is permitted such movement. This work constitutes the extension of the computation carried out for x$\\rightarrow$1 in Phys. Lett. B718 (2012) 160-168, to all values of x, the momentum fraction of the energy of the parent parton carried by the emitted gluon. In order to accomplish a general description of the whole in-medium showering process, in this work we allow for arbitrary formation times for the emitted gluon. We provide general expressions and their realisation in the path integral formalism within the harmonic oscillator approximation.
Nodal approximations of varying order by energy group for solving the diffusion equation
International Nuclear Information System (INIS)
Broda, J.T.
1992-02-01
The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined
Automatic actinometric system for diffuse radiation measurement
Litwiniuk, Agnieszka; Zajkowski, Maciej
2015-09-01
Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.
International Nuclear Information System (INIS)
Buckel, G.; Wouters, R. de; Pilate, S.
1977-01-01
The synthesis code KASY for an approximate solution of the three-dimensional neutron diffusion equation is described; the state of the art as well as envisaged program extensions and the application to tasks from the field of reactor designing are dealt with. (RW) [de
Hall, Eric; Haakon, Hoel; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul
2016-01-01
lognormal diffusion coefficients with H´ older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible
Sandberg, Mattias
2015-01-01
log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible
Strong approximations and sequential change-point analysis for diffusion processes
DEFF Research Database (Denmark)
Mihalache, Stefan-Radu
2012-01-01
In this paper ergodic diffusion processes depending on a parameter in the drift are considered under the assumption that the processes can be observed continuously. Strong approximations by Wiener processes for a stochastic integral and for the estimator process constructed by the one...
International Nuclear Information System (INIS)
Jakab, J.
1979-05-01
Local approximations of neutron flux density by 2nd degree polynomials are used in calculating light water reactors. The calculations include spatial kinetics tasks for the models of two- and three-dimensional reactors in the Cartesian geometry. The resulting linear algebraic equations are considered to be formally identical to the results of the differential method of diffusion equation solution. (H.S.)
Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia
2016-02-01
The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates. Copyright © 2015 Elsevier Inc. All rights reserved.
A radiating shock evaluated using Implicit Monte Carlo Diffusion
International Nuclear Information System (INIS)
Cleveland, M.; Gentile, N.
2013-01-01
Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)
Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations
Padrino, Juan C.; Zhang, Duan Z.
2016-11-01
The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.
International Nuclear Information System (INIS)
Barth, Andrea; Lang, Annika
2012-01-01
In this paper, the strong approximation of a stochastic partial differential equation, whose differential operator is of advection-diffusion type and which is driven by a multiplicative, infinite dimensional, càdlàg, square integrable martingale, is presented. A finite dimensional projection of the infinite dimensional equation, for example a Galerkin projection, with nonequidistant time stepping is used. Error estimates for the discretized equation are derived in L 2 and almost sure senses. Besides space and time discretizations, noise approximations are also provided, where the Milstein double stochastic integral is approximated in such a way that the overall complexity is not increased compared to an Euler–Maruyama approximation. Finally, simulations complete the paper.
Spectrometer system for diffuse extreme ultraviolet radiation
Labov, Simon E.
1989-01-01
A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.
Modelling thermal radiation in buoyant turbulent diffusion flames
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
Recent advances in modelling diffuse radiation
Energy Technology Data Exchange (ETDEWEB)
Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, Univ. of South Australia, Mawson Lakes, SA (Australia)
2008-07-01
Boland et al (2001) developed a validated model for Australian conditions, using a logistic function instead of piecewise linear or simple nonlinear functions. Recently, Jacovides et al (2006) have verified that this model performs well for locations in Cyprus. Their analysis includes using moving average techniques to demonstrate the form of the relationship, which corresponds well to a logistic relationship. We have made significant advances in both the intuitive and theoretical justification of the use of the logistic function. In the theoretical development of the model utilising advanced non-parametric statistical methods. We have also constructed a method of identifying values that are likely to be erroneous. Using quadratic programming, we can eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. Additionally, this is a first step in identifying the means for developing a generic model for estimating diffuse from global and other predictors (see Boland and Ridley 2007). Our more recent investigations focus on examining the effects of adding additional explanatory variables to enhance the predictability of the model. Examples for Australian and other locations will be presented. (orig.)
Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni
2002-01-01
Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.
Directory of Open Access Journals (Sweden)
S. Das
2013-12-01
Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.
Fagioli, Simone; Radici, Emanuela
2018-01-01
We investigate the existence of weak type solutions for a class of aggregation-diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to nonnegative initial data in $L^{\\infty} \\cap BV$ away from vacuum and supported in a closed interval with zero-velocity boundary conditions. The main novelti...
An approximate analysis of the diffusing flow in a self-controlled heat pipe.
Somogyi, D.; Yen, H. H.
1973-01-01
Constant-density two-dimensional axisymmetric equations are presented for the diffusing flow of a class of self-controlled heat pipes. The analysis is restricted to the vapor space. Condensation of the vapor is related to its mass fraction at the wall by the gas kinetic formula. The Karman-Pohlhausen integral method is applied to obtain approximate solutions. Solutions are presented for a water heat pipe with neon control gas.
Thygesen, Uffe Høgsbro
2016-03-01
We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion.
Modelling thermal radiation and soot formation in buoyant diffusion flames
International Nuclear Information System (INIS)
Demarco Bull, R.A.
2012-01-01
The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)
Diffuse solar radiation and associated meteorological parameters in India
Directory of Open Access Journals (Sweden)
A. B. Bhattacharya
Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.
Radiation induced diffusion as a method to protect surface
International Nuclear Information System (INIS)
Baumvol, I.J.R.
1980-01-01
Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt
International Nuclear Information System (INIS)
Barnes, D.C.; Cayton, T.E.
1980-01-01
The ideal magnetohydrodynamic stability of the diffuse linear pinch is studied in the special case when the poloidal magnetic field component is small compared with the axial field component. A two-term approximation for growth rates is derived by straightforward asymptotic expansion in terms of a small parameter that is proportional to (B/sub theta//rB/sub z/). Evaluation of the second term in the expansion requires only a trivial amount of additional computation after the leading-order eigenvalue and eigenfunction are determined. For small, but finite, values of the expansion parameter the second term is found to be non-negligible compared with the leading term. The approximate solution is compared with exact solutions and the range of validity of the approximation is investigated. Implications of these results to a wide class of problems involving weakly unstable near theta-pinch configurations are discussed
International Nuclear Information System (INIS)
Ozgener, B.; Azgener, H.A.
1991-01-01
In finite element formulations for the solution of the within-group neutron diffusion equation, two different treatments are possible for the group source term: the consistent source approximation (CSA) and the lumped source approximation (LSA). CSA results in intra-group scattering and fission matrices which have the same nondiagonal structure as the global coefficient matrix. This situation might be regarded as a disadvantage, compared to the conventional (i.e. finite difference) methods where the intra-group scattering and fission matrices are diagonal. To overcome this disadvantage, LSA could be used to diagonalize these matrices. LSA is akin to the lumped mass approximation of continuum mechanics. We concentrate on two different aspects of the source approximations. Although it has been reported that LSA does not modify the asymptotic h 2 convergence behaviour for linear elements, the effect of LSA on convergence of higher degree elements has not been investigated. Thus, we would be interested in determining, p, the asymptotic order of convergence, in: Δk |k eff (analytical) -k eff (finite element)| = Ch p (1) for finite element approximations of varying degree (N) with both of the source approximations. Since (1) is valid in the asymptotic limit, we must use ultra-fine meshes and quadruple precision arithmetic. For our order of convergence study, we used infinite cylindrical geometry with azimuthal symmetry. Hence, the effects of singularities remain uninvestigated. The second aspect we dwell on is the performance of LSA in bilinear 3-D finite element calculations, compared to CSA. LSA has been used quite extensively in 1- and 2-D even-parity transport and diffusion calculations. In this work, we will try to assess the relative merits of LSA and CSA in 3-D problems. (author)
International Nuclear Information System (INIS)
Olague, N.E.; Price, L.L.
1991-01-01
The greater confinement disposal (GCD) project is an ongoing project examining the disposal of orphan wastes in Area 5 of the Nevada Test Site. One of the major tasks for the project is performance assessment. With regard to performance assessment, a preliminary conceptual model for ground-water flow and radionuclide transport to the accessible environment at the GCD facilities has been developed. One of the transport pathways that has been postulated is diffusion of radionuclides in the liquid phase upward to the land surface. This pathway is not usually considered in a performance assessment, but is included in the GCD conceptual model because of relatively low recharge estimates at the GCD site and the proximity of the waste to the land surface. These low recharge estimates indicate that convective flow downward to the water table may be negligible; thus, diffusion upward to the land surface may then become important. As part of a preliminary performance assessment which considered a basecase scenario and a climate-change scenario, a first approximation for modeling the liquid-diffusion pathway was formulated. The model includes an analytical solution that incorporates both diffusion and radioactivity decay. Overall, these results indicate that, despite the configuration of the GCD facilities that establishes the need for considering the liquid-diffusion pathway, the GCD disposal concept appears to be a technically feasible method for disposing of orphan wastes. Future analyses will consist of investigating the underlying assumptions of the liquid-diffusion model, refining the model is necessary, and reducing uncertainty in the input parameters. 11 refs., 6 figs
Diffusion approximation of Lévy processes with a view towards finance
Kiessling, Jonas; Tempone, Raul
2011-01-01
Let the (log-)prices of a collection of securities be given by a d-dimensional Lévy process X t having infinite activity and a smooth density. The value of a European contract with payoff g(x) maturing at T is determined by E[g(X T)]. Let X̄ T be a finite activity approximation to X T, where diffusion is introduced to approximate jumps smaller than a given truncation level ∈ > 0. The main result of this work is a derivation of an error expansion for the resulting model error, E[g(X T) - g(X̄ T)], with computable leading order term. Our estimate depends both on the choice of truncation level ∈ and the contract payoff g, and it is valid even when g is not continuous. Numerical experiments confirm that the error estimate is indeed a good approximation of the model error. Using similar techniques we indicate how to construct an adaptive truncation type approximation. Numerical experiments indicate that a substantial amount of work is to be gained from such adaptive approximation. Finally, we extend the previous model error estimates to the case of Barrier options, which have a particular path dependent structure. © de Gruyter 2011.
Energy Technology Data Exchange (ETDEWEB)
Heng, Kevin; Mendonça, João M.; Lee, Jae-Min, E-mail: kevin.heng@csh.unibe.ch, E-mail: joao.mendonca@csh.unibe.ch, E-mail: lee@physik.uzh.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2014-11-01
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.
Time adaptivity in the diffusive wave approximation to the shallow water equations
Collier, Nathan; Radwan, Hany; Dalcí n, Lisandro D.; Calo, Victor M.
2013-01-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.
Performance Analysis of Production Systems with Correlated Demand via Diffusion Approximations
Directory of Open Access Journals (Sweden)
Yingdong Lu
2012-01-01
Full Text Available We investigate the performance of a production system with correlated demand through diffusion approximation. The key performance metric under consideration is the extreme points that this system can reach. This problem is mapped to a problem of characterizing the joint probability density of a two-dimensional Brownian motion and its coordinate running maximum. To achieve this goal, we obtain the stationary distribution of a reflected Brownian motion within the positive quarter-plane, which is of independent interest, through investigating a solution of an extended Helmhotz equation.
Exact and approximate interior corner problem in neutron diffusion by integral transform methods
International Nuclear Information System (INIS)
Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.
1976-09-01
The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem
Time adaptivity in the diffusive wave approximation to the shallow water equations
Collier, Nathan
2013-05-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.
Induced Compton scattering effects in radiation transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-01-01
In this thesis the method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
Induced Compton-scattering effects in radiation-transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-02-01
The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
Estimation of diffuse from measured global solar radiation
International Nuclear Information System (INIS)
Moriarty, W.W.
1991-01-01
A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors
Radiation-enhanced diffusion in metals and alloys
International Nuclear Information System (INIS)
Lam, N.Q.; Rothman, S.J.
1975-01-01
Some phenomena that involves diffusion during irradiation include fission-product redistribution in reactor fuels, defect clustering in CTR walls or fast-reactor cladding, smearing-out of gradients in ion-implanted semiconductors, and microstructure development in a HVEM. This paper is a review of the basics of radiation-enhanced diffusion (REM). The present status of REM today is somewhat the same as diffusion in the 1940's, and recommendations are made for further work. 105 references
Analytic Approximation to Radiation Fields from Line Source Geometry
International Nuclear Information System (INIS)
Michieli, I.
2000-01-01
Line sources with slab shields represent typical source-shield configuration in gamma-ray attenuation problems. Such shielding problems often lead to the generalized Secant integrals of the specific form. Besides numerical integration approach, various expansions and rational approximations with limited applicability are in use for computing the value of such integral functions. Lately, the author developed rapidly convergent infinite series representation of generalized Secant Integrals involving incomplete Gamma functions. Validity of such representation was established for zero and positive values of integral parameter a (a=0). In this paper recurrence relations for generalized Secant Integrals are derived allowing us simple approximate analytic calculation of the integral for arbitrary a values. It is demonstrated how truncated series representation can be used, as the basis for such calculations, when possibly negative a values are encountered. (author)
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2011-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)
Radiation-enhanced self- and boron diffusion in germanium
DEFF Research Database (Denmark)
Schneider, S.; Bracht, H.; Klug, J.N.
2013-01-01
We report experiments on proton radiation-enhanced self- and boron (B) diffusion in germanium (Ge) for temperatures between 515 ∘ C and 720 ∘ C. Modeling of the experimental diffusion profiles measured by means of secondary ion mass spectrometry is achieved on the basis of the Frenkel pair reaction...
Investigation of radiation-enhanced diffusions of non valency impurities in ionic crystals
International Nuclear Information System (INIS)
Surzhikov, A.P.; Pritulov, A.M.; Gyngazov, S.A.; Chernyavskij, A.V.
1999-01-01
Investigations of hetero valency ions Al +3 and Mg +2 diffusion in potassium bromide crystals, under the intensive electron radiation, were conducted. The electron accelerator ELV-6 generating a continuous electron beam of 1.4 MeV in power was used for the investigations. To discover the radiation effects, there was a comparison of outcomes of the heating under the same temperature and annealing duration values. The mass-spectrometer MS-7021M was used to measure the diffusion profiles. The experimental outcomes analysis was carried out by approximation of the experimental concentration profiles, using a relevant solution of Fick's equation. The numerical values of the diffusion factors for the set annealing temperatures were determined according to the approximation outcomes. The investigations were financed by the Russian Fundamental Research Fund
Correlation of total, diffuse, and direct solar radiation
Buyco, E. H.; Namkoong, D.
1977-01-01
Present requirements for realistic solar energy system evaluations necessitate a comprehensive body of solar-radition data. The data should include both diffuse and direct solar radiation as well as their total on an hourly (or shorter) basis. In general, however, only the total solar radiation values were recorded. This report presents a correlation that relates the diffuse component of an hourly total solar radiation value to the total radiation ratio of the maximum value attainable. The data used were taken at the Blue Hill Observatory in Milton, Massachusetts, for the period 1952. The relation - in the form of the data plots - can be used in situations in which only the hourly total radiation data are available but the diffuse component is desired.
Peinetti, Ana Sol; Gilardoni, Rodrigo S; Mizrahi, Martín; Requejo, Felix G; González, Graciela A; Battaglini, Fernando
2016-06-07
Nanoelectrode arrays have introduced a complete new battery of devices with fascinating electrocatalytic, sensitivity, and selectivity properties. To understand and predict the electrochemical response of these arrays, a theoretical framework is needed. Cyclic voltammetry is a well-fitted experimental technique to understand the undergoing diffusion and kinetics processes. Previous works describing microelectrode arrays have exploited the interelectrode distance to simulate its behavior as the summation of individual electrodes. This approach becomes limited when the size of the electrodes decreases to the nanometer scale due to their strong radial effect with the consequent overlapping of the diffusional fields. In this work, we present a computational model able to simulate the electrochemical behavior of arrays working either as the summation of individual electrodes or being affected by the overlapping of the diffusional fields without previous considerations. Our computational model relays in dividing a regular electrode array in cells. In each of them, there is a central electrode surrounded by neighbor electrodes; these neighbor electrodes are transformed in a ring maintaining the same active electrode area than the summation of the closest neighbor electrodes. Using this axial neighbor symmetry approximation, the problem acquires a cylindrical symmetry, being applicable to any diffusion pattern. The model is validated against micro- and nanoelectrode arrays showing its ability to predict their behavior and therefore to be used as a designing tool.
An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.
Burden, Conrad J; Tang, Yurong
2016-12-01
We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.
Calculating the diffuse solar radiation in regions without solar radiation measurements
International Nuclear Information System (INIS)
Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin
2012-01-01
Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan
2016-03-01
Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.
International Nuclear Information System (INIS)
Du, Qiang; Yang, Jiang
2017-01-01
This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge–Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge–Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen–Cahn equations, nonlocal Cahn–Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.
Sparse tensor spherical harmonics approximation in radiative transfer
International Nuclear Information System (INIS)
Grella, K.; Schwab, Ch.
2011-01-01
The stationary monochromatic radiative transfer equation is a partial differential transport equation stated on a five-dimensional phase space. To obtain a well-posed problem, boundary conditions have to be prescribed on the inflow part of the domain boundary. We solve the equation with a multi-level Galerkin FEM in physical space and a spectral discretization with harmonics in solid angle and show that the benefits of the concept of sparse tensor products, known from the context of sparse grids, can also be leveraged in combination with a spectral discretization. Our method allows us to include high spectral orders without incurring the 'curse of dimension' of a five-dimensional computational domain. Neglecting boundary conditions, we find analytically that for smooth solutions, the convergence rate of the full tensor product method is retained in our method up to a logarithmic factor, while the number of degrees of freedom grows essentially only as fast as for the purely spatial problem. For the case with boundary conditions, we propose a splitting of the physical function space and a conforming tensorization. Numerical experiments in two physical and one angular dimension show evidence for the theoretical convergence rates to hold in the latter case as well.
Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng
2018-03-01
In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.
Approximate Seismic Diffusive Models of Near-Receiver Geology: Applications from Lab Scale to Field
King, Thomas; Benson, Philip; De Siena, Luca; Vinciguerra, Sergio
2017-04-01
This paper presents a novel and simple method of seismic envelope analysis that can be applied at multiple scales, e.g. field, m to km scale and laboratory, mm to cm scale, and utilises the diffusive approximation of the seismic wavefield (Wegler, 2003). Coefficient values for diffusion and attenuation are obtained from seismic coda energies and are used to describe the rate at which seismic energy is scattered and attenuated into the local medium around a receiver. Values are acquired by performing a linear least squares inversion of coda energies calculated in successive time windows along a seismic trace. Acoustic emission data were taken from piezoelectric transducers (PZT) with typical resonance frequency of 1-5MHz glued around rock samples during deformation laboratory experiments carried out using a servo-controlled triaxial testing machine, where a shear/damage zone is generated under compression after the nucleation, growth and coalescence of microcracks. Passive field data were collected from conventional geophones during the 2004-2008 eruption of Mount St. Helens volcano (MSH), USA where a sudden reawakening of the volcanic activity and a new dome growth has occurred. The laboratory study shows a strong correlation between variations of the coefficients over time and the increase of differential stress as the experiment progresses. The field study links structural variations present in the near-surface geology, including those seen in previous geophysical studies of the area, to these same coefficients. Both studies show a correlation between frequency and structural feature size, i.e. landslide slip-planes and microcracks, with higher frequencies being much more sensitive to smaller scale features and vice-versa.
International Nuclear Information System (INIS)
Kulakovskij, M.Ya.; Savitskij, V.I.
1981-01-01
The errors of multigroup calculating the neutron flux spatial and energy distribution in the fast reactor shield caused by using group and age approximations are considered. It is shown that at small distances from a source the age theory rather well describes the distribution of the slowing-down density. With the distance increase the age approximation leads to underestimating the neutron fluxes, and the error quickly increases at that. At small distances from the source (up to 15 lengths of free path in graphite) the multigroup diffusion approximation describes the distribution of slowing down density quite satisfactorily and at that the results almost do not depend on the number of groups. With the distance increase the multigroup diffusion calculations lead to considerable overestimating of the slowing-down density. The conclusion is drawn that the group approximation proper errors are opposite in sign to the error introduced by the age approximation and to some extent compensate each other
Mean field approximation for biased diffusion on Japanese inter-firm trading network.
Watanabe, Hayafumi
2014-01-01
By analysing the financial data of firms across Japan, a nonlinear power law with an exponent of 1.3 was observed between the number of business partners (i.e. the degree of the inter-firm trading network) and sales. In a previous study using numerical simulations, we found that this scaling can be explained by both the money-transport model, where a firm (i.e. customer) distributes money to its out-edges (suppliers) in proportion to the in-degree of destinations, and by the correlations among the Japanese inter-firm trading network. However, in this previous study, we could not specifically identify what types of structure properties (or correlations) of the network determine the 1.3 exponent. In the present study, we more clearly elucidate the relationship between this nonlinear scaling and the network structure by applying mean-field approximation of the diffusion in a complex network to this money-transport model. Using theoretical analysis, we obtained the mean-field solution of the model and found that, in the case of the Japanese firms, the scaling exponent of 1.3 can be determined from the power law of the average degree of the nearest neighbours of the network with an exponent of -0.7.
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2004-01-01
The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions
Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range
International Nuclear Information System (INIS)
Gopinathan, K.K.; Soler, A.
1995-01-01
Several years of measured data on global and diffuse radiation and sunshine duration for 40 widely spread locations in the latitude range 36° S to 60° N are used to develop and test models for estimating monthly-mean, daily, diffuse radiation on horizontal surfaces. Applicability of the clearness-index (K) and sunshine fraction (SSO) models for diffuse estimation and the effect of combining several variables into a single multilinear equation are tested. Correlations connecting the diffuse to global fraction (HdH) with K and SSO predict Hd values more accurately than their separate use. Among clearness-index and sunshine-fraction models, SSO models are found to have better accuracy if correlations are developed for wide latitude ranges. By including a term for declinations in the correlation, the accuracy of the estimated data can be marginally improved. The addition of latitude to the equation does not help to improve the accuracy further. (author)
Radiative transfer in disc galaxies - V. The accuracy of the KB approximation
Lee, Dukhang; Baes, Maarten; Seon, Kwang-Il; Camps, Peter; Verstocken, Sam; Han, Wonyong
2016-12-01
We investigate the accuracy of an approximate radiative transfer technique that was first proposed by Kylafis & Bahcall (hereafter the KB approximation) and has been popular in modelling dusty late-type galaxies. We compare realistic galaxy models calculated with the KB approximation with those of a three-dimensional Monte Carlo radiative transfer code SKIRT. The SKIRT code fully takes into account of the contribution of multiple scattering whereas the KB approximation calculates only single scattered intensity and multiple scattering components are approximated. We find that the KB approximation gives fairly accurate results if optically thin, face-on galaxies are considered. However, for highly inclined (I ≳ 85°) and/or optically thick (central face-on optical depth ≳1) galaxy models, the approximation can give rise to substantial errors, sometimes, up to ≳40 per cent. Moreover, it is also found that the KB approximation is not always physical, sometimes producing infinite intensities at lines of sight with high optical depth in edge-on galaxy models. There is no `simple recipe' to correct the errors of the KB approximation that is universally applicable to any galaxy models. Therefore, it is recommended that the full radiative transfer calculation be used, even though it is slower than the KB approximation.
Radiation energy devaluation in diffusion combusting flows of natural gas
International Nuclear Information System (INIS)
Makhanlall, Deodat; Munda, Josiah L.; Jiang, Peixue
2013-01-01
Abstract: CFD (Computational fluid dynamics) is used to evaluate the thermodynamic second-law effects of thermal radiation in turbulent diffusion natural gas flames. Radiative heat transfer processes in gas and at solid walls are identified as important causes of energy devaluation in the combusting flows. The thermodynamic role of thermal radiation cannot be neglected when compared to that of heat conduction and convection, mass diffusion, chemical reactions, and viscous dissipation. An energy devaluation number is also defined, with which the optimum fuel–air equivalence for combusting flows can be determined. The optimum fuel–air equivalence ratio for a natural gas flame is determined to be 0.7. The CFD model is validated against experimental measurements. - Highlights: • Thermodynamic effects of thermal radiation in combusting flows analyzed. • General equation for second-law analyses of combusting flows extended. • Optimum fuel–air equivalence ratio determined for natural gas flame
Singh, Brajesh K; Srivastava, Vineet K
2015-04-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.
Diffusion approximation-based simulation of stochastic ion channels: which method to use?
Directory of Open Access Journals (Sweden)
Danilo ePezo
2014-11-01
Full Text Available To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie’s method for Markov Chains (MC simulation is highly accurate, yet it becomes computationally intensive in the regime of high channel numbers. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA. Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties – such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Dangerfield et al., 2012; Linaro et al., 2011; Huang et al., 2013a; Orio and Soudry, 2012; Schmandt and Galán, 2012; Goldwyn et al., 2011; Güler, 2013, comparing all of them in a set of numerical simulations that asses numerical accuracy and computational efficiency on three different models: the original Hodgkin and Huxley model, a model with faster sodium channels, and a multi-compartmental model inspired in granular cells. We conclude that for low channel numbers (usually below 1000 per simulated compartment one should use MC – which is both the most accurate and fastest method. For higher channel numbers, we recommend using the method by Orio and Soudry (2012, possibly combined with the method by Schmandt and Galán (2012 for increased speed and slightly reduced accuracy. Consequently, MC modelling may be the best method for detailed multicompartment neuron models – in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels.
Diffusion approximation-based simulation of stochastic ion channels: which method to use?
Pezo, Danilo; Soudry, Daniel; Orio, Patricio
2014-01-01
To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914
Comparison Of Diffuse Solar Radiation Models Using Data For ...
African Journals Online (AJOL)
Measurements of global solar radiation and sunshine duration data during the period from 1984 to 1999 were supplied by IITA (International Institute of Tropical Agriculture) at Onne. The data were used to establish empirical relationships that would connect the daily monthly average diffuse irradiation with both relative ...
The Eddington approximation calculation of radiation flux in the atmosphere–ocean system
International Nuclear Information System (INIS)
Shi, Chong; Nakajima, Teruyuki
2015-01-01
An analytical approximation method is presented to calculate the radiation flux in the atmosphere–ocean system using the Eddington approximation when the upwelling radiation from the ocean body is negligibly small. Numerical experiments were carried out to investigate the feasibility of the method in two cases: flat and rough ocean surfaces. The results show good consistency for the reflectivity at the top of atmosphere and transmissivity just above the ocean surface, in comparison with the exact values calculated by radiative transfer models in each case. Moreover, an obvious error might be introduced for the calculation of radiation flux at larger solar zenith angles when the roughness of the ocean surface is neglected. - Highlights: • The Eddington approximation method is extended to the atmosphere–ocean system. • The roughness of ocean surface cannot be neglected at lager solar zenith angles. • Unidirectional reflectivity for rough ocean surface is proposed
International Nuclear Information System (INIS)
Kupchishin, A.A.; Kupchishin, A.I.; Stusik, G.; Omarbekova, Zh.
2001-01-01
Peculiarities of approximation for reactor neutron energy spectra during radiation defects computerized simulation were discussed. Approximation of neutron spectra N(E) was carried out by N(E)=α·exp(-β·E)·sh(γ·E) formula (1), where α, β, γ - approximation coefficients. In the capacity of operating reactor data experimental data on 235 U and 239 Pu were applied. The algorithm was designed, and acting soft ware for spectra parameters calculation was developed. The following values of approximation parameters were obtained: α=80.8; β=0.935;γ=2.04 (for uranium and plutonium these coefficients are less distinguishing). Then with use of formula 1 and α, β, γ coefficients the approximation curves were constructed. These curves satisfactorily describe existing experimental data and allowing to use its for radiation defects simulation in the reactor materials
Diffuse solar radiation estimation models for Turkey's big cities
International Nuclear Information System (INIS)
Ulgen, Koray; Hepbasli, Arif
2009-01-01
A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the
Energy Technology Data Exchange (ETDEWEB)
Shulenburger, Luke [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desjarlais, Michael Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Motivated by the disagreement between recent diffusion Monte Carlo calculations of the phase transition pressure between the ambient and beta-Sn phases of silicon and experiments, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an opportunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation and after removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.
2006-01-01
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions.
International Nuclear Information System (INIS)
Ueyama, H.
2005-01-01
This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km
Pomarning-eddington approximation for time-dependent radiation transfer in finite slab media
International Nuclear Information System (INIS)
El-Wakil, S.A.; Degheidy, A.R.; Sallah, M.
2005-01-01
The time-dependent monoenergetic radiation transfer equation with linear anisotropic scattering is proposed. Pomraning-Eddington approximation is used to calculate the radiation intensity in finite plane-parallel media. Numerical results are done for the isotropic media. Shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. Two different weight functions are introduced to force the boundary conditions to be fulfilled
A fast, exact code for scattered thermal radiation compared with a two-stream approximation
International Nuclear Information System (INIS)
Cogley, A.C.; Pandey, D.K.
1980-01-01
A two-stream accuracy study for internally (thermal) driven problems is presented by comparison with a recently developed 'exact' adding/doubling method. The resulting errors in external (or boundary) radiative intensity and flux are usually larger than those for the externally driven problems and vary substantially with the radiative parameters. Error predictions for a specific problem are difficult. An unexpected result is that the exact method is computationally as fast as the two-stream approximation for nonisothermal media
Anisotropic scattering in three dimensional differential approximation of radiation heat transfer
International Nuclear Information System (INIS)
Condiff, D.W.
1987-01-01
The differential approximation is extended to account for anisotropic scattering in invariant three dimensional form. A moment method using polyadic Legendre functions establishes that pressure cross sections should take precedence over extinction cross sections for treating radiation heat transfer in an absorbing, emitting, and scattering medium, and that use of these cross sections accounts for the extent of preferred forward or backwards scattering. The procedure and principle is extended to polyadic P-N approximations
Directory of Open Access Journals (Sweden)
Mohammad Siddique
2010-08-01
Full Text Available Parabolic partial differential equations with nonlocal boundary conditions arise in modeling of a wide range of important application areas such as chemical diffusion, thermoelasticity, heat conduction process, control theory and medicine science. In this paper, we present the implementation of positivity- preserving Padé numerical schemes to the two-dimensional diffusion equation with nonlocal time dependent boundary condition. We successfully implemented these numerical schemes for both Homogeneous and Inhomogeneous cases. The numerical results show that these Padé approximation based numerical schemes are quite accurate and easily implemented.
International Nuclear Information System (INIS)
Mansur, Ralph S.; Barros, Ricardo C.
2011-01-01
We describe a method to determine the neutron scalar flux in a slab using monoenergetic diffusion model. To achieve this goal we used three ingredients in the computational code that we developed on the Scilab platform: a spectral nodal method that generates numerical solution for the one-speed slab-geometry fixed source diffusion problem with no spatial truncation errors; a spatial reconstruction scheme to yield detailed profile of the coarse-mesh solution; and an angular reconstruction scheme to yield approximately the neutron angular flux profile at a given location of the slab migrating in a given direction. Numerical results are given to illustrate the efficiency of the offered code. (author)
Studies of diffuse and direct solar radiation over snow
International Nuclear Information System (INIS)
Wesely, M.L.; Everett, R.G.
1976-01-01
Two interesting questions can be addressed by examination of solar radiation records obtained while the surface is covered with snow. One concerns the extent to which airborne particulate matter affects solar radiation received at the surface during winter conditions that are typical of those in the northeastern quarter of the United States. The other relates to the importance of complicated light scatterng in the earth-atmosphere system when the surface albedo is large. With the snow surface reflecting 50% or more of the incident radiation, it is likely that a significant addition to diffuse radiation would result from light that is reflected from the surface and then scattered back to the earth by the atmosphere. Preliminary data from measurements made during the winter of 1975 to 1976 are reported
Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames
International Nuclear Information System (INIS)
Demarco, R.; Nmira, F.; Consalvi, J.L.
2013-01-01
The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C 1 –C 3 hydrocarbon–air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated
A moving mesh finite difference method for equilibrium radiation diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
A moving mesh finite difference method for equilibrium radiation diffusion equations
International Nuclear Information System (INIS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-01-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation
Analysis of radiation fields in tomography on diffusion gaseous sound
International Nuclear Information System (INIS)
Bekman, I.N.
1999-01-01
Perspectives of application of equilibrium and stationary variants of diffusion tomography with radioactive gaseous sounds for spatial reconstruction of heterogeneous media in materials technology were considered. The basic attention were allocated to creation of simple algorithms of detection of sound accumulation on the background of monotonically varying concentration field. Algorithms of transformation of two-dimensional radiation field in three-dimensional distribution of radiation sources were suggested. The methods of analytical elongation of concentration field permitting separation of regional anomalies on the background of local ones and vice verse were discussed. It was shown that both equilibrium and stationary variants of diffusion tomography detect the heterogeneity of testing material, provide reduction of spatial distribution of elements of its structure and give an estimation of relative degree of defectiveness
Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish
2011-08-01
We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.
Derivation and Numerical Approximation of the Quantum Drift Diffusion Model for Semiconductors
International Nuclear Information System (INIS)
Ohnmar Nwe
2004-06-01
This paper is concerned with the study of the quantum drift diffusion equation for semiconductors. Derivation of the mathematical model, which describes the electeon flow through a semiconductor device due to the application of a voltage, is considered and studied in numerical point of view by using some methods
International Nuclear Information System (INIS)
Ligou, J.; Thomi, P.A.
1973-01-01
1 - Nature of physical problem solved: Integral transport equation, anisotropy of diffusion in P1 approximation. SHADOK3 - cylindrical geometry; direct solution of the linear system. SHADOK4 - cylindrical geometry; Thermalization iteration; solution of the linear system with inverse matrix calculation. SHADOK5 - like SHADOK3 for spherical geometry. SHADOK6 - like SHADOK4 for spherical geometry. 2 - Method of solution: Analysis in terms of annuli for each of which polynomial approximation is applied. Dynamic allocation (for formulas see report TM(10)). 3 - Restrictions on the complexity of the problem: Relative accuracy of the Bickley functions about 1.0E-13
Radiation-enhanced diffusion in nickel-10.6% chromium alloys
International Nuclear Information System (INIS)
Gieb, M.
1995-01-01
Results of investigations of the diffusion rate of nickel-10.6% chromium alloys after plastic deformation, after quenching from 700 C and from 1030 C, and during irradiation with 18 MeV protons and 1.85 MeV electrons are reported. The diffusion rate is measured by means of the electrical resistivity which increases with increasing degree of short range order. It was found that the characteristic temperature below which short range order develops is T t =550 C. Below about 400 C the atomic mobilities of the component atoms of the alloy are so small that no further increase in the degree of short range order is found in due laboratory times. The activation energy for self-diffusion was determined after quenching from 700 C to Q SD =2.88 eV. For the migration activation energy of vacancies a value of E M 1V =1.18 eV was obtained after quenching from 1030 C. For the migration activation energies of interstitials and vacancies values of E M 1I =1.04 eV and E M 1V =1.16 eV are derived from results of measurements of radiation enhanced diffusion, respectively. These values decrease with increasing high energy particle flux. The characteristic temperature for interstitial cluster formation is T t =300 C. Above this temperature radiation-induced interstitials and vacancies annihilate mainly by pair recombination. Below this temperature interstitials also annihilate at sinks which are formed during irradiation so that the concentration of vacancies increases with irradiation time. Their migration activation energy is approximately obtained in a straight-forward way from the experimental data. Above about 380 C the radiation enhanced diffusion rate is surprisingly much smaller than the thermal diffusion rate. The quasi-dynamic vacancy concentration built up during irradiation is much smaller than the thermal vacancy concentration. (orig.)
International Nuclear Information System (INIS)
Paul, O.P.K.
1978-01-01
An approach to simulate the flux vanishing boundary condition in solving the two group coupled neutron diffusion equations in three dimensions (x, y, z) employed to calculate the flux distribution and keff of the reactor is summarised. This is of particular interest when the flux vanishing boundary in x, y, z directions is not an integral multiple of the mesh spacings in these directions. The method assumes the flux to be negative, hypothetically at the mesh points lying outside the boundary and thus the finite difference formalism for Laplacian operator, taking into account six neighbours of a mesh point in a square mesh arrangement, is expressed in a general form so as to account for the boundary mesh points of the system. This approach has been incorporated in a three dimensional diffusion code similar to TAPPS23 and has been used for IRT-2000 reactor and the results are quite satisfactory. (author)
An iterative algorithm for the finite element approximation to convection-diffusion problems
International Nuclear Information System (INIS)
Buscaglia, Gustavo; Basombrio, Fernando
1988-01-01
An iterative algorithm for steady convection-diffusion is presented, which avoids unsymmetric matrices by means of an equivalent mixed formulation. Upwind is introduced by adding a balancing dissipation in the flow direction, but there is no dependence of the global matrix on the velocity field. Convergence is shown in habitual test cases. Advantages of its use in coupled calculation of more complex problems are discussed. (Author)
Energy Technology Data Exchange (ETDEWEB)
Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)
1975-01-01
As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.
International Nuclear Information System (INIS)
Weissbach, F.; Hencken, K.; Rohe, D.; Sick, I.; Trautmann, D.
2006-01-01
Analyzing (e,e ' p) experimental data involves corrections for radiative effects which change the interaction kinematics and which have to be carefully considered in order to obtain the desired accuracy. Missing momentum and energy due to bremsstrahlung have so far often been incorporated into the simulations and the experimental analyses using the peaking approximation. It assumes that all bremsstrahlung is emitted in the direction of the radiating particle. In this article we introduce a full angular Monte Carlo simulation method which overcomes this approximation. As a test, the angular distribution of the bremsstrahlung photons is reconstructed from H(e,e ' p) data. Its width is found to be underestimated by the peaking approximation and described much better by the approach developed in this work. The impact of the soft-photon approximation on the photon angular distribution is found to be minor as compared to the impact of the peaking approximation. (orig.)
International Nuclear Information System (INIS)
Obradovic, D.
1970-04-01
In the study of the nuclear reactors space-time behaviour the modal analysis is very often used though some basic mathematical problems connected with application of this methods are still unsolved. In this paper the modal analysis is identified as a set of the methods in the mathematical literature known as the Galerkin methods (or projection methods, or sometimes direct methods). Using the results of the mathematical investigations of these methods the applicability of the Galerkin type methods to the calculations of the eigenvalue and eigenvectors of the stationary and non-stationary diffusion operator, as well as for the solutions of the corresponding functional equations, is established (author)
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
International Nuclear Information System (INIS)
Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun
2016-01-01
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.
Yearly, seasonal and monthly daily average diffuse sky radiation models
International Nuclear Information System (INIS)
Kassem, A.S.; Mujahid, A.M.; Turner, D.W.
1993-01-01
A daily average diffuse sky radiation regression model based on daily global radiation was developed utilizing two year data taken near Blytheville, Arkansas (Lat. =35.9 0 N, Long. = 89.9 0 W), U.S.A. The model has a determination coefficient of 0.91 and 0.092 standard error of estimate. The data were also analyzed for a seasonal dependence and four seasonal average daily models were developed for the spring, summer, fall and winter seasons. The coefficient of determination is 0.93, 0.81, 0.94 and 0.93, whereas the standard error of estimate is 0.08, 0.102, 0.042 and 0.075 for spring, summer, fall and winter, respectively. A monthly average daily diffuse sky radiation model was also developed. The coefficient of determination is 0.92 and the standard error of estimate is 0.083. A seasonal monthly average model was also developed which has 0.91 coefficient of determination and 0.085 standard error of estimate. The developed monthly daily average and daily models compare well with a selected number of previously developed models. (author). 11 ref., figs., tabs
Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations
International Nuclear Information System (INIS)
Altiparmarkov, D.
1983-01-01
Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr
Energy Technology Data Exchange (ETDEWEB)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.
A simplified model exploration research of new anisotropic diffuse radiation model
International Nuclear Information System (INIS)
Yao, Wanxiang; Li, Zhengrong; Wang, Xiao; Zhao, Qun; Zhang, Zhigang; Lin, Lin
2016-01-01
Graphical abstract: The specific process of measured diffuse radiation data. - Highlights: • Simplified diffuse radiation model is extremely important for solar radiation simulation and energy simulation. • A new simplified anisotropic diffuse radiation model (NSADR model) is proposed. • The accuracy of existing models and NSADR model is compared based on the measured values. • The accuracy of the NSADR model is higher than that of the existing models, and suitable for calculating diffuse radiation. - Abstract: More accurate new anisotropic diffuse radiation model (NADR model) has been proposed, but the parameters and calculation process of NADR model used in the process are complex. So it is difficult to widely used in the simulation software and engineering calculation. Based on analysis of the diffuse radiation model and measured diffuse radiation data, this paper put forward three hypotheses: (1) diffuse radiation from sky horizontal region is concentrated in a very thin layer which is close to the line source; (2) diffuse radiation from circumsolar region is concentrated in the point of the sun; (3) diffuse radiation from orthogonal region is concentrated in the point located at 90 degree angles with the Sun. Based on these hypotheses, NADR model is simplified to a new simplified anisotropic diffuse radiation model (NSADR model). Then the accuracy of NADR model and its simplified model (NSADR model) are compared with existing models based on the measured values, and the result shows that Perez model and its simplified model are relatively accurate among existing models. However, the accuracy of these two models is lower than the NADR model and NSADR model due to neglect the influence of the orthogonal diffuse radiation. The accuracy of the NSADR model is higher than that of the existing models, meanwhile, another advantage is that the NSADR model simplifies the process of solution parameters and calculation. Therefore it is more suitable for
Time-dependent simplified PN approximation to the equations of radiative transfer
International Nuclear Information System (INIS)
Frank, Martin; Klar, Axel; Larsen, Edward W.; Yasuda, Shugo
2007-01-01
The steady-state simplified P N approximation to the radiative transport equation has been successfully applied to many problems involving radiation. This paper presents the derivation of time-dependent simplified P N (SP N ) equations (up to N = 3) via two different approaches. First, we use an asymptotic analysis, similar to the asymptotic derivation of the steady-state SP N equations. Second, we use an approach similar to the original derivation of the steady-state SP N equations and we show that both approaches lead to similar results. Special focus is put on the well-posedness of the equations and the question whether it can be guaranteed that the solution satisfies the correct physical bounds. Several numerical test cases are shown, including an analytical benchmark due to Su and Olson [B. Su, G.L. Olson, An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium, Ann. Nucl. Energy 24 (1997) 1035-1055.
International Nuclear Information System (INIS)
Sin, M. W.; Kim, M. H.
2002-01-01
To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values
Energy Technology Data Exchange (ETDEWEB)
Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)
2002-10-01
To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.
Plante, Ianik; Cucinotta, Francis A.
2011-01-01
Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.
Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames
Demarco, R.; Nmira, F.; Consalvi, J. L.
2013-05-01
The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C1-C3 hydrocarbon-air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated k (FSCK
DEFF Research Database (Denmark)
Picchini, Umberto; Forman, Julie Lyng
2016-01-01
a nonlinear stochastic differential equation model observed with correlated measurement errors and an application to protein folding modelling. An approximate Bayesian computation (ABC)-MCMC algorithm is suggested to allow inference for model parameters within reasonable time constraints. The ABC algorithm......In recent years, dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However, it is often computationally unfeasible to apply exact statistical methodologies in the context of large data sets and complex models. This paper considers...... applications. A simulation study is conducted to compare our strategy with exact Bayesian inference, the latter resulting two orders of magnitude slower than ABC-MCMC for the considered set-up. Finally, the ABC algorithm is applied to a large size protein data. The suggested methodology is fairly general...
International Nuclear Information System (INIS)
Czubek, J.A.; Woznicka, U.
1997-01-01
A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial geometry. The calculation is performed in two neutron-energy groups which distinguish the thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source. The aim of the calculation is to define the neutron slowing down and migration lengths which are observed at a given point of the system. Generally, the slowing down and migration lengths are defined for an infinite homogenous medium (irradiated by the point neutron source) as a quotient of the neutron flux moment of the (2n + 2)-order to the moment of the 2n-order. Czubek(1992) introduced in the same manner the apparent neutron slowing down length and the apparent migration length for a given multi-region cylindrical geometry. The solutions in the present paper are applied to the method of semi-empirical calibration of neutron well-logging tools. The three-region cylindrical geometry corresponds to the borehole of radius R 1 surrounded by the intermediate region (e.g. mud cake) of thickness (R 2 -R 1 ) and finally surrounded by the geological formation which spreads from R 2 up to infinity. The cylinders of an infinite length are considered. The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive list of the solutions for integrals containing Bessel functions or their derivatives, which are absent in common tables of integrals, is also included. (author)
Energy Technology Data Exchange (ETDEWEB)
Czubek, J.A.; Woznicka, U. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)
1997-12-31
A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial geometry. The calculation is performed in two neutron-energy groups which distinguish the thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source. The aim of the calculation is to define the neutron slowing down and migration lengths which are observed at a given point of the system. Generally, the slowing down and migration lengths are defined for an infinite homogenous medium (irradiated by the point neutron source) as a quotient of the neutron flux moment of the (2n{sup +}2)-order to the moment of the 2n-order. Czubek(1992) introduced in the same manner the apparent neutron slowing down length and the apparent migration length for a given multi-region cylindrical geometry. The solutions in the present paper are applied to the method of semi-empirical calibration of neutron well-logging tools. The three-region cylindrical geometry corresponds to the borehole of radius R{sub 1} surrounded by the intermediate region (e.g. mud cake) of thickness (R{sub 2}-R{sub 1}) and finally surrounded by the geological formation which spreads from R{sub 2} up to infinity. The cylinders of an infinite length are considered. The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive list of the solutions for integrals containing Bessel functions or their derivatives, which are absent in common tables of integrals, is also included. (author) 6 refs, 2 figs
Aarts, Ronald M; Janssen, Augustus J E M
2016-12-01
The Struve functions H n (z), n=0, 1, ... are approximated in a simple, accurate form that is valid for all z≥0. The authors previously treated the case n = 1 that arises in impedance calculations for the rigid-piston circular radiator mounted in an infinite planar baffle [Aarts and Janssen, J. Acoust. Soc. Am. 113, 2635-2637 (2003)]. The more general Struve functions occur when other acoustical quantities and/or non-rigid pistons are considered. The key step in the paper just cited is to express H 1 (z) as (2/π)-J 0 (z)+(2/π) I(z), where J 0 is the Bessel function of order zero and the first kind and I(z) is the Fourier cosine transform of [(1-t)/(1+t)] 1/2 , 0≤t≤1. The square-root function is optimally approximated by a linear function ĉt+d̂, 0≤t≤1, and the resulting approximated Fourier integral is readily computed explicitly in terms of sin z/z and (1-cos z)/z 2 . The same approach has been used by Maurel, Pagneux, Barra, and Lund [Phys. Rev. B 75, 224112 (2007)] to approximate H 0 (z) for all z≥0. In the present paper, the square-root function is optimally approximated by a piecewise linear function consisting of two linear functions supported by [0,t̂ 0 ] and [t̂ 0 ,1] with t̂ 0 the optimal take-over point. It is shown that the optimal two-piece linear function is actually continuous at the take-over point, causing a reduction of the additional complexity in the resulting approximations of H 0 and H 1 . Furthermore, this allows analytic computation of the optimal two-piece linear function. By using the two-piece instead of the one-piece linear approximation, the root mean square approximation error is reduced by roughly a factor of 3 while the maximum approximation error is reduced by a factor of 4.5 for H 0 and of 2.6 for H 1 . Recursion relations satisfied by Struve functions, initialized with the approximations of H 0 and H 1 , yield approximations for higher order Struve functions.
Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning
International Nuclear Information System (INIS)
Bokrantz, Rasmus
2013-01-01
We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained. (paper)
Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning.
Bokrantz, Rasmus
2013-06-07
We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained.
Hartung, Lin C.; Hassan, H. A.
1992-01-01
A moment method for computing 3-D radiative transport is applied to axisymmetric flows in thermochemical nonequilibrium. Such flows are representative of proposed aerobrake missions. The method uses the P-1 approximation to reduce the governing system of integro-di erential equations to a coupled set of partial di erential equations. A numerical solution method for these equations given actual variations of the radiation properties in thermochemical nonequilibrium blunt body flows is developed. Initial results from the method are shown and compared to tangent slab calculations. The agreement between the transport methods is found to be about 10 percent in the stagnation region, with the difference increasing along the flank of the vehicle.
On the thermal stability of a radiating gas under general differential approximation
International Nuclear Information System (INIS)
Bestman, A.R.
1988-02-01
The thermal stability of a radiating gas in a semi-infinite space is studied under a general differential approximation. The fluid is bounded on the axis z'=0 by a horizontal infinite wall maintained at a temperature T 0 which is high enough for radiative heat transfer to be significant. At z'=∞, the fluid is at uniform temperature T ∞ such that T 0 >T ∞ . The equations of motion under small perturbation theory reduce to a set of linear homogeneous equations with a variable coefficient subject to homogeneous boundary conditions when the unperturbed temperature is adopted as the independent variable. The solution is effected via a finite difference scheme and the Rayleigh number is determined by Newton's iterative method. (author). 8 refs
Description of high-power laser radiation in the paraxial approximation
Energy Technology Data Exchange (ETDEWEB)
Milant' ev, V P; Karnilovich, S P; Shaar, Ya N [Peoples' Friendship University of Russia, Moscow (Russian Federation)
2015-11-30
We consider the feasibility of an adequate description of a laser pulse of arbitrary shape within the framework of the paraxial approximation. In this approximation, using a parabolic equation and an expansion in the small parameter, expressions are obtained for the field of a sufficiently intense laser radiation given in the form of axially symmetric Hermite – Gaussian beams of arbitrary mode and arbitrary polarisation. It is shown that in the case of sufficiently short pulses, corrections to the transverse components of the laser field are the first-order rather than the secondorder quantities in the expansion in the small parameter. The peculiarities of the description of higher-mode Hermite – Gaussian beams are outlined. (light wave transformation)
Jia, Mengyu; Chen, Xueying; Zhao, Huijuan; Cui, Shanshan; Liu, Ming; Liu, Lingling; Gao, Feng
2015-01-26
Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we herein report on an improved explicit model for a semi-infinite geometry, referred to as "Virtual Source" (VS) diffuse approximation (DA), to fit for low-albedo medium and short source-detector separation. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the near-field to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. This parameterized scheme is proved to inherit the mathematical simplicity of the DA approximation while considerably extending its validity in modeling the near-field photon migration in low-albedo medium. The superiority of the proposed VS-DA method to the established ones is demonstrated in comparison with Monte-Carlo simulations over wide ranges of the source-detector separation and the medium optical properties.
Time step size selection for radiation diffusion calculations
International Nuclear Information System (INIS)
Rider, W.J.; Knoll, D.A.
1999-01-01
The purpose of this note is to describe a time step control technique as applied to radiation diffusion. Standard practice only provides a heuristic criteria related to the relative change in the dependent variables. The authors propose an alternative based on relatively simple physical principles. This time step control applies to methods of solution that are unconditionally stable and converges nonlinearities within a time step in the governing equations. Commonly, nonlinearities in the governing equations are evaluated using existing (old time) data. The authors refer to this as the semi-implicit (SI) method. When a method converges nonlinearities within a time step, the entire governing equation including all nonlinearities is self-consistently evaluated using advance time data (with appropriate time centering for accuracy)
Newton-Krylov methods applied to nonequilibrium radiation diffusion
International Nuclear Information System (INIS)
Knoll, D.A.; Rider, W.J.; Olsen, G.L.
1998-01-01
The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton's method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton's method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step
Measurements of integrated direct, diffuse and global ultraviolet-B radiation
International Nuclear Information System (INIS)
Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.
2015-01-01
We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.
Models for the estimation of diffuse solar radiation for typical cities in Turkey
International Nuclear Information System (INIS)
Bakirci, Kadir
2015-01-01
In solar energy applications, diffuse solar radiation component is required. Solar radiation data particularly in terms of diffuse component are not readily affordable, because of high price of measurements as well as difficulties in their maintenance and calibration. In this study, new empirical models for predicting the monthly mean diffuse solar radiation on a horizontal surface for typical cities in Turkey are established. Therefore, fifteen empirical models from studies in the literature are used. Also, eighteen diffuse solar radiation models are developed using long term sunshine duration and global solar radiation data. The accuracy of the developed models is evaluated in terms of different statistical indicators. It is found that the best performance is achieved for the third-order polynomial model based on sunshine duration and clearness index. - Highlights: • Diffuse radiation is given as a function of clearness index and sunshine fraction. • The diffuse radiation is an important parameter in solar energy applications. • The diffuse radiation measurement is for limited periods and it is very rare. • The new models can be used to estimate monthly average diffuse solar radiation. • The accuracy of the models is evaluated on the basis of statistical indicators
Boundary conditions for the diffusion equation in radiative transfer
International Nuclear Information System (INIS)
Haskell, R.C.; Svaasand, L.O.; Tsay, T.; Feng, T.; McAdams, M.S.; Tromberg, B.J.
1994-01-01
Using the method of images, we examine the three boundary conditions commonly applied to the surface of a semi-infinite turbid medium. We find that the image-charge configurations of the partial-current and extrapolated-boundary conditions have the same dipole and quadrupole moments and that the two corresponding solutions to the diffusion equation are approximately equal. In the application of diffusion theory to frequency-domain photon-migration (FDPM) data, these two approaches yield values for the scattering and absorption coefficients that are equal to within 3%. Moreover, the two boundary conditions can be combined to yield a remarkably simple, accurate, and computationally fast method for extracting values for optical parameters from FDPM data. FDPM data were taken both at the surface and deep inside tissue phantoms, and the difference in data between the two geometries is striking. If one analyzes the surface data without accounting for the boundary, values deduced for the optical coefficients are in error by 50% or more. As expected, when aluminum foil was placed on the surface of a tissue phantom, phase and modulation data were closer to the results for an infinite-medium geometry. Raising the reflectivity of a tissue surface can, in principle, eliminate the effect of the boundary. However, we find that phase and modulation data are highly sensitive to the reflectivity in the range of 80--100%, and a minimum value of 98% is needed to mimic an infinite-medium geometry reliably. We conclude that noninvasive measurements of optically thick tissue require a rigorous treatment of the tissue boundary, and we suggest a unified partial-current--extrapolated boundary approach
International Nuclear Information System (INIS)
Garg, H.P.; Garg, S.N.
1985-12-01
Several existing correlations between radiation monthly mean ratios of global to extraterrestrial and diffuse to global were tried for four Indian stations and found inadequate. New correlations were established for these stations and it was shown that these correlations are highly climate dependent. Classical equation of Liu and Jordon was tried to find hourly diffuse and global radiation from daily sums of diffuse and global radiation respectively. It was suitably modified to suit the Indian data. Equations developed by Collares-Pereira and Rabl have shown excellent agreement with the observed values
International Nuclear Information System (INIS)
Krizan, J.E.
1982-01-01
The inclusion of screening effects, as argued by Jones, effectively brings in terms of higher order than c -2 . The Darwin Hamiltonian, like the Darwin Lagrangian, usually is written in perturbative expansion, to order c -2 . The physical effects of the Cerenkov radiation (order c -2 ) and the Bohr polarization effect result from a weak-damping analysis with the Darwin Hamiltonian; contact has been made also in previous agreement with quantum field-theoretic calculations for degenerate systems, with the same Hamiltonian. The significance of adding screening should be examined within an approximation which includes c -3 terms and higher: so neither the Darwin Hamiltonian nor the Darwin Lagrangian is sufficient to analyze these situations. The medium modifications of Jones involve macroscopic considerations and higher orders and so the criticism of the microscopic Darwin Hamiltonian is misplaced
(De)coupled zircon metamictization, radiation damage, and He diffusivity
Ault, A. K.; Guenthner, W.; Reiners, P. W.; Moser, A. C.; Miller, G. H.; Refsnider, K. A.
2017-12-01
yield uniform 25 Ma zircon He dates over 1800 ppm eU. We apply simple thermal history models that account for the coevolution of zircon radiation damage and He-diffusivity to demonstrate that visible zircon metamictization and He diffusivity can be either coupled or decoupled depending on a sample's thermal history.
Directory of Open Access Journals (Sweden)
Isaac Lare Animasaun
2016-06-01
Full Text Available The problem of unsteady convective with thermophoresis, chemical reaction and radiative heat transfer in a micropolar fluid flow past a vertical porous surface moving through binary mixture considering temperature dependent dynamic viscosity and constant vortex viscosity has been investigated theoretically. For proper and correct analysis of fluid flow along vertical surface with a temperature lesser than that of the free stream, Boussinesq approximation and temperature dependent viscosity model were modified and incorporated into the governing equations. The governing equations are converted to systems of ordinary differential equations by applying suitable similarity transformations and solved numerically using fourth-order Runge–Kutta method along with shooting technique. The results of the numerical solution are presented graphically and in tabular forms for different values of parameters. Velocity profile increases with temperature dependent variable fluid viscosity parameter. Increase of suction parameter corresponds to an increase in both temperature and concentration within the thin boundary layer.
A residual Monte Carlo method for discrete thermal radiative diffusion
International Nuclear Information System (INIS)
Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.
2003-01-01
Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems
Minimization of the effect of errors in approximate radiation view factors
International Nuclear Information System (INIS)
Clarksean, R.; Solbrig, C.
1993-01-01
The maximum temperature of irradiated fuel rods in storage containers was investigated taking credit only for radiation heat transfer. Estimating view factors is often easy but in many references the emphasis is placed on calculating the quadruple integrals exactly. Selecting different view factors in the view factor matrix as independent, yield somewhat different view factor matrices. In this study ten to twenty percent error in view factors produced small errors in the temperature which are well within the uncertainty due to the surface emissivities uncertainty. However, the enclosure and reciprocity principles must be strictly observed or large errors in the temperatures and wall heat flux were observed (up to a factor of 3). More than just being an aid for calculating the dependent view factors, satisfying these principles, particularly reciprocity, is more important than the calculation accuracy of the view factors. Comparison to experiment showed that the result of the radiation calculation was definitely conservative as desired in spite of the approximations to the view factors
Radiative heat exchange of a meteor body in the approximation of radiant heat conduction
International Nuclear Information System (INIS)
Pilyugin, N.N.; Chernova, T.A.
1986-01-01
The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted
An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning
Directory of Open Access Journals (Sweden)
Juan Pablo Rivera
2015-07-01
Full Text Available Physically-based radiative transfer models (RTMs help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We hereby present an “Emulator toolbox” that enables analysing multi-output machine learning regression algorithms (MO-MLRAs on their ability to approximate an RTM. The toolbox is included in the free-access ARTMO’s MATLAB suite for parameter retrieval and model inversion and currently contains both linear and non-linear MO-MLRAs, namely partial least squares regression (PLSR, kernel ridge regression (KRR and neural networks (NN. These MO-MLRAs have been evaluated on their precision and speed to approximate the soil vegetation atmosphere transfer model SCOPE (Soil Canopy Observation, Photochemistry and Energy balance. SCOPE generates, amongst others, sun-induced chlorophyll fluorescence as the output signal. KRR and NN were evaluated as capable of reconstructing fluorescence spectra with great precision. Relative errors fell below 0.5% when trained with 500 or more samples using cross-validation and principal component analysis to alleviate the underdetermination problem. Moreover, NN reconstructed fluorescence spectra about 50-times faster and KRR about 800-times faster than SCOPE. The Emulator toolbox is foreseen to open new opportunities in the use of advanced
Human projected area factors for detailed direct and diffuse solar radiation analysis
DEFF Research Database (Denmark)
Kubaha, K.; Fiala, D.; Toftum, Jørn
2004-01-01
Projected area factors for individual segments of the standing and sedentary human body were modelled for both direct and diffuse solar radiation using detailed 3D geometry and radiation models. The local projected area factors with respect to direct short-wave radiation are a function of the solar...
Estimating the horizontal diffuse solar radiation over the Central Anatolia Region of Turkey
International Nuclear Information System (INIS)
Aras, Haydar; Balli, Ozgur; Hepbasli, Arif
2006-01-01
The main objective of the present study is to develop new hybrid models to predict the monthly average daily diffuse solar radiation on a horizontal surface over Turkey's Central Anatolia Region (CAR), which covers the 12 provinces (Afyon, Ankara, Cankiri, Corum, Eskisehir, Kayseri, Kirsehir, Konya, Nevsehir, Nigde, Sivas and Yozgat), as an example. The models proposed by many investigators to estimate the diffuse solar radiation were reviewed. Although the global solar radiation and sunshine duration have been measured by the Turkish State Meteorological Service (DMI) over all the country since 1964, the diffuse solar radiation has not been measured. The twelve new hybrid models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in the CAR were validated, and thus, the most accurate model was selected for guiding future projects
Predicting diffuse radiation where only data on sunshine duration is available
International Nuclear Information System (INIS)
Massaquoi, J.G.M.
1985-12-01
In most locations there are no data on either global or diffuse radiation. Yet most of the existing correlations for predicting the latter require measured data on the former. This is because these correlations express the diffuse radiation as a function of the clearness index. To overcome this, one approach has been to develop correlations of diffuse radiation as a function of sunshine hours. This paper considers another approach: that of using predicted values of global radiation when measured values are not available. With this approach one could then use correlations of diffuse radiation as a function of clearness index. In this paper we have carried out a comparative assessment of the two approaches and reached the conclusion that the latter is more accurate. (author)
International Nuclear Information System (INIS)
Ragusa, Jean C.
2015-01-01
In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement
International Nuclear Information System (INIS)
Hewett, D.W.
1985-01-01
For many astrophysical and most magnetic fusion applications, the purely electromagnetic modes generated by real as well as simulation ''plasma'' fluctuations are a source of high frequency radiation that is often irrelevant to the physics of interest. Unfortunately, a numerical CFL stability limit prevents either making c infinite or deltat large while using the usual explicit Maxwell's equations for the fields. A modification of Maxwell's equations, which provides implicitly the field components, circumvents this problem. The solution is to neglect retardation effects so that the electromagnetic propagation speed is effectively infinite. The purely electromagnetic modes in this limit evolve ''instantly'' to a time-asymptotic configuration about the macroscopic plasma configuration at each new time level. The Darwin or magnetoinductive approximation effectively provides infinite propagation speeds for purely electromagnetic modes by converting Maxwell's equations from hyperbolic to elliptic in character. In practice, this is accomplished by neglecting the solenoidal part of the displacement current. The elimination of the CFL time step constraint more than offsets the substantially more complicated field solution that is required. The details of a numerical implementation of this model will be presented. Numerical examples will be given and extentions of the Darwin field solution to other plasma models also will be considered. 9 refs., 3 figs
International Nuclear Information System (INIS)
Zeng Jiaolong; Yuan Jianmin
2002-01-01
The spectrally resolved radiative opacity and the Rosseland and Planck mean opacities are calculated by using the detailed-term-accounting approximation for aluminum plasmas with varieties of density and temperature. The results are presented along a 40 eV isothermal sequence, a 0.01 g/cm 3 isodense sequence, and a sequence with average ionization degree Z*∼7.13. Particular attention is given to the influence of the detailed treatment of spectral lines on the Rosseland mean opacity under different thermodynamical conditions. The results show that at densities of 0.004 g/cm 3 and higher, the opacities are not very sensitive to the spectral linewidth within a reasonable range. As examples, the Rosseland mean opacity, which is most sensitive to the detailed linewidth, at 40 eV and 0.004 g/cm 3 changes no more than 15%, when we change the electron impact spectral linewidth artificially by reducing it by 50% or increasing it twice, and at 40 eV and 0.1 g/cm 3 it changes less than 5%. For comparison, we also carried out calculations by using an average atom model. For the Rosseland mean opacities, the two models show quite large differences, in particular at low densities, while for the Planck mean opacities the results of the two models are much closer
Energy Technology Data Exchange (ETDEWEB)
Cartier, J
2006-04-15
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Energy Technology Data Exchange (ETDEWEB)
Cartier, J
2006-04-15
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion
International Nuclear Information System (INIS)
Mousseau, V.A.; Knoll, D.A.; Rider, W.J.
2000-01-01
An algorithm is presented for the solution of the time dependent reaction-diffusion systems which arise in non-equilibrium radiation diffusion applications. This system of nonlinear equations is solved by coupling three numerical methods, Jacobian-free Newton-Krylov, operator splitting, and multigrid linear solvers. An inexact Newton's method is used to solve the system of nonlinear equations. Since building the Jacobian matrix for problems of interest can be challenging, the authors employ a Jacobian-free implementation of Newton's method, where the action of the Jacobian matrix on a vector is approximated by a first order Taylor series expansion. Preconditioned generalized minimal residual (PGMRES) is the Krylov method used to solve the linear systems that come from the iterations of Newton's method. The preconditioner in this solution method is constructed using a physics-based divide and conquer approach, often referred to as operator splitting. This solution procedure inverts the scalar elliptic systems that make up the preconditioner using simple multigrid methods. The preconditioner also addresses the strong coupling between equations with local 2 x 2 block solves. The intra-cell coupling is applied after the inter-cell coupling has already been addressed by the elliptic solves. Results are presented using this solution procedure that demonstrate its efficiency while incurring minimal memory requirements
Diffuse radiation increases global ecosystem-level water-use efficiency
Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.
2012-12-01
Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.
Development of lithium diffused radiation resistant solar cells, part 2
Payne, P. R.; Somberg, H.
1971-01-01
The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.
A multigrid Newton-Krylov method for flux-limited radiation diffusion
International Nuclear Information System (INIS)
Rider, W.J.; Knoll, D.A.; Olson, G.L.
1998-01-01
The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques
Calculation and mapping of direct and diffuse solar radiation in Costa Rica
International Nuclear Information System (INIS)
Wright, Jaime
2008-01-01
Knowledge of direct and diffuse solar radiation has been of vital importance in assessing the energy potential of Costa Rica. The work is focused on the calculation and plotting of contour maps of the direct and diffuse solar radiation, based in sixty-two radiometric stations scattered throughout the country. In tracing these contours have been used experimental and predicted values of direct and diffuse radiation. Additionally, direct and diffuse solar radiation is compared during the dry season and the rainy season in the six climatic regions of the country: Valle Central, North Pacific, Central Pacific, South Pacific, North Zone and Caribbean Region. Daily average levels of radiation observed directly have been from 6.1 and 10.1 MJ/m 2 , with higher values in the northern sections of the Pacific Slope, west of Valle Central and the tops of the highest mountains. The lowest values have coincided with the North Zone and Caribbean Region. The highest values of diffuse radiation have coincided with the North Zone and South Pacific. An increase in direct solar radiation by 40% is observed in the month of the dry season. (author) [es
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
Investigation of radiation-enhanced oxygen diffusion in Li-Ti ferrites
International Nuclear Information System (INIS)
Surzhikov, A.P.; Pritulov, A.M.; Gyngazov, S.A.; Lysenko, E.N.
1999-01-01
The radiation-enhanced oxygen diffusion in polycrystalline Li-Ti ferrites was investigated. The electron accelerator ELV-6 (Institute of Nuclear Physics, Russian Academy of Sciences) was used to generate the radiothermal annealing. The radiation effects were established by comparison of diffusion profiles of the samples, which were radiothermally treated, and data obtained during the thermal annealing in the resistance furnace. It was discovered that there was an increase of numerical values of Ed (activation diffusion energy) and Do (preexponential factor) during the radiothermal annealing, if compared with the thermal one. The investigations were financed by the Russian Fundamental Research Fund
Spatiotemporal variability analysis of diffuse radiation in China during 1981-2010
Energy Technology Data Exchange (ETDEWEB)
Ren, X.L.; Zhou, L. [Chinese Academy of Sciences, Beijing (China). Inst. of Geographic Sciences and Natural Resources Research; University of Chinese Academy of Sciences, Beijing (China); He, H.L.; Zhang, L.; Yu, G.R.; Fan, J.W. [Chinese Academy of Sciences, Beijing (China). Inst. of Geographic Sciences and Natural Resources Research
2013-03-01
Solar radiation is the primary driver of terrestrial plant photosynthesis and the diffuse component can enhance canopy light use efficiency (LUE), which in turn influences the carbon balance of terrestrial ecosystems. In this study we calculated the spatial data of diffuse radiation in China from 1981 to 2010, using a radiation decomposition model and spatial interpolation method based on observational data. Furthermore, we explored the spatiotemporal characteristics of diffuse radiation using GIS and trend analysis techniques. The results show the following: (1) The spatial patterns of perennial average of annual diffuse radiation during 1981-2010 are complex and inhomogeneous in China, generally lower in the north and higher in the south and west. The perennial average ranges from 1730.20 to 3064.41 MJm{sup -2}yr{sup -1} across the whole country. (2) There is an increasing trend of annual diffuse radiation in China from 1981 to 2010 on the whole, with mean increasing amplitude of 7.03 MJm{sup -2}yr{sup -1} per decade. Whereas a significant downtrend was observed in the first 10 years, distinct anomalies in 1982, 1983, 1991 and 1992 occurred due to the eruptions of El Chinchon and Pinatubo. (3) The spatial distribution of the temporal variability of diffuse radiation showed significant regional heterogeneity in addition to the seasonal differences. Northwestern China has the most evident downtrend, with highest decreasing rate of 6% per decade, while the Tibetan Plateau has the most evident uptrend, with highest increasing rate of up to 9% per decade. Such quantitative spatiotemporal characteristics of diffuse radiation are essential in regional scale modeling of terrestrial carbon dynamics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Makola, Monwabisi [University of Cincinnati, College of Medicine, Cincinnati, OH (United States); Douglas Ris, M. [Texas Children' s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX (United States); Mahone, E.M. [Kennedy Krieger Institute, Department of Neuropsychology, Baltimore, MD (United States); Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD (United States); Yeates, Keith Owen [University of Calgary, Department of Psychology, Alberta Children' s Hospital Research Institute, Hotchkiss Brain Institute, Calgary, AB (Canada); Cecil, Kim M. [Imaging Research Center, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Department of Radiology, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Neuroscience Graduate Program, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Department of Environmental Health, Cincinnati, OH (United States)
2017-12-15
Despite improving survival rates, children are at risk for long-term cognitive and behavioral difficulties following the diagnosis and treatment of a brain tumor. Surgery, chemotherapy and radiation therapy have all been shown to impact the developing brain, especially the white matter. The purpose of this study was to determine the long-term effects of radiation therapy on white matter integrity, as measured by diffusion tensor imaging, in pediatric brain tumor patients 2 years after the end of radiation treatment, while controlling for surgical interventions. We evaluated diffusion tensor imaging performed at two time points: a baseline 3 to 12 months after surgery and a follow-up approximately 2 years later in pediatric brain tumor patients. A region of interest analysis was performed within three regions of the corpus callosum. Diffusion tensor metrics were determined for participants (n=22) who underwent surgical tumor resection and radiation therapy and demographically matched with participants (n=22) who received surgical tumor resection only. Analysis revealed that 2 years after treatment, the radiation treated group exhibited significantly lower fractional anisotropy and significantly higher radial diffusivity within the body of the corpus callosum compared to the group that did not receive radiation. The findings indicate that pediatric brain tumor patients treated with radiation therapy may be at greater risk of experiencing long-term damage to the body of the corpus callosum than those treated with surgery alone. (orig.)
International Nuclear Information System (INIS)
Makola, Monwabisi; Douglas Ris, M.; Mahone, E.M.; Yeates, Keith Owen; Cecil, Kim M.
2017-01-01
Despite improving survival rates, children are at risk for long-term cognitive and behavioral difficulties following the diagnosis and treatment of a brain tumor. Surgery, chemotherapy and radiation therapy have all been shown to impact the developing brain, especially the white matter. The purpose of this study was to determine the long-term effects of radiation therapy on white matter integrity, as measured by diffusion tensor imaging, in pediatric brain tumor patients 2 years after the end of radiation treatment, while controlling for surgical interventions. We evaluated diffusion tensor imaging performed at two time points: a baseline 3 to 12 months after surgery and a follow-up approximately 2 years later in pediatric brain tumor patients. A region of interest analysis was performed within three regions of the corpus callosum. Diffusion tensor metrics were determined for participants (n=22) who underwent surgical tumor resection and radiation therapy and demographically matched with participants (n=22) who received surgical tumor resection only. Analysis revealed that 2 years after treatment, the radiation treated group exhibited significantly lower fractional anisotropy and significantly higher radial diffusivity within the body of the corpus callosum compared to the group that did not receive radiation. The findings indicate that pediatric brain tumor patients treated with radiation therapy may be at greater risk of experiencing long-term damage to the body of the corpus callosum than those treated with surgery alone. (orig.)
Effect of surface characteristics on diffuse reflection radiation at lambda=0. 40. mu. m
Energy Technology Data Exchange (ETDEWEB)
Takashima, T [Atmospheric Environment Service, Downsview, Ontario (Canada)
1976-08-01
The diffuse radiation in the upward direction at the top and at an internal level of an inhomogeneous atmosphere is computed at lambda=0.40 ..mu..m. The surface is assumed to reflect light in accordance with a hybrid mode of a diffuse and specular reflector. The objective is to estimate the effect of underlying surface characteristics in terms of the diffuse radiation field. By making use of these results, accuracy in monitoring the atmospheric aerosols would be increased for the use of remote sensing satellite techniques. Junge power law (..gamma..*=3) is adopted for the size distribution of aerosols (1963), while the data given by McClatchy et al. (1971) is used for the number density of aerosols with height distribution. It is noted from the computations that the diffuse reflection radiation is affected by the surface characteristics, even if the albedo of the surface is a fixed constant and very small.
International Nuclear Information System (INIS)
Yuste, Santos Bravo; Abad, Enrique
2011-01-01
We present an iterative method to obtain approximations to Bessel functions of the first kind J p (x) (p > -1) via the repeated application of an integral operator to an initial seed function f 0 (x). The class of seed functions f 0 (x) leading to sets of increasingly accurate approximations f n (x) is considerably large and includes any polynomial. When the operator is applied once to a polynomial of degree s, it yields a polynomial of degree s + 2, and so the iteration of this operator generates sets of increasingly better polynomial approximations of increasing degree. We focus on the set of polynomial approximations generated from the seed function f 0 (x) = 1. This set of polynomials is useful not only for the computation of J p (x) but also from a physical point of view, as it describes the long-time decay modes of certain fractional diffusion and diffusion-wave problems.
International Nuclear Information System (INIS)
Coretti, C.; Ferrari, V.
1986-01-01
In this paper the limits of applicability of the semi-relativistic approximation for estimating the radiation emitted in processes of capture of particles by black holes are discussed. It is shown that it gives reliable estimates in the case of spherically symmetric black holes, but it fails in the case of rotating black holes
Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem
Knohl, Alexander; Baldocchi, Dennis D.
2008-06-01
Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.
Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects
International Nuclear Information System (INIS)
Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas; Jaffrezic, Henri; Toulhoat, Nelly; Barthe, Marie France; Desgardin, Pierre; Raimbault, Louis; Scheidegger, Andre M.; Carlot, Gaelle
2007-01-01
Chlorine is present as an impurity in the UO 2 nuclear fuel. 35 Cl is activated into 36 Cl by thermal neutron capture. In case of interim storage or deep geological disposal of the spent fuel, this isotope is known to be able to contribute significantly to the instant release fraction because of its mobile behavior and its long half life (around 300000 years). It is therefore important to understand its migration behavior within the fuel rod. During reactor operation, chlorine diffusion can be due to thermally activated processes or can be favoured by irradiation defects induced by fission fragments or alpha decay. In order to decouple both phenomena, we performed two distinct experiments to study the effects of thermal annealing on the behaviour of chlorine on one hand and the effects of the irradiation with fission products on the other hand. During in reactor processes, part of the 36 Cl may be displaced from its original position, due to recoil or to collisions with fission products. In order to study the behavior of the displaced chlorine, 37 Cl has been implanted into sintered depleted UO 2 pellets (mean grain size around 18 μm). The spatial distribution of the implanted and pristine chlorine has been analyzed by SIMS before and after treatment. Thermal annealing of 37 Cl implanted UO 2 pellets (implantation fluence of 10 13 ions.cm -2 ) show that it is mobile from temperatures as low as 1273 K (E a =4.3 eV). The irradiation with fission products (Iodine, E=63.5 MeV) performed at 300 and 510 K, shows that the diffusion of chlorine is enhanced and that a thermally activated contribution is preserved (E a =0.1 eV). The diffusion coefficients measured at 1473 K and under fission product irradiation at 510 K are similar (D = 3.10 -14 cm 2 .s -1 ). Considering in first approximation that the diffusion length L can be expressed as a function of the diffusion coefficient D and time t by : L=(Dt)1/2, the diffusion distance after 3 years is L=17 μm. It results that
Changes of diffuse UV-B radiation on clear sky days
International Nuclear Information System (INIS)
Kon, H.; Ichibayashi, R.; Matsuoka, N.
2004-01-01
Measurements of global and diffuse UV-B radiation have been carried out in Matsudo City (35.3 deg N, 139.9 deg E), Japan. Forty clear sky days were chosen and the annual variation of global and diffuse UV-B radiation was analyzed. The dependence of the diffuse component on visibility was also examined. The results are summarized as follows. 1. The maximum of daily global UV-B was beyond 40kJrec mE-2 daysup(-1) and was recorded in late July. The maximum of daily diffuse UV-B was recorded in early July. There was a tendency for the diffuse UV-B to be larger than the direct UV-B during a year in Matsudo. 2. The fraction of diffuse UV-B to global UV-B changed a lot each day. The observed minimum value of the fraction during a year was recorded in early August. 3. There was a tendency for the fraction of diffuse UV-B to global UV-B to decrease when visibility increased. 4. The diffuse components that change a lot each day were properly estimated by using the expected minimum fraction and visibility. Key words: Diffuse UV-B, Ultraviolet, UV-B, Visibility
Directory of Open Access Journals (Sweden)
S. A. Kaschenko
2014-01-01
Full Text Available We study the dynamics of finite-difference approximation on spatial variables of a logistic equation with delay and diffusion. It is assumed that the diffusion coefficient is small and the Malthusian coefficient is large. The question of the existence and asymptotic behavior of attractors was studied with special asymptotic methods. It is shown that there is a rich array of different types of attractors in the phase space: leading centers, spiral waves, etc. The main asymptotic characteristics of all solutions from the corresponding attractors are adduced in this work. Typical graphics of wave fronts motion of different structures are represented in the article.
Classical theory of the Kumakhov radiation in axial channeling. 1. Dipole approximation
Energy Technology Data Exchange (ETDEWEB)
Khokonov, M.K.; Komarov, F.F.; Telegin, V.I.
1984-05-01
The paper considers radiation of ultrarelativistic electrons in axial channeling initially predicted by Kumakhov. The consideration is based on the results of solution of the Fokker-Planck equation. The spectral-angular characteristics of the Kumakhov radiation in thick single crystals are calculated. It is shown that in heavy single crystals the energy losses on radiation can amount to a considerable portion of the initial beam energy. The possibility of a sharp increase of radiation due to a decrease of crystal temperature is discussed. It is shown that radiation intensity in axial channeling is weakly dependent on the initial angle of the electron entrance into the channel if this angle changes within the limits of a critical one.
Measurements and theoretical calculations of diffused radiation and atmosphere lucidity
International Nuclear Information System (INIS)
Pelece, I.; Iljins, U.; Ziemelis, I.
2009-01-01
Align with other environment friendly renewable energy sources solar energy is widely used in the world. Also in Latvia solar collectors are used. However, in Latvia because of its geographical and climatic conditions there are some specific features in comparison with traditional solar energy using countries. These features lead to the necessity to pay more attention to diffused irradiance. Another factor affecting the received irradiance of any surface is lucidity of atmosphere. This factor has not been studied in Latvia yet. This article deals with evaluation of diffused irradiance, and also of lucidity of atmosphere. The diffused irradiance can be measured directly or as a difference between the global irradiance and the beam one. The lucidity of atmosphere can be calculated from the measurements of both global and beam irradiance, if the height of the sun is known. Therefore, measurements of both global and beam irradiance have been carried out, and the diffused irradiance calculated as a difference between the global irradiance and the beam one. For measuring of the global irradiance the dome solarimeter has been used. For measuring of the direct irradiance tracking to sun pirheliometer has been used. The measurements were performed in Riga from October 2008 till March 2009. The measurements were executed automatically after every 5 minutes. The obtained results have been analyzed taking into account also the data on nebulosity from the State agency Latvian Environment, Geology and Meteorology Agency. Also efforts to calculate theoretically the diffused irradiance from the height of the sun and the data of the nebulosity have been done. These calculated values have been compared with the measured ones. Good accordance is obtained. (author)
International Nuclear Information System (INIS)
Akhiezer, A.I.; Shul'ga, N.F.
1991-01-01
The process of relativistic particle radiation in an external field has been studied in the semi-classical approximation rather extensively. The main problem arising in the studies is in expressing the formula of the quantum theory of radiation in terms of classical quantities, for example of the classical trajectories. However, it still remains unclear how the particle trajectory is assigned, that is which particular initial or boundary conditions determine the trajectory in semi-classical approximation quantum theory of radiation. We shall try to solve this problem. Its importance comes from the fact that in some cases one and the same boundary conditions may give rise to two or more trajectories. We demonstrate that this fact must necessarily be taken into account on deriving the classical limit for the formulae of the quantum theory of radiation, since it leads to a specific interference effect in radiation. The method we used to deal with the problem is similar to the method employed by Fock to analyze the problem of a canonical transformation in classical and quantum mechanics. (author)
Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis
Directory of Open Access Journals (Sweden)
Scott C. Kolbe
2016-01-01
Full Text Available Previous studies have reported diffusion tensor imaging (DTI changes within the optic radiations of patients after optic neuritis (ON. We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1. We measured DTI parameters [fractional anisotropy (FA, axial diffusivity (AD, radial diffusivity (RD, and mean diffusivity (MD] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p=0.006. Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R=0.450, p=0.006; RD: R=-0.428, p=0.009; MD: R=-0.365, p=0.029. In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R=0.489, p=0.039. In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.
International Nuclear Information System (INIS)
El-Wakil, S.A.; Sallah, M.; Degheidy, A.R.
2005-01-01
The time-dependent radiation transfer equation in plane geometry with Rayleigh scattering is studied. The traveling wave transformation is used to obtain the corresponding stationary-like equation. Pomraning-Eddington approximation is then used to calculate the radiation intensity in finite plane-parallel media. Numerical results and shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. For the sake of comparison, two different weight functions are introduced and to force the boundary conditions to be fulfilled
Energy Technology Data Exchange (ETDEWEB)
Rice, A.F.; Roussin, R.W. (comps.)
1986-09-01
Although radiation protection principles are, on the whole, well understood and a whole series of computer codes exist for their solution, it is felt that there is a need for practical, approximate techniques to be used by the practicing nuclear engineer for a variety of applications. Within the context of approximate techniques, the papers presented cover a broad overview of specific problems, for example, skyshine and penetration analysis, with applications extending from general nuclear reactor design to spent fuel storage and fusion. Separate abstracts have been prepared for individual papers.
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
Co-60 gamma radiation assisted diffusion of iodine in polypropylene
Energy Technology Data Exchange (ETDEWEB)
Mathakari, N.L.; Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune, Maharashtra 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ernet.i [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune, Maharashtra 411007 (India)
2010-09-15
Thin films of polypropylene having dimensions 50 mm x 15 mm x 350 {mu}m were immersed in 1 N iodine solution and then irradiated with Co-60 gamma radiation for the periods of 48, 96 and 144 h at the doses varying from 14.4 to 43.2 kGy. The films were also kept immersed in iodine solution for similar periods but without irradiation. Furthermore, the films were also directly-irradiated with Co-60 gamma radiation for similar periods and doses. The radiation-iodinated, plain-iodinated and directly-irradiated samples were characterized by using various techniques such as weight gain EDS, SEM, FTIR, UV-visible spectroscopy, contact angle and XRD. Weight gain, EDS and SEM collectively reveal that gamma irradiation enhances iodine intake in polypropylene. FTIR, EDS and contact angle measurements indicate that presence of iodine during irradiation resists radiation induced carbonylation of polypropylene. FTIR also shows presence of HOI (Hypoiodous acid) species instead of expected C-I bonds. UV-visible analysis unambiguously shows that presence of iodine enhances radiation induced band gap reduction process of polypropylene. XRD indicates that iodine decreases the crystallinity of polypropylene.
Analytical developments in the Wong-Fung-Tam-Gao radiation model of thermal diffusivity
International Nuclear Information System (INIS)
Lucia, U.; Maino, G.
2004-01-01
When the thermal diffusivity, χ, of a thin film on a substrate is measured by means of the mirage method, the photothermal deflection of the probe beam is determined by the heat radiation field contributed by the film and the substrate, heated by the pump beam. A two-dimensional algorithm is here presented in order to deduce the measure of the diffusivities of the film and the substrate in one set of mirage detection from the experimental data
International Nuclear Information System (INIS)
Gelin, R.; Kjellbert, N.; Stenquist, C.
1978-09-01
Calculations of diffusion and radiation doses in connection with final storage of low-lavel and intermediate-level radioactive wastes. The results show that the doses obtained with realistic values of parameters used in the calculations are very low. However, substantially simplified assumption have been applied in the calculations. Thus more detailed models for the description of the diffusion process have to be developed. (E.R.)
International Nuclear Information System (INIS)
Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.
2015-01-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Diffuse material, background radiation and the early universe
International Nuclear Information System (INIS)
Rees, M.J.
1980-01-01
Observations that relate to a qualitative picture of how galaxies formed, and what the Universe was really like at still earlier times, are presented. Some lines of evidence on the universe at redshifts out to z approximately equal to 5 are discussed, concentrating on the evidence which suggests that intergalactic medium has evolved in a 'multi phase' fashion. Some aspects of the less recent history of the Universe (i.e z approximately greater than 100) are considered, particularly the microwave background and the spectrum of inhomogeneities. (Auth.)
Medium-induced gluon radiation and colour decoherence beyond the soft approximation
Apolinário, Liliana; Milhano, José Guilherme; Salgado, Carlos A
2015-01-01
We derive the in-medium gluon radiation spectrum off a quark within the path integral formalism at finite energies, including all next-to-eikonal corrections in the propagators of quarks and gluons. Results are computed for finite formation times, including interference with vacuum amplitudes. Rewriting the medium averages in a convenient manner we present the spectrum in terms of dipole cross sections and a colour decoherence parameter with the same physical origin as that found in previous studies of the antenna radiation. This factorisation allows us to present a simple physical picture of the medium-induced radiation for any value of the formation time, of interest for a probabilistic implementation of the modified parton shower. Interestingly -- and unexpectedly -- we also find a modification of the contribution from the hard vertex which cannot be factorized, at finite formation time, as the vacuum Altarelli-Parisi splitting function. Known results are recovered for the particular cases of soft radiatio...
Plante, Ianik; Cucinotta, Francis A.
2011-01-01
The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.
Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene
International Nuclear Information System (INIS)
Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B
2012-01-01
The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ∼10 3 - 5×10 4 W cm -2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.
Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene
Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.
2012-04-01
The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.
Sound power radiated by sources in diffuse fields
DEFF Research Database (Denmark)
Polack, Jean-Dominique
2000-01-01
Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...
International Nuclear Information System (INIS)
Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2015-01-01
It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta–Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5–3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners. - Highlights: • We solve the multiple-right-hand-side problem in DOT with a block BiCGStab method. • We examine the CPU times of the block solver and the traditional sequential solver. • The block solver is faster than the sequential solver by a factor of 1.5–3.0. • Multi-threading block solvers give additional speedup under limited threads situation.
Diffusion limits in a model of radiative flow
Czech Academy of Sciences Publication Activity Database
Ducomet, B.; Nečasová, Šárka
2015-01-01
Roč. 61, č. 1 (2015), s. 17-59 ISSN 0430-3202 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes-Fourier system * Oberbeck -Boussinesq * radiation hydrodynamics * weak solution Subject RIV: BA - General Mathematics http://link.springer.com/article/10.1007%2Fs11565-014-0214-3
Interface methods for hybrid Monte Carlo-diffusion radiation-transport simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2006-01-01
Discrete diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo simulations in diffusive media. An important aspect of DDMC is the treatment of interfaces between diffusive regions, where DDMC is used, and transport regions, where standard Monte Carlo is employed. Three previously developed methods exist for treating transport-diffusion interfaces: the Marshak interface method, based on the Marshak boundary condition, the asymptotic interface method, based on the asymptotic diffusion-limit boundary condition, and the Nth-collided source technique, a scheme that allows Monte Carlo particles to undergo several collisions in a diffusive region before DDMC is used. Numerical calculations have shown that each of these interface methods gives reasonable results as part of larger radiation-transport simulations. In this paper, we use both analytic and numerical examples to compare the ability of these three interface techniques to treat simpler, transport-diffusion interface problems outside of a more complex radiation-transport calculation. We find that the asymptotic interface method is accurate regardless of the angular distribution of Monte Carlo particles incident on the interface surface. In contrast, the Marshak boundary condition only produces correct solutions if the incident particles are isotropic. We also show that the Nth-collided source technique has the capacity to yield accurate results if spatial cells are optically small and Monte Carlo particles are allowed to undergo many collisions within a diffusive region before DDMC is employed. These requirements make the Nth-collided source technique impractical for realistic radiation-transport calculations
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
International Nuclear Information System (INIS)
FAN, WESLEY C.; DRUMM, CLIFTON R.; POWELL, JENNIFER L. email wcfan@sandia.gov
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
Fan, W C; Powell, J L
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.
Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan
2016-10-01
Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.
Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J
2010-03-01
A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.
Role of Radiation Therapy in Patients With Relapsed/Refractory Diffuse Large B-Cell Lymphoma
DEFF Research Database (Denmark)
Ng, Andrea K; Yahalom, Joachim; Goda, Jayant S
2018-01-01
Approximately 30% to 40% of patients with diffuse large B-cell lymphoma (DLBCL) will have either primary refractory disease or relapse after chemotherapy. In transplant-eligible patients, those with disease sensitive to salvage chemotherapy will significantly benefit from high-dose therapy with a...
Calbó, Josep; González, Josep-Abel; Sanchez-Lorenzo, Arturo
2017-08-01
Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987-2014) and diffuse radiation (1994-2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m-2 (1.4 %) decade-1 (1988-2014 period), mainly due to what occurs in summer (5.6 W m-2 decade-1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at -1.3 W m-2 (-2 %) decade-1 (1994-2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.
Generation of Z mode radiation by diffuse auroral electron precipitation
Dusenbery, P. B.; Lyons, L. R.
1985-01-01
The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.
Directory of Open Access Journals (Sweden)
Michael J Cruse
Full Text Available Plant canopy interception of photosynthetically active radiation (PAR drives carbon dioxide (CO2, water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the
Kudish, Avraham I; Harari, Marco; Evseev, Efim G
2011-10-01
The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1975-10-01
The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level
International Nuclear Information System (INIS)
Seddeek, M.A.; Abdelmeguid, M.S.
2006-01-01
The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number
International Nuclear Information System (INIS)
Wang, Y.P.; Jarvis, P.G.
1990-01-01
A simulation model, Maestro, is used to study the influence of beam fraction in the incident radiation and the radiance distribution of the sky diffuse radiation on PAR absorption, photosynthesis and transpiration of a Sitka spruce (Picea sitchensis (Bong.) Carr) tree crown. It is concluded that inaccurate separation of beam and diffuse radiation leads to significant errors in estimating the amounts of PAR absorbed, photosynthesis and transpiration by a tree in the stand. Much more attention should be paid to adequate descriptions of the radiance distribution of the sky diffuse radiation under different sky conditions. A useful approach is proposed for simulating the incident global radiaiton in a physiological, process-based model
A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.
2007-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the
Directory of Open Access Journals (Sweden)
Chantal M W Tax
Full Text Available Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.
Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells
Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael
2018-04-01
In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.
International Nuclear Information System (INIS)
Nowak, P.F.
1993-01-01
A grey diffusion acceleration method is presented and is shown by Fourier analysis and test calculations to be effective in accelerating radiative transfer calculations. The spectral radius is bounded by 0.9 for the continuous equations, but is significantly smaller for the discretized equations, especially in the optically thick regimes characteristic to radiation transport problems. The GDA method is more efficient than the multigroup DSA method because its slightly higher iteration count is more than offset by the much lower cost per iteration. A wide range of test calculations confirm the efficiency of GDA compared to multifrequency DSA. (orig.)
Second order time evolution of the multigroup diffusion and P1 equations for radiation transport
International Nuclear Information System (INIS)
Olson, Gordon L.
2011-01-01
Highlights: → An existing multigroup transport algorithm is extended to be second-order in time. → A new algorithm is presented that does not require a grey acceleration solution. → The two algorithms are tested with 2D, multi-material problems. → The two algorithms have comparable computational requirements. - Abstract: An existing solution method for solving the multigroup radiation equations, linear multifrequency-grey acceleration, is here extended to be second order in time. This method works for simple diffusion and for flux-limited diffusion, with or without material conduction. A new method is developed that does not require the solution of an averaged grey transport equation. It is effective solving both the diffusion and P 1 forms of the transport equation. Two dimensional, multi-material test problems are used to compare the solution methods.
Enhanced diffusion of solute metals forming complexes with radiation defects in silica
International Nuclear Information System (INIS)
Pivin, J.C.; Garrido, E.; Rizza, G.; Thome, L.
1998-01-01
The mixing kinetics of Cu, Ag, W, Pt, and Au single layers embedded in silica when irradiated with heavy ions at temperatures (T) of 110 and 300 K was investigated by means of in situ RBS analyses in alternation with irradiations. The spreading of peaks related to the metallic species is generally anisotropic and obeys either a quadratic or a linear dependence on the ion dose according to the increasing T. The quadratic law is attributed to a control of the diffusion by the coupling of the large impurity atoms M with matrix defects, and a classical regime of radiation enhanced diffusion is observed when this coupling is made easier (higher T or mass of M). Other factors such as internal stresses affect the rates of M dissolution and diffusion. (orig.)
Diffusion coefficients of gaseous scavengers in organic liquids used in radiation chemistry
International Nuclear Information System (INIS)
Luthjens, L.H.; De Leng, H.C.; Warman, J.M.; Hummel, A.
1990-01-01
Diffusion coefficients have been measured of some gaseous scavengers commonly used in radiation chemical studies: CO 2 , NH 3 , SF 6 and O 2 in trans-decalin, cyclohexane, isooctane and n-hexane, and CO 2 in cis-decalin, at 25 0 C. A modified diaphragm cell method has been used in order to limit the time needed for a measurement to about 6 h. Analysis of the results yields a simple semi-empirical predictive relation for the diffusion coefficient of a (gaseous) solute A in an organic solvent B. Diffusion coefficients calculated using the simple relation appear to give results in fair agreement with published values, over a range of organic solvents including alcohols, and over a range of temperatures. Some measured and predicted values are discussed with reference to results from the literature. (author)
International Nuclear Information System (INIS)
Smedley-Stevenson, Richard P.; McClarren, Ryan G.
2015-01-01
This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes
Energy Technology Data Exchange (ETDEWEB)
Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)
2015-04-01
This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.
The importance of the chosen technique to estimate diffuse solar radiation by means of regression
Energy Technology Data Exchange (ETDEWEB)
Arslan, Talha; Altyn Yavuz, Arzu [Department of Statistics. Science and Literature Faculty. Eskisehir Osmangazi University (Turkey)], email: mtarslan@ogu.edu.tr, email: aaltin@ogu.edu.tr; Acikkalp, Emin [Department of Mechanical and Manufacturing Engineering. Engineering Faculty. Bilecik University (Turkey)], email: acikkalp@gmail.com
2011-07-01
The Ordinary Least Squares (OLS) method is one of the most frequently used for estimation of diffuse solar radiation. The data set must provide certain assumptions for the OLS method to work. The most important is that the regression equation offered by OLS error terms must fit within the normal distribution. Utilizing an alternative robust estimator to get parameter estimations is highly effective in solving problems where there is a lack of normal distribution due to the presence of outliers or some other factor. The purpose of this study is to investigate the value of the chosen technique for the estimation of diffuse radiation. This study described alternative robust methods frequently used in applications and compared them with the OLS method. Making a comparison of the data set analysis of the OLS and that of the M Regression (Huber, Andrews and Tukey) techniques, it was study found that robust regression techniques are preferable to OLS because of the smoother explanation values.
Alarousu, Erkki
2017-08-29
Organic-inorganic hybrid perovskite materials have recently evolved into the leading candidate solution-processed semiconductor for solar cells due to their combination of desirable optical and charge transport properties. Chief among these properties is the long carrier diffusion length, which is essential to optimizing the device architecture and performance. Herein, we used time-resolved photoluminescence (at low excitation fluence, 10.59 μJ·cm upon two-photon excitation), which is the most accurate and direct approach to measure the radiative charge carrier lifetime and diffusion lengths. Lifetimes of about 72 and 4.3 μs for FAPbBr and FAPbI perovskite single crystals have been recorded, presenting the longest radiative carrier lifetimes reported to date for perovskite materials. Subsequently, carrier diffusion lengths of 107.2 and 19.7 μm are obtained. In addition, we demonstrate the key role of the organic cation units in modulating the carrier lifetime and its diffusion lengths, in which the defect formation energies for FA cations are much higher than those with the MA ones.
Pollutant emission and noise radiation from open and impinging inverse diffusion flames
International Nuclear Information System (INIS)
Choy, Y.S.; Zhen, H.S.; Leung, C.W.; Li, H.B.
2012-01-01
Highlights: ► The effect of burner geometry (d air and S) on inverse diffusion flames is studied. ► With fixed air/fuel supplies, a smaller d air curtails NO x emission but augments noise radiation. ► With fixed air/fuel supplies, a larger S reduces NO x emission but increases noise radiation. ► Both NO x emission and noise radiation are maximum under stoichiometric combustion. ► Impinging flames are nosier than corresponding open flames due to the mirror effect of the plate. -- Abstract: This paper reports an experimental investigation of the pollutant emission and noise radiation characteristics of both open and impinging inverse diffusion flames (IDFs), produced by five burners of different air port diameter (d air = 5, 6 and 6.84 mm) and air-to-fuel spacing (S = 8, 11.5 and 15 mm). The effects of d air , S, overall equivalence ratio φ and nozzle-to-plate spacing H on the pollutant emissions of CO and NO x and the noise radiation are examined. The results show that at fixed air flow rate, a smaller d air curtails NO x emission but augments noise radiation, indicative of a role played by turbulence, which tends to decrease pollutant emission and increase noise radiation. A larger S reduces NO x emission but increases noise radiation, indicating that different flame zones may be responsible for pollutant emission and noise radiation. When the IDF is under stoichiometric φ = 1.6, both the NO x emission and noise radiation are highest, as a result of maximum heat release rate. A comparison of EINO x for the open and impinging IDFs shows that the impinging IDFs emit more NO x probably due to the absence of NO reburning. The impinging IDFs have higher noise radiation than the corresponding open IDFs. A higher level of noise radiation from the impinging IDFs is observed as the target plate is brought closer to the burner.
International Nuclear Information System (INIS)
Nakajima, Teruyuki
2010-01-01
I explain the motivation behind our paper 'Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation' (JQSRT 1988;40:51-69) and discuss our results in a broader historical context.
Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene
Energy Technology Data Exchange (ETDEWEB)
Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B
2012-04-30
The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.
Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia
International Nuclear Information System (INIS)
El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.
2010-01-01
The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.
Chacó n Rebollo, Tomá s; Dia, Ben Mansour
2015-01-01
This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.
Chaudhury, Srabanti; Cherayil, Binny J.
2007-09-01
Single-molecule equations for the Michaelis-Menten [Biochem. Z. 49, 333 (1913)] mechanism of enzyme action are analyzed within the Wilemski-Fixman [J. Chem. Phys. 58, 4009 (1973); 60, 866 (1974)] approximation after the effects of dynamic disorder—modeled by the anomalous diffusion of a particle in a harmonic well—are incorporated into the catalytic step of the reaction. The solution of the Michaelis-Menten equations is used to calculate the distribution of waiting times between successive catalytic turnovers in the enzyme β-galactosidase. The calculated distribution is found to agree qualitatively with experimental results on this enzyme obtained at four different substrate concentrations. The calculations are also consistent with measurements of correlations in the fluctuations of the fluorescent light emitted during the course of catalysis, and with measurements of the concentration dependence of the randomness parameter.
Chacón Rebollo, Tomás
2015-03-01
This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.
A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation
Plante, Ianik; Wu, Honglu
2014-01-01
Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the
International Nuclear Information System (INIS)
Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D.
2000-01-01
We calculate the complete O(α) electroweak radiative corrections to e + e - →WW→4f in the electroweak Standard Model in the double-pole approximation. We give analytical results for the non-factorizable virtual corrections and express the factorizable virtual corrections in terms of the known corrections to on-shell W-pair production and W decay. The calculation of the bremsstrahlung corrections, i.e., the processes e + e - →4fγ in lowest order, is based on the full matrix elements. The matching of soft and collinear singularities between virtual and real corrections is done alternatively in two different ways, namely by using a subtraction method and by applying phase-space slicing. The O(α) corrections as well as higher-order initial-state photon radiation are implemented in the Monte Carlo generator RACOONWW. Numerical results of this program are presented for the W-pair-production cross section, angular and W-invariant-mass distributions at LEP2. We also discuss the intrinsic theoretical uncertainty of our approach
Directory of Open Access Journals (Sweden)
Muthucumaraswamy R.
2006-01-01
Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .
Luther, M. R.
1981-01-01
The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.
Solving the radiation diffusion and energy balance equations using pseudo-transient continuation
International Nuclear Information System (INIS)
Shestakov, A.I.; Greenough, J.A.; Howell, L.H.
2005-01-01
We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard-Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard-Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (Ψtc) is introduced. The combined Ψtc-Picard-Newton scheme is analyzed. We derive conditions on the Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation-hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (R,Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks
Computing diffuse fraction of global horizontal solar radiation: A model comparison.
Dervishi, Sokol; Mahdavi, Ardeshir
2012-06-01
For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.
International Nuclear Information System (INIS)
Freier, Daria; Muhammad-Sukki, Firdaus; Abu-Bakar, Siti Hawa; Ramirez-Iniguez, Roberto; Abubakar Mas’ud, Abdullahi; Albarracín, Ricardo; Ardila-Rey, Jorge Alfredo; Munir, Abu Bakar; Mohd Yasin, Siti Hajar; Bani, Nurul Aini
2016-01-01
Highlights: • The performance of the RADTIRC was analysed under direct and diffuse radiation. • Optical gains of 4.66 under direct and 1.94 under diffuse light were achieved. • The experiments show good agreement with the simulations. • The RADTIRC is an attractive alternative for BICPV systems. - Abstract: Making housing carbon neutral is one of the European Union (EU) targets with the aim to reduce energy consumption and to increase on-site renewable energy generation in the domestic sector. Optical concentrators have a strong potential to minimise the cost of building integrated photovoltaic (BIPV) systems by replacing expensive photovoltaic (PV) material whilst maintaining the same electrical output. In this work, the performance of a recently patented optical concentrator known as the rotationally asymmetrical dielectric totally internally reflective concentrator (RADTIRC) was analysed under direct and diffuse light conditions. The RADTIRC has a geometrical concentration gain of 4.969 and two half acceptance angles of ±40° and ±30° respectively along the two axes. Simulation and experimental work has been carried out to determine the optical concentration gain and the angular response of the concentrator. It was found that the RADTIRC has an optical concentration gain of 4.66 under direct irradiance and 1.94 under diffuse irradiance. The experimental results for the single concentrator showed a reduction in concentration gain of 4.2% when compared with simulation data.
Energy Technology Data Exchange (ETDEWEB)
Recieri, Reinaldo Prandini; Ferruzzi, Yuri; Silva, Suedemio de Lima [Universidade Estadual do Oeste do Parana (UNIOESTE/FAG), Cascavel, PR (Brazil). Curso de Mestrado em Engenharia Agricola; Quallio, Silvana [Universidade Estadual do Oeste do Parana (UNIOESTE/FAG), Cascavel, PR (Brazil). Curso de Biologia; Batista, Vitor Roberto Lourenco [Universidade Estadual do Oeste do Parana (UNIOESTE/FAG), Cascavel, PR (Brazil). Curso de Graduacao em Engenharia Eletrica
2004-07-01
In this work we evaluate, by means of polynomial regression analysis, several models that relate the diffuse fraction of the global radiation (K{sub d}) with the clearness index (K{sub t}). The experiment was conducted in the Solar Radiometry Station of Cascavel/PR from the first of January to the 31st of December, in the year of 2001. The solar radiation components were monitored by the following manufactured instruments: pyranometer (KIPP and ZONEN CM3) and pirheliometer (EPPLEY NIP) connected in a sun tracker (ST-1 model). A datalogger CR10X from the CAMPBELL SCIENTIFIC was used in the data acquisition. This datalogger was programmed in the frequency of 1 Hz storing an average of 5 minutes of collected data. Among the equations the best values of RMSE an MBE were find in the fourth and third degrees, respectively. We also find that the fourth degree polynomial equation (K{sub d}=1,172-1,001K{sub t}+3,992K{sub t}{sup 2}-11,742K{sub t}{sup 3}+7,698K{sub t}{sup 4}) generalizes the utilization of equations for diffuse solar radiation estimation. This means that this equation probably can be applied for any place and climatic conditions. (author)
Oliphant, Andrew J.; Stoy, Paul C.
2018-03-01
Photosynthesis is more efficient under diffuse than direct beam photosynthetically active radiation (PAR) per unit PAR, but diffuse PAR is infrequently measured at research sites. We examine four commonly used semiempirical models (Erbs et al., 1982, https://doi.org/10.1016/0038-092X(82)90302-4; Gu et al., 1999, https://doi.org/10.1029/1999JD901068; Roderick, 1999, https://doi.org/10.1016/S0168-1923(99)00028-3; Weiss & Norman, 1985, https://doi.org/10.1016/0168-1923(85)90020-6) that partition PAR into diffuse and direct beam components based on the negative relationship between atmospheric transparency and scattering of PAR. Radiation observations at 58 sites (140 site years) from the La Thuille FLUXNET data set were used for model validation and coefficient testing. All four models did a reasonable job of predicting the diffuse fraction of PAR (ϕ) at the 30 min timescale, with site median r2 values ranging between 0.85 and 0.87, model efficiency coefficients (MECs) between 0.62 and 0.69, and regression slopes within 10% of unity. Model residuals were not strongly correlated with astronomical or standard meteorological variables. We conclude that the Roderick (1999, https://doi.org/10.1016/S0168-1923(99)00028-3) and Gu et al. (1999, https://doi.org/10.1029/1999JD901068) models performed better overall than the two older models. Using the basic form of these models, the data set was used to find both individual site and universal model coefficients that optimized predictive accuracy. A new universal form of the model is presented in section 5 that increased site median MEC to 0.73. Site-specific model coefficients increased median MEC further to 0.78, indicating usefulness of local/regional training of coefficients to capture the local distributions of aerosols and cloud types.
International Nuclear Information System (INIS)
Yadav, P.; Chandel, S.S.
2014-01-01
Tilt angle and orientation greatly are influenced on the performance of the solar photo voltaic panels. The tilt angle of solar photovoltaic panels is one of the important parameters for the optimum sizing of solar photovoltaic systems. This paper analyses six different isotropic and anisotropic diffused solar radiation models for optimum tilt angle determination. The predicted optimum tilt angles are compared with the experimentally measured values for summer season under outdoor conditions. The Liu and Jordan model is found to exhibit t lowest error as compared to other models for the location. (author)
Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José
2017-12-01
Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.
Propagation of intense laser radiation through a diffusion flame of burning oil
Energy Technology Data Exchange (ETDEWEB)
Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Pleshkov, V M [State Research Center of Russian Federation ' Troitsk Institute for Innovation and Fusion Research' , Troitsk, Moscow Region (Russian Federation)
2015-06-30
We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10{sup 3} to 1.2 × 10{sup 6} W cm{sup -2}) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)
Propagation of intense laser radiation through a diffusion flame of burning oil
International Nuclear Information System (INIS)
Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Pleshkov, V M
2015-01-01
We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10 3 to 1.2 × 10 6 W cm -2 ) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)
Propagation of intense laser radiation through a diffusion flame of burning oil
Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.
2015-06-01
We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 103 to 1.2 × 106 W cm-2) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented.
Radiation impedance of condenser microphones and their diffuse-field responses
DEFF Research Database (Denmark)
Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn
2010-01-01
and (b) measuring the pressure on the membrane of the microphone. The first measurement is carried out by means of laser vibrometry. The second measurement cannot be implemented in practice. However, the pressure on the membrane can be calculated numerically by means of the boundary element method......The relation between the diffuse-field response and the radiation impedance of a microphone has been investigated. Such a relation can be derived from classical theory. The practical measurement of the radiation impedance requires (a) measuring the volume velocity of the membrane of the microphone...... at frequencies below the resonance frequency of the microphone. Although the method may not be of great practical utility, it provides a useful validation of the estimates obtained by other means....
A reaction-diffusion model for radiation-induced bystander effects.
Olobatuyi, Oluwole; de Vries, Gerda; Hillen, Thomas
2017-08-01
We develop and analyze a reaction-diffusion model to investigate the dynamics of the lifespan of a bystander signal emitted when cells are exposed to radiation. Experimental studies by Mothersill and Seymour 1997, using malignant epithelial cell lines, found that an emitted bystander signal can still cause bystander effects in cells even 60 h after its emission. Several other experiments have also shown that the signal can persist for months and even years. Also, bystander effects have been hypothesized as one of the factors responsible for the phenomenon of low-dose hyper-radiosensitivity and increased radioresistance (HRS/IRR). Here, we confirm this hypothesis with a mathematical model, which we fit to Joiner's data on HRS/IRR in a T98G glioma cell line. Furthermore, we use phase plane analysis to understand the full dynamics of the signal's lifespan. We find that both single and multiple radiation exposure can lead to bystander signals that either persist temporarily or permanently. We also found that, in an heterogeneous environment, the size of the domain exposed to radiation and the number of radiation exposures can determine whether a signal will persist temporarily or permanently. Finally, we use sensitivity analysis to identify those cell parameters that affect the signal's lifespan and the signal-induced cell death the most.
Energy Technology Data Exchange (ETDEWEB)
Sidek, S. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Medical Imaging Unit, Faculty of Medicine, Universiti Teknologi MARA, Selangor (Malaysia); Ramli, N. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Rahmat, K., E-mail: katt_xr2000@yahoo.com [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Ramli, N.M.; Abdulrahman, F. [Department of Ophthalmology, Faculty of Medicine, University Malaya, Kuala Lumpur (Malaysia); Tan, L.K. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia)
2014-08-15
Objectives: To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness. Methods: 3-Tesla DTI was performed on 90 subjects (30 normal, 30 mild glaucoma and 30 severe glaucoma subjects) and the FA and MD of the optic nerve and optic radiation were measured. The categorisation into mild and severe glaucoma was done using the Hodapp–Parrish–Anderson (HPA) classification. RNFL thickness was also assessed on all subjects using OCT. Receiver operating characteristic (ROC) analysis and Spearman's correlation coefficient was carried out. Results: FA and MD values in the optic nerve and optic radiation decreased and increased respectively as the disease progressed. FA at the optic nerve had the highest sensitivity (87%) and specificity (80%). FA values displayed the strongest correlation with RNFL thickness in the optic nerve (r = 0.684, p ≤ 0.001) while MD at the optic radiation showed the weakest correlation with RNFL thickness (r = −0.360, p ≤ 0.001). Conclusions: The high sensitivity and specificity of DTI-derived FA values in the optic nerve and the strong correlation between DTI-FA and RNFL thickness suggest that these parameters could serve as indicators of disease severity.
International Nuclear Information System (INIS)
Sidek, S.; Ramli, N.; Rahmat, K.; Ramli, N.M.; Abdulrahman, F.; Tan, L.K.
2014-01-01
Objectives: To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness. Methods: 3-Tesla DTI was performed on 90 subjects (30 normal, 30 mild glaucoma and 30 severe glaucoma subjects) and the FA and MD of the optic nerve and optic radiation were measured. The categorisation into mild and severe glaucoma was done using the Hodapp–Parrish–Anderson (HPA) classification. RNFL thickness was also assessed on all subjects using OCT. Receiver operating characteristic (ROC) analysis and Spearman's correlation coefficient was carried out. Results: FA and MD values in the optic nerve and optic radiation decreased and increased respectively as the disease progressed. FA at the optic nerve had the highest sensitivity (87%) and specificity (80%). FA values displayed the strongest correlation with RNFL thickness in the optic nerve (r = 0.684, p ≤ 0.001) while MD at the optic radiation showed the weakest correlation with RNFL thickness (r = −0.360, p ≤ 0.001). Conclusions: The high sensitivity and specificity of DTI-derived FA values in the optic nerve and the strong correlation between DTI-FA and RNFL thickness suggest that these parameters could serve as indicators of disease severity
Energy Technology Data Exchange (ETDEWEB)
Bostroem, J.P. [University of Bonn Medical Center, Department of Neurosurgery, Bonn (Germany); MediClin Robert Janker Clinic and MVZ MediClin, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); Seifert, M.; Greschus, S. [University of Bonn Medical Center, Department of Radiology, Bonn (Germany); Schaefer, N.; Herrlinger, U. [University of Bonn Medical Center, Division of Clinical Neurooncology, Department of Neurology, Bonn (Germany); Glas, M. [University of Bonn Medical Center, Division of Clinical Neurooncology, Department of Neurology, Bonn (Germany); University of Bonn Medical Center, Stem Cell Pathologies, Institute of Reconstructive Neurobiology, Bonn (Germany); MediClin Robert Janker Clinic, Clinical Cooperation Unit Neurooncology, Bonn (Germany); Lammering, G. [MediClin Robert Janker Clinic and MVZ MediClin, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); MediClin Robert Janker Clinic, Clinical Cooperation Unit Neurooncology, Bonn (Germany); Heinrich-Heine-University of Duesseldorf, Department of Radiotherapy and Radiation Oncology, Duesseldorf (Germany)
2014-04-15
Recently two retrospective cohort studies report efficacy of bevacizumab in patients with recurrent atypical and anaplastic meningioma. Another successful therapeutic option of bevacizumab seems to be treatment of cerebral radiation necrosis. However, the antiangiogenic effects in MRI diffusion and perfusion in meningiomas have not been previously described in detail. The objective of this research was to evaluate the clinical and MR imaging effects of bevacizumab in a malignant meningioma patient harboring additional cerebral radiation necrosis. We report the case of an 80-year-old woman who underwent bevacizumab therapy (5 mg/kg every 2 weeks for 2 months) for treatment of a symptomatic radiation necrosis in malignant meningiomatosis of World Health Organization (WHO) grade III. The patient was closely monitored with MRI including diffusion and perfusion studies. Upon bevacizumab therapy, the clinical situation was well stabilized over a period of 4 months until the patient unfortunately died due to pneumonia/septicemia probably unrelated to bevacizumab therapy. Consecutive MRI demonstrated 4 important aspects: (1) considerable decrease of the contrast medium (CM)-enhanced radiation necrosis, (2) mixed response with respect to the meningiomatosis with stable and predominantly growing tumor lesions, (3) a new diffusion-weighted imaging (DWI) lesion in a CM-enhanced tumor as described in gliomas, which we did not interpret as a response to bevacizumab therapy, and (4) new thrombembolic infarcts, which are a known side-effect of bevacizumab treatment. Bevacizumab is effective in the treatment of radiation necrosis. We could not confirm the potential antitumor effect of bevacizumab in this patient. However, we could describe several new radiographic effects of bevacizumab therapy in malignant meningioma. (orig.) [German] In zwei aktuellen retrospektiven Kohortenstudien konnte eine Wirksamkeit von Bevacizumab bei Patienten mit rezidivierenden atypischen und
Energy Technology Data Exchange (ETDEWEB)
Kudish, Avraham I.; Evseev, Efim G. [Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, E D Bergmann Campus, Beer Sheva 84105 (Israel)
2008-02-15
The measurement of the diffuse radiation incident on a horizontal surface, a priori a straightforward task, is fraught with difficulties. It is possible to measure the diffuse radiation by three different techniques: two of which measure it directly and the third indirectly. The most accurate is the indirect one, which is based upon the concurrent measurements of the horizontal global and the normal incidence beam radiation. The disadvantage of this being the relatively expensive tracking system required for measuring the latter. The diffuse radiation can be measured directly with a pyranometer outfitted with either an occulting disk or shadow ring, which prevent the beam radiation from impinging on the pyranometer sensor. The occulting disk can provide accurate measurements of the diffuse radiation but it requires a relatively expensive sun tracking system in the east-west axis. The shadow ring is a stationary device with regard to the east-west axis and blocks the beam radiation component by creating a permanent shadow on the pyranometer sensor. The major disadvantage of the shadow ring is that it also blocks that portion of the diffuse radiation obscured by the shadow ring. This introduces a measurement error that must be corrected to account for that portion of the sky obscured by the shadow band. In addition to this geometric correction factor there is a need to correct for anisotropic sky conditions. Four correction models have been applied to the data for Beer Sheva, Israel and the results have been evaluated both graphically and statistically. An attempt has been made to score the relative performance of the models under different sky conditions. (author)
Dong, Lixin; Kudrimoti, Mahesh; Cheng, Ran; Shang, Yu; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang
2012-01-01
This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements. PMID:22312579
International Nuclear Information System (INIS)
Muresan, Cristian; Vaillon, Rodolphe; Menezo, Christophe; Morlot, Rodolphe
2004-01-01
The coupled conductive radiative heat transfer in a two-layer slab with Fresnel interfaces subject to diffuse and obliquely collimated irradiation is solved. The collimated and diffuse components problems are treated separately. The solution for diffuse radiation is obtained by using a composite discrete ordinates method and includes the development of adaptive directional quadratures to overcome the difficulties usually encountered at the interfaces. The complete radiation numerical model is validated against the predictions obtained by using the Monte Carlo method
The evolution of Saturn's radiation belts modulated by changes in radial diffusion
Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.
2017-12-01
Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.
Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.
2013-11-01
We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.
Energy Technology Data Exchange (ETDEWEB)
Barnard, L., E-mail: lmbarnard@wisc.edu; Morgan, D., E-mail: ddmorgan@wisc.edu
2014-06-01
In this study, ab initio molecular dynamics, implemented via density functional theory, is used to simulate self-interstitial diffusion in pure Ni and in the Ni-18 at.% Cr model alloy. Interstitial tracer diffusivities are measured from simulation results for pure Ni and for both Ni and Cr in the Ni–18Cr alloy. An Arrhenius function fit to these tracer diffusivities is then used in a rate theory model for radiation induced segregation, along with the experimentally measured vacancy diffusivities. It is predicted that interstitial diffusion has a tendency to cause Cr enrichment near grain boundaries, partially counterbalancing the tendency for vacancy diffusion to cause Cr depletion. This results in more mild Cr depletion than would result if only the vacancy diffusion were accounted for, in better agreement with experiment. This physical description of RIS in Ni–Cr alloys, which invokes the effects of both vacancy and interstitial diffusion, is distinct from the conventional description which accounts only for the effect of vacancy diffusion.
International Nuclear Information System (INIS)
Barnard, L.; Morgan, D.
2014-01-01
In this study, ab initio molecular dynamics, implemented via density functional theory, is used to simulate self-interstitial diffusion in pure Ni and in the Ni-18 at.% Cr model alloy. Interstitial tracer diffusivities are measured from simulation results for pure Ni and for both Ni and Cr in the Ni–18Cr alloy. An Arrhenius function fit to these tracer diffusivities is then used in a rate theory model for radiation induced segregation, along with the experimentally measured vacancy diffusivities. It is predicted that interstitial diffusion has a tendency to cause Cr enrichment near grain boundaries, partially counterbalancing the tendency for vacancy diffusion to cause Cr depletion. This results in more mild Cr depletion than would result if only the vacancy diffusion were accounted for, in better agreement with experiment. This physical description of RIS in Ni–Cr alloys, which invokes the effects of both vacancy and interstitial diffusion, is distinct from the conventional description which accounts only for the effect of vacancy diffusion
Directory of Open Access Journals (Sweden)
Lavinia Laiti
2018-03-01
Full Text Available Accurate solar radiation estimates in Alpine areas represent a challenging task, because of the strong variability arising from orographic effects and mountain weather phenomena. These factors, together with the scarcity of observations in elevated areas, often cause large modelling uncertainties. In the present paper, estimates of hourly mean diffuse fraction values from global radiation data, provided by a number (13 of decomposition models (chosen among the most widely tested in the literature, are evaluated and compared with observations collected near the city of Bolzano, in the Adige Valley (Italian Alps. In addition, the physical factors influencing diffuse fraction values in such a complex orographic context are explored. The average accuracy of the models were found to be around 27% and 14% for diffuse and beam radiation respectively, the largest errors being observed under clear sky and partly cloudy conditions, respectively. The best performances were provided by the more complex models, i.e., those including a predictor specifically explaining the radiation components’ variability associated with scattered clouds. Yet, these models return non-negligible biases. In contrast, the local calibration of a single-equation logistical model with five predictors allows perfectly unbiased estimates, as accurate as those of the best-performing models (20% and 12% for diffuse and beam radiation, respectively, but at much smaller computational costs.
Energy Technology Data Exchange (ETDEWEB)
Lee, Su Ryong [Seoul National University of Technology, Seoul (Korea, Republic of)
2014-06-15
Nonlinear characteristics of cellular counterflow diffusion flame near the radiative extinction limit at large Damköhler number are numerically investigated. Lewis number is assumed to be 0.5 and flame evolution is calculated by imposing an infinitesimal disturbance to a one-dimensional(1-D) steady state flame. The early stage of nonlinear development is very similar to that predicted in a linear stability analysis. The disturbance with the wavenumber of the fastest growing mode emerges and grows gradually. Eventual, an alternating pattern of reacting and quenching stripes is developed. The cellular flame temperature is higher than that of 1-D flame because of the gain of the total enthalpy. As the Damköhler number is further increased, the shape of the cell becomes circular to increase the surface area per unit reacting volume. The cellular flames do not extinguish but survive even above the 1-D steady state extinction condition.
Diffusion and aggregation of subsurface radiation defects in lithium fluoride nanocrystals
Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Stupak, A. P.; Runets, L. P.
2015-09-01
Lithium fluoride nanocrystals were irradiated by gamma rays at a temperature below the temperature corresponding to the mobility of anion vacancies. The kinetics of the aggregation of radiation-induced defects in subsurface layers of nanocrystals during annealing after irradiation was elucidated. The processes that could be used to determine the activation energy of the diffusion of anion vacancies were revealed. The value of this energy in subsurface layers was obtained. For subsurface layers, the concentrations ratio of vacancies and defects consisting of one vacancy and two electrons was found. The factors responsible for the differences in the values of the activation energies and concentration ratios in subsurface layers and in the bulk of the crystals were discussed.
A synchrotron radiation study of nonlinear diffusion in Cu-Au
International Nuclear Information System (INIS)
Menon, E.S.K.; Huang, P.; Kraitchman, M.; deFontaine, D.; Hoyt, J.J.; Chow, P.
1992-01-01
This paper reports a study in which alternate layers of pure copper and gold were vapor deposited on a sodium chloride substrate, the average concentration of the films being Cu-16 at% Au and the layering periodicity (modulation wavelength) being 3.31 nm. The composition modulation gives rise to satellite diffraction peaks around the (200) Bragg reelections. Synchrotron radiation at SSRL was able to detect u to third order satellite intensity the evolution of which was measured as a function of annealing time at 515 K. although the first order satellite intensity decayed as expected exponentially with time, intensities of both second and third order satellites decreased very rapidly at first, then increased before decaying exponentially. These results are in conformity with theoretical models of satellite evolution during annealing in a one-dimensional modulated system governed by a nonlinear diffusion equation
Georgiev, G. T.; Butler, J. J.; Kowalewski, M. G.; Ding, L.
2012-01-01
Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensing
Ghose, Ranajeet; Fushman, David; Cowburn, David
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand.
Ghose, R; Fushman, D; Cowburn, D
2001-04-01
In this paper we present a method for determining the rotational diffusion tensor from NMR relaxation data using a combination of approximate and exact methods. The approximate method, which is computationally less intensive, computes values of the principal components of the diffusion tensor and estimates the Euler angles, which relate the principal axis frame of the diffusion tensor to the molecular frame. The approximate values of the principal components are then used as starting points for an exact calculation by a downhill simplex search for the principal components of the tensor over a grid of the space of Euler angles relating the diffusion tensor frame to the molecular frame. The search space of Euler angles is restricted using the tensor orientations calculated using the approximate method. The utility of this approach is demonstrated using both simulated and experimental relaxation data. A quality factor that determines the extent of the agreement between the measured and predicted relaxation data is provided. This approach is then used to estimate the relative orientation of SH3 and SH2 domains in the SH(32) dual-domain construct of Abelson kinase complexed with a consolidated ligand. Copyright 2001 Academic Press.
Directory of Open Access Journals (Sweden)
A. V. Artemyev
2013-04-01
Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.
Latitude variation of the diffuse component of the mean energy gamma radiation
International Nuclear Information System (INIS)
Espirito Santo, C.M. do.
1981-03-01
For determining the diffuse component of gamma ray in the 15 to 75 MeV range arriving from near the galactic center, a digitized spark chamber was launched aboard two balloons from Resende, Brazil on 19 November and 3 December 1975. In each flight the detector reached an altitude of 2,2 g.cm - 2 . Based on these data, we obtained a diffuse gamma ray flux 6,0 x 10 - 5 , 2,0 x 10 - 5 , 4,6 x 10 - 6 and 1,3 x 10 - 6 photons/cm 2 .s.sterad.MeV at energies of 21, 36, 52 and 67 MeV respectively. These values give a power law spectrum with spectral index equal to - 3,3. The dependence of this radiation with the galactic latitude and longitude in the interval - 5 0 0 and 325 0 0 was also obtained. Finally, results obtained were compared with other experimenters' results. (Author) [pt
International Nuclear Information System (INIS)
Sohn, Chae Hoon
2007-01-01
Extinction characteristics of hydrogen-air diffusion flames are investigated numerically by adopting counterflow flame configuration. At various pressures, effect of radiative heat loss on flame extinction is examined. Only gas-phase radiation is considered here. Radiative heat loss depends on flame thickness, temperature, H 2 O concentration, and pressure. From flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of H 2 O increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.
2014-04-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion
International Nuclear Information System (INIS)
Philip, B.; Wang, Z.; Berrill, M.A.; Birke, M.; Pernice, M.
2014-01-01
The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence
Kwan, Betty P.; O'Brien, T. Paul
2015-06-01
The Aerospace Corporation performed a study to determine whether static percentiles of AE9/AP9 can be used to approximate dynamic Monte Carlo runs for radiation analysis of spiral transfer orbits. Solar panel degradation is a major concern for solar-electric propulsion because solar-electric propulsion depends on the power output of the solar panel. Different spiral trajectories have different radiation environments that could lead to solar panel degradation. Because the spiral transfer orbits only last weeks to months, an average environment does not adequately address the possible transient enhancements of the radiation environment that must be accounted for in optimizing the transfer orbit trajectory. Therefore, to optimize the trajectory, an ensemble of Monte Carlo simulations of AE9/AP9 would normally be run for every spiral trajectory to determine the 95th percentile radiation environment. To avoid performing lengthy Monte Carlo dynamic simulations for every candidate spiral trajectory in the optimization, we found a static percentile that would be an accurate representation of the full Monte Carlo simulation for a representative set of spiral trajectories. For 3 LEO to GEO and 1 LEO to MEO trajectories, a static 90th percentile AP9 is a good approximation of the 95th percentile fluence with dynamics for 4-10 MeV protons, and a static 80th percentile AE9 is a good approximation of the 95th percentile fluence with dynamics for 0.5-2 MeV electrons. While the specific percentiles chosen cannot necessarily be used in general for other orbit trade studies, the concept of determining a static percentile as a quick approximation to a full Monte Carlo ensemble of simulations can likely be applied to other orbit trade studies. We expect the static percentile to depend on the region of space traversed, the mission duration, and the radiation effect considered.
Wang, Silun; Wu, Ed X; Qiu, Deqiang; Leung, Lucullus H T; Lau, Ho-Fai; Khong, Pek-Lan
2009-02-01
Radiation-induced white matter (WM) damage is a major side effect of whole brain irradiation among childhood cancer survivors. We evaluate longitudinally the diffusion characteristics of the late radiation-induced WM damage in a rat model after 25 and 30 Gy irradiation to the hemibrain at 8 time points from 2 to 48 weeks postradiation. We hypothesize that diffusion tensor magnetic resonance imaging (DTI) indices including fractional anisotropy (FA), trace, axial diffusivity (lambda(//)), and radial diffusivity (lambda( perpendicular)) can accurately detect and monitor the histopathologic changes of radiation-induced WM damage, measured at the EC, and that these changes are dose and time dependent. Results showed a progressive reduction of FA, which was driven by reduction in lambda(//) from 4 to 40 weeks postradiation, and an increase in lambda( perpendicular) with return to baseline in lambda(//) at 48 weeks postradiation. Histologic evaluation of irradiated WM showed reactive astrogliosis from 4 weeks postradiation with reversal at 36 weeks, and demyelination, axonal degeneration, and necrosis at 48 weeks postradiation. Moreover, changes in lambda(//) correlated with reactive astrogliosis (P histopathologic changes of WM damage and our results support the use of DTI as a biomarker to noninvasively monitor radiation-induced WM damage.
Philippens, M.E.P.; Gambarota, G.; Kogel, A.J. van der; Heerschap, A.
2009-01-01
PURPOSE: To prospectively determine whether apparent diffusion coefficients (ADCs) are more sensitive to radiation-induced changes in the rat spinal cord than T2 relaxation times. MATERIALS AND METHODS: The study was approved by the institutional ethical committee on animal welfare. One centimeter
Preliminary study of the optic radiation in healthy adults by MR diffusion tensor imaging
International Nuclear Information System (INIS)
Sun Jing; Guo Jing; Xu Han; Jiang Zhen; Xu Xiaoqiu; Shen Junkang; Liu Tao; Gong Zhigang
2009-01-01
Objective: To investigate the distribution of optic radiation fibers and the variation of Meyer loop in healthy adults. Methods: Diffusion tensor magnetic resonance images were obtained from 25 healthy volunteers using a 1.5 T MR scanner and postprocessed using the DTI Studio software. Multiple ROIs were used for fiber reconstruction. The distance between the anterior limit of Meyer loop and the temporal tip(MT) and the fraction of anisotropy (FA) at one side were compared with those at the contralateral side by paired t test. Results: Forty-nine optic radiation fibers were successfully reconstructed in 25 volunteers. The value of MT was (43.2±7.7) mm(ranged from 30.6 to 59.7 mm), and coefficient of variation was 18%. The values of MT and FA of optic radiation in the left side were (43.5±8.1) mm, (0.53±0.10) respectively, and those counterparts in the right side were (43.2±7.5) mm and (0.53± 0.07) respectively. There were no significance difference of MT or FA between the two sides (t=0.12, 0.00; P=0.91 and 1.00 respectively). Conclusions: The range of interindividual variation for MT was rather large in healthy volunteers. The preoperative measurement of the MT appears be helpful to predict the risk of the incidence of visual defect and to decrease the incidence of the complication. (authors)
Empirical constraints on the effects of radiation damage on helium diffusion in zircon
Anderson, Alyssa J.; Hodges, Kip V.; van Soest, Matthijs C.
2017-12-01
In this study, we empirically evaluate the impact of radiation damage on zircon (U-Th)/He closure temperatures for a suite of zircon crystals from the slowly cooled McClure Mountain syenite of south-central Colorado, USA. We present new zircon, titanite, and apatite conventional (U-Th)/He dates, zircon laser ablation (U-Th)/He and U-Pb dates, and zircon Raman spectra for crystals from the syenite. Titanite and apatite (U-Th)/He dates range from 447 to 523 Ma and 88.0 to 138.9 Ma, respectively, and display no clear correlation between (U-Th)/He date and effective uranium concentration. Conventional zircon (U-Th)/He dates range from 230.3 to 474 Ma, while laser ablation zircon (U-Th)/He dates show even greater dispersion, ranging from 5.31 to 520 Ma. Dates from both zircon (U-Th)/He datasets decrease with increasing alpha dose, indicating that most of the dispersion can be attributed to radiation damage. Alpha dose values for the dated zircon crystals range from effectively zero to 2.15 × 1019 α /g, spanning the complete damage spectrum. We use an independently constrained thermal model to empirically assign a closure temperature to each dated zircon grain. If we assume that this thermal model is robust, the zircon radiation damage accumulation and annealing model of Guenthner et al. (2013) does not accurately predict closure temperatures for many of the analyzed zircon crystals. Raman maps of the zircons dated by laser ablation document complex radiation damage zoning, sometimes revealing crystalline zones in grains with alpha dose values suggestive of amorphous material. Such zoning likely resulted in heterogeneous intra-crystalline helium diffusion and may help explain some of the discrepancies between our empirical findings and the Guenthner et al. (2013) model predictions. Because U-Th zoning is a common feature in zircon, radiation damage zoning is likely to be a concern for most ancient, slowly cooled zircon (U-Th)/He datasets. Whenever possible, multiple
International Nuclear Information System (INIS)
Nagesh, Vijaya; Tsien, Christina I.; Chenevert, Thomas L.; Ross, Brian D.; Lawrence, Theodore S.; Junick, Larry; Cao Yue
2008-01-01
Purpose: To quantify the radiation-induced changes in normal-appearing white matter before, during, and after radiotherapy (RT) in cerebral tumor patients. Methods and Materials: Twenty-five patients with low-grade glioma, high-grade glioma, or benign tumor treated with RT were studied using diffusion tensor magnetic resonance imaging. The biologically corrected doses ranged from 50 to 81 Gy. The temporal changes were assessed before, during, and to 45 weeks after the start of RT. The mean diffusivity of water ( ), fractional anisotropy of diffusion, diffusivity perpendicular (λ perpendicular ) and parallel (λ parallel ) to white matter fibers were calculated in normal-appearing genu and splenium of the corpus callosum. Results: In the genu and splenium, fractional anisotropy decreased and , λ parallel , λ -perpendicular increased linearly and significantly with time (p -perpendicular had increased ∼30% in the genu and splenium, and λ parallel had increased 5% in the genu and 9% in the splenium, suggesting that demyelination is predominant. The increases in λ perpendicular and λ parallel were dose dependent, starting at 3 weeks and continuing to 32 weeks from the start of RT. The dose-dependent increase in λ perpendicular and λ parallel was not sustained after 32 weeks, indicating the transition from focal to diffuse effects. Conclusion: The acute and subacute changes in normal-appearing white matter fibers indicate radiation-induced demyelination and mild structural degradation of axonal fibers. The structural changes after RT are progressive, with early dose-dependent demyelination and subsequent diffuse dose-independent demyelination and mild axonal degradation. Diffusion tensor magnetic resonance imaging is potentially a biomarker for the assessment of radiation-induced white matter injury
International Nuclear Information System (INIS)
Meszaros, P.; Nagel, W.; Ventura, J.
1979-11-01
Theoretical studies of the radiation from hot, strongly magnetized plasmas, as encountered in pulsars, require a knowledge of solutions to the transfer equations for polarized radiation. We present here an analytic solution of the radiative transfer equations for one-dimensional propagation across a homogeneous slab of finite depth, as well as for a semi-infinite atmosphere. Absorption, scattering and mode-exchange between the two polarizations is included, the role of this latter being crucial. A physical discussion of the solutions for certain limiting cases, and an interpretation in terms of probabilistic (quantum escape approach) arguments, fully corrobrates these solutions, and provides a better intuitive feel for the behaviour of the radiated spectra. Whereas our analytic solutions are valid for any birefringent medium (not necessarily magnetic), our numerical examples and the qualitative discussion presented refer to the particular problem of the radiation from X-ray pulsars. Large scale qualitative changes from the nonmagnetic spectra aae found, which affect both the continum and the spectral lines. (orig.) 891 WL/orig. 892 RDG
Emissivity of discretized diffusion problems
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.
2006-01-01
The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition
Directory of Open Access Journals (Sweden)
Tao eLi
2016-02-01
Full Text Available The stimulating effect of diffuse light on radiation use efficiency (RUE of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD.Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’ were grown in two glasshouses covered by clear (control and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs varied strongly in response to transient PPFD in ‘Royal Champion’, whereas it remained relatively constant in ‘Pink Champion’. Instantaneous net leaf photosynthesis (Pn in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion’. These cultivar differences were reflected by a higher RUE (8% in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion’. We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.
International Nuclear Information System (INIS)
Singh, A.V.; Yu, M.; Gupta, A.K.; Bryden, K.M.
2013-01-01
Highlights: • Acoustic spectral characteristics independent of equivalence ratio and flow velocity. • Combustion noise dependent on global equivalence ratio and flow velocity. • Increased global equivalence ratio decreased the frequency of peak. • Decay and growth coefficients largely independent of different flow conditions. • Acoustic radiation coherent up to 1.5 kHz for spatially separated microphones. - Abstract: Next generation of combustors are expected to provide significant improvement on efficiency and reduced pollutants emission. In such combustors, the challenges of local flow, pressure, chemical composition and thermal signatures as well as their interactions will require detailed investigation for seeking optimum performance. Sensor networks with a large number of sensors will be employed in future smart combustors, which will allow one to obtain fast and comprehensive information on the various ongoing processes within the system. In this paper sensor networks with specific focus on an array of homogeneous microphones are used examine the spectral characteristics of combustion noise from a non-premixed combustor. A non-premixed double concentric swirl-flame burner was used. Noise spectra were determined experimentally for the non-premixed swirl flame at various fuel–air ratios using an array of homogeneous condenser microphones. Multiple microphones positioned at discrete locations around the turbulent diffusion flame, provided an understanding of the total sound power and their spectral characteristics. The growth and decay coefficients of total sound power were investigated at different test conditions. The signal coherence between different microphone pairs was also carried out to determine the acoustic behavior of a swirl stabilized turbulent diffusion flame. The localization of acoustic sources from the multiple microphones was examined using the noise spectra. The results revealed that integration of multiple sensors in combustors
Teh, Irvin; McClymont, Darryl; Zdora, Marie-Christine; Whittington, Hannah J; Davidoiu, Valentina; Lee, Jack; Lygate, Craig A; Rau, Christoph; Zanette, Irene; Schneider, Jürgen E
2017-03-10
Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HA DTI-STSRI = -1.4° ± 23.2° and TA DTI-STSRI = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical
Energy Technology Data Exchange (ETDEWEB)
Lisenko, S A; Kugeiko, M M [Belarusian State University, Minsk (Belarus)
2014-03-28
Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body. (biophotonics)
Lisenko, S. A.; Kugeiko, M. M.
2014-03-01
Approximating expressions are derived to calculate spectral and spatial characteristics of diffuse reflection of light from a two-layer medium mimicking human skin. The effectiveness of the use of these expressions in the optical diagnosis of skin biophysical parameters (tissue scattering parameters, concentration of melanin in the epidermis, concentration of total haemoglobin and bilirubin in the tissues of the dermis) and content of haemoglobin derivatives in blood (oxy-, deoxy-, met-, carboxy- and sulfhaemoglobin) is analysed numerically. The methods are proposed to determine in realtime these parameters without contact of the measuring instrument with the patient's body.
Czech Academy of Sciences Publication Activity Database
Heinzel, Petr; Gunár, S.; Anzer, U.
2015-01-01
Roč. 579, July (2015), A16/1-A16/6 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0906 EU Projects: European Commission(XE) 328138 Institutional support: RVO:67985815 Keywords : radiative transfer * Sun * filaments Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014
International Nuclear Information System (INIS)
Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.
2015-01-01
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light
Vrućinić, Milan; Matthiesen, Clemens; Sadhanala, Aditya; Divitini, Giorgio; Cacovich, Stefania; Dutton, Sian E; Ducati, Caterina; Atatüre, Mete; Snaith, Henry; Friend, Richard H; Sirringhaus, Henning; Deschler, Felix
2015-09-01
Radiative recombination in thin films of the archetypical, high-performing perovskites CH 3 NH 3 PbBr 3 and CH 3 NH 3 PbI 3 shows localized regions of increased emission with dimensions ≈500 nm. Maps of the spectral emission line shape show narrower emission lines in high emission regions, which can be attributed to increased order. Excited states do not diffuse out of high emission regions before they decay, but are decoupled from nearby regions, either by slow diffusion rates or energetic barriers.
Anisotropy of self-diffusion and α-zirconium radiation growth problems
International Nuclear Information System (INIS)
Smirnov, E.A.; Subbotin, A.V.
1996-01-01
Temperature dependence of α-zirconium seft-diffusion anisotropy coefficients is obtained within the framework of linear extrapolation of self-diffusion anisotropy characteristics for metal HCP with c/a ration of [ru
Energy Technology Data Exchange (ETDEWEB)
Wang, C.; Abdel-Khalik, H. S. [Dept. of Nuclear Engineering, North Caroline State Univ., Raleigh, NC 27695 (United States)
2012-07-01
The construction of surrogate models for high fidelity models is now considered an important objective in support of all engineering activities which require repeated execution of the simulation, such as verification studies, validation exercises, and uncertainty quantification. The surrogate must be computationally inexpensive to allow its repeated execution, and must be computationally accurate in order for its predictions to be credible. This manuscript introduces a new surrogate construction approach that reduces the dimensionality of the state solution via a range-finding algorithm from linear algebra. It then employs a proper orthogonal decomposition-like approach to solve for the reduced state. The algorithm provides an upper bound on the error resulting from the reduction. Different from the state-of-the-art, the new approach allows the user to define the desired accuracy a priori which controls the maximum allowable reduction. We demonstrate the utility of this approach using an eigenvalue radiation diffusion model, where the accuracy is selected to match machine precision. Results indicate that significant reduction is possible for typical reactor assembly models, which are currently considered expensive given the need to employ very fine mesh many group calculations to ensure the highest possible fidelity for the downstream core calculations. Given the potential for significant reduction in the computational cost, we believe it is possible to rethink the manner in which homogenization theory is currently employed in reactor design calculations. (authors)
Dayan, Michael; Munoz, Monica; Jentschke, Sebastian; Chadwick, Martin J; Cooper, Janine M; Riney, Kate; Vargha-Khadem, Faraneh; Clark, Chris A
2015-01-01
The optic radiation (OR) is a component of the visual system known to be myelin mature very early in life. Diffusion tensor imaging (DTI) and its unique ability to reconstruct the OR in vivo were used to study structural maturation through analysis of DTI metrics in a cohort of 90 children aged 5-18 years. As the OR is at risk of damage during epilepsy surgery, we measured its position relative to characteristic anatomical landmarks. Anatomical distances, DTI metrics and volume of the OR were investigated for age, gender and hemisphere effects. We observed changes in DTI metrics with age comparable to known trajectories in other white matter tracts. Left lateralization of DTI metrics was observed that showed a gender effect in lateralization. Sexual dimorphism of DTI metrics in the right hemisphere was also found. With respect to OR dimensions, volume was shown to be right lateralised and sexual dimorphism demonstrated for the extent of the left OR. The anatomical results presented for the OR have potentially important applications for neurosurgical planning.
Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback
Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas
2018-05-01
The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.
Baek, Sunghye
2017-07-01
For more efficient and accurate computation of radiative flux, improvements have been achieved in two aspects, integration of the radiative transfer equation over space and angle. First, the treatment of the Monte Carlo-independent column approximation (MCICA) is modified focusing on efficiency using a reduced number of random samples ("G-packed") within a reconstructed and unified radiation package. The original McICA takes 20% of CPU time of radiation in the Global/Regional Integrated Model systems (GRIMs). The CPU time consumption of McICA is reduced by 70% without compromising accuracy. Second, parameterizations of shortwave two-stream approximations are revised to reduce errors with respect to the 16-stream discrete ordinate method. Delta-scaled two-stream approximation (TSA) is almost unanimously used in Global Circulation Model (GCM) but contains systematic errors which overestimate forward peak scattering as solar elevation decreases. These errors are alleviated by adjusting the parameterizations of each scattering element—aerosol, liquid, ice and snow cloud particles. Parameterizations are determined with 20,129 atmospheric columns of the GRIMs data and tested with 13,422 independent data columns. The result shows that the root-mean-square error (RMSE) over the all atmospheric layers is decreased by 39% on average without significant increase in computational time. Revised TSA developed and validated with a separate one-dimensional model is mounted on GRIMs for mid-term numerical weather forecasting. Monthly averaged global forecast skill scores are unchanged with revised TSA but the temperature at lower levels of the atmosphere (pressure ≥ 700 hPa) is slightly increased (< 0.5 K) with corrected atmospheric absorption.
Directory of Open Access Journals (Sweden)
K. V. Dobrego
2015-01-01
Full Text Available Differential approximation is derived from radiation transfer equation by averaging over the solid angle. It is one of the more effective methods for engineering calculations of radia- tive heat transfer in complex three-dimensional thermal power systems with selective and scattering media. The new method for improvement of accuracy of the differential approximation based on using of auto-adaptable boundary conditions is introduced in the paper. The efficiency of the named method is proved for the test 2D-systems. Self-consistent auto-adaptable boundary conditions taking into consideration the nonorthogonal component of the incident to the boundary radiation flux are formulated. It is demonstrated that taking in- to consideration of the non- orthogonal incident flux in multi-dimensional systems, such as furnaces, boilers, combustion chambers improves the accuracy of the radiant flux simulations and to more extend in the zones adjacent to the edges of the chamber.Test simulations utilizing the differential approximation method with traditional boundary conditions, new self-consistent boundary conditions and “precise” discrete ordinates method were performed. The mean square errors of the resulting radiative fluxes calculated along the boundary of rectangular and triangular test areas were decreased 1.5–2 times by using auto- adaptable boundary conditions. Radiation flux gaps in the corner points of non-symmetric sys- tems are revealed by using auto-adaptable boundary conditions which can not be obtained by using the conventional boundary conditions.
International Nuclear Information System (INIS)
Maurente, André; França, Francis H.R.; Miki, Kenji; Howell, John R.
2012-01-01
Approximations for joint cumulative k-distribution for mixtures are efficient for full spectrum k-distribution (FSK) computations. These approximations provide reduction of the database that is necessary to perform FSK computation when compared to the direct approach, which uses cumulative k-distributions computed from the spectrum of the mixture, and also less computational expensive when compared to techniques in which RTE's are required to be solved for each component of the mixture. The aim of the present paper is to extend the approximations for joint cumulative k-distributions for non-LTE media. For doing that, a FSK to non-LTE media formulation well-suited to be applied along with approximations for joint cumulative k-distributions is presented. The application of the proposed methodology is demonstrated by solving the radiation heat transfer in non-LTE high temperature plasmas composed of N, O, N 2 , NO, N 2 + and mixtures of these species. The two more efficient approximations, that is, the superposition and multiplication are employed and analyzed.
International Nuclear Information System (INIS)
Lane, Taylor K; McClarren, Ryan G
2013-01-01
This work presents semi-analytic solutions to a radiation-hydrodynamics problem of a radiation source driving an initially cold medium. Our solutions are in the equilibrium diffusion limit, include material motion and allow for radiation-dominated situations where the radiation energy is comparable to (or greater than) the material internal energy density. As such, this work is a generalization of the classical Marshak wave problem that assumes no material motion and that the radiation energy is negligible. Including radiation energy density in the model serves to slow down the wave propagation. The solutions provide insight into the impact of radiation energy and material motion, as well as present a novel verification test for radiation transport packages. As a verification test, the solution exercises the radiation–matter coupling terms and their v/c treatment without needing a hydrodynamics solve. An example comparison between the self-similar solution and a numerical code is given. Tables of the self-similar solutions are also provided. (paper)
Energy Technology Data Exchange (ETDEWEB)
Pipon, Yves [Ecole doctorale de physique et d' astrophysique, Universite Claude Bernard Lyon-I, Lyon (France)
2006-12-15
This work concerns the study of the thermal and radiation enhanced diffusion of {sup 36}Cl in uranium dioxide. It is a contribution to PRECCI programme (research programme on the long-term behaviour of the spent nuclear fuel). {sup 36}Cl is a long lived volatile activation product (T = 300 000 years) able to contribute significantly to the instant release fraction in geological disposal conditions. We simulated the presence of {sup 36}Cl by implanting a quantity of {sup 37}Cl comparable to the impurity content of chlorine in UO{sub 2}. In order to evaluate the diffusion properties of chlorine in the fuel and in particular to assess the influence of the irradiation defects, we performed two kinds of experiments: - the influence of the temperature was studied by carrying out thermal annealings in the temperature range 900 - 1300 deg. C; we showed that implanted chlorine was mobile from temperatures as low as 1000 deg. C and determined a thermal diffusion coefficient D{sub 1000} {sub deg.} {sub C} around 10{sup -16} cm{sup 2}s{sup -1} and deduced an activation energy of 4.3 eV. This value is one of lowest compared to that of volatile fission products such as iodine or the xenon. These parameters reflect the very mobile behaviour of chlorine; - the irradiation effects induced by fission products were studied by irradiating the samples with {sup 127}I (energy of 63.5 MeV). We showed that the implanted chlorine diffusion in the temperature range 30 - 250 deg. C is not purely athermal. In these conditions, the diffusion coefficient D{sub 250} {sub deg.} {sub C} for the implanted chlorine is around 10{sup -14} cm{sup 2}s{sup -1} and the activation energy is calculated to be 0.1 eV. Moreover, at 250 deg. C, we observed an important transport of the pristine chlorine from the bulk towards the surface. This chlorine comes from a zone where the defects are mainly produced by the nuclear energy loss process at the end of iodine range. We showed the importance of the
Peltier, Johann; Verclytte, Sébastien; Delmaire, Christine; Deramond, Hervé; Pruvo, Jean-Pierre; Le Gars, Daniel; Godefroy, Olivier
2010-03-01
In the current literature, there is a lack of a detailed map of the origin, course, and connections of the ventral callosal radiations of the human brain. The authors used an older dissection technique based on a freezing process as well as diffusion tensor imaging to investigate this area of the human brain. The authors demonstrated interconnections between areas 11, 12, and 25 for the callosal radiations of the trunk and rostrum of the corpus callosum; between areas 9, 10, and 32 for the genu; and between areas 6, 8, and 9 for the ventral third of the body. The authors identified new ventral callosal connections crossing the rostrum between both temporal poles and coursing within the temporal stem, and they named these connections the "callosal radiations of Peltier." They found that the breadth of the callosal radiations slightly increases along their course from the rostrum to the first third of the body of the corpus callosum. The fiber dissection and diffusion tensor imaging techniques are complementary not only in their application to the study of the commissural system in the human brain, but also in their practical use for diagnosis and surgical planning. Further investigations, neurocognitive tests, and other contributions will permit elucidation of the functional relevance of the newly identified callosal radiations in patients with disease involving the ventral corpus callosum.
International Nuclear Information System (INIS)
Malinenko, I.A.; Perelygina, E.A.; Chudinova, S.A.; Shivrin, O.N.
1979-01-01
The method of X-ray diffusion scattering was used to study the defective structure of germanium monocrystals exposed to 750 keV proton irradiation with 3.8x10 16 -4.6x10 17 cm -2 doses and subjected to the subsequent annealing at temperatures up to 450 deg C. Detected in the crystals were the complex radiation induced structure characterized with oriented vacancy complexes and results from the both effects: irradiation and annealing. Radiation defect sizes in the section (hhO) have been determined. With increasing the annealing temperature the structure reconstruction resulting in the complex dissociation is observed
Energy Technology Data Exchange (ETDEWEB)
Jin, Shi, E-mail: sjin@wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Hanqing, E-mail: hanqing@math.wisc.edu [Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2017-04-01
In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (in the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.
International Nuclear Information System (INIS)
Brown, Peter N.; Shumaker, Dana E.; Woodward, Carol S.
2005-01-01
We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton-Krylov nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time integration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated opacities and highly nonlinear fusion source terms
Energy Technology Data Exchange (ETDEWEB)
Baksht, E Kh; Burachenko, A G; Lomaev, M I; Panchenko, A N; Tarasenko, V F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)
2015-04-30
An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)
Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.
2015-04-01
An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.
Johnston, Michael B; Herz, Laura M
2016-01-19
values extracted from OPTP measurements and their dependence on perovskite composition and morphology. The significance of the reviewed charge-carrier recombination and mobility parameters is subsequently evaluated in terms of the charge-carrier diffusion lengths and radiative efficiencies that may be obtained for such hybrid perovskites. We particularly focus on calculating such quantities in the limit of ultra-low trap-related recombination, which has not yet been demonstrated but could be reached through further advances in material processing. We find that for thin films of hybrid lead iodide perovskites with typical charge-carrier mobilities of ∼30cm(2)/(V s), charge-carrier diffusion lengths at solar (AM1.5) irradiation are unlikely to exceed ∼10 μm even if all trap-related recombination is eliminated. We further examine the radiative efficiency for hybrid lead halide perovskite films and show that if high efficiencies are to be obtained for intermediate charge-carrier densities (n ≈ 10(14) cm(-3)) trap-related recombination lifetimes will have to be enhanced well into the microsecond range.
International Nuclear Information System (INIS)
Bortolini, Marco; Gamberi, Mauro; Graziani, Alessandro; Manzini, Riccardo; Mora, Cristina
2013-01-01
Highlights: ► A multi-location model to estimate solar radiation components is proposed. ► Proposed model joins solar radiation data from several weather stations. ► Clearness index is correlated to the diffuse component through analytic functions. ► Third degree polynomial function best fits data for annual and seasonal scenarios. ► A quality control procedure and independent datasets strength model performances. - Abstract: Hourly and daily solar radiation data are crucial for the design of energy systems based on the solar source. Global irradiance, measured on the horizontal plane, is, generally, available from weather station databases. The direct and diffuse fractions are measured rarely and should be analytically calculated for many geographical locations. Aim of this paper is to present a multi-location model to estimate the expected profiles of the horizontal daily diffuse component of solar radiation. It focuses on the European (EU) geographical area joining data from 44 weather stations located in 11 countries. Data are collected by the World Radiation Data Centre (WRDC) between 2004 and 2007. Different analytic functions, correlating the daily diffuse fraction of solar radiation to the clearness index, are calculated and compared to outline the analytic expressions of the best fitting curves. The effect of seasonality on solar irradiance is considered developing summer and winter scenarios together with annual models. Similarities among the trends for the 4 years are, further, discussed. The most adopted statistical indices are used as key performance factors. Finally, data from three locations not included in the dataset considered for model development allow to test the proposed approach against an independent dataset. Obtained results show the effectiveness of adopting a multi-location approach to estimate solar radiation components on the horizontal surface instead of developing several single location models. This is due to the increase
International Nuclear Information System (INIS)
Epp, E.R.; Ling, C.C.; Weiss, H.
1976-01-01
This paper discusses advances made on both experimental and theoretical approaches involving single and double pulses of high intensity ionizing radiation delivered to cultured bacterial and mammalian cells where the effect of oxygen is concerned. Information gained on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and perhaps intimately related to the still unknown mechanisms of oxygen sensitization is described. The diffusion characteristics of oxygen at the cellular level obtained from experimental data are discussed. Current knowledge on intracellular radiolytic oxygen depletion is also presented. Future work on the use of high intensity pulsed radiation as a tool in cellular radiobiological research is outlined. It is expected that obtaining knowledge of the time available for damaged molecules to enter into chemical reactions may lead to insights into the mechanisms of radiation injury in cells, such as those involved in the oxygen effect. (Auth.)
Directory of Open Access Journals (Sweden)
Nguyen Xuan Tien
2016-09-01
Full Text Available This paper proposes a novel concentrator photovoltaic (CPV system with improved irradiation uniformity and system efficiency. CPV technology is very promising its for highly efficient solar energy conversion. A conventional CPV system usually uses only one optical component, such as a refractive Fresnel lens or a reflective parabolic dish, to collect and concentrate solar radiation on the solar cell surface. Such a system creates strongly non-uniform irradiation distribution on the solar cell, which tends to cause hot spots, current mismatch, and degrades the overall efficiency of the system. Additionally, a high-concentration CPV system is unable to collect diffuse solar radiation. In this paper, we propose a novel CPV system with improved irradiation uniformity and collection of diffuse solar radiation. The proposed system uses a Fresnel lens as a primary optical element (POE to concentrate and focus the sunlight and a plano-concave lens as a secondary optical element (SOE to uniformly distribute the sunlight over the surface of multi-junction (MJ solar cells. By using the SOE, the irradiance uniformity is significantly improved in the system. Additionally, the proposed system also captures diffuse solar radiation by using an additional low-cost solar cell surrounding MJ cells. In our system, incident direct solar radiation is captured by MJ solar cells, whereas incident diffuse solar radiation is captured by the low-cost solar cell. Simulation models were developed using a commercial optical simulation tool (LightTools™. The irradiance uniformity and efficiency of the proposed CPV system were analyzed, evaluated, and compared with those of conventional CPV systems. The analyzed and simulated results show that the CPV system significantly improves the irradiance uniformity as well as the system efficiency compared to the conventional CPV systems. Numerically, for our simulation models, the designed CPV with the SOE and low-cost cell provided
Directory of Open Access Journals (Sweden)
John H. Summerfield
2015-01-01
Full Text Available This work investigates a one-dimensional model for the solid-state diffusion in a LiC6/LiMnO2 rechargeable cell. This cell is used in hybrid electric vehicles. In this environment the cell experiences low frequency electrical pulses that degrade the electrodes. The model’s starting point is Fick’s second law of diffusion. The Laplace transform is used to move from time as the independent variable to frequency as the independent variable. To better understand the effect of frequency changes on the cell, a transfer function is constructed. The transfer function is a transcendental function so a Padé approximant is found to better describe the model at the origin. Consider ∂c(r,t/∂t=D∂2c(r/∂2r+(2/r(∂c(r/∂r.
Dadgar, Sina; Rodríguez Troncoso, Joel; Rajaram, Narasimhan
2018-02-01
Currently, anatomical assessment of tumor volume performed several weeks after completion of treatment is the clinical standard to determine whether a cancer patient has responded to a treatment. However, functional changes within the tumor could potentially provide information regarding treatment resistance or response much earlier than anatomical changes. We have used diffuse reflectance spectroscopy to assess the short and long-term re-oxygenation kinetics of a human head and neck squamous cell carcinoma xenografts in response to radiation therapy. First, we injected UM-SCC-22B cell line into the flank of 50 mice to grow xenografts. Once the tumor volume reached 200 mm3 (designated as Day 1), the mice were distributed into radiation and control groups. Members of radiation group underwent a clinical dose of radiation of 2 Gy/day on Days 1, 4, 7, and 10 for a cumulative dose of 8 Gy. DRS spectra of these tumors were collected for 14 days during and after therapy, and the collected spectra of each tumor were converted to its optical properties using a lookup table-base inverse model. We found statistically significant differences in tumor growth rate between two groups which is in indication of the sensitivity of this cell line to radiation. We further acquired significantly different contents of hemoglobin and scattering magnitude and size in two groups. The scattering has previously been associated with necrosis. We furthermore found significantly different time-dependent changes in vascular oxygenation and tumor hemoglobin concentration in post-radiation days.
Benefit of Consolidative Radiation Therapy for Primary Bone Diffuse Large B-Cell Lymphoma
Energy Technology Data Exchange (ETDEWEB)
Tao, Randa; Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rodriguez, Alma [Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Shihadeh, Ferial; Pinnix, Chelsea C.; Arzu, Isadora; Reed, Valerie K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Oki, Yasuhiro; Westin, Jason R.; Fayad, Luis E.; Medeiros, L. Jeffrey [Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dabaja, Bouthaina, E-mail: bdabaja@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)
2015-05-01
Purpose: Outcomes for patients with diffuse large B-cell lymphoma (DLBCL) differ according to the site of presentation. With effective chemotherapy, the need for consolidative radiation therapy (RT) is controversial. We investigated the influence of primary bone presentation and receipt of consolidative RT on progression-free survival (PFS) and overall survival (OS) in patients with DLBCL. Methods and Materials: We identified 102 patients with primary bone DLBCL treated consecutively from 1988 through 2013 and extracted clinical, pathologic, and treatment characteristics from the medical records. Survival outcomes were calculated by the Kaplan-Meier method, with factors affecting survival determined by log-rank tests. Univariate and multivariate analyses were done with a Cox regression model. Results: The median age was 55 years (range, 16-87 years). The most common site of presentation was in the long bones. Sixty-five patients (63%) received R-CHOP–based chemotherapy, and 74 (72%) received rituximab. RT was given to 67 patients (66%), 47 with stage I to II and 20 with stage III to IV disease. The median RT dose was 44 Gy (range, 24.5-50 Gy). At a median follow-up time of 82 months, the 5-year PFS and OS rates were 80% and 82%, respectively. Receipt of RT was associated with improved 5-year PFS (88% RT vs 63% no RT, P=.0069) and OS (91% vs 68%, P=.0064). On multivariate analysis, the addition of RT significantly improved PFS (hazard ratio [HR] = 0.14, P=.014) with a trend toward an OS benefit (HR=0.30, P=.053). No significant difference in PFS or OS was found between patients treated with 30 to 35 Gy versus ≥36 Gy (P=.71 PFS and P=.31 OS). Conclusion: Patients with primary bone lymphoma treated with standard chemotherapy followed by RT can have excellent outcomes. The use of consolidative RT was associated with significant benefits in both PFS and OS.
Benefit of Consolidative Radiation Therapy for Primary Bone Diffuse Large B-Cell Lymphoma
International Nuclear Information System (INIS)
Tao, Randa; Allen, Pamela K.; Rodriguez, Alma; Shihadeh, Ferial; Pinnix, Chelsea C.; Arzu, Isadora; Reed, Valerie K.; Oki, Yasuhiro; Westin, Jason R.; Fayad, Luis E.; Medeiros, L. Jeffrey; Dabaja, Bouthaina
2015-01-01
Purpose: Outcomes for patients with diffuse large B-cell lymphoma (DLBCL) differ according to the site of presentation. With effective chemotherapy, the need for consolidative radiation therapy (RT) is controversial. We investigated the influence of primary bone presentation and receipt of consolidative RT on progression-free survival (PFS) and overall survival (OS) in patients with DLBCL. Methods and Materials: We identified 102 patients with primary bone DLBCL treated consecutively from 1988 through 2013 and extracted clinical, pathologic, and treatment characteristics from the medical records. Survival outcomes were calculated by the Kaplan-Meier method, with factors affecting survival determined by log-rank tests. Univariate and multivariate analyses were done with a Cox regression model. Results: The median age was 55 years (range, 16-87 years). The most common site of presentation was in the long bones. Sixty-five patients (63%) received R-CHOP–based chemotherapy, and 74 (72%) received rituximab. RT was given to 67 patients (66%), 47 with stage I to II and 20 with stage III to IV disease. The median RT dose was 44 Gy (range, 24.5-50 Gy). At a median follow-up time of 82 months, the 5-year PFS and OS rates were 80% and 82%, respectively. Receipt of RT was associated with improved 5-year PFS (88% RT vs 63% no RT, P=.0069) and OS (91% vs 68%, P=.0064). On multivariate analysis, the addition of RT significantly improved PFS (hazard ratio [HR] = 0.14, P=.014) with a trend toward an OS benefit (HR=0.30, P=.053). No significant difference in PFS or OS was found between patients treated with 30 to 35 Gy versus ≥36 Gy (P=.71 PFS and P=.31 OS). Conclusion: Patients with primary bone lymphoma treated with standard chemotherapy followed by RT can have excellent outcomes. The use of consolidative RT was associated with significant benefits in both PFS and OS
International Nuclear Information System (INIS)
Plante, Ianik; Devroye, Luc
2015-01-01
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well
Energy Technology Data Exchange (ETDEWEB)
Plante, Ianik, E-mail: ianik.plante-1@nasa.gov [Wyle Science, Technology & Engineering, 1290 Hercules, Houston, TX 77058 (United States); Devroye, Luc, E-mail: lucdevroye@gmail.com [School of Computer Science, McGill University, 3480 University Street, Montreal H3A 0E9 (Canada)
2015-09-15
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.
Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.
2016-01-01
The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc; Kanschat, Guido; Ragusa, Jean C.
2013-01-01
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc
2013-10-11
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
Spitters, C.J.T.
1986-01-01
In a preceding paper, a method was presented to estimate the diurnal courses of total, direct and diffuse radiation from total daily radiation only. In the present paper, these relations are introduced into a simulation model for daily canopy assimilation. With the assimilation—light response of
Lee, M. A.; Lerche, I.
1974-01-01
Study illustrating how the presence of a high-intensity pulse of radiation can distort its own passage through a plane differentially shearing medium. It is demonstrated that the distortion is a sensitive function of the precise, and detailed, variation of the medium's refractive index by considering a couple of simple examples which are worked out numerically. In view of the high-intensity pulses observed from pulsars (approximately 10 to the 30th ergs per pulse), it is believed that the present calculations are of more than academic interest in helping unravel the fundamental properties of pulse production in, and propagating through, differentially sheared media - such as pulsars' magnetospheres within the so-called speed-of-light circle.
Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng
2017-09-19
We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P histogram parameters increased (all P histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.
Nickel in silicon: Room-temperature in-diffusion and interaction with radiation defects
Energy Technology Data Exchange (ETDEWEB)
Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)
2017-07-15
Nickel is incorporated into silicon wafers during chemomechanical polishing in an alkaline Ni-contaminated slurry at room temperature. The nickel in-diffusion is detected by DLTS depth profiles of a novel Ni{sub 183} level, which is formed due to a reaction between the diffusing nickel and the VO centers introduced before the polishing. The Ni{sub 183} profile extends up to 10 μm after a 2 min polishing. The available data provide a lower estimate for the room-temperature nickel diffusivity D{sub Ni} > 10{sup -9} cm{sup 2} s{sup -1}. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Abdul-Sater, Hassan; Krishnamoorthy, Gautham
2013-01-01
Twenty four, laboratory scale, laminar to transitional, diffusion oxy-methane flames were simulated employing different radiation modeling options and their predictions compared against experimental measurements of: temperature, flame length and radiant fraction. The models employed were: gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model, non-adiabatic extension of the equilibrium based mixture fraction model and investigations into the effects of: the thermal boundary conditions, soot and turbulence radiation interactions (TRI). Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. Flame lengths determined through the axial profiles of OH confirmed with the experimental trends by increasing with increase in fuel-inlet Reynolds numbers and decreasing with the increase in O 2 composition in oxidizer. The temperature and flame length predictions were not sensitive to the radiative property model employed. There were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The inclusion of soot model and TRI model did not affect our predictions as a result of low soot volume fractions and the radiation emission enhancement to the temperature fluctuations being localized to the flame sheet. -- Highlights: • Twenty four, lab scale, laminar to transitional, diffusion, oxy-methane flames were simulated. • Equilibrium model adequately predicted the temperature and flame lengths. • The experimental trends in radiant fractions were replicated. • Gray and non-gray model differences in radiant fractions were amplified at low Re. • Inclusion of soot and TRI models did not affect our predictions
Bassi, Laura; Ricci, Daniela; Volzone, Anna; Allsop, Joanna M; Srinivasan, Latha; Pai, Aakash; Ribes, Carmen; Ramenghi, Luca A; Mercuri, Eugenio; Mosca, Fabio; Edwards, A David; Cowan, Frances M; Rutherford, Mary A; Counsell, Serena J
2008-02-01
Children born prematurely have a high incidence of visual disorders which cannot always be explained by focal retinal or brain lesions. The aim of this study was to test the hypothesis that visual function in preterm infants is related to the microstructural development of white matter in the optic radiations. We used diffusion tensor imaging (DTI) with probabilistic diffusion tractography to delineate the optic radiations at term equivalent age and compared the fractional anisotropy (FA) to a contemporaneous evaluation of visual function. Thirty-seven preterm infants (19 male) born at median (range) 28(+4) (24(+1)-32(+3)) weeks gestational age, were examined at a post-menstrual age of 42 (39(+6)-43) weeks. MRI and DTI were acquired on a 3 Tesla MR system with DTI obtained in 15 non-collinear directions with a b value of 750 s/mm(2). Tracts were generated from a seed mask placed in the white matter lateral to the lateral geniculate nucleus and mean FA values of these tracts were determined. Visual assessment was performed using a battery of nine items assessing different aspects of visual abilities. Ten infants had evidence of cerebral lesions on conventional MRI. Multiple regression analysis demonstrated that the visual assessment score was independently correlated with FA values, but not gestational age at birth, post-menstrual age at scan or the presence of lesions on conventional MRI. The occurrence of mild retinopathy of prematurity did not affect the FA measures or visual scores. We then performed a secondary analysis using tract-based spatial statistics to determine whether global brain white matter development was related to visual function and found that only FA in the optic radiations was correlated with visual assessment score. Our results suggest that in preterm infants at term equivalent age visual function is directly related to the development of white matter in the optic radiations.
Directory of Open Access Journals (Sweden)
Lilian Govone
2017-12-01
Full Text Available This paper presents a theoretical investigation of the second law performance of double diffusive forced convection in microreactors with the inclusion of nanofluid and radiation effects. The investigated microreactors consist of a single microchannel, fully filled by a porous medium. The transport of heat and mass are analysed by including the thick walls and a first order, catalytic chemical reaction on the internal surfaces of the microchannel. Two sets of thermal boundary conditions are considered on the external surfaces of the microchannel; (1 constant temperature and (2 constant heat flux boundary condition on the lower wall and convective boundary condition on the upper wall. The local thermal non-equilibrium approach is taken to thermally analyse the porous section of the system. The mass dispersion equation is coupled with the transport of heat in the nanofluid flow through consideration of Soret effect. The problem is analytically solved and illustrations of the temperature fields, Nusselt number, total entropy generation rate and performance evaluation criterion (PEC are provided. It is shown that the radiation effect tends to modify the thermal behaviour within the porous section of the system. The radiation parameter also reduces the overall temperature of the system. It is further demonstrated that, expectedly, the nanoparticles reduce the temperature of the system and increase the Nusselt number. The total entropy generation rate and consequently PEC shows a strong relation with radiation parameter and volumetric concentration of nanoparticles.
International Nuclear Information System (INIS)
Stel'makh, V.F.; Suprun-Belevich, Yu.R.; Chelyadinskij, A.R.
1987-01-01
For determination of radiation defects effect on diffusion of the implanted boron in silicon at the pulse annealing, silicon crystals, implanted with boron, preliminary irradiated by silicon ions of different flows for checked defects implantation, were investigated. Silicon crystals additionally implanted by Ge + ions were investigated to research the effect of the incompatibility elastic stresses, emerging in implanted structures due to lattice periods noncoincidence in matrix and alloyed layers, on implanted boron diffusion. It is shown, that abnormally high values of boron diffusion coefficients in silicon at the pulse annealing are explained by silicon interstitial atom participation in redistribution of diffusing boron atoms by two diffusion channels - interstitial and vacation - and by incompatibility elastic stresses effect on diffusion
International Nuclear Information System (INIS)
Bashahu, M.
2003-01-01
Nine correlations have been developed in this paper to estimate the monthly average diffuse radiation for Dakar, Senegal. A 16-year period data on the global (H) and diffuse (H d ) radiation, together with data on the bright sunshine hours (N), the fraction of the sky's (Ne/8), the water vapour pressure in the air (e) and the ambient temperature (T) have been used for that purpose. A model inter-comparison based on the MBE, RMSE and t statistical tests has shown that estimates in any of the obtained correlations are not significantly different from their measured counterparts, thus all the nine models are recommended for the aforesaid location. Three of them should be particularly selected for their simplicity, universal applicability and high accuracy. Those are simple linear correlations between K d and N/N d , Ne/8 or K t . Even presenting adequate performance, the remaining correlations are either simple but less accurate, or multiple or nonlinear regressions needing one or two input variables. (author)
Energy Technology Data Exchange (ETDEWEB)
Bashahu, M. [University of Burundi, Bujumbura (Burundi). Institute of Applied Pedagogy, Department of Physics and Technology
2003-07-01
Nine correlations have been developed in this paper to estimate the monthly average diffuse radiation for Dakar, Senegal. A 16-year period data on the global (H) and diffuse (H{sub d}) radiation, together with data on the bright sunshine hours (N), the fraction of the sky's (Ne/8), the water vapour pressure in the air (e) and the ambient temperature (T) have been used for that purpose. A model inter-comparison based on the MBE, RMSE and t statistical tests has shown that estimates in any of the obtained correlations are not significantly different from their measured counterparts, thus all the nine models are recommended for the aforesaid location. Three of them should be particularly selected for their simplicity, universal applicability and high accuracy. Those are simple linear correlations between K{sub d} and N/N{sub d}, Ne/8 or K{sub t}. Even presenting adequate performance, the remaining correlations are either simple but less accurate, or multiple or nonlinear regressions needing one or two input variables. (author)
Energy Technology Data Exchange (ETDEWEB)
Shestakov, A I; Offner, S R
2006-09-21
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Schmidt, Wolfgang M
1980-01-01
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
Energy Technology Data Exchange (ETDEWEB)
Li, Xiang Sheng, E-mail: lxsheng500@163.com [Department of Radiology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Fang, Hong, E-mail: hongfang196808@sina.com [Department of Radiology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Song, Yunlong, E-mail: yunlongsong010@sina.com [Department of Radiology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Li, Dechang, E-mail: dechangli1972@sina.com [Department of Pathology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Wang, Yingjie, E-mail: wangyj19710813@sina.com [Department of Radiotherapy, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Zhu, Hongxian, E-mail: hongxian0102@sina.cn [Department of Radiology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Meng, Limin, E-mail: liminmeng1977@sina.com [Department of Radiology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Wang, Ping, E-mail: pingwang1978@sina.com [Department of Radiology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Wang, Dong, E-mail: dongwang1964@sina.com [Department of Radiology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China); Fan, Hongxia, E-mail: fanhongxia1975@sina.com [Department of Radiology, Air Force General Hospital of People' s Liberation Army, Beijing 100142 (China)
2017-02-15
Objective: To determine whether diffusion-weighted imaging (DWI) can be used for quantitatively evaluating severity of acute radiation proctopathy after radiotherapy for cervical carcinoma. Materials and methods: One hundred and twenty-four patients with cervical carcinoma underwent MR examination including DWI before and after radiotherapy. Acute radiation proctopathy was classified into three groups (grade 0, grade I–II and grade III–IV) according to Toxicity Criteria of the Radiation Therapy Oncology Group (RTOG). The pretreatment ADC (ADC{sub pre}), ADC after treatment (ADC{sub post}) and ADC change (ΔADC) were compared among three groups. In addition, acute radiation proctopathy was classified into good-prognosis group and poor-prognosis group. ADC{sub pre}, ADC{sub post} and ΔADC were compared between two groups. For DWI parameter that had significant difference, discriminatory capability of the parameter was determined using receiver operating characteristics (ROC) analysis. Results: ADC{sub post} and ΔADC were higher in grade I–II group than in grade 0 group (p < 0.05), yielding a sensitivity of 79.3% and specificity of 69.4% for ADC{sub post}, and 85.1%, 72.3% for ΔADC for discrimination between two groups. ADC{sub post} and ΔADC were higher in grade III–IV group than in grade I–II group (p < 0.05), yielding a sensitivity of 80.3% and specificity of 72.5% for ADC{sub post}, and 84.1%, 74.5% for ΔADC for discrimination between two groups. ADC{sub post} and ΔADC were higher in poor-prognosis group than in good-prognosis group (p < 0.05), yielding a sensitivity of 79.5% and specificity of 73.4% for ADC{sub post}, and 87.2%, 78.3% for ΔADC for discrimination between two groups. Conclusion: Diffusion-weighted MRI can be used for quantitative stratification of severity of acute radiation proctopathy, which serves as an important basis for appropriate timely adjustment of radiotherapy for cervical carcinoma in order to maximally reduce the
Wang, H-Z; Qiu, S-J; Lv, X-F; Wang, Y-Y; Liang, Y; Xiong, W-F; Ouyang, Z-B
2012-04-01
To investigate the metabolic characteristics of the temporal lobes following radiation therapy for nasopharyngeal carcinoma using diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H-MRS). DTI and (1)H-MRS were performed in 48 patients after radiotherapy for nasopharyngeal carcinoma and in 24 healthy, age-matched controls. All patients and controls had normal findings on conventional MRI. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), three eigenvalues λ1, λ2, λ3, N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatinine (Cr), and Cho/Cr were measured in both temporal lobes. Patients were divided into three groups according to time after completion of radiotherapy: group 1, less than 6 months; group 2, 6-12 months; group 3, more than 12 months. Mean values for each parameter were compared using one-way analysis of variance (ANOVA). Mean FA in group 1 was significantly lower compared to group 3 and the control group (p < 0.05). Group-wise comparisons of apparent diffusion coefficient (ADC) values among all the groups were not significantly different. Eigenvalue λ1 was significantly lower in groups 1 and 3 compared to the control group (p < 0.05). NAA/Cho and NAA/Cr were significantly lower in each group compared to the control group (p < 0.01 for both). The decrease in NAA/Cho was greatest in group 1. There were no significant between-group differences regarding Cho/Cr. A combination of DTI and (1)H-MRS can be used to detect radiation-induced brain injury, in patients treated for nasopharyngeal carcinoma. Copyright Â© 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
MHD and radiation effects on moving isothermal vertical plate with variable mass diffusion
Directory of Open Access Journals (Sweden)
Muthucumaraswamy R.
2006-01-01
Full Text Available An analysis is performed to study the effects of thermal radiation on unsteady free convective flow over a moving vertical plate with mass transfer in the presence of magnetic field. The fluid considered here is a gray, absorbing-emitting radiation but a non- scattering medium. The plate temperature is raised to T 0 and the concentration level near the plate is also raised linearly with time. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, temperature and concentration are studied for different parameters like the magnetic field parameter, radiation parameter, thermal Grashof number, mass Grashof number and time. It is observed that the velocity decreases with increasing magnetic field parameter or radiation parameter. .
Protection by lead aprons against diffused radiation by medical x-ray utilization
International Nuclear Information System (INIS)
Huyskens, C.J.; Franken, Y.; Hummel, W.
1995-01-01
A lead apron can reduce the effective dose of radiological workers in medical roentgen applications. The reduction is not only determined by the thickness of the lead, but in particular by the model and fit of the apron. It also depends on the geometry of the radiation field to which the worker is exposed and the tube voltage. Based on model calculations it is determined how much protection against radiation is possible. 6 figs., 1 tab., 5 refs
Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil
2014-06-21
A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.
Energy Technology Data Exchange (ETDEWEB)
Janssens, Geert O., E-mail: g.janssens@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Jansen, Marc H. [Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam (Netherlands); Lauwers, Selmer J. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Nowak, Peter J. [Department of Radiation Oncology, Erasmus Medical Centre, Rotterdam (Netherlands); Oldenburger, Foppe R. [Department of Radiation Oncology, Academic Medical Centre, Amsterdam (Netherlands); Bouffet, Eric [Department of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto (Canada); Saran, Frank [Department of Pediatric Oncology, The Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Kamphuis-van Ulzen, Karin [Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Lindert, Erik J. van [Department of Neurosurgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Schieving, Jolanda H. [Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Boterberg, Tom [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium); Kaspers, Gertjan J. [Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam (Netherlands); Span, Paul N.; Kaanders, Johannes H. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Gidding, Corrie E. [Department of Pediatric Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Hargrave, Darren [Department of Oncology, Great Ormond Street Hospital, London (United Kingdom)
2013-02-01
Purpose: Despite conventional radiation therapy, 54 Gy in single doses of 1.8 Gy (54/1.8 Gy) over 6 weeks, most children with diffuse intrinsic pontine glioma (DIPG) will die within 1 year after diagnosis. To reduce patient burden, we investigated the role of hypofractionation radiation therapy given over 3 to 4 weeks. A 1:1 matched-cohort analysis with conventional radiation therapy was performed to assess response and survival. Methods and Materials: Twenty-seven children, aged 3 to 14, were treated according to 1 of 2 hypofractionation regimens over 3 to 4 weeks (39/3 Gy, n=16 or 44.8/2.8 Gy, n=11). All patients had symptoms for {<=}3 months, {>=}2 signs of the neurologic triad (cranial nerve deficit, ataxia, long tract signs), and characteristic features of DIPG on magnetic resonance imaging. Twenty-seven patients fulfilling the same diagnostic criteria and receiving at least 50/1.8 to 2.0 Gy were eligible for the matched-cohort analysis. Results: With hypofractionation radiation therapy, the overall survival at 6, 9, and 12 months was 74%, 44%, and 22%, respectively. Progression-free survival at 3, 6, and 9 months was 77%, 43%, and 12%, respectively. Temporary discontinuation of steroids was observed in 21 of 27 (78%) patients. No significant difference in median overall survival (9.0 vs 9.4 months; P=.84) and time to progression (5.0 vs 7.6 months; P=.24) was observed between hypofractionation vs conventional radiation therapy, respectively. Conclusions: For patients with newly diagnosed DIPG, a hypofractionation regimen, given over 3 to 4 weeks, offers equal overall survival with less treatment burden compared with a conventional regimen of 6 weeks.
Energetic electrons at Uranus: Bimodal diffusion in a satellite limited radiation belt
International Nuclear Information System (INIS)
Selesnick, R.S.; Stone, E.C.
1991-01-01
The Voyager 2 cosmic ray experiment observed intense electron fluxes in the middle magnetosphere of Uranus. High counting rates in several of the solid-state detectors precluded in the normal multiple coincidence analysis used for cosmic ray observations, and the authors have therefore performed laboratory measurements of the single-detector response to electrons. These calibrations allow a deconvolution from the counting rate data of the electron energy spectrum between energies of about 0.7 and 2.5 MeV. They present model fits to the differential intensity spectra from observations between L values of 6 and 15. The spectra are well represented by power laws in kinetic energy with spectral indices between 5 and 7. The phase space density at fixed values of the first two adiabatic invariants generally increases with L, indicative of an external source. However, there are also local minima associated with the satellites Ariel and Umbriel, indicating either a local source or an effective source due to nonconservation of the first two adiabatic invariants. For electrons which mirror at the highest magnetic latitudes, the local minimum associated with Ariel is radically displaced from the minimum L of that satellite by ∼0.5. The latitude variation of the satellite absorption efficiency predicts that if satellite losses are replenished primarily by radial diffusion there should be an increasing pitch angle anisotropy with decreasing L. The uniformity in the observed anisotropy outside the absorption regions then suggests that it is maintained by pitch angle diffusion. The effective source due to pitch angle diffusion is insufficient to cause the phase space density minimum associated with Ariel. Model solutions of the simultaneous radial and pitch angle diffusion equation show that the displacement of the high-latitude Ariel signature is also consistent with a larger effective source
International Nuclear Information System (INIS)
Choi, C.-R.; Dokgo, K.; Min, K.-W.; Woo, M.-H.; Choi, E.-J.; Hwang, J.; Park, Y.-D.; Lee, D.-Y.
2015-01-01
The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts
Energy Technology Data Exchange (ETDEWEB)
Grandum, Oddbjoern
1997-12-31
In optimizing solar systems, it is necessary to know the spectral and angular dependence of the radiation. The general nonlinear character of most solar energy systems accentuates this. This thesis describes a spectroradiometer that will measure both the direct component of the solar radiation and the angular dependence of the diffuse component. Radiation from a selected part of the sky is transported through a movable set of tube sections on to a stationary set of three monochromators with detectors. The beam transport system may effectively be looked upon as a single long tube aimed at a particular spot in the sky. The half value of the effective opening angle is 1.3{sup o} for diffuse radiation and 2.8{sup o} for direct radiation. The whole measurement process is controlled and operated by a PC and normally runs without manual attention. The instrument is built into a caravan. The thesis describes in detail the experimental apparatus, calibration and measurement accuracies. To map the diffuse radiation, one divides the sky into 26 sectors of equal solid angle. A complete measurement cycle is then made at a random point within each sector. These measurements are modelled by fitting to spherical harmonics, enforcing symmetry around the solar direction and the horizontal plane. The direct radiation is measured separately. Also the circumsolar sector is given special treatment. The measurements are routinely checked against global radiation measured in parallel by a standard pyranometer, and direct solar radiation by a pyrheliometer. An extensive improvement programme is being planned for the instrument, including the use of a photomultiplier tube to measure the UV part of the spectrum, a diode array for the 400-1100 nm range, and use of a Ge diode for the 1000-1900 nm range. 78 refs., 90 figs., 31 tabs.
International Nuclear Information System (INIS)
Marshak, Alexander; Knyazikhin, Yuri
2017-01-01
EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the ‘red’ (680 nm) channels, EPIC also has the O2 A-band (764±0.2 nm) and B-band (687.75±0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined as the difference between NIR and ‘red’ channels normalized to their sum. However, the use of the O2 B-band instead of the ‘red’ channel mitigates the effect of atmosphere on remote sensing of surface reflectance because O2 reduces contribution from the radiation scattered by the atmosphere. Applying the radiative transfer theory and the spectral invariant approximation to EPIC observations, the paper provides supportive arguments for using the O2 band instead of the red channel for monitoring vegetation dynamics. Our results suggest that the use of the O2 B-band enhances the sensitivity of the top-of-atmosphere NDVI to the presence of vegetation. - Highlights: • The use of the O2 B-band channel (688 nm) instead of the red channel (680 nm) mitigates the effect of atmosphere on remote sensing of surface reflectance. • The spectral invariant approach confirms that the synergy of the green, O2 B-band and near IR channels mimics spectral properties of vegetation. • The structural parameter of vegetation retrieved remotely is weakly sensitive to the uncertainty in the atmospheric optical depth.
Diffusion approximation of neuronal models revisited
Czech Academy of Sciences Publication Activity Database
Čupera, Jakub
2014-01-01
Roč. 11, č. 1 (2014), s. 11-25 ISSN 1547-1063. [International Workshop on Neural Coding (NC) /10./. Praha, 02.09.2012-07.09.2012] R&D Projects: GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : stochastic model * neuronal activity * first-passage time Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.840, year: 2014
Diffuse brain calcification after radiation therapy in infantile cerebral malignant glioma
International Nuclear Information System (INIS)
Hondo, Hiroaki; Tanaka, Ryuichi; Yamada, Nobuhisa; Takeda, Norio
1987-01-01
We reported a case of infantile cerebral malignant glioma, which showed extensive intracranial calcification following radiation therapy, and reviewed the literature. A 4-month-old female infant was admitted to our hospital because of vomiting, enlargement of the head and convulsive seizures. Computerized tomography (CT) scans demonstrated a heterogeneously contrast-enhanced mass in the right temporo-parieto-occipital region and marked obstructive hydrocephalus. Subsequent to ventriculo-peritoneal shunt, biopsy was performed. The surgical specimen revealed anaplastic glioma. She then underwent whole brain irradiation with 1800 rads before subtotal removal and 3000 rads postoperatively. Calcification was first identified in the right frontal region and left basal ganglia 2.5 months after radiation therapy. At the age of 14 months, CT scans demonstrated extensive intracranial calcification in the cerebral hemispheres, basal ganglias, thalami, pons and cerebellum. A biopsy specimen of the frontal lobe revealed calcospherites of various sizes within and beside the walls of small vessels, but no tumor cells were observed. Cranial radiation therapy is a standard modality for treatment of children with neoplasm in the central nervous system. Since, however this therapy possibly causes long-term complications on the developing brain, it is important to plan radiation therapy for the brain tumor carefully. (author)
New finite volume methods for approximating partial differential equations on arbitrary meshes
International Nuclear Information System (INIS)
Hermeline, F.
2008-12-01
This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)
International Nuclear Information System (INIS)
Malagamba, Eduardo; Canibano, Javier; Gatica, Nidia
2001-01-01
The diffusion of the criteria and principles of radiological safety that are applied to the different practices of use of radioactive materials, is one of the ways to diminish the risks of its use besides enhance the perception of risk in society. Since June of 1999, the Nuclear Regulatory Authority in Argentina have intensified the dissemination of information for the public in general, specialized personnel indirectly involved with radioactive substances and the users in general of radioactive materials.This work has as objective to present the experience of South Regional Delegation with information dissemination policy and its results
Energy Technology Data Exchange (ETDEWEB)
Zhu, T; Chapman, C; Lawrence, T; Cao, Y [University of Michigan, Ann Arbor, MI (United States); Tsien, C [Washington University at St. Louis, St. Louis, MO (United States)
2015-06-15
Purpose: To develop an automated and scalable approach and identify temporal, spatial and dosimetric patterns of radiation damage of white matter (WM) fibers following partial brain irradiation. Methods: An automated and scalable approach was developed to extract DTI features of 22 major WM fibers from 33 patients with low-grade/benign tumors treated by radiation therapy (RT). DTI scans of the patients were performed pre-RT, 3- and 6-week during RT, and 1, 6 and 18 months after RT. The automated tractography analysis was applied to 198 datasets as: (1) intra-subject registration of longitudinal DTI, (2) spatial normalization of individual-patient DTI to the Johns Hopkins WM Atlas, (3) automatic fiber tracking regulated by the WM Atlas, and (4) segmentation of WM into 22 major tract profiles. Longitudinal percentage changes in fractional anisotropy (FA), and mean, axial and radial diffusivity (MD/AD/RD) of each tract from pre-RT were quantified and correlated to 95%, 90% and 80% percentiles of doses and mean doses received by the tract. Heatmaps were used to identify clusters of significant correlation and reveal temporal, spatial and dosimetric signatures of WM damage. A multivariate linear regression was further carried out to determine influence of clinical factors. Results: Of 22 tracts, AD/MD changes in 12 tracts had significant correlation with doses, especially at 6 and 18 months post-RT, indicating progressive radiation damage after RT. Most interestingly, the DTI-index changes in the elongated tracts were associated with received maximum doses, suggesting a serial-structure behavior; while short association fibers were affected by mean doses, indicating a parallel-structure response. Conclusion: Using an automated DTI-tractography analysis of whole brain WM fibers, we reveal complex radiation damage patterns of WM fibers. Damage in WM fibers that play an important role in the neural network could be associated with late neurocognitive function declines
The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges
Energy Technology Data Exchange (ETDEWEB)
Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.
2009-05-01
This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.
Directory of Open Access Journals (Sweden)
Tobias Engelhorn
2012-01-01
Full Text Available Purpose of this study was to evaluate with diffusion-tensor imaging (DTI changes of radial diffusivity (RD and fractional anisotropy (FA in the optic nerve (ON and optic radiation (OR in glaucoma and to determine whether changes in RD and FA correlate with disease severity. Therefore, glaucoma patients and controls were examined using 3T. Regions of interest were positioned on RD and FA maps, and mean values were calculated for ON and OR and correlated with optic nerve atrophy and reduced spatial-temporal contrast sensitivity (STCS of the retina. We found, that RD in glaucoma patients was significantly higher in the ON (0.74 ± 0.21 versus 0.58 ± 0.17⋅10−3 mm2 s−1; P0.77. In conclusion, DTI at 3 Tesla allows robust RD and FA measurements in the ON and OR. Hereby, the extent of RD increase and FA decrease in glaucoma correlate with established ophthalmological examinations.
SMM detection of diffuse Galactic 511 keV annihilation radiation
Share, G. H.; Kinzer, R. L.; Kurfess, J. D.; Messina, D. C.; Purcell, W. R.
1988-01-01
Observations of the 511 keV annihilation line from the vicinity of the Galactic center from October to February for 1980/1981, 1981/1982, 1982/1983, 1984/1985, and 1985/1986 are presented. The measurements were made with the gamma-ray spectrometer on the SMM. The design of the instrument and some of its properties used in the analysis are described, and the methods used for accumulating, fitting, and analyzing the data are outlined. It is shown how the Galactic 511 keV line was separated from the intense and variable background observed in orbit. The SMM observations are compared with previous measurements of annihilation radiation from the Galactic center region, and the astrophysical implications are discussed. It is argued that most of the measurements made to date suggest the presence of an extended Galactic source of annihilation radiation.
Influence of radiation on double conjugate diffusion in a porous cavity
International Nuclear Information System (INIS)
Azeem,; Idris, Mohd Yamani Idna; Khan, T. M. Yunus; Badruddin, Irfan Anjum; Nik-Ghazali, N.
2016-01-01
The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature T_w and concentration C_w whereas the right surface is maintained at T_c and C_c such that T_w>T_c and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.
Influence of radiation on double conjugate diffusion in a porous cavity
Energy Technology Data Exchange (ETDEWEB)
Azeem,; Idris, Mohd Yamani Idna [Dept. of Computer System & Technology, University of Malaya, Kuala Lumpur (Malaysia); Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Dept. of Mechanical Engineering, BVB College of Engineering & Technology, Hubli (India); Badruddin, Irfan Anjum, E-mail: irfan-magami@Rediffmail.com; Nik-Ghazali, N. [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)
2016-05-06
The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature T{sub w} and concentration C{sub w} whereas the right surface is maintained at T{sub c} and C{sub c} such that T{sub w}>T{sub c} and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.
Milestone report: The simulation of radiation driven gas diffusion in UO_{2} at low temperature
Energy Technology Data Exchange (ETDEWEB)
Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kuganathan, Navaratnarajah [Imperial College, London (United Kingdom); Burr, Patrick A [Univ. of New South Wales (Australia); Rushton, Michael J. [Imperial College, London (United Kingdom); Grimes, Robin W [Imperial College, London (United Kingdom); Turbull, James Anthony [Independent Consultant (United Kingdom); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-24
Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. This is an important process for nuclear reactor performance as it affects fission gas release, particularly from the periphery of the pellet where such temperatures are normal. Here we present a molecular dynamics study of Xe and Kr diffusion due to irradiation. Thermal spikes and cascades have been used to study the electronic stopping and ballistic phases of damage, respectively. Our results predict that O and Kr exhibit the greatest diffusivity and U the least, while Xe lies in between. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Preliminary thermal spike calculations indicate that the electronic stopping phase generates greater fission gas displacement than the ballistic phase, although further calculation must be carried out to confirm this. A good description of the system by the empirical potentials is important over the very wide temperatures induced during thermal spike and damage cascade simulations. This has motivated the development of a parameter set for gas-actinide and gas-oxygen interactions that is complementary for use with a recent many-body potential set. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO_{2}, ThO_{2}, UO_{2} and PuO_{2}. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations
Problems in astrophysical radiation hydrodynamics
International Nuclear Information System (INIS)
Castor, J.I.
1983-01-01
The basic equations of radiation hydrodynamics are discussed in the regime that the radiation is dynamically as well as thermally important. Particular attention is paid to the question of what constitutes an acceptable approximate non-relativistic system of dynamical equations for matter and radiation in this regime. Further discussion is devoted to two classes of application of these ideas. The first class consists of problems dominated by line radiation, which is sensitive to the velocity field through the Doppler effect. The second class is of problems in which the advection of radiation by moving matter dominates radiation diffusion
A Radiation Chemistry Code Based on the Green's Function of the Diffusion Equation
Plante, Ianik; Wu, Honglu
2014-01-01
Stochastic radiation track structure codes are of great interest for space radiation studies and hadron therapy in medicine. These codes are used for a many purposes, notably for microdosimetry and DNA damage studies. In the last two decades, they were also used with the Independent Reaction Times (IRT) method in the simulation of chemical reactions, to calculate the yield of various radiolytic species produced during the radiolysis of water and in chemical dosimeters. Recently, we have developed a Green's function based code to simulate reversible chemical reactions with an intermediate state, which yielded results in excellent agreement with those obtained by using the IRT method. This code was also used to simulate and the interaction of particles with membrane receptors. We are in the process of including this program for use with the Monte-Carlo track structure code Relativistic Ion Tracks (RITRACKS). This recent addition should greatly expand the capabilities of RITRACKS, notably to simulate DNA damage by both the direct and indirect effect.
Atrophy of sacrospinal muscle groups in patients with chronic, diffusely radiating lumbar back pain
Energy Technology Data Exchange (ETDEWEB)
Laasonen, E.M.
1984-01-01
After surgery necessitated by lumbar back pain syndromes, radiolucency verified by CT may appear in the sacrospinal muscle group on the operate side. This radiolucency represents muscular atrophy and is in its most severe form a result of the replacement of muscle tissue with adipose tissue. Such muscular atrophy appeared in the present series in 31 out of all 156 patients (19.9%) and in 29 out of 94 patients operated on because of radiating lumbar back pain (30.9%). The radiological appearance, extent, and HU values of this muscular atrophy are presented in detail. Only weak correlations with the multitude of clinical symptoms and signs were found in this retrospective study. The effects of irreversible muscular atrophy on the indications for surgery and physiotherapy are discussed.
Atrophy of sacrospinal muscle groups in patients with chronic, diffusely radiating lumbar back pain
International Nuclear Information System (INIS)
Laasonen, E.M.
1984-01-01
After surgery necessitated by lumbar back pain syndromes, radiolucency verified by CT may appear in the sacrospinal muscle group on the operate side. This radiolucency represents muscular atrophy and is in its most severe form a result of the replacement of muscle tissue with adipose tissue. Such muscular atrophy appeared in the present series in 31 out of all 156 patients (19.9%) and in 29 out of 94 patients operated on because of radiating lumbar back pain (30.9%). The radiological appearance, extent, and HU values of this muscular atrophy are presented in detail. Only weak correlations with the multitude of clinical symptoms and signs were found in this retrospective study. The effects of irreversible muscular atrophy on the indications for surgery and physiotherapy are discussed. (orig.)
Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Shang, Yu; Li, Xingzhe; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang
2016-03-01
Radiation therapy is a principal modality for head and neck cancers and its efficacy depends on tumor hemodynamics. Our laboratory developed a hybrid diffuse optical instrument allowing for simultaneous measurements of tumor blood flow and oxygenation. In this study, the clinically involved cervical lymph node was monitored by the hybrid instrument once a week over the treatment period of seven weeks. Based on treatment outcomes within one year, patients were classified into a complete response group (CR) and an incomplete response group (IR) with remote metastasis and/or local recurrence. A linear mixed models was used to compare tumor hemodynamic responses to the treatment between the two groups. Interestingly, we found that human papilloma virus (HPV-16) status largely affected tumor hemodynamic responses. For HPV-16 negative tumors, significant differences in blood flow index (BFI, p = 0.007) and reduced scattering coefficient (μs', p = 0.0005) were observed between the two groups; IR tumors exhibited higher μs' values and a continuous increase in BFI over the treatment period. For HPV-16 positive tumors, oxygenated hemoglobin concentration ([HbO2]) and blood oxygen saturation (StO2) were significant different (p = 0.003 and 0.01, respectively); IR group showed lower [HbO2] and StO2. Our results imply HPV-16 negative tumors with higher density of vasculature (μs') and higher blood flow show poor responses to radiotherapy and HPV-16 positive tumors with lower tissue oxygenation level (lower StO2 and [HbO2]) exhibit poor treatment outcomes. Our diffuse optical measurements show the great potential for early prediction of radiotherapy in head and neck cancers.
Remizovich, V. S.
2010-06-01
It is commonly accepted that the Schwarzschild-Schuster two-flux approximation (1905, 1914) can be employed only for the calculation of the energy characteristics of the radiation field (energy density and energy flux density) and cannot be used to characterize the angular distribution of radiation field. However, such an inference is not valid. In several cases, one can calculate the radiation intensity inside matter and the reflected radiation with the aid of this simplest approximation in the transport theory. In this work, we use the results of the simplest one-parameter variant of the two-flux approximation to calculate the angular distribution (reflection function) of the radiation reflected by a semi-infinite isotropically scattering dissipative medium when a relatively broad beam is incident on the medium at an arbitrary angle relative to the surface. We do not employ the invariance principle and demonstrate that the reflection function exhibits the multiplicative property. It can be represented as a product of three functions: the reflection function corresponding to the single scattering and two identical h functions, which have the same physical meaning as the Ambartsumyan-Chandrasekhar function ( H) has. This circumstance allows a relatively easy derivation of simple analytical expressions for the H function, total reflectance, and reflection function. We can easily determine the relative contribution of the true single scattering in the photon backscattering at an arbitrary probability of photon survival Λ. We compare all of the parameters of the backscattered radiation with the data resulting from the calculations using the exact theory of Ambartsumyan, Chandrasekhar, et al., which was developed decades after the two-flux approximation. Thus, we avoid the application of fine mathematical methods (the Wiener-Hopf method, the Case method of singular functions, etc.) and obtain simple analytical expressions for the parameters of the scattered radiation
Segregation and diffusion of deffects induced by radiation in binary copper alloys
International Nuclear Information System (INIS)
Monteiro, W.A.
1984-01-01
Actually considerable theoretical and experimental progress has been made in establishing and in understanding the general feactures of the Radiation Induced Solute Difusion or Segregation such as its temperature, time and displacement rate dependence and the effects of some important materials factors such as the initial solute misfit. During irradiation, the local alloy compositions will change by defect flux driven, non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries and the compositional change are likely to influence a number of properties and phenomena important to Thermonuclear Reactors, as for example, Ductility, Corrosion, Stress, Corrosion Craking, Sputtering and Blistering. Our work is correlated with the 1 MeV electrons irradiations effects in Copper alloys where the alloying elements are Be, Pt, Sn. These three elements are undersized, similar and oversized relating the Copper atom radius, respectively. How starts and develops the Segregation Induced by Irradiation 'In Situ' with help of the High Voltage Electron Microscopy as technique. (Author) [pt
Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field
Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.
2017-06-01
Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.
Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field
Energy Technology Data Exchange (ETDEWEB)
Chen, Hsiao-Wen; Zahedy, Fakhri S. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Johnson, Sean D. [Department of Astrophysics, Princeton University, Princeton, NJ (United States); Rauch, Michael; Mulchaey, John S., E-mail: hchen@oddjob.uchicago.edu [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)
2017-06-20
Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.
Kovtyukh, Alexander S.
2016-11-01
From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2) periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ˜ 0.7 to ˜ 7 keV nT-1 at L ≈ 4.5-10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10-14μ-4.1L8.2 or DLL ≈ 1.3 × 105(EL)-4.1 or DLL ≈ 1.2 × 10-9fd-4.1, where fd is the drift frequency of the protons (in mHz), DLL is measured in s-1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.
Directory of Open Access Journals (Sweden)
A. S. Kovtyukh
2016-11-01
Full Text Available From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2 periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion of trapped particles. This is done by successively solving the systems (chains of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun–Earth Explorer 1 (ISEE-1 for protons with an energy of 24 to 2081 keV at L = 2–10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2–5. Ionization losses of protons (Coulomb losses and charge exchange were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ∼ 0.7 to ∼ 7 keV nT−1 at L ≈ 4.5–10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10−14μ−4.1L8.2 or DLL ≈ 1.3 × 105(EL−4.1 or DLL ≈ 1.2 × 10−9fd−4.1, where fd is the drift frequency of the protons (in mHz, DLL is measured in s−1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.
Energy Technology Data Exchange (ETDEWEB)
Kovtyukh, Alexander S. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2016-07-01
From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α{sub 0} ∼ 90 during quiet and slightly disturbed (Kp≤2) periods, I directly calculated the value D{sub LL}, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ∝0.7 to ∝7 keV nT{sup -1} at L ∼ 4.5-10, the functions of D{sub LL} can be approximated by the following equivalent expressions: D{sub LL} ∼ 4.9 x 10{sup -14}μ{sup -4.1}L{sup 8.2} or D{sub LL} ∼ 1.3 x 10{sup 5}(EL){sup -4.1} or D{sub LL} ∼ 1.2 x 10{sup -9}f{sub d}{sup -4.1}, where f{sub d} is the drift frequency of the protons (in mHz), D{sub LL} is measured in s{sup -1}, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms D{sub LL} increases, and the expressions for D{sub LL} obtained here can change completely.
Energy Technology Data Exchange (ETDEWEB)
Lopez Guerra, Jose Luis [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Gomez, Daniel, E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Zhuang Yan; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Eapen, George [Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Liu Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)
2012-08-01
Purpose: Scoring of radiation pneumonitis (RP), a dose-limiting toxicity after thoracic radiochemotherapy, is subjective and thus inconsistent among studies. Here we investigated whether the extent of change in diffusing capacity of the lung for carbon monoxide (DLCO) after radiation therapy (RT) for non-small-cell lung cancer (NSCLC) could be used as an objective means of quantifying RP. Patients and Methods: We analyzed potential correlations between DLCO and RP in 140 patients who received definitive RT ({>=}60 Gy) with or without chemotherapy for primary NSCLC. All underwent DLCO analysis before and after RT. Post-RT DLCO values within 1 week of the RP diagnosis (Grade 0, 1, 2, or 3) were selected and compared with that individual's preradiation values. Percent reductions in DLCO and RP grade were compared by point biserial correlation in the entire patient group and in subgroups stratified according to various clinical factors. Results: Patients experiencing Grade 0, 1, 2, or 3 RP had median percentage changes in DLCO after RT of 10.7%, 13%, 22.1%, or 35.2%. Percent reduction in DLCO correlated with RP Grade {<=}1 vs. {>=}2 (p = 0.0004). This association held for the following subgroups: age {>=}65 years, advanced stage, smokers, use of chemotherapy, volume of normal lung receiving at least 20 Gy {>=}30%, and baseline DLCO or forced expiratory volume in 1 second {>=}60%. Conclusions: By correlating percent change in DLCO from pretreatment values at the time of diagnosis of RP with RP grade, we were able to identify categories of RP based on the change in DLCO. These criteria provide a basis for an objective scoring system for RP based on change in DLCO.
International Nuclear Information System (INIS)
Lopez Guerra, Jose Luis; Gomez, Daniel; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing
2012-01-01
Purpose: Scoring of radiation pneumonitis (RP), a dose-limiting toxicity after thoracic radiochemotherapy, is subjective and thus inconsistent among studies. Here we investigated whether the extent of change in diffusing capacity of the lung for carbon monoxide (DLCO) after radiation therapy (RT) for non-small-cell lung cancer (NSCLC) could be used as an objective means of quantifying RP. Patients and Methods: We analyzed potential correlations between DLCO and RP in 140 patients who received definitive RT (≥60 Gy) with or without chemotherapy for primary NSCLC. All underwent DLCO analysis before and after RT. Post-RT DLCO values within 1 week of the RP diagnosis (Grade 0, 1, 2, or 3) were selected and compared with that individual’s preradiation values. Percent reductions in DLCO and RP grade were compared by point biserial correlation in the entire patient group and in subgroups stratified according to various clinical factors. Results: Patients experiencing Grade 0, 1, 2, or 3 RP had median percentage changes in DLCO after RT of 10.7%, 13%, 22.1%, or 35.2%. Percent reduction in DLCO correlated with RP Grade ≤1 vs. ≥2 (p = 0.0004). This association held for the following subgroups: age ≥65 years, advanced stage, smokers, use of chemotherapy, volume of normal lung receiving at least 20 Gy ≥30%, and baseline DLCO or forced expiratory volume in 1 second ≥60%. Conclusions: By correlating percent change in DLCO from pretreatment values at the time of diagnosis of RP with RP grade, we were able to identify categories of RP based on the change in DLCO. These criteria provide a basis for an objective scoring system for RP based on change in DLCO.
Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 mm-1 at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime
International Nuclear Information System (INIS)
Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.
1997-01-01
Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120
Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian
1998-05-01
We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.
International Nuclear Information System (INIS)
Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne
1997-01-01
A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...
Cooper, M A
2000-01-01
We present various approximations for the angular distribution of particles emerging from an optically thick, purely isotropically scattering region into a vacuum. Our motivation is to use such a distribution for the Fleck-Canfield random walk method [1] for implicit Monte Carlo (IMC) [2] radiation transport problems. We demonstrate that the cosine distribution recommended in the original random walk paper [1] is a poor approximation to the angular distribution predicted by transport theory. Then we examine other approximations that more closely match the transport angular distribution.
International Nuclear Information System (INIS)
Goedheer, W.J.
1978-09-01
A numerical study of the pressure and temperature profiles of an infinitely long quasi-cylindrical discharge in hydrogen gas is presented. In particular the influence of the diffusion of atoms in the ground state and the reabsorption of Lyman-α and Lyman-β radiation on both the particle balance and the energy balance of the discharge is studied. Because the transport of the charged particles is corrected for toroidal effects in the regime of high collisionality which is present in the discharge, the model is quasi-cylindrical. The results obtained show an increase of the neutral density on the axis and of the ion and electron density near the wall of the discharge, as compared with earlier calculations in which both diffusion and reabsorption of radiation were neglected. The results are in agreement with measurements in the 'Ringboog' experiment. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Schuschereba, S.T.; Zwick, H.; Stuck, B.E.; Beatrice, E.S.
1982-09-01
Basal bodies or centrioles (BB - microtubule organizing centers) and striated rootlets (SR - bundles of 60 A action-like filaments) have a close association in primate retinal pigmented epithelial (RPE) cells. The frequency of occurrence of these structures was evaluated in the macular RPE after repeated exposure to low level diffuse argon laser radiation (DALR). The awake chaired animal's head was restrained and positioned near the center of the 0.75 m hemisphere which was diffusely irradiated with 514.5 nm laser radiation. The right eye of each subject was occluded during the two-hour exposure session. The first subject received 24 cumulative hours of exposure, the second, 40 hours and the third, 42 hours.
Pallud, Johan; Llitjos, Jean-François; Dhermain, Frédéric; Varlet, Pascale; Dezamis, Edouard; Devaux, Bertrand; Souillard-Scémama, Raphaëlle; Sanai, Nader; Koziak, Maria; Page, Philippe; Schlienger, Michel; Daumas-Duport, Catherine; Meder, Jean-François; Oppenheim, Catherine; Roux, François-Xavier
2012-04-01
Quantitative imaging assessment of radiation therapy (RT) for diffuse low-grade gliomas (DLGG) by measuring the velocity of diametric expansion (VDE) over time has never been studied. We assessed the VDE changes following RT and determined whether this parameter can serve as a prognostic factor. We reviewed a consecutive series of 33 adults with supratentorial DLGG treated with first-line RT with available imaging follow-up (median follow-up, 103 months). Before RT, all patients presented with a spontaneous tumor volume increase (positive VDE, mean 5.9 mm/year). After RT, all patients demonstrated a tumor volume decrease (negative VDE, mean, -16.7 mm/year) during a mean 49-month duration. In univariate analysis, initial tumor volume (>100 cm(3)), lack of IDH1 expression, p53 expression, high proliferation index, and fast post-RT tumor volume decrease (VDE at -10 mm/year or faster, fast responders) were associated with a significantly shorter overall survival (OS). The median OS was significantly longer (120.8 months) for slow responders (post-RT VDE slower than -10.0 mm/year) than for fast responders (47.9 months). In multivariate analysis, fast responders, larger initial tumor volume, lack of IDH1 expression, and p53 expression were independent poor prognostic factors for OS. A high proliferation index was significantly more frequent in the fast responder subgroup than in the slow responder subgroup. We conclude that the pattern of post-RT VDE changes is an independent prognostic factor for DLGG and offers a quantitative parameter to predict long-term outcomes. We propose to monitor individually the post-RT VDE changes using MRI follow-up, with particular attention to fast responders.
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
International Nuclear Information System (INIS)
Rey Silva, D.V.F.M.; Oliveira, A.P.; Macacini, J.F.; Da Silva, N.C.; Cipriani, M.; Quinelato, A.L.
2005-01-01
Full text of publication follows: The study of the dispersion of radioactive materials in soils and in engineering barriers plays an important role in the safety analysis of nuclear waste repositories. In order to proceed with such kind of study the involved physical properties must be determined with precision, including the apparent mass diffusion coefficient, which is defined as the ratio between the effective mass diffusion coefficient and the retardation factor. Many different experimental and estimation techniques are available on the literature for the identification of the diffusion coefficient and this work describes the implementation of that developed by Pereira et al [1]. This technique is based on non-intrusive radiation measurements and the experimental setup consists of a cylindrical column filled with compacted media saturated with water. A radioactive contaminant is mixed with a portion of the media and then placed in the bottom of the column. Therefore, the contaminant will diffuse through the uncontaminated media due to the concentration gradient. A radiation detector is used to measure the number of counts, which is associated to the contaminant concentration, at several positions along the column during the experiment. Such measurements are then used to estimate the apparent diffusion coefficient of the contaminant in the porous media by inverse analysis. The inverse problem of parameter estimation is solved with the Levenberg-Marquart Method of minimization of the least-square norm. The experiment was optimized with respect to the number of measurement locations, frequency of measurements and duration of the experiment through the analysis of the sensitivity coefficients and by using a D-optimum approach. This setup is suitable for studying a great number of combinations of diverse contaminants and porous media varying in composition and compacting, with considerable easiness and reliable results, and it was chosen because that is the
Directory of Open Access Journals (Sweden)
P. Trisolino
2018-06-01
Full Text Available Measurements of global and diffuse photosynthetically active radiation (PAR have been carried out on the island of Lampedusa, in the central Mediterranean Sea, since 2002. PAR is derived from observations made with multi-filter rotating shadowband radiometers (MFRSRs by comparison with a freshly calibrated PAR sensor and by relying on the on-site Langley plots. In this way, a long-term calibrated record covering the period 2002–2016 is obtained and is presented in this work. The monthly mean global PAR peaks in June, with about 160 W m−2, while the diffuse PAR reaches 60 W m−2 in spring or summer. The global PAR displays a clear annual cycle with a semi amplitude of about 52 W m−2. The diffuse PAR annual cycle has a semi amplitude of about 12 W m−2. A simple method to retrieve the cloud-free PAR global and diffuse irradiances in days characterized by partly cloudy conditions has been implemented and applied to the dataset. This method allows retrieval of the cloud-free evolution of PAR and calculation of the cloud radiative effect, CRE, for downwelling PAR. The cloud-free monthly mean global PAR reaches 175 W m−2 in summer, while the diffuse PAR peaks at about 40 W m−2. The cloud radiative effect, CRE, on global and diffuse PAR is calculated as the difference between all-sky and cloud-free measurements. The annual average CRE is about −14.7 W m−2 for the global PAR and +8.1 W m−2 for the diffuse PAR. The smallest CRE is observed in July, due to the high cloud-free condition frequency. Maxima (negative for the global, and positive for the diffuse component occur in March–April and in October, due to the combination of elevated PAR irradiances and high occurrence of cloudy conditions. Summer clouds appear to be characterized by a low frequency of occurrence, low altitude, and low optical thickness, possibly linked to the peculiar marine boundary layer structure. These properties also contribute
International Nuclear Information System (INIS)
Lichti, G.
1975-01-01
The operation and design of a low-energy γ-compton telescope, developed and constructed at the Max-Planck-Institut fuer extraterrestrische Physik, are reported on. For energies of about 1 MeV, the telescope has an energy resolution of 30% (FWHM) and an angular resolution of +- 20 0 . In spite of the low efficiency of only about 0.5%, the vertical γ-flux could be measured for the first time in two balloon flights, and the extragalactic origin of the diffuse component of the cosmic γ-radiation could be demonstrated. The energy spectrum of this radiation was measured. The result is compared with measurements of other experiments, and theoretical models to describe the origin of this radiation are discussed. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Vazquez, M.; Santos, J.
2004-07-01
In the Solar Energy Lab of the University of Vigo a weather station has been in operation since October 2001. Two Kipp and Zonen pyranometers, one of them with a shade ring, have been measuring global and diffuse solar radiation. From these data of the years 2002 and 2003, the diffuse-to-global minute, hourly and daily correlations are obtained and shown in graphs. These correlations are also plotted together with other correlations referred in the literature for comparison. The graphs show the effect of the clear-cloudy behaviour of the solar radiation for short periods of time, effect that is not seen for larger periods of time as daily periods. (Author)
International Nuclear Information System (INIS)
2013-01-01
The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter
International Nuclear Information System (INIS)
Seierstad, Therese; Roe, Kathrine; Olsen, Dag Rune
2007-01-01
Background and purpose: To examine whether in vivo proton magnetic resonance spectroscopy ( 1 H MRS) and diffusion-weighted magnetic resonance imaging (DW-MRI) can monitor radiation-induced changes in HT29 xenografts in mice. Materials and methods: HT29 xenografts in mice received a dose of 15 Gy. In vivo 1 H MRS and DW-MRI were acquired pretreatment and 1, 3, 6 and 10 days post-irradiation. After imaging, tumors were excised for histological analysis. The amounts of necrosis, fibrosis and viable cells in the cross sections were scored and compared to changes in apparent diffusion coefficient (ADC) and choline/water ratio. Results: Radiation-induced necrosis in the xenografts was observed as increased tumor ADC. In-growth of fibrosis three days post-irradiation restricting water mobility was accompanied by decreased tumor ADC. Choline/water ratio correlated with metabolic activity and tumor growth. Conclusions: ADC and choline/water ratio assessed by in vivo DW-MRI and 1 H MRS depicts radiation-induced changes in HT29 xenografts following irradiation
Energy Technology Data Exchange (ETDEWEB)
McDonough, J.M.; Menguc, M.P.; Mukerji, S.; Swabb, S.; Manickavasagam, S.; Ghosal, S.
1995-12-31
In this paper, we introduce a methodology to characterize soot volume fraction fluctuations in turbulent diffusion flames via chaotic maps. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames is deterministic in nature, rather than statistical. Out objective is to develop models to mimic these fluctuations. The models will be used eventually in comprehensive algorithms to study the true physics of turbulent flames and the interaction of turbulence with radiation. To this extent, we measured the time series of soot scattering coefficient in an ethylene diffusion flame from light scattering experiments. Following this, corresponding power spectra and delay maps were calculated. It was shown that if the data were averaged, the characteristics of the fluctuations were almost completely washed out. The psds from experiments were successfully modeled using a series of logistic maps.
International Nuclear Information System (INIS)
Chapman, Christopher H.; Nagesh, Vijaya; Sundgren, Pia C.; Buchtel, Henry; Chenevert, Thomas L.; Junck, Larry; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue
2012-01-01
Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results: In both structures, longitudinal diffusivity (λ ‖ ) decreased and perpendicular diffusivity (λ ⊥ ) increased after RT, with early changes correlating to later changes (p ⊥ at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in λ ⊥ at 3 and 6 weeks (p ‖ (30 weeks, p ‖ changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.
Energy Technology Data Exchange (ETDEWEB)
Maruyama, S.; Aihara, T. [Tohoku University, Sendai (Japan). Institute of Fluid Sceince
1993-10-25
A radiation light tracking method was used to derive shape factors of arbitrary axisymmetric bodies consisted of specular and diffuse surfaces or an annular face element as a composite surface of the former surfaces. This paper illustrates the summary of an analytical method to calculate radiation heat transfer amount of these bodies using the shape factors, and describes the following matters: The difference between the shape factor obtained by applying this method to the inner face of a cylindrical body and conventional analytical solution can be reduced by increasing the number of splits in outgoing light. The numerical solution from this method on radiation heat transfer amount in the particular body agrees well with the conventional analytical solution. Radiation heat transfer amount when the specular reflectivity was increased either increases or decreases depending on the face shape, not necessarily changing monotonously. The paper further describes briefly a composite heat transfer analysis applied to a silicon crystal growing equipment using the Czochralski method, the analysis combining a radiation heat transfer analysis that splits the equipment interior into 88 annular elements with a general purpose heat transfer analysis. 13 refs., 11 figs., 1 tab.
International Nuclear Information System (INIS)
Solovetskii, Yu.I.; Miroshinichenko, I.I.; Lunin, V.V.
1993-01-01
Radiation-thermal damage of the surface and the active metal phases of hydrodesulfurization Ni-Mo/Al 2 O 3 catalysts by a fast electron beam of up to 2.0 MeV energy was studied. UV-Vis diffuse reflectance spectra of the industrial and model coked systems after radiation-thermal treatment were measured. 14 refs., 2 figs
Some results of radiative balance in atmospheres with clouds
International Nuclear Information System (INIS)
Anduckia Avila, Juan Carlos; Pelkowski, Joaquin
2000-01-01
Vertical profiles of temperature for a semi grey three-Layer atmosphere are established using a radiative equilibrium condition. The approximation contains the greenhouse effect, scattering by clouds in one direction and isotropic diffuse reflection at the planet's surface. Absorption of short- wave radiation is also considered in one of the three layers. Similar models are contained therein
Energy Technology Data Exchange (ETDEWEB)
Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu [Department of Mechanical Engineering, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata-700 107, West Bengal (India); Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)
2016-07-12
An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.
Nonadiabatic charged spherical evolution in the postquasistatic approximation
International Nuclear Information System (INIS)
Rosales, L.; Barreto, W.; Peralta, C.; Rodriguez-Mueller, B.
2010-01-01
We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in general relativity. The numerical implementation of our approach leads to a solver which is globally second-order convergent. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming-out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstroem exterior solution. Two models are considered: (i) a Schwarzschild-like shell in the diffusion limit; and (ii) a Schwarzschild-like interior in the free-streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming-out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.
Kajino, Mizuo; Ueda, Hiromasa; Han, Zhiwei; Kudo, Rei; Inomata, Yayoi; Kaku, Hidenori
2017-12-01
The interactions of aerosol-radiation-stratification-turbulence-cloud processes during a severe haze event in Beijing in January 2013 were studied using a numerical model. For the clear days, solar radiation flux was reduced by approximately 15% and surface temperature was slightly decreased from 0 to 0.5 K throughout the day and night, except for a 1.4 K decrease around sunrise when fog was presented. The longwave radiation cooling was intensified by the fog or drizzle droplets near the top of the fog layer. Thus, in Beijing, both in the daytime and at night, the surface air temperature was decreased by air pollutants. In the presence of the low-level stratus and light precipitation, the modification of meteorology by aerosols was amplified and changed the wind speed and direction much more significantly compared to clear days. The non-linear effect (or positive feedback) of pollutant emission control on the surface air concentration was newly assessed―severe air pollution leads to the intensification of stable stratification near the surface at night and delays the evolution of the mixing layer, which in turn causes more severe air pollution. The non-linear effect was not significant for the current emission levels in the current case, approximately 10%. In another word, the mixing ratio of aerosols became higher by 10% due to their radiation effects.
International Nuclear Information System (INIS)
Park, Mun-Soo; Na, Inmook; Wie, Chu R.
2005-01-01
n-channel power vertical double-diffused metal-oxide-semiconductor field-effect-transistor (VDMOSFET) devices were subjected to a high electric field stress or to a x-ray radiation. The current-voltage and capacitance-voltage measurements show that the channel-side interface and the drain-side interface are affected differently in the case of high electric field stress, whereas the interfaces are nearly uniformly affected in the case of x-ray radiation. This paper also shows that for the gated diode structure of VDMOSFET, the direct-current current-voltage technique measures only the drain-side interface; the subthreshold current-voltage technique measures only the channel-side interface; and the capacitance-voltage technique measures both interfaces simultaneously and clearly distinguishes the two interfaces. The capacitance-voltage technique is suggested to be a good quantitative method to examine both interface regions by a single measurement
Energy Technology Data Exchange (ETDEWEB)
List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Kauczor, Joanna; Norman, Patrick, E-mail: panor@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, Linköping SE 58183 (Sweden); Saue, Trond [Laboratoire de Chimie et Physique Quantiques, UMR 5626—CNRS/Université Toulouse III (Paul Sabatier), 118 route de Narbonne, F-31062 Toulouse Cedex (France)
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
International Nuclear Information System (INIS)
Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.
2004-01-01
The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization
Wan, Qi; Wang, Shiyang; Zhou, Jiaxuan; Zou, Qiao; Deng, Yingshi; Wang, Shouyang; Zheng, Xiaoying; Li, Xinchun
2016-06-01
To investigate the potential of diffusion tensor imaging (DTI) and T2 measurements in the evaluation of radiation-induced peripheral nerve injury (RIPNI). RIPNI was produced in a randomly selected side of sciatic nerve in each of 21 rabbits while the contralateral side served as the control. The limb function and MR parameters were evaluated over a 4-month period. Fractional anisotropy (FA), axial diffusivity (λ∥ ), radial diffusivity (λ⊥ ) and T2 values were obtained using 3T MR for quantitative analysis. Two animals were randomly killed for histological evaluation at each timepoint. The T2 value of irradiated nerve increased at 1 day (63.95 ± 15.60, P = 0.012) and was restored at 1 month (52.34 ± 5.38, P = 0.105). It increased progressively at 2 to 4 months (60.39 ± 10.60, 66.96 ± 6.08, 75.51 ± 7.39, all P evaluate RIPNI compared with T2 measurements. FA and λ⊥ are promising quantitative indices in monitoring RIPNI. J. Magn. Reson. Imaging 2016;43:1492-1499. © 2015 Wiley Periodicals, Inc.
Measurement of radiation-enhanced diffusion of La in single crystal thin film CeO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Pappas, Harrison K. [Department of Nuclear, Radiological, and Plasma Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Heuser, Brent J., E-mail: bheuser@illinois.ed [Department of Nuclear, Radiological, and Plasma Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Strehle, Melissa M. [Department of Nuclear, Radiological, and Plasma Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)
2010-10-15
The diffusion of La, a trivalent cation dopant, actinide surrogate, and high-yield fission product, in CeO{sub 2}, a UO{sub 2} nuclear fuel surrogate, during 1.8 MeV Kr{sup +} ion bombardment over a temperature range from 673 K to 1206 K has been measured with secondary ion mass spectroscopy. The diffusivity under these irradiation conditions has been analyzed with a model based on a combination of sink-limited and recombination-limited kinetics. This analysis yielded a cation vacancy migration energy of E{sub m}{sup v} {approx} 0.4 eV below {approx}800 K, were recombination-limited kinetics dominated the behavior. The thermal diffusivity of La in the same system was measured over a range of 873-1073 K and was characterized by an activation enthalpy of E{sub a}=E{sub f}{sup v}+E{sub m}{sup v{approx}}1.4eV. The measurement of both the migration enthalpy and total activation enthalpy separately allows the vacancy formation enthalpy on the cation sublattice to be determined; E{sub f}{sup v} {approx} 1 eV. The mixing parameter under energetic heavy-ion bombardment at room temperature was measured as well and found to be {approx}4 x 10{sup -5} nm{sup 5}/eV.
Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.
2015-12-01
Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at
International Nuclear Information System (INIS)
Ginsburg, C.A.
1980-01-01
In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)
Energy Technology Data Exchange (ETDEWEB)
Yang, Y; Cao, M; Kamrava, M; Low, D; Sheng, K; Lamb, J; Agazaryan, N; Thomas, D; Hu, P [UCLA, Los Angeles, CA (United States)
2016-06-15
Purpose: Diffusion weighted MRI (DWI) is a promising imaging technique for early prediction of tumor response to radiation therapy. A recently proposed longitudinal DWI strategy using a Co-60 MRI guided RT system (MRIgRT) may bring functional MRI guided adaptive radiation therapy closer to clinical utility. We report our preliminary results of using this longitudinal DWI approach performed on the MRIgRT system for predicting the response of sarcoma patient to preop RT. Methods: Three sarcoma patients who underwent fractionated IMRT were recruited in this study. For all three patients DWI images were acquired immediately following his/her treatment. For each imaging session, ten slices were acquired interleaved with the b values covering the gross tumor volume (GTV). The diffusion images were processed to obtain the ADC maps using standard exponential fitting for each voxel. Regions of interest were drawn in the tumor on the diffusion images based on each patient’s clinical GTV contours. Each patient subsequently underwent surgery and the tumor necrosis score was available from standard pathology. The ADC values for each patient were compared to the necrosis scores to assess the predictive value of our longitudinal DWI for tumor response. Results: Each patient underwent 3 to 5 diffusion MRI scans depending on their treatment length. Patient 1 had a relatively unchanged ADC during the course of RT and a necrosis score of 30% at surgery. For patient 2, the mean ADC values decreased from 1.56 × 10-3 to 1.12 × 10-3 mm2/s and the patient’s necrosis score was less than 10%. Patient 3 had a slight increase in the ADC values from 0.59 × 10-3 to 0.71 × 10-3 mm2/s and patient’s necrosis score was 50%. Conclusion: Based on limited data from 3 patients, our longitudinal changes in tumor ADC assessed using the MRIgRT system correlated well with pathology results.
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Aseev, N.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Wang, D.
2017-12-01
Ring current and radiation belts are key elements in the global dynamics of the Earth's magnetosphere. Comprehensive mathematical models are useful tools that allow us to understand the multiscale dynamics of these charged particle populations. In this work, we present results of simulations of combined ring current - radiation belt electron dynamics using the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. The VERB-4D code solves the modified Fokker-Planck equation including convective terms and models simultaneously ring current (1 - 100 keV) and radiation belt (100 keV - several MeV) electron dynamics. We apply the code to the number of geomagnetic storms that occurred in the past, compare the results with different satellite observations, and show how low-energy particles can affect the high-energy populations. Particularly, we use data from Polar Operational Environmental Satellite (POES) mission that provides a very good MLT coverage with 1.5-hour time resolution. The POES data allow us to validate the approach of the VERB-4D code for modeling MLT-dependent processes such as electron drift, wave-particle interactions, and magnetopause shadowing. We also show how different simulation parameters and empirical models can affect the results, making a particular emphasis on the electric and magnetic field models. This work will help us reveal advantages and disadvantages of the approach behind the code and determine its prediction efficiency.
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Michaud, Georges; Richer, Jacques
2015-01-01
This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling. In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...
Enhanced diffusion under alpha self-irradiation in spent nuclear fuel: Theoretical approaches
International Nuclear Information System (INIS)
Ferry, Cecile; Lovera, Patrick; Poinssot, Christophe; Garcia, Philippe
2005-01-01
Various theoretical approaches have been developed in order to estimate the enhanced diffusion coefficient of fission products under alpha self-irradiation in spent nuclear fuel. These simplified models calculate the effects of alpha particles and recoil atoms on mobility of uranium atoms in UO 2 . They lead to a diffusion coefficient which is proportional to the volume alpha activity with a proportionality factor of about 10 -44 (m 5 ). However, the same models applied for fission lead to a radiation-enhanced diffusion coefficient which is approximately two orders of magnitude lower than values reported in literature for U and Pu. Other models are based on an extrapolation of radiation-enhanced diffusion measured either in reactors or under heavy ion bombardment. These models lead to a proportionality factor between the alpha self-irradiation enhanced diffusion coefficient and the volume alpha activity of 2 x 10 -41 (m 5 )
International Nuclear Information System (INIS)
Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Choi, Yunseon; Jung, Sang Hoon; Paik, Seung Woon; Kim, Seong Hyun; Jeong, Woo Kyoung; Kim, Young Kon
2014-01-01
Purpose: We investigated the role of diffusion-weighted magnetic resonance imaging (DW MRI) as a response evaluation indicator for hepatocellular carcinoma (HCC) treated with radiation therapy (RT). Methods and Materials: Inclusion criteria of this retrospective study were DW MRI acquisition within 1 month before and 3 to 5 months after RT. In total, 48 patients were enrolled. Two radiation oncologists measured the apparent diffusion coefficient (ADC). Possible predictive factors, including alteration of the ADC value before and 3 to 5 month after RT, in relation to local progression-free survival (LPFS) were analyzed and compared. Results: Three months after RT, 6 patients (12.5%) showed a complete response, and 27 patients (56.3%) showed a partial response when evaluated using the modified response evaluation criteria in solid tumors (mRECIST). The average ADC ± SD values were 1.21 ± 0.27 ( × 10 −3 mm 2 /s) before and 1.41 ± 0.36 ( × 10 −3 mm 2 /s) after RT (P<.001). The most significant prognostic factor related to LPFS was mRECIST (P<.001). The increment of ADC value (≥20%) was also a significant factor (P=.02), but RECIST (version 1.1; P=.11) was not. When RECIST was combined with the increment of ADC value (≥20%), the LPFS rates were significantly different between the groups (P=.004), and the area under the curve value (0.745) was comparable with that of mRECIST (0.765). Conclusions: ADC value change before and after RT in HCC was closely related to LPFS. ADC value and RECIST may substitute for mRECIST in patients who cannot receive contrast agents
Energy Technology Data Exchange (ETDEWEB)
Schmeel, Frederic Carsten; Simon, Birgit; Luetkens, Julian Alexander; Traeber, Frank; Schmeel, Leonard Christopher; Schild, Hans Heinz; Hadizadeh, Dariusch Reza [University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universitaet Bonn, Department of Radiology, Bonn (Germany); Sabet, Amir [University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universitaet Bonn, Department of Nuclear Medicine, Bonn (Germany); University Hospital Essen, Universitaet Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany); Ezziddin, Samer [University Hospital Bonn, Rheinische-Friedrich-Wilhelms-Universitaet Bonn, Department of Nuclear Medicine, Bonn (Germany); University Hospital Saarland, Universitaet des Saarlandes, Department of Nuclear Medicine, Homburg (Germany)
2017-03-15
To investigate whether quantifications of apparent diffusion coefficient (ADC) on diffusion-weighted imaging (DWI) can predict overall survival (OS) in patients with liver-predominant metastatic colorectal cancer (CRC) following selective internal radiation therapy with {sup 90}Yttrium-microspheres (SIRT). Forty-four patients underwent DWI 19 ± 16 days before and 36 ± 10 days after SIRT. Tumour-size and intratumoral minimal ADC (minADC) values were measured for 132 liver metastases on baseline and follow-up DWI. Optimal functional imaging response to treatment was determined by receiver operating characteristics and defined as ≥22 % increase in post-therapeutic minADC. Survival analysis was performed with the Kaplan-Meier method and Cox-regression comparing various variables with potential impact on OS. Median OS was 8 months. The following parameters were significantly associated with median OS: optimal functional imaging response (18 vs. 5 months; p < 0.001), hepatic tumour burden <50 % (8 vs. 5 months; p = 0.018), Eastern Cooperative Oncology Group performance scale <1 (10 vs. 4 months; p = 0.012) and progressive disease according to Response and Evaluation Criteria in Solid Tumours (8 vs. 3 months; p = 0.001). On multivariate analysis, optimal functional imaging response and hepatic tumour burden remained independent predictors of OS. Functional imaging response assessment using minADC changes on DWI may predict survival in CRC shortly after SIRT. (orig.)
Approximating distributions from moments
Pawula, R. F.
1987-11-01
A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.
A method for optimizing the cosine response of solar UV diffusers
Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki
2013-07-01
Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.
Energy Technology Data Exchange (ETDEWEB)
Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-09
We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.
International Nuclear Information System (INIS)
Chang, Chong
2016-01-01
We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.
Directory of Open Access Journals (Sweden)
Z. Abbas
Full Text Available An analysis is carried out to study the generalized slip condition and MHD flow of a nanofluid due to a contracting cylinder in the presence of non-linear radiative heat transfer using Buongiorno’s model. The Navier-Stokes along with energy and nanoparticle concentration equations is transformed to highly nonlinear ordinary differential equations using similarity transformations. These similar differential equations are then solved numerically by employing a shooting technique with Runge–Kutta–Fehlberg method. Dual solutions exist for a particular range of the unsteadiness parameter. The physical influence of the several important fluid parameters on the flow velocity, temperature and nanoparticle volume fraction is discussed and shown through graphs and table in detail. The present study indicates that as increase of Brownian motion parameter and slip velocity is to decrease the nanoparticle volume fraction. Keywords: Nanofluid, Contracting cylinder, Nonlinear thermal radiation, Generalized slip condition, Numerical solution
International Nuclear Information System (INIS)
Wilkens, A.-B.
1979-02-01
The radiological consequences of a discharge of Cs-137 into the air in connection with the tranportation on land of radioactive material. The accident is supposed to take place during the vegetation period. Possible exposure ways are mapped out and radiation doses are calculated for acute and chromic phases, respectively. The highest doses were obtained by the consumption of food which has been produced on contaminated areas during the year of discharge. (E.R.)
CONTRIBUTIONS TO RATIONAL APPROXIMATION,
Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)
Approximation techniques for engineers
Komzsik, Louis
2006-01-01
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Expectation Consistent Approximate Inference
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2005-01-01
We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...
International Nuclear Information System (INIS)
Mugnai, A.; Petroncelli, P.; Fiocco, G.
1979-01-01
The diffusion of solar radiation by atmospheric molecules and aerosols and by ground albedo affects the photodissociation rates of atmospheric species relevant to the ozone chemistry. In this paper, a previous investigation on the photodissociation of O 3 is extended to NO 2 , NO 3 , HNO 3 , H 2 O 2 . Because of the different character of the absorption spectra of these species, the behaviour of photodissociation profiles with height and their sensitivity to such factors as ground albedo, aerosol loads, solar zenith angle are somewhat different. The results show that the presence of the aerosols usually enhances the photodissociation in the upper troposphere and in the stratosphere, because of scattering, but tends to reduce it at low heights because of the increased extinction. Enhancements in the photodissociation coefficients are as high as 20 to 40% for low values of the albedo and large aerosol loads such as those obtained after a volcanic eruption. On the other hand, at large values of the albedo, the effect of aerosols is mainly in attenuating the radiation going into and coming from the ground and their presence can lead to reduced photolysis even in the stratosphere. (author)
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
Quantum tunneling beyond semiclassical approximation
International Nuclear Information System (INIS)
Banerjee, Rabin; Majhi, Bibhas Ranjan
2008-01-01
Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.
Pade approximant calculations for neutron escape probability
International Nuclear Information System (INIS)
El Wakil, S.A.; Saad, E.A.; Hendi, A.A.
1984-07-01
The neutron escape probability from a non-multiplying slab containing internal source is defined in terms of a functional relation for the scattering function for the diffuse reflection problem. The Pade approximant technique is used to get numerical results which compare with exact results. (author)
International Nuclear Information System (INIS)
Fuller, Lillian M.; Krasin, Matthew J.; Velasquez, William S.; Allen, Pamela K.; McLaughlin, Peter; Rodriguez, M. Alma; Hagemeister, Fredrick B.; Swan, Forrest; Cabanillas, Fernando; Palmer, Judy L.; Cox, James D.
1995-01-01
Purpose: The purpose of this study was to evaluate the possible effect of adjunctive involved field (IF) radiotherapy on long-term local control for patients with Ann Arbor Stage I-III diffuse large cell lymphoma (DLCL) who achieved a complete remission on a combined modality program which included cyclophosphamide, doxorubicin, vincristine, prednisone, and Bleomycin (CHOP-Bleo). Methods and Materials: One hundred and ninety patients with Ann Arbor Stage I-III DLCL were treated with CHOP-Bleo and radiotherapy. Analyses were undertaken to determine (a) response to treatment according to stage, extent of maximum local disease, and irradiation dose either < 40 Gy or ≥ 40 Gy and (b) relapse patterns. Results: A complete remission (CR) was achieved in 162 patients. Among patients who achieved a CR, local control was better for those who received tumor doses of ≥ 40 Gy (97%) than for those who received < 40 Gy (83%) (p = 0.002.) Among those with extensive local disease, the corresponding control rates were 88% and 71%, respectively. A study of distant relapse patterns following a CR showed that the first relapse usually involved an extranodal site. Conclusion: Radiotherapy was an effective adjunctive treatment to CHOP-Bleo for patients with stage I-III DLCL who achieved a CR. Patterns of relapse suggested that total nodal irradiation (TNI) possibly could have benefited a small subset of patients
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximate and renormgroup symmetries
International Nuclear Information System (INIS)
Ibragimov, Nail H.; Kovalev, Vladimir F.
2009-01-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximations of Fuzzy Systems
Directory of Open Access Journals (Sweden)
Vinai K. Singh
2013-03-01
Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions
Potvin, Guy
2015-10-01
We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.
Energy Technology Data Exchange (ETDEWEB)
Roy, Nirupam [Department of Physics and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India); Frank, Stephan; Mathur, Smita [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Carilli, Christopher L. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Wolfe, Arthur M., E-mail: nroy@physics.iisc.ernet.in [Department of Physics and Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States)
2017-01-10
The far-infrared [C ii] 158 μ m fine structure transition is considered to be a dominant coolant in the interstellar medium (ISM). For this reason, under the assumption of a thermal steady state, it may be used to infer the heating rate and, in turn, the star formation rate (SFR) in local as well as in high redshift systems. In this work, radio and ultraviolet observations of the Galactic ISM are used to understand whether C ii is indeed a good tracer of the SFR. For a sample of high Galactic latitude sightlines, direct measurements of the temperature indicate the presence of C ii in both the cold and the warm phases of the diffuse interstellar gas. The cold gas fraction (∼10%–50% of the total neutral gas column density) is not negligible even at high Galactic latitude. It is shown that to correctly estimate the SFR, C ii cooling in both phases should hence be considered. The simple assumption, that the [C ii] line originates only from either the cold or the warm phase, significantly underpredicts or overpredicts the SFR, respectively. These results are particularly important in the context of Damped Ly α systems for which a similar method is often used to estimate the SFR. The derived SFRs in such cases may not be reliable if the temperature of the gas under consideration is not constrained independently.
Coaxial nuclear radiation detector with deep junction and radial field gradient
International Nuclear Information System (INIS)
Hall, R.N.
1979-01-01
Germanium radiation detectors are manufactured by diffusion lithium into high purity p-type germanium. The diffusion is most readily accomplished from a lithium-lead-bismuth alloy at approximately 430 0 and is monitored by a quartz half cell containing a standard composition of this alloy. Detectors having n-type cores may be constructed by converting high purity p-type germanium to n-type by a lithium diffusion and subsequently diffusing some of the lithium back out through the surface to create a deep p-n junction. Coaxial germanium detectors comprising deep p-n junctions are produced by the lithium diffusion process
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
International Nuclear Information System (INIS)
Knobloch, A.F.
1980-01-01
A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.
1978-01-01
Blood cells from four normal volunteers were cultured in diffusion chambers (DC), made of Millipore (MDC) or Nuclepore (NDC) filters, in the peritoneal cavities of whole body X-irradiated (700 rad) mice. The total nucleated cell recovery from the two types of DC over 18 days indicates that the cells in DC persist and proliferate. The mature neutrophilic cells, metamyelocytes (M/sub 5/) + band forms (M/sub 6/) + segmented forms (M/sub 7/), survived with T/sup 1///sub 2/ of 29 and 34 h in MDC and NDC, respectively. The reduction of the cells in the DC was surmised to be due to degeneration and death of the M/sub 7/. The /sup 3/H-diisopropylfluorophosphate (/sup 3/HDFP) labeled M/sub /sub 6/+/sub 7// survival in MDC was slightly shorter than that of unlabeled cells, which may be explained on the basis of the loss of /sup 3/HDFP (5.1%/day) from the cells. The eosinophils survived with an average T/sup 1///sub 2/ of 7.2 days (range 4.8 to 9.6), and the results were comparable in both types of DC. Formation of myeloblasts, promyelocytes, and neutrophilic, eosinophilic and basophilic myelocytes, occasional megakaryocytes and rare normoblasts in DC indicated that the normal human blood contains progenitors (pluripotent and/or committed stem cells) of hemopoietic cells. The neutrophilic cell recovery pattern was similar from both types of DC, but the total number recovered was always greater from NDC than from MDC.
International Nuclear Information System (INIS)
Hein, M.; Otto, A.; Dumas, P.; Williams, G. P.
1999-01-01
Due to its intrinsic high brightness, high stability, and proportionality to the stored electron beam current, synchrotrons IR spectroscopy has revealed itself as an unique tool to experimentally test a physical phenomenon occurring at metallic interfaces, the theory for which was motivated by previous observations. Any adsorbate induces inelastic scattering of the conduction electrons, which causes a broadband IR reflectance change, and was predicted to induce a concomitant DC resistivity change. By choosing a well ordered single crystal thin film of Cu(111), we have checked that the DC resistivity change, and the asymptotic limit of the IR reflectance change are linearly dependent, but independent of the nature of the adsorbate. Coadsorption experiments which have been used to modify the induced density of states at the Fermi level, have further demonstrated that the friction coefficient, which is responsible for the elastic scattering phenomenon, is chemically specific. This article describes the use of synchrotron radiation as an absolute source and its application to the study of dynamics of adsorbates on surfaces
International Nuclear Information System (INIS)
Pujol Mora, J.
1999-01-01
The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es
International Nuclear Information System (INIS)
Davidson, J.H.
1986-01-01
The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)
On Covering Approximation Subspaces
Directory of Open Access Journals (Sweden)
Xun Ge
2009-06-01
Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Prestack wavefield approximations
Alkhalifah, Tariq
2013-01-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
DEFF Research Database (Denmark)
Madsen, Rasmus Elsborg
2005-01-01
The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...
Approximation by Cylinder Surfaces
DEFF Research Database (Denmark)
Randrup, Thomas
1997-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
Directory of Open Access Journals (Sweden)
I.L. Animasaun
2016-06-01
Full Text Available This article presents the effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow toward a stagnation point. It is assumed that there exists a kind of chemical reaction between chemical species A and B. The diffusion coefficients of the two chemical species in the viscoelastic fluid flow are unequal. Since chemical species B is a catalyst at the horizontal surface, hence homogeneous and heterogeneous schemes are of the isothermal cubic autocatalytic reaction and first order reaction respectively. The transformed governing equations are solved numerically using Runge–Kutta integration scheme along with Newton’s method. Good agreement is obtained between present and published numerical results for a limiting case. The influence of some pertinent parameters on skin friction coefficient, local heat transfer rate, together with velocity, induced magnetic field, temperature, and concentration profiles is illustrated graphically and discussed. Based on all of these assumptions, results indicate that the effects of induced magnetic and viscoelastic parameters on velocity, transverse velocity and velocity of induced magnetic field are almost the same but opposite in nature. The strength of heterogeneous reaction parameter is very helpful to reduce the concentration of bulk fluid and increase the concentration of catalyst at the surface.
Energy Technology Data Exchange (ETDEWEB)
Xu, Yong-Gang; Qi, Shu-Nan; Wang, Shu-Lian; Liu, Yue-Ping; Wang, Wei-Hu; Jin, Jing; Song, Yong-Wen; Ren, Hua; Fang, Hui [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); He, Xiao-Hui; Dong, Mei [Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Chen, Bo; Lu, Ning-Ning; Li, Ning; Tang, Yuan; Tang, Yu; Dai, Jian-Rong [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Li, Ye-Xiong, E-mail: yexiong12@163.com [Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)
2016-10-01
Purpose: To assess the dosimetric benefit, prognosis, and toxicity of intensity modulated radiation therapy (IMRT) for early-stage, diffuse large B-cell lymphoma of Waldeyer ring (WR-DLBCL). Methods and Materials: Sixty-one patients with early-stage WR-DLBCL who received chemotherapy followed by IMRT were retrospectively reviewed. Dosimetric parameters for the target volume and critical normal structures were evaluated, and survival was calculated. Linear regression analysis was used to assess the effect of the mean dose (D{sub mean}) to the parotid glands on xerostomia. Results: The median conformity index and homogeneity index of the planning target volume (PTV) were 0.83 and 0.90, respectively, demonstrating very good coverage of the target volume. The mean dose to the parotid glands was 24.9 Gy. The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) were 94.7%, 93.1%, and 98.3%, respectively. Early and late toxicities were mild, and no patient experienced late grade ≥3 toxicities. The D{sub mean} to the parotid glands had a linear correlation with late grade ≥2 xerostomia. Conclusions: IMRT after chemotherapy can provide excellent dose conformity and achieve favorable survival and LRC with mild toxicities in patients with early-stage WR-DLBCL. Dose constraints for the parotid glands should be limited to <24 Gy for early-stage WR-DLBCL.
International Nuclear Information System (INIS)
Shi Run; Ni, Binbin; Gu Xudong; Zhao Zhengyu; Zhou Chen
2012-01-01
The resonance regions for resonant interactions of radiation belt electrons with obliquely propagating whistler-mode chorus waves are investigated in detail in the Dungey magnetic fields that are parameterized by the intensity of uniform southward interplanetary magnetic field (IMF) Bz or, equivalently, by the values of D=(M/B z,0 ) 1/3 (where M is the magnetic moment of the dipole and B z,0 is the uniform southward IMF normal to the dipole’s equatorial plane). Adoption of background magnetic field model can considerably modify the determination of resonance regions. Compared to the results for the case of D = 50 (very close to the dipole field), the latitudinal coverage of resonance regions for 200 keV electrons interacting with chorus waves tends to become narrower for smaller D-values, regardless of equatorial pitch angle, resonance harmonics, and wave normal angle. In contrast, resonance regions for 1 MeV electrons tend to have very similar spatial lengths along the field line for various Dungey magnetic field models but cover different magnetic field intervals, indicative of a strong dependence on electron energy. For any given magnetic field line, the resonance regions where chorus-electron resonant interactions can take place rely closely on equatorial pitch angle, resonance harmonics, and kinetic energy. The resonance regions tend to cover broader latitudinal ranges for smaller equatorial pitch angles, higher resonance harmonics, and lower electron energies, consistent with the results in Ni and Summers [Phys. Plasmas 17, 042902, 042903 (2010)]. Calculations of quasi-linear bounce-averaged diffusion coefficients for radiation belt electrons due to nightside chorus waves indicate that the resultant scattering rates differ from using different Dungey magnetic field models, demonstrating a strong dependence of wave-induced electron scattering effect on the adoption of magnetic field model. Our results suggest that resonant wave-particle interaction processes
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
An improved saddlepoint approximation.
Gillespie, Colin S; Renshaw, Eric
2007-08-01
Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2011-01-01
Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.
Topology, calculus and approximation
Komornik, Vilmos
2017-01-01
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...
Approximate Bayesian recursive estimation
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav
2014-01-01
Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf
Approximating Preemptive Stochastic Scheduling
Megow Nicole; Vredeveld Tjark
2009-01-01
We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...
Optimization and approximation
Pedregal, Pablo
2017-01-01
This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.
Adaptive weak approximation of reflected and stopped diffusions
Bayer, Christian; Szepessy, Anders; Tempone, Raul
2010-01-01
, Pacchiarotti and Sartoretto [Costantini et al., SIAM J. Appl. Math., 58(1):73-102, 1998], based on which we introduce two new algorithms. The first one uses a correction term from the representation in order to obtain a higher order of convergence
Curvo-Semedo, Luís; Lambregts, Doenja M J; Maas, Monique; Thywissen, Thomas; Mehsen, Rana T; Lammering, Guido; Beets, Geerard L; Caseiro-Alves, Filipe; Beets-Tan, Regina G H
2011-09-01
To determine diagnostic performance of diffusion-weighted (DW) magnetic resonance (MR) imaging for assessment of complete tumor response (CR) after combined radiation therapy with chemotherapy (CRT) in patients with locally advanced rectal cancer (LARC) by means of volumetric signal intensity measurements and apparent diffusion coefficient (ADC) measurements and to compare the performance of DW imaging with that of T2-weighted MR volumetry. A retrospective analysis of 50 patients with LARC, for whom clinical and imaging data were retrieved from a previous imaging study approved by the local institutional ethical committee and for which all patients provided informed consent, was conducted. Patients underwent pre- and post-CRT standard T2-weighted MR and DW MR. Two independent readers placed free-hand regions of interest (ROIs) in each tumor-containing section on both data sets to determine pre- and post-CRT tumor volumes and tumor volume reduction rates (volume). ROIs were copied to an ADC map to calculate tumor ADCs. Histopathologic findings were the standard of reference. Receiver operating characteristic (ROC) curves were generated to compare performance of T2-weighted and DW MR volumetry and ADC. The intraclass correlation coefficient (ICC) was used to evaluate interobserver variability and the correlation between T2-weighted and DW MR volumetry. Areas under the ROC curve (AUCs) for identification of a CR that was based on pre-CRT volume, post-CRT volume, and volume, respectively, were 0.57, 0.70, and 0.84 for T2-weighted MR versus 0.63, 0.93, and 0.92 for DW MR volumetry (P = .15, .02, .42). Pre- and post-CRT ADC and ADC AUCs were 0.55, 0.54, and 0.51, respectively. Interobserver agreement was excellent for all pre-CRT measurements (ICC, 0.91-0.96) versus good (ICC, 0.61-0.79) for post-CRT measurements. ICC between T2-weighted and DW MR volumetry was excellent (0.97) for pre-CRT measurements versus fair (0.25) for post-CRT measurements. Post-CRT DW MR
Quantum diffusion of light interstitials in metals
International Nuclear Information System (INIS)
McMullen, T.; Bergersen, B.
1978-01-01
A quantum theory of diffusion of self-trapped light interstitials in metals is presented. The theory encompasses both coherent and incoherent tunneling, but the approximation used neglects the dependence of the interstitial transfer matrix element on the vibrational state of the crystal. The coherent tunneling contribution is estimated by fitting the incoherent diffusion rate to experimental data for hydrogen and muon diffusion. It is predicted that coherent diffusion should be dominant below approximately 80 K for H in Nb and below approximately 190 K for μ + in Cu. Experimental verifications of these predictions would require high purity strain free samples and low concentrations of the diffusing species. (author)
Absence of saturation of void growth in rate theory with anisotropic diffusion
Hudson, T S; Sutton, A P
2002-01-01
We present a first attempt at solution the problem of the growth of a single void in the presence of anisotropically diffusing radiation induced self-interstitial atom (SIA) clusters. In order to treat a distribution of voids we perform ensemble averaging over the positions of centres of voids using a mean-field approximation. In this way we are able to model physical situations in between the Standard Rate Theory (SRT) treatment of swelling (isotropic diffusion), and the purely 1-dimensional diffusion of clusters in the Production Bias Model. The background absorption by dislocations is however treated isotropically, with a bias for interstitial cluster absorption assumed similar to that of individual SIAs. We find that for moderate anisotropy, unsaturated void growth is characteristic of this anisotropic diffusion of clusters. In addition we obtain a higher initial void swelling rate than predicted by SRT whenever the diffusion is anisotropic.
I. M. Levashkina; S. S. Aleksanin; S. V. Serebryakova; T. G. Gribanova
2017-01-01
To evaluate correlation between brain structural damages and radiation exposure level for the Chernobyl nuclear power plant accident liquidators, routine and diffusion tensor magnetic resonance imaging methods are efficient to visualize and evaluate those damages; it is also important to compare magnetic resonance imaging data of liquidators with results, received for people of the same age and the same stage of cerebral vascular disease (the discirculatory encephalopathy of I and II stage), ...
Cyclic approximation to stasis
Directory of Open Access Journals (Sweden)
Stewart D. Johnson
2009-06-01
Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.
International Nuclear Information System (INIS)
El Sawi, M.
1983-07-01
A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)
The relaxation time approximation
International Nuclear Information System (INIS)
Gairola, R.P.; Indu, B.D.
1991-01-01
A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs
Polynomial approximation on polytopes
Totik, Vilmos
2014-01-01
Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
International Nuclear Information System (INIS)
Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge
2010-01-01
Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.
International Nuclear Information System (INIS)
Moon, D. H.; Oh, S. J.; Park, S. W.; Hong, M. K.; Lee, C. H.; Kim, J. Z.; Park, S. J.; Lee, H. K.
2000-01-01
Intracoronary β-irradiation after rotational atherectomy may be a reasonable approach to prevent recurrent in-stent restenosis (ISR). This study was done to evaluate the feasibility and efficacy of β-radiation therapy with a 188 Re-MAG3-filled balloon following rotational atherectomy for ISR. Fifty consecutive patients with diffuse ISR (length >10 mm) in native coronary arteries underwent rotational atherectomy and adjunctive balloon angioplasty followed by β-irradiation using 188 Re-MAG3-filled balloon catheter. The radiation doses was 15 Gy at 1.0 mm deep into vessel wall. Mean length of the lesion and irradiated segment was 25.6±12.7 mm and 37.6±11.2 mm, respectively. The radiation was delivered successfully to all patients, with a mean irradiation time of 20.1±61 7 sec. No adverse event including myocardial infarction, death, or stent thrombosis occurred during the follow-up period (mean 10.3±3.7 mon) and non-target vessel revascularization was needed in one patient. Six-month binary angiographic restenosis rate was 10.4% (2 focal ISR and 3 edge restenosis) and loss index was 0.17±0.31. Irradiation using 188 Re-MAG3-filled balloon following rotational atherectomy for patients with diffuse ISR may improve the clinical and angiographic outcomes. Further prospective randomized trials are warranted to evaluate the synergistic effect of debulking and irradiation in patients with diffuse ISR
Energy Technology Data Exchange (ETDEWEB)
Moon, D. H.; Oh, S. J.; Park, S. W.; Hong, M. K.; Lee, C. H.; Kim, J. Z.; Park, S. J.; Lee, H. K. [College of Medicine, Ulsan Univ., Seoul (Korea, Republic of)
2000-07-01
Intracoronary {beta}-irradiation after rotational atherectomy may be a reasonable approach to prevent recurrent in-stent restenosis (ISR). This study was done to evaluate the feasibility and efficacy of {beta}-radiation therapy with a {sup 188}Re-MAG3-filled balloon following rotational atherectomy for ISR. Fifty consecutive patients with diffuse ISR (length >10 mm) in native coronary arteries underwent rotational atherectomy and adjunctive balloon angioplasty followed by {beta}-irradiation using {sup 188}Re-MAG3-filled balloon catheter. The radiation doses was 15 Gy at 1.0 mm deep into vessel wall. Mean length of the lesion and irradiated segment was 25.6{+-}12.7 mm and 37.6{+-}11.2 mm, respectively. The radiation was delivered successfully to all patients, with a mean irradiation time of 20.1{+-}61 7 sec. No adverse event including myocardial infarction, death, or stent thrombosis occurred during the follow-up period (mean 10.3{+-}3.7 mon) and non-target vessel revascularization was needed in one patient. Six-month binary angiographic restenosis rate was 10.4% (2 focal ISR and 3 edge restenosis) and loss index was 0.17{+-}0.31. Irradiation using {sup 188}Re-MAG3-filled balloon following rotational atherectomy for patients with diffuse ISR may improve the clinical and angiographic outcomes. Further prospective randomized trials are warranted to evaluate the synergistic effect of debulking and irradiation in patients with diffuse ISR.
Energy Technology Data Exchange (ETDEWEB)
Liu, Xin; Fang, Hui; Tian, Yuan; Wang, Wei-Hu; Song, Yong-Wen; Wang, Shu-Lian; Liu, Yue-Ping [Department of Radiation Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (China); He, Xiao-Hui; Dong, Mei [Department of Medical Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (China); Ren, Hua; Jin, Jing [Department of Radiation Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (China); Li, Ye-Xiong, E-mail: yexiong@yahoo.com [Department of Radiation Oncology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (China)
2016-06-01
Purpose: To evaluate the dosimetric superiority, efficacy, toxicity, and quality of life (QOL) data of intensity modulated radiation therapy (IMRT) in patients with primary gastric diffuse large B-cell lymphoma (PG-DLBCL). Methods and Materials: Forty-six consecutive patients with early-stage PG-DLBCL underwent IMRT after chemotherapy. The majority of patients (61.5%) were subclassified as the non-germinal center B cell–like subtype. Dosimetric parameters of the planning target volume (PTV) and organs at risk were assessed. Survival rates were depicted with the Kaplan-Meier method and compared with the log-rank test. Quality of life was evaluated using the QLQ-C30-STO22 questionnaires at the last follow-up contact. Results: The median PTV mean dose was 41.6 Gy. Only 0.73% of the PTV received <95% of the prescribed dose, indicating excellent target coverage. The median kidney V20 and liver V30 were 14.1% and 16.1%, respectively. The 5-year overall survival (OS), progression-free survival, and locoregional control rates for all patients were 80.4%, 75.0%, and 93.2%, respectively. Stage, lactate dehydrogenase level, and immunophenotype were significant prognostic factors for OS, and only stage was a significant factor for locoregional control. Consolidation IMRT in patients with complete response after chemotherapy resulted in significantly better OS and progression-free survival than salvage IMRT in patients with non-complete response. Two of 8 patients who had chronic liver disease experienced grade 4 or grade 5 acute hepatic failure after 4 to 5 cycles of rituximab-based chemotherapy and IMRT (40 Gy). No other serious acute or late toxicity was observed. The long-term global and functional QOL scales were excellent, with negligible symptom scales. Conclusions: Intensity modulated radiation therapy yielded excellent target coverage and critical tissue sparing and achieved favorable outcomes with acceptable toxicity and good long-term QOL in early-stage PG-DLBCL.
International Nuclear Information System (INIS)
Liu, Xin; Fang, Hui; Tian, Yuan; Wang, Wei-Hu; Song, Yong-Wen; Wang, Shu-Lian; Liu, Yue-Ping; He, Xiao-Hui; Dong, Mei; Ren, Hua; Jin, Jing; Li, Ye-Xiong
2016-01-01
Purpose: To evaluate the dosimetric superiority, efficacy, toxicity, and quality of life (QOL) data of intensity modulated radiation therapy (IMRT) in patients with primary gastric diffuse large B-cell lymphoma (PG-DLBCL). Methods and Materials: Forty-six consecutive patients with early-stage PG-DLBCL underwent IMRT after chemotherapy. The majority of patients (61.5%) were subclassified as the non-germinal center B cell–like subtype. Dosimetric parameters of the planning target volume (PTV) and organs at risk were assessed. Survival rates were depicted with the Kaplan-Meier method and compared with the log-rank test. Quality of life was evaluated using the QLQ-C30-STO22 questionnaires at the last follow-up contact. Results: The median PTV mean dose was 41.6 Gy. Only 0.73% of the PTV received <95% of the prescribed dose, indicating excellent target coverage. The median kidney V20 and liver V30 were 14.1% and 16.1%, respectively. The 5-year overall survival (OS), progression-free survival, and locoregional control rates for all patients were 80.4%, 75.0%, and 93.2%, respectively. Stage, lactate dehydrogenase level, and immunophenotype were significant prognostic factors for OS, and only stage was a significant factor for locoregional control. Consolidation IMRT in patients with complete response after chemotherapy resulted in significantly better OS and progression-free survival than salvage IMRT in patients with non-complete response. Two of 8 patients who had chronic liver disease experienced grade 4 or grade 5 acute hepatic failure after 4 to 5 cycles of rituximab-based chemotherapy and IMRT (40 Gy). No other serious acute or late toxicity was observed. The long-term global and functional QOL scales were excellent, with negligible symptom scales. Conclusions: Intensity modulated radiation therapy yielded excellent target coverage and critical tissue sparing and achieved favorable outcomes with acceptable toxicity and good long-term QOL in early-stage PG-DLBCL.
Approximate Bayesian computation.
Directory of Open Access Journals (Sweden)
Mikael Sunnåker
Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.
Energy Technology Data Exchange (ETDEWEB)
Kwon, Jeanny [Department of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Il Han, E-mail: ihkim@snu.ac.kr [Department of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul (Korea, Republic of); Kim, Byoung Hyuck [Department of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Tae Min; Heo, Dae Seog [Department of Internal Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)
2015-05-01
Purpose: The purpose of this study was to evaluate the role of involved-lesion radiation therapy (ILRT) after rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy in limited stage diffuse large B-cell lymphoma (DLBCL) by comparing outcomes of R-CHOP therapy alone with R-CHOP followed by ILRT. Methods and Materials: We identified 198 patients treated with R-CHOP (median, 6 cycles) for pathologically confirmed DLBCL of limited stage from July 2004 to December 2012. Clinical characteristics of these patients were 33% with stage I and 66.7% with stage II; 79.8% were in the low or low-intermediate risk group; 13.6% had B symptoms; 29.8% had bulky tumors (≥7 cm); and 75.3% underwent ≥6 cycles of R-CHOP therapy. RT was given to 43 patients (21.7%) using ILRT technique, which included the prechemotherapy tumor volume with a median margin of 2 cm (median RT dose: 36 Gy). Results: After a median follow-up of 40 months, 3-year progression-free survival (PFS) and overall survival (OS) were 85.8% and 88.9%, respectively. Multivariate analysis showed ≥6 cycles of R-CHOP (PFS, P=.004; OS, P=.004) and ILRT (PFS, P=.021; OS, P=.014) were favorable prognosticators of PFS and OS. A bulky tumor (P=.027) and response to R-CHOP (P=.012) were also found to be independent factors of OS. In subgroup analysis, the effect of ILRT was prominent in patients with a bulky tumor (PFS, P=.014; OS, P=.030) or an elevated level of serum lactate dehydrogenase (LDH; PFS, P=.004; OS, P=.012). Conclusions: Our results suggest that ILRT after R-CHOP therapy improves PFS and OS in patients with limited stage DLBCL, especially in those with bulky disease or an elevated serum LDH level.
Energy Technology Data Exchange (ETDEWEB)
Jegadeesh, Naresh; Rajpara, Raj; Esiashvili, Natia; Shi, Zheng [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Liu, Yuan [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Department of Biostatistics and Bioinformatics Shared Resource, Emory University, Atlanta, Georgia (United States); Okwan-Duodu, Derrick [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Flowers, Christopher R. [Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Department of Medical Oncology, Emory University, Atlanta, Georgia (United States); Khan, Mohammad K., E-mail: drkhurram2000@gmail.com [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)
2015-05-01
Purpose: The role of consolidative radiation therapy (RT) for stage III and IV diffuse large B-cell lymphoma (DLBCL) in the era of rituximab is not well defined. There is evidence that some patients with bulky disease may benefit, but patient selection criteria are not well established. We sought to identify a subset of patients who experienced a high local failure rate after receiving rituximab-based chemotherapy alone and hence may benefit from the addition of consolidative RT. Methods and Materials: Two hundred eleven patients with stage III and IV DLBCL treated between August 1999 and January 2012 were reviewed. Of these, 89 had a complete response to systemic therapy including rituximab and received no initial RT. Kaplan-Meier analysis and Cox proportional hazards regression were performed, with local recurrence (LR) as the primary outcome. Results: The median follow-up time was 43.9 months. Fifty percent of patients experienced LR at 5 years. In multivariate analysis, tumor ≥5 cm and stage III disease were associated with increased risk of LR. The 5-year LR-free survival was 47.4% for patients with ≥5-cm lesions versus 74.7% for patients with <5-cm lesions (P=.01). In patients with <5-cm tumors, the maximum standardized uptake value (SUVmax) was ≥15 in all patients with LR. The 5-year LR-free survival was 100% in SUV<15 versus 68.8% in SUV≥15 (P=.10). Conclusions: Advanced-stage DLBCL patients with stage III disease or with disease ≥5 cm appear to be at an increased risk for LR. Patients with <5-cm disease and SUVmax ≥15 may be at higher risk for LR. These patients may benefit from consolidative RT after chemoimmunotherapy.
Kwon, Jeanny; Kim, Il Han; Kim, Byoung Hyuck; Kim, Tae Min; Heo, Dae Seog
2015-05-01
The purpose of this study was to evaluate the role of involved-lesion radiation therapy (ILRT) after rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) chemotherapy in limited stage diffuse large B-cell lymphoma (DLBCL) by comparing outcomes of R-CHOP therapy alone with R-CHOP followed by ILRT. We identified 198 patients treated with R-CHOP (median, 6 cycles) for pathologically confirmed DLBCL of limited stage from July 2004 to December 2012. Clinical characteristics of these patients were 33% with stage I and 66.7% with stage II; 79.8% were in the low or low-intermediate risk group; 13.6% had B symptoms; 29.8% had bulky tumors (≥ 7 cm); and 75.3% underwent ≥ 6 cycles of R-CHOP therapy. RT was given to 43 patients (21.7%) using ILRT technique, which included the prechemotherapy tumor volume with a median margin of 2 cm (median RT dose: 36 Gy). After a median follow-up of 40 months, 3-year progression-free survival (PFS) and overall survival (OS) were 85.8% and 88.9%, respectively. Multivariate analysis showed ≥ 6 cycles of R-CHOP (PFS, P=.004; OS, P=.004) and ILRT (PFS, P=.021; OS, P=.014) were favorable prognosticators of PFS and OS. A bulky tumor (P=.027) and response to R-CHOP (P=.012) were also found to be independent factors of OS. In subgroup analysis, the effect of ILRT was prominent in patients with a bulky tumor (PFS, P=.014; OS, P=.030) or an elevated level of serum lactate dehydrogenase (LDH; PFS, P=.004; OS, P=.012). Our results suggest that ILRT after R-CHOP therapy improves PFS and OS in patients with limited stage DLBCL, especially in those with bulky disease or an elevated serum LDH level. Copyright © 2015. Published by Elsevier Inc.
International Nuclear Information System (INIS)
Jegadeesh, Naresh; Rajpara, Raj; Esiashvili, Natia; Shi, Zheng; Liu, Yuan; Okwan-Duodu, Derrick; Flowers, Christopher R.; Khan, Mohammad K.
2015-01-01
Purpose: The role of consolidative radiation therapy (RT) for stage III and IV diffuse large B-cell lymphoma (DLBCL) in the era of rituximab is not well defined. There is evidence that some patients with bulky disease may benefit, but patient selection criteria are not well established. We sought to identify a subset of patients who experienced a high local failure rate after receiving rituximab-based chemotherapy alone and hence may benefit from the addition of consolidative RT. Methods and Materials: Two hundred eleven patients with stage III and IV DLBCL treated between August 1999 and January 2012 were reviewed. Of these, 89 had a complete response to systemic therapy including rituximab and received no initial RT. Kaplan-Meier analysis and Cox proportional hazards regression were performed, with local recurrence (LR) as the primary outcome. Results: The median follow-up time was 43.9 months. Fifty percent of patients experienced LR at 5 years. In multivariate analysis, tumor ≥5 cm and stage III disease were associated with increased risk of LR. The 5-year LR-free survival was 47.4% for patients with ≥5-cm lesions versus 74.7% for patients with <5-cm lesions (P=.01). In patients with <5-cm tumors, the maximum standardized uptake value (SUVmax) was ≥15 in all patients with LR. The 5-year LR-free survival was 100% in SUV<15 versus 68.8% in SUV≥15 (P=.10). Conclusions: Advanced-stage DLBCL patients with stage III disease or with disease ≥5 cm appear to be at an increased risk for LR. Patients with <5-cm disease and SUVmax ≥15 may be at higher risk for LR. These patients may benefit from consolidative RT after chemoimmunotherapy
Evaluation method for radiative heat transfer in polydisperse water droplets
International Nuclear Information System (INIS)
Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki
2008-01-01
Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media
The random phase approximation
International Nuclear Information System (INIS)
Schuck, P.
1985-01-01
RPA is the adequate theory to describe vibrations of the nucleus of very small amplitudes. These vibrations can either be forced by an external electromagnetic field or can be eigenmodes of the nucleus. In a one dimensional analogue the potential corresponding to such eigenmodes of very small amplitude should be rather stiff otherwise the motion risks to be a large amplitude one and to enter a region where the approximation is not valid. This means that nuclei which are supposedly well described by RPA must have a very stable groundstate configuration (must e.g. be very stiff against deformation). This is usually the case for doubly magic nuclei or close to magic nuclei which are in the middle of proton and neutron shells which develop a very stable groundstate deformation; we take the deformation as an example but there are many other possible degrees of freedom as, for example, compression modes, isovector degrees of freedom, spin degrees of freedom, and many more
The quasilocalized charge approximation
International Nuclear Information System (INIS)
Kalman, G J; Golden, K I; Donko, Z; Hartmann, P
2005-01-01
The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two
Directory of Open Access Journals (Sweden)
I. M. Levashkina
2017-01-01
Full Text Available To evaluate correlation between brain structural damages and radiation exposure level for the Chernobyl nuclear power plant accident liquidators, routine and diffusion tensor magnetic resonance imaging methods are efficient to visualize and evaluate those damages; it is also important to compare magnetic resonance imaging data of liquidators with results, received for people of the same age and the same stage of cerebral vascular disease (the discirculatory encephalopathy of I and II stage, but who did not participate in the Chernobyl accident liquidation and did not suffer from other liquidation factors and radiation catastrophe aftermaths. As a result, the Chernobyl accident liquidators group (49 subjects and group of control (50 subjects were examined with routine magnetic resonance imaging methods and standard protocols. In addition, the innovative method of diffusion tensor magnetic resonance imaging was applied to examine 11 cerebral tracts, bilaterally (22 tracts in both hemispheres for every subject of the research. It was for the first time when diffusion tensor magnetic resonance imaging was applied to conduct visual analysis of polymorphic brain changes for the Chernobyl accident liquidators and special research conducted to find correlation between fractional anisotropy coefficient and radiation exposure for these patients. The results of diffusion tensor magnetic resonance imaging indicated no statistically significant (p > 0,05 difference in the level of cerebral morphological changes and between average fraction anisotropy coefficient value in any cerebral tract for both sub-groups of liquidators with different level of irradiation: 28 subjects, who were exposed by low and very low radiation doses (0–100 micro-Sv, sub-group A and 21 subjects, who were exposed by mean radiation doses (100–1000 micro-Sv, sub-group B. However, comparing diffusion tensor magnetic resonance imaging results of control group and liquidators group
Transfer matrix method for four-flux radiative transfer.
Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini
2017-07-20
We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.
Approximate quantum Markov chains
Sutter, David
2018-01-01
This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2012-05-01
Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.
International Nuclear Information System (INIS)
Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor
2014-01-01
Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)
Radiative transfer in a strongly magnetized plasma. I. Effects of Anisotropy
International Nuclear Information System (INIS)
Nagel, W.
1981-01-01
We present results of radiative transfer calculations for radiating slabs and columns of strongly magnetized plasma. The angular dependence of the escaping radiation was found numerically by Feautrier's method, using the differential scattering cross sections derived by Ventura. We also give an approximate analytical expression for the anisotropy of the outgoing radiation, based on a system of two coupled diffusion equations for ordinary and extraordinary photons. Giving the polarization dependence of the beaming pattern of radiating slabs as well as columns, we generalize previous results of Basko and Kanno. Some implications for models of the pulsating X-ray source Her X-1 are discussed
Diffusion and scattering in multifractal clouds
Energy Technology Data Exchange (ETDEWEB)
Lovejoy, S. [McGill Univ., Montreal, Quebec (Canada); Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Waston, B. [St. Lawrence Univ., Canton, NY (United States)] [and others
1996-04-01
This paper describes investigations of radiative properties of multifractal clouds using two different approaches. In the first, diffusion is considered by examining the scaling properties of one dimensional random walks on media with multifractal diffusivities. The second approach considers the scattering statistics associated with radiative transport.
Self-similar factor approximants
International Nuclear Information System (INIS)
Gluzman, S.; Yukalov, V.I.; Sornette, D.
2003-01-01
The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties
On the dipole approximation with error estimates
Boßmann, Lea; Grummt, Robert; Kolb, Martin
2018-01-01
The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.
Thermal radiation in gas core nuclear reactors for space propulsion
International Nuclear Information System (INIS)
Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J.
1994-01-01
A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs
International Nuclear Information System (INIS)
Carlen, E.A.
1984-01-01
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions. These diffusions are formally given by stochastic differential equations with extremely singular coefficients. Using PDE methods, we prove the existence of solutions. This reult provides a rigorous basis for stochastic mechanics. (orig.)
International Conference Approximation Theory XV
Schumaker, Larry
2017-01-01
These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...