WorldWideScience

Sample records for radiation detection response

  1. Radiation detection device and a radiation detection method

    International Nuclear Information System (INIS)

    Blum, A.

    1975-01-01

    A radiation detection device is described including at least one scintillator in the path of radiation emissions from a distributed radiation source; a plurality of photodetectors for viewing each scintillator; a signal processing means, a storage means, and a data processing means that are interconnected with one another and connected to said photodetectors; and display means connected to the data processing means to locate a plurality of radiation sources in said distributed radiation source and to provide an image of the distributed radiation sources. The storage means includes radiation emission response data and location data from a plurality of known locations for use by the data processing means to derive a more accurate image by comparison of radiation responses from known locations with radiation responses from unknown locations. (auth)

  2. Current trends in gamma radiation detection for radiological emergency response

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  3. Radiation detection system

    International Nuclear Information System (INIS)

    Haeuszer, F.A.

    1976-01-01

    A circuit is disclosed that detects radiation transients and provides a clamping signal in response to each transient. The clamping signal is present from the time the transient rises above a given threshold level and for a known duration thereafter. The system includes radiation sensors, a blocking oscillator that generates a pulse in response to each sensor signal, and an output pulse duration control circuit. The oscillator pulses are fed simultaneously to the output pulse duration control circuit and to an OR gate, the output of which comprises the system output. The output pulse duration is controlled by the time required to magnetize a magnetic core to saturation in first one direction and then the other

  4. Radiation detection and measurement concepts, methods and devices

    CERN Document Server

    McGregor, Douglas

    2019-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  5. Radiation Detection Center on the Front Lines

    International Nuclear Information System (INIS)

    Hazi, A

    2005-01-01

    Many of today's radiation detection tools were developed in the 1960s. For years, the Laboratory's expertise in radiation detection resided mostly within its nuclear test program. When nuclear testing was halted in the 1990s, many of Livermore's radiation detection experts were dispersed to other parts of the Laboratory, including the directorates of Chemistry and Materials Science (CMS); Physics and Advanced Technologies (PAT); Defense and Nuclear Technologies (DNT); and Nonproliferation, Arms Control, and International Security (NAI). The RDC-- was formed to maximize the benefit of radiation detection technologies being developed in 15 to 20 research and development (R and D) programs. These efforts involve more than 200 Laboratory employees across eight directorates, in areas that range from electronics to computer simulations. The RDC's primary focus is the detection, identification, and analysis of nuclear materials and weapons. A newly formed outreach program within the RDC-- is responsible for conducting radiation detection workshops and seminars across the country and for coordinating university student internships. Simon Labov, director of the RDC, says, ''Virtually all of the Laboratory's programs use radiation detection devices in some way. For example, DNT uses radiation detection to create radiographs for their work in stockpile stewardship and in diagnosing explosives; CMS uses it to develop technology for advancing the detection, diagnosis, and treatment of cancer; and the Energy and Environment Directorate uses radiation detection in the Marshall Islands to monitor the aftermath of nuclear testing in the Pacific. In the future, the National Ignition Facility will use radiation detection to probe laser targets and study shock dynamics.''

  6. Radiation protection - radiographer's role and responsibilities

    International Nuclear Information System (INIS)

    Popli, P.K.

    2002-01-01

    Ever since discovery of x-rays, radiographers has been the prime user of radiation. With the passage of time, the harmful effects of radiation were detected. Some of radiographers, radiologists and public were affected by radiation, but today with enough knowledge of radiation, the prime responsibility of radiation protection lies with the radiographers only. The radiologist and physicist are also associated with radiation protection to some extent

  7. Detection of Terahertz Radiation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation.......The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation....

  8. Radiation Detection for Homeland Security Applications

    Science.gov (United States)

    Ely, James

    2008-05-01

    In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will

  9. IAEA eLearning Program: The Use of Radiation Detection Instruments

    International Nuclear Information System (INIS)

    2010-01-01

    This CD-ROM contains a computer based training on Radiation Detection Techniques for Nuclear Security Applications. The IAEA Nuclear Security eLearning tool offers computer based training to Frontline Officers to improve their understanding about key elements of the use of radiation detection instruments. The eLearning program prepares Frontline Officers for the IAEA Detection and Response Frontline Officer course

  10. Method and circuit for stabilizing conversion gain of radiation detectors of a radiation detection system

    International Nuclear Information System (INIS)

    Stoub, E.W.

    1986-01-01

    A method is described for calibrating the gain of an array of radiation detectors of a radiation detection system comprising the steps of: (a) measuring in parallel for each radiation detector using a predetermined calibration point the energy map status, thereby obtaining an energy response vector whose elements correspond to the individual output of each radiation detector, each predetermined calibration point being a prescribed location corresponding to one of the radiation detectors; (b) multiplying that energy response vector with a predetermined deconvolution matrix, the deconvolution matrix being the inversion of a contribution matrix containing matrix elements C/sub IJ/, each such matrix element C/sub IJ/ of the contribution matrix representing the relative contribution level of a radiation detector j of the detection system for a point radiation source placed at a location i, thereby obtaining a gain vector product for the radiation detectors; (c) adjusting the gains of the radiation detectors with respect to the gain vector product such that a unity gain vector is essentially obtained; (d) measuring again the energy map status according to step (a); and (e) if the energy map status fails to essentially produce a unity gain vector repeat steps (a) to (d) until the energy map status substantially corresponds to unity

  11. Cellular telephone-based radiation detection instrument

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  12. Indirect detection of radiation sources through direct detection of radiolysis products

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Fischer, Larry E [Los Gatos, CA; Felter, Thomas E [Livermore, CA

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  13. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  14. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  15. An investigation of medical radiation detection using CMOS image sensors in smartphones

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Gyu [Department of Senior Healthcare, Graduate School of Eulji University, Daejeon 301-746 (Korea, Republic of); Song, Jae-Jun [Department of Otorhinolaryngology-Head & Neck Surgery, Korea University, Guro Hospital,148, Gurodong-ro, Guro-gu, Seoul 152-703 (Korea, Republic of); Lee, Kwonhee [Graduate Program in Bio-medical Science, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Nam, Ki Chang [Department of Medical Engineering, College of Medicine, Dongguk University, 32 Dongguk-ro, Goyang-si, Gyeonggi-do 410-820 (Korea, Republic of); Hong, Seong Jong; Kim, Ho Chul [Department of Radiological Science, Eulji University, 553 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 431-713 (Korea, Republic of)

    2016-07-01

    Medical radiation exposure to patients has increased with the development of diagnostic X-ray devices and multi-channel computed tomography (CT). Despite the fact that the low-dose CT technique can significantly reduce medical radiation exposure to patients, the increasing number of CT examinations has increased the total medical radiation exposure to patients. Therefore, medical radiation exposure to patients should be monitored to prevent cancers caused by diagnostic radiation. However, without using thermoluminescence or glass dosimeters, it is hardly measure doses received by patients during medical examinations accurately. Hence, it is necessary to develop radiation monitoring devices and algorithms that are reasonably priced and have superior radiation detection efficiencies. The aim of this study is to investigate the feasibility of medical dose measurement using complementary metal oxide semiconductor (CMOS) sensors in smartphone cameras with an algorithm to extract the X-ray interacted pixels. We characterized the responses of the CMOS sensors in a smartphone with respect to the X-rays generated by a general diagnostic X-ray system. The characteristics of the CMOS sensors in a smartphone camera, such as dose response linearity, dose rate dependence, energy dependence, angular dependence, and minimum detectable activity were evaluated. The high energy gamma-ray of 662 keV from Cs-137 can be detected using the smartphone camera. The smartphone cameras which employ the developed algorithm can detect medical radiations.

  16. An investigation of medical radiation detection using CMOS image sensors in smartphones

    International Nuclear Information System (INIS)

    Kang, Han Gyu; Song, Jae-Jun; Lee, Kwonhee; Nam, Ki Chang; Hong, Seong Jong; Kim, Ho Chul

    2016-01-01

    Medical radiation exposure to patients has increased with the development of diagnostic X-ray devices and multi-channel computed tomography (CT). Despite the fact that the low-dose CT technique can significantly reduce medical radiation exposure to patients, the increasing number of CT examinations has increased the total medical radiation exposure to patients. Therefore, medical radiation exposure to patients should be monitored to prevent cancers caused by diagnostic radiation. However, without using thermoluminescence or glass dosimeters, it is hardly measure doses received by patients during medical examinations accurately. Hence, it is necessary to develop radiation monitoring devices and algorithms that are reasonably priced and have superior radiation detection efficiencies. The aim of this study is to investigate the feasibility of medical dose measurement using complementary metal oxide semiconductor (CMOS) sensors in smartphone cameras with an algorithm to extract the X-ray interacted pixels. We characterized the responses of the CMOS sensors in a smartphone with respect to the X-rays generated by a general diagnostic X-ray system. The characteristics of the CMOS sensors in a smartphone camera, such as dose response linearity, dose rate dependence, energy dependence, angular dependence, and minimum detectable activity were evaluated. The high energy gamma-ray of 662 keV from Cs-137 can be detected using the smartphone camera. The smartphone cameras which employ the developed algorithm can detect medical radiations.

  17. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Science.gov (United States)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  18. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2011-01-01

    This is an update of the standard textbook for the field of radiation measurement. It includes illustrative examples and new problems. The research and applications of nuclear instrumentation have grown substantially since publication of the previous editions. With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines, including nuclear nonproliferation, homeland security, and nuclear medicine. Continuing in the tradition of its bestselling predecessors, "Measurement and Detection of Radiation, Third Edition" illustrates the fundamentals of nuclear interactions and radiation detection with a multitude of examples and problems. It offers a clearly written, accessible introduction to nuclear instrumentation concepts. The following are new to the third edition: a new chapter on the latest applications of radiation detection, covering nuclear medicine, dosimetry, health physics, no...

  19. Irregular radiation response of a chondrosarcoma

    International Nuclear Information System (INIS)

    Marsden, J.J.; Kember, N.F.; Shaw, J.E.H.

    1980-01-01

    The DC II mouse chondrosarcoma was shown to be a potentially valuable radiobiological tumour system since it recovered from radiation injury by regrowth from clones that could be counted in histological sections. Unfortunately, the normal growth of this tumour following s.c. implantation in the thigh was irregular both in the time before growth became evident and in the rate of growth. The response to radiation was also unreliable since tumours irradiated with the same dose (e.g. 30 Gy) showed a range of responses from shrinkage to no detectable change in growth rate. The delay in normal growth can be attributed largely to delays in vascularization while changes in growth rate may be explained by differences in tumour architecture. Radiation response may depend on variations in hypoxic fraction and in relative cellularity. Tumours having the same external dimensions may differ by a factor of 80 in the numbers of tumour cells they contain. This chondrosarcoma may prove a closer model to some human tumours than many transplantable tumours that display regular growth patterns. (author)

  20. Networked gamma radiation detection system for tactical deployment

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Smith, Ethan; Guss, Paul; Mitchell, Stephen

    2015-08-01

    A networked gamma radiation detection system with directional sensitivity and energy spectral data acquisition capability is being developed by the National Security Technologies, LLC, Remote Sensing Laboratory to support the close and intense tactical engagement of law enforcement who carry out counterterrorism missions. In the proposed design, three clusters of 2″ × 4″ × 16″ sodium iodide crystals (4 each) with digiBASE-E (for list mode data collection) would be placed on the passenger side of a minivan. To enhance localization and facilitate rapid identification of isotopes, advanced smart real-time localization and radioisotope identification algorithms like WAVRAD (wavelet-assisted variance reduction for anomaly detection) and NSCRAD (nuisance-rejection spectral comparison ratio anomaly detection) will be incorporated. We will test a collection of algorithms and analysis that centers on the problem of radiation detection with a distributed sensor network. We will study the basic characteristics of a radiation sensor network and focus on the trade-offs between false positive alarm rates, true positive alarm rates, and time to detect multiple radiation sources in a large area. Empirical and simulation analyses of critical system parameters, such as number of sensors, sensor placement, and sensor response functions, will be examined. This networked system will provide an integrated radiation detection architecture and framework with (i) a large nationally recognized search database equivalent that would help generate a common operational picture in a major radiological crisis; (ii) a robust reach back connectivity for search data to be evaluated by home teams; and, finally, (iii) a possibility of integrating search data from multi-agency responders.

  1. Radiation sensitive area detection device and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  2. Development of thin dosemeters of CaSO4: Dy for beta radiation detection

    International Nuclear Information System (INIS)

    Campos, L.L.

    1987-01-01

    Thin pellets of CaSO: Dy (0,20mm) were produced and tested in beta radiation fields. The Thermolumiscent (TL) characteristics studied were sensitivity, reproducibility, lower detection limit, linearity of TL response with absorved dose energy dependence. The results show the usefulness of this thin pellets in beta radiation detection. (Author) [pt

  3. Radiation anomaly detection algorithms for field-acquired gamma energy spectra

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ron; Guss, Paul; Mitchell, Stephen

    2015-08-01

    The Remote Sensing Laboratory (RSL) is developing a tactical, networked radiation detection system that will be agile, reconfigurable, and capable of rapid threat assessment with high degree of fidelity and certainty. Our design is driven by the needs of users such as law enforcement personnel who must make decisions by evaluating threat signatures in urban settings. The most efficient tool available to identify the nature of the threat object is real-time gamma spectroscopic analysis, as it is fast and has a very low probability of producing false positive alarm conditions. Urban radiological searches are inherently challenged by the rapid and large spatial variation of background gamma radiation, the presence of benign radioactive materials in terms of the normally occurring radioactive materials (NORM), and shielded and/or masked threat sources. Multiple spectral anomaly detection algorithms have been developed by national laboratories and commercial vendors. For example, the Gamma Detector Response and Analysis Software (GADRAS) a one-dimensional deterministic radiation transport software capable of calculating gamma ray spectra using physics-based detector response functions was developed at Sandia National Laboratories. The nuisance-rejection spectral comparison ratio anomaly detection algorithm (or NSCRAD), developed at Pacific Northwest National Laboratory, uses spectral comparison ratios to detect deviation from benign medical and NORM radiation source and can work in spite of strong presence of NORM and or medical sources. RSL has developed its own wavelet-based gamma energy spectral anomaly detection algorithm called WAVRAD. Test results and relative merits of these different algorithms will be discussed and demonstrated.

  4. Adaptive response to high LET radiations

    International Nuclear Information System (INIS)

    Dam, Annamaria; Bogdandi, E. Noemi; Polonyi, Istvan; Sardy, M. Marta; Balashazy, Imre; Palfalvy, Jozsef

    2001-01-01

    The biological consequences of exposure to ionizing radiation include gene mutation, chromosome aberrations, cellular transformation and cell death. These effects are attributed to the DNA damaging effects of the irradiation resulting in irreversible changes during DNA replication or during the processing of the DNA damage by enzymatic repair processes. These repair processes could initiate some adaptive mechanisms in the cell, which could lead to radioadaptive response (RAR). Adaptive responses have typically been detected by exposing cells to a low radiation dose (1-50 mGy) and then challenging the cells with a higher dose of radiation (2-4 Gy) and comparing the outcome to that seen with the challenge dose only. For adaptive response to be seen the challenge dose must be delivered within 24 hour of the inducing dose. Radio-adaptation is extensively studied for low LET radiation. Nevertheless, few data are available for high LET radiation at very low doses and dose rate. Our study was aimed to investigate the radioadaptive response to low-dose neutron irradiation by detection of the genotoxic damage i.e.: hprt-mutant colonies induced. Altered protein synthesis was also studied to identify stress proteins may responsible for radio-adaptation. New alpha particle irradiator system was also built up to study the biological effects of low dose alpha irradiation. The experiments were carried out on monolayers of human melanoma and CHO (Chines Hamster Ovary) cells irradiated by neutrons produced in the biological irradiation channel of the Research Reactor of Budapest Neutron Center. Cells were exposed to 0.5-50 mGy neutron doses with dose rates of 1.59-10 mGy/min. The challenge doses of 2-4 Gy gamma rays were administrated within 1-48 hours after priming treatment. The induced mutants at hprt locus were selected by adding 6-thioguanine and allow to grow for 10 days for expression of the phenotype. The protein synthesis was studied by PAGE, the molecular mass of specific

  5. Counterbalanced radiation detection system

    International Nuclear Information System (INIS)

    Platz, W.

    1987-01-01

    A counterbalanced radiation detection system is described comprising: (a) a stand; (b) a first radiation detector; (c) a first radiation detector arm means for tiltably connecting the first radiation detector with the stand; (d) a second radiation detector; (e) a second radiation detector arm means for tiltably connecting the second radiation detector with the stand, whereby the tilting angles of the radiation detector arm means define a distance between the radiation detectors; and (f) a torque transforming means connected between the first and second radiation detector arm means for transforming the torque created by one of the radiation detectors in a sense opposed to the torque created by the other radiation detector

  6. Cellular telephone-based wide-area radiation detection network

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  7. Physics and engineering of radiation detection

    CERN Document Server

    Ahmed, Syed Naeem

    2007-01-01

    Physics and Engineering of Radiation Detection presents an overview of basic physics of radiation and its applications and covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. Covering both the basic physics of radiation and its applications, it will provide an up-to-date and coherent account of the origins and properties of the different kinds of ionizing radiation, and their detection and measurement. This book will illustrate the basic physical principles with an abundance of practical, worked-out examples, numerical problems, real world applications, and data, including biological effects, radon, risk assessment, and statistics.

  8. Physics and engineering of radiation detection

    CERN Document Server

    Ahmed, Syed Naeem

    2015-01-01

    Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition is fully revised and provides the latest developments in detector technology and analyses software. Also, more material related to measurements in particle physics and a complete solutions manual have been added.

  9. Detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    All detection or measurement of radiation rests in the possibility of recognizing the interactions of radiation with matter. When radiation passes through any kind of material medium, all or a portion of its energy is transferred to this medium. This transferred energy produces an effect in the medium. In principle, the detection of radiation is based on the appearance and the observation of this effect. In theory, all of the effects produced by radiation may be used in detecting it: in practice, the effects most commonly employed are: (1) ionization of gases (gas detectors), or of some chemical substance which is transformed by radiation (photographic or chemical dosimeters); (2) excitations in scintillators or semiconductors (scintillation counters, semiconductor counters); (3) creation of structural defects through the passage of radiation (transparent thermoluminescent and radioluminescent detectors); and (4) raising of the temperature (calorimeters). This study evaluates in detail, instruments based on the ionization of gases and the production of luminescence. In addition, the authors summarize instruments which depend on other forms of interaction, used in radiation medicine and hygiene (radiology, nuclear medicine)

  10. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Steer, C.A.; Durose, A.; Boakes, J. [AWE Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  11. Additive Manufacturing Materials Study for Gaseous Radiation Detection

    International Nuclear Information System (INIS)

    Steer, C.A.; Durose, A.; Boakes, J.

    2015-01-01

    Additive manufacturing (AM) techniques may lead to improvements in many areas of radiation detector construction; notably the rapid manufacturing time allows for a reduced time between prototype iterations. The additive nature of the technique results in a granular microstructure which may be permeable to ingress by atmospheric gases and make it unsuitable for gaseous radiation detector development. In this study we consider the application of AM to the construction of enclosures and frames for wire-based gaseous radiation tracking detectors. We have focussed on oxygen impurity ingress as a measure of the permeability of the enclosure, and the gas charging and discharging curves of several simplistic enclosure shapes are reported. A prototype wire-frame is also presented to examine structural strength and positional accuracy of an AM produced frame. We lastly discuss the implications of this study for AM based radiation detection technology as a diagnostic tool for incident response scenarios, such as the interrogation of a suspect radiation-emitting package. (authors)

  12. Response of TLD-100"T"M microtubes to two RQR3 quality radiation beams

    International Nuclear Information System (INIS)

    Nunes, M.G.; Villani, D.; Almeida, S.B.; Vivolo, V.; Yoriyaz, H.; Louis, G.M.J.

    2016-01-01

    The present work compares the response of TLD-100"T"M microcubes to two RQR 3 diagnostic radiology reference quality radiation beams, defined by IEC-61267 norm, aiming to evaluate the detectability of TLD-100"T"M energy dependence reported in literature within the same reference quality radiation range. TLD-100"T"M microcubes reproducibility is assessed through the response of a second set of TLD-100"T"M microcubes, evaluated in a second thermoluminescence reader, to the RQR 3 diagnostic radiology reference quality radiation beam implemented at the Laboratorio de Calibracao de Instrumentos of IPEN, Sao Paulo, SP, Brazil. The dependence of TLD-100"T"M microcubes TL response was not detectable in these conditions and the reproducibility of the measurements is 90,2%. (author)

  13. Split energy level radiation detection

    International Nuclear Information System (INIS)

    Barnes, G.T.

    1986-01-01

    This patent describes an energy discriminating radiation detector comprising: (a) a first element comprising a first material of a kind which is preferentially responsive to penetrative radiation of a first energy range; (b) a second element comprising a second material different in kind from the first material and of a kind which is preferentially responsive to penetrative radiation of second energy range extending higher than the first energy range. The element is positioned to receive radiation which has penetrated through a portion of the first element; and (c) a filter of penetrative radiation interposed between the first and second elements

  14. Counterbalanced radiation detection device

    International Nuclear Information System (INIS)

    Platz, W.

    1986-01-01

    A counterbalanced radiation detection device is described which consists of: (a) a base; (b) a radiation detector having a known weight; (c) means connected with the radiation detector and the base for positioning the radiation detector in different heights with respect to the base; (d) electronic component means movably mounted on the base for counterbalancing the weight of the radiation detector; (e) means connected with the electronic component means and the radiation detector positioning means for positioning the electronic component means in different heights with respect to the base opposite to the heights of the radiation detector; (f) means connected with the radiation detector and the base for shifting the radiation detector horizontally with respect to the base; and (g) means connected with the electronic component means and the radiation detector shifting means for shifting the electronic component means horizontally with respect to the base in opposite direction to shifting of the radiation detector

  15. Integration of radiation monitoring for nuclear emergency response teams

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, J T; Thompson, N Y [Royal Military Coll. of Canada, Kingston, ON (Canada)

    1994-12-31

    The Canadian Forces have established Nuclear Emergency Response Teams to cope with potential radiation accidents. Previously, only gamma and high-energy beta radiation could be detected. Recently, new radiation sampling, detecting, and analytical equipment has been bought, including air samplers, beta counters, high-purity germanium gamma detectors, and multi-channel analyzers together with Gamma Vision Software to analyze gamma spectra. The purpose of the present study is to propose a way to use the new equipment, to analyze the results from the gamma and beta detectors, and to integrate the results into a format for decision making. Integration is achieved through the creation of a computer program, Radiation Integration Program (RIP). This program analyzes gross beta counts, and uses them to estimate danger to the thyroid. As well the results from Gamma Vision are converted from Bq to dose rate for several parts of the body. Overall gamma results affecting the thyroid are compared to the beta results to verify the initial estimations.

  16. Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

    Science.gov (United States)

    Wart, Megan; Simpson, Evan; Flaska, Marek

    2018-01-01

    Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT) plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.

  17. Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

    Directory of Open Access Journals (Sweden)

    Wart Megan

    2018-01-01

    Full Text Available Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.

  18. Electrical Versus Optical: Comparing Methods for Detecting Terahertz Radiation Using Neon Lamps

    Science.gov (United States)

    Slocombe, L. L.; Lewis, R. A.

    2018-05-01

    Terahertz radiation impinging on a lit neon tube causes additional ionization of the encapsulated gas. As a result, the electrical current flowing between the electrodes increases and the glow discharge in the tube brightens. These dual phenomena suggest two distinct modes of terahertz sensing. The electrical mode simply involves measuring the electrical current. The optical mode involves monitoring the brightness of the weakly ionized plasma glow discharge. Here, we directly compare the two detection modes under identical experimental conditions. We measure 0.1-THz radiation modulated at frequencies in the range 0.1-10 kHz, for lamp currents in the range 1-10 mA. We find that electrical detection provides a superior signal-to-noise ratio while optical detection has a faster response. Either method serves as the basis of a compact, robust, and inexpensive room-temperature detector of terahertz radiation.

  19. Remote Optical Detection of Alpha Radiation

    International Nuclear Information System (INIS)

    Sand, J.; Hannuksela, V.; Toivonen, J.; Ihantola, S.; Peraejaervi, K.; Toivonen, H.

    2010-01-01

    Alpha emitting radiation sources are typically hard to detect with conventional detectors due to the short range of alpha particles in the air. However, previous studies have shown that remote detection of alpha radiation is possible by measuring the ionization-induced fluorescence of air molecules. The alpha-induced ultraviolet (UV) light is mainly emitted by molecular nitrogen and its fluorescence properties are well known. The benefit of this method is the long range of UV photons in the air. Secondly, the detection is possible also under a strong beta and gamma radiation backgrounds as they do not cause localized molecular excitation. In this work, the optical detection was studied using two different detection schemes; spectral separation of fluorescence from the background lighting and coincidence detection of UV photons originating from a single radiative decay event. Our spectrally integrated measurements have shown that one alpha decay event yields up to 400 fluorescence photons in the air and all these UV photons are induced in a 5 ns time-window. On the other hand, the probability of a background coincidence event in 5 ns scale is very rare compared to the number of background photons. This information can be applied in fluorescence coincidence filtering to discriminate the alpha radiation initiated fluorescence signal from much more intense background lighting. A device called HAUVA (Handheld Alpha UV Application) was built during this work for demonstration purposes. HAUVA utilizes spectral filtering and it is designed to detect alpha emitters from a distance of about 40 cm. Using specially selected room lighting, the device is able to separate 1 kBq alpha emitter from the background lighting with 1 second integration time. (author)

  20. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    Nishiura, Ryuichi; Uranaka, Yasuo; Izumi, Nobuyuki

    2001-01-01

    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  1. Radiation, ionization, and detection in nuclear medicine

    International Nuclear Information System (INIS)

    Gupta, Tapan K.

    2013-01-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  2. Radiation, ionization, and detection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tapan K. [Radiation Monitoring Devices Research, Nuclear Medicine, Watertown, MA (United States)

    2013-08-01

    Up-to-date information on a wide range of topics relating to radiation, ionization, and detection in nuclear medicine. In-depth coverage of basic radiophysics relating to diagnosis and therapy. Extensive discussion of instrumentation and radiation detectors. Detailed information on mathematical modelling of radiation detectors. Although our understanding of cancer has improved, the disease continues to be a leading cause of death across the world. The good news is that the recent technological developments in radiotherapy, radionuclide diagnostics and therapy, digital imaging systems, and detection technology have raised hope that cancer will in the future be combatted more efficiently and effectively. For this goal to be achieved, however, safe use of radionuclides and detailed knowledge of radiation sources are essential. Radiation, Ionization, and Detection in Nuclear Medicine addresses these subjects and related issues very clearly and elaborately and will serve as the definitive source of detailed information in the field. Individual chapters cover fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding; the detection and measurement of radiation exposure, with detailed information on mathematical modelling; medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.

  3. Radiation detection system

    Science.gov (United States)

    Whited, R.C.

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI/sub 2/, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  4. Response of high Tc superconducting Josephson junction to nuclear radiation

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  5. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2015-01-01

    This fourth edition reflects recent major developments that have occurred in radiation detector materials, systems, and applications. It continues to provide the most practical and up-to-date introduction to radiation detector technology, proper measurement techniques, and analysis of results for engineers and scientists using radiation sources. New chapters emphasize the expanded use of radiation detection systems in nuclear non-proliferation, homeland security, and nuclear medicine. The book also discusses the correct ways to perform measurements following current health physics procedures.

  6. Optimization of in-vivo monitoring program for radiation emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Wi Ho; Kim, Jong Kyung [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. In this study, minimum detectable doses (MDDs) for '1'3'4Cs, {sup 137}Cs, and {sup 131}I were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detectable level was determined to set committed effective dose of 0.1 mSv for emergency response. We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for {sup 134}Cs and {sup 137}Cs, and 100 Bq for {sup 131}I were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.

  7. Resonance detection of Moessbauer radiation

    International Nuclear Information System (INIS)

    Morozov, V.V.

    1985-01-01

    The resonance detection method as compared with the usual method of registering Moessbauer spectra has a number of advantages, one of which is the increase of resolution of the Moessbauer spectrum. The method is based on the modulation of a secondary radiation of a converter tuned in the resonance with the Moessbauer gamma-quantum source. The resonance detection method with account of supression, secondary radiation outgoing from the converter is investigated. The converter represents a substrate enriched by the Moessbauer isotope placed either inside the gas counter, or coupled with any other detecting device. Analytical expressions for Moessbauer spectrum parameters: effect, area and width of the spectral line are derived. It is shown that the joint application of usual and resonance detection methods for registering the Moessbauer spectrum allows one to determine parameters of the source, converter and the investigated absorber

  8. Photostimulated luminescence detection and radiation effects on cinnamon (Cinnamomum zeylanicum) spice

    International Nuclear Information System (INIS)

    Marcazzó, J.; Sanchez-Barrera, C.E.; Urbina-Zavala, A.; Cruz-Zaragoza, E.

    2015-01-01

    The increase of disease borne pathogens in foods has promoted the use of new technologies in order to eliminate these pathogen microorganisms and extend the shelf-life of the foodstuffs. In particular, Cinnamon (Cinnamomum zeylanicum) contains an important number of pathogen microorganisms and it is frequently sterilized by gamma radiation. However, it is important to develop the detection methods for irradiated food in order to keep the dose control and also to analyze the radiation effects in their chemical property. This work reports (i) the photostimulated luminescence (PSL) detection of irradiated cinnamon and thermoluminescence (TL) detection of the inorganic polymineral fraction separated from this spice, and (ii) the proximate chemical analysis carried out on fat, protein and dietetic fiber contents. The detection limits using the PSL and TL methods were 500 Gy and 10 Gy, respectively, and the fat content was increased significantly with the gamma dose that could be related to the lipid oxidation in the cinnamon. - Highlights: • Samples of cinnamon (Cinnamomum zeylanicum) were studied by TL and PSL methods. • The cinnamon was detected as irradiated at a dose of 500 Gy using PSL. • TL method shows an excellent linear response for doses lesser than 500 Gy. • A proximate chemical analysis was carried out on fat, protein and dietetic fiber. • The TL and PSL responses can be used for dose control in commercial cinnamon

  9. Development of Quantum Devices and Algorithms for Radiation Detection and Radiation Signal Processing

    International Nuclear Information System (INIS)

    El Tokhy, M.E.S.M.E.S.

    2012-01-01

    The main functions of spectroscopy system are signal detection, filtering and amplification, pileup detection and recovery, dead time correction, amplitude analysis and energy spectrum analysis. Safeguards isotopic measurements require the best spectrometer systems with excellent resolution, stability, efficiency and throughput. However, the resolution and throughput, which depend mainly on the detector, amplifier and the analog-to-digital converter (ADC), can still be improved. These modules have been in continuous development and improvement. For this reason we are interested with both the development of quantum detectors and efficient algorithms of the digital processing measurement. Therefore, the main objective of this thesis is concentrated on both 1. Study quantum dot (QD) devices behaviors under gamma radiation 2. Development of efficient algorithms for handling problems of gamma-ray spectroscopy For gamma radiation detection, a detailed study of nanotechnology QD sources and infrared photodetectors (QDIP) for gamma radiation detection is introduced. There are two different types of quantum scintillator detectors, which dominate the area of ionizing radiation measurements. These detectors are QD scintillator detectors and QDIP scintillator detectors. By comparison with traditional systems, quantum systems have less mass, require less volume, and consume less power. These factors are increasing the need for efficient detector for gamma-ray applications such as gamma-ray spectroscopy. Consequently, the nanocomposite materials based on semiconductor quantum dots has potential for radiation detection via scintillation was demonstrated in the literature. Therefore, this thesis presents a theoretical analysis for the characteristics of QD sources and infrared photodetectors (QDIPs). A model of QD sources under incident gamma radiation detection is developed. A novel methodology is introduced to characterize the effect of gamma radiation on QD devices. The rate

  10. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.; Kachorovskiǐ, Valentin Yu; Stillman, William J.; Veksler, Dmitry B.; Salama, Khaled N.; Zhang, Xicheng; Shur, Michael S.

    2010-01-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  11. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2010-02-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  12. Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions

    Science.gov (United States)

    Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary

    2015-01-01

    Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).

  13. Technical considerations for detection of and response to illicit trafficking in radioactive materials

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Arlt, R.; Cunningham, J.; Gayral, J.P.; Kravchenko, N.; Smith, D.; York, R.

    2001-01-01

    identification of the radioactive material. Specialised equipment is required for performing one or more of the steps indicated above, which can be divided into three categories: Pocket type instruments, used to detect the presence of radioactive materials and to inform the investigator about the radiation level; hand-held and mobile instruments, required to detect, locate or identify radioactive materials; and fixed installed, automatic instruments, designed to be located stationary at road and rail border crossings, airports, seaports, etc. Detailed recommendations for technical specifications and operation of this equipment have been derived. A particular problem is the definition of an 'investigation level', at which an alarm is triggered and consequent investigation of individuals, vehicles or goods should be established. This level has to be sufficiently high to avoid frequent false alarms, however, also sufficiently low to detect significant radiation sources or nuclear materials, even if they are inside shielded containers and possibly buried in metal scrap. 'Response' covers all necessary actions required after radioactive materials have been detected. Detailed recommendations have been derived for the procedures of operational response by the first responder, as well as for tactical response, when a serious radiological situation develops or detection of nuclear materials requires outside expert assistance. Operational response, after activation of a detection alarm, initiates with the assessment of radiation hazard, verification measurements that the alarm is genuine and subsequent localisation of the radioactive material. If the radiological hazard is not to be considered very significant, i.e. if the dose rate is below O.I mSv/h at a distance of one meter from the item containing the source, no indication of neutron radiation is present and no suspicion of contamination exists, the first responder may continue to identify the radioactive material and determine, if

  14. Bayesian Methods for Radiation Detection and Dosimetry

    CERN Document Server

    Groer, Peter G

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed comp...

  15. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies

    International Nuclear Information System (INIS)

    Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A.

    1996-01-01

    Techniques that measure the N status of corn (Zea mays L.) can aid in management decisions that have economic and environmental implications. This study was conducted to identify reflected electromagnetic wavelengths most sensitive to detecting N deficiencies in a corn canopy with the possibility for use as a management tool. Reflected shortwave radiation was measured from an irrigated corn N response trial with four hybrids and five N rates at 0, 40, 80, 120, and 160 kg N ha -1 in 1992 and 0, 50, 100, 150, and 200 kg N ha -1 in 1993. A portable spectroradiometer was used to measure reflected radiation (400-1100 nm in 1992, 350-1050 nm in 1993) from corn canopies at approximately the R5 growth stage. Regression analyses revealed that reflected radiation near 550 and 710 nm was superior to reflected radiation near 450 or 650 nm for detecting N deficiencies. The ratio of light reflectance between 550 and 600 nm to light reflectance between 800 and 900 nm also provided sensitive detection of N stress. In 1993, an inexpensive photometric cell, which has peak sensitivity to light centered at 550 nm, was also used to measure reflected radiation from a corn canopy. Photometric cell readings correlated with relative grain yield (P < 0.001, r 2 = 0.74), but more research will be required to develop procedures to account for varying daylight conditions. These results provide information needed for the development of variable-rate fertilizer N application technology. (author)

  16. Programmed cellular response to ionizing radiation damage

    International Nuclear Information System (INIS)

    Crompton, N.E.A.

    1998-01-01

    Three forms of radiation response were investigated to evaluate the hypothesis that cellular radiation response is the result of active molecular signaling and not simply a passive physicochemical process. The decision whether or not a cell should respond to radiation-induced damage either by induction of rescue systems, e.g. mobilization of repair proteins, or induction of suicide mechanisms, e.g. programmed cell death, appears to be the expression of intricate cellular biochemistry. A cell must recognize damage in its genetic material and then activate the appropriate responses. Cell type is important; the response of a fibroblast to radiation damage is both quantitatively and qualitatively different form that of a lymphocyte. The programmed component of radiation response is significant in radiation oncology and predicted to create unique opportunities for enhanced treatment success. (orig.)

  17. Analog electronics for radiation detection

    CERN Document Server

    2016-01-01

    Analog Electronics for Radiation Detection showcases the latest advances in readout electronics for particle, or radiation, detectors. Featuring chapters written by international experts in their respective fields, this authoritative text: Defines the main design parameters of front-end circuitry developed in microelectronics technologies Explains the basis for the use of complementary metal oxide semiconductor (CMOS) image sensors for the detection of charged particles and other non-consumer applications Delivers an in-depth review of analog-to-digital converters (ADCs), evaluating the pros and cons of ADCs integrated at the pixel, column, and per-chip levels Describes incremental sigma delta ADCs, time-to-digital converter (TDC) architectures, and digital pulse-processing techniques complementary to analog processing Examines the fundamental parameters and front-end types associated with silicon photomultipliers used for single visible-light photon detection Discusses pixel sensors ...

  18. Measuring element for the detection and determination of radiation doses of gamma radiation and neutrons

    International Nuclear Information System (INIS)

    Jahn, W.; Piesch, E.

    1975-01-01

    A measuring element detects and proves both gamma and neutron radiation. The element includes a photoluminescent material which stores gamma radiation and particles of arsenic and phosphorus embedded in the photoluminescent material for detecting neutron radiation. (U.S.)

  19. Adaptive response induced by occupational exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Barquinero, J.F.; Caballin, M.R.; Barrios, L.; Murtra, P.; Egozcue, J.; Miro, R.; Ribas, M.

    1997-01-01

    We have found a significant decreased sensitivity to the cytogenetic effects of ionizing radiation (IR) and bleomycin (BLM) in lymphocytes from individuals occupationally exposed to IR when compared with a control population. These results suggest that occupational exposures to IR can induce adaptive response that can be detected by a subsequent treatment by IR or by BLM. However, no correlation between the results obtained with both treatments was observed. A great heterogeneity in the frequencies of chromatid aberrations induced by BLM was observed. The study of the influence of different harvesting times showed that there was no correlation with the frequencies of chromatid breaks. Our results indicate that the use of BLM to detect adaptive response has several difficulties at the individual level. (author)

  20. Measurement and detection of radiation

    National Research Council Canada - National Science Library

    Tsoulfanidis, Nicholas; Landsberger, Sheldon

    2011-01-01

    .... With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines...

  1. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  2. Three-dimensional, position-sensitive radiation detection

    Science.gov (United States)

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  3. WORTMANNIN affect cellular response by radiation

    International Nuclear Information System (INIS)

    Li Yu; Li Bailong

    2010-01-01

    Objective: To observe radiation Response of cells by WORTMANNIN (WT), which is inhibitor for Phosphatidylinositol-3 Kinase (PI-3K). Methods: LP3 cells are prepared with different concentration of WT for 1 hour and receive different dose γ irradiation. To continue the cell for clone culture, and get the production of dose-survival curve. 1800 pulsed-field gel electrophoresis is used to detect DNA double-strand breaks after the 20 Gy γ irradiation. Continue to use the mobility shift assays (Electrophoresis Mobility Shift Assay, EMSA) to observe NF-kB transcription factor of the corresponding changes. Result: WT can be found to increase the radiation sensitivity of SP3 cells, the best sensitizer concentration in 20 μmol /L or more, obvious sensitizing effect within 6 h time; the electrophoresis experiments showed that after irradiation with time, by 50 μmol /L WT group DNA the gel is higher than that of the simple exposure group; transcription factor NF-kB binding activity in the 6 hours after exposure experiences a low-rise and then the process of rising with its the peak of the change reaching after about 3 hours after irradiation. Conclusion: It suggests the existence of PI-3K-mediated radiation sensitizer pathways. Ionizing radiation may activate NF-kB, which caused some DNA damage repair and other defense mechanisms and cell-related gene activity in order to reduce radiation damage. WT may block this process through the early stages of radiation-sensitizing effect. (authors)

  4. Radiation Detection Computational Benchmark Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  5. Adaptive search and detection of laser radiation

    International Nuclear Information System (INIS)

    Efendiev, F.A.; Kasimova, F.I.

    2008-01-01

    Formation of cosmic optical line connected with the solving of difficult problems, among which stand out spatial search task, detection and target tracking. Indeed, the main advantage of systems of the optical diapason, high radiation direction leads to a challenging task of entering in communication, consisting in mutual targeting antenna receiving and transmitting systems. Algorithm detection, obtained by solving the corresponding statistical optimal detection test synthesis tasks detector determines the structure and quality of his work which depend on the average characteristics of the signal and the background radiation of the thermal noise require full priori certainty about the conditions of observation. Algorithm of the optimal detector of laser light modulated on a sub carrier frequency of intensity assumes a priori known intensity and efficiency background radiation and internal noise power photo detector

  6. Biochemical and Radiobiological Factors in the Early Detection of Radiation Injury in Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L. J. [Life Sciences Division, Stanford Research Institute, Menlo Park, CA (United States)

    1971-03-15

    after irradiation, since human liver actively de-aminates deoxycytidine, in contrast to rat liver. Biochemical and immunological tests on peripheral blood lymphocytes removed within hours after radiation exposure may afford a sensitive approach to early detection of radiation injury. Thus, DNA synthesis as measured by the incorporation of tritiated thymidine into .the DNA fraction is drastically inhibited in irradiated rat lymphocytes incubated in vitro, in response to the addition of phytohaemagglutinin. Theoretically, the responses of these easily accessible cells to phytohaemagglutinin and to other selected antigens in vitro should be amenable to quantitation after radiation-dose levels which elicit only minimal lymphopenie effects. Further studies on the molecular basis of these radiation effects on lymphocytes, together with deeper insights into the mechanism by which ionizing radiations initiate the sequence of events leading to the breakdown of DNA and the release of histdnes from nucleoproteins of these cells, are required for the implementation of practical methods for biochemical detection of radiation injury in man. (author)

  7. Labor security in radiation flaw detection

    International Nuclear Information System (INIS)

    Margulis, U.Ya.; Chistov, E.D.; Partolin, O.F.; Pertsov, V.A.; Momzhiev, B.N.; Sprygaev, I.F.

    1986-01-01

    Problems of ensuring safe labour conditions in radiation flaw detection are considered. Methods for ionizing radiation protection are given calculating techniques for shielding flaw detectors and stationary structures are presented as well. Safe methods of nondestructive testing of items under field conditions, in a shop and special laboratories using gamma- and X-ray flaw detectors, betatrons, electron accelerators are described. Attention is paid to the principles of radiation factor stantardization as well as radiation monitoring. Analysis of accidents and recommendations on their prevention and liquidation of accidental consequences are given

  8. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-10-15

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research.

  9. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    International Nuclear Information System (INIS)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi

    2016-01-01

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research

  10. Pulse X-radiation in flaw detection

    International Nuclear Information System (INIS)

    Vavilov, S.P.; Gorbunov, V.I.

    1985-01-01

    Principles of physical and engineering application of pulse X-radiation (PXR) of micro- and nanosecond duration for nondestructive testing of processes, materials and devices are given. Methods and devices, aimed at generating X-ray pulses, as well as their radiation and flow detection characteristics, and testing methods by means of PXR are considered

  11. Bayesian Methods for Radiation Detection and Dosimetry

    International Nuclear Information System (INIS)

    Peter G. Groer

    2002-01-01

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model

  12. Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors

    International Nuclear Information System (INIS)

    Sakowicz, M.; Lusakowski, J.; Karpierz, K.; Grynberg, M.; Knap, W.; Gwarek, W.

    2008-01-01

    Detection of 100 GHz electromagnetic radiation by a GaAs/AlGaAs high electron mobility field-effect transistor was investigated at 300 K as a function of the angle α between the direction of linear polarization of the radiation and the symmetry axis of the transistor. The angular dependence of the detected signal was found to be A 0 cos 2 (α-α 0 )+C with A 0 , α 0 , and C dependent on the electrical polarization of the transistor gate. This dependence is interpreted as due to excitation of two crossed phase-shifted oscillators. A response of the transistor chip (including bonding wires and the substrate) to 100 GHz radiation was numerically simulated. Results of calculations confirmed experimentally observed dependencies and showed that the two oscillators result from an interplay of 100 GHz currents defined by the transistor impedance together with bonding wires and substrate related modes

  13. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    Science.gov (United States)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  14. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  15. Multi-sensor radiation detection, imaging, and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Kai [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-01-01

    Glenn Knoll was one of the leaders in the field of radiation detection and measurements and shaped this field through his outstanding scientific and technical contributions, as a teacher, his personality, and his textbook. His Radiation Detection and Measurement book guided me in my studies and is now the textbook in my classes in the Department of Nuclear Engineering at UC Berkeley. In the spirit of Glenn, I will provide an overview of our activities at the Berkeley Applied Nuclear Physics program reflecting some of the breadth of radiation detection technologies and their applications ranging from fundamental studies in physics to biomedical imaging and to nuclear security. I will conclude with a discussion of our Berkeley Radwatch and Resilient Communities activities as a result of the events at the Dai-ichi nuclear power plant in Fukushima, Japan more than 4 years ago. - Highlights: • .Electron-tracking based gamma-ray momentum reconstruction. • .3D volumetric and 3D scene fusion gamma-ray imaging. • .Nuclear Street View integrates and associates nuclear radiation features with specific objects in the environment. • Institute for Resilient Communities combines science, education, and communities to minimize impact of disastrous events.

  16. Radiation emergency response in Illinois, Alabama, and Texas

    International Nuclear Information System (INIS)

    Larsen, D.K.; Chester, R.O.

    1978-03-01

    The objective of this study was to examine state radiation emergency response and to locate any areas of emergency planning in need of improvement. This report briefly presents a summary of laws and defining documents governing radiation emergency response, describes the existing and projected need for such response, and presents the authors' analyses of the evolution of state response plans and their application to radiation incidents. Three states' programs are discussed in detail: Illinois, Alabama, and Texas. These states were selected because they have quite different emergency-response programs. Therefore, these state programs provide a wide variety of approaches to state radiation emergency response

  17. Medical response to effects of ionising radiation

    International Nuclear Information System (INIS)

    Crosbie, W.A.; Gittus, J.H.

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK)

  18. Study on radiation-responsive epigenomes

    International Nuclear Information System (INIS)

    Kim, Jin Hong; Chung, Byung Yeop; Lee, Seung Sik; Moon, Yu Ran; Lee, Min Hee; Kim, Ji Hong

    2011-01-01

    The purpose of this project is development of world-class headspring techniques of biological science for application of plant genomes/epigenomes through study on radiation- responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using ionizing radiation (IR), 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: Setup of conditions for chromatin immunoprecipitation in irradiated plants: investigation of aberrations in DNA methylation after treatment with different IR: elucidation of responses of epigenetic regulators to gamma rays (GR): investigation of aberrations in GR-responsive epigenetic regulators at different developmental stages: elucidation of interactive aberrations of epigenomes and epigenetic regulators after treatment of GR: comparison of functional genomes after treatment of GR or H 2 O 2 : elucidation of relation of epigenomes with GR-induced delay in senescence: elucidation of relation of epigenomes with GR-induced aberrations in pigment metabolism: comparison of antioxidant defense in epigenetic mutants: investigation of senescence-associated changes in epigenomes: investigation of senescence-associated changes in epigenetic regulators: comparison of aberrations in epigenomes at different dose of GR for mutation

  19. Study on radiation-responsive epigenomes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hong; Chung, Byung Yeop; Lee, Seung Sik; Moon, Yu Ran; Lee, Min Hee; Kim, Ji Hong [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    The purpose of this project is development of world-class headspring techniques of biological science for application of plant genomes/epigenomes through study on radiation- responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using ionizing radiation (IR), 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: Setup of conditions for chromatin immunoprecipitation in irradiated plants: investigation of aberrations in DNA methylation after treatment with different IR: elucidation of responses of epigenetic regulators to gamma rays (GR): investigation of aberrations in GR-responsive epigenetic regulators at different developmental stages: elucidation of interactive aberrations of epigenomes and epigenetic regulators after treatment of GR: comparison of functional genomes after treatment of GR or H{sub 2}O{sub 2}: elucidation of relation of epigenomes with GR-induced delay in senescence: elucidation of relation of epigenomes with GR-induced aberrations in pigment metabolism: comparison of antioxidant defense in epigenetic mutants: investigation of senescence-associated changes in epigenomes: investigation of senescence-associated changes in epigenetic regulators: comparison of aberrations in epigenomes at different dose of GR for mutation.

  20. Ionizing radiations, detection, dosimetry, spectrometry

    International Nuclear Information System (INIS)

    Blanc, D.

    1997-10-01

    A few works in French language are devoted to the detection of radiations. The purpose of this book is to fill a gap.The five first chapters are devoted to the properties of ionizing radiations (x rays, gamma rays, leptons, hadrons, nuclei) and to their interactions with matter. The way of classification of detectors is delicate and is studied in the chapter six. In the chapter seven are studied the statistics laws for counting and the spectrometry of particles is treated. The chapters eight to thirteen study the problems of ionization: charges transport in a gas, ionization chambers (theory of Boag), counters and proportional chambers, counters with 'streamers', chambers with derive, spark detectors, ionization chambers in liquid medium, Geiger-Mueller counters. The use of a luminous signal is the object of the chapters 14 to 16: conversion of a luminous signal in an electric signal, scintillators, use of the Cerenkov radiation. Then, we find the neutron detection with the chapter seventeen and the dosimetry of particles in the chapter eighteen. This book does not pretend to answer to specialists questions but can be useful to physicians, engineers or physics teachers. (N.C.)

  1. Radiation response of tumours

    International Nuclear Information System (INIS)

    Twentyman, P.R.

    1988-01-01

    In this chapter knowledge regarding cellular radiation response and the factors which modify it is related to the volume changes and probability of control of irradiated solid tumors. After a discussion of the different cell populations present within solid tumors the cell population kinetics of the neoplastic cells are considered in more detail. The influence of factors related to the three-dimensional geometry of the tumor, particularly hypoxia, are considered, and also the role of the tumor vasculature in radiation response. Repair of sublethal damage (SLD) and potentially lethal damage (PLD) is dealt with and finally the relationship between the various end-points of tumor radioresponsiveness is discussed

  2. Vanguards of paradigm shift in radiation biology. Radiation-induced adaptive and bystander responses

    International Nuclear Information System (INIS)

    Matsumoto, Hideki; Hamada, Nobuyuki; Kobayashi, Yasuhiko; Takahashi, Akihisa; Ohnishi, Takeo

    2007-01-01

    The risks of exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to high dose radiation, using a linear no-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. In other words, there are accumulated findings which cannot be explained by the classical ''target theory'' of radiation biology. The radioadaptive response, radiation-induced bystander effects, low-dose radio-hypersensitivity, and genomic instability are specifically observed in response to low dose/low dose-rate radiation, and the mechanisms underlying these responses often involve biochemical/molecular signals that respond to targeted and non-targeted events. Recently, correlations between the radioadaptive and bystander responses have been increasingly reported. The present review focuses on the latter two phenomena by summarizing observations supporting their existence, and discussing the linkage between them from the aspect of production of reactive oxygen and nitrogen species. (author)

  3. Study on radiation-responsive epigenomes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hong; Lee, Seung Sik; Bae, Hyung Woo; Kim, Ji Hong; Kim, Ji Eun; Cho, Eun Ju; Lee, Min Hee; Moon, Yu Ran [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    The purpose of this project is development of world-class headspring techniques of biological science for application of plant genomes/epigenomes through study on radiation- responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using IR, 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: practical application of ChIP in GR-treated Arabidopsis using anti-histone antibodies: mapping of DNA methylomes associated with GR-responsive transcriptomes: setup of methylated DNA quantification using HPLC: elucidation of aberrations in epigenetic regulation induced by low-dose GR using gamma phytotron: comparison of gene expression of histone-modifying enzymes after treatment of GR: elucidation of transcriptomes and physiological alterations associated with delayed senescence of drd1-6 mutant: comparison of gene expression of DNA methylation-related enzymes in GR-treated rice callus and Arabidopsis: investigation of germination capacity, low-temperature, salinity and drought stress-resistance in drd1-6 epigenetic mutant: investigation of aberrations in DNA methylation depending on dose rates of gamma radiation

  4. Study on radiation-responsive epigenomes

    International Nuclear Information System (INIS)

    Kim, Jin Hong; Lee, Seung Sik; Bae, Hyung Woo; Kim, Ji Hong; Kim, Ji Eun; Cho, Eun Ju; Lee, Min Hee; Moon, Yu Ran

    2012-01-01

    The purpose of this project is development of world-class headspring techniques of biological science for application of plant genomes/epigenomes through study on radiation- responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using IR, 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: practical application of ChIP in GR-treated Arabidopsis using anti-histone antibodies: mapping of DNA methylomes associated with GR-responsive transcriptomes: setup of methylated DNA quantification using HPLC: elucidation of aberrations in epigenetic regulation induced by low-dose GR using gamma phytotron: comparison of gene expression of histone-modifying enzymes after treatment of GR: elucidation of transcriptomes and physiological alterations associated with delayed senescence of drd1-6 mutant: comparison of gene expression of DNA methylation-related enzymes in GR-treated rice callus and Arabidopsis: investigation of germination capacity, low-temperature, salinity and drought stress-resistance in drd1-6 epigenetic mutant: investigation of aberrations in DNA methylation depending on dose rates of gamma radiation

  5. Assembly of gamma radiation detection with directivity properties

    International Nuclear Information System (INIS)

    Stoica, M.; Talpalariu, C.

    2016-01-01

    An assembly of gamma radiation detection with directivity properties and small size enables the development of portable equipment or robots specialized in finding and signaling radioactively contaminated areas in case of nuclear incidents or decommissioning of nuclear installations. Directivity characteristic of the assembly of gamma radiation detection is very important when aiming to build an equipment for searching radioactively contaminated areas. In order to obtain a suitable directivity characteristics in terms of detection of gamma rays, it was necessary to construct a lead collimator with a cylindrical shape. The detector, preamplifier and amplifier pulse were placed inside the collimator and pulse discriminator circuit and power source were placed beside the collimator, all being disposed within the housing cylindrical experimental. A PIN photodiode type was used as a detector of gamma radiation. (authors)

  6. Radiation response of the central nervous system

    International Nuclear Information System (INIS)

    Schultheiss, T.E.; Kun, L.E.; Ang, K.K.; Stephens, L.C.

    1995-01-01

    This report reviews the anatomical, pathophysiological, and clinical aspects of radiation injury to the central nervous system (CNS). Despite the lack of pathognomonic characteristics for CNS radiation lesions, demyelination and malacia are consistently the dominant morphological features of radiation myelopathy. In addition, cerebral atrophy is commonly observed in patients with neurological deficits related to chemotherapy and radiation, and neurocognitive deficits are associated with diffuse white matter changes. Clinical and experimental dose-response information have been evaluated and summarized into specific recommendations for the spinal cord and brain. The common spinal cord dose limit of 45 Gy in 22 to 25 fractions is conservative and can be relaxed if respecting this limit materially reduces the probability of tumor control. It is suggested that the 5% incidence of radiation myelopathy probably lies between 57 and 61 Gy to the spinal cord in the absence of dose modifying chemotherapy. A clinically detectable length effect for the spinal cord has not been observed. The effects of chemotherapy and altered fractionation are also discussed. Brain necrosis in adults is rarely noted below 60 Gy in conventional fractionation, with imaging and clinical changes being observed generally only above 50 Gy. However, neurocognitive effects are observed at lower doses, especially in children. A more pronounced volume effect is believed to exist in the brain than in the spinal cord. Tumor progression may be hard to distinguish from radiation and chemotherapy effects. Diffuse white matter injury can be attributed to radiation and associated with neurological deficits, but leukoencephalopathy is rarely observed in the absence of chemotherapy. Subjective, objective, management, and analytic (SOMA) parameters related to radiation spinal cord and brain injury have been developed and presented on ordinal scales

  7. Radiation response of the central nervous system

    International Nuclear Information System (INIS)

    Schultheiss, T.E.; Kun, L.E.; Stephens, L.C.

    1995-01-01

    This report reviews the anatomical, pathophysiological, and clinical aspects of radiation injury to the central nervous system (CNS). Despite the lack of pathoGyomonic characteristics for CNS radiation lesions, demyelination and malacia are consistently the dominant morphological features of radiation myelopathy. In addition, cerebral atrophy is commonly observed in patients with neurological deficits related to chemotherapy and radiation, and neurocognitive deficits are associated with diffuse white matter changes. Clinical and experimental dose-response information have been evaluated and summarized into specific recommendations for the spinal cord and brain. The common spinal cord dose limit of 45 Gn in 22 to 25 fractions is conservative and can be relaxed if respecting this limit materially reduces the probability of tumor control. It is suggested that the 5% incidence of radiation myelopathy probably lies between 57 and 61 Gy to the spinal cord in the absence of dose modifying chemotherapy. A clinically detectable length effect for the spinal cord has not been observed. The effects of chemotherapy and altered fractionation are also discussed. Brain necrosis in adults is rarely noted below 60 Gy in conventional fractionation, with imaging and clinical changes being observed generally only above 50 Gy. However, neurocognitive effects are observed at lower doses, especially in children. A more pronounced volume effect is believed to exist in the brain than in the spinal cord. Tumor progression may be hard to distinguish from radiation and chemotherapy effects. Diffuse white matter injury can be attributed to radiation and associated with neurological deficits, but leukoencephalopathy is rarely observed in the absence of chemotherapy. Subjective, objective, management, and analytic (SOMA) parameters related to radiation spinal cord and brain injury have been developed and presented on ordinal scales. 140 refs., 3 figs., 6 tabs

  8. Medical response to radiation emergencies in Argentina

    International Nuclear Information System (INIS)

    Gisone, Pablo A.; Perez, Maria del R.; Dubner, Diana L.; Michelin, Severino C.; Vazquez, M.; Demayo, O.

    2006-01-01

    Although radiation accidents are not frequent, the increasing use of radioisotopes in medicine and industry increases the likelihood of such accidental situations. Additionally, risks posed by the malevolent use of radiation sources have been highlighted during the last few years. In this context, the enhancement of national capabilities for medical assistance of victims in radiation emergencies becomes relevant. This communication describes the organization of medical response to radiation emergencies existing in Argentina. A three-level system for medical response has been developed: pre-hospital response given on-site by local emergency services, assistance provided by emergency departments of local general hospitals and central reference hospitals for treatment of acute radiation syndrome, cutaneous radiation syndrome and internal contamination. An education and training program is regularly executed at the three levels, including theoretical background as well as practical training. Guidelines and protocols for medical handling of victims have been elaborated and implemented. Research and development of new strategies for diagnosis and treatment of radiation injuries are promoted by ARN in close collaboration with physicians belonging to reference hospitals. (author)

  9. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  10. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  11. Detection of food treated with ionizing radiation

    International Nuclear Information System (INIS)

    Delincee, H.

    1998-01-01

    Treatment of food with ionizing energy-'food irradiation'- is finally becoming reality in many countries. The benefits include an improvement in food hygiene, spoilage reduction and extension of shelf-life. Although properly irradiated food is safe and wholesome, consumers should be able to make their own free choice between irradiated and non-irradiated food. For this purpose labelling is indispensable. In order to check compliance with existing regulations, detection of radiation treatment by analysing the food itself is highly desirable. Significant progress has been made in recent years in developing analytical detection methods utilizing changes in food originating from the radiation treatment

  12. Experimental applications for the MARK-1 and MARK-1A pulsed ionizing radiation detection systems. Volume 3

    International Nuclear Information System (INIS)

    Harker, Y.D.; Lawrence, R.S.; Yoon, W.Y.; Lones, J.L.

    1993-12-01

    This report is the third volume in a three volume set describing the MARK series of pulsed ionizing radiation detection systems. This volume describes the MARK-1A detection system, compares it with the MARK-1 system, and describes the experimental testing of the detection systems. Volume 1 of this set presents the technical specifications for the MARK-1 detection system. Volume 2 is an operations manual specifically for the MARK-1 system, but it generally applies to the MARK-1A system as well. These detection systems operate remotely and detect photon radiation from a single or a multiple pulsed source. They contain multiple detector (eight in the MARK-1 and ten in the MARK-1A) for determination of does and incident photon effective energy. The multiple detector arrangement, having different detector sizes and shield thicknesses, provides the capability of determining the effective photon energy of the radiation spectrum. Dose measurements using these units are consistent with TLD measurements. The detection range is from 3 nanorads to 90 microrads per source burst; the response is linear over that range. Three units were built and are ready for field deployment

  13. Chinese experience on medical response to radiation emergencies

    International Nuclear Information System (INIS)

    Liu, Ying; Qin, Bin; Lei, Cuiping; Chen, Huifang; Han, Yuhong

    2008-01-01

    Full text: Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). CCMRRE is a liaison of WHO/REMPAN and functions as a national and professional institute for medical preparedness and response to emergencies involving radioactive material. CCMRRE participates in drafting National Medical Assistant Program for Radiation Emergency and relevant technical documents, develops preventive measures and technique means of medical preparedness and response to radiation emergency. CCMRRE is responsible for medical response to radiological or nuclear accident on national level. CCMRRE holds training courses, organizes drills and provides technical support to local medical organizations in practicing medical preparedness and response to radiation emergency. CCMRRE collects, analyzes and exchanges information on medical response to radiological and nuclear emergency and establishes relevant database. CCMRRE also guides and participates in radiation pollution monitoring on accident sites. In the past ten years, we accumulate much knowledge and experience on medical response to radiation emergencies. In this context, we will discuss Xinzhou Accident, which took place in 1992 and involved in three deaths, and Ha'erbin Accident that took place in 2005 and involved one death. A father and two brothers in Xinzhou Accident died of over-exposed to 60 Co source and misdiagnosis and improper treatment, which indicates that most general practitioners are uncertain about the health consequences of exposure to ionizing radiation and the medical management of exposed patients. When Ha'erbin Accident happened in 2005, the local hospital gave the right diagnosis and treatment based on the clinic symptoms and signs, which prevent more people suffering from over-expose to 192 Ir source. The distinct changes comes from the education and training to primary doctors related

  14. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  15. Rain-Induced Increase in Background Radiation Detected by Radiation Portal Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hausladen, Paul [ORNL; Blessinger, Christopher S [ORNL; Guzzardo, Tyler [ORNL; Livesay, Jake [ORNL

    2012-07-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.

  16. Responsibility structure in medical radiation applications

    International Nuclear Information System (INIS)

    Beekman, Z.M.

    1989-01-01

    The author discusses the various aspects of the responsibilities of physicians and clinical physicists with regard to radiation protection in medical applications of ionizing radiation. It becomes still clearer that the physician, who carries out the examination or the treatment, also has to bear the responsibility. this holds for the indication assessment as well as for optimization of the quality of the examination or treatment versus radiation burden of the patient, radiologic worker and thirds. Further it is clear that the physician in these will have to delegate specific tasks and responsibilities, whether or not in the elongated-arm construction. The clinical physicist is responsible in particular for the applications of the physical methods and watches the quality of the apparatus and methods used. As such he also is responsible for the technical workers, who take care of the preventive and corrective maintenance. The principal responsibility of the clinical physicist however lies in the field of standardization and calibration of medical-physical instruments. Besides this investigation into and development of new techniques, methods and apparatus come up, while also education and training of various profession groups involved need attention. (author). 6 refs.; 1 tab

  17. Passive radiation detection using optically active CMOS sensors

    Science.gov (United States)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  18. Organic materials and devices for detecting ionizing radiation

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  19. Advanced concepts in multi-dimensional radiation detection and imaging

    International Nuclear Information System (INIS)

    Vetter, Kai; Barnowski, Ross; Pavlovsky, Ryan; Haefner, Andy; Torii, Tatsuo; Shikaze, Yoshiaki; Sanada, Yukihisa

    2016-01-01

    Recent developments in the detector fabrication, signal readout, and data processing enable new concepts in radiation detection that are relevant for applications ranging from fundamental physics to medicine as well as nuclear security and safety. We present recent progress in multi-dimensional radiation detection and imaging in the Berkeley Applied Nuclear Physics program. It is based on the ability to reconstruct scenes in three dimensions and fuse it with gamma-ray image information. We are using the High-Efficiency Multimode Imager HEMI in its Compton imaging mode and combining it with contextual sensors such as the Microsoft Kinect or visual cameras. This new concept of volumetric imaging or scene data fusion provides unprecedented capabilities in radiation detection and imaging relevant for the detection and mapping of radiological and nuclear materials. This concept brings us one step closer to the seeing the world with gamma-ray eyes. (author)

  20. A method to detect ultra high energy electrons using earth's magnetic field as a radiator

    Science.gov (United States)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    It is pointed out that the detection of electrons with energies exceeding a few TeV, which lose energy rapidly through synchrotron and inverse Compton processes, would provide valuable information on the distribution of sources and on the propagation of cosmic rays in the solar neighborhood. However, it would not be possible to measure the energy spectrum beyond a few TeV with any of the existing experimental techniques. The present investigation is, therefore concerned with the possibility of detecting electrons with energies exceeding a few TeV on the basis of the photons emitted through synchrotron radiation in the earth's magnetic field. Attention is given to the synchrotron radiation of electrons in the earth's magnetic field, detector response and energy estimation, and the characteristics of an ideal detector, capable of detecting photons with energies equal to or greater than 20 keV.

  1. Non-linear dose response of a few plant taxa to acute gamma radiation

    International Nuclear Information System (INIS)

    George, J.T.; Patel, B.B.; Pius, J.; Narula, B.; Shankhadarwar, S.; Rane, V.A.; Venu-Babu, P.; Eapen, S.; Singhal, R.K.

    2014-01-01

    Micronuclei induction serves as an essential biomarker of radiation stress in a living system, and the simplicity of its detection technique has made it a widely used indicator of radiation damage. The present study was conducted to reveal the cytological dose-response of a few plant taxa, viz., Allium cepa var. aggregatum Linn., Allium sativum Linn., Chlorophytum comosum (Thunb.) Jacques and Eichhornia crassipes (Mart.) Solms, to low LET gamma radiation with special emphasis on the pattern of micronuclei induced across low and high dose regimes. A tri-phasic non-linear dose-response pattern was observed in the four taxa studied, characterized by a low dose linear segment, a plateau and a high dose linear segment. Despite a similar response trend, the critical doses where the phase transitions occurred varied amongst the plant taxa, giving an indication to their relative radiosensitivities. E. crassipes and A. sativum, with their lower critical doses for slope modifications of phase transitions, were concluded as being more radiosensitive as compared to C. comosum and A. cepa, which had relatively higher critical doses. (author)

  2. Development of mobile radiation detection system against nuclear terrorism in Korea

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Chang, Sung-Soon; Yoo, Ho-Sik

    2011-01-01

    A fixed radiation portal monitors (RPM) deployed at border, seaport, airport or key traffic checkpoints has played an important role in preventing the illicit trafficking and transport of nuclear and radioactive materials. However, the RPM usually is large and heavy and can't easily be moved to a different location. An intelligent terrorist may also circumvent the fixed RPM to avoid being detected. These reasons motivate us to develop a mobile radiation detection system. The objective of this paper is to report our experience on developing the mobile radiation detection system for the search and detection of nuclear and radioactive materials during road transport. Measurements were performed at various speeds and distances between the radioactive isotope (RI) transporting car and the measurement car. Results of our measurements and the detection limits of the system is described in this paper. The mobile radiation detection system developed should contribute to defending public's health and safety and the environment against nuclear and radiological terrorism by detecting nuclear or radioactive material hidden illegally in a vehicle. (author)

  3. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O. [Institute for Scintillation Materials of the NAS of Ukraine, Kharkov, (Ukraine); Naydenov, S. [Institute for Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, (Ukraine); Pochet, T. [DETEC-Europe, Vannes (France); Smith, C. [Naval Postgraduate School, Monterey, CA (United States)

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n

  4. Study of the casting speedy radiation-detection system

    International Nuclear Information System (INIS)

    Tan Xiaochun; Huang Junqing; Shi Xianbei; Zhao Gang; Wang Liping

    2001-01-01

    The paper introduces the design of the launching speedy radiation-detection system. It consists of launcher, semiconductor detector, microprocessor and communicator. It can give the intensity, position, time of radiation. The paper discusses the function, composition, principle, speciality and technical problem of this system

  5. Radiation detection technology assessment program (RADTAP)

    International Nuclear Information System (INIS)

    Smith, D.E.

    1998-01-01

    The U.S. Customs Service and the U.S. Department of Energy (DOE) conducted a technical and operational assessment of gamma ray radiation detection equipment during the period May 5-16, 1997 at a testing facility in North Carolina. The effort was entitled, ''Radiation Detection Technology Assessment Program (RADTAP)'', and was conducted for the purpose of assessing the applicability, sensitivity and robustness of a diverse suite of gamma ray detection and identification equipment for possible use by Customs and other law enforcement agencies. Thirteen companies entered 25 instruments into the assessment program. All detection equipment entered had to exhibit a minimum sensitivity of 20 micro-R per hour (background included) from a Cesium-137 point source. Isotope identifying spectrometers entered were man portable and operable at room temperature with read-out that could be interpreted by non-technical personnel. Radioactive sources used in the assessment included special nuclear material, industrial and health isotopes. Evaluators included Customs inspectors and technical experts from DOE and Customs. No conclusions or recommendations were issued based on the quantitative and qualitative test results, however, the results of the program provided law enforcement agencies with the necessary data to select equipment that best meets their operational needs and budgets. (author)

  6. Track structure theory in radiobiology and in radiation detection

    International Nuclear Information System (INIS)

    Katz, R.

    1978-01-01

    The response of biological cells, and many physical radiation and track detectors to ionizing radiations and to energetic heavily ionizing particles, results from the secondary and higher generation electrons ejected from the atoms and molecules of the detector by the incident primary radiation. The theory uses a calculation of the radial distribution of local dose deposited by secondary electrons (delta-rays) from an energetic heavy ion as a transfer function, relating the dose-response relation measured (or postulated) for a particular detector in a uniform radiation field (gamma-rays) to obtain the radial distribution in response about the ion's path, and thus the structure of the track of a particle. Subsequent calculations yield the response of the detector to radiation fields of arbitrary quality. The models which have been used for detector response arise from target theory, and are of the form of statistical models called multi-hit or multi-target detectors, in which it is assumed that there are sensitive elements (emulsion grains, or biological cell nuclei) which may require many hits (emulsion grains) or single hits in different targets (say, cellular chromosomes) in order to produce the observed end-point. Recent work has demonstrated that many-hit physical detectors do exist. From both emulsion sensitometry and from the structure of tracks of heavy ions, it can be shown that emulsion-developer combinations exist which yield many-hit response. There is also some evidence that the supralinearity in thermoluminescent dosimeters arises from a mixture of 1-hit and 2-hit response, perhaps of different trap structures within the same TLD crystal. These detectors can be expected to mimic the response of biological cells to radiations of different quality. Their patterns of response may help us to understand better the structure of particle tracks in SSNTD's. (author)

  7. Optical fiber applied to radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Francisco A.B.; Costa, Antonella L.; Oliveira, Arno H. de; Vasconcelos, Danilo C., E-mail: fanbra@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: danilochagas@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    In the last years, the production of optical fibers cables has make possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to light signal transmission from a NaI(Tl) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches. (author)

  8. Pulsed radiation decay logging

    International Nuclear Information System (INIS)

    Mills, W.R. Jr.

    1983-01-01

    There are provided new and improved well logging processes and systems wherein the detection of secondary radiation is accomplished during a plurality of time windows in a manner to accurately characterize the decay rate of the secondary radiation. The system comprises a well logging tool having a primary pulsed radiation source which emits repetitive time-spaced bursts of primary radiation and detector means for detecting secondary radiation resulting from the primary radiation and producing output signals in response to the detected radiation. A plurality of measuring channels are provided, each of which produces a count rate function representative of signals received from the detector means during successive time windows occurring between the primary radiation bursts. The logging system further comprises means responsive to the measuring channels for producing a plurality of functions representative of the ratios of the radiation count rates measured during adjacent pairs of the time windows. Comparator means function to compare the ratio functions and select at least one of the ratio functions to generate a signal representative of the decay rate of the secondary radiation

  9. Proposal of secure camera-based radiation warning system for nuclear detection

    International Nuclear Information System (INIS)

    Tsuchiya, Ken'ichi; Kurosawa, Kenji; Akiba, Norimitsu; Kakuda, Hidetoshi; Imoto, Daisuke; Hirabayashi, Manato; Kuroki, Kenro

    2016-01-01

    Counter-terrorisms against radiological and nuclear threat are significant issues toward Tokyo 2020 Olympic and Paralympic Games. In terms of cost benefit, it is not easy to build a warning system for nuclear detection to prevent a Dirty Bomb attack (dispersion of radioactive materials using a conventional explosive) or a Silent Source attack (hidden radioactive materials) from occurring. We propose a nuclear detection system using the installed secure cameras. We describe a method to estimate radiation dose from noise pattern in CCD images caused by radiation. Some dosimeters under neutron and gamma-ray irradiations (0.1mSv-100mSv) were taken in CCD video camera. We confirmed amount of noise in CCD images increased in radiation exposure. The radiation detection using CMOS in secure cameras or cell phones has been implemented. However, in this presentation, we propose a warning system including neutron detection to search shielded nuclear materials or radiation exposure devices using criticality. (author)

  10. Response of CsI:Pb Scintillator Crystal to Neutron Radiation

    Science.gov (United States)

    Costa Pereira, Maria da Conceição; Filho, Tufic Madi; Berretta, José Roberto; Náhuel Cárdenas, José Patrício; Iglesias Rodrigues, Antonio Carlos

    2018-01-01

    The helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. In the past decades, great effort was made to developed efficient and fast scintillators to detect radiation. The inorganic scintillator may be an alternative. Inorganic scintillators with much higher density should be selected for optimal neutron detection efficiency taking into consideration the relevant reactions leading to light emission. These detectors should, then, be carefully characterized both experimentally and by means of advanced simulation code. Ideally, the detector should have the capability to separate neutron and gamma induced events either by amplitude or through pulse shape differences. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Considerable progress has been achieved to develop new inorganic scintillators, in particular increasing the light output and decreasing the decay time by optimized doping. Crystals may be found to suit neutron detection. In this report, we will present the results of the study of lead doped cesium iodide crystals (CsI:Pb) grown in our laboratory, using the vertical Bridgman technique. The concentration of the lead doping element (Pb) was studied in the range 5x10-4 M to 10-2 M . The crystals grown were subjected to annealing (heat treatment). In this procedure, vacuum of 10-6 mbar and continuous temperature of 350°C, for 24 hours, were employed. In response to neutron radiation, an AmBe source with energy range of 1 MeV to 12 MeV was used. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons/second. The operating voltage of the photomultiplier tube was 1700 V; the accumulation time in the counting process was 600 s and 1800 s. The scintillator crystals used were cut with dimensions of 20 mm diameter and 10 mm height.

  11. Study on radiation-responsive epigenomes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Seung Sik; Chung, Byung Yeoup; and others

    2013-01-15

    The purpose of this project is development of world-class head spring techniques of biological science for application of plant genomes/epigenomes through study on radiation-responsive epigenomes and improvement of the national competitiveness in the field of fundamental technology for biological science and industry. Research scope includes 1) Investigation of radiation-responsive epigenomes and elucidation of their relation with phenotypes, 2) Elucidation of interaction and transcription control of epigenomes and epigenetic regulators using IR, 3) Investigation of epigenome-mediated traits in plant development, differentiation and antioxidant defense using IR, and 4) Development of application techniques of radiation-responsive epigenomes for eco-monitoring and molecular breeding. Main results are as follow: investigation of the expression level of histone-modifying enzymes by IR; elucidation of the structural and functional changes of chaperone protein by IR; development of transgenic plant (DRD1-6); investigation of transcription control of epigenetic regulators by IR; investigation of relevance between DNA methylation and miRNA; comparison of gene expression in wild type and cmt mutant from Arabidopsis using gene chip; investigation control of epigenetic regulators in drd1-6 mutant by drought stress; development of transgenic plant using epigenetic regulators.

  12. The radiative heating response to climate change

    Science.gov (United States)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  13. Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices

    Science.gov (United States)

    Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Kuntsevich, A. Yu; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.

    2018-06-01

    We report on the sub-terahertz (THz) (129–450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.

  14. Ultrasound-Detected Thyroid Nodule Prevalence and Radiation Dose from Fallout

    Science.gov (United States)

    Land, C. E.; Zhumadilov, Z.; Gusev, B. I.; Hartshorne, M. H.; Wiest, P. W.; Woodward, P. W.; Crooks, L. A.; Luckyanov, N. K.; Fillmore, C. M.; Carr, Z.; Abisheva, G.; Beck, H. L.; Bouville, A.; Langer, J.; Weinstock, R.; Gordeev, K. I.; Shinkarev, S.; Simon, S. L.

    2014-01-01

    Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949–1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0–0.65) and 0.31 Gy (0–9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09–3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose–response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings. PMID:18363427

  15. Recent developments in analytical detection methods for radiation processed foods

    International Nuclear Information System (INIS)

    Wu Jilan

    1993-01-01

    A short summary of the programmes of 'ADMIT' (FAO/IAEA) and the developments in analytical detection methods for radiation processed foods has been given. It is suggested that for promoting the commercialization of radiation processed foods and controlling its quality, one must pay more attention to the study of analytical detection methods of irradiated food

  16. Nuclear Forensics and Radiochemistry: Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  17. Nuclear Forensics and Radiochemistry: Radiation Detection

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2017-01-01

    Radiation detection is necessary for isotope identification and assay in nuclear forensic applications. The principles of operation of gas proportional counters, scintillation counters, germanium and silicon semiconductor counters will be presented. Methods for calibration and potential pitfalls in isotope quantification will be described.

  18. BNLs Synchrotron-radiation Research Hub for Characterizing Detection Materials and Devices for the NA-22 Community

    Energy Technology Data Exchange (ETDEWEB)

    Camarda, G. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bolotnikov, A. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hossain, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roy, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Vanier, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); McDowell, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosen, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Labrum, Joseph [Univ. of California, Berkeley, CA (United States)

    2017-03-01

    The goal of this project is to obtain and characterize scintillators, emerging- and commercial-compoundsemiconductor radiation- detection materials and devices provided by vendors and research organizations. The focus of our proposed research is to clarify the role of the deleterious defects and impurities responsible for the detectors' non-uniformity in scintillating crystals, commercial semiconductor radiation-detector materials, and in emerging R&D ones. Some benefits of this project addresses the need for fabricating high-performance scintillators and compound-semiconductor radiation-detectors with the proven potential for large-scale manufacturing. The findings help researchers to resolve the problems of non-uniformities in scintillating crystals, commercial semiconductor radiation-detector materials, and in emerging R&D ones.

  19. The responsible radiation protection supervisor: Who actually is he? Legal entities under public law and their legal responsibilities pursuant to radiation protection laws

    International Nuclear Information System (INIS)

    Brinkmann, M.

    1998-01-01

    All radiation protection relevant activities subject to licencing or notifying include observation of legally allocated responsibilities. Responsible radiation protection supervisor is the licence owner in person. If the holder is a legal entity, that entity is responsible as such. The executives of the entity exercise the functions of a responsible radiation protection officer, or may delegate them to an authorized deputy. In this case, the yardstick of a possible liability may be changed. The liability of the responsible persons is determined by the general legal regulations. (orig.) [de

  20. Origin, characteristics and detection of nuclear radiation

    International Nuclear Information System (INIS)

    Goettel, K.

    1975-06-01

    The report is an introduction into the physical principles of radiation protection. After a brief summary of the most significant experimental results and data on the atomic structure of the matter and after explaining the principles of atomic and nuclear structure, radioactive decay and its laws are dealt with. This is followed by a representation of the characteristics of nuclear radiation, its interaction with the matter as well as the biological effects. After a description of the measurement units for radioactivity and doses the most inportant methods for radiation detection and the principles of how detectors function are explained. (ORU/LN) [de

  1. Chemical vapor deposition diamond based multilayered radiation detector: Physical analysis of detection properties

    International Nuclear Information System (INIS)

    Almaviva, S.; Marinelli, Marco; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.; Dolbnya, I.; Sawhney, K.; Tartoni, N.

    2010-01-01

    Recently, solid state photovoltaic Schottky diodes, able to detect ionizing radiation, in particular, x-ray and ultraviolet radiation, have been developed at the University of Rome 'Tor Vergata'. We report on a physical and electrical properties analysis of the device and a detailed study of its detection capabilities as determined by its electrical properties. The design of the device is based on a metal/nominally intrinsic/p-type diamond layered structure obtained by microwave plasma chemical vapor deposition of homoepitaxial single crystal diamond followed by thermal evaporation of a metallic contact. The device can operate in an unbiased mode by using the built-in potential arising from the electrode-diamond junction. We compare the expected response of the device to photons of various energies calculated through Monte Carlo simulation with experimental data collected in a well controlled experimental setup i.e., monochromatic high flux x-ray beams from 6 to 20 keV, available at the Diamond Light Source synchrotron in Harwell (U.K.).

  2. Performance of semiconductor radiation sensors for simple and low-cost radiation detector

    International Nuclear Information System (INIS)

    Tanimura, Yoshihiko; Birumachi, Atsushi; Yoshida, Makoto; Watanabe, Tamaki

    2008-01-01

    In order to develop a simple but reliable radiation detector for the general public, photon detection performances of radiation sensors have been studied in photon calibration fields and by Monte Carlo simulations. A silicon p-i-n photodiode and a CdTe detector were selected for the low cost sensors. Their energy responses to ambient dose equivalent H * (10) were evaluated over the energy range from 60 keV to 2 MeV. The response of the CdTe decreases markedly with increasing photon energy. On the other hand, the photodiode has the advantage of almost flat response above 150 keV. The sensitivities of these sensors are 4 to 6 cpm for the natural radiation. Detection limits of the radiation level are low enough to know the extreme increase of radiation due to emergency situations of nuclear power plants, fuel treatment facilities and so on. (author)

  3. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2005-01-01

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  4. Radiation signal processing system

    International Nuclear Information System (INIS)

    Bennett, M.; Knoll, G.; Strange, D.

    1980-01-01

    An improved signal processing system for radiation imaging apparatus comprises: a radiation transducer producing transducer signals proportional to apparent spatial coordinates of detected radiation events; means for storing true spatial coordinates corresponding to a plurality of predetermined apparent spatial coordinates relative to selected detected radiation events said means for storing responsive to said transducer signal and producing an output signal representative of said true spatial coordinates; and means for interpolating the true spatial coordinates of the detected radiation events located intermediate the stored true spatial coordinates, said means for interpolating communicating with said means for storing

  5. Radiation Detection Overview for Nuclear Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-16

    This presentation discusses the fundamentals of gamma and neutron detection; presents an overview of the DOE Triage and JTOT Programs, gamma, and neutron signatures in select measurements; and offers a detector demonstration.

  6. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jian; Wang, Yaxing; Liu, Wei; Yin, Xuemiao; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao [School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Zou, Youming [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui (China); Albrecht-Schmitt, Thomas E. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL (United States); Liu, Guokui [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-19

    Precise detection of low-dose X- and γ-radiations remains a challenge and is particularly important for studying biological effects under low-dose ionizing radiation, safety control in medical radiation treatment, survey of environmental radiation background, and monitoring cosmic radiations. We report here a photoluminescent uranium organic framework, whose photoluminescence intensity can be accurately correlated with the exposure dose of X- or γ-radiations. This allows for precise and instant detection of ionizing radiations down to the level of 10{sup -4} Gy, representing a significant improvement on the detection limit of approximately two orders of magnitude, compared to other chemical dosimeters reported up to now. The electron paramagnetic resonance analysis suggests that with the exposure to radiations, the carbonyl double bonds break affording oxo-radicals that can be stabilized within the conjugated uranium oxalate-carboxylate sheet. This gives rise to a substantially enhanced equatorial bonding of the uranyl(VI) ions as elucidated by the single-crystal structure of the γ-ray irradiated material, and subsequently leads to a very effective photoluminescence quenching through phonon-assisted relaxation. The quenched sample can be easily recovered by heating, enabling recycled detection for multiple runs. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Rubella virus detection by ELISA method in exposed radiation workers

    International Nuclear Information System (INIS)

    Wu Jianmei; Zhu Bo; Zhu Youming; Shao Jinhui; Wu Weiping; Han Jinxiang

    2005-01-01

    Objective: A rapid diagnosis method was developed to detect Rubella virus infection in radiation workers. Methods: Modified ELISA method was used to detect the level of lgG and lgM antibodies in 514 in Jinan district. Results: 90.47% of 514 cases was shown to be resistant against Rubella virus; 6.42% were sensitive type; 0.78% belonged to be reinfected. Conclusion: Detection of Rubella virus in exposed radiation workers was imperative, and vaccine against Rubella virus was also needed to eliminate the infection risk. (authors)

  8. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    International Nuclear Information System (INIS)

    Luís, R.; Fleta, C.; Balbuena, J.; Baptista, M.; Barros, S.; Disch, C.; Jumilla, C.; Lozano, M.; Marques, J.G.; Vaz, P.

    2016-01-01

    The objective of the REWARD project consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. The main objective of this work consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using experimental data and the Monte Carlo simulation program MCNP6. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades. The response of the REWARD detection system to the presence of an RDD is predicted and discussed. - Highlights: • A prototype mobile system for real-time, wide-area radiation surveillance was built. • Experimental measurements and Monte Carlo simulations were used to test the system. • The system is suitable to detect and identify radiation sources in threat scenarios.

  9. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    Science.gov (United States)

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  10. The problem of the detection threshold in radiation measurement

    International Nuclear Information System (INIS)

    Rose, E.; Wueneke, C.D.

    1983-01-01

    In all cases encountered in practical radiation measurement, the basic problem is to differentiate between the lowest measured value and the zero value (background, natural background radiation, etc.). For this purpose, on the mathematical side, tests based on hypotheses are to be applied. These will show the probability of differentiation between two values having the same random spread. By means of these tests and the corresponding error theory, a uniform treatment of the subject, applicable to all problems relating to measuring technique alike, can be found. Two basic concepts are found in this process, which have to be defined in terms of semantics and nomenclature: Decision threshold and detection threshold, or 'minimum detectable mean value'. At the decision threshold, one has to decide (with a given statistical error probability) whether a measured value is to be attributed to the background radiation, accepting the zero hypothesis, or whether this value differs significantly from the background radiation (error of 1rst kind). The minimum detectable mean value is the value which, with a given decision threshold, can be determined with sufficient significance to be a measured value and thus cannot be mistaken as background radiation (alternative hypothesis, error of 2nd kind). Normally, the two error types are of equal importance. It may happen, however, that one type of error gains more importance, depending on the approach. (orig.) [de

  11. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  12. Development of a radiation-responsive gene expression system

    International Nuclear Information System (INIS)

    Ogawa, Ryohei; Morii, Akihiro; Watanabe, Akihiko

    2013-01-01

    We have obtained a promoter enhancing expression of a gene of our interest connected downstream after activation in response to radiation stimulation and it could be used in radiogenetic therapy, a combination between radiotherapy and gene therapy. The promoter has been chosen out of a library of DNA fragments constructed by connecting the TATA box to randomly combined binding sequences of transcription factors that are activated in response to radiation. Although it was shown that the promoter activation was cell type specific, it turned out that radiation responsive promoters could be obtained for a different type of cells by using another set of transcription factor binding sequences, suggesting that the method would be feasible to obtain promoters functioning in any type of cells. Radiation reactivity of obtained promoters could be improved by techniques such as random introduction of point mutations. The improved promoters significantly enhanced expression of the luciferase gene connected downstream in response to radiation even in vivo, in addition, a gene cassette composed of one such promoter and the fcy::fur gene was confirmed useful for suicide gene therapy as shown in vitro simulation experiment, suggesting possible clinical application. (author)

  13. A Method for Improving Reliability of Radiation Detection using Deep Learning Framework

    International Nuclear Information System (INIS)

    Chang, Hojong; Kim, Tae-Ho; Han, Byunghun; Kim, Hyunduk; Kim, Ki-duk

    2017-01-01

    Radiation detection is essential technology for overall field of radiation and nuclear engineering. Previously, technology for radiation detection composes of preparation of the table of the input spectrum to output spectrum in advance, which requires simulation of numerous predicted output spectrum with simulation using parameters modeling the spectrum. In this paper, we propose new technique to improve the performance of radiation detector. The software in the radiation detector has been stagnant for a while with possible intrinsic error of simulation. In the proposed method, to predict the input source using output spectrum measured by radiation detector is performed using deep neural network. With highly complex model, we expect that the complex pattern between data and the label can be captured well. Furthermore, the radiation detector should be calibrated regularly and beforehand. We propose a method to calibrate radiation detector using GAN. We hope that the power of deep learning may also reach to radiation detectors and make huge improvement on the field. Using improved radiation detector, the reliability of detection would be confident, and there are many tasks remaining to solve using deep learning in nuclear engineering society.

  14. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Hodge, Chris A.

    2007-01-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  15. Detection of electromagnetic radiation using nonlinear materials

    Science.gov (United States)

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  16. Study and characterization of the III-V semiconductor materials for applications in the detection of ionizing radiation

    International Nuclear Information System (INIS)

    Moulin, H.

    1989-11-01

    The photoconduction in the bulk of the gallium arsenide (GaAs) and of the indium phosphide doped with iron (InP:Fe) is investigated. These compounds are to be applied in devices for X-ray detection. In such semiconductor materials the detection of X-rays occurs in the bulk. The photoconduction theory and the characteristics of the materials are reviewed. Two computerized simulation models for studying the response of the photoconductors to the radiation pulses are described. The results concerning the following measurements are presented: the characterization of GaAs and InP:Fe photoconductors, in obscurity, as a function of the electric field of polarization and of the neutrons dose; and their characterization under X-ray radiation [fr

  17. Time Resolved Detection of Infrared Synchrotron Radiation at DAΦNE

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Drago, A.; Guidi, M. Cestelli; Pace, E.; Piccinini, M.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Synchrotron radiation is characterized by a very wide spectral emission from IR to X-ray wavelengths and a pulsed structure that is a function of the source time structure. In a storage ring, the typical temporal distance between two bunches, whose duration is a few hundreds of picoseconds, is on the nanosecond scale. Therefore, synchrotron radiation sources are a very powerful tools to perform time-resolved experiments that however need extremely fast detectors. Uncooled IR devices optimized for the mid-IR range with sub-nanosecond response time, are now available and can be used for fast detection of intense IR sources such as synchrotron radiation storage rings. We present here different measurements of the pulsed synchrotron radiation emission at DAΦNE (Double Annular Φ-factory for Nice Experiments), the collider of the Laboratori Nazionali of Frascati (LNF) of the Istituto Nazionale di Fisica Nucleare (INFN), performed with very fast uncooled infrared detectors with a time resolution of a few hundreds of picoseconds. We resolved the emission time structure of the electron bunches of the DAΦNE collider when it works in a normal condition for high energy physics experiments with both photovoltaic and photoconductive detectors. Such a technology should pave the way to new diagnostic methods in storage rings, monitoring also source instabilities and bunch dynamics

  18. Alpha particle response for a prototype radiation survey meter based on poly(ethylene terephthalate) with un-doping fluorescent guest molecules

    International Nuclear Information System (INIS)

    Nguyen, Philip; Nakamura, Hidehito; Sato, Nobuhiro; Takahashi, Tomoyuki; Maki, Daisuke; Kanayama, Masaya; Takahashi, Sentaro; Kitamura, Hisashi; Shirakawa, Yoshiyuki

    2016-01-01

    There is no radiation survey meter that can discriminate among alpha particles, beta particles, and gamma-rays with one material. Previously, undoped poly(ethylene terephthalate) (PET) has been shown to be an effective material for beta particle and gamma-ray detection. Here, we demonstrate a prototype survey meter for alpha particles based on undoped PET. A 140 × 72 × 1-mm PET substrate was fabricated with mirrored surfaces. It was incorporated in a unique detection section of the survey meter that directly detects alpha particles. The prototype exhibited an unambiguous response to alpha particles from a 241 Am radioactive source. These results demonstrate that undoped PET can perform well in survey meters for alpha particle detection. Overall, the PET-based survey meter has the potential to detect multiple types of radiation, and will spawn an unprecedented type of radiation survey meter based on undoped aromatic ring polymers. (author)

  19. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Directory of Open Access Journals (Sweden)

    Yanhan Wang

    Full Text Available Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes, a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER of a peptide chain release factor 2 (RF2 were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre

  20. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Science.gov (United States)

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  1. Emergency response and radiation monitoring systems in Russian regions

    International Nuclear Information System (INIS)

    Arutyunyan, R.; Osipiyants, I.; Kiselev, V.; Ogar, K; Gavrilov, S.

    2008-01-01

    Full text: Preparedness of the emergency response system to elimination of radiation incidents and accidents is one of the most important elements of ensuring safe operation of nuclear power facilities. Routine activities on prevention of emergency situations along with adequate, efficient and opportune response actions are the key factors reducing the risks of adverse effects on population and environment. Both high engineering level and multiformity of the nuclear branch facilities make special demands on establishment of response system activities to eventual emergency situations. First and foremost, while resolving sophisticated engineering and scientific problems emerging during the emergency response process, one needs a powerful scientific and technical support system.The emergency response system established in the past decade in Russian nuclear branch provides a high efficiency of response activities due to the use of scientific and engineering potential and experience of the involved institutions. In Russia the responsibility for population protection is imposed on regional authority. So regional emergence response system should include up-to-date tools of radiation monitoring and infrastructure. That's why new activities on development of radiation monitoring and emergency response system were started in the regions of Russia. The main directions of these activities are: 1) Modernization of the existing and setting-up new facility and territorial automatic radiation monitoring systems, including mobile radiation surveillance kits; 2) Establishment of the Regional Crisis Centres and Crisis Centres of nuclear and radiation hazardous facilities; 3) Setting up communication systems for transfer, acquisition, processing, storage and presentation of data for participants of emergency response at the facility, regional and federal levels; 4) Development of software and hardware systems for expert support of decision-making on protection of personnel, population

  2. Radiation Detection System for Prevention of Illicit Trafficking of Nuclear and Radioactive Materials

    International Nuclear Information System (INIS)

    Kwak, Sung Woo; Chang, Sung Soon; Yoo, Ho Sik

    2010-01-01

    Fixed radiation portal monitors (RPMs) deployed at border, seaport, airport and key traffic checkpoints have played an important role in preventing the illicit trafficking and transport of nuclear and radioactive materials. However, the RPM is usually large and heavy and can't easily be moved to different locations. These reasons motivate us to develop a mobile radiation detection system. The objective of this paper is to report our experience on developing the mobile radiation detection system for search and detection of nuclear and radioactive materials during road transport. Field tests to characterize the developed detection system were performed at various speeds and distances between the radioactive isotope (RI) transporting car and the measurement car. Results of measurements and detection limits of our system are described in this paper. The mobile radiation detection system developed should contribute to defending public's health and safety and the environment against nuclear and radiological terrorism by detecting nuclear or radioactive material hidden illegally in a vehicle

  3. Microwave-detected optical response of YBa2Cu3O7-x thin films

    International Nuclear Information System (INIS)

    Kaplan, R.; Carlos, W.E.; Cukauskas, E.J.; Ryu, J.

    1990-01-01

    Microwave-detected optical response (MDOR) of YBa 2 Cu 3 O 7-x and other oxide superconductor thin films is shown to yield information complementary to that provided by trasnport photoconductivity measurements. The MDOR technique yields a superposition of response from all illuminated portions of a sample, irrespective of the existence of a resistive macroscopic percolative current path. The response is found to be bolometric at temperatures for which resistance appears in transport measurements. At low temperatures MDOR results imply a nonbolometric response which in some respects is consistent with nonequilibrium quasiparticle concentration due to radiative pair breaking

  4. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Marie, Melanie

    2013-01-01

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  5. Energy nonlinearity in radiation detection materials: Causes and consequences

    International Nuclear Information System (INIS)

    Jaffe, J.E.; Jordan, D.V.; Peurrung, A.J.

    2007-01-01

    The phenomenology and present theoretical understanding of energy nonlinearity (nonproportionality) in radiation detection materials is reviewed, with emphasis on gamma-ray spectroscopy. Scintillators display varying degrees and patterns of nonlinearity, while semiconductor detectors are extremely linear, and gas detectors show a characteristic form of nonproportionality associated with core levels. The relation between nonlinear response (to both primary particles and secondary electrons) and spectrometer resolution is also discussed. We review the qualitative ideas about the origin of nonlinearity in scintillators that have been proposed to date, with emphasis on transport and recombination of electronic excitations. Recent computational and experimental work on the basic physics of scintillators is leading towards a better understanding of energy nonlinearity and should result in new, more linear scintillator materials in the near future

  6. EPR detection of foods preserved with ionizing radiation

    Science.gov (United States)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60Co) and 10 MeV electrons were observed

  7. EPR detection of foods preserved with ionizing radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.

    1998-01-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ( 60 Co) and 10 MeV electrons were observed

  8. EPR detection of foods preserved with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Stachowicz, W.; Burlinska, G.; Michalik, J

    1998-06-01

    The applicability of the epr technique for the detection of dried vegetables, mushrooms, some spices, flavour additives and some condiments preserved with ionizing radiation is discussed. The epr signals recorded after exposure to gamma rays and to the beams of 10 MeV electrons from linac are stable, intense and specific enough as compared with those observed with nonirradiated samples and could be used for the detection of irradiation. However, stability of radiation induced epr signals produced in these foods depends on storage condition. No differences in shapes (spectral parameters) and intensities of the epr spectra recorded with samples exposed to the same doses of gamma rays ({sup 60}Co) and 10 MeV electrons were observed.

  9. Radiation and desiccation response motif mediates radiation induced gene expression in D. radiodurans

    International Nuclear Information System (INIS)

    Anaganti, Narasimha; Basu, Bhakti; Apte, Shree Kumar

    2015-01-01

    Deinococcus radiodurans is an extremophile that withstands lethal doses of several DNA damaging agents such as gamma irradiation, UV rays, desiccation and chemical mutagens. The organism responds to DNA damage by inducing expression of several DNA repair genes. At least 25 radiation inducible gene promoters harbour a 17 bp palindromic sequence known as radiation and desiccation response motif (RDRM) implicated in gamma radiation inducible gene expression. However, mechanistic details of gamma radiation-responsive up-regulation in gene expression remain enigmatic. The promoters of highly radiation induced genes ddrB (DR0070), gyrB (DR0906), gyrA (DR1913), a hypothetical gene (DR1143) and recA (DR2338) from D. radiodurans were cloned in a green fluorescence protein (GFP)-based promoter probe shuttle vector pKG and their promoter activity was assessed in both E. coli as well as in D. radiodurans. The gyrA, gyrB and DR1143 gene promoters were active in E. coli although ddrB and recA promoters showed very weak activity. In D. radiodurans, all the five promoters were induced several fold following 6 kGy gamma irradiation. Highest induction was observed for ddrB promoter (25 fold), followed by DR1143 promoter (15 fold). The induction in the activity of gyrB, gyrA and recA promoters was 5, 3 and 2 fold, respectively. To assess the role of RDRM, the 17 bp palindromic sequence was deleted from these promoters. The promoters devoid of RDRM sequence displayed increase in the basal expression activity, but the radiation-responsive induction in promoter activity was completely lost. The substitution of two conserved bases of RDRM sequence yielded decreased radiation induction of PDR0070 promoter. Deletion of 5 bases from 5'-end of PDR0070 RDRM increased basal promoter activity, but radiation induction was completely abolished. Replacement of RDRM with non specific sequence of PDR0070 resulted in loss of basal expression and radiation induction. The results demonstrate that

  10. Biological response of cancer cells to radiation treatment

    Directory of Open Access Journals (Sweden)

    Rajamanickam eBaskar

    2014-11-01

    Full Text Available Cancer is a class of diseases characterized by uncontrolled cell growth and has the ability to spread or metastasize throughout the body. In recent years, remarkable progress has been made towards the understanding of proposed hallmarks of cancer development, care and treatment modalities. Radiation therapy or radiotherapy is an important and integral component of cancer management, mostly conferring a survival benefit. Radiation therapy destroys cancer by depositing high-energy radiation on the cancer tissues. Over the years, radiation therapy has been driven by constant technological advances and approximately 50% of all patients with localized malignant tumors are treated with radiation at some point in the course of their disease. In radiation oncology, research and development in the last three decades has led to considerable improvement in our understanding of the differential responses of normal and cancer cells. The biological effectiveness of radiation depends on the linear energy transfer (LET, total dose, number of fractions and radiosensitivity of the targeted cells or tissues. Radiation can either directly or indirectly (by producing free radicals damages the genome of the cell. This has been challenged in recent years by a newly identified phenomenon known as radiation induced bystander effect (RIBE. In RIBE, the non-irradiated cells adjacent to or located far from the irradiated cells/tissues demonstrate similar responses to that of the directly irradiated cells. Understanding the cancer cell responses during the fractions or after the course of irradiation will lead to improvements in therapeutic efficacy and potentially, benefitting a significant proportion of cancer patients. In this review, the clinical implications of radiation induced direct and bystander effects on the cancer cell are discussed.

  11. Effect of glutathione depletion on the aerobic radiation response of A549 human lung carcinoma cells

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Clark, E.P.; Varnes, M.E.; Tuttle, S.W.; Epp, E.R.

    1985-01-01

    The authors demonstrated that depletion of glutathione (GSH) from cultured A549 cells to non-detectable levels, using L-buthionine sulfoximine (L-BSO), results in an increased aerobic radiation response. This response can be further increased if dimethylfumarate (DMF) is added concurrently with L-BSO. L-BSO is a relatively slow depletor of GSH compared to DMF, which acts by both spontaneous and enzyme catalysed reactions. The authors have studied: 1. the effect of continuous long-term exposure to 0.1 mM L-BSO on GSH levels and the subsequent radiation response and 2. the effect of GSH depletion on enzymes essential for radical detoxification. The results show an enhanced aerobic radiation response that increases with the time of exposure to L-BSO. For example surviving fraction (S.F.) after 5 Gy for cells exposed to L-BSO for 24 hrs is 0.004 and 0.08 for control cultures. Cells washed free of medium and irradiated in Hanks' show 0.0007 S.F. after 120 hr exposure to L-BSO and S.F. of 0.075 for the control cultures. The relationship between the chronic GSH depleted state, GSH peroxidase, and radiation induced lipid peroxidation is being investigated

  12. Natural products as radiation response modifiers

    International Nuclear Information System (INIS)

    Colin Seymour; Carmel Mothersill

    2007-01-01

    Complete text of publication follows. Protection of cells and organisms against low doses of radiation is a complex issue which must be considered at the level of cells, tissues and organisms. 'Protection' at one level, for example, prevention of cell death, may be adverse at another level, if it allows a damaged cell to survive and form a malignant tumour. Conversely, death of a cell carrying damage can be protective for the organism if it eliminates a damaged cell. Thus, it is important to understand the mechanisms involved in protection against radiation damage at several hierarchical levels. The use of natural products as radiation response modifiers is very attractive. Many of these compounds are readily available and their function and pharmacology is well understood. Some derive from venoms or natural defenses and are currently used in medicine, others include vitamins, antioxidants or cofactors, which are tried and tested nutritional supplements. Radiation effects may be targeted or untargeted. Radiation may interact directly within a cell causing a direct DNA lesion or it may elicit a bystander response from the irradiated cell. A bystander effect is produced when the irradiated cell apparently exhibits no damage from the radiation, but passes on a biochemical signal which induces neighbouring cells to apoptose or undergo a number of other responses usually associated with irradiation such as mutation induction, transformation, induction of ROS responses etc.. Effects induced in progeny of non-targeted cells in receipt of bystander signals include genetic instability, mini and microsatellite mutations and carcinogenesis. A key characteristic of these non targeted effects is that they occur at very low acute doses (of the order of 5mGy) and saturate so that effective prevention requires an agent which can effectively shut off the mechanism. While the mechanism is not fully known, it is thought to involve signals from irradiated cells communicating via

  13. Plant Responses to Increased UV-B Radiation: A Research Project

    Science.gov (United States)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains

  14. Standoff alpha radiation detection for hot cell imaging and crime scene investigation

    Science.gov (United States)

    Kerst, Thomas; Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Nicholl, Adrian; Hrnecek, Erich; Toivonen, Harri; Toivonen, Juha

    2018-02-01

    This paper presents the remote detection of alpha contamination in a nuclear facility. Alpha-active material in a shielded nuclear radiation containment chamber has been localized by optical means. Furthermore, sources of radiation danger have been identified in a staged crime scene setting. For this purpose, an electron-multiplying charge-coupled device camera was used to capture photons generated by alpha-induced air scintillation (radioluminescence). The detected radioluminescence was superimposed with a regular photograph to reveal the origin of the light and thereby the alpha radioactive material. The experimental results show that standoff detection of alpha contamination is a viable tool in radiation threat detection. Furthermore, the radioluminescence spectrum in the air is spectrally analyzed. Possibilities of camera-based alpha threat detection under various background lighting conditions are discussed.

  15. Responses of populations of small mammals to ionizing radiation

    International Nuclear Information System (INIS)

    Kitchings, J.T.

    1978-01-01

    Studies on the responses of small mammals to ionizing radiation have, over the past 30 years, documented numerous effects on direct mortality, reproduction, the hemopoietic systems, and radionuclide metabolism. Three general findings have resulted from past efforts: (1) ionizing radiation is a factor in environmental stress, (2) the response of wild small mammals to ionizing radiation is a mosaic of varying radiosensitivities interacting with environmental variables, and (3) one of the most sensitive organismal processes to radiation is reproduction. While an excellent understanding of the biological effects resulting from high or intermediate-level radiation exposures has been developed, this is not the case for effects of low-level doses

  16. Track structure theory in radiobiology and in radiation detection

    International Nuclear Information System (INIS)

    Katz, R.

    1976-01-01

    The response of biological cells, and many physical radiation and track detectors to ionizing radiations, and to energetic heavily ionizing particles results from the secondary and higher generation electrons ejected from the atoms and molecules of the detector by the incident primary radiation. The models which have been used for detector response arise from target theory, and are of the form of statistical models called multi-hit or multi-target detectors, in which it is assumed that there are sensitive elements (emulsion grains, or biological cell nuclei) which may require many hits (emulsion grains) or single hits in different targets (say, cellular chromosomes) in order to produce the observed endpoint. Physically, a hit is interpreted as a 'registered event' caused by an electron passing through the sensitive site, with an efficiency which depends on the electron's speed. Some knowledge of size of the sensitive volume and of the sensitive target is required to make the transition from gamma-ray response to heavy ion response. Recent work has demonstrated that many-hit physical detectors do exist. From both emulsion sensitometry and from the structure of tracks of heavy ions, we are able to show that emulsion-developer combinations exist which yield many-hit response. There is also some evidence that the supralinearity in thermoluminescent dosimeters arises from a trap structures within the same TLD crystal. These detectors can be expected to mimic the response of biological cells to radiations of different quality. Their patterns of response may help us to understand better the structure of particle tracks in SSNTD's. (orig./ORU) [de

  17. Study on the radiation-induced biological responses based on the analysis of metabolites

    International Nuclear Information System (INIS)

    Jo, Sungkee; Jung, Uhee; Park, Haeran; Roh, Changhyun; Shin, Heejune; Ryu, Dongkyoung

    2013-01-01

    1. Objectives □ Establishment of basis of biological radiation response study by metabolite analysis 2. Project results □ Establishment of analytical basis of radiation-responsive metabolites in biological samples - Large scale collection of tissue samples from irradiated animal for radiation metabolomics research - Establishment of mass spectromety (GC MS, LC MS-MS) analysis methods of biological samples - 3 Standard Operation Protocols (SOP) for ultra high resolution mass spectrometry (FT-ICR MS, Q-TOF MS) analysis of metabolites from biological samples - Establishment of database for radiation metabolites □ Basic research on radiation-responsive metabolites and the interpretation of their functions - Validation of spermidine as a candidate biomarker of acute radiation response in mouse blood - Verification of 5 radiation-responsive steroid hormones and alteration of their metabolic enzyme activities in mouse blood - Verification of 13 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain -Verification of 10 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain - Verification of 74 radiation-responsive metabolites in whole rat brain by ultra high resolution FT-ICR MS and Q-TOF MS analysis 3. Expected benefits and plan of application □ Establishment of research basis of radiation metabolomics in Korea □ Provision of core technology in radiation bioscience and safety field by application of radiation metabolomics results to the technology development in radiation biodosimetry, and radiation response evaluation and modulation

  18. Study on the radiation-induced biological responses based on the analysis of metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran; Roh, Changhyun; Shin, Heejune; Ryu, Dongkyoung

    2013-01-15

    1. Objectives □ Establishment of basis of biological radiation response study by metabolite analysis 2. Project results □ Establishment of analytical basis of radiation-responsive metabolites in biological samples - Large scale collection of tissue samples from irradiated animal for radiation metabolomics research - Establishment of mass spectromety (GC MS, LC MS-MS) analysis methods of biological samples - 3 Standard Operation Protocols (SOP) for ultra high resolution mass spectrometry (FT-ICR MS, Q-TOF MS) analysis of metabolites from biological samples - Establishment of database for radiation metabolites □ Basic research on radiation-responsive metabolites and the interpretation of their functions - Validation of spermidine as a candidate biomarker of acute radiation response in mouse blood - Verification of 5 radiation-responsive steroid hormones and alteration of their metabolic enzyme activities in mouse blood - Verification of 13 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain -Verification of 10 radiation-responsive amino acids (related to oxidative stress, neurotransmission, energy metabolism) in regional mouse brain - Verification of 74 radiation-responsive metabolites in whole rat brain by ultra high resolution FT-ICR MS and Q-TOF MS analysis 3. Expected benefits and plan of application □ Establishment of research basis of radiation metabolomics in Korea □ Provision of core technology in radiation bioscience and safety field by application of radiation metabolomics results to the technology development in radiation biodosimetry, and radiation response evaluation and modulation.

  19. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation

    International Nuclear Information System (INIS)

    Miyamaru, Hiroyuki; Takahashi, Akito; Iida, Toshiyuki

    1999-01-01

    The treatment of fast neutron pre-irradiation was applied to a CdTe radiation detector in order to improve radiation response characteristic. Electron transport property of the detector was changed by the irradiation effect to suppress pulse amplitude fluctuation in risetime. Spectroscopic performance of the pre-irradiated detector was compared with the original. Additionally, the pre-irradiated detector was employed with a detection system using electrical signal processing of risetime discrimination (RTD). Pulse height spectra of 241 Am, 133 Ba, and 137 Cs gamma rays were measured to examine the change of the detector performance. The experimental results indicated that response characteristic for high-energy photons was improved by the pre-irradiation. The combination of the pre-irradiated detector and the RTD processing was found to provide further enhancement of the energy resolution. Application of fast neutron irradiation effect to the CdTe detector was demonstrated. (author)

  20. Probing early tumor response to radiation therapy using hyperpolarized [1-¹³C]pyruvate in MDA-MB-231 xenografts.

    Directory of Open Access Journals (Sweden)

    Albert P Chen

    Full Text Available Following radiation therapy (RT, tumor morphology may remain unchanged for days and sometimes weeks, rendering anatomical imaging methods inadequate for early detection of therapeutic response. Changes in the hyperpolarized [1-¹³C]lactate signals observed in vivo following injection of pre-polarized [1-¹³C]pyruvate has recently been shown to be a marker for tumor progression or early treatment response. In this study, the feasibility of using ¹³C metabolic imaging with [1-¹³C]pyruvate to detect early radiation treatment response in a breast cancer xenograft model was demonstrated in vivo and in vitro. Significant decreases in hyperpolarized [1-¹³C]lactate relative to [1-¹³C]pyruvate were observed in MDA-MB-231 tumors 96 hrs following a single dose of ionizing radiation. Histopathologic data from the treated tumors showed higher cellular apoptosis and senescence; and changes in the expression of membrane monocarboxylate transporters and lactate dehydrogenase B were also observed. Hyperpolarized ¹³C metabolic imaging may be a promising new tool to develop novel and adaptive therapeutic regimens for patients undergoing RT.

  1. Study and characterization of III-V semiconductor materials for applications in ionizing radiation detection

    International Nuclear Information System (INIS)

    Moulin, H.

    1989-11-01

    The photoconduction in the bulk of the gallium arsenide (GaAs) and of the indium phosphide doped with iron (InP:Fe) is investigated. These semiconductor materials are to be applied in X rays detection. The photoconduction theory and the physical characteristics of those materials are reviewed. The computer simulation models for studying the photoconductor responses to the radiation pulses are described. The experimental results are discussed. They include the following aspects: the characterization of the GaAs and InP:Fe, in the obscurity, as a function of the polarized electric field and of the neutrons dose; the characterization under X ray. Continuous X rays and pulsed synchrotron radiation are applied [fr

  2. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Baumgaugh, B.; Bishop, J.; Karmgard, D.; Marchant, J.; McKenna, M.; Ruchti, R.; Vigneault, M.; Hernandez, L.; Hurlbut, C.

    2007-01-01

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  3. Mouse genetic approaches applied to the normal tissue radiation response

    International Nuclear Information System (INIS)

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic.

  4. Radiation, Inflammation, and Immune Responses in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Multhoff, Gabriele [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Helmholtz Zentrum München, Clinical Cooperation Group Innate Immunity in Tumor Biology, Munich (Germany); Radons, Jürgen, E-mail: raj10062@web.de [multimmune GmbH, Munich (Germany)

    2012-06-04

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR.

  5. Radiation, Inflammation, and Immune Responses in Cancer

    International Nuclear Information System (INIS)

    Multhoff, Gabriele; Radons, Jürgen

    2012-01-01

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR.

  6. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain

  7. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Richard P. [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  8. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  9. Modulation of radiation response by histone deacetylase inhibition

    International Nuclear Information System (INIS)

    Chinnaiyan, Prakash; Vallabhaneni, Geetha; Armstrong, Eric M.S.; Huang, Shyh-Min; Harari, Paul M.

    2005-01-01

    Purpose: Histone deacetylase (HDAC) inhibitors, which modulate chromatin structure and gene expression, represent a class of anticancer agents that hold particular potential as radiation sensitizers. In this study, we examine the capacity of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) to modulate radiation response in human tumor cell lines and explore potential mechanisms underlying these interactions. Methods and materials: Cell proliferation: Exponentially growing tumor cells were incubated in medium containing 0-10 μM of SAHA for 72 h. Cells were fixed/stained with crystal violet to estimate cell viability. Apoptosis: Caspase activity was analyzed by fluorescence spectroscopy using a fluorescein labeled pan-caspase inhibitor. Cells were harvested after 48 h of exposure to SAHA (1.0 μM), radiation (6 Gy), or the combination. Whole cell lysates were evaluated for poly(ADP-ribose) polymerase (PARP) cleavage by western blot analysis. Radiation survival: Cells were exposed to varying doses of radiation ± 3 days pretreatment with SAHA (0.75-1.0 μM). After incubation intervals of 14-21 days, colonies were stained with crystal violet and manually counted. Immunocytochemistry: Cells were grown and treated in chamber slides. At specified times after treatment with SAHA, cells were fixed in paraformaldehyde, permeabilized in methanol, and probed with primary and secondary antibody solutions. Slides were analyzed using an epifluorescent microscope. Results: SAHA induced a dose-dependent inhibition of proliferation in human prostate (DU145) and glioma (U373vIII) cancer cell lines. Exposure to SAHA enhanced radiation-induced apoptosis as measured by caspase activity (p < 0.05) and PARP cleavage. The impact of SAHA on radiation response was further characterized using clonogenic survival analysis, which demonstrated that treatment with SAHA reduced tumor survival after radiation exposure. We identified several oncoproteins and DNA damage repair proteins

  10. Current state of commercial radiation detection equipment for homeland security applications

    International Nuclear Information System (INIS)

    Klann, R.T.; Shergur, J.; Mattesich, G.

    2009-01-01

    With the creation of the U.S. Department of Homeland Security (DHS) came the increased concern that terrorist groups would attempt to manufacture and use an improvised nuclear device or radiological dispersal device. As such, a primary mission of DHS is to protect the public against the use of these devices and to assist state and local responders in finding, locating, and identifying these types of devices and materials used to manufacture these devices. This assistance from DHS to state and local responders comes in the form of grant money to procure radiation detection equipment. In addition to this grant program, DHS has supported the development of American National Standards Institute standards for radiation detection equipment and has conducted testing of commercially available instruments. This paper identifies the types and kinds of commercially available equipment that can be used to detect and identify radiological material - for use in traditional search applications as well as primary and secondary screening of personnel, vehicles, and cargo containers. In doing so, key considerations for the conduct of operations are described as well as critical features of the instruments for specific applications. The current state of commercial instruments is described for different categories of detection equipment including personal radiation detectors, radioisotope identifiers, man-portable detection equipment, and radiation portal monitors. In addition, emerging technologies are also discussed, such as spectroscopic detectors and advanced spectroscopic portal monitors

  11. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    Science.gov (United States)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  12. Plasmonically enhanced thermomechanical detection of infrared radiation.

    Science.gov (United States)

    Yi, Fei; Zhu, Hai; Reed, Jason C; Cubukcu, Ertugrul

    2013-04-10

    Nanoplasmonics has been an attractive area of research due to its ability to localize and manipulate freely propagating radiation on the nanometer scale for strong light-matter interactions. Meanwhile, nanomechanics has set records in the sensing of mass, force, and displacement. In this work, we report efficient coupling between infrared radiation and nanomechanical resonators through nanoantenna enhanced thermoplasmonic effects. Using efficient conversion of electromagnetic energy to mechanical energy in this plasmo-thermomechanical platform with a nanoslot plasmonic absorber integrated directly on a nanobeam mechanical resonator, we demonstrate room-temperature detection of nanowatt level power fluctuations in infrared radiation. We expect our approach, which combines nanoplasmonics with nanomechanical resonators, to lead to optically controlled nanomechanical systems enabling unprecedented functionality in biomolecular and toxic gas sensing and on-chip mass spectroscopy.

  13. Study of radiation detectors response in standard X, gamma and beta radiation standard beams

    International Nuclear Information System (INIS)

    Nonato, Fernanda Beatrice Conceicao

    2010-01-01

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams ( 37 Cs and 60 Co), and some of them were tested in beta radiation ( 90 Sr+ 9' 0Y e 204 Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  14. Optimised mounting conditions for poly (ether sulfone) in radiation detection.

    Science.gov (United States)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Yamada, Tatsuya; Kitamura, Hisashi; Takahashi, Sentaro

    2014-09-01

    Poly (ether sulfone) (PES) is a candidate for use as a scintillation material in radiation detection. Its characteristics, such as its emission spectrum and its effective refractive index (based on the emission spectrum), directly affect the propagation of light generated to external photodetectors. It is also important to examine the presence of background radiation sources in manufactured PES. Here, we optimise the optical coupling and surface treatment of the PES, and characterise its background. Optical grease was used to enhance the optical coupling between the PES and the photodetector; absorption by the grease of short-wavelength light emitted from PES was negligible. Diffuse reflection induced by surface roughening increased the light yield for PES, despite the high effective refractive index. Background radiation derived from the PES sample and its impurities was negligible above the ambient, natural level. Overall, these results serve to optimise the mounting conditions for PES in radiation detection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    Science.gov (United States)

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  16. Development of a novel gamma probe for detecting radiation direction

    Science.gov (United States)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.

  17. Development of a novel gamma probe for detecting radiation direction

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M.N.; Longo, M.; Donnarumma, R.; Borrazzo, C.; D'Alessio, A.; Pergola, A.; Ridolfi, S.; Vincentis, G. De

    2016-01-01

    Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security

  18. Radiation Detection System for Prevention of Radiological and Nuclear Terrorism

    International Nuclear Information System (INIS)

    Kwak, Sung-Woo; Yoo, Ho-Sik; Jang, Sung-Sun; Kim, Jae-Kwang; Kim, Jung-Soo

    2007-01-01

    After the September 11 terrorist attack, the threat of a potential for a radiological or nuclear terrorist attack became more apparent. The threats relating to radiological or nuclear materials include a Radiological Dispersion Device (RDD), an Improved Nuclear Device (IND) or a State Nuclear Device (such as a Soviet manufactured suitcase nuclear weapon). For more effective countermeasures against the disaster, multilayer protection concept - prevention of smuggling of radioactive or nuclear material into our country through seaports or airports, detection and prevention of the threat materials in transit on a road, and prevention of their entry into a target building - is recommended. Due to different surrounding circumstances of where detection system is deployed, different types of radiation detection systems are required. There have been no studies on characteristics of detection equipment required under Korean specific conditions. This paper provides information on technical requirements of radiation detection system to achieve multi-layer countermeasures for the purpose of protecting the public and environment against radiological and nuclear terrorism

  19. Bubble Radiation Detection: Current and Future Capability

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Craig, R.A.

    1999-01-01

    Despite a number of noteworthy achievements in other fields, superheated droplet detectors (SDDs) and bubble chambers (BCs) have not been used for nuclear nonproliferation and arms control. This report examines these two radiation-detection technologies in detail and answers the question of how they can be or should be ''adapted'' for use in national security applications. These technologies involve closely related approaches to radiation detection in which an energetic charged particle deposits sufficient energy to initiate the process of bubble nucleation in a superheated fluid. These detectors offer complete gamma-ray insensitivity when used to detect neutrons. They also provide controllable neutron-energy thresholds and excellent position resolution. SDDs are extraordinarily simple and inexpensive. BCs offer the promise of very high efficiency (∼75%). A notable drawback for both technologies is temperature sensitivity. As a result of this problem, the temperature must be controlled whenever high accuracy is required, or harsh environmental conditions are encountered. The primary findings of this work are listed and briefly summarized below: (1) SDDs are ready to function as electronics-free neutron detectors on demand for arms-control applications. The elimination of electronics at the weapon's location greatly eases the negotiability of radiation-detection technologies in general. (2) As a result of their high efficiency and sharp energy threshold, current BCs are almost ready for use in the development of a next-generation active assay system. Development of an instrument based on appropriately safe materials is warranted. (3) Both kinds of bubble detectors are ready for use whenever very high gamma-ray fields must be confronted. Spent fuel MPC and A is a good example where this need presents itself. (4) Both kinds of bubble detectors have the potential to function as low-cost replacements for conventional neutron detectors such as 3 He tubes. For SDDs

  20. Radiation detection and situation management by distributed sensor networks

    International Nuclear Information System (INIS)

    Jan, Frigo; Mielke, Angela; Cai, D. Michael

    2009-01-01

    Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class (e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node. Relevant information from each node is sent to a base station computer which is used to assess the movement of radioactive materials

  1. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    Science.gov (United States)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  2. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

    Science.gov (United States)

    2016-04-01

    Exploiting Novel Radiation -Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report Distribution...assess the effects of ionizing radiation on at least three classes of electromagnetic materials. The proposed approach for radiation detection was...that was desired to be monitored remotely. Microwave or low millimeter wave electromagnetic radiation would be used to interrogate the device

  3. Ionizing radiation induced biological response and its public health implication

    International Nuclear Information System (INIS)

    Koeteles, Gy.

    1994-01-01

    Several sources of ionizing radiation exist in natural and artificial environment of humanity. An overview of their biological effects and the biological response of man is present. Emphasize is given to the differences caused by high and low doses. The interrelation of radiology, radiation hygiene and public health is pointed out. Especially, the physical and biological effects of radiation on cells and their responses are discussed in more detail. (R.P.)

  4. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, Sebastian

    2014-01-01

    Light scalar fields can drive accelerated expansion of the universe. Hence, scalars are obvious dark energy candidates. To make these models compatible with test of General Relativity in the solar system and fifth force searches on earth, one needs to screen them. One possibility is the chameleon mechanism, which renders an effective mass depending on the local energy density. If chameleons exist, they can be produced in the sun and detected on earth through their radiation pressure. We calculate the solar chameleon spectrum and the sensitivity of an experiment to be carried out at CAST, CERN, utilizing a radiation pressure sensor currently under development at INFN, Trieste. We show that such an experiment will be sensitive to a wide range of model parameters and signifies a pioneering effort searching for chameleons in unprobed paramterspace.

  5. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis.

    Science.gov (United States)

    Asplund, Sara A; Johnsson, Åse A; Vikgren, Jenny; Svalkvist, Angelica; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A; Månsson, Lars Gunnar; Båth, Magnus

    2014-07-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70% of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100% dose levels, respectively. The differences in FOM between the 12% dose level and the 32, 70, and 100% dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32%. • A substantial radiation dose reduction in chest tomosynthesis may be possible. • Pulmonary nodule detectability remained unchanged at 32% of the effective dose. • Tomosynthesis might be performed at the dose of a lateral chest radiograph.

  6. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E., E-mail: emoreno.emb@gmail.com [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Rio Verde, Puebla (Mexico); Moreno Barbosa, F. [Hospital General del Sur Hospital de la Mujer, Puebla (Mexico)

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  7. The responsibility of the radiation protection expert

    International Nuclear Information System (INIS)

    Varescon, M.

    2008-01-01

    After having recalled the two main different types of responsibility in the French law system (civil liability and criminal responsibility), and how criminal law has been gradually introduced in companies, the author analyzes and describes how the radiation protection expert's responsibility is tightly related to that of his employer, and how both can be committed on a disciplinary and criminal level

  8. A dual-sided coded-aperture radiation detection system

    International Nuclear Information System (INIS)

    Penny, R.D.; Hood, W.E.; Polichar, R.M.; Cardone, F.H.; Chavez, L.G.; Grubbs, S.G.; Huntley, B.P.; Kuharski, R.A.; Shyffer, R.T.; Fabris, L.; Ziock, K.P.; Labov, S.E.; Nelson, K.

    2011-01-01

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5x5x50 cm 3 cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  9. Evaluation of detector responses to natural environmental and fall-out gamma radiation

    International Nuclear Information System (INIS)

    Arvela, H.

    1988-01-01

    Instrument responses to the thorium, uranium and potassium components of the natural environmental as well as the fall-out radiation field were evaluated. The responses to the 137 Cs fall-out radiation field differ by less than 6% from the response at 0.662 MeV, except for that of the NaI scintillator. Differences of more than 30% were found in the responses of two energy compensated instruments to normal natural background radiation and to radiation from fresh fall-out. The best estimate of the terrestrial component of the dose rate measured was obtained by carrying out the following corrections of the measured readings: cosmic ray contribution and internal background subtraction with response correction, including 137 Cs calibration correction. After the Chernobyl accident the dose rate levels due to 137 Cs and 134 Cs fall-out were comparable to the natural background gamma radiation. The responses calculated as well as the results from measurements of the low level environmental exposure levels caused by the Chernobyl fall-out, confirmed the need to take into account the instrument response to natural as well as fall-out radiation fields. (author)

  10. Precision of quantum tomographic detection of radiation

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M. (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy) Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via A. Bassi 6, I-27100, Pavia (Italy)); Macchiavello, Chiara (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy)); Paris, M.G.A. (Dipartimento di Fisica ' ' Alessandro Volta' ' , Via A. Bassi 6, I-27100, Pavia (Italy))

    1994-11-21

    Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field. Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase. We show that tomographic reconstruction, despite providing a complete characterization of the state of the field, is generally much less efficient than conventional detection techniques. ((orig.))

  11. Precision of quantum tomographic detection of radiation

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Macchiavello, Chiara; Paris, M.G.A.

    1994-01-01

    Homodyne tomography provides an experimental technique for reconstructing the density matrix of the radiation field. Here we analyze the tomographic precision in recovering observables like the photon number, the quadrature, and the phase. We show that tomographic reconstruction, despite providing a complete characterization of the state of the field, is generally much less efficient than conventional detection techniques. ((orig.))

  12. Micronuclei: sensitivity for the detection of radiation induced damage

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Nasazzi, N.B.; Taja, M.R.

    1998-01-01

    The in vitro cytokinesis-block (CB) micronucleus (MN) assay for human peripheral blood has been used extensively for the assessment of chromosomal damage induced by ionizing radiation and chemicals and considered a suitable biological dosimeter for estimating in vivo whole body exposures, particularly in the case of large scale radiation accidents. One of the major drawbacks of the MN assay is its reduced sensitivity for the detection of damage induced by low doses of low LET radiation, due to the high variability among the spontaneous MN frequencies. It is suggested that age, smoking habit and sex are the main confounding factors that contribute to the observed variability. Previous work in our laboratory, shows a significant positive correlation of the spontaneous and radiation induced MN frequencies with age and smoking habit, the latter being the strongest confounder. These findings led to in vitro studies of the dose-response relationships for smoking and non smoking donors evaluated separately, using 60 Co γ rays. The objectives of the present work are: 1-To increase the amount of data of the dose-response relationships, using γ rays from a 60 Co source, for smoking and non smoking donors, in order to find, if applicable, a correction factor for the calibration curve that takes into account the smoking habit of the individual in the case of accidental overexposure dose assessment, particularly in the low dose range. 2-To establish general conclusions on the current state of the technique. The sample for smoking and non smoking calibration curves was enlarged in the range of 0Gy to 2Gy. The fitting of both curves, performed up to the 2Gy dose, resulted in a linear quadratic model. MN distribution among bi nucleated cells was found to be over dispersed with respect to Poisson distribution, the average ratio of variance to mean being 1.13 for non smokers and 1.17 for smokers. Each fitted calibration curve, for smoking and non smoking donors, fell within the 95

  13. Caffeine ameliorates radiation-induced skin reactions in mice but does not influence tumour radiation response

    Energy Technology Data Exchange (ETDEWEB)

    Hebbar, S.A.; Mitra, A.K.; George, K.C.; Verma, N.C. [Radiation Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)]. E-mail: ncverma@apsara.barc.ernet.in

    2002-03-01

    Intramuscular administration of caffeine at a dose of 80 mg kg{sup -1} body weight to the gastrocnemius muscles of Swiss mice 5 min prior to local irradiation (35 Gy) of the leg delayed the progression of radiation-induced skin reactions in such animals. While 90% epilation with reddening of the skin was noted in animals treated with radiation alone, animals pretreated with caffeine suffered only partial hair loss with slight reddening of the skin on the 16th and 20th days post-irradiation. Beyond the 28th day, damage scores in irradiated feet for both the groups were similar (score 3) and remained unchanged until the 32nd day and then decreased and disappeared completely in both treatment groups by the 40th day after irradiation. In addition, the effect of caffeine on the radiation response of a mouse fibrosarcoma was investigated. Results showed that intratumoral administration of caffeine at a dose of 80 mg kg{sup -1} body weight 5 min prior to local exposure of tumours to 10 Gy of {sup 60}Co {gamma}-rays did not influence the response of tumours to radiation. The present study thus showed that although caffeine ameliorated radiation-induced skin reactions in the mouse leg, it did not affect the tumour radiation response, indicating its potential application in cancer radiotherapy. (author)

  14. SU-E-J-274: Responses of Medulloblastoma Cells to Radiation Dosimetric Parameters in Intensity-Modulated Radiation Therapy

    International Nuclear Information System (INIS)

    Park, J; Park, J; Rogalla, S; Contag, C; Woo, D; Lee, D; Park, H; Suh, T

    2015-01-01

    Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/min was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization

  15. MOSFET and MOS capacitor responses to ionizing radiation

    Science.gov (United States)

    Benedetto, J. M.; Boesch, H. E., Jr.

    1984-01-01

    The ionizing radiation responses of metal oxide semiconductor (MOS) field-effect transistors (FETs) and MOS capacitors are compared. It is shown that the radiation-induced threshold voltage shift correlates closely with the shift in the MOS capacitor inversion voltage. The radiation-induced interface-state density of the MOSFETs and MOS capacitors was determined by several techniques. It is shown that the presence of 'slow' states can interfere with the interface-state measurements.

  16. Development and deployment of the Collimated Directional Radiation Detection System

    Science.gov (United States)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  17. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    Science.gov (United States)

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  18. Graphene Field Effect Transistor-Based Detectors for Detection of Ionizing Radiation

    International Nuclear Information System (INIS)

    Jovanovic, Igor; Cazalas, Edward; Childres, I.; Patil, A.; Koybasi, O.; Chen, Y-P.

    2013-06-01

    We present the results of our recent efforts to develop novel ionizing radiation sensors based on the nano-material graphene. Graphene used in the field effect transistor architecture could be employed to detect the radiation-induced charge carriers produced in undoped semiconductor absorber substrates, even without the need for charge collection. The detection principle is based on the high sensitivity of graphene to ionization-induced local electric field perturbations in the electrically biased substrate. We experimentally demonstrated promising performance of graphene field effect transistors for detection of visible light, X-rays, gamma-rays, and alpha particles. We propose improved detector architectures which could result in a significant improvement of speed necessary for pulsed mode operation. (authors)

  19. Sci-Thur PM – Colourful Interactions: Highlights 03: Radiation induced glycogen accumulation in non-small cell lung cancer xenografts detected using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Samantha J.; Isabelle, Martin; DeVorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre; Lum, Julian; Jirasek, Andrew [BC Cancer Agency/ Vancouver Island Cancer Centre, Gloucestershire Hospitals NHS Foundation Trust, BC Cancer Agency/ Vancouver Island Cancer Centre, BC Cancer Agency/ Vancouver Island Cancer Centre, BC Cancer Agency/ Vancouver Island Cancer Centre, University of Victoria/ Department of Chemistry, BC Cancer Agency/ Vancouver Island Cancer Centre, University of British Columbia Okanagan (Canada)

    2016-08-15

    Purpose: This study presents the novel application of Raman spectroscopy (RS) to identify biochemical signatures of radiation response in human non-small cell lung cancer (NSCLC) xenografts, irradiated in vivo. Methods: Human NSCLC cells (H460) were subcutaneously injected into the flanks of 12 mice. Tumours were treated with single fraction radiation doses (0, 5 or 15 Gy) and harvested at 3 days post irradiation. A Renishaw inVia Raman microscope coupled to a 785 nm laser was used to collect Raman spectral maps for each tumour. Immunohistochemistry (IHC) staining for CAIX was used to visualize hypoxia, and co-registration between IHC fluorescence and Raman images was carried out. Results: Principal component analysis revealed radiation induced spectral signatures linked to changes in protein, nucleic acid, lipid and carbohydrates. In particular, a marked increase in glycogen for irradiated tumours was observed. Spatial mapping revealed intra-tumoural heterogeneity in the distribution of glycogen within the tumour, suggesting tumour response to radiation is not globally uniform. Furthermore, co-registration of Raman glycogen maps with CAIX IHC staining showed a correlation between glycogen rich and hypoxic regions of the tissue. Conclusions: We identify glycogen as a unique radiation induced response in NSCLC tumour xenografts, which may reflect inherent metabolic changes associated with radiation response in tissue. This study provides unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrates the potential of RS for detecting radiobiological responses in tumours.

  20. Sci-Thur PM – Colourful Interactions: Highlights 03: Radiation induced glycogen accumulation in non-small cell lung cancer xenografts detected using Raman spectroscopy

    International Nuclear Information System (INIS)

    Harder, Samantha J.; Isabelle, Martin; DeVorkin, Lindsay; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre; Lum, Julian; Jirasek, Andrew

    2016-01-01

    Purpose: This study presents the novel application of Raman spectroscopy (RS) to identify biochemical signatures of radiation response in human non-small cell lung cancer (NSCLC) xenografts, irradiated in vivo. Methods: Human NSCLC cells (H460) were subcutaneously injected into the flanks of 12 mice. Tumours were treated with single fraction radiation doses (0, 5 or 15 Gy) and harvested at 3 days post irradiation. A Renishaw inVia Raman microscope coupled to a 785 nm laser was used to collect Raman spectral maps for each tumour. Immunohistochemistry (IHC) staining for CAIX was used to visualize hypoxia, and co-registration between IHC fluorescence and Raman images was carried out. Results: Principal component analysis revealed radiation induced spectral signatures linked to changes in protein, nucleic acid, lipid and carbohydrates. In particular, a marked increase in glycogen for irradiated tumours was observed. Spatial mapping revealed intra-tumoural heterogeneity in the distribution of glycogen within the tumour, suggesting tumour response to radiation is not globally uniform. Furthermore, co-registration of Raman glycogen maps with CAIX IHC staining showed a correlation between glycogen rich and hypoxic regions of the tissue. Conclusions: We identify glycogen as a unique radiation induced response in NSCLC tumour xenografts, which may reflect inherent metabolic changes associated with radiation response in tissue. This study provides unique insight into the biochemical response of tumours, irradiated in vivo, and demonstrates the potential of RS for detecting radiobiological responses in tumours.

  1. Gamma and neutron detection modeling in the nuclear detection figure of merit (NDFOM) portal

    International Nuclear Information System (INIS)

    Stroud, Phillip D.; Saeger, Kevin J.

    2009-01-01

    The Nuclear Detection Figure Of Merit (NDFOM) portal is a database of objects and algorithms for evaluating the performance of radiation detectors to detect nuclear material. This paper describes the algorithms used to model the physics and mathematics of radiation detection. As a first-principles end-to-end analysis system, it starts with the representation of the gamma and neutron spectral fluxes, which are computed with the particle and radiation transport code MCNPX. The gamma spectra emitted by uranium, plutonium, and several other materials of interest are described. The impact of shielding and other intervening material is computed by the method of build-up factors. The interaction of radiation with the detector material is computed by a detector response function approach. The construction of detector response function matrices based on MCNPX simulation runs is described in detail. Neutron fluxes are represented in a three group formulation to treat differences in detector sensitivities to thermal, epithermal, and fast neutrons.

  2. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  3. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    Science.gov (United States)

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  4. Radiation synthesis of stimuli-responsive membranes, hydrogels and adsorbents for separation purposes. Final report of a coordinated research project 2000-2004

    International Nuclear Information System (INIS)

    2005-08-01

    This coordinated research project coordinated research work for the development of novel materials prepared by radiation processing techniques. Single and multi-pore polyamide membranes, fast thermo-responsive hydrogels, porous polymer monoliths, stimuli-responsive hydrogels based on natural and synthetic polymers, temperature responsive membranes, selective adsorbents, polymeric nanogels and novel non-ionic thermo-sensitive hydrogels were produced. The application areas explored for beneficially utilizing these novel materials included specialized drug delivery systems (DDS), selective adsorbents, nanopores for single molecule detection, membranes for separation and concentration of solutes, health care and remediation of environmental pollution. The report provides basic information on radiation processing and promotes experience exchange for further developments of radiation technology. Protocols and procedures of preparation of various stimuli responsive membranes and their actual and perspective applications are described in the report. Public awareness and technology acceptance are other factors to be considered for further dissemination. This publication summarizes the present status and the prospects of this technology

  5. A method to adjust radiation dose-response relationships for clinical risk factors

    DEFF Research Database (Denmark)

    Appelt, Ane Lindegaard; Vogelius, Ivan R

    2012-01-01

    Several clinical risk factors for radiation induced toxicity have been identified in the literature. Here, we present a method to quantify the effect of clinical risk factors on radiation dose-response curves and apply the method to adjust the dose-response for radiation pneumonitis for patients...

  6. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    Science.gov (United States)

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  7. Health effects of low-dose radiation: Molecular, cellular, and biosystem response

    International Nuclear Information System (INIS)

    Pollycove, M.; Paperiello, C.J.

    1997-01-01

    Since the fifties, the prime concern of radiation protection has been protecting DNA from damage. UNSCEAR initiated a focus on biosystem response to damage with its 1994 report, ''Adaptive Responses to Radiation of Cells and Organisms''. The DNA damage-control biosystem is physiologically operative on both metabolic and radiation induced damage, both effected predominantly by free radicals. These adaptive responses are suppressed by high-dose and stimulated by low dose radiation. Increased biosystem efficiently reduces the number of mutations that accumulate during a lifetime and decrease DNA damage-control with resultant aging and malignancy. Several statistically significant epidemiologic studies have shown risk decrements of cancer mortality and mortality from all causes in populations exposed to low-dose radiation. Further biologic and epidemiologic research is needed to establish a valid threshold below which risk decrements occur. (author)

  8. Detection and measurement of ionizing radiation by the Radioactive Waste Management Centre

    International Nuclear Information System (INIS)

    Mudra, Josef

    2013-01-01

    The following topics are dealt with: Basic properties of radionuclides and selection of suitable detectors; radiation characteristics of sealed sources (radiation detection, dose rate measurement, surface contamination measurement, gamma spectroscopy); non-destructive analysis (segment gamma scanner, digital radiography); destructive analysis; radiation monitoring of humans and workplaces; and dosimetric monitoring of workplace surroundings and discharges. (orig.)

  9. Detecting Careless Responses to Self-Reported Questionnaires

    Science.gov (United States)

    Kountur, Ronny

    2016-01-01

    Problem Statement: The use of self-report questionnaires may lead to biases such as careless responses that distort the research outcomes. Early detection of careless responses in self-report questionnaires may reduce error, but little guidance exists in the literature regarding techniques for detecting such careless or random responses in…

  10. Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for Detection System Design

    Science.gov (United States)

    2013-11-01

    example for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. 15. SUBJECT TERMS Radiative transfer...detector m-out-of-n detector Potassium chlorate Probability theory System performance Probability of detection and false alarm iii...for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. Subject Terms Radiative transfer, contaminated

  11. Development of Sensor Technology and Its Application for Nuclear Radiation Detection

    International Nuclear Information System (INIS)

    Hiskia

    2007-01-01

    Radiation is energy in the form of waves or moving subatomic particles. Radiation can be ionizing or nonionizing radiation, depending on its effect on atomic matter. Because radiation cannot be seen, felt, tasted, heard or smelled, even at lethal levels, radiations detection devices must be used to alert those exposed to radiation. The measurement of radioactivity in the environment is a regulatory requirement around sites where significant amounts of radioactive materials are used or stored. Recently, advent in microelectronics and material technology has enabled to produce small sensor or microsensor, sensitive, accurate, and integrated in a chip or substrate. Development of radiation sensor technology using thin/thick film and micromachining technique was described in this paper. Indonesian capabilities in radiation sensor research and development and opportunities for commercialization also given. (author)

  12. The Development of Sensor Technology and Application to Detect Nuclear Radiation

    International Nuclear Information System (INIS)

    Hiskia

    2007-01-01

    Radiation is energy in the form of waves or moving subatomic particles. Radiation can be ionizing or non-ionizing radiation, depending on its effect on atomic matter. Because radiation cannot be seen, felt, tasted, heard or smelled, even at lethal levels, radiations detection devices must be used to alert those exposed to radiation. The measurement of radioactivity in the environment is a regulatory requirement around sites where significant amounts of radioactive materials are used or stored. Recently, advent in microelectronics and material technology has enabled to produce small sensor or microsensor, sensitive, accurate, and integrated in a chip or substrate. Development of radiation sensor technology using thin/thick film and micromachining technique was described in this paper. Indonesian capabilities in radiation sensor research and development and opportunities for commercialization also given. (author)

  13. Flexible Receiver Radiation Detection System (FRRDS) Users Manual

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1996-01-01

    The Flexible Receiver Radiation Detection System (FRRDS) comprises a control computer, a remote data acquisition subsystem, and three hyperpure germanium gamma radiation detectors. The scope of this document is the description of various steps for the orderly start-up, use, and shutdown of the FRRDS. Only those items necessary for these oprations are included. This document is a companion to WHC-SD-W151-UM-002, 'Operating Instructions for the 42 Inch Flexible Receiver,' WHC-SD-W151-UM-003, 'Operating Instructions for the 4-6 Inch Flexible Receiver,' and the vendor supplied system users guide (Ref. 6)

  14. Detection of radiation processing in onions

    International Nuclear Information System (INIS)

    Duchacek, V.

    1985-01-01

    Two breeds of onions were used for irradiation. Both breeds were divided into two parts - the first was irradiated with a dose of 80 Gy and the second served as a control. The two parts were stored under the same conditions. Conductometry, liquid chromatography and spectrophotometry were used for detecting the radiation processing of the onions. Only from the spectrophotometric determination of 2-desoxysaccharides it was possible to safely distinguish irradiated onions from non-irradiated controls throughout storage time. (E.S.)

  15. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    DEFF Research Database (Denmark)

    Appelt, A. L.; Ploen, J.; Vogelius, I. R.

    2013-01-01

    estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination...... of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect...... of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D-50,D-i, and the normalized dose-response gradient, gamma(50,i). Results: A highly...

  16. Modification of Acute Radiation Response in Different Demographic Age Groups

    Science.gov (United States)

    2017-10-25

    greater radiosensitivity. Other studies provided further mechanistic insight into the observed age effect of radiation responses. For example ...DISTRIBUTION A. Approved for public release; distribution is unlimited. October 2017 HDTRA1-14-0003; 0005 Prepared by: Applied ... Research Associates, Inc. 801 N. Quincy Street Suite 700 Arlington, VA 22203 Modification of Acute Radiation Response in Different Demographic Age

  17. An integrated circuit/microsystem/nano-enhanced four species radiation sensor for inexpensive fissionable material detection

    Science.gov (United States)

    Waguespack, Randy Paul

    2011-12-01

    Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or quartz scintillator doped with 10B nanoparticles to detect all four types of radiation particles. Boron-10 has a thermal neutron cross section of 3,840 barns. The interaction between the neutron and boron results in a secondary charge particle in the form of an alpha particle to be emitted, which is detectable by the scintillator. Radiation impinging on the scintillator matrix produces varying optical pulses dependent on the energy of the particles. The optical pulses are then detected by a photomultiplier (PM) tube, creating a current proportional to the energy of the particle. Current pulses from the PM tube are differentiated by on-chip pulse height spectroscopy, allowing for source discrimination. The pulse height circuitry has been fabricated with discrete circuits and designed into an integrated circuit package. The ability to replace traditional PM tubes with a smaller, less expensive photomultiplier will further reduce the size of the device and enhance the cost effectiveness and portability of the detector.

  18. Radiation Response of Rhombohedral Oxides

    International Nuclear Information System (INIS)

    Devanathan, R.; Weber, W.J.; Mitchell, J.N.; Sickafus, K.E.; Nastasi, M.

    1997-05-01

    The radiation response of three rhombohedral oxides, namely, sapphire (α-Al 2 O 3 ), ilmenite (FeTiO 3 ), and geikielite (MgTiO 3 ), has been examined by irradiating electron transparent samples with 1 MeV Kr(+) and 1.5 MeV Xe(+)ions. The microstructural changes during irradiation were observed in situ in a high-voltage electron microscope using electron diffraction and microscopy. The irradiation conditions were designed to minimize beam heating and chemical effects due to the implanted ion. Of the three oxides studied, ilmenite is the most susceptible to radiation-induced amorphization while sapphire is the least susceptible. In all three materials, the critical temperature for amorphization was below 300 K indicating good room temperature resistance to amorphization by energetic beams

  19. Mechanisms and biological importance of photon-induced bystander responses. Do they have an impact on low-dose radiation responses

    International Nuclear Information System (INIS)

    Tomita, Masanori; Maeda, Munetoshi

    2015-01-01

    Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced by-stander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. (author)

  20. Multichannel Digital Emulator of Radiation Detection Systems

    International Nuclear Information System (INIS)

    Abba, A.; Caponio, F.; Geraci, A.

    2013-06-01

    A digital system for emulating in real time signals from generic setups for radiation detection is presented. The instrument is not a pulse generator of recorded shapes but a synthesizer of random pulses compliant to programmable statistics for energy and occurrence time. Completely programmable procedures for emulation of noise, disturbances and reference level variation can be implemented. The instrument has been realized and fully tested. (authors)

  1. Macrophage biology plays a central role during ionizing radiation-elicited tumor response

    Directory of Open Access Journals (Sweden)

    Qiuji Wu

    2017-08-01

    Full Text Available Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.

  2. Cellular Response to Ionizing Radiation: A MicroRNA Story

    Science.gov (United States)

    Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi

    2012-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775

  3. EPR spectroscopy for the detection of foods treated with ionising radiation

    International Nuclear Information System (INIS)

    Stachowicz, W.; Burlinska, G.; Michalik, J.; Dziedzic-Goclawska, A.; Ostrowski, K.

    1996-01-01

    The advantage of electron paramagnetic resonance spectroscopy (EPR or ESR) as a tool for the control of irradiated food lies in its sensitivity and accuracy. Ionising radiation produces, in irradiated materials, paramagnetic species of different kinds, i.e. radicals, radical-ions and paramagnetic centres, which can be measured by EPR but most of them are not stable enough to be used for the detection of irradiation. It is because radiation-induced paramagnetic species are thermodynamically less stable than surrounding molecules and take part in fast radiolytic reactions leading to the formation of final diamagnetic products that they are not detectable by the EPR method. Most of organic radicals produced by radiation in the liquid phase ae unstable but if the unpaired electron is incorporated into the complex polymeric system as in peptides and polysaccharides and is structurally isolated from the water, its stability is markedly increased. Since 1954 it is known that ionising radiation produces paramagnetic entities in biological materials, cells and tissues and some are stable enough to be observed by EPR spectroscopy at room temperature. The present paper describes and discusses that part of results obtained by this group during the period of ADMIT activity (1989-94) which are original and may be useful to those who will be working in the near future on the development of uniform control systems for the detection of irradiated food. The intention was to focus attention on these facts and data which influence the certainty of the detection in both positive and negative manner. (author)

  4. Performance test of SKIROC II ASIC chip for the radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Jun, W. J.; Namgoong, H.; Kim, B. K.; Song, H. S.; Kim, H. S.; Lee, S. H.; Choi, H. J.; Ghergherehchi, M.; Chai, J. S. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-04-15

    There is a PCB board called FEV8 board which can readout analog signal from any energy source, and amplify it for signal processing. For precise detection, the board had been designed to operate in wide range of energy condition, with high-resolutive detection performance. This function has the possibility of the utilization for the radiation detection. The channels of the prototype board must be evaluated to make sure that the board is perfect or not. This research had made an progress for the radiation detection as well as the electronics of the intricate combination of the measurement instrumentations. The number of the noisy channels had been measured for threshold scan, and every channels in the board had been evaluated. By improving the experimental conditions such as test script in Linux system or well designed ground condition of the test bench, much more clean data will be able to be acquisited.

  5. Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber

    Science.gov (United States)

    Devendiran, S.; Sastikumar, D.

    2017-03-01

    A new type of fiber optic gas sensor is proposed by detecting a light radiated from a region of cladding modified with metal oxide (nanocrystalline ZnO). The intensity of radiated light is found to vary with different gasses and concentrations. Sensing characteristics are studied for ammonia, methanol, ethanol and acetone gasses. Gas sensitivity of the proposed sensor is compared with clad-modified fiber optic gas sensor. The new sensor exhibits enhanced sensitivity. Time response characteristics of the sensor are reported.

  6. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  7. System of medical response to radiation emergency after a terror attack in China

    International Nuclear Information System (INIS)

    Liu, Y.; Wang, Z.

    2005-01-01

    Full text: Nuclear or radiological accident is an unintended or unexpected event occurring with a radiation source or during a practice involving ionizing radiation, which may result in significant human exposure and/or material damage. Recent events involving terrorist activities have focused attention on the radiological threats. The full spectrum of radiological threats from terrorist spans the deliberate dispersal of radioactive material to the detonation of a nuclear weapon. While the most likely threat is the dispersal of radioactive materials, the use of a crude nuclear weapon against a major city cannot be dismissed. Radiological incident response requires functions similar to non-radiological incident response. Radiation emergency system in China has been established for radiological emergency preparedness and response. National coordination committee of radiation emergency has been setup in 1994, which consist of 17 ministries. The ministry is responsible for the medical assistance for radiation emergency. Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). The CCMRRE has been as one liaison institutes of WHO/REMPAN and functions as a national and professional institute for medical assistance in radiation accidents and terrorist events involving radioactive material. Under Provincial Committee of Radiation Emergency, there are local organizations of medical assistance in radiation emergency. The organizations carry out the first aid, regional clinic treatment, radiation protection and radiation monitory in nuclear accidents and radiological accidents. (author)

  8. Design of a spreader bar crane-mounted gamma-ray radiation detection system

    Energy Technology Data Exchange (ETDEWEB)

    Grypp, Matthew D., E-mail: iglowgreen@neo.tamu.edu; Marianno, Craig M., E-mail: marianno@tamu.edu; Poston, John W., E-mail: j-poston@tamu.edu; Hearn, Gentry C., E-mail: ghearn@riacc.com

    2014-04-11

    Over 95% of imports entering the United States from outside North America arrive by sea at 329 ports of entry. These imports are packaged in more than 11 million cargo containers. Radiation portals monitors routinely scan cargo containers leaving port on specially-designed trucks. To accelerate the process, some commercial entities have placed detection systems on the spreader-bar cranes (SBCs) used to offload. Little is known about the radiation background profiles of systems operating on these cranes. To better understand the operational characteristics of these radiation detection systems; a research team from Texas A and M University (TAMU) mounted three thallium-doped sodium iodide [NaI(Tl)] detectors on an SBC at the Domestic Nuclear Detection Office's (DNDO) test track facility at the Port of Tacoma (PoT). These detectors were used to monitor background radiation levels and continuously recorded data during crane operations using a custom-built software package. Count rates and spectral data were recorded for various crane heights over both land and water. The results of this research created a background profile in which count rate was heavily dependent on position demonstrating how detector readings changed in the operational environment.

  9. Response of radiation monitors for ambient dose equivalent, H*(10)

    International Nuclear Information System (INIS)

    Grecco, Claudio Henrique dos Santos

    2001-01-01

    Radiation monitors are used all over the world to evaluate if places with presence of ionising radiation present safe conditions for people. Radiation monitors should be tested according to international or national standards in order to be qualified for use. This work describes a methodology and procedures to evaluate the energy and angular responses of any radiation monitor for ambient dose equivalent, H*(10), according to the recommendations of ISO and IEC standards. The methodology and the procedures were applied to the Monitor Inteligente de Radiacao MIR 7026, developed by the Instituto em Engenharia Nuclear (IEN), to evaluate and to adjust its response for H*(10), characterizing it as an ambient dose equivalent meter. The tests were performed at the Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), at Instituto de Radioprotecao e Dosimetria (IRD), and results showed that the Monitor Inteligente de Radiacao MIR 7026 can be used as an EI*(10) meter, in accordance to the IEC 60846 standard requirements. The overall estimated uncertainty for the determination of the MIR 7026 response, in all radiation qualities used in this work, was 4,5 % to a 95 % confidence limit. (author)

  10. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system

    International Nuclear Information System (INIS)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data

  11. The response of film badge dosemeters to high energy photon radiation

    International Nuclear Information System (INIS)

    Playle, T.S.

    1988-12-01

    The sites of the earlier magnox reactor power stations at Berkeley and Bradwell in the United Kingdom are subject to 6 MeV photon radiation from the coolant gas. Since 1966 the Central Electricity Generating Board has included in its film badge personal dosimetry procedures an algorithm for applying a correction for over-response to high energy photon radiation. The correction is based on laboratory irradiations using a source of pure 6 MeV photon radiation. Recently, the opportunity arose to evaluate the response of the film badges at locations around the Berkeley reactors where spectrum-dependent dose equivalent rates had been measured. This report compares the response of the film badge in these characterised radiation environments with the response measured in the calibration laboratory. It is concluded that in the location where measurements were made, the high energy enhancement of measured dose was obscured by the effects of low energy scattered radiation, and it is considered that this will be the case for all practical situations on the power station site. There is therefore no advantage in using the 6 MeV correction factors for routine film badge dosimetry in these locations. (author)

  12. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  13. Genetic and epigenetic features in radiation sensitivity. Part I: Cell signalling in radiation response

    International Nuclear Information System (INIS)

    Bourguignon, Michel H.; Gisone, Pablo A.; Perez, Maria R.; Michelin, Severino; Dubner, Diana; Giorgio, Marina di; Carosella, Edgardo D.

    2005-01-01

    Recent progress especially in the field of gene identification and expression has attracted greater attention to genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. It has been proposed that the occurrence and severity of the adverse reactions to radiation therapy are also influenced by such genetic susceptibility. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation offering a better likelihood of cure for malignant tumours. This paper, the first of two parts, reviews the main mechanisms involved in cell response to ionising radiation. DNA repair machinery and cell signalling pathways are considered and their role in radiosensitivity is analysed. The implication of non-targeted and delayed effects in radiosensitivity is also discussed. (orig.)

  14. Tumor radiation responses and tumor oxygenation in aging mice

    International Nuclear Information System (INIS)

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  15. Radiation detection using the color changes of lilac spodumene

    International Nuclear Information System (INIS)

    Oliveira, Raquel A.P.; Mello, Ana Carolina S.; Lima, Hestia R.B.R.; Campos, Simara Santos; Souza, Suzana O.

    2009-01-01

    The use of radiation in industrial processes currently offers several advantages in the field of sterilization of medical and pharmaceuticals products, the preservation of food, and a variety of other products widely used in modern society. A dosimetry of confidence is a key parameter for the quality assurance of radiation processing and the irradiated products. This work investigates dosimetric properties in natural spodumene, LiAlSi 2 O 6 , called kunzite, from Minas Gerais State, Brazil. After X irradiation on the samples in powder form was detected a change in color of the crystal where the dose received. This makes a possible viability of this material is applied in research on development of radiation detectors using the change in color of purple spodumene. (author)

  16. Radiation camera exposure control

    International Nuclear Information System (INIS)

    Martone, R.J.; Yarsawich, M.; Wolczek, W.

    1976-01-01

    A system and method for governing the exposure of an image generated by a radiation camera to an image sensing camera is disclosed. The exposure is terminated in response to the accumulation of a predetermined quantity of radiation, defining a radiation density, occurring in a predetermined area. An index is produced which represents the value of that quantity of radiation whose accumulation causes the exposure termination. The value of the predetermined radiation quantity represented by the index is sensed so that the radiation camera image intensity can be calibrated to compensate for changes in exposure amounts due to desired variations in radiation density of the exposure, to maintain the detectability of the image by the image sensing camera notwithstanding such variations. Provision is also made for calibrating the image intensity in accordance with the sensitivity of the image sensing camera, and for locating the index for maintaining its detectability and causing the proper centering of the radiation camera image

  17. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Janet K., E-mail: janet.horton@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Blitzblau, Rachel C.; Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Geradts, Joseph [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Chang, Zheng [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Baker, Jay A. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Georgiade, Gregory S. [Department of Surgery, Duke University Medical Center, Durham, North Carolina (United States); Chen, Wei [Department of Bioinformatics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Siamakpour-Reihani, Sharareh; Wang, Chunhao [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Broadwater, Gloria [Department of Biostatistics: Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina (United States); Groth, Jeff [Department of Pathology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha; Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Barry, William T. [Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina (United States); Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Duffy, Eileen A. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); and others

    2015-07-15

    Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative, estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should

  18. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol With Radiation Response Biomarkers

    International Nuclear Information System (INIS)

    Horton, Janet K.; Blitzblau, Rachel C.; Yoo, Sua; Geradts, Joseph; Chang, Zheng; Baker, Jay A.; Georgiade, Gregory S.; Chen, Wei; Siamakpour-Reihani, Sharareh; Wang, Chunhao; Broadwater, Gloria; Groth, Jeff; Palta, Manisha; Dewhirst, Mark; Barry, William T.; Duffy, Eileen A.

    2015-01-01

    Purpose: Women with biologically favorable early-stage breast cancer are increasingly treated with accelerated partial breast radiation (PBI). However, treatment-related morbidities have been linked to the large postoperative treatment volumes required for external beam PBI. Relative to external beam delivery, alternative PBI techniques require equipment that is not universally available. To address these issues, we designed a phase 1 trial utilizing widely available technology to 1) evaluate the safety of a single radiation treatment delivered preoperatively to the small-volume, intact breast tumor and 2) identify imaging and genomic markers of radiation response. Methods and Materials: Women aged ≥55 years with clinically node-negative, estrogen receptor–positive, and/or progesterone receptor–positive HER2−, T1 invasive carcinomas, or low- to intermediate-grade in situ disease ≤2 cm were enrolled (n=32). Intensity modulated radiation therapy was used to deliver 15 Gy (n=8), 18 Gy (n=8), or 21 Gy (n=16) to the tumor with a 1.5-cm margin. Lumpectomy was performed within 10 days. Paired pre- and postradiation magnetic resonance images and patient tumor samples were analyzed. Results: No dose-limiting toxicity was observed. At a median follow-up of 23 months, there have been no recurrences. Physician-rated cosmetic outcomes were good/excellent, and chronic toxicities were grade 1 to 2 (fibrosis, hyperpigmentation) in patients receiving preoperative radiation only. Evidence of dose-dependent changes in vascular permeability, cell density, and expression of genes regulating immunity and cell death were seen in response to radiation. Conclusions: Preoperative single-dose radiation therapy to intact breast tumors is well tolerated. Radiation response is marked by early indicators of cell death in this biologically favorable patient cohort. This study represents a first step toward a novel partial breast radiation approach. Preoperative radiation should

  19. Calibration of a Stereo Radiation Detection Camera Using Planar Homography

    Directory of Open Access Journals (Sweden)

    Seung-Hae Baek

    2016-01-01

    Full Text Available This paper proposes a calibration technique of a stereo gamma detection camera. Calibration of the internal and external parameters of a stereo vision camera is a well-known research problem in the computer vision society. However, few or no stereo calibration has been investigated in the radiation measurement research. Since no visual information can be obtained from a stereo radiation camera, it is impossible to use a general stereo calibration algorithm directly. In this paper, we develop a hybrid-type stereo system which is equipped with both radiation and vision cameras. To calibrate the stereo radiation cameras, stereo images of a calibration pattern captured from the vision cameras are transformed in the view of the radiation cameras. The homography transformation is calibrated based on the geometric relationship between visual and radiation camera coordinates. The accuracy of the stereo parameters of the radiation camera is analyzed by distance measurements to both visual light and gamma sources. The experimental results show that the measurement error is about 3%.

  20. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy

    International Nuclear Information System (INIS)

    Koritzinsky, Marianne

    2015-01-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed to advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers

  1. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Koritzinsky, Marianne, E-mail: mkoritzi@uhnresearch.ca

    2015-10-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed to advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers.

  2. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    Energy Technology Data Exchange (ETDEWEB)

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P. [IST - Campus Tecnologico e Nuclear, Estrada Nacional 10 - km 139.7, 2695-066, Bobadela LRS (Portugal); Balbuena, J.; Disch, C. [Physical Institut, University of Freiburg Hermann-Herder-Str. 3 D-79104 Freiburg (Germany); Fleta, C.; Jumilla, C.; Lozano, M. [Instituto de Microelectronica de Barcelona - IMB-CNM, CSIC, E-08193 Bellaterra, Barcelona (Spain)

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  3. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    International Nuclear Information System (INIS)

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P.; Balbuena, J.; Disch, C.; Fleta, C.; Jumilla, C.; Lozano, M.

    2015-01-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  4. Initial Human Response to Nuclear Radiation

    Science.gov (United States)

    1982-04-01

    symptomatic response to radiation. In the second phase, the models will be used to infer performance effects. DNA staff members Cyrus Knowles and David ...P. Setty ATTN: K. Schwartz ATTN: J. NcGahan Kamn Tempo System Planning Corp ATTN: R. Miller ATTN: J. JonesATTN: G. Perks Kamen Tempo AiT: S. Shrier

  5. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  6. Development of a stable and sensitive semiconductor detector by using a mixture of lead(II) iodide and lead monoxide for NDT radiation dose detection

    Science.gov (United States)

    Heo, Y. J.; Kim, K. T.; Han, M. J.; Moon, C. W.; Kim, J. E.; Park, J. K.; Park, S. K.

    2018-03-01

    Recently, high-energy radiation has been widely used in various industrial fields, including the medical industry, and increasing research efforts have been devoted to the development of radiation detectors to be used with high-energy radiation. In particular, nondestructive industrial applications use high-energy radiation for ships and multilayered objects for accurate inspection. Therefore, it is crucial to verify the accuracy of radiation dose measurements and evaluate the precision and reproducibility of the radiation output dose. Representative detectors currently used for detecting the dose in high-energy regions include Si diodes, diamond diodes, and ionization chambers. However, the process of preparing these detectors is complex in addition to the processes of conducting dosimetric measurements, analysis, and evaluation. Furthermore, the minimum size that can be prepared for a detector is limited. In the present study, the disadvantages of original detectors are compensated by the development of a detector made of a mixture of polycrystalline PbI2 and PbO powder, which are both excellent semiconducting materials suitable for detecting high-energy gamma rays and X-rays. The proposed detector shows characteristics of excellent reproducibility and stable signal detection in response to the changes in energy, and was analyzed for its applicability. Moreover, the detector was prepared through a simple process of particle-in-binder to gain control over the thickness and meet the specific value designated by the user. A mixture mass ratio with the highest reproducibility was determined through reproducibility testing with respect to changes in the photon energy. The proposed detector was evaluated for its detection response characteristics with respect to high-energy photon beam, in terms of dose-rate dependence, sensitivity, and linearity evaluation. In the reproducibility assessment, the detector made with 15 wt% PbO powder showed the best characteristics of 0

  7. Canine tumor and normal tissue response to heat and radiation

    International Nuclear Information System (INIS)

    Gillette, E.L.; McChesney, S.L.

    1985-01-01

    Oral squamous cell carcinomas of dogs were treated with either irradiation alone or combined with hyperthermia. Tumor control was assessed as no evidence of disease one year following treatment. Dogs were randomized to variable radiation doses which were given in ten fractions three times a week for three weeks. Heat was given three hours after the first and third radiation dose each week for seven treatments. The attempt was made to achieve a minimum tumor temperature of 42 0 C for thirty minutes with a maximum normal tissue temperature of 40 0 C. It was usually possible to selectively heat tumors. The TCD 50 for irradiation alone was about 400 rads greater than for heat plus irradiation. The dose response curve for heat plus radiation was much steeper than for radiation alone indicating less heterogeneity of tumor response. That also implies a much greater effectiveness of radiation combined with heat at higher tumor control probabilities. Early necrosis caused by heating healed with conservative management. No increase in late radiation necrosis was observed

  8. Radiation monitors of new generation - New methodology of detection of nuclear and radioactive materials

    International Nuclear Information System (INIS)

    Kagan, L.; Stavrov, A.

    2001-01-01

    and stored in the non-volatile memory and, if necessary, may be consequently transmitted to the PC for analysis; When the source is detected (alarm triggers), the device may be held in hand and used for location of the detected source; After the source is located one may evaluate its danger to a person just by switching the LCD indication to the dose rate units. It helps the user who may not be an expert in radiation protection to choose at once a proper way of actions in response to the detected and located source; It should be emphasized that these devices combine functions of fixed installed monitors (being in fact 'fixed installed monitor in pocket'), portable devices and dosimeters. They are the only possible type of monitors that may be used for searching sources in such not easily accessible places as railroad cars, the interior of ships, etc. Thus, these devices are examples of the new generation devices. They were developed using the available experience and up-to-date achievements in microelectronics especially for fulfillment of tasks in the field of control of trafficking of radioactive sources through the state borders. These devices provide an opportunity to develop new versions of methodology of their operation considerably simplifying and facilitating the user's work. (author)

  9. A novel mobile system for radiation detection and monitoring

    Science.gov (United States)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their

  10. T lymphocytes and normal tissue responses to radiation

    International Nuclear Information System (INIS)

    Schaue, Dörthe; McBride, William H.

    2012-01-01

    There is compelling evidence that lymphocytes are a recurring feature in radiation damaged normal tissues, but assessing their functional significance has proven difficult. Contradictory roles have been postulated in both tissue pathogenesis and protection, although these are not necessarily mutually exclusive as the immune system can display what may seem to be opposing faces at any one time. While the exact role of T lymphocytes in irradiated normal tissue responses may still be obscure, their accumulation after tissue damage suggests they may be critical targets for radiotherapeutic intervention and worthy of further study. This is accentuated by recent findings that pathologically damaged “self,” such as occurs after exposure to ionizing radiation, can generate danger signals with the ability to activate pathways similar to those that activate adoptive immunity to pathogens. In addition, the demonstration of T cell subsets with their recognition radars tuned to “self” moieties has revolutionized our ideas on how all immune responses are controlled and regulated. New concepts of autoimmunity have resulted based on the dissociation of immune functions between different subsets of immune cells. It is becoming axiomatic that the immune system has the power to regulate radiation-induced tissue damage, from failure of regeneration to fibrosis, to acute and chronic late effects, and even to carcinogenesis. Our understanding of the interplay between T lymphocytes and radiation-damaged tissue may still be rudimentary but this is a good time to re-examine their potential roles, their radiobiological and microenvironmental influences, and the possibilities for therapeutic manipulation. This review will discuss the yin and yang of T cell responses within the context of radiation exposures, how they might drive or protect against normal tissue side effects and what we may be able do about it.

  11. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  12. Radiation detection and measurement

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1979-01-01

    Introductory material covers radiation sources, radiation interactions, general properties of radiation detectors, and counting statistics and error prediction. This is followed by detailed sections on gas-filled detectors, scintillation counters, semiconductor detectors, neutron detectors and spectroscopy, detector electronics and pulse processing, and miscellaneous radiation detectors and applications

  13. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    International Nuclear Information System (INIS)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus; Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A.

    2014-01-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  14. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Gothenburg (Sweden); Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A. [University of Gothenburg, Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden)

    2014-07-15

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  15. Development of a distributed radiation detection system using optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, F; Inouchi, Goro; Takada, Eiji; Takahashi, Hiroyuki; Iguchi, Tetsuo; Nakazawa, Masaharu [Tokyo Univ. (Japan). Faculty of Engineering; Kakuta, Tsunemi

    1996-07-01

    We have confirmed the importance of temperature and dose rate for the response of Ge-doped fibers to radiation. A phenomenological model have been found to account for temperature and dose rate effects. From this model it is possible to make dose predictions from attenuation measurements when the temperature and dose rate are known. Ge-doped fibers have been found to have a relatively low sensitivity to both neutron and gamma radiation. In addition, temperature and dose rate dependencies complicate the analysis. However we point out that these problems may all be solved if we use fibers, such as P-doped fibers, which contain color centers of long lifetime. This would remove both the temperature and dose rate dependencies that complicate the use of Ge-doped fibers, in addition the radiation sensitivity is increased. Finally OTDR has been investigated as a possible read-out method for distributed radiation measurements. For our system the minimum pulse length was 3ns, giving a spatial resolution in the meter range and a response length to radiation of about 10 m if accurate dose values where to be obtained. We found OTDR to be a suitable method for radiation induced attenuation measurements in optical fibers, especially for long fiber lengths and long time scales where questions of light source stability becomes important for other systems. (S.Y.)

  16. Radiation transmission type pipe wall thinning detection device and measuring instruments utilizing ionizing radiation

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2009-01-01

    We developed the device to detect thinning of pipe thorough heat insulation in Power Plant, etc, even while the plant is under operation. It is necessary to test many parts of many pipes for pipe wall thinning management, but it is difficult within a limited time of the routine test. This device consists of detector and radiation source, which can detect the pipe (less than 500 mm in external diameter, less than 50 mm in thickness) with 1.6%-reproducibility (in a few-minutes measurement), based on the attenuation rate. Operation is easy and effective without removing the heat insulation. We will expand this thinning detection system, and contribute the safety of the Plant. (author)

  17. Optimal Background Attenuation for Fielded Radiation Detection Systems

    International Nuclear Information System (INIS)

    Robinson, Sean M.; Kaye, William R.; Schweppe, John E.; Siciliano, Edward R.

    2006-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to terrestrial background from the surrounding area. A low background is desired in most cases, especially when the background noise is of comparable strength to the signal of interest. The problem of shielding a generalized RPM from terrestrial background is considered. Various detector and shielding scenarios are modeled with the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to attenuate the terrestrial background to varying degrees are given, along with optimal shielding geometry to be used in areas where natural shielding is limited, and where radiation detection must occur in the presence of natural background. Common shielding solutions such as steel plating are evaluated based on the signal to noise ratio and the benefits are weighed against the incremental cost.

  18. MRI-alone radiation therapy planning for prostate cancer: Automatic fiducial marker detection

    International Nuclear Information System (INIS)

    Ghose, Soumya; Mitra, Jhimli; Rivest-Hénault, David; Fazlollahi, Amir; Fripp, Jurgen; Dowling, Jason A.; Stanwell, Peter; Pichler, Peter; Sun, Jidi; Greer, Peter B.

    2016-01-01

    Purpose: The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. Methods: Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contours were selected in a spectral clustering manifold learning framework. This aids in clustering “similar” gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. Results: A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). Conclusions: An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold

  19. MRI-alone radiation therapy planning for prostate cancer: Automatic fiducial marker detection

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, Soumya, E-mail: soumya.ghose@case.edu; Mitra, Jhimli [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and CSIRO Health and Biosecurity, The Australian e-Health & Research Centre, Herston, QLD 4029 (Australia); Rivest-Hénault, David; Fazlollahi, Amir; Fripp, Jurgen; Dowling, Jason A. [CSIRO Health and Biosecurity, The Australian e-Health & Research Centre, Herston, QLD 4029 (Australia); Stanwell, Peter [School of health sciences, The University of Newcastle, Newcastle, NSW 2308 (Australia); Pichler, Peter [Department of Radiation Oncology, Cavalry Mater Newcastle Hospital, Newcastle, NSW 2298 (Australia); Sun, Jidi; Greer, Peter B. [School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Cavalry Mater Newcastle Hospital, Newcastle, NSW 2298 (Australia)

    2016-05-15

    Purpose: The feasibility of radiation therapy treatment planning using substitute computed tomography (sCT) generated from magnetic resonance images (MRIs) has been demonstrated by a number of research groups. One challenge with an MRI-alone workflow is the accurate identification of intraprostatic gold fiducial markers, which are frequently used for prostate localization prior to each dose delivery fraction. This paper investigates a template-matching approach for the detection of these seeds in MRI. Methods: Two different gradient echo T1 and T2* weighted MRI sequences were acquired from fifteen prostate cancer patients and evaluated for seed detection. For training, seed templates from manual contours were selected in a spectral clustering manifold learning framework. This aids in clustering “similar” gold fiducial markers together. The marker with the minimum distance to a cluster centroid was selected as the representative template of that cluster during training. During testing, Gaussian mixture modeling followed by a Markovian model was used in automatic detection of the probable candidates. The probable candidates were rigidly registered to the templates identified from spectral clustering, and a similarity metric is computed for ranking and detection. Results: A fiducial detection accuracy of 95% was obtained compared to manual observations. Expert radiation therapist observers were able to correctly identify all three implanted seeds on 11 of the 15 scans (the proposed method correctly identified all seeds on 10 of the 15). Conclusions: An novel automatic framework for gold fiducial marker detection in MRI is proposed and evaluated with detection accuracies comparable to manual detection. When radiation therapists are unable to determine the seed location in MRI, they refer back to the planning CT (only available in the existing clinical framework); similarly, an automatic quality control is built into the automatic software to ensure that all gold

  20. Biological Bases for Radiation Adaptive Responses in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Lin, Yong [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Wilder, Julie [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Belinsky, Steven [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)

    2015-03-01

    Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung, and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis, which now is known to be unsupported by a large volume of data.

  1. Responses of epithelial cells to low and very low doses of low let radiation

    International Nuclear Information System (INIS)

    Mothersill, Carmel; Seymour, Colin

    2003-01-01

    Recent advances in our knowledge of the biological effects of low doses of ionizing radiation have shown unexpected phenomena. These vary in the endpoint used to detect them and in the dose range examined but all occur as high-frequency events in cell populations. They include: 1. a 'bystander effect' which can be demonstrated at low doses as a transferable.factor(s) causing radiobiological effects in unexposed cells, 2. an assortment of delayed effects' occurring in progeny of cells exposed to low doses, 3. Low-dose Hypersensitivity (HRS) and Increased radioresistance (IRR) which can collectively be demonstrated as a change in the dose-effect relationship, occurring around 0.5-1 Gy of low LET radiation and 4. adaptive responses where cells exposed to very low doses followed by higher doses, exhibit an induced relatively resistant response to the second dose. In all cases, the effect of very low doses is greater than would be predicted by extrapolation of high dose data and is inconsistent with conventional DNA break/repair-based radiobiology. In practical risk assessment terms, the relative importance of the effects are high at low doses where they dominate the response, and small at high doses. This paper reviews these assorted phenomena and in particular seeks to explore whether related or distinct mechanisms underlie these various effects Understanding the mechanistic basis of these phenomena may suggest new approaches to controlling death or survival sectoring at low radiation doses. The key question is whether these low dose phenomena necessitate a new approach to risk assessment. (author)

  2. Understanding the role of p53 in adaptive response to radiation-induced germline mutations

    International Nuclear Information System (INIS)

    Langlois, N.L.; Quinn, J.S.; Somers, C.M.; Boreham, D.R.; Mitchel, R.E.J.

    2003-01-01

    Full text: Radiation-induced adaptive response is now a widely studied area of radiation biology. Studies have demonstrated reduced levels of radiation-induced biological damage when an 'adaptive dose' is given before a higher 'challenge dose' compared to when the challenge dose is given alone. It has been shown in some systems to be a result of inducible cellular repair systems. The adaptive response has been clearly demonstrated in many model systems, however its impact on heritable effects in the mammalian germline has never been studied. Expanded Simple Tandem Repeat (ESTR) loci have been used as markers demonstrating that induced heritable mutations in mice follow a dose-response relationship. Recent data in our laboratory show preliminary evidence of radiation-induced adaptive response suppressing germline mutations at ESTR loci in wild type mice. The frequency of heritable mutations was significantly reduced when a priming dose of 0.1 Gy was given 24 hours prior to a 1 Gy acute challenging dose. We are now conducting a follow-up study to attempt to understand the mechanism of this adaptive response. P53 is known to play a significant role in governing apoptosis, DNA repair and cancer induction. In order to determine what function p53 has in the adaptive response for heritable mutations, we have mated radiation treated Trp53+/- male mice (C57Bl) to untreated, normal females (C57Bl). Using DNA fingerprinting, we are investigating the rate of inherited radiation-induced mutations on pre- and post-meiotic radiation-treated gametocytes by examining mutation frequencies in offspring DNA. If p53 is integral in the mechanism of adaptive response, we should not see an adaptive response in radiation-induced heritable mutations in these mice. This research is significant in that it will provide insight to understanding the mechanism behind radiation-induced adaptive response in the mammalian germline

  3. Sensor and method for measurment of select components of a material based on detection of radiation after interaction with the material

    International Nuclear Information System (INIS)

    Chase, L.M.; Anderson, L.M.; Norton, M.K.

    1993-01-01

    A sensor is described for measuring one or more select components of a sheet, comprising: a radiation source for emitting radiation toward the sheet; a plurality of detecting means, wherein at least one detecting means is offset from the source, for detecting radiation after interaction with the sheet; means for directing the radiation so that the radiation makes multiple interactions with the sheet in moving from the source to the detecting means, wherein the directing means includes a first reflector and second reflector defining a sheet space for the sheet to occupy; means for computing a ratio of the intensity of the detected radiation when the sheet is absent from the sheet space and the intensity of the detected radiation when the sheet occupies the sheet space; and means for computing the absorption power of the sheet from the intensity of the detected radiation

  4. Nuclear radiation detection by a variband semiconductor

    International Nuclear Information System (INIS)

    Volkov, A.S.

    1981-01-01

    Possibilities of using a variband semiconductor for detecting nuclear radiations are considered. It is shown that the variaband quasielectric field effectively collects charges induced by a nuclear particle only at a small mean free path in the semiconductor (up to 100 μm), the luminescence spectrum of the variband semiconductor when a nuclear particle gets into it, in principle, permits to determine both the energy and mean free path in the semiconductor (even at large mean free paths) [ru

  5. Beta particle detection efficiency of the radiation sensor made from a mixture of polyaniline and titanium oxide

    International Nuclear Information System (INIS)

    Tamura, M.; Miyata, H.; Katsumata, M.; Matsuda, K.; Ueno, T.; Ito, D.; Suzuki, T.

    2016-01-01

    We developed a new real-time radiation sensor using an organic semiconductor and measured its β-particle detection sensitivity. This sensor is fabricated by simply combining a p-type semiconductor, polyaniline (Pani), with an n-type semiconductor, TiO_2, and processing the compound. Since Pani and TiO_2 are both inexpensive materials, the sensor can be fabricated at a lower cost than inorganic semiconductor sensors. The signal of each fabricated sensor was measured by a charge sensitive ADC for the irradiation of β-particles. The response signal data of the ADC for each irradiation was measured to calculate the detection efficiency of the detector. The maximum detection efficiency measured as β-particle sensitivity of the sensor was 1%. This β-particle sensitivity is higher than that reported of Pani sensors in the past.

  6. System and method for extracting physiological information from remotely detected electromagnetic radiation

    NARCIS (Netherlands)

    2016-01-01

    The present invention relates to a device and a method for extracting physiological information indicative of at least one health symptom from remotely detected electromagnetic radiation. The device comprises an interface (20) for receiving a data stream comprising remotely detected image data

  7. System and method for extracting physiological information from remotely detected electromagnetic radiation

    NARCIS (Netherlands)

    2015-01-01

    The present invention relates to a device and a method for extracting physiological information indicative of at least one health symptom from remotely detected electromagnetic radiation. The device comprises an interface (20) for receiving a data stream comprising remotely detected image data

  8. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    International Nuclear Information System (INIS)

    Bergmann, B.; Caicedo, I.; Pospisil, S.; Vykydal, Z.; Leroy, C.

    2016-01-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  9. Radiation responses of stem cells: targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Kavanagh, J.N.; Waring, E.J.; Prise, K.M.

    2015-01-01

    Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal. (authors)

  10. Detecting solar chameleons through radiation pressure

    CERN Document Server

    Baum, S.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-10-24

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary re...

  11. Detection of a stochastic background of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.; Grishchuk, L.P.

    1980-01-01

    The possibility of detection of an isotropic background gravitational radiation of a stochastic nature by the method of Doppler tracking of spacecraft is considered. In the geometrical optics limit, the general formula for the frequency shift of an electromagnetic signal in the gravitational radiation field is discussed, and it is shown to be gauge (or rather Lie) independent. A detailed examination of the propagation of a free electromagnetic wave in a gravitational radiation field shows that no resonance phenomena can be expected. Thus, the results valid in the geometrical optics limit are also approximately valid for any gravitational radiation spectrum dominated by wavelengths large compared to that of the electromagnetic signal. The ''Doppler noise'' due to a stochastic background is evaluated, and it is shown to depend on the total energy density of the background and a parameter that is a characteristic of the aradiation spectrum and the detection system used. A background gravitational radiation with an energy density comparable to the electromagnetic (approx.3 K) background and a spectrum dominated by wavelengths > or approx. =1 AU may be detectable in the near future by the Doppler tracking of interplanetary spacecraft

  12. Clinical implications of heterogeneity of tumor response to radiation therapy

    International Nuclear Information System (INIS)

    Suit, H.; Skates, S.; Taghian, A.; Okunieff, P.; Efird, J.T.

    1992-01-01

    Heterogeneity of response of tumor tissue to radiation clearly exists. Major parameters include histopathologic type, size (number of tumor rescue units (TRUs)), hemoglobin concentration, cell proliferation kinetics and immune rejection reaction by host. Further, normal and presumably tumor tissue response is altered in certain genetic diseases, e.g. ataxia telangiectasia. Any assessment of response of tumor tissue to a new treatment method or the testing of a new clinical response predictor is optimally based upon a narrow strata, viz., uniform with respect to known parameters of response, e.g. size, histological type. Even among tumors of such a clinical defined narrow strata, there will be residual heterogeneity with respect to inherent cellular radiation sensitivity, distributions of pO 2 , (SH), cell proliferation, etc. (author). 39 refs., 7 figs., 3 tabs

  13. Methacrylate based cross-linkers for improved thermomechanical properties and retention of radiation detection response in plastic scintillators

    Science.gov (United States)

    Mahl, Adam; Lim, Allison; Latta, Joseph; Yemam, Henok A.; Greife, Uwe; Sellinger, Alan

    2018-03-01

    Pulse shape discrimination (PSD) is an important method that can efficiently sort and separate neutron and gamma radiation signals. PSD is currently achieved in plastic scintillators by over-doping poly(vinyl toluene) (PVT) matrices with fluorescent molecules. Meaningful separation of the signals requires addition of >20 wt% 2,5-diphenyloxazole (PPO) fluor in PVT. At these concentrations PPO acts as a plasticizer, negatively affecting the physical properties of the final plastic such as hardness, machinability, and thermomechanical stability. This work addresses these issues by implementing a cost-effective solution using cross-linking chemistry via commercially available bisphenol A dimethacrylate (BPA-DM), and a synthesized fluorinated analogue. Both improve the physical properties of over-doped PPO based plastic scintillators without degrading the measured light yield or PSD and Figure of Merit (FoM). In addition, the fluorinated analogue appears to enhance the hydrophobicity of the surface of the plastic scintillators, which may improve the scintillators' resistance to water diffusion and subsequent radiation response degradation. The new formulations improve the feasibility of widely deploying long lifetime PSD capable plastic scintillators in large area coverage assemblies.

  14. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation.

    Science.gov (United States)

    Sannino, Anna; Sarti, Maurizio; Reddy, Siddharth B; Prihoda, Thomas J; Vijayalaxmi; Scarfì, Maria Rosaria

    2009-06-01

    The incidence of micronuclei was evaluated to assess the induction of an adaptive response to non-ionizing radiofrequency (RF) radiation in peripheral blood lymphocytes collected from five different human volunteers. After stimulation with phytohemagglutinin for 24 h, the cells were exposed to an adaptive dose of 900 MHz RF radiation used for mobile communications (at a peak specific absorption rate of 10 W/kg) for 20 h and then challenged with a single genotoxic dose of mitomycin C (100 ng/ml) at 48 h. Lymphocytes were collected at 72 h to examine the frequency of micronuclei in cytokinesis-blocked binucleated cells. Cells collected from four donors exhibited the induction of adaptive response (i.e., responders). Lymphocytes that were pre-exposed to 900 MHz RF radiation had a significantly decreased incidence of micronuclei induced by the challenge dose of mitomycin C compared to those that were not pre-exposed to 900 MHz RF radiation. These preliminary results suggested that the adaptive response can be induced in cells exposed to non-ionizing radiation. A similar phenomenon has been reported in cells as well as in animals exposed to ionizing radiation in several earlier studies. However, induction of adaptive response was not observed in the remaining donor (i.e., non-responder). The incidence of micronuclei induced by the challenge dose of mitomycin C was not significantly different between the cells that were pre-exposed and unexposed to 900 MHz RF radiation. Thus the overall data indicated the existence of heterogeneity in the induction of an adaptive response between individuals exposed to RF radiation and showed that the less time-consuming micronucleus assay can be used to determine whether an individual is a responder or non-responder.

  15. Application of CVD diamond film for radiation detection

    International Nuclear Information System (INIS)

    Zhou Haiyang; Zhu Xiaodong; Zhan Rujuan

    2005-01-01

    With the development of diamond synthesis at low pressure, the CVD diamond properties including electronic characteristics have improved continuously. Now the fabrication of electronic devices based on the CVD diamond has been one of hot research subjects in this field. Due to many unique advantages, such as high signal-noise ratio, fast time response, and normal output in extremely harsh surrounding, the CVD diamond radiation detector has attracted more and more interest. In this paper, we have reviewed the development and status of the CVD diamond radiation detector. The prospect of this detector is described. (authors)

  16. Radiation detection with Nb/Al-AlOx/Al/Nb superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Matsumura, Atsuki; Takahashi, Toru; Kurakado, Masahiko

    1992-01-01

    Superconductor radiation detectors have the possibility of 20-30 times better energy resolution than that of a high resolution Si detector. We fabricated Nb/Al-AlOx/Al/Nb superconducting tunnel junctions with low leakage current. X rays were detected with large area junctions of 178x178 μm 2 . High energy resolution of 160 eV for 5.9 keV was obtained. We also fabricated series connected junctions which covers a rather large area of 4x4 mm 2 . α particles injected into the rear substrate were detected using nonthermal phonons induced by the radiations in the substrate. (author)

  17. Simulations of hybrid system varying solar radiation and microturbine response time

    Directory of Open Access Journals (Sweden)

    Yolanda Fernández Ribaya

    2015-07-01

    Full Text Available Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico.The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  18. Role of Interleukin-6 in the Radiation Response of Liver Tumors

    International Nuclear Information System (INIS)

    Chen, Miao-Fen; Hsieh, Ching-Chuan; Chen, Wen-Cheng; Lai, Chia-Hsuan

    2012-01-01

    Purpose: To investigate the role of interleukin (IL)-6 in biological sequelae and tumor regrowth after irradiation for hepatic malignancy, which are critical for the clinical radiation response of liver tumors. Methods and Materials: The Hepa 1-6 murine hepatocellular cancer cell line was used to examine the radiation response by clonogenic assays and tumor growth delay in vivo. After irradiation in a single dose of 6 Gy in vitro or 15 Gy in vivo, biological changes including cell death and tumor regrowth were examined by experimental manipulation of IL-6 signaling. The effects of blocking IL-6 were assessed by cells preincubated in the presence of IL-6–neutralizing antibody for 24 hours or stably transfected with IL-6–silencing vectors. The correlations among tumor responses, IL-6 levels, and myeloid-derived suppressor cells (MDSC) recruitment were examined using animal experiments. Results: Interleukin-6 expression was positively linked to irradiation and radiation resistance, as demonstrated by in vitro and in vivo experiments. Interleukin-6–silencing vectors induced more tumor inhibition and DNA damage after irradiation. When subjects were irradiated with a sublethal dose, the regrowth of irradiated tumors significantly correlated with IL-6 levels and MDSC recruitment in vivo. Furthermore, blocking of IL-6 could overcome irradiation-induced MDSC recruitment and tumor regrowth after treatment. Conclusion: These data demonstrate that IL-6 is important in determining the radiation response of liver tumor cells. Irradiation-induced IL-6 and the subsequent recruitment of MDSC could be responsible for tumor regrowth. Therefore, treatment with concurrent IL-6 inhibition could be a potential therapeutic strategy for increasing the radiation response of tumors.

  19. Simulations of hybrid system varying solar radiation and microturbine response time

    Energy Technology Data Exchange (ETDEWEB)

    Fernández Ribaya, Yolanda, E-mail: fernandezryolanda@uniovi.es; Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge [Department of Energy E.I.M.E.M., University of Oviedo. 13 Independencia Street 2" n" d floor, 36004, Oviedo (Spain)

    2015-07-15

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  20. On the γ-photon detection processes and the statistics of radiation

    International Nuclear Information System (INIS)

    Bertolotti, M.; Sibilia, C.

    1977-01-01

    The problem of detection of γ-photons is treated in the cases of photoelectric and Compton effects. In both cases the probability of detecting a γ-photon is found proportional to the first-order correlation function of the e.m. field. The statistical properties of the γ-radiation can therefore be determined through the methods developed in quantum optics

  1. Geiger-mueller radiation detector with means for detecting and indicating the existence of radiation overload

    International Nuclear Information System (INIS)

    Kovacs, T.; Mills, A.P.; Pfeiffer, L.N.

    1981-01-01

    When subjected to radiation overload existing geiger-mueller counters may give an erroneously low reading, resulting in possible hazard to personnel. The instant invention discloses simple and inexpensive apparatus to remedy this dangerous shortcoming. Depending on the geometry of the detector tube, two possible failure modes have been identified, and circuitry is disclosed to detect the existence of these respective failure modes. The disclosed apparatus indicates the absence of an overload condition, in addition to signaling, by both visible and audible means, the existence of excessive radiation that might result in erroneously low reading of the geiger-mueller counter

  2. Application of single-chip microcomputer in radiation detection

    International Nuclear Information System (INIS)

    Zhang Songshou

    1993-01-01

    The single-chip microcomputer has some advantages in many aspects for example the strong function, the small volume, the low-power, firmed and reliable. It is used widely in the control of industry, instrument, communication and machine, etc.. The paper introduces that the single-chip microcomputer is used in radiation detection, mostly including the use of control, linear, compensation, calculation, prefabricated change, improving precision and training

  3. Method for detecting radiation dose utilizing thermoluminescent material

    International Nuclear Information System (INIS)

    Miller, S.D.; McDonald, J.C.; Eichner, F.N.; Durham, J.S.

    1992-01-01

    The amount of ionizing radiation to which a thermoluminescent material has been exposed is determined by first cooling the thermoluminescent material and then optically stimulating the thermoluminescent material by exposure to light. Visible light emitted by the thermoluminescent material as it is allowed to warm up to room temperature is detected and counted. The thermoluminescent material may be annealed by exposure to ultraviolet light. 5 figs

  4. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  5. Response-driven imaging biomarkers for predicting radiation necrosis of the brain

    International Nuclear Information System (INIS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H; Lawrence, Theodore S; Ten Haken, Randall K; Tsien, Christina I; Cao, Yue; Chenevert, Thomas

    2014-01-01

    Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy (RT). Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Twenty-nine patients with glioblastoma received six weeks of intensity modulated RT and concurrent temozolomide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p = 0.05 and p = 0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose–volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid the prediction of delayed radiation necrosis, which could provide guidance in dose-escalation trials. (paper)

  6. Channel catfish response to ultraviolet-B radiation

    Science.gov (United States)

    Ewing, M.S.; Blazer, V.S.; Fabacher, D.L.; Little, E.E.; Kocan, K.M.

    1999-01-01

    Fingerling channel catfish Ictalurus punctatus exposed to simulated ultraviolet-B radiation at an average daily dose of 2.9 J/cm2 were quite sensitive to the radiation. After a 24-h exposure, thinning of the most dorsal epidermis frequently was accompanied by edema. Compared with epidermis of unexposed fish, mucous cells in exposed fish were less superficial and club cells were less numerous both dorsally and high on the lateral surface of the body. Sunburn cells with pyknotic nuclei were evident in the epidermis of exposed fish. Among fish exposed for 48 h, focal necrosis and sloughing of the outer epidermal layer were widespread. A methanol-extractable skin substance that is associated with resistance to sunburn in other fish species was not detected in channel catfish.

  7. Individual radiation response of parotid glands investigated by dynamic 11C-methionine PET

    International Nuclear Information System (INIS)

    Buus, Simon; Grau, Cai; Munk, Ole Lajord; Rodell, Anders; Jensen, Kenneth; Mouridsen, Kim; Keiding, Susanne

    2006-01-01

    Background and Purpose: Previously, we showed that the net metabolic clearance of 11 C-methionine of the parotid gland, K, calculated from dynamic 11 C-methionine PET, can be used as a measure of parotid gland function. The aim of this study was to investigate by dynamic 11 C-methionine PET the individual radiation dose response relationship of parotid glands in head and neck cancer patients. Patients and methods: Twelve head and neck cancer patients were examined by dynamic 11 C-methionine PET after radiotherapy. Parametric images of K were generated, co-registered and compared voxel-by-voxel with the 3D radiation dose plan within the parotid gland to assess the individual radiation dose-function relationship. Results: In each patient, voxel-values of K decreased with increasing radiation dose. Population based analysis showed a sigmoid dose response relationship of parotid gland, from which we estimated a threshold radiation dose of 16 Gy and a mean TD 5 of 30 Gy. TD 5 ranged from 7 to 50 Gy in the group of patients. Conclusions: Individual radiation dose response of parotid glands can be measured by dynamic 11 C-methionine PET. The dose response analysis revealed a sigmoid relationship, a threshold radiation dose of 16 Gy, and a mean TD 5 of 30 Gy

  8. Detection of dark-matter-radiation of stars during visible sun eclipses

    International Nuclear Information System (INIS)

    Volkamer, Klaus

    2003-01-01

    Recently a so-far unknown form of quantized, cold dark matter was detected on a laboratory scale which shows a complementary structure as compared to known forms of matter. From the experiments results that the observed quanta of the new type of matter as integer multiples of the Planck mass (mp = n · √((h·c)/((2 · π · G))) = n 0 21.77 μg, with n = 1, 2, 3 etc.) exhibit a spatially extended 'field-like' structure ranging over distances of centimetres or more, opposite to the 'point-like' structure of the known elementary particles of the standard model. Association of quanta of the new form of 'soft' (or subtle) matter to clusters was observed, as well as re-clustering after absorption. Thus, between such quanta a physical interaction must exist. In addition, the new form of matter shows at least two interactions with normal matter, a gravitational one due to its real mass content and a so-far unknown 'topological', i.e. form-specific, interaction at phase borders. Additional indications for a weak electromagnetic interaction exist. Furthermore, the experimental results reveal that some types of quanta of the new form of 'field-like' matter exhibit positive mass, as normal matter, but others exhibit a negative mass content, both in the order of magnitude of the Planck mass. Memory effects in normal matter were detected after absorption of quanta of the new form of soft matter. In general, the findings characterize the quanta of 'fieldlike' matter as WIMP candidates of a cosmic background radiation of cold dark matter (quanta with positive mass) as well as of a cosmic background radiation of dark energy (quanta with negative mass). During visible sun eclipses in 1989, 1996 and. 1999, as well as during full moon of 6 January 2001, a so-far unknown form of dark-matter-radiation ('dark radiation') was detected. The quanta of this 'dark radiation' travel with the speed of light, but reveal macroscopic real mass, with positive and with negative mass content. The

  9. Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies

    Science.gov (United States)

    Wang, Haibo; Zou, Zhengxia; Shi, Zhenwei; Li, Bo

    2017-09-01

    Using infrared imaging sensors to detect ship target in the ocean environment has many advantages compared to other sensor modalities, such as better thermal sensitivity and all-weather detection capability. We propose a new ship detection method by modeling radiation anomalies for spaceborne infrared image. The proposed method can be decomposed into two stages, where in the first stage, a test infrared image is densely divided into a set of image patches and the radiation anomaly of each patch is estimated by a Gaussian Mixture Model (GMM), and thereby target candidates are obtained from anomaly image patches. In the second stage, target candidates are further checked by a more discriminative criterion to obtain the final detection result. The main innovation of the proposed method is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous patches among complex background. The experimental result on short wavelength infrared band (1.560 - 2.300 μm) and long wavelength infrared band (10.30 - 12.50 μm) of Landsat-8 satellite shows the proposed method achieves a desired ship detection accuracy with higher recall than other classical ship detection methods.

  10. Radiation response issues for infrared detectors

    Science.gov (United States)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  11. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-01

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application

  12. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-15

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application.

  13. Methods for radiation detection and characterization using a multiple detector probe

    Science.gov (United States)

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  14. Temporal evaluation of radiation detection system, used by the division of radiation protection of the Navy Technological Centre in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Gontijo, Rodrigo Modesto Gadelha; Acosta, Clarice de Freitas; Ikari, Andreza Iris R.; Ferreira, Marcio de Oliveira; Alves, Henrique da Silva; Duarte, Marcelo Antonio

    2011-01-01

    This work presents a temporal evaluation of the radiation detection system used by in division of radiation protection of the CTMSP, Sao Paulo, Brazil. About fifty efficiencies results of the system were compiled over the last two years for this purpose. Less than 1% of the standard deviation was found for both portable and fixed detectors, which indicates a significant stability of the detection system used in CTMSP over the period analyzed. (author)

  15. Adaptive response induced by occupational exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Barquinero, J.F.; Caballin, M.R.; Barrios, L.; Egozcue, J.; Miro, R.; Ribas, M.

    1997-01-01

    We have found a significant decreased sensitivity to the cytogenetic effects of both ionizing radiation (IR) (2 Gy of γ rays) and bleomycin (BLM, 0,03 U/ml), in lymphocytes from individuals occupationally exposed to IR when compared with controls. These results suggest that occupational exposures to IR can induce adaptive response that can be detected by a subsequent treatment either by IR or by BLM. When a comparison is made between the cytogenetic effects of both treatments, no correlation was observed at the individual level. On the other hand, the individual frequencies of chromosome aberrations induced by a challenge dose of IR were negatively correlated with the occupationally received doses during the last three years. This correlation was not observed after the challenge treatment of BLM. Moreover, the individual frequencies of chromosome aberrations induced by IR treatment were homogeneous. This is not the case of the individual frequencies of chromatid aberrations induced by BLM, where a great heterogeneity was observed. (authors)

  16. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    International Nuclear Information System (INIS)

    Appelt, Ane L.; Pløen, John; Vogelius, Ivan R.; Bentzen, Søren M.; Jakobsen, Anders

    2013-01-01

    Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D 50,i , and the normalized dose-response gradient, γ 50,i . Results: A highly significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D 50,TRG1 = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), γ 50,TRG1 = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D 50,TRG1 and 2 = 72.1 Gy (CI 65.3-94.0 Gy), γ 50,TRG1 and 2 = 0.770 (CI 0.338-1.201). Tumor size and N category both had a significant effect on the dose-response relationships. Conclusions: This study demonstrated a significant dose-response relationship for tumor regression after preoperative CRT for locally advanced rectal cancer for tumor dose levels in the range of 50.4-70 Gy, which is higher than the dose range usually considered.

  17. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells

    International Nuclear Information System (INIS)

    Chadderton, Naomi; Cowen, Rachel L.; Sheppard, Freda C.D.; Robinson, Suzanne; Greco, Olga; Scott, Simon D.; Stratford, Ian J.; Patterson, Adam V.; Williams, Kaye J.

    2005-01-01

    Purpose: Tumor hypoxia is unequivocally linked to poor radiotherapy outcome. This study aimed to identify enhancer sequences that respond maximally to a combination of radiation and hypoxia for use in genetic radiotherapy approaches. Methods and materials: The influence of radiation (5 Gy) and hypoxia (1% O 2 ) on reporter-gene expression driven by hypoxia (HRE) and radiation (Egr-1) responsive elements was evaluated in tumor cells grown as monolayers or multicellular spheroids. Hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression was monitored in parallel. Results: Of the sequences tested, an HRE from the phosphoglycerate kinase-1 gene (PGK-18[5+]) was maximally induced in response to hypoxia plus radiation in all 5 cell lines tested. The additional radiation treatment afforded a significant increase in the induction of PGK-18[5+] compared with hypoxia alone in 3 cell lines. HIF-1α/2α were induced by radiation but combined hypoxia/radiation treatment did not yield a further increase. The dual responsive nature of HREs was maintained when spheroids were irradiated after delivery of HRE constructs in a replication-deficient adenovirus. Conclusions: Hypoxia-responsive enhancer element sequences are dually responsive to combined radiation and hypoxic treatment. Their use in genetic radiotherapy in vivo could maximize expression in the most radio-resistant population at the time of radiation and also exploit microenvironmental changes after radiotherapy to yield additional switch-on

  18. Simulation and modeling for the stand-off radiation detection system (SORDS) using GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew S [Los Alamos National Laboratory; Wallace, Mark [Los Alamos National Laboratory; Galassi, Mark [Los Alamos National Laboratory; Mocko, Michal [Los Alamos National Laboratory; Palmer, David [Los Alamos National Laboratory; Schultz, Larry [Los Alamos National Laboratory; Tornga, Shawn [Los Alamos National Laboratory

    2009-01-01

    A Stand-Off Radiation Detection System (SORDS) is being developed through a joint effort by Raytheon, Los Alamos National Laboratory, Bubble Technology Industries, Radiation Monitoring Devices, and the Massachusetts Institute of Technology, for the Domestic Nuclear Detection Office (DNDO). The system is a mobile truck-based platform performing detection, imaging, and spectroscopic identification of gamma-ray sources. A Tri-Modal Imaging (TMI) approach combines active-mask coded aperture imaging, Compton imaging, and shadow imaging techniques. Monte Carlo simulation and modeling using the GEANT4 toolkit was used to generate realistic data for the development of imaging algorithms and associated software code.

  19. Radiation-induced augmentation of the immune response

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis

  20. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  1. BioSentinel: Developing a Space Radiation Biosensor

    Science.gov (United States)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  2. Neutron and/or gamma radiation detecting system

    International Nuclear Information System (INIS)

    Cerff, K.

    1985-01-01

    A large reception surface for the radiation to be detected is formed on a body of scintillation material (ZnS-AG with B matrix) which is adapted to convert neutron or gamma radiation into light energy. A large number of fiber light conductors is embedded in the body of scintillation material such that the fibers extend essentially parallel and fully across the reception surface of the body of scintillation material. The light energy, upon propagation along the fiber light conductors, is coupled into the conductors along the surface of the fibers which are unisotropic. This arrangement permits the use of unisotropic light conductor systems which provide for a separation of light collecting and light transmitting functions which results in a substantial reduction of light absorption losses during light transmission so that most of the light energy coupled into the fiber light conductors reaches the optoelectronic amplifier coupled to the end of the light conductors. (orig./HP) [de

  3. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: the influence of inflammation and radiation toxicity.

    Science.gov (United States)

    Jelonek, Karol; Pietrowska, Monika; Widlak, Piotr

    2017-07-01

    Blood is the most common replacement tissue used to study systemic responses of organisms to different types of pathological conditions and environmental insults. Local irradiation during cancer radiotherapy induces whole body responses that can be observed at the blood proteome and metabolome levels. Hence, comparative blood proteomics and metabolomics are emerging approaches used in the discovery of radiation biomarkers. These techniques enable the simultaneous measurement of hundreds of molecules and the identification of sets of components that can discriminate different physiological states of the human body. Radiation-induced changes are affected by the dose and volume of irradiated tissues; hence, the molecular composition of blood is a hypothetical source of biomarkers for dose assessment and the prediction and monitoring of systemic responses to radiation. This review aims to provide a comprehensive overview on the available evidence regarding molecular responses to ionizing radiation detected at the level of the human blood proteome and metabolome. It focuses on patients exposed to radiation during cancer radiotherapy and emphasizes effects related to radiation-induced toxicity and inflammation. Systemic responses to radiation detected at the blood proteome and metabolome levels are primarily related to the intensity of radiation-induced toxicity, including inflammatory responses. Thus, several inflammation-associated molecules can be used to monitor or even predict radiation-induced toxicity. However, these abundant molecular features have a rather limited applicability as universal biomarkers for dose assessment, reflecting the individual predisposition of the immune system and tissue-specific mechanisms involved in radiation-induced damage.

  4. In vivo study of the adaptive response induced by radiation of different types

    International Nuclear Information System (INIS)

    Klokov, D.Yu.; Zaichkina, S.I.; Rozanova, O.M.; Aptikaeva, G.F.; Akhmadieva, A.Kh.; Smirnova, E.N.; Surkenova, G.N.; Kuzin, A.M.

    2000-01-01

    Low doses of X- and gamma-rays are known to induce the adaptive response (AR), i.e. a reduction in the damage caused by subsequent high doses. Using micronucleus test, we investigated the in vivo induction of AR in mouse bone marrow cells by low doses of radiation of different types. In our experiments we used low-LET gamma-radiation, high-LET secondary radiation from 70 GeV protons and secondary biogenic radiation. The latter is a novel type of radiation discovered only recently. Secondary biogenic radiation is known to be induced in biological objects after exposure to radiation and thought to be responsible for stimulating and protecting effects in cells in response to external irradiation. To expose mice to the secondary biogenic radiation, animals were housed in plastic cages containing gamma-irradiated oat seeds as bedding and food for 2 weeks before challenging with a high dose (1.5 Gy at a dose rate of 1 Gy/min) of 60 Co gamma-radiation. It was found that the yield of cytogenetic damage in mice exposed to both secondary biogenic and gamma-radiation was significantly reduced as compared to that in animals exposed to the challenge dose alone, i.e. the AR was induced. Pretreatment of animals with a low dose of gamma-radiation (0.1 Gy at a dose rate of 0.125 Gy/min) also induced the AR. In contrast, preliminary exposure of mice to a low dose (0.09 Gy at a dose rate of 1 Gy/min) of secondary radiation from 70 GeV protons induced no AR, suggesting that triggering the cascade of events leading to the AR induction depends on the DNA single-strand to double- strand breaks ratio. The precise mechanisms underlying the AR are of great importance since the phenomenon of AR can be used for medical benefits and in assessment of risks for carcinogens. But they have not been elucidated well at present. Taken together, our results suggest the crucial role of particular types of initial DNA lesions and the secondary biogenic radiation induced in cells in response to external

  5. Radiation dosimetry

    International Nuclear Information System (INIS)

    Aymar A, J.; Medina G, H.

    1988-01-01

    Film is one of the most simple ways to detect radiation although for film as dosimeters a careful attention is required in many aspects, such as emulsion characteristics, film response capacity processing techniques and interpretation of the exposition. Surpassing these factors the film dosimeter is the most reliable

  6. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    International Nuclear Information System (INIS)

    Matthews, Q; Lum, JJ; Isabelle, M; Harder, S; Jirasek, A; Brolo, AG

    2014-01-01

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF 2 = 0.57 and MCF7, SF 2 = 0.70) and one radiosensitive (LNCaP, SF 2 = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments

  7. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Q; Lum, JJ [BC Cancer Agency — Vancouver Island Centre (Canada); Isabelle, M; Harder, S; Jirasek, A [Physics and Astronomy, University of Victoria (Australia); Brolo, AG [Chemistry, University of Victoria (Australia)

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  8. The Dose Response Relationship for Radiation Carcinogenesis

    Science.gov (United States)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  9. Development of radiation detection and measurement system - Development of scintillation radiation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Dong; Kim, Wan [Kyungpook National University, Taegu (Korea); Kim, Do Sung [Taegu University, Taegu (Korea)

    2000-03-01

    We have been fabricated CsI(Tl) scintillation crystals and plastic scintillators for radiation-based measuring equipment. CsI (Tl) single crystals doped with thallium as an activator were grown using the Czochralski method. The crystal structure of grown CsI(Tl) was bcc, and it was confirmed that its lattice constant was 4,568 A. The spectral range of luminescence of CsI(Tl) was 350 {approx} 700 nm independent of thallium concentration, and the fast component of the luminescence was decreased with increasing thallium concentration. The energy resolution of CsI(Tl) scintillator doped with 0.1 mole% thallium was about 9% for 137 Cs {gamma}-rays. The relation formula of {gamma}-ray energy versus energy resolution was ln(FWHM%)=-0.705ln({epsilon})+6.75. The radiation damage of CsI(Tl) increased in proportion to thallium concentration and radiation damage of CsI(Tl) increased in proportion to thallium concentration and radiation dosage, and the irradiated crystals were colored reddish. The radiation induced absorption bands appeared around 355, 425, 520 and 555 nm, and their energy level were about 3.50, 2.88, 2.39 and 2.21 eV. Plastic scintillators were fabricated thermal polymerization method. Those were polymerizing at 120 deg. C, during 72 hours, and annealing at 75 deg. C, during 24 hours. When the concentration of 1st solute was 1.5 wt% and concentration of 2nd solute was 0.01 wt%, the characteristics of scintillation were very excellent. Also 3.0 wt% tetraphenyl lead were loaded to improve the detection efficiency of {gamma}-ray. The range of emission spectrum was 400 {approx} 450nm, and the central peak was 415 nm. The radiation damage was not appear under 1*10{sup 3}Gy, but the color of plastic scintillator was changed to brown, over 1*10{sup 4}Gy exposured. 84 refs., 39 figs. (Author)

  10. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    Science.gov (United States)

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  11. Responsibility, coresponsibility and responsibility to the future in radiation protection and the question of final disposal

    International Nuclear Information System (INIS)

    Gellermann, R.

    2005-01-01

    Based on philosophical terms and concepts the responsibility, coresponsibility and responsibility to the future of people working in radiation protection are discussed and some resultant conclusions concerning finals disposal are derived. (orig.)

  12. Dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by infrared radiation.

    Science.gov (United States)

    Kwon, Beomjin; Rosenberger, Matthew; Bhargava, Rohit; Cahill, David G; King, William P

    2012-01-01

    This paper investigates the dynamic thermomechanical response of bimaterial microcantilevers to periodic heating by an infrared laser operating at a wavelenegth of 10.35 μm. A model relates incident radiation, heat transfer, temperature distribution in the cantilever, and thermal expansion mismatch to find the cantilever displacement. Experiments were conducted on two custom-fabricated bimaterial cantilevers and two commercially available bimaterial microcantilevers. The cantilever response was measured as a function of the modulation frequency of the laser over the range of 0.01-30 kHz. The model and the method of cantilever displacement calibration can be applied for bimaterial cantilever with thick coating layer. The sensitivity and signal-to-noise of bimaterial cantilevers were evaluated in terms of either total incident power or incident flux. The custom-fabricated bimaterial cantilevers showed 9X or 190X sensitivity improvement compared to commercial cantilevers. The detection limit on incident flux is as small as 0.10 pW μm(-2) Hz(-1/2).

  13. Lower limits of detection in using carbon nanotubes as thermoluminescent dosimeters of beta radiation

    Science.gov (United States)

    Alanazi, Abdulaziz; Jurewicz, Izabela; Alalawi, Amani I.; Alyahyawi, Amjad; Alsubaie, Abdullah; Hinder, Steven; Bañuls-Ciscar, Jorge; Alkhorayef, Mohammed; Bradley, D. A.

    2017-11-01

    World-wide, on-going intensive research is being seen in adaptation of carbon nanotubes (CNTs) for a wide variety of applications, particular interest herein being in the thermoluminescent (TL) properties of CNTs and their sensitivity towards energetic radiations. Using beta radiation delivering dose levels of a few Gy it has been observed in previous study that strain and impurity defects in CNTs give rise to significant TL yields, providing an initial measure of the extent to which electron trapping centres exist in various qualities of CNT, from super-pure to raw. This in turn points to the possibility that there may be considerable advantage in using such media for radiation dosimetry applications, including for in vivo dosimetry. CNTs also have an effective atomic number similar to that of adipose tissue, making them suitable for soft tissue dosimetry. In present investigations various single-wall carbon nanotubes (SWCNT) samples in the form of buckypaper have been irradiated to doses in the range 35-1.3 Gy, use being made of a 90Sr beta source, the response of the CNTs buckypaper with dose showing a trend towards linearity. It is shown for present production methodology for buckypaper samples that the raw SWCNT buckypaper offer the greatest sensitivity, detecting doses down to some few tens of mGy.

  14. Assessment of Radiation Background Variation for Moving Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Christopher [Los Alamos National Laboratory; Rennie, John Alan [Los Alamos National Laboratory; Toevs, James Waldo [Los Alamos National Laboratory; Wallace, Darrin J. [Los Alamos National Laboratory; Abhold, Mark Edward [Los Alamos National Laboratory

    2015-07-13

    The introduction points out that radiation backgrounds fluctuate across very short distances: factors include geology, soil composition, altitude, building structures, topography, and other manmade structures; and asphalt and concrete can vary significantly over short distances. Brief descriptions are given of the detection system, experimental setup, and background variation measurements. It is concluded that positive and negative gradients can greatly reduce the detection sensitivity of an MDS: negative gradients create opportunities for false negatives (nondetection), and positive gradients create a potentially unacceptable FAR (above 1%); the location of use for mobile detection is important to understand; spectroscopic systems provide more information for screening out false alarms and may be preferred for mobile use; and mobile monitor testing at LANL accounts for expected variations in the background.

  15. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.

    2003-01-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources

  16. Radiation-enhanced cytotoxicity of misonidazole

    International Nuclear Information System (INIS)

    Korbelik, M.; Palcic, B.; Skarsgard, L.D.

    1981-01-01

    The effect of ionizing radiation on the toxicity of misonidazole to hypoxic mammalian cells was examined. Cell toxicity response (log surviving fraction vs time of exposure to misonidazole in hypoxia) can be approximated by a biphasic curve: an initial period of approximately zero-slope shoulder, followed by exponential decrease in survival. Radiation reduced the zero-slope shoulder of toxicity response in a dose-dependent manner and at a given dose, the shoulder totally disappeared. The slope of the exponential region of the toxic response was unaffected. The same final survival level was achieved regardless of the sequence in which radiation and mixonidazole exposure were applied to cells; in fact, there was no detectable repair of that radiation-induced damage which interacts with misonidazole toxicity (up to 24 hr). A mechanism for this interaction is proposed. Clinical implications are considered assuming that similar interaction between the two modalities takes place in vivo. Since the shoulder of toxic responses is eliminated at high radiation doses, repeated administration of radiation and misonidazole could lead to additional kill of chronically and acutely hypoxic cells, if indeed both types are present in human tumors

  17. Radiation response and chromatin dynamics

    International Nuclear Information System (INIS)

    Ikura, Tsuyoshi

    2009-01-01

    Described is a recent progress in studies of chromatin structural alterations induced by DNA damage by radiation. DNA in eukaryotes exists in the chromatin structure and different mechanisms of response to damage and repair of DNA from those in prokaryotes have been recognized. Chromatin is composed from its unit structure of mono-nucleosome, which is formed from DNA and an octamer of core histones of H2A, H2B, H3 and H4. When DNA is damaged, histone structural alterations are required for repair factors and checkpoint proteins to access the damaged site. At the actual genome damage, chemical modification of histone to work as a code occurs dependently on the damage where chromatin remodeling factors and histone chaperone participate for structural alteration and remodeling. As well, the exchange of histone variants and fluidization of histones are recently reported. Known chemical modification involves phosphorylation, acetylation and ubiquitination of H2AX (a variant of H2A), and acetylation and methylation of H3. Each complex of TIP60, NuA4 and INO80 is known to be included in the regulation of chromatin with damaged/repaired DNA for remodeling, but little is known about recruitment of the factors concerned at the damage site. Regulatory mechanisms in above chromatin dynamics with consideration of quality and timing of radiation should be further elucidated for understanding the precise response to DNA damage. (K.T.)

  18. Unravelling radiation response: from public health to personalized radiotherapy

    International Nuclear Information System (INIS)

    Manna, Soumen Kanti

    2017-01-01

    Understanding the mechanism underlying response to ionizing radiation exposure is at the heart of radiation biology and its applications. This presentation will showcase how the mass spectrometry-based global profiling helped to identify not only potential age-independent biomarkers of ionizing radiation exposure in mice but also a hitherto unexplored link between DNA repair and polyamine metabolism at an organismal level. It will then provide a glimpse of how a combination of metabolomics and molecular biological tools combined to elucidate the metabolic reprogramming underlying therapeutic resistance of cancer cells. It will then elaborate how an integrated -omics approach could be adopted to understand the heterogeneity in the effects ionizing radiation in the context of development and health. Finally, it will present a framework on how clinicians, epidemiologists and basic researchers can come together to usher in a new era of personalized radiation therapy as well as to develop a paradigm of personalized counter measures against radiation exposure. (author)

  19. Real-time and on-site γ-ray radiation response testing system for semiconductor devices and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Yifei, E-mail: Y.Mu@student.liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Zhao, Ce Zhou, E-mail: cezhou.zhao@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Qi, Yanfei, E-mail: yanfei.qi01@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Lam, Sang, E-mail: s.lam@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Zhao, Chun, E-mail: garyzhao@ust.hk [Nano and Advanced Materials Institute, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Lu, Qifeng, E-mail: qifeng@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Cai, Yutao, E-mail: yutao.cai@xjtlu.edu.cn [Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123 (China); Mitrovic, Ivona Z., E-mail: ivona@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Taylor, Stephen, E-mail: s.taylor@liverpool.ac.uk [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Chalker, Paul R., E-mail: pchalker@liverpool.ac.uk [Center for Materials and Structures, School of Engineering, University of Liverpool, Liverpool L69 3GH (United Kingdom)

    2016-04-01

    The construction of a turnkey real-time and on-site radiation response testing system for semiconductor devices is reported. Components of an on-site radiation response probe station, which contains a 1.11 GBq Cs{sup 137} gamma (γ)-ray source, and equipment of a real-time measurement system are described in detail for the construction of the whole system. The real-time measurement system includes a conventional capacitance–voltage (C–V) and stress module, a pulse C–V and stress module, a conventional current–voltage (I–V) and stress module, a pulse I–V and stress module, a DC on-the-fly (OTF) module and a pulse OTF module. Electrical characteristics of MOS capacitors or MOSFET devices are measured by each module integrated in the probe station under continuous γ-ray exposure and the measurement results are presented. The dose rates of different gate dielectrics are calculated by a novel calculation model based on the Cs{sup 137} γ-ray source placed in the probe station. For the sake of operators’ safety, an equivalent dose rate of 70 nSv/h at a given operation distance is indicated by a dose attenuation model in the experimental environment. HfO{sub 2} thin films formed by atomic layer deposition are employed to investigate the radiation response of the high-κ material by using the conventional C–V and pulse C–V modules. The irradiation exposure of the sample is carried out with a dose rate of 0.175 rad/s and ±1 V bias in the radiation response testing system. Analysis of flat-band voltage shifts (ΔV{sub FB}) of the MOS capacitors suggests that the on-site and real-time/pulse measurements detect more serious degradation of the HfO{sub 2} thin films compared with the off-site irradiation and conventional measurement techniques.

  20. Radiation response of Philippine natural rubber latex

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.; Abad, L.V.; Ana-Relleve, L.S.; Tranquilan-Aranilla, C.; Pascual, C.L.

    1998-01-01

    Our earlier work has shown that the natural rubber latex (NRL) produced and processed in the Philippines is suited for radiation vulcanization. The cast films from NRL with 50% TSC exhibited maximum tensile strengths of 25-32 MPa at 15 kGy, which is the vulcanization dose or Dv. In the manufacture of dipped NRL products, certain specifications such as %TSC, protein content and tensile properties, must be met to ensure an acceptable product. For radiation vulcanization of natural rubber latex (RVNRL) to be accepted as an alternative process, it must also meet the requirements. Thus, this paper presents additional data on the radiation response of local NRL at different total solids contents (TSC), leachable proteins from NRL films as a function of dose, and the thermal activities of irradiated natural rubber latex (INRL). Different formulations of NRL showed varying tolerances to nBA. Data showed that as %TSC increases, the maximum concentration of nBA that can be added without affecting the stability of the latex decreases. The Dv increases as the %TSC increases and the nBA content decreases. This difference in response may be attributed to a lower concentration of nBA in formulations with higher %TSC. These data indicate that the parameters in the radiation treatment will be dictated by the intended applications of INRL. The thermogravimetric data showed greater stability of INRL to thermal oxidation relative to the unirradiated NRL, which correlates directly with the tensile properties of the INRL. A radiation dose of 10 kGy increased the amount of proteins leached from cast latex films. The amount of extractable proteins did not increase significantly at higher doses. The SDS PAGE analysis of the extractable proteins from unirradiated latex film showed distinct bands. An additional band at 60 Kda appeared at 10 kGy. All these bands became diffuse at higher doses, indicating the radiolysis of the proteins

  1. Biochemical and biological responses in V79 cells grown in different background radiation environment

    International Nuclear Information System (INIS)

    Amicarelli, F.; Colafarina, S.; Ara, C.; Antonelli, F.; Balata, M.; Belli, M.; Simone, G.; Satta, L.

    2003-01-01

    Full text: In order to investigate the influence of a low background radiation environment on the biochemical and biological responses of mammalian cells cultured in vitro, a cell culture laboratory has been set up at the Gran Sasso National Laboratory (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN), located under the Gran Sasso d'Italia mountain, where cosmic rays are reduced by a factor of 10 6 and neutrons by a factor of 10 3 respect to the outside environment. Chinese hamster V79 cells were grown in parallel for up to nine months at LNGS and at the Istituto Superiore di Sanita (ISS). At the LNGS the exposure due to radon was reduced by a factor of about 25 with respect to the ISS. The biological end points addressed concerned cells proliferation, the expression of enzymes specific for the reduction of superoxydes, mutation induction by gamma-rays at the hprt locus and apoptotic sensitivity. After 9 months of culture, the cells grown at the LNGS, compared to the cells grown at the ISS, exhibit: i) a significant increase of the cell density at confluence; ii) a significantly higher capacity to scavenge organic and inorganic hydroperoxydes but a reduced scavenging capacity towards superoxide anions; iii) an increase in both the basal hprt mutation frequency and the sensitivity to the mutagenic effect of gamma-rays. The cells grown at the LNGS also show greater apoptotic sensitivity at the third month of culture that is no longer detected after nine months. Overall, these data suggest that cell response to ionizing radiation may be more complex than that predicted by a linear relationship with the dose and are consistent with the occurrence of an adaptive response related to the background radiation. However, other possibilities cannot be excluded such as the selection, in the two cultures, of clones having different characteristics, independently of the different radiation background. Work is in progress to better elucidate this point

  2. Quartz gauge response in ion radiation

    International Nuclear Information System (INIS)

    Taylor, P.E.; Gilbert, P.H.; Kernthaler, C.; Anderson, M.U.

    1995-01-01

    This paper describes recent work to make high quality quartz gauge (temporal and spatial) shock wave measurements in a pulsed ion beam environment. Intense ion beam radiation, nominally 1 MeV protons, was deposited into material samples instrumented with shunted quartz gauges adjacent to the ion deposition zone. Fluence levels were chosen to excite three fundamentally different material response modes (1) strong vapor, (2) combined vapor and melt phase and (3) thermoelastic material response. A unique quartz gauge design was utilized that employed printed circuit board (PCB) technology to facilitate electrical shielding, ruggedness, and fabrication at sign e meeting the essential one dimensional requirements of the characterized Sandia shunted quartz gauge. Shock loading and unloading experiments were conducted to evaluate the piezoelectric response of the coupled quartz gauge/PCB transducer. High fidelity shock wave profiles were recorded at the three ion fluence levels providing dynamic material response data for vapor, melt and solid material phases

  3. Detection of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1979-01-01

    It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment

  4. Response dependence of a ring ionization chamber response on the size of the X radiation field

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Caldas, Linda V.E.

    2009-01-01

    A ring monitor ionization chamber was developed at the IPEN-Sao Paulo, Brazil, fixed on a system of collimators which determine the dimension of the radiation field size. This work verified that the ring chamber response depends on the exponential form with the size of de radiation field

  5. Verifying a nuclear weapon`s response to radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Dean, F.F.; Barrett, W.H.

    1998-05-01

    The process described in the paper is being applied as part of the design verification of a replacement component designed for a nuclear weapon currently in the active stockpile. This process is an adaptation of the process successfully used in nuclear weapon development programs. The verification process concentrates on evaluating system response to radiation environments, verifying system performance during and after exposure to radiation environments, and assessing system survivability.

  6. Radiation detection and measurement

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1979-01-01

    The book is a complete, clear and up-to-date text that provides a basic review of instruments and methods of ionizing radiation. The text covers detailed discussion of all detector types introductory discussions of radiation sources, interactions, and counting statistics functional analysis of the electronics and pulse processing aspects of radiation detectors in instrumentation systems and consideration of shielding and background potentially vital in low-level counting. A total of 350 figures and approximately 900 references to current scientific literature is included. The book is largely intended as a textbook for a junior/senior or first-year graduate course in nuclear instrumentation and radiation measurements

  7. Genistein-induced alterations of radiation-responsive gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Grace, M.B. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: grace@afrri.usuhs.mil; Blakely, W.F.; Landauer, M.R. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    In order to clarify the molecular mechanism of radioprotection and understand biological dosimetry in the presence of medical countermeasure-radioprotectants, their effects on ionizing radiation (IR)-responsive molecular biomarkers must be examined. We used genistein in a radiation model system and measured gene expression by multiplex QRT-PCR assay in drug-treated healthy human blood cultures. Genistein has been demonstrated to be a radiosensitizer of malignant cells and a radioprotector against IR-induced lethality in a mouse model. Whole-blood cultures were supplemented with 50, 100, and 200{mu}M concentrations of genistein, 16 h prior to receiving a 2-Gy ({sup 60}Co-{gamma} rays, 10 cGy/min) dose of IR. Total RNA was isolated from whole blood 24 h postirradiation for assessments. Combination treatments of genistein and IR resulted in no significant genistein effects on ddb2 and bax downstream transcripts to p53, or proliferating cell-nuclear antigen, pcna, necessary for DNA synthesis and cell-cycle progression. Use of these radiation-responsive targets would be recommended for dose-assessment applications. We also observed decreased expression of pro-survival transcript, bcl-2. Genistein and IR-increased expression of cdkn1a and gadd45a, showing that genistein also stimulates p53 transcriptional activity. These results confirm published molecular signatures for genistein in numerous in vitro models. Evaluation of gene biomarkers may be further exploited for devising novel radiation countermeasure and/or therapeutic strategies.

  8. Evaluation of the Comet Assay for Assessing the Dose-Response Relationship of DNA Damage Induced by Ionizing Radiation

    Science.gov (United States)

    Wang, Yan; Xu, Chang; Du, Li Qing; Cao, Jia; Liu, Jian Xiang; Su, Xu; Zhao, Hui; Fan, Fei-Yue; Wang, Bing; Katsube, Takanori; Fan, Sai Jun; Liu, Qiang

    2013-01-01

    Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001). A time-response relationship was also found within 72 h after irradiation (p < 0.001). The curves for DNA double-strand breaks and DNA repair in vitro of human lymphocytes presented a nice model, and a smooth, three-dimensional plane model was obtained when the two curves were combined. PMID:24240807

  9. Evaluation of the Comet Assay for Assessing the Dose-Response Relationship of DNA Damage Induced by Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2013-11-01

    Full Text Available Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001. A time-response relationship was also found within 72 h after irradiation (p < 0.001. The curves for DNA double-strand breaks and DNA repair in vitro of human lymphocytes presented a nice model, and a smooth, three-dimensional plane model was obtained when the two curves were combined.

  10. Multi-channel Waveform Sampling ASIC for radiation detection and measurement

    International Nuclear Information System (INIS)

    Shimazoe, K.; Takahashi, H.; Yeom, J.Y.; Furumiya, T.; Ohi, J.

    2013-01-01

    We have designed and fabricated a 16-channel Waveform Sampling ASIC for radiation detection and measurement. Waveform sampling is very important for the pulse shape analysis and discrimination, which is often used in radiation detection to discriminate different radiations such as alpha, beta and gamma rays. One channel of the fabricated ASIC consists of a charge-sensitive preamplifier, a VGA (Variable Gain Amplifier), an ADC (Analog to Digital Converter) and digital circuits. The preamplifier converts the current signal to the voltage signal, and the VGA amplifies the signal to appropriate level for the ADC. The ADC was designed to digitize the waveform with a frequency of 100 MHz and a resolution of 6bits. Digital circuits consist of a free-running ADC and a multiplexer which were designed to convert a digitized 100 MHz/6bit signal to a 200 MHz/3bit one, which is effective for the reduction of the number and for the achievement of the high integration in one chip. This chip was designed and fabricated with 0.35 μm CMOS technology by ROHM and the size of the ASIC is 4.9 mm by 4.9 mm. The design concept and some experimental results are shown in this paper. -- Highlights: ► Waveform sampling (WS) ASIC is newly developed for pulse shape discrimination. ► WS ASIC can be used for radiation measurement and discrimination. ► WS ASIC is fabricated by submicron CMOS technology for 5 mm × 5 mm area. ► WS ASIC achieves high integration and can be used in very limited space

  11. Radiation response of skin in young and old rats

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, R.; Hopewell, J.W. (Churchill Hospital, Oxford (UK))

    1982-11-01

    The results of this investigation clearly demonstrate the different radiation skin response in rats of differing ages. The reasons for these differences cannot be clarified until cell kinetic studies have been completed. These results obtained for rodent skin would appear to be in disagreement with the available data for human skin (Rubin and Casarett 1968) where no marked age-related changes were reported. Also, in pig skin studies (Hopewell and Young 1982) there was no evidence of an age effect in the dermal vascular response in 3-12-month-old animals. This may be related to the different tissue being investigated or it may reflect important species differences. Whatever the reasons behind these observations, the different skin response to radiation in rats of 7, 14 and 52 weeks of age has clearly been demonstrated and should be borne in mind when extrapolating data with rodent skin to the clinical situation.

  12. Temperature Dependency and Alpha Response of Semi-Insulating GaAs Schottky Radiation Detector at Low Bias Voltage

    International Nuclear Information System (INIS)

    Kang, Sang Mook; Ha, Jang Ho; Park, Se Hwan; Kim, Han Soo; Kim, Yong Kyun

    2009-01-01

    The last decade has seen a growing interest in semiconductor radiation detectors operated at room or nearly room temperature. Great efforts have been invested in the development of radiation detectors based on semi-insulating (SI) GaAs. The main reasons are as follows: (i) high resistance against radiation damage; (ii) it possesses a good energy resolution, which relates to its active volume; (iii) such a detector also exhibits fast signal rise times, which results from a high mobility and drift velocity of charge carriers; (iv) its large band gap energy allows a SI GaAs detector to operate at room temperature. Other important features are a good technology base and low production and operating costs. An alpha particle monitoring method for the detection of Pu-238 and U-235 is becoming important in homeland security. Alpha measurement in a vacuum is known to provide a good resolution sufficient to separate an isotope abundance in nuclear materials. However, in order to apply it to a high radiation field like a spent fuel treatment facility, a nuclear material loading and unloading process in a vacuum is one of the great disadvantages. Therefore, the main technical issue is to develop a detector for alpha detection at air condition and low power operation for integration type device. In this study we fabricated GaAs Schottky detector by using semi-insulating (SI) wafer and measured current-voltage characteristic curve and alpha response with 5.5 MeV Am-241 source

  13. Hazards of radiation exposure

    International Nuclear Information System (INIS)

    Solomon, S.B.

    1982-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risks to health from exposure to low levels of radiation. There is scant data on somatic and genetic risks at environmental and occupational levels of radiation exposure. The available data on radiation induced carcinogenesis and mutagenesis are for high doses and high dose rates of radiation. Risk assessments for low level radiation are obtained using these data, assuming a linear dose-response relationship. During uranium mining the chief source of radiation hazard is inhalation of radon daughters. The correlation between radon daughter exposure and the increased incidence of lung cancer has been well documented. For radiation exposures at and below occupational limits, the associated risk of radiation induced cancers and genetic abnormalities is small and should not lead to a detectable increase over naturally occurring rates

  14. The Effect of Police Response Time on Crime Detection

    DEFF Research Database (Denmark)

    Blanes i Vidal, Jordi; Kirchmaier, Tom

    preferred estimate, a 10% increase in response time leads to a 4.6 percentage points decrease in the likelihood of detection. A faster response time also decreases the number of days that it takes for the police to detect a crime, conditional on eventual detection. We find stronger effects for thefts than...

  15. Technical specifications manual for the MARK-1 pulsed ionizing radiation detection system. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.S.; Harker, Y.D.; Jones, J.L.; Hoggan, J.M.

    1993-03-01

    The MARK-1 detection system was developed by the Idaho National Engineering Laboratory for the US Department of Energy Office of Arms Control and Nonproliferation. The completely portable system was designed for the detection and analysis of intense photon emissions from pulsed ionizing radiation sources. This manual presents the technical design specifications for the MARK-1 detection system and was written primarily to assist the support or service technician in the service, calibration, and repair of the system. The manual presents the general detection system theory, the MARK-1 component design specifications, the acquisition and control software, the data processing sequence, and the system calibration procedure. A second manual entitled: Volume 2: Operations Manual for the MARK-1 Pulsed Ionizing Radiation Detection System (USDOE Report WINCO-1108, September 1992) provides a general operational description of the MARK-1 detection system. The Operations Manual was written primarily to assist the field operator in system operations and analysis of the data.

  16. Respiratory activity as a determinant of radiation survival response

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, A K; Berner, J D [State Univ. of New York, Buffalo (USA). Dept. of Biology

    1976-09-01

    Respiration is depressed in irradiated bacteria reaching a minimum level in most strains at 1-3 h after exposure when incubated in growth medium. Since a delay in response is observed, direct action on respiratory enzymes is unlikely. The dosage response of respiration varies widely in the strains studied. All strains exhibit two-component dosage-response curves. The facts suggest that respiration is a major factor in influencing cell survival and may be the principal mechanism through which chemical agents modify radiation response.

  17. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    International Nuclear Information System (INIS)

    Gayduchenko, I.; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-01-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors

  18. Evaluation of the Detection Efficiency of LYSO Scintillator in the Fiber-Optic Radiation Sensor

    Directory of Open Access Journals (Sweden)

    Chan Hee Park

    2014-01-01

    Full Text Available The aim of this study was to develop and evaluate fiber-optic sensors for the remote detection of gamma rays in areas that are difficult to access, such as a spent fuel pool. The fiber-optic sensor consists of a light-generating probe, such as scintillators for radiation detection, plastic optical fibers, and light-measuring devices, such as PMT. The (Lu,Y2SiO5:Ce(LYSO:Ce scintillator was chosen as the light-generating probe. The (Lu,Y2SiO5:Ce(LYSO:Ce scintillator has higher scintillation efficiency than the others and transmits light well through an optical fiber because its refraction index is similar to the refractive index of the optical fiber. The fiber-optic radiation sensor using the (Lu,Y2SiO5:Ce(LYSO:Ce scintillator was evaluated in terms of the detection efficiency and reproducibility for examining its applicability as a radiation sensor.

  19. Radiation effects on tumor-specific DTH response, 2

    International Nuclear Information System (INIS)

    Nobusawa, Hiroshi; Hachisu, Reiko.

    1991-01-01

    Tumor-specific immunity was induced in C3H mice by immunizing with syngeneic MH134 hepatoma cells. Radiation sensitivity of anti-tumor activity of immunized spleen cells were examined and compared with the radiation sensitivity of the delayed-type hypersensitivity (DTH)-response. The spleen cells were irradiated in vitro, then mixed with the tumor cells. DTH-response intensity was determined from the footpad increment twenty-four hours after inoculation of tumor cells with immunized spleen cells. Anti-tumor activity of the spleen cells, based on growth inhibition of tumor cells, was measured by a cytostatic test in vivo with diffusion chambers. Tumor-specific DTH response was suppressed dose-dependently in the range of 12-24 Gy irradiation. No suppression was observed below 12 Gy. Without irradiation, growth of tumor cells was inhibited by immunized spleen cells more effectively than by normal spleen cells. Anti-tumor activity of immunized and normal spleen cells was diminished by irradiation doses of 20 Gy and 10 Gy, respectively. Comparing our report with others that analyzed the type of anti-tumor effector cells induced in this experimental system, we concluded that tumor-specific anti-tumor activity (tumor growth inhibition in vivo) that was radiosensitive at 10-20 Gy depended on a DTH-response. (author)

  20. The influence of infrared radiation on short-term ultraviolet-radiation-induced injuries

    International Nuclear Information System (INIS)

    Kaidbey, K.H.; Witkowski, T.A.; Kligman, A.M.

    1982-01-01

    Because heat has been reported to influence adversely short- and long-term ultraviolet (UV)-radiation-induced skin damage in animals, we investigated the short-term effects of infrared radiation on sunburn and on phototoxic reactions to topical methoxsalen and anthracene in human volunteers. Prior heating of the skin caused suppression of the phototoxic response to methoxsalen as evidenced by an increase in the threshold erythema dose. Heat administered either before or after exposure to UV radiation had no detectable influence on sunburn erythema or on phototoxic reactions provoked by anthracene

  1. Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis

    KAUST Repository

    Jin, Peng

    2017-03-14

    Ultraviolet-B (UVB) radiation is a global stressor that has profound impacts on freshwater and marine ecosystems. However, an analysis of the patterns of sensitivity to UVB radiation across aquatic photosynthetic organisms has not yet been published. Here, we performed a meta-analysis on results reported in 214 studies compiled from the published literature to quantify and compare the magnitude of responses of aquatic photosynthetic organisms to changes in UVB radiation. The meta-analysis was conducted on observations of marine (n = 893) and freshwater macroalgae (n = 126) and of marine (n = 1,087) and freshwater (n = 2,889) microalgae (total n = 4,995). Most of these studies (85%) analyzed the performance of organisms exposed to natural solar radiation when UVB was partially or totally reduced compared with the organismal performance under the full solar radiation spectrum, whereas the remaining 15% of the studies examined the responses of organisms to elevated UVB radiation mostly using artificial lamps. We found that marine photosynthetic organisms tend to be more sensitive than freshwater photosynthetic organisms to UVB radiation; responses to either decreased or increased UVB radiation vary among taxa; the mortality rate is the most sensitive of the trait responses to elevated UVB radiation, followed by changes in cellular and molecular traits; the sensitivity of microalgae to UVB radiation is dependent on size, with small-celled microalgae more sensitive than large-celled microalgae to UVB radiation. Thick macroalgae morphotypes were the less sensitive to UVB, but this effect could not be separated from phylogenetic differences. The high sensitivity of marine species, particularly the smallest photosynthetic organisms, to increased UVB radiation suggests that the oligotrophic ocean, a habitat comprising 70% of the world\\'s oceans with high UVB penetration and dominated by picoautotrophs, is extremely vulnerable to changes in UVB radiation.

  2. Detection of diamonds

    International Nuclear Information System (INIS)

    Hansen, J.O.; Blondeel, E.J.G.; Taylor, G.T.

    1991-01-01

    Diamond particles are distinguished from non-diamond, associated particles on the basis of their higher refractive index. The particles are brought to a specific location, typically in a stream of water flowing full in a vertical duct, and a beam of collimated electromagnetic radiation is directed at them. An array of radiation detectors is provided to detect refracted and/or reflected radiation. The array is so configured that the responses of the detectors, considered collectively, will be indicative of the presence of a diamond when a diamond is in fact present. However, when a particle having a substantially lower refractive index is present, the responses of the detectors will not be so indicative. The diamond and non-diamond particles can subsequently be sorted from one another

  3. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Borrego-Soto, Gissela; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto, E-mail: arojasmtz@gmail.com, E-mail: augusto.rojasm@uanl.mx [Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León (Mexico)

    2015-10-15

    Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity. (author)

  4. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  5. Transient photoconductive gain in a-Si:H devices and its applications in radiation detection

    International Nuclear Information System (INIS)

    Lee, H.K.; Suh, T.S.; Choe, B.Y.; Shinn, K.S.; Perez-Mendez, V.

    1997-01-01

    Using the transient behavior of the photoconductive-gain mechanism, a signal gain in radiation detection with a-Si:H devices may be possible. The photoconductive gain mechanism in two types of hydrogenated amorphous silicon devices, p-i-n and n-i-n configurations, was investigated in connection with applications to radiation detection. Photoconductive gain was measured in two time scales: one for short pulses of visible light ( 2 . Various gain results are discussed in terms of the device structure, applied bias and dark-current density. (orig.)

  6. Role of electroweak radiation in predictions for dark matter indirect detection

    Energy Technology Data Exchange (ETDEWEB)

    Ali Cavasonza, Leila; Pellen, Mathieu; Kraemer, Michael [RWTH Aachen, Aachen (Germany)

    2015-07-01

    A very exciting challenge in particle and astroparticle physics is the exploration of the nature of dark matter. The evidences of the existence of dark matter are also the strongest phenomenological indications for physics beyond the Standard Model. A huge experimental effort is currently made at colliders and via astrophysical experiments to shed light on the nature of dark matter: dark matter may be produced at colliders or detected through direct and indirect detection experiments. The interplay and complementarity between these different approaches offers extraordinary opportunities to improve our understanding of the nature of dark matter or to set constraints on dark matter models. In indirect detection one searches for dark matter annihilation products, that produce secondary antimatter particles like positrons and antiprotons. Such antimatter particles propagate through the Galaxy and can be detected at Earth by astrophysical experiments. Particularly interesting is the importance of electroweak corrections to the predictions for the expected fluxes at Earth. The inclusion of EW radiation from the primary dark matter annihilation products can significantly affect the spectra of the secondary SM particles. The EW radiation can be described using fragmentation functions, as done for instance in QCD. We study the quality of this approximation in a simplified SUSY model and in a UED model.

  7. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    International Nuclear Information System (INIS)

    Bueno, J.; Baselmans, J. J. A; Coumou, P. C. J. J.; Zheng, G.; Visser, P. J. de; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.

    2014-01-01

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations

  8. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, J., E-mail: j.bueno@sron.nl; Baselmans, J. J. A [SRON, Netherlands Institute of Space Research, Utrecht (Netherlands); Coumou, P. C. J. J.; Zheng, G. [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Visser, P. J. de [SRON, Netherlands Institute of Space Research, Utrecht (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Klapwijk, T. M. [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Physics Department, Moscow State Pedagogical University, 119991 Moscow (Russian Federation); Driessen, E. F. C. [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Doyle, S. [Cardiff University, School of Physics and Astronomy, Queens Buildings, Cardiff CF24 3AA (United Kingdom)

    2014-11-10

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  9. Radiation dose-response relationship of micronucleus occurrence in pollen mother cells of tradescantia

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Yeon Ku; Song, Hi Sup

    1999-01-01

    This study was carried out to investigate the radiation dose-response of micronucleus frequencies in Tradescantia pollen mother cells. The number of micronuclei increased in the tetrads as a result of chromosome deletion after irradiation. The maximal frequency of micronucleus showed a good dose-response relationship in the range of dose 0∼50 cGy. On the basis of the relationship, a dose of 1 cGy resulted in two additional micronuclei in 100 tetrads. The radiation dose-response relationship of micronucleus occurrence is prerequisite to biological monitoring of radiation and can be modified for biological risk assessment of toxicants, and to safety test of water or soil integrity

  10. Behavioral and electrophysiological studies of radiation detection in a freshwater crustacean

    International Nuclear Information System (INIS)

    Rodriguez, A.; Kimeldorf, D.J.

    1976-01-01

    Behavioral and electrophysiological studies were done on the crayfish (Pacifastacus trowbridgii Stimpson) to determine its ability to detect exposure to 300 kVp x rays. Behavioral arousal responses were observed at exposure rates of 10 to 30 R/sec. Wholebody and partial-body exposures of eye-stalkless (blinded) animals also induced similar responses and indicated a radiation-sensitive receptor in the abdomen. Prolonged exposure under free choice of residence conditions induced an avoidance of the x-ray field. X-ray exposure of the dark-adapted compound eye evoked an electroretinogram (ERG) that was similar to the light-evoked ERG. The ERG amplitude was directly proportional to the total exposure with exposures less than 300 msec duration and related to the logarithm of the exposure rate with exposures greater than 300 msec. X-ray exposure of receptor sites on the medial branch of the antennule and the cheliped of the first walking-leg did not yield any significant chemoreceptor responses as judged by electrophysiological tests. X-irradiation of the sixth abdominal ganglion in both isolated and in vivo preparations elicited significant increases in neural impulse activity. The latency varied inversely with exposure rate. Spike potentials evoked by x rays were similar to those evoked by light; however, a supplemental increase in spikes of lower amplitude occurred that did not occur during light stimulation. It appears likely that the behavioral response in the crayfish, subjected to abdomen-only exposure, may be instigated by x-ray excitation of the sixth ganglion

  11. A century of quantitating radiation response

    International Nuclear Information System (INIS)

    Withers, H.R.; Geffen, D.

    2003-01-01

    As their name indicates, X rays were a surprise serendipitous discovery about which nothing was known a little over a century ago. Not surprisingly, characterizing of dose responses evolved slowly, reflecting difficulties in quantifying both physical dose and biological responses. It was about 35 years after Roentgen's discovery before an international standard (the R) was accepted for measuring dose and named after him. Within 10 years of that there was pressure to change from measuring ionization of air to absorbed dose in tissue but another 20 years and a second World War before the rad was adopted. Thirty years later the rad was dropped in favor of SI units to describe the same thing and named the Gray after the main proponent of the concept of the rad. Early on, radiochemical dosimetry was introduced in the form of color changes in proprietary pastilles. Biological function was also used as a dosimeter in the early times, examples being erythema of the skin, inhibition of growth of bean roots, or the suppression of hatching of eggs from fruit flies or worms. Other biological responses were measured (eg destruction of fertility by irradiating testes), but were not used as dosimeters. Dose survival curves based on clonal regrowth by survivors were first described for bacteria about 30 years before Puck's first description of mammalian ceFll radiosensitivity, using Chinese hamster cells. Functional changes in irradiated normal tissues after a multifraction course of radiation therapy can provide a very precise estimate of cell survival per single dose fraction but conversely, it requires very precise measurement of survival from a single dose fraction to be able to predict the ultimate response to a series of doses, a level of precision never likely to be achieved for clinical application. It seems that there is not a wide spread in radiosensitivities of normal tissues within the population. Progress is slow in predicting which tumors will respond poorly to

  12. Ticor-based scintillation detectors for detection of mixed radiation

    CERN Document Server

    Litvinov, L A; Kolner, V B; Ryzhikov, V D; Volkov, V G; Tarasov, V A; Zelenskaya, O V

    2002-01-01

    Detection of mixed radiation of thermal neutrons and gamma-rays have been realized using a new ceramic material based on small-crystalline long-wave scintillator alpha-Al sub 2 O sub 3 :Ti (Ticor) and lithium fluoride. Characteristics are presented for scintillators with Si-PIN-PD type photoreceivers and PMT under sup 2 sup 3 sup 9 Pu alpha-particles, sup 2 sup 0 sup 7 Bi internal conversion electrons,as well as sup 2 sup 4 sup 1 Am and sup 1 sup 3 sup 7 Cs gamma-quanta. Detection efficiency of thermal neutron is estimated for composite materials based on Ticor and lithium fluoride.

  13. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    Science.gov (United States)

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. TP53inp1 Gene Is Implicated in Early Radiation Response in Human Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Nikolett Sándor

    2015-10-01

    Full Text Available Tumor protein 53-induced nuclear protein-1 (TP53inp1 is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP cells was compared to cells transfected with non-targeting (NT shRNA. Radiation-induced senescence was measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts.

  15. Development of a portable monitor for detecting gamma radiation and X-rays

    International Nuclear Information System (INIS)

    Silva Neto, Paulo J. da; Lira, Carlos A.B. de O.; Oliveira, Arno H. de

    2011-01-01

    There are several ways to prevent individuals from receiving excessive or unnecessary doses of radiation, and area monitoring contributes to the radiation protection in the assessment whether these means are really efficient. The area monitoring is used to give an indication of radiation levels in certain locations. Using this method, one can estimate the dose received by staff occupying a particular area for a certain period of time. Hence, the purpose of this work was the construction of a portable monitor, consisting of an ionization chamber, with a volume of approximately 517 cc and built from tissue-equivalent material, and of its associated electronics. Radiation measurements of gamma and X-rays beams were then possible. The results showed a linear response of the monitor for different dose rates. The stability test of the response also showed a good reproducibility within ± 1%. A low energy dependence for energies between 16 - 200keV was observed, and complied well with the IEC 60846 standard. However, for the energy range 200 - 1250keV, the discrepancies to the IEC standard are considerable, so that the interposition of filters is necessary and may improve the energy response curve to within acceptable limits. (author)

  16. Radiation and detection of gravitational waves in laboratory conditions

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Pisarev, A.F.; Shavokhina, N.S.

    1981-01-01

    Two variants are proposed and analyzed for an experiment on radiation and detection of gravitational waves in laboratory conditions in the optical and superhigh frequency range (band). In the first variant the laser light is parametrically transformed to the gravitational wave in the optical-inhomogeneous medium. The gravitational flux produced is registered by the inverse parametric transformation of the gravitational to light wave. In the second variant the radiation of gravitational waves is realized through hypersonic oscillations in piezocrystals, and the reception of waves is made by the superconducting coaxial resonator in which the gravitational wave resonantly transforms into the electromag= . netic wave. The analysis performed testifies to the possibility of an experiment of this type at the present time [ru

  17. Radiation detection technique on the fishery foods

    International Nuclear Information System (INIS)

    Oikawa, Hiroshi; Satomi, Masataka; Nakamura, Koji; Yano, Yutaka

    1999-01-01

    Recently irradiation of fishery products such as sea bream, lobster etc has been spreading in South-east Asia. It is thus necessary to establish a detection technique for irradiated foods . This study aimed to investigate the effects of irradiation on the production of tyrosine isomers with relation to the status of food sample (frozen and cold-storage) and also the stabilities of the isomers in frozen foods after irradiation. Production of tyrosin isomers (meta-tyrosine, ortho-tyrosine) due to γ-ray irradiation (5 kGy) were observed in the muscles of frozen prawns as well as those at room temperature and the contents of these isomers after the irradiation was not different between the two states of the sample. The content increased depending on the radiation dose. The contents of these tyrosine isomers were not changed after storage at -20degC for 120 days. Therefore, it was thought that the tyrosine isomers were available as an effective indicator for detection of an irradiated food. (M.N.)

  18. Principles of radiation interaction in matter and detection

    CERN Document Server

    Leroy, Claude

    2016-01-01

    The fourth edition of this book has been widely revised. It includes additional chapters and some sections are complemented with either new ones or an extension of their content. In this latest edition a complete treatment of the physics and properties of semiconductors is presented, covering transport phenomena in semiconductors, scattering mechanisms, radiation effects and displacement damages. Furthermore, this edition presents a comprehensive treatment of the Coulomb scattering on screened nuclear potentials resulting from electrons, protons, light- and heavy-ions — ranging from (very) low up to ultra-relativistic kinetic energies — and allowing one to derive the corresponding NIEL (non-ionizing energy-loss) doses deposited in any material. The contents are organized into two parts: Chapters 1 to 7 cover Particle Interactions and Displacement Damage while the remaining chapters focus on Radiation Environments and Particle Detection. This book can serve as reference for graduate students and final-y...

  19. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    Science.gov (United States)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  20. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  1. Detection of radiation-induced hydrocarbons in baked sponged cake prepared with irradiated liquid egg

    Science.gov (United States)

    Schulzki, G.; Spiegelberg, A.; Bögl, K. W.; Schreiber, G. A.

    1995-02-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg.

  2. Nonlinear response matrix methods for radiative transfer

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Lewis, E.E.

    1987-01-01

    A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs

  3. Development of a homogeneous pulse shape discriminating flow-cell radiation detection system

    International Nuclear Information System (INIS)

    Hastie, K.H.; DeVol, T.A.; Fjeld, R.A.

    1999-01-01

    A homogeneous flow-cell radiation detection system which utilizes coincidence counting and pulse shape discrimination circuitry was assembled and tested with five commercially available liquid scintillation cocktails. Two of the cocktails, Ultima Flo (Packard) and Mono Flow 5 (National Diagnostics) have low viscosities and are intended for flow applications; and three of the cocktails, Optiphase HiSafe 3 (Wallac), Ultima Gold AB (Packard), and Ready Safe (Beckman), have higher viscosities and are intended for static applications. The low viscosity cocktails were modified with 1-methylnaphthalene to increase their capability for alpha/beta pulse shape discrimination. The sample loading and pulse shape discriminator setting were optimized to give the lowest minimum detectable concentration for methylnaphthalenein a 30 s count time. Of the higher viscosity cocktails, Optiphase HiSafe 3 had the lowest minimum detectable activities for alpha and beta radiation, 0.2 and 0.4 Bq/ml for 233 U and 90 Sr/ 90 Y, respectively, for a 30 s count time. The sample loading was 70% and the corresponding alpha/beta spillover was 5.5%. Of the low viscosity cocktails, Mono Flow 5 modified with 2.5% (by volume) 1-methylnaphthalene resulted in the lowest minimum detectable activities for alpha and beta radiation; 0.3 and 0.5 Bq/ml for 233 U and 90 Sr/ 90 Y, respectively, for a 30 s count time. The sample loading was 50%, and the corresponding alpha/beta spillover was 16.6%. HiSafe 3 at a 10% sample loading was used to evaluate the system under simulated flow conditions

  4. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    International Nuclear Information System (INIS)

    Bero, M A; Abukassem, I

    2009-01-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  5. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    Science.gov (United States)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  6. The radiation response of human dermal fibroblasts

    Science.gov (United States)

    Mitchell, Stephen Andrew

    A clinically reliable predictive assay based on normal-tissue radiosensitivity may lead to improved tumour control through individualised dose prescriptions. In-vitro fibroblast radiosensitivity has been shown, in several studies, to correlate with late radiation morbidity. The aim of this study was to investigate some of the cellular mechanisms underlying the normal-tissue response. In this study, seventeen primary fibroblast strains were established by enzymatic disaggregation of skin biopsies obtained from patients. These comprised seven who experienced acute tissue reactions to radiotherapy, four patients with a normal response and six non-cancer volunteers. An AT cell line was included as a positive control for radiosensitivity. In-vitro radiosensitivity was measured using a clonogenic assay at both high (HDR: 1.6 Gymin-1) and low dose rate (LDR: 0.01 Gymin-1). The radiation parameter HDR SF2 was the most sensitive in discriminating the seven sensitive patients from the remaining ten normal patients (range 0.11-0.19 sensitive patients compared with 0.17-0.34 control patients: puse of an internal control or LDR radiation protocol increased this discrimination. Pulsed-field gel electrophoresis (PFGE) was used to measure the level of initial and residual double-strand breaks following irradiation. No correlation was found between HDR SF2 and initial DNA damage. However, a strong correlation was found between clonogenic survival and both residual DNA damage (measured over 10-70 Gy, allowing 4 h repair, correlation coefficient: 0.90, <0.0001) and the ratio of residual/initial DNA damage, with the sensitive cell lines generally showing a higher level of residual DNA damage. Cell-cycle delays were found in all 18 cell strains in response to 2 Gy irradiation, but were not found to discriminate between sensitive and normal patients. Associated studies found no mutations of the ATM gene in the five radiosensitive patients studied. However, a coding sequence alteration

  7. Study of the response of radiation protection monitors in terms of H*(10) in X radiation

    International Nuclear Information System (INIS)

    Nonato, Fernanda B.C.; Carvalho, Valdir S.; Vivolo, Vitor; Caldas, Linda V.E.

    2009-01-01

    The ambient dose equivalent, H * (10), is an operational quantity recommended by the International Commission of radiation Units and Measurements Report 39 for measurements in area monitoring. However, most of the monitoring instruments used in radiation protection in Brazil still use the old quantities exposure rate and absorbed dose rate. Therefore, it is necessary to study how to change the operational quantity to H * (10). In this work, the response of radiation protection monitoring detectors was studied in terms of H * (10) for different energies using standard X-rays (narrow beams) at the Calibration Laboratory of IPEN. (author)

  8. Dosimetric evaluation of spectrophotometric response of alanine gel solution for gamma, photons, electrons and thermal neutrons radiations

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo

    2009-01-01

    Alanine Gel Dosimeter is a new gel material developed at IPEN that presents significant improvement on Alanine system developed by Costa. The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. This work aims to analyse the main dosimetric characteristics this new gel material for future application to measure dose distribution. The performance of Alanine gel solution was evaluated to gamma, photons, electrons and thermal neutrons radiations using the spectrophotometry technique. According to the obtained results for the different studied radiation types, the reproducibility intra-batches and inter-batches is better than 4% and 5%, respectively. The dose response presents a linear behavior in the studied dose range. The response dependence as a function of dose rate and incident energy is better 2% and 3%, respectively. The lower detectable dose is 0.1 Gy. The obtained results indicate that the Alanine gel dosimeter presents good performance and can be useful as an alternative dosimeter in the radiotherapy area, using MRI technique for tridimensional dose distribution evaluation. (author)

  9. Reevaluating the worst-case radiation response of MOS transistors

    Science.gov (United States)

    Fleetwood, D. M.

    Predicting worst-case response of a semiconductor device to ionizing radiation is a formidable challenge. As processes change and MOS gate insulators become thinner in advanced VLSI and VHSIC technologies, failure mechanisms must be constantly re-examined. Results are presented of a recent study in which more than 100 MOS transistors were monitored for up to 300 days after Co-60 exposure. Based on these results, a reevaluation of worst-case n-channel transistor response (most positive threshold voltage shift) in low-dose-rate and postirradiation environments is required in many cases. It is shown for Sandia hardened n-channel transistors with a 32 nm gate oxide, that switching from zero-volt bias, held during the entire radiation period, to positive bias during anneal clearly leads to a more positive threshold voltage shift (and thus the slowest circuit response) after Co-60 exposure than the standard case of maintaining positive bias during irradiation and anneal. It is concluded that irradiating these kinds of transistors with zero-volt bias, and annealing with positive bias, leads to worst-case postirradiation response. For commercial devices (with few interface states at doses of interest), on the other hand, device response only improves postirradiation, and worst-case response (in terms of device leakage) is for devices irradiated under positive bias and annealed with zero-volts bias.

  10. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  11. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    International Nuclear Information System (INIS)

    Zou, Shiyang; Song, Peng; Pei, Wenbing; Guo, Liang

    2013-01-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses

  12. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    International Nuclear Information System (INIS)

    Schindler, Matthew K.; Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-01-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals

  13. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.

    Science.gov (United States)

    Snijders, Antoine M; Marchetti, Francesco; Bhatnagar, Sandhya; Duru, Nadire; Han, Ju; Hu, Zhi; Mao, Jian-Hua; Gray, Joe W; Wyrobek, Andrew J

    2012-01-01

    High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (pidentify genetic features that predispose or protect individuals from LD-induced breast cancer.

  14. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Science.gov (United States)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  15. Detecting radiation with your smartphone

    CERN Multimedia

    Agnes Szeberenyi

    2014-01-01

    The winners of the CERN EIROforum Prize in the European Union Competition for Young Scientists 2013 (EUCYS), Michał Gumiela and Rafał Tomasz Kozik from Poland, have just spent an exciting week exploring CERN from 1 to 5 September. The students visited several CERN experiments and facilities and had ample time to interact with scientists on how to improve their invention further.   Michał Gumiela (left) and Rafał Tomasz Kozik (right) with their CERN host, Sabrina El Yacoubi (middle) at the ALICE detector. Michał (21) and Rafał (20) both won a young physicist prize in Poland before submitting their work on “Studies of the applicability of CMOS and CCD sensors for detection of ionising radiation” to the EUCYS competition. “It all started with Fukushima,” recalls Michał. The high school students met in 2011 at a physics workshop, where they started discussing digital photos taken around the Fukushima nuclear plant after the radiation leak. &ldqu...

  16. Detection limits by EPR spectroscopy of cumulated doses ionizing radiations in molluscs shells

    International Nuclear Information System (INIS)

    Ostrowski, K.; Burlinska, G.; Dziedzic-Goclawska, A.; Stachowicz, W.; Michalik, J.; Sadlo, J.

    1997-01-01

    The exposure of waters to ionizing radiation from radionuclides stored in concrete containers or freed in nuclear accidents or underwater eruption might be difficult to be proved, when currents, rains, exchange of water displace sand soils or rocks in the bottom. Ionizing radiation evokes stable paramagnetic centers in the crystalline lattice of mineral components in bones as well as in exoskeletons of most molluscs, which are detected by the EPR spectroscopy and could be used as an indicator of the exposure to the action of radiation during prolonged period of time. (authors)

  17. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    International Nuclear Information System (INIS)

    Matthews, Q; Jirasek, A; Lum, J J; Brolo, A G

    2011-01-01

    This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF 2 > 0.6) and the R3 cell lines are radiosensitive (SF 2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the

  18. Development of front-end ASIC for radiation detection and measurement

    International Nuclear Information System (INIS)

    Shimazoe, K.

    2014-01-01

    For realizing the multichannel spectroscopy of gamma rays, the technology of integrated circuits is necessary. Multi-channel gamma ray spectroscopy is very important for many applications including the medical imaging and the environmental monitoring. The current progress in the development of application specific integrated circuit (ASIC) for multi-channel radiation detection is introduced and reviewed. (author)

  19. Electronics for radiation detection

    CERN Document Server

    2011-01-01

    Addresses the developments in the design of semiconductor detectors and integrated circuits, in the context of medical imaging using ionizing radiation. This book explains how circuits for radiation are built, focusing on practical information about how they are being used, rather than mathematical details.

  20. A Computational Model of Cellular Response to Modulated Radiation Fields

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2012-09-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  1. A Computational Model of Cellular Response to Modulated Radiation Fields

    International Nuclear Information System (INIS)

    McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O’Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2012-01-01

    Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

  2. Remote sensing for oil spill detection and response

    International Nuclear Information System (INIS)

    Engelhardt, F.R.

    1999-01-01

    This paper focuses on the use of remote sensing for marine oil spill detection and response. The surveillance and monitoring of discharges, and the main elements of effective surveillance are discussed. Tactical emergency response and the requirements for selecting a suitable remote sensing approach, airborne remote sensing systems, and the integration of satellite and airborne imaging are examined. Specifications of satellite surveillance systems potentially usable for oil spill detection, and specifications of airborne remote sensing systems suitable for oil spill detection, monitoring and supplemental actions are tabulated, and a schema of integrated satellite-airborne remote sensing (ISARS) is presented. (UK)

  3. Radiation dose response correlation between thermoluminescence and optically stimulated luminescence in quartz

    International Nuclear Information System (INIS)

    Oniya, E.O.; Polymeris, G.S.; Tsirliganis, N.C.; Kitis, G.

    2012-01-01

    The fast, linearly modulated optically stimulated luminescence (LM-OSL) component in quartz is the main dosimetric signal used for the dating applications of this material. Since the blue light stimulation (470 nm, 40 mW cm −2 ) time needed to obtain the fast LM-OSL component is less than 50 s the electron trapping levels responsible for it are still highly populated. In this way an active radiation history is created which could play an important role in the dosimetric characteristics of the fast OSL signal. In the present work the dose response behavior of the fast OSL signal is investigated in quartz samples with an annealed radiation history and quartz samples possessing an artificial radiation history. A computerized curve de-convolution analysis of the LM-OSL curves for 50 s stimulation time showed that it consists of three individual OSL components. The faster component C 1 with peak maximum time around 5 s has a linear dose response in virgin samples, which turns to a slight superlinearity as a function of the artificial radiation history. On the other hand the component C 2 with peak maximum time at 12 s is slightly superlinear which turns into strong superlinearity as a function of artificial radiation history. Finally, component C 3 with peak maximum time at about 45 s is strongly superlinear for both virgin samples and as a function of artificial radiation history. The implications to practical application are discussed. - Highlights: ► The fast OSL component consists of three components. ► The linearity of first fast component does not depend on radiation history. ► The linearity of second and third components depend on radiation history. ► The TL between 180 and 300 °C is the major source of OSL.

  4. Detection of radiation-induced hydrocarbons in baked sponge cake prepared with irradiated liquid egg

    International Nuclear Information System (INIS)

    Schulzki, G.; Spiegelberg, A.; Boegl, K.W.; Schreiber, G.A.

    1995-01-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg. (Author)

  5. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  6. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos

    International Nuclear Information System (INIS)

    Choi, V W Y; Ng, C Y P; Kong, M K Y; Yu, K N; Cheng, S H

    2013-01-01

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ∼4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. (paper)

  7. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    International Nuclear Information System (INIS)

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-01-01

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO 2 substrates, we confirm recent theoretical predictions of T 2 temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures

  8. Radiation response of high speed CMOS integrated circuits

    International Nuclear Information System (INIS)

    Yue, H.; Davison, D.; Jennings, R.F.; Lothongkam, P.; Rinerson, D.; Wyland, D.

    1987-01-01

    This paper studies the total dose and dose rate radiation response of the FCT family of high speed CMOS integrated circuits. Data taken on the devices is used to establish the dominant failure modes, and this data is further analyzed using one-sided tolerance factors for normal distribution statistical analysis

  9. Radiation response of hydrated urea evaluated using 14N nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Hintenlang, D.E.

    1992-01-01

    In this paper Nitrogen-14 nuclear quadrupole resonance is utilized to detect radiation-induced changes in urea over the 0- to 300-Gy dose range. The spin-spin relaxation time exhibits a consistent change as a function of delivered dose in hydrated urea under exposure to 60 Co gamma radiation. No changes to the spin-spin relaxation time are observed in urea samples that were not hydrated. The radiation-induced changes are attributed to indirect radiation interactions with the water surrounding the urea molecules and are explained by the formation of subtle changes in the electron bonding configurations surrounding the 14 N nuclei, not major structural rearrangements. These subtle changes may provide additional insight into the effects of ionizing radiation on biological systems

  10. Modeling of the response under radiation of electronic dosemeters

    International Nuclear Information System (INIS)

    Menard, S.

    2003-01-01

    The simulation with with calculation codes the interactions and the transport of primary and secondary radiations in the detectors allows to reduce the number of developed prototypes and the number of experiments under radiation. The simulation makes possible the determination of the response of the instrument for exposure configurations more extended that these ones of references radiations produced in laboratories. The M.C.N.P.X. allows to transport, over the photons, electrons and neutrons, the charged particles heavier than the electrons and to simulate the radiation - matter interactions for a certain number of particles. The present paper aims to present the interest of the use of the M.C.N.P.X. code in the study, research and evaluation phases of the instrumentation necessary to the dosimetry monitoring. To do that the presentation gives the results of the modeling of a prototype of a equivalent tissue proportional counter (C.P.E.T.) and of the C.R.A.M.A.L. ( radiation protection apparatus marketed by the Eurisys Mesures society). (N.C.)

  11. Critical reevaluation of the dose-response relationships for carcinogenic effects of low-level ionizing radiation

    International Nuclear Information System (INIS)

    Upton, Arthur C.

    2002-01-01

    In recent decades, it has been customary, for radiation protection purposes, to assume that the overall risk of radiation- included cancer increases as a linear-nonthreshold function of the dose. The existing data do not exclude the existence of a threshold, however, and the dose-response relationship is known to vary depending on the type of cancer in question, the dose, dose rate and LET of the radiation, the age, sex and physiological state of the exposed individuals, and other variables, including the potential influence of adaptive responses and bystander effects at low doses. In light of advancing knowledge, therefore, the dose-response relationship for carcinogenic effects of low-level radiation has been reevaluated periodically by the National Council on Radiation Protection and Measurements, the International Commission of Radiological Protection, the United Nations Scientific Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences, and other organizations. The most recent such reviews have generally found the weight of evidence to suggest that lesions which are precursors to cancer (i.e., mutations and chromosome aberrations), and certain types of cancer as well, may increase in frequency linearly aberrations), and certain types of cancer as well, may increase in frequency linearly with the dose in the low-dose domain. On this basis, it is concluded that no alternative dose-response model for the carcinogenic effects of low-level radiation is ore plausible than the linear-nonthreshold model, although other dose-response relationships cannot be excluded. (author)

  12. AN IMAGE-ANALYSIS TECHNIQUE FOR DETECTION OF RADIATION-INDUCED DNA FRAGMENTATION AFTER CHEF ELECTROPHORESIS

    NARCIS (Netherlands)

    ROSEMANN, M; KANON, B; KONINGS, AWT; KAMPINGA, HH

    CHEF-electrophoresis was used as a technique to detect radiation-induced DNA breakage with special emphasis to biological relevant X-ray doses (0-10 Gy). Fluorescence detection of DNA-fragments using a sensitive image analysis system was directly compared with conventional scintillation counting of

  13. FISH as A method for detection of radiation Induced genetic damage

    International Nuclear Information System (INIS)

    Lakatosova, M.; Holeckova, B.

    2006-01-01

    Fluorescence in situ hybridization (FISH) has been considered as a suitable method for rapid and easy detection of chromosome aberrations. In contrast to the standard conventional staining procedure, this technique enables the detection and specification of stable chromosomal re-arrangements, which are compatible with cellular division and thus, they could be transmitted from common ancestral to next cell generations. FISH chromosome - specific painting probes have been effectively applied for the detection of chromosomal damage after exposure to radiation. During last years, several specific fluorescent labeled probes were performed that allowed precise detection of centromeres, sub-telomeres or other regions (sequences) in genome. Our paper deals with describing of different types of FISH probes and their possibilities for application in radiobiology. (authors)

  14. Transient Genome-Wide Transcriptional Response to Low-Dose Ionizing Radiation In Vivo in Humans

    International Nuclear Information System (INIS)

    Berglund, Susanne R.; Rocke, David M.; Dai Jian; Schwietert, Chad W.; Santana, Alison; Stern, Robin L.; Lehmann, Joerg; Hartmann Siantar, Christine L.; Goldberg, Zelanna

    2008-01-01

    Purpose: The in vivo effects of low-dose low linear energy transfer ionizing radiation on healthy human skin are largely unknown. Using a patient-based tissue acquisition protocol, we have performed a series of genomic analyses on the temporal dynamics over a 24-hour period to determine the radiation response after a single exposure of 10 cGy. Methods and Materials: RNA from each patient tissue sample was hybridized to an Affymetrix Human Genome U133 Plus 2.0 array. Data analysis was performed on selected gene groups and pathways. Results: Nineteen gene groups and seven gene pathways that had been shown to be radiation responsive were analyzed. Of these, nine gene groups showed significant transient transcriptional changes in the human tissue samples, which returned to baseline by 24 hours postexposure. Conclusions: Low doses of ionizing radiation on full-thickness human skin produce a definable temporal response out to 24 hours postexposure. Genes involved in DNA and tissue remodeling, cell cycle transition, and inflammation show statistically significant changes in expression, despite variability between patients. These data serve as a reference for the temporal dynamics of ionizing radiation response following low-dose exposure in healthy full-thickness human skin

  15. Application of random-point processes to the detection of radiation sources

    International Nuclear Information System (INIS)

    Woods, J.W.

    1978-01-01

    In this report the mathematical theory of random-point processes is reviewed and it is shown how use of the theory can obtain optimal solutions to the problem of detecting radiation sources. As noted, the theory also applies to image processing in low-light-level or low-count-rate situations. Paralleling Snyder's work, the theory is extended to the multichannel case of a continuous, two-dimensional (2-D), energy-time space. This extension essentially involves showing that the data are doubly stochastic Poisson (DSP) point processes in energy as well as time. Further, a new 2-D recursive formulation is presented for the radiation-detection problem with large computational savings over nonrecursive techniques when the number of channels is large (greater than or equal to 30). Finally, some adaptive strategies for on-line ''learning'' of unknown, time-varying signal and background-intensity parameters and statistics are present and discussed. These adaptive procedures apply when a complete statistical description is not available a priori

  16. CaSO4: Dy + Teflon dosimetric pellets for X, beta and gamma radiation detection

    International Nuclear Information System (INIS)

    Campos, L.L.; Lima, M.F.

    1987-08-01

    CaSO 4 : Dy + TEFLON dosimetric pellets with high sensitivity and low cost for X, beta and gamma radiation monitoring were studied and developed by the Dosimetric Material Production Laboratory of the Radiological Protection Departament and are disposable for sale. The thickness of the pellets are suitable for X, beta and gamma radiation measurements. The dosimetric properties of these pellets were determined and presented in this work. The results show the usefulness of 0,20mm thick pellets for beta radiation monitoring and 0,80mm thick pellets for x and gamma radiation detection. (Author) [pt

  17. Natural background radiation induces cytogenetic radioadaptive response more effectively than occupational exposure in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Monfared, A.S.; Mozdarani, H.; Amiri, M.

    2003-01-01

    Ramsar, a city in the northern Iran, has the highest level of natural background radiation in the world. It has been clearly shown that low doses of ionising radiation can induce resistance to subsequent higher exposures. This phenomenon is termed radioadaptive response. We have compared induction of cytogenetic radioadaptive response by High Natural Background Radiation (HNBR) in Ramsar and X-ray occupational exposure as conditioning doses in human peripheral blood lymphocytes. 30 healthy control individuals, living in Ramsar but in normal background radiation areas, 15 healthy individuals from Talesh Mahalleh, a region with extraordinary high level of background radiation, and 7 X-ray radiographers working in Ramsar hospital located in normal natural background ionising radiation area were evaluated. Peripheral blood samples were prepared and exposed to challenge dose of 0 and 2 Gy. Lymphocytes were scored using analysis of metaphase, for the presence of chromosomal aberrations. An adaptive response was observed in HNBR and radiation workers groups in comparison with sham controls. A significant increase in adaptive response was observed in the HNBR group if compared with the occupationally exposed group. These findings indicate that both natural background radiation and occupational exposure could induce cytogenetic radioadaptive response and it is more significant regarding to natural background ionising radiation. (author)

  18. Critical reevaluation of the dose-response relationships for carcinogenic effects of low-level ionizing radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    2003-01-01

    In recent decades, it has been customary, for radiation protection purposes, to assume that the overall risk of radiation-induced cancer increases as a linear-nonthreshold function of the dose. The existing data do not exclude the existence of a threshold, however, and the dose-response relationship is known to vary, depending on the type of cancer in queation, the dose, dose rate, and LET of the radiation, the age, sex, and physiological state of the exposed individuals, and other variables, including the potential influence of adaptive responses and bystander effects at low doses. In light of advncing knowledge, therefore, the dose-response relationship for carcinogenic effects of low-level radiation has been reevaluated periodically by the National Council on Radiation Protection and Measurements, the International Commission of Radiological Protection, the United Nations Scientific Committee on the Effects of Atomic Radiation, the U.S. National Academy of Sciences, and other organizations. The most recent such reviews have generally found the weight of evidence to suggest that lesions which are precursors to cancer (i.e., mutations and chromosome aberrations), and certain types of cancer as well, may increase in frequency linearly with the dose in the low-dose domain. On this basis, it is concluded that no alternative dose-response model for the carcinogenic effects of low-level radiation is more plausible than the linear-nonthreshold model, although other dose-response relationships cannot be excluded. (authors)

  19. The radiation response of skin in young and old rats

    International Nuclear Information System (INIS)

    Hamlet, R.; Hopewell, J.W.

    1982-01-01

    The results of this investigation clearly demonstrate the different radiation skin response in rats of differing ages. The reasons for these differences cannot be clarified until cell kinetic studies have been completed. These results obtained for rodent skin would appear to be in disagreement with the available data for human skin (Rubin and Casarett 1968) where no marked age-related changes were reported. Also, in pig skin studies (Hopewell and Young 1982) there was no evidence of an age effect in the dermal vascular response in 3-12-month-old animals. This may be related to the different tissue being investigated or it may reflect important species differences. Whatever the reasons behind these observations, the different skin response to radiation in rats of 7, 14 and 52 weeks of age has clearly been demonstrated and should be borne in mind when extrapolating data with rodent skin to the clinical situation. (author)

  20. Calibration and energy response of the Bitt RM10/RS02 gamma radiation detectors

    International Nuclear Information System (INIS)

    Dijk, E. van; Aalbers, A.H.L.

    1990-03-01

    A radiation monitoring network with automatic warning capabilities (LMR) has been established in the Netherlands. For the detection of gamma radiation exposure-rate-meters manufactured by Bitt Technologies are used. These meters consist of a proportional counter tube (type RS 02) and a read-out unit (type RM 10E). The photon energy response of 6 counter tubes was tested at the National Institute of Public Health and Environmental Protection. The measurements were performed with heavy filtered X-rays in the range of 50-250 keV (ISO narrow spectrum series) and with gamma ray beams from cesium-137 (662 keV) and cobalt-60 (1,25 MeV). To determine the energy response, the detector reading was referred to air kerma by means of a transfer ionization chamber. This transfer chamber was directly calibrated against the standard for X-rays. By applying these measurement procedures of a set of calibration factors (N k ) as a function of photon energy was determined. These calibration factors, expressed as the ratio air kerma to reading were converted to ambient dose equivalent calibration factors using appropriate conversion factors taken from Grosswend et al., 1988. From the measurement data an average ambient dose equivalent calibration factor of 10.8 mSv.roentgen -1 was calculated. (author). 5 refs.; 6 figs.; 5 tabs

  1. Biological monitoring of radiation using indicator plants

    International Nuclear Information System (INIS)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author)

  2. Biological monitoring of radiation using indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyoo; Chun, Ki Jung; Kim, Kook Chan; Kim, In Kyoo; Song, Heui Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Some clones of Tradescantia had dose response relationship involving somatic mutations such as appearance of pink, colorless or giant cell, and/or loss of reproductive integrity of stamen hair cells when exposed to radiation. Since Tradescantia could respond to radiation level as low as human being could be exposed to, it could play an important role as scientific tool of botanical tester for radiation. Especially TSH system can be easily applied to in situ monitoring of radiation by virtue of its excellent radiation indicator ship and simpleness in detection of mutations by radiation. 10 figs, 6 tabs, 19 refs. (Author).

  3. Metabolomic screening using ESI-FT MS identifies potential radiation-responsive molecules in mouse urine

    International Nuclear Information System (INIS)

    Iizuka, Daisuke; Yoshioka, Susumu; Kawai, Hidehiko; Izumi, Shunsuke; Suzuki, Fumio; Kamiya, Kenji

    2017-01-01

    The demand for establishment of high-throughput biodosimetric methods is increasing. Our aim in this study was to identify low-molecular-weight urinary radiation-responsive molecules using electrospray ionization Fourier transform mass spectrometry (ESI-FT MS), and our final goal was to develop a sensitive biodosimetry technique that can be applied in the early triage of a radiation emergency medical system. We identified nine metabolites by statistical comparison of mouse urine before and 8 h after irradiation. Time-course analysis showed that, of these metabolites, thymidine and either thymine or imidazoleacetic acid were significantly increased dose-dependently 8 h after radiation exposure; these molecules have already been reported as potential radiation biomarkers. Phenyl glucuronide was significantly decreased 8 h after radiation exposure, irrespective of the dose. Histamine and 1-methylhistamine were newly identified by MS/MS and showed significant, dose-dependent increases 72 h after irradiation. Quantification of 1-methylhistamine by enzyme-linked immunosorbent assay (ELISA) analysis also showed a significant increase 72 h after 4 Gy irradiation. These results suggest that urinary metabolomics screening using ESI-FT MS can be a powerful tool for identifying promising radiation-responsive molecules, and that urinary 1-methylhistamine is a potential radiation-responsive molecule for acute, high-dose exposure.

  4. Posttreatment assessment of response using FDG-PET/CT for patients treated with definitive radiation therapy for head and neck cancers

    International Nuclear Information System (INIS)

    Andrade, Regiane S.; Heron, Dwight E.; Degirmenci, Berna; Filho, Pedro A.A.; Branstetter, Barton F.; Seethala, Raja R.; Ferris, Robert L.; Avril, Norbert

    2006-01-01

    Purpose: The goal of this study was to evaluate coregistered [ 18 F] fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) for the detection of persistent disease after definitive radiation therapy in head and neck cancer. Methods and Materials: Posttreatment FDG-PET/CT was performed in 28 patients on average 8 weeks (range, 4 to 15.7 weeks) after completing definitive radiation therapy. FDG-PET/CT was visually analyzed for the entire patient group and at two time points (4-8 and >8 weeks) after treatment. The contrast-enhanced CT portion of PET/CT was separately analyzed blinded to the results of coregistered FDG-PET/CT and classified as negative or positive for residual locoregional disease. Pathologic findings and clinical follow-up served as the reference standard. Results: Follow-up data were available for all 28 patients (median, 17.6 months). Regarding the detection of residual disease, the overall sensitivity and specificity of FDG-PET/CT was 76.9% and 93.3%, respectively, compared with 92.3% and 46.7% for contrast-enhanced CT. The accuracy of FDG-PET/CT was 85.7%, compared with 67.9% for CT alone. All false-negative (n = 3) and false-positive (n = 1) FDG-PET/CT results occurred between 4 and 8 weeks after treatment. At 8 weeks or later after treatment, the specificity of CT was 28%, compared with 100% for FDG-PET/CT. Conclusions: The metabolic-anatomic information from coregistered FDG-PET/CT provided the most accurate assessment for treatment response when performed later than 8 weeks after the conclusion of radiation therapy. FDG-PET/CT excelled by a higher specificity and overall diagnostic performance than CT imaging alone. These results support a potential clinical role of FDG-PET/CT in the early assessment of therapy response after definitive radiation therapy

  5. Detecting solar chameleons through radiation pressure

    International Nuclear Information System (INIS)

    Baum, S.; Cantatore, G.; Hoffmann, D.H.H.; Karuza, M.; Semertzidis, Y.K.; Upadhye, A.; Zioutas, K.

    2014-01-01

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space

  6. Detecting solar chameleons through radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baum, S., E-mail: sebastian.baum@cern.ch [Uppsala Universitet, Box 516, SE 75120, Uppsala (Sweden); European Organization for Nuclear Research (CERN), Gèneve (Switzerland); Cantatore, G. [Università di Trieste, Via Valerio 2, 34127 Trieste (Italy); INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Hoffmann, D.H.H. [Institut für Kernphysik, TU-Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany); Karuza, M. [INFN Trieste, Padriciano 99, 34149 Trieste (Italy); Phys. Dept. and CMNST, University of Rijeka, R. Matejcic 2, Rijeka (Croatia); Semertzidis, Y.K. [Center for Axion and Precision Physics Research (IBS), Daejeon 305-701 (Korea, Republic of); Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Upadhye, A. [Physics Department, University of Wisconsin–Madison, 1150 University Avenue, Madison, WI 53706 (United States); Zioutas, K., E-mail: konstantin.zioutas@cern.ch [European Organization for Nuclear Research (CERN), Gèneve (Switzerland); University of Patras, GR 26504 Patras (Greece)

    2014-12-12

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  7. Atoms, radiation, and radiation protection

    International Nuclear Information System (INIS)

    Turner, J.E.

    1986-01-01

    This book describes basic atomic and nuclear structure, the physical processes that result in the emission of ionizing radiations, and external and internal radiation protection criteria, standards, and practices from the standpoint of their underlying physical and biological basis. The sources and properties of ionizing radiation-charged particles, photons, and neutrons-and their interactions with matter are discussed in detail. The underlying physical principles of radiation detection and systems for radiation dosimetry are presented. Topics considered include atomic physics and radiation; atomic structure and radiation; the nucleus and nuclear radiation; interaction of heavy charged particles with matter; interaction of beta particles with matter; phenomena associated with charged-particle tracks; interaction of photons with matter; neutrons, fission and criticality; methods of radiation detection; radiation dosimetry; chemical and biological effects of radiation; radiation protection criteria and standards; external radiation protection; and internal dosimetry and radiation protection

  8. Particle and photon detection for a neutron radiative decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, T.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: thomas.gentile@nist.gov; Dewey, M.S.; Mumm, H.P.; Nico, J.S.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Cooper, R.L. [University of Michigan, Ann Arbor, MI 48109 (United States)], E-mail: cooperrl@umich.edu; Fisher, B.M.; Kremsky, I.; Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States); Kiriluk, K.G.; Beise, E.J. [University of Maryland, College Park, MD 20742 (United States)

    2007-08-21

    We present the particle and photon detection methods employed in a program to observe neutron radiative beta-decay. The experiment is located at the NG-6 beam line at the National Institute of Standards and Technology Center for Neutron Research. Electrons and protons are guided by a 4.6 T magnetic field and detected by a silicon surface barrier detector. Photons with energies between 15 and 750 keV are registered by a detector consisting of a bismuth germanate scintillator coupled to a large area avalanche photodiode. The photon detector operates at a temperature near 80 K in the bore of a superconducting magnet. We discuss CsI as an alternative scintillator, and avalanche photodiodes for direct detection of photons in the 0.1-10 keV range.

  9. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2010-02-01

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 μm to 110 μm. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 μm to 160 μm were done. (orig.)

  10. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  11. Cytogenetic dose-response and adaptive response in cells of ungulate species exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Ulsh, B.A.; Miller, S.M.; Mallory, F.F.; Mitchel, R.E.J.; Morrison, D.P.; Boreham, D.R.

    2004-01-01

    In the studies reported here, the micronucleus assay, a common cytogenetic technique, was used to examine the dose-responses in fibroblasts from three ungulate species (white-tailed deer, woodland caribou, and Indian muntjac) exposed to high doses of ionizing radiation (1-4 Gy of 60 Co gamma radiation). This assay was also used to examine the effects of exposure to low doses (1-100 mGy) typical of what these species experience in a year from natural and anthropogenic environmental sources. An adaptive response, defined as the induction of resistance to a stressor by a prior exposure to a small 'adapting' stress, was observed after exposure to low doses. This work indicates that very small doses are protective for the endpoint examined. The same level of protection was seen at all adapting doses, including 1 radiation track per cell, the lowest possible cellular dose. These results are consistent with other studies in a wide variety of organisms that demonstrate a protective effect of low doses at both cellular and whole-organism levels. This implies that environmental regulations predicated on the idea that even the smallest dose of radiation carries a quantifiable risk of direct adverse consequences to the exposed organism require further examination. Cytogenetic assays provide affordable and feasible biological effects-based alternatives that are more biologically relevant than traditional contaminant concentration-based radioecological risk assessment

  12. Influence of emulsion nature on radiation response of β-carotene in an aqueous medium

    International Nuclear Information System (INIS)

    Bhushan, B.; Tobback, P.; Snauwaert, F.; Maes, E.

    1978-01-01

    The radiation response of β-carotene was followed in lipid solvents and in aqueous preparations. The nature of the solvent was found to have a marked influence on the response of β-carotene to γ-radiation. In aqueous emulsions radiation destruction of β-carotene was far less than that observed in solutions. Oil in water (O/W) emulsions of petroleum ether offered maximum protection to β-carotene against radiation damage. This observation was attributed to the multiphase nature of the emulsion since a transparent aqueous preparation was observed to offer no protection upon irradiation. Solubility of crystalline β-carotene in water was found to increase with the emulsifier concentration. Irradiation revealed that the extent of β-carotene destruction was dose dependent and increased with the solubility of β-carotene in water. In the presence of a free radical scavenger DPPH β-carotene exhibited varied radiation response depending upon the nature of solvents used. Thus, in transparent aqueous preparations the protection afforded by added DPPH to β-carotene was almost complete, while its influence was insignificant in O/W emulsions. The significance of these observations in radiation processing of foods is discussed. (author)

  13. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  14. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices

    International Nuclear Information System (INIS)

    Brewer, R.L.; Dunn, W.L.; Heider, S.; Matthew, C.; Yang, X.

    2012-01-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of “signatures” obtained from a test target to a collection of “templates”, sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8 L and larger. - Highlights: ► Signature-based radiation-scanning techniques applied to detection of explosives. ► Nitrogen-rich fertilizer samples served as surrogate explosive samples. ► Signatures of a target compared to collections of templates of surrogate explosives. ► Figure-of-merit determined for neutron and neutron-induced gamma-ray signatures. ► Discrimination of surrogate explosive from inert samples of 3.8 L and larger.

  15. Faculty of Radiation Oncology 2014 Workforce Census: a comparison of New Zealand and Australian responses.

    Science.gov (United States)

    James, Melissa; Munro, Philip M; Leung, John

    2015-04-17

    This paper outlines the key results of the Royal Australian and New Zealand College of Radiologists (RANZCR) Faculty of Radiation Oncology (FRO) 2014 workforce census, and compares the results of New Zealand and Australian responses in order to identify similarities and differences in workforce characteristics. The workforce census was conducted online in mid-2014. The census was distributed to all radiation oncologists (Fellows, life members, educational affiliates, retired) and radiation oncology trainees on the RANZCR membership database. Six weekly reminders were sent to non-respondents and all responses were aggregated for analysis. This paper addresses only consultant radiation oncologist responses. The combined response rate for New Zealand radiation oncologists was 85.7% (compared with 76% from Australian respondents). The census found that the demographic characteristics of New Zealand and Australian radiation oncologists are similar. Points of difference include (i) the role of educational affiliates in New Zealand, (ii) New Zealand radiation oncologists reporting higher hours spent at work, (iii) New Zealand radiation oncologists spending a higher proportion of time on clinical duties, (iv) A lower proportion of New Zealand radiation oncologists with higher degrees, and (v) private/ public workplace mix. A comparison by country would suggest that there are many similarities, but also some important differences that may affect workforce issues in New Zealand. Separate datasets are useful for RANZCR to better inform members, governments and other key stakeholders in each country. Separate datasets also provide a basis for comparison with future surveys to facilitate the monitoring of trends.

  16. Radiation detecting system

    International Nuclear Information System (INIS)

    1975-01-01

    In spectrophotometry systems, a usual arrangement for modulating the radiation is a rotating disc having one or more sectors removed. A beam of radiation may be blocked by the disc except when a cut-away sector is in the path of the beam. With a double-beam system, a cut-away sector of 180 0 may be used so that when the first path is blocked, the second is allowed through, and vice versa. One or both sides of the disc may be formed as mirrors to facilitate beam switching and to allow use of more than two beams for background compensation purposes or for analysis of more than one substance within a sample. (G.T.H.)

  17. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Schilling-Toth, Boglarka; Sandor, Nikolett; Kis, Eniko; Kadhim, Munira; Safrany, Geza; Hegyesi, Hargita

    2011-01-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2 Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects.

  18. Analysis of the common deletions in the mitochondrial DNA is a sensitive biomarker detecting direct and non-targeted cellular effects of low dose ionizing radiation.

    Science.gov (United States)

    Schilling-Tóth, Boglárka; Sándor, Nikolett; Kis, Eniko; Kadhim, Munira; Sáfrány, Géza; Hegyesi, Hargita

    2011-11-01

    One of the key issues of current radiation research is the biological effect of low doses. Unfortunately, low dose science is hampered by the unavailability of easily performable, reliable and sensitive quantitative biomarkers suitable detecting low frequency alterations in irradiated cells. We applied a quantitative real time polymerase chain reaction (qRT-PCR) based protocol detecting common deletions (CD) in the mitochondrial genome to assess direct and non-targeted effects of radiation in human fibroblasts. In directly irradiated (IR) cells CD increased with dose and was higher in radiosensitive cells. Investigating conditioned medium-mediated bystander effects we demonstrated that low and high (0.1 and 2Gy) doses induced similar levels of bystander responses and found individual differences in human fibroblasts. The bystander response was not related to the radiosensitivity of the cells. The importance of signal sending donor and signal receiving target cells was investigated by placing conditioned medium from a bystander response positive cell line (F11-hTERT) to bystander negative cells (S1-hTERT) and vice versa. The data indicated that signal sending cells are more important in the medium-mediated bystander effect than recipients. Finally, we followed long term effects in immortalized radiation sensitive (S1-hTERT) and normal (F11-hTERT) fibroblasts up to 63 days after IR. In F11-hTERT cells CD level was increased until 35 days after IR then reduced back to control level by day 49. In S1-hTERT cells the increased CD level was also normalized by day 42, however a second wave of increased CD incidence appeared by day 49 which was maintained up to day 63 after IR. This second CD wave might be the indication of radiation-induced instability in the mitochondrial genome of S1-hTERT cells. The data demonstrated that measuring CD in mtDNA by qRT-PCR is a reliable and sensitive biomarker to estimate radiation-induced direct and non-targeted effects. Copyright

  19. Measurement of radiocesium concentration in trees using cumulative gamma radiation dose rate detection systems - A simple presumption for radiocesium concentration in living woods using glass-badge based gamma radiation dose rate detection system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, T.; Hashida, S.N. [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Kawachi, N.; Suzui, N.; Yin, Y.G.; Fujimaki, S. [Radiotracer Imaging Gr., Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagao, Y.; Yamaguchi, M. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-07-01

    Radiocesium from the severe accident at the Fukushima Dai-ichi Nuclear Power Plant on 11 March 2011 contaminates large areas. After this, a doubt for forest products, especially of mushroom, is indelible at the areas. Pruned woody parts and litters are containing a considerable amount of radiocesium, and generates a problem at incineration and composting. These mean that more attentive survey for each subject is expected; however, the present survey system is highly laborious/expensive and/or non-effective for this purpose. On the other hand, we can see a glass-badge based gamma radiation dose rate detection system. This system always utilized to detect a personal cumulative radiation dose, and thus, it is not suitable to separate a radiation from a specific object. However, if we can separate a radiation from a specific object and relate it with the own radiocesium concentration, it would enable us to presume the specific concentration with just an easy monitoring but without a destruction of the target nature and a complicated process including sampling, pre-treatment, and detection. Here, we present the concept of the measurement and results of the trials. First, we set glass-badges (type FS, Chiyoda Technol Corp., Japan) on a part of bough (approximately 10 cm in diameter) of Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino) with four different settings: A, a direct setting without any shield; B, a setting with an aluminum shield between bough and the glass-badge; C, a setting with a lead shield between bough and the glass-badge; D, a setting with a lead shield covering the glass-badge to shut the radiation from the surrounding but from bough. The deduction between the amount of each setting should separate a specific radiation of the bough from unlimited radiation from the surrounding. Even if the hourly dose rate is not enough to count the difference, a moderate cumulative dose would clear the difference. In fact, results demonstrated a

  20. Serum Proteome Signature of Radiation Response: Upregulation of Inflammation-Related Factors and Downregulation of Apolipoproteins and Coagulation Factors in Cancer Patients Treated With Radiation Therapy—A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Widlak, Piotr, E-mail: widlak@io.gliwice.pl [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Jelonek, Karol; Wojakowska, Anna; Pietrowska, Monika [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Polanska, Joanna [Institute of Automatics Control, Silesian University of Technology, Gliwice (Poland); Marczak, Łukasz [Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan (Poland); Miszczyk, Leszek; Składowski, Krzysztof [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland)

    2015-08-01

    Purpose: Ionizing radiation affects the proteome of irradiated cells and tissue, yet data concerning changes induced during radiation therapy (RT) in human blood are fragmentary and inconclusive. We aimed to identify features of serum proteome and associated processes involved in response to partial body irradiation during cancer treatment. Methods and Materials: Twenty patients with head and neck squamous cell cancer (HNSCC) and 20 patients with prostate cancer received definitive intensity modulated RT. Blood samples were collected before RT, just after RT, and 1 month after the end of RT. Complete serum proteome was analyzed in individual samples, using a shotgun liquid chromatography-tandem mass spectrometry approach which allowed identification of approximately 450 proteins. Approximately 100 unique proteins were quantified in all samples after exclusion of immunoglobulins, and statistical significance of differences among consecutive samples was assessed. Processes associated with quantified proteins and their functional interactions were predicted using gene ontology tools. Results: RT-induced changes were marked in the HNSCC patient group: 22 upregulated and 33 downregulated proteins were detected in post-RT sera. Most of the changes reversed during follow-up, yet levels of some proteins remained affected 1 month after the end of RT. RT-upregulated proteins were associated with acute phase, inflammatory response, and complement activation. RT-downregulated proteins were associated with transport and metabolism of lipids (plasma apolipoproteins) and blood coagulation. RT-induced changes were much weaker in prostate cancer patients, which corresponded to differences in acute radiation toxicity observed in both groups. Nevertheless, general patterns of RT-induced sera proteome changes were similar in both of the groups of cancer patients. Conclusions: In this pilot study, we proposed to identify a molecular signature of radiation response, based on specific

  1. Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars.

    Science.gov (United States)

    Dartnell, Lewis R; Page, Kristian; Jorge-Villar, Susana E; Wright, Gary; Munshi, Tasnim; Scowen, Ian J; Ward, John M; Edwards, Howell G M

    2012-04-01

    Raman spectroscopy has proven to be a very effective approach for the detection of microorganisms colonising hostile environments on Earth. The ExoMars rover, due for launch in 2018, will carry a Raman laser spectrometer to analyse samples of the martian subsurface collected by the probe's 2-m drill in a search for similar biosignatures. The martian surface is unprotected from the flux of cosmic rays, an ionising radiation field that will degrade organic molecules and so diminish and distort the detectable Raman signature of potential martian microbial life. This study employs Raman spectroscopy to analyse samples of two model organisms, the cyanobacterium Synechocystis sp. PCC 6803 and the extremely radiation resistant polyextremophile Deinococcus radiodurans, that have been exposed to increasing doses of ionising radiation. The three most prominent peaks in the Raman spectra are from cellular carotenoids: deinoxanthin in D. radiodurans and β-carotene in Synechocystis. The degradative effect of ionising radiation is clearly seen, with significant diminishment of carotenoid spectral peak heights after 15 kGy and complete erasure of Raman biosignatures by 150 kGy of ionising radiation. The Raman signal of carotenoid in D. radiodurans diminishes more rapidly than that of Synechocystis, believed to be due to deinoxanthin acting as a superior scavenger of radiolytically produced reactive oxygen species, and so being destroyed more quickly than the less efficient antioxidant β-carotene. This study highlights the necessity for further experimental work on the manner and rate of degradation of Raman biosignatures by ionising radiation, as this is of prime importance for the successful detection of microbial life in the martian near subsurface.

  2. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  3. Radiation portal monitor with {sup 10}B+ZnS(Ag) neutron detector performance for the detection of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Gallego, E.; Lorente, A.; Ibanez F, S. [Universidad Politecnica de Madrid, Departamento de Ingenieria Energetica, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Gonzalez, J. A. [Universidad Politecnica de Madrid, Laboratorio de Ingenieria Nuclear, ETSI Caminos, Canales y Puertos, C. Prof. Aranguren 3, 28040 Madrid (Spain); Mendez, R., E-mail: ingkarenguzman@gmail.com [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Laboratorio de Patrones Neutronicos, Av. Complutense 40, 28040 Madrid (Spain)

    2016-10-15

    In homeland security, neutron detection is used to prevent the smuggling of special nuclear materials. Thermal neutrons are normally detected with {sup 3}He proportional counters, in the radiation portal monitors, Rpms, however due to the {sup 3}He shortage new procedures are being studied. In this work Monte Carlo methods, using the MCNP6 code, have been used to study the neutron detection features of a {sup 10}B+ZnS(Ag) under real conditions inside of a Rpm. The performance for neutron detection was carried out for {sup 252}Cf, {sup 238}U and {sup 239}Pu under different conditions. In order to mimic an actual situation occurring at border areas, a sample of SNM sited inside a vehicle was simulated and the Rpm with {sup 10}B+ZnS(Ag) response was calculated. At 200 cm the {sup 10}B+ZnS(Ag) on Rpm response is close to 2.5 cps-ng {sup 252}Cf, when the {sup 252}Cf neutron source is shielded with 0.5 cm-thick lead and 2.5 cm-thick polyethylene fulfilling the ANSI recommendations. Three different geometries of neutron detectors of {sup 10}B+ZnS(Ag) in a neutron detection system in Rpm were modeled. Therefore, the {sup 10}B+ZnS(Ag) detectors are an innovative and viable replacement for the {sup 3}He detectors in the Rpm. (Author)

  4. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    International Nuclear Information System (INIS)

    NELSON RL

    2008-01-01

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel

  5. How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys?

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available In this work, how synchrotron radiation techniques can be applied for detecting the microstructure in metallic glass (MG is studied. The unit cells are the basic structural units in crystals, though it has been suggested that the co-existence of various clusters may be the universal structural feature in MG. Therefore, it is a challenge to detect microstructures of MG even at the short-range scale by directly using synchrotron radiation techniques, such as X-ray diffraction and X-ray absorption methods. Here, a feasible scheme is developed where some state-of-the-art synchrotron radiation-based experiments can be combined with simulations to investigate the microstructure in MG. By studying a typical MG composition (Zr70Pd30, it is found that various clusters do co-exist in its microstructure, and icosahedral-like clusters are the popular structural units. This is the structural origin where there is precipitation of an icosahedral quasicrystalline phase prior to phase transformation from glass to crystal when heating Zr70Pd30 MG.

  6. The Impact of Induction Chemotherapy and the Associated Tumor Response on Subsequent Radiation-Related Changes in Lung Function and Tumor Response

    International Nuclear Information System (INIS)

    Mao Jingfang; Kocak, Zafer; Zhou Sumin; Garst, Jennifer; Evans, Elizabeth S.; Zhang Junan; Larrier, Nicole A.; Hollis, Donna R.; Folz, Rodney J.; Marks, Lawrence B.

    2007-01-01

    Purpose: To assess the impact of induction chemotherapy, and associated tumor shrinkage, on the subsequent radiation-related changes in pulmonary function and tumor response. Methods and Materials: As part of a prospective institutional review board-approved study, 91 evaluable patients treated definitively with thoracic radiation therapy (RT) for unresectable lung cancer were analyzed. The rates of RT-associated pulmonary toxicity and tumor response were compared in the patients with and without pre-RT chemotherapy. In the patients receiving induction chemotherapy, the rates of RT-associated pulmonary toxicity and tumor response were compared in the patients with and without a response (modified Response Evaluation Criteria in Solid Tumor criteria) to the pre-RT chemotherapy. Comparisons of the rates of improvements in pulmonary function tests (PFTs) post-RT, dyspnea requiring steroids, and percent declines in PFTs post-RT were compared in patient subgroups using Fisher's exact test, analysis of variance, and linear or logistic regression. Results: The use of pre-RT chemotherapy appears to increase the rate of radiation-induced pneumonitis (p = 0.009-0.07), but has no consistent impact on changes in PFTs. The degree of induction chemotherapy-associated tumor shrinkage is not associated with the rate of subsequent RT-associated pulmonary toxicity. The degree of tumor response to chemotherapy is not related to the degree of tumor response to RT. Conclusions: Additional study is needed to better clarify the impact of chemotherapy on radiation-associated disfunction

  7. Differential responses to radiation and hyperthermia of cloned cell lines derived from a single human melanoma xenograft

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Brustad, T.

    1984-01-01

    One uncloned and five cloned cell lines were derived from a single human melanoma xenograft. Cells from passages 7-12 were exposed to either radiation or hyperthermia (42.5 0 C, pH = 7.4) under aerobic conditions and the colony forming ability of the cells was assayed in soft agar. The five cloned lines showed individual and characteristic responses to radiation as well as to hyperthermia. The variation in the response to radiation was mainly reflected in the size of the shoulders of the survival curves rather than in the D 0 -values. The variation in the response to hyperthermia was mainly reflected in the terminal slopes of the survival curves. The survival curve of cells from the uncloned line, both when exposed to radiation and hyperthermia, was positioned in the midst of those of the cloned lines. The response of the cloned lines to radiation did not correlate with the response to hyperthermia, indicating that tumor cell subpopulations which are resistant to radiation may respond well to hyperthermia

  8. Extended abstracts: Microbeam Probes of Cellular Radiation Response [final report

    International Nuclear Information System (INIS)

    Brenner, David J.

    2000-01-01

    In July 1999, we organized the 4th International Workshop: Microbeam Probes of Cellular Radiation Response, held in Killiney Bay, Dublin, Ireland, on July 17-18. Roughly 75 scientists (about equal numbers of physicists and biologists) attended the workshop, the fourth in a bi-annual series. Extended abstracts from the meeting were published in the Radiation Research journal, vol. 153, iss. 2, pp. 220-238 (February 2000)(attached). All the objectives in the proposal were met

  9. Microdosimetric characterisation of radiation fields for modelling tissue response in radiotherapy

    Directory of Open Access Journals (Sweden)

    He Wang

    2014-02-01

    Full Text Available Purpose: Our overall goal is the development of an approach to model tissue response to radiotherapy in which a tissue is viewed as a statistical ensemble of interacting cells. This involves characterisation of radiation fields on the spatial scale of subcellular structures. On this scale, the spatial distribution of radiation energy imparted to tissue is highly non-uniform and should be characterised in statistical terms. Microdosimetry provides a formalism developed for that purpose. This study addresses limitations of the standard microdosimetric approach to modelling tissue response by introducing two new characteristics that include additional information in a form convenient for this application.Methods: The standard microdosimetric approach is based on the concept of a sensitive volume (SV representing a target volume in the cell. It is considered in isolation from other SVs, implying that energy depositions in different SVs are statistically independent and that individual cells respond to radiation independent of each other. In this study, we examined the latter approximation through analysis of correlation functions. All calculations were performed with Geant4-DNA Monte Carlo code. Results: We found that for some realistic scenarios, spatial correlations of deposited energy can be significant. Two new characteristics of radiation fields are proposed. The first is the specific energy-volume histogram (zVH, which is a microscopic analogue of the dose-volume histogram. The second describes the probability distribution of deposited energies in two SVs without assuming statistical independence between the SVs. Numerical examples for protons and carbon ions of therapeutic energies are presented and discussed.Conclusion: We extended the microdosimetric approach to modelling tissue response by including additional important characteristics and presented them in a more conventional radiotherapy format

  10. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling.

    Science.gov (United States)

    Coates, Philip J; Rundle, Jana K; Lorimore, Sally A; Wright, Eric G

    2008-01-15

    In addition to the directly mutagenic effects of energy deposition in DNA, ionizing radiation is associated with a variety of untargeted and delayed effects that result in ongoing bone marrow damage. Delayed effects are genotype dependent with CBA/Ca mice, but not C57BL/6 mice, susceptible to the induction of damage and also radiation-induced acute myeloid leukemia. Because macrophages are a potential source of ongoing damaging signals, we have determined their gene expression profiles and we show that bone marrow-derived macrophages show widely different intrinsic expression patterns. The profiles classify macrophages derived from CBA/Ca mice as M1-like (pro-inflammatory) and those from C57BL/6 mice as M2-like (anti-inflammatory); measurements of NOS2 and arginase activity in normal bone marrow macrophages confirm these findings. After irradiation in vivo, but not in vitro, C57BL/6 macrophages show a reduction in NOS2 and an increase in arginase activities, indicating a further M2 response, whereas CBA/Ca macrophages retain an M1 phenotype. Activation of specific signal transducer and activator of transcription signaling pathways in irradiated hemopoietic tissues supports these observations. The data indicate that macrophage activation is not a direct effect of radiation but a tissue response, secondary to the initial radiation exposure, and have important implications for understanding genotype-dependent responses and the mechanisms of the hemotoxic and leukemogenic consequences of radiation exposure.

  11. ESR hollows molten metal/slag interface detection

    International Nuclear Information System (INIS)

    Harris, B.; Klein, H.J.

    1983-01-01

    A system for detecting the location of a molten metal/slag interface during the casting of electroslag remelted hollows includes a gamma ray radiation source and a scintillation counter. The source and counter reside outside the casting mould and are held in fixed spatial relationships with respect to one another and with respect to the mandrel. The radiation from the source is directed chordally through the mould and through the annular casting zone, defined between the sidewalls of the upwardly driven mandrel and the mould without contacting said mandrel. The counter provides an electrical signal responsive to the rate of radiation events detected thereby. (author)

  12. Cell Cycle Regulation and Apoptotic Responses of the Embryonic Chick Retina by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Margot Mayer

    Full Text Available Ionizing radiation (IR exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system.

  13. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P. [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  14. Development of semiconductor radiation sensors for portable alarm-dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Moon, B. S.; Chung, C. E.; Hong, S. B.; Kim, J. Y.; Kim, J. B.; Han, S. H.; Lee, W. G. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-01-01

    We studied Semiconductor Radiation Sensors for Portable Alarm-Dosimeter. We calculated response functions for gamma energy 0.021, 0.122, 0.662, 0.835, 1.2 MeV using EGS4 codes. When we measured at various distance from source to detector, the detection efficiency of Si semiconductor detector was better than that of GM tube. The linear absorption coefficients of steel and aluminum plate were measured. These experimental results of the response of detector for intensity of radiation field coincide to the theoretical expectation. The count value of Si detector was changed with changing thickness of steel as changing threshold voltage of discriminator, and the linear absorption coefficient increased with increasing threshold voltage. Radiation detection efficiency shows difference at each threshold voltage condition. This results coincided to the theoretical simulation. 33 refs., 27 figs., 8 tabs. (Author)

  15. Lessons Learned from the Response to Radiation Emergencies (1945-2010)

    International Nuclear Information System (INIS)

    2012-01-01

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  16. Lessons Learned from the Response to Radiation Emergencies (1945-2010)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  17. Dose-response relationship of octylphenol and radiation evaluated by tradescantia-micronucleus assay

    International Nuclear Information System (INIS)

    Kim, J. K.; Cheon, K. J.; Lee, B. H.; Shin, H. S.; Lee, J. H.

    2002-01-01

    Many kinds of synthetic chemicals have been being used for various purposes. Some of them are called 'Endocrine Disruptor's because they can disturb the endocrine system of organisms. Presently no technique is established for the quantitative assessment of biological risk of the environmental hormones. The pollen mother cells (PMC) of Tradescantia are very sensitive to chemical toxicants or ionizing radiation, and thus can be used as a biological end-point assessing their effect. Micronucleus frequencies in PMC showed a good dose- and concentration-response relationship for radiation, bisphenol A and octylphenol. A parallel series of experiment using five increasing doses of gamma-ray at 10, 20, 30, 40 and 50 cGy was conducted. The MCN frequencies of 12.0, 25.2, 41.7, 76 and 83 MCN/100 tetrads were observed from each of the increasing gamma-ray dosage groups, respectively. Lenear regression analysis of the gamma-ray data MCN frequencies yielded a correlation coefficient of 0.95. the MCN frequencies in pollen mother cells treated with bisphenol a and octylphenol showed dose-response relationship in a concentration of 0, 1, 2, 4 μM and 0, 4, 10, 20 μM. the MCN frequency for the bisphenol a and octylphenol group yields 2.33, 8.06, 12.7 and 19.6 MCN/100 tetrads for the bisphenol a and 2.33, 2.33, 11.47, 17.6 MCN/100 tetrads for the octylphenol. The MCN frequency of the control was 2.33 MCN/100 tetrads. It is known from the result that Trad-MCN assay can be an excellent tool for detection of biological risk due to environmental toxicants or synthetic chemicals

  18. A surface acoustic wave response detection method for passive wireless torque sensor

    Science.gov (United States)

    Fan, Yanping; Kong, Ping; Qi, Hongli; Liu, Hongye; Ji, Xiaojun

    2018-01-01

    This paper presents an effective surface acoustic wave (SAW) response detection method for the passive wireless SAW torque sensor to improve the measurement accuracy. An analysis was conducted on the relationship between the response energy-entropy and the bandwidth of SAW resonator (SAWR). A self-correlation method was modified to suppress the blurred white noise and highlight the attenuation characteristic of wireless SAW response. The SAW response was detected according to both the variation and the duration of energy-entropy ascension of an acquired RF signal. Numerical simulation results showed that the SAW response can be detected even when the signal-to-noise ratio (SNR) is 6dB. The proposed SAW response detection method was evaluated with several experiments at different conditions. The SAW response can be well distinguished from the sinusoidal signal and the noise. The performance of the SAW torque measurement system incorporating the detection method was tested. The obtained repeatability error was 0.23% and the linearity was 0.9934, indicating the validity of the detection method.

  19. Modifications of radiation detection response of PADC track detectors by photons

    CERN Document Server

    Sinha, D

    1998-01-01

    Photon induced modifications in polyalyldiglycol carbonate (PADC) track detectors have been studied in the dose range of 10 sup 1 -10 sup 6 Gy. It was found that some of the properties like bulk-etch rate, track-etch rate got enhanced at the dose of 10 sup 6 Gy. Activation energy for bulk-etching has been determined for different gamma doses. In order to correlate the high etch rate with the chemical modifications, UV-Vis, IR and ESR studies were carried out. These studies clearly give the indication that radiation damage results into radical formation through bond cleavage. TGA study was performed for understanding the thermal resistance of this detector. The results are presented and discussed.

  20. Obligations and responsibilities in radiation protection in the medical field

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly presents the various obligations and responsibilities of the various actors involved in or concerned by radiation protection in the medical field: the hospital administration (with respect to workers and patients), the physician (authorization and declaration, justification, optimization), the medical electro-radiology operator, the person with expertise in medical radio-physics (PSRPM), the radio-pharmacist (he is required in nuclear medicine with internal use of pharmaceutical product), the personnel with expertise in radiation protection (PCR), and other health professionals

  1. HgI2 nanostructures obtained hydrothermally for application in ionizing radiation detection

    International Nuclear Information System (INIS)

    Pérez Barthaburu, María; Bentos Pereira, Heinkel; Fornaro, Laura; Galain, Isabel; Aguiar, Ivana

    2016-01-01

    The compound semiconductor HgI 2 has been widely studied and employed as a material for ionizing radiation detection. Monocrystal growth is an intricate method for obtaining materials for this application. With the aim of finding a simpler and more effective way to develop ionizing radiation detectors, we employed HgI 2 nanostructures subjected to a hydrothermal treatment and then pressed for this purpose. In the synthesis procedure, aqueous solutions of Hg(NO 3 ) 2 and NaI were mixed until their reaction completed and the suspension obtained was then placed in a homemade autoclave and heated at 120 °C for 2, 10 or 24 h. We confirmed the HgI 2 tetragonal phase by powder XRD in all cases, independently of the synthesis conditions employed. Nanoparticles were characterized by their size and morphology by TEM. We used the HgI 2 nanostructures to obtain a pellet by applying 0.7 GPa of pressure at room temperature. The pellet was then used to construct the detector, and we studied the electrical properties of the detector and its response to 241 Am sources of different exposure rates. The resistivity and signal-to-noise ratio obtained are of the order of those reported for HgI 2 detectors assembled with monocrystals. The results obtained in this work encourage us to work further on this topic, improving the method, scaling the detector’s size and studying its spectrometric grade. (paper)

  2. Heritability of Radiation Response in Lung Cancer Families

    Directory of Open Access Journals (Sweden)

    H.-Erich Wichmann

    2012-03-01

    Full Text Available Radiation sensitivity is assumed to be a cancer susceptibility factor due to impaired DNA damage signalling and repair. Relevant genetic factors may also determine the observed familial aggregation of early onset lung cancer. We investigated the heritability of radiation sensitivity in families of 177 Caucasian cases of early onset lung cancer. In total 798 individuals were characterized for their radiation-induced DNA damage response. DNA damage analysis was performed by alkaline comet assay before and after in vitro irradiation of isolated lymphocytes. The cells were exposed to a dose of 4 Gy and allowed to repair induced DNA-damage up to 60 minutes. The primary outcome parameter Olive Tail Moment was the basis for heritability estimates. Heritability was highest for basal damage (without irradiation 70% (95%-CI: 51%–88% and initial damage (directly after irradiation 65% (95%-CI: 47%–83% and decreased to 20%–48% for the residual damage after different repair times. Hence our study supports the hypothesis that genomic instability represented by the basal DNA damage as well as radiation induced and repaired damage is highly heritable. Genes influencing genome instability and DNA repair are therefore of major interest for the etiology of lung cancer in the young. The comet assay represents a proper tool to investigate heritability of the radiation sensitive phenotype. Our results are in good agreement with other mutagen sensitivity assays.

  3. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    International Nuclear Information System (INIS)

    Campos, D; Peeters, W; Nickel, K; Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M

    2015-01-01

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response

  4. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    Energy Technology Data Exchange (ETDEWEB)

    Campos, D [University of Wisconsin Madison, Madison, WI (United States); Peeters, W [Radboud University Medical Center, Nijmegen, GA (United States); Nickel, K [University of Wisconsin, Madison, WI (United States); Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M [University of Wisconsin, Madison, Wisconsin (United States)

    2015-06-15

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  5. Process and devices of detection of hard electromagnetic or particle radiations using a superconducting element

    International Nuclear Information System (INIS)

    Drukier, A.K.; Valette, Claude; Waysand, Georges.

    1975-01-01

    The invention relates to processes and systems for the detection of hard electromagnetic or particle radiations and the sensors fitted to these systems. 'Hard radiations' means those whose energy is greater than a variable threshold, depending on the applications, but always more than 5 keV. The use of these sensors and the associated systems can therefore be envisaged in radiography and also in emission gammagraphy in the biological, anatomic and medical fields. In these processes, in order to detect a photon or a radiation particle, use is made of the transition phenomenon of a homogeneous grain of superconducting material of the first kind, from the metastable superconducting state to the normal state, under the effect of a photoelectron ejected by the impact of the photon or of the particle on the grain of superconducting material [fr

  6. Radiation-use efficiency response to vapor pressure deficit for maize and sorghum

    International Nuclear Information System (INIS)

    Kiniry, J.R.; Landivar, J.A.; Witt, M.; Gerik, T.J.; Cavero, J.; Wade, L.J.

    1998-01-01

    Variability within a crop species in the amount of dry mass produced per unit intercepted solar radiation, or radiation-use efficiency (RUE), is important for the quantification of plant productivity. RUE has been used to integrate (1) leaf area, (2) solar radiation interception, and (3) productivity per unit leaf area into crop productivity. Responsiveness of RUE to vapor pressure deficit (VPD) should relate closely to responsiveness of CO 2 exchange rate (CER) to VPD. The objective of this study was to compare independent RUE measurements to published response functions relating VPD with RUE of maize (Zea mays L.) and grain sorghum [Sorghum bicolor L. (Moench)]. Data sets from five locations covering a wide range of mean VPD values were compared to published response functions. Predicted RUE values were nearly always within the 95% confidence intervals of measurements. Measured RUE of maize decreased as VPD increased from 0.9 to 1.7 kPa. For sorghum, measured values of RUE agreed closely with predictions. RUE of sorghum decreased as VPD increased from 1.1 to 2.2 kPa. The relative RUE:VPD responses for these two species were similar to CER:VPD responses reported in the literature. Thus, these RUE:VPD responses may be general and appear to be related to carbon exchange rates. We calculated the expected impacts of VPD on RUE at three USA locations during maize and sorghum growing seasons. The RUE:VPD equations offer hope in describing location effects and time-of-year effects on RUE. (author)

  7. Use of PET to monitor the response of lung cancer to radiation treatment

    International Nuclear Information System (INIS)

    Erdi, Y.E.; Humm, J.L.; Erdi, A.K.; Yorke, E.D.; Macapinlac, H.; Larson, S.M.; Rosenzweig, K.E.

    2000-01-01

    Approximately 170,000 people are diagnosed with lung cancer in the United States each year. Many of these patients receive external beam radiation for treatment. Fluorine-18 2-fluoro-2-deoxy-d-glucose positron emission tomography (FDG PET) is increasingly being used in evaluating non-small cell lung cancer and may be of clinical utility in assessing response to treatment. In this report, we present FDG PET images and data from two patients who were followed with a total of eight and seven serial FDG PET scans, respectively, through the entire course of their radiation therapy. Changes in several potential response parameters are shown versus time, including lesion volume (V FDG ) by PET, SUV av , SUV max , and total lesion glycolysis (TLG) during the course of radiotherapy. The response parameters for patient 1 demonstrated a progressive decrease; however, the response parameters for patient 2 showed an initial decrease followed by an increase. The data presented here may suggest that the outcome of radiation therapy can be predicted by PET imaging, but this observation requires a study of additional patients. (orig.)

  8. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    Science.gov (United States)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  9. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    International Nuclear Information System (INIS)

    Wu, K.; Guo, L.; Cong, J.B.; Sun, C.P.; Hu, J.M.; Zhou, Z.S.; Wang, S.; Zhang, Y.; Zhang, X.; Shi, Y.M.

    1998-01-01

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  10. Minimally Invasive Radiation Biodosimetry and Evaluation of Organ Responses

    Science.gov (United States)

    2016-10-01

    and time. The levels of circulating miR-150 was found reduced in a dose and time dependent manner , while that of miRNA-574 was found increasing after...radiation in dose and time dependent manner . Additional putative biomarkers exhibiting dose-time response have been identified, which need

  11. The SOS chromotest: bacterial cells to detect and characterize genotoxic products and radiations

    International Nuclear Information System (INIS)

    Quillardet, P.; Hofnung, M.

    1994-01-01

    The advanced knowledge we have on the bacterium Escherichia coli has facilitated the development of the colorimetric and fast assay, the SOS chromotest, which involves a single tester strain and gives a qualitative and a quantitative assay of the action of a genotoxic agent. We discuss a number of possibilities opened by this test in order to make a genetic diagnosis of the chemical nature of the damages caused in the genetic material by means of a battery of strains which have been genetically modified for that purpose. In order to give an idea of the accuracy of the bacterial responses and of the way they can be used to characterize the DNA damage by a genetic approach, the case of alkylating agents is described in a relatively detailed fashion, and the case of oxidative agents is rapidly mentioned. The sensitivity to ionizing radiation is such that the test is able to detect doses of the order of 1 Gy. We discuss briefly how it could be possible to increase this sensitivity by genetically inactivating repair systems which process the injuries caused by these agents, and how the use of a battery of tester strains could also give information on the nature of injuries caused by various types of ionizing radiation. (authors). 39 refs. 4 figs. 1 tab

  12. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud, E-mail: mahmoudeithar@fkkksa.utm.my [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia); Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia)

    2011-11-15

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting (G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 {sup o}C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting. - Highlights: > A precursor for phosphoric acid membrane for a high temperature PEM fuel cell was prepared. > The grafting parameters for radiation induced grafting of 1-VIm onto ETFE film were optimized. > Surface response method was used to predict the degree of grafting. > The predicted value agreed well with the experimental data as indicated by a 3% deviation. > The number of the experiments and cost of radiation induced grafting were reduced.

  13. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    Science.gov (United States)

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  14. Aerial Radiation Detection

    International Nuclear Information System (INIS)

    Quam, W. M.

    1999-01-01

    An airborne system designed for the detection of radioactive sources on the soil surface from an aircraft normally senses gamma rays emitted by the source. Gamma rays have the longest path length (least attenuation) through the air of any of the common radioactive emissions and will thus permit source detection at large distances. A secondary benefit from gamma rays detection if that nearly all radioactive isotopes can be identified by the spectrum of gammas emitted. Major gaseous emissions from fuel processing plants emit gammas that may be detected and identified. Some types of special nuclear material also emit neutrons which are also useful for detection at a distance

  15. Linear, no threshold response at low doses of ionizing radiation: ideology, prejudice and science

    International Nuclear Information System (INIS)

    Kesavan, P.C.

    2014-01-01

    The linear, no threshold (LNT) response model assumes that there is no threshold dose for the radiation-induced genetic effects (heritable mutations and cancer), and it forms the current basis for radiation protection standards for radiation workers and the general public. The LNT model is, however, based more on ideology than valid radiobiological data. Further, phenomena such as 'radiation hormesis', 'radioadaptive response', 'bystander effects' and 'genomic instability' are now demonstrated to be radioprotective and beneficial. More importantly, the 'differential gene expression' reveals that qualitatively different proteins are induced by low and high doses. This finding negates the LNT model which assumes that qualitatively similar proteins are formed at all doses. Thus, all available scientific data challenge the LNT hypothesis. (author)

  16. Investigation of physical detection markers in irradiated foods under different radiation sources and post-irradiation storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong Ho; Kim, Gui Ran; Ahn, Jae Jun; Kim, Dong Gil; Jin, Qiong Wen; Park, Ju Hwan; Lee, Ji Hyun [Kyungpook National University, Daegu (Korea, Republic of)

    2010-04-15

    In PSL analysis, all unirradiated samples showed less than 700 (negative) photon counts (PCs). At 5 kGy, spice samples showed PCs in range of 700-5,000 (intermediate), while grains, legumes, root-crops, and seasonings samples showed PCs over 5,000 (positive). This PSL based-detection of radiation treatment was possible even after 24 months of storage. In TL analysis, TL glow curve was characteristically different between unirradiated and irradiated samples. Glow curves were observed in temperature ranges of 150-250 .deg. C for irradiated and over 300 .deg. C for unirradiated samples. TL ratio (TL{sub 1}/TL{sub 2}) provided valuable additional confirmations as unirradiated sample showed values less than 0.1, while irradiated sample showed more than 0.1. However, with storage time, TL intensity and TL ratio decreased but discrimination was still possible even after storage of 24 months. Samples stored at room temperature with exposure to direct or indirect light enhanced the mentioned decrease of TL intensity and TL ratio as compared to low temperature storage in dark room. In ESR analysis, legumes and spices showed radiation-induced cellulose radicals, while seasonings showed multi-component signals of radiation-induced crystalline sugar radical. These radiation-induced radicals could be potential markers for the detection of radiation treatments in subjected samples. The decreasing trend was also found for radiation-specific ESR signals of cellulose and crystalline sugar radicals during storage. However, radiation-induced radicals in legumes, powdered pepper and seasonings were detectable even after 6 months of storage

  17. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses.

    Science.gov (United States)

    Carbonell-Bejerano, Pablo; Diago, Maria-Paz; Martínez-Abaigar, Javier; Martínez-Zapater, José M; Tardáguila, Javier; Núñez-Olivera, Encarnación

    2014-07-09

    Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and

  18. Summary Report for the Radiation Detection for Nuclear Security Summer School 2012

    Energy Technology Data Exchange (ETDEWEB)

    Runkle, Robert C.; Baciak, James E.; Stave, Jean A.

    2012-08-22

    The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; the second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.

  19. The role of IL-6 in the radiation response of prostate cancer

    International Nuclear Information System (INIS)

    Wu, Chun-Te; Chen, Miao-Fen; Chen, Wen-Cheng; Hsieh, Ching-Chuan

    2013-01-01

    Hormone-resistant (HR) prostate cancers are highly aggressive and respond poorly to treatment. IL-6/STAT3 signaling has been identified to link with the transition of HR and aggressive tumor behavior. The role of IL-6 in the radiation response of prostate cancer was investigated in the present study. The murine prostate cancer cell line (TRAMP-C1) and the hormone-resistant cell sub-line, TRAMP-HR, were used to assess the radiation response using in vitro clonogenic assays and tumor growth delay in vivo. Biological changes following irradiation were investigated by means of experimental manipulation of IL-6 signaling. Correlations among IL-6 levels, tumor regrowth, angiogenesis and myeloid-derived suppressor cell (MDSC) recruitment were examined in an animal model. HR prostate cancer cells had a higher expression of IL-6 and more activated STAT3, compared to TRAMP-C1 cells. HR prostate cancer cells had a greater capacity to scavenge reactive oxygen species, suffered less apoptosis, and subsequently were more likely to survive after irradiation. Moreover, IL-6 expression was positively linked to irradiation and radiation resistance. IL-6 inhibition enhanced the radiation sensitivity of prostate cancer, which was associated with increased p53, RT-induced ROS and oxidative DNA damage. Furthermore, when mice were irradiated with a sub-lethal dose, inhibition of IL-6 protein expression attenuated angiogenesis, MDSC recruitment, and decreased tumor regrowth. These data demonstrate that IL-6 is important in the biological sequelae following irradiation. Therefore, treatment with concurrent IL-6 inhibition is a potential therapeutic strategy for increasing the radiation response of prostate cancer

  20. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures

  1. Mathematical simulation of gamma-radiation angle distribution measurements

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  2. The use of discriminant analysis for evaluation of early-response multiple biomarkers of radiation exposure using non-human primate 6-Gy whole-body radiation model

    Energy Technology Data Exchange (ETDEWEB)

    Ossetrova, N.I. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: ossetrova@afrri.usuhs.mil; Farese, A.M.; MacVittie, T.J. [Marlene and Stewart Greenebaum Cancer Center, Bressler Research Building, Room 7-039, University of Maryland-Baltimore, 655 West Baltimore Street, Baltimore, MD 21201 (United States); Manglapus, G.L.; Blakely, W.F. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    The present need to rapidly identify severely irradiated individuals in mass-casualty and population-monitoring scenarios prompted an evaluation of potential protein biomarkers to provide early diagnostic information after exposure. The level of specific proteins measured using immunodiagnostic technologies may be useful as protein biomarkers to provide early diagnostic information for acute radiation exposures. Herein we present results from on-going studies using a non-human primate (NHP) 6-Gy X-rays ( 0.13Gymin{sup -1}) whole-body radiation model. Protein targets were measured by enzyme-linked immunosorbent assay (ELISA) in blood plasma before, 1, and 2 days after exposure. Exposure of 10 NHPs to 6 Gy resulted in the up-regulation of plasma levels of (a) p21 WAF1/CIP1, (b) interleukin 6 (IL-6), (c) tissue enzyme salivary {alpha}-amylase, and (d) C-reactive protein. Data presented show the potential utility of protein biomarkers selected from distinctly different pathways to detect radiation exposure. A correlation analysis demonstrated strong correlations among different combinations of four candidate radiation-responsive blood protein biomarkers. Data analyzed with use of multivariate discriminant analysis established very successful separation of NHP groups: 100% discrimination power for animals with correct classification for separation between groups before and 1 day after irradiation, and 95% discrimination power for separation between groups before and 2 days after irradiation. These results also demonstrate proof-in-concept that multiple protein biomarkers provide early diagnostic information to the medical community, along with classical biodosimetric methodologies, to effectively manage radiation casualty incidents.

  3. Detection of the strange bodies on the conveyor belt using gamma radiation technique

    International Nuclear Information System (INIS)

    Barna, A.; Ochiana, G.; Oncescu, M.

    1990-01-01

    The aim of this paper is to present a method for the computation of the activity of a gamma radiation source used in a radiometric assembly designed to detect the strange bodies (iron, stone or wood-made granules) within the textile material on the conveyor belt. The mathematical modelling method based on the Monte Carlo procedure has been used, with different values of the errors of types I and II; the investigation method is the transmission of gamma radiations. (Author)

  4. Detection capabilities and accuracy requirements of concentrations of radioactive material in air for radiation protection purposes

    International Nuclear Information System (INIS)

    Brodsky, A.

    1987-01-01

    Recent developments in the formulation of detection capability and accuracy criteria for bioassay measurements will be interpreted and adapted to provide similar criteria for the measurement of air concentrations of radioactive material for radiation protection purposes. Considerations of accuracy will be related to the known variability of measurement processes, as well as the uncertainties in the calculated limits of intake that serve as the basis of regulatory and voluntary standards of practice. Formulations and criteria will be presented for minimum detection amounts (MDA) and precision and bias of measurements for radiation protection purposes. 17 references

  5. RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response

    International Nuclear Information System (INIS)

    Ghandhi, Shanaz A; Ponnaiya, Brian; Panigrahi, Sunil K; Hopkins, Kevin M; Cui, Qingping; Hei, Tom K; Amundson, Sally A; Lieberman, Howard B

    2014-01-01

    Radiation induced bystander effects are an important component of the overall response of cells to irradiation and are associated with human health risks. The mechanism responsible includes intra-cellular and inter-cellular signaling by which the bystander response is propagated. However, details of the signaling mechanism are not well defined. We measured the bystander response of Mrad9 +/+ and Mrad9 −/− mouse embryonic stem cells, as well as human H1299 cells with inherent or RNA interference-mediated reduced RAD9 levels after exposure to 1 Gy α particles, by scoring chromosomal aberrations and micronuclei formation, respectively. In addition, we used microarray gene expression analyses to profile the transcriptome of directly irradiated and bystander H1299 cells. We demonstrated that Mrad9 null enhances chromatid aberration frequency induced by radiation in bystander mouse embryonic stem cells. In addition, we found that H1299 cells with reduced RAD9 protein levels showed a higher frequency of radiation induced bystander micronuclei formation, compared with parental cells containing inherent levels of RAD9. The enhanced bystander response in human cells was associated with a unique transcriptomic profile. In unirradiated cells, RAD9 reduction broadly affected stress response pathways at the mRNA level; there was reduction in transcript levels corresponding to genes encoding multiple members of the UVA-MAPK and p38MAPK families, such as STAT1 and PARP1, suggesting that these signaling mechanisms may not function optimally when RAD9 is reduced. Using network analysis, we found that differential activation of the SP1 and NUPR1 transcriptional regulators was predicted in directly irradiated and bystander H1299 cells. Transcription factor prediction analysis also implied that HIF1α (Hypoxia induced factor 1 alpha) activation by protein stabilization in irradiated cells could be a negative predictor of the bystander response, suggesting that local hypoxic stress

  6. Studies on modeling to failed fuel detection system response in LMFBR

    International Nuclear Information System (INIS)

    Miyazawa, T.; Saji, G.; Mitsuzuku, N.; Hikichi, T.; Odo, T.; Rindo, H.

    1981-05-01

    Failed Fuel Detection (FFD) system with Fission Products (FP) detection is considered to be the most promissing method, since FP provides direct information against fuel element failure. For designing FFD system and for evaluating FFD signals, some adequate FFD signal response to fuel failure have been required. But few models are available in nowadays. Thus Power Reactor and Nuclear Fuel Development Corporation (PNC) had developed FFD response model with computer codes, based on several fundamental investigations on FP release and FP behavior, and referred to foreign country experiences on fuel failure. In developing the model, noble gas and halogen FP release and behavior were considered, since FFD system would be composed of both cover gas monitoring and delayed neutron monitoring. The developed model can provide typical fuel failure response and detection limit which depends on various background signals at cover gas monitoring and delayed neutron monitoring. According to the FFD response model, we tried to assume fuel failure response and detection limit at Japan experimental fast reactor ''JOYO''. The detection limit of JOYO FFD system was estimated by measuring the background signals. Followed on the studies, a complete computer code has been now made with some improvement. On the paper, the details of the model, out line of developed computer code, status of JOYO FFD system, and trial assumption of JOYO FFD response and detection limit. (author)

  7. Improvements in or relating to radiation detection arrangements

    International Nuclear Information System (INIS)

    Davis, G.P.

    1977-01-01

    A radiation detection arrangement is described that that comprises a number of scintillator devices, and a single multi-channel photomultiplier tube. Light from the scintillator devices is incident on the photocathode through an entrance window in the tube and multiplier entrance separating means are provided whereby light from each of the devices is made to be incident upon the channel entrances of photomultiplier tube. Various geometrical forms for the scintillator devices are described. This arrangement avoids the use of large number of small photomultiplier tubes, which is expensive and gives rise to difficulties in stacking the tubes in closely spaced side-by-side relationship. (U.K.)

  8. Effect of cobalt-60 radiation on response to endodontic therapy in monkeys

    International Nuclear Information System (INIS)

    Matson, J.E.; Patterson, S.S.; Kafrawy, A.H.; Hornback, N.B.; Shidnia, H.

    1978-01-01

    Response of teeth that had received therapeutic doses of Cobalt-60 radiation to endodontic therapy were investigated in three monkeys. The results indicated no appreciable effect of the irradiation on the response to root canal treatment aside from reduction in osteoblastic activity

  9. Three-dimensional dose-response models of risk for radiation injury carcinogenesis

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1988-01-01

    The use of computer graphics in conjunction with three-dimensional models of dose-response relationships for chronic exposure to ionizing radiation dramaticly clarifies the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. As an example, the functionally injurious and carcinogenic responses after systemic uptake of Ra-226 by beagles, mice and people with consequent alpha particle irradiation of the bone are represented by three-dimensional dose-rate/time/response surfaces that demonstrate the contributions with the passage of time of the competing deleterious responses. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each effect. Radiation bone injury predominates at high dose rates and bone cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for bone cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to planning and evaluating epidemiological analyses and experimental studies

  10. Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr T.; Malchow, Russell L.

    2013-03-12

    During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nation’s ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Security Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams’ officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions’ aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the existence

  11. Epstein-barr virus latent membrane protein 1 (EBV-LMP1) and tumor proliferation rate as predictive factors of nasopharyngeal cancer (NPC) radiation response

    Energy Technology Data Exchange (ETDEWEB)

    Gondhowiardjo, S. [Univ. of Indonesia, Jakarta (Indonesia). Faculty of Medicine

    2000-05-01

    Irradiation is still the treatment of choice in NPC treatment as one of highest malignancy in Indonesia as well as in Southeast Asia. Up to now there is no accurate predictor on radiation response, since that the similar histo-morphological pattern, as a well-known prognostic factor can revealed a wide range of treatment outcomes. Purpose of the study is to established the influence of EBV-LMP 1 as the most important protein expressed by EBV oncogenes in cellular behavior such as proliferation rate, tumor aggressivity in NPC and to find out the role of both, proliferation rate and EBV-LMP1 expression as a predictor on NPC radiation response. One-hundred seventy-two paraffin-embedded biopsy specimens from NPC patients were analysed flow-cytometrically to obtain the S-phase fraction value as the proliferation parameter. From this group of patients, 81 fresh specimen biopsies could be collected, and the EBV-LMP 1 expression were detected by western blotting technique (mAB S12-Karolinska Institute) could be done. Several variables such as clinical stage, pathology pattern and radiation response were also collected. The radiation responses were established clinically (by nasopharyngoscopy), by CT scanning and pathologically. Sixty-five percent of our patients belong to the T3 and T4, whereby the N2-3 group consists 75% of them. Fourteen percent of the patients are Hsu type I, 48% are Hs type II and the rest belong to Hsu type III. Our study revealed that the mean SPF value was 14.62% (10.18%, which correlated (p<0.05) with the tumor and nodal sizes). The rate of positive expression of the EBV-LMP1 was 50%, and did not show a correlation with the proliferation activity as well as the radiation response. However, it showed a significant correlation with the tumor and nodal size. There was a significant correlation between this proliferation value with the radiation response calculated by both, bivariate as well as by multivariate analysis. The complete and incomplete

  12. Technical Note: Response measurement for select radiation detectors in magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M., E-mail: michaelreynolds@ualberta.net [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division,University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  13. Radiation portal monitor with "1"0B+ZnS(Ag) neutron detector performance for the detection of special nuclear materials

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Gallego, E.; Lorente, A.; Ibanez F, S.; Vega C, H. R.; Gonzalez, J. A.; Mendez, R.

    2016-10-01

    In homeland security, neutron detection is used to prevent the smuggling of special nuclear materials. Thermal neutrons are normally detected with "3He proportional counters, in the radiation portal monitors, Rpms, however due to the "3He shortage new procedures are being studied. In this work Monte Carlo methods, using the MCNP6 code, have been used to study the neutron detection features of a "1"0B+ZnS(Ag) under real conditions inside of a Rpm. The performance for neutron detection was carried out for "2"5"2Cf, "2"3"8U and "2"3"9Pu under different conditions. In order to mimic an actual situation occurring at border areas, a sample of SNM sited inside a vehicle was simulated and the Rpm with "1"0B+ZnS(Ag) response was calculated. At 200 cm the "1"0B+ZnS(Ag) on Rpm response is close to 2.5 cps-ng "2"5"2Cf, when the "2"5"2Cf neutron source is shielded with 0.5 cm-thick lead and 2.5 cm-thick polyethylene fulfilling the ANSI recommendations. Three different geometries of neutron detectors of "1"0B+ZnS(Ag) in a neutron detection system in Rpm were modeled. Therefore, the "1"0B+ZnS(Ag) detectors are an innovative and viable replacement for the "3He detectors in the Rpm. (Author)

  14. Qualification criteria for persons responsible for radiation protection

    International Nuclear Information System (INIS)

    Wehner, G

    1980-01-01

    A survey of the qualification criteria included in the German atomic law (Atomic Energy Act, Radiological Protection Ordinance and X-ray Protection Ordinance) for persons responsible for radiation protection is given. Especially the various activities for which a health physics officer is required, the range of qualification in each case and the way the qualification has to be proved, are pointed out. Also the different guides that are issued to complete the legal requirements are mentioned. The definitions of the term qualification for health physics given in the different guides are cited and it is shown, that the qualification of a healt physics officer has to be based on the three criteria (I) vocational training. (II) professional experience and (III) the necessary knowledge in radiation protection. (orig./HP) [de

  15. Corn seed response to gamma radiation as a function of water content

    International Nuclear Information System (INIS)

    Viccini, Lyderson Facio; Saraiva, Luiz Sergio; Cruz, Cosme Damiao

    1997-01-01

    The study of the factors that affect the radiation efficiency is important, because it makes easier to get mutants that may be used as source of variability on improvement programs or as structural chromosomic aberrations for cytogenetics studies. The main of this research was to investigate the influence of corn seed water content on gamma radiation response. As a rule, the damage caused by irradiation was more evident on seeds with higher water content. Also, increased damages were observed with higher radiation doses. (author)

  16. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Deng, Chenguang; Wang, Ting; Wu, Jingjing; Xu, Wei; Li, Huasheng; Liu, Min

    2017-01-01

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  17. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chenguang [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Wang, Ting [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Wu, Jingjing [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Xu, Wei [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Li, Huasheng; Liu, Min [China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); and others

    2017-02-15

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  18. Preparedness for response to the challenges from orphan sources: nationwide environmental radiation mapping with state of the art monitoring systems

    International Nuclear Information System (INIS)

    Saindane, Shashank S.; Pradeepkumar, K.S.; Suri, M.M.K.; Sharma, D.N.

    2008-01-01

    Based on the various international reports on orphan sources, the potential for radiological emergencies in public domain is recognized as a cause of concern. To detect the presence of any such orphan sources and to strengthen the preparedness for response to any radiological emergencies in public domain, a nationwide radiation mapping programme was initiated in India. Various radiation monitoring systems, few of them integrated with Global Positioning System (GPS) installed in mobile monitoring vans were used for this purpose. This monitoring also helped in generating the base line dose rate data of the cities and also in demonstrating the methodology of environmental monitoring for locating the presence of orphan sources, if any. During the detailed monitoring of various cities of the country, different systems such as GSM based Radiation Monitoring System (GRaMS), Compact Radiation Monitoring system, Portable Mobile Gamma Spectrometry System, Gamma Tracer System etc. installed in a vehicle were made to continuously acquire the data at a varying rate from 10 sec to 1 minute acquisition time. These systems can measure dose rate in the range of 0.01 - 100 μGy h -1 and can detect 7.4 MBq (200 μCi) of 60 Co and 25 MBq (675 μCi) of 137 Cs from a distance of 5 metre. Average dose rate recorded during these environmental monitoring was 81 ± 07 nGy h -1 with a maximum of 210 ± 11 nGyh -1 at Bangalore (attributed to the presence of K-40). The digital topographic map and the data acquired from the radiation mapping are used to generate terrestrial radiation map. This radiation profile stored in the database can be used as reference while carrying out the impact assessment following any nuclear / radiological emergencies. These systems also help to tag the radiation levels along with positional coordinates online onto the GIS map of the area. GRaMS also demonstrated its capability for online transmission of the data to the centralized data acquisition Base Station

  19. Performance Analysis of Si-Based Ultra-Shallow Junction Photodiodes for UV Radiation Detection

    NARCIS (Netherlands)

    Shi, L.

    2013-01-01

    This thesis presents a performance investigation of newly-developed ultra-shallow junction photodiodes (PureB-diodes) for ultraviolet (UV) radiation detection. The photodiodes are fabricated by pure boron chemical vapor deposition (PureB CVD) technology, which can provide nanometer-thin boron

  20. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.

  1. Quantitative radiation dose-response relationships for normal tissues in man. II. Response of the salivary glands during radiotherapy

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1983-01-01

    A quantitative dose-response curve for salivary gland function in patients during radiotherapy is presented. Salivary-function data used in this study were obtained from four previously published reports. All patients were treated with 60 Co teletherapy to the head and neck using conventional treatment techniques. Salivary dysfunction was determined at specific dose levels by comparing salivary flow rates before therapy with flow rates at specific dose intervals during radiotherapy up to a total dose of 6000 cGy. Fifty percent salivary dysfunction occurred after 1000 cGy and eighty percent dysfunction was observed by the end of the therapy course (6000 cGy). The salivary-function curve was also compared to the previously published dose-response curve for taste function. Comparisons of the two curves indicate that salivary dysfunction precedes taste loss and that the shapes of the dose-response curves are different. A new term, tissue tolerance ratio, defined as the ratio of responses of two tissues given the same radiation dose, was used to make the comparisons between gustatory and salivary gland tissue effects. Measurements of salivary gland function and analysis of dose-response curves may be useful in evaluating chemical modifiers of radiation response

  2. The safe use of radiation: application in medicine

    International Nuclear Information System (INIS)

    Mohamed Ali Abdul Khader

    2009-01-01

    There are various peaceful uses of radiation in our everyday life like its use in industries, agriculture, medicine etc. However if the radiation source is not utilize in an orderly and controlled manner, radiation accidents can occur. Depending on the degree of accident, the dose/source of radioactive material involved, the effect ranges from the mild side effect to severe radiation syndrome which may lead to death. Radiation accidents in time of peace that require treatment are quite rare. Medical response to a radiological emergency is to provide first aid treatment and to take appropriate actions to protect responder from radiation. In Malaysia, our experience in medical response is limited due to the rarity of such accident occurring in our country. Nevertheless we had two minor incidents where radiation accident occurred in the industrial sector which required response and management. Public perception of anything about nuclear/radiation can be exaggerated especially with recent events like the radiation accidents occurring in various countries involving various radioactive/nuclear sources. This presentation will highlight the two minor radiation cases that occurred in Malaysia. It will also briefly highlight the many splendid uses of radiation in the medical arena touching upon its use in Radiology, Nuclear Medicine and Radiotherapy. The latest in the field of Nuclear Medicine using Cyclotron and Positron Emission Tomography in the diagnosis, grading, response to therapy, detection of recurrence of disease will be emphasized. It is hope that the experience that we can share will be of contributory input to expel the public fear of radiation and the term nuclear. (Authors)

  3. Teratogenic radiation effects: Phenomena, dose-response relationships and risk levels

    International Nuclear Information System (INIS)

    Konermann, G.

    1991-01-01

    The report in hand informs about a study performed within the framework of the research project 'Animal experiments with albino mice for establishing a model for the detection and assessment of radiation-induced, developmental risks in man due to low-dose irradiation'. The subjects investigated in this study are: (1) Dose-response relationships for postnatal developmental disturbances of the brain as a result of prenatal X-ray treatment. (2) Biokinetics, distribution patterns and effects of inorganically and organically bonded radioiodine (I-125) during the phase of development of the brain. For investigation of the first-mentioned subject, computerized microphotograph analysis was applied for detecting and assessing disturbances of the alignment of axons, as well as deviations from normal cross-sectional data of the Cortex layer, and cerebral commissures as final locations of neurogenetic damage. With all parameters studied, the slope of the relevant curves was found to decrease as a function of age of the fetus at the time of exposure. In addition, time factor effects were investigated. For the parameter cross-sectional area of the Cortex, a clear decrease of effect was found, but for all other parameters, reactions were ambiguous. The study into the second subject was done with cell cultures, showing that the I-125 bonded to the cell nucleus has a much stronger radiotoxic effect than I-125 bonded to the cytoplasma. This difference in effect was studied in mice after incorporation of equal doses administered by way of (I-125)-sodium iodide or (I-125)-iododesoxyuridine. Long-term effects on Cortex cross-sectional areas, cerebral commissures or the texture of axons were quantified by microphotograph analysis. Acute cell death and initial disturbances of the neuronal cell growth were evident after incorporation of (I-125)-IdUR, but not detectable after administration of (I-125)-NaI. (orig./MG) [de

  4. Radiation monitoring systems and methodologies for radiological impact assessment

    International Nuclear Information System (INIS)

    Chaudhury, Probal

    2016-01-01

    Radioactive sources of various strengths are used in large number of applications in industry, healthcare, agriculture and research. Though all the sources are transported and used under regulatory control, there is always a possibility of some of the sources getting into the hands of committed antisocial non state actors. In addition to this, there is a possible threat of radioactive material being illegally brought into a country. These gives rise to an increase in the global radiological threat and security experts world over are concerned about the possibility of malicious use of radiation in the public domain. Radiation detection systems are installed at various entry and exit ports of some of the countries to detect illicit trafficking of radioactive materials. IAEA has recommended that all States should have a national response plan for nuclear security events to provide for an appropriate and coordinated response. Considering the requirement of radiological emergency preparedness, various radiation monitoring systems and methodologies have been developed. A few aerial radiation monitoring systems developed at Bhabha Atomic Research Centre (BARC) for radiological impact assessment are described here

  5. Dose response of tracheal epithelial cells to ionizing radiation in air-liquid interface cultures

    International Nuclear Information System (INIS)

    Fukutsu, K.; Yamada, Y.; Shimo, M.

    2002-01-01

    The dose-response relationships of tracheal epithelial cells to ionizing radiation was examined in air-liquid interface cultures, which were developed for the purpose of simulating in vivo conditions. The cultures investigated in this study were expected to be advantageous for the performance of irradiation experiments using short-range α rays. The level of dose response of air-liquid interface cultures to ionizing radiation proved to be the same as that for in vivo conditions. This result indicates that air-liquid interface cultures will prove most useful, to facilitate future studies for the investigation of the biological effects induced in tracheal epithelial cells by ionizing radiation, especially by α-rays. (orig.)

  6. Thermoluminescence analysis for detection of irradiated food - luminescence characteristics of minerals for different types of radiation and radiation doses

    International Nuclear Information System (INIS)

    Soika, C.; Delincée, H.

    2000-01-01

    Federal Research Centre for Nutrition, Institute of Nutritional Physiology, Haid-und-Neu-Straße 9, 76131 Karlsruhe (Germany) Thermoluminescence analysis is used to detect radiation processing of foods which are contaminated with sand or dust. Silicate minerals are isolated, their radiation-induced luminescence is measured and compared to the thermoluminescence from a second measurement after exposure to a dexned radiation dose (normalization). In the present study, the mineral mixture *sand+ and its main components feldspar and quartz were investigated for their thermoluminescence behaviour using different types of radiation, in order to determine adequate radiation sources for the purpose of normalization. The material was irradiated with types of ionizing radiation commonly used for commercial food irradiation, i.e. accelerated electrons with beam energies of 5 MeV as well as 10 MeV, and 60 Co--rays. After thermoluminescence measurements, samples were re-irradiated using either accelerated electrons with beam energies of 2 MeV, 5 MeV or 10 MeV, or 60 Co--rays, 90 Sr--rays or ultraviolet rays (200}280 nm). Evaluation of the xrst and corresponding second glow curve revealed that their shapes depend on the type of minerals in the mixture. The second radiation treatment (normalization) is satisfactory when accelerated electrons (2, 5 and 10 MeV) as well as 60 Co--rays and 90 Sr--rays are employed. Normalization with ultraviolet rays, however, has only a limited range of use

  7. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  8. Detection of nuclear radiations

    International Nuclear Information System (INIS)

    Tanarro Sanz, A.

    1967-01-01

    A summary of the lectures about the ordinary detectors of nuclear radiations explained by the author in the courses of Nuclear Engineering held at the J.E.N. up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied Electronics to Nuclear Engineering so it has been intended to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author)

  9. Detection of nuclear radiations

    International Nuclear Information System (INIS)

    Tanarro Sanz, A.

    1959-01-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs

  10. Radiation Detection and Classification of Heavy Oxide Inorganic Scintillator Crystals for Detection of Fast Neutrons

    Science.gov (United States)

    2016-06-01

    response, diffuse source, collimated source 15. NUMBER OF PAGES 101 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...protecting the homeland, building security globally, and projecting power and winning decisively [1]. Nuclear material detection is embedded in two...detection. According to Glasstone and Dolan [4] as well as numerous other experts, there are fundamentally three isotopes that could practically be used

  11. Application of radiation-induced apoptosis in radiation oncology and radiation protection

    International Nuclear Information System (INIS)

    Crompton, N.E.A.; Emery, G.C.; Ozsahin, M.; Menz, R.; Knesplova, L.; Larsson, B.

    1997-01-01

    A rapid assay of the ability of lymphocytes to respond to radiation-induced damage is presented. Age and genetic dependence of radiation response have been quantified. The assay is sensitive to low doses of radiation. Its ability to assess the cytotoxic response of blood capillaries to radiation has been evaluated. (author)

  12. Human evidence on the shape of the dose-response curves for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Burkart, W.

    1981-09-01

    The carcinogenic effects of high levels of ionizing radiation are better understood than those of any other environmental agent. However, the somatic risk from low doses is highly disputed. The uncertainties stem from the fact that a direct estimation of small risks requires impracticably large samples. Therefore, risk estimates for low doses have to be derived indirectly by extrapolation from high exposure data and are heavily dependent on assumptions about the form of the dose-response curve. Although radiobiological theories tested on in vitro systems predict a quadratic term in the dose-response equation which should, at least for sparsely ionizing radiation, dominate the shape of the curve, the epidemiological data available cannot exclude the possibility of a pure linear relationship. In some cases, apparent thresholds may result from latent periods inversely related to dose. Besides depending on the quality of the radiation, the shape seems also to differ with the type of cancer induced. Studies on uranium miners, atomic bomb survivors and on irradiated patients are reviewed with emphasis on the shape of the dose-response. The credibility of the most publicized reports claiming a large cancer risk from low levels of radiation is assessed. The feasibility of a new study in an area of high natural background is explored. Finally, the influence of the uncertainties concerning the effect of low level radiation on future exposure limits set by regulatory bodies is discussed. (Auth.)

  13. Design and construction of tank robot for detection and searching of radiation sources

    International Nuclear Information System (INIS)

    Rio Isman; Djiwo Harsono; Adi Abimanyu

    2016-01-01

    Developments of robotics technology can be implemented for searching the lost radiation source. Radiation source lost case allows the radiation dose exceeding NBD received by radiation worker when security precautions are taken. This research propose a robot tank that can help in detection and searching radiation sources. The robot consists of a micro controller board Arduino Mega 2560, XBee Pro S radio frequency modules, Gaps receiver U-B lox Neo-Mn-0-01, a servo motor and two DC motors. In this research, the amount of radiation is calculated in 0-5 volt analog voltage that is simulated using a potentiometer and then converted to a digital voltage value (0-1023) using ADC 10 bit Arduino Mega 2560. Results of the research show that the robot has a size of 28.7 cm x 24.8 cm x 11 cm, able to move forward with a speed of 0.477 m/s and are capable to rotate in 24 angles. Data transmission can be performed wireless up to 113 m in an open area without any changes of format and length of the data. Robot capable to rotate and move towards the angle which has the largest voltage readings so can predict the location of the radiation source. (author)

  14. Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis

    KAUST Repository

    Jin, Peng; Duarte, Carlos M.; Agusti, Susana

    2017-01-01

    artificial lamps. We found that marine photosynthetic organisms tend to be more sensitive than freshwater photosynthetic organisms to UVB radiation; responses to either decreased or increased UVB radiation vary among taxa; the mortality rate is the most

  15. The integrin α6β4 as a signaling membrane protein for a damage response to ionizing radiation in human prostate cancer cell lines

    International Nuclear Information System (INIS)

    Woo, Charles; Nagle, Ray B.; Stea, Baldassarre; Cress, Anne E.

    1996-01-01

    Purpose/Object: Integrins are cell surface receptors that exist as heterodimers. The integrin α6β4 is a receptor for laminin and is present in normal human prostate tissue. In prostate carcinoma however, there is loss of β4 expression. Prior studies demonstrated that when a low β4 expressing rectal carcinoma cell line was transfected with β4, the cells underwent apoptosis. We investigated the effects that the β4 integrin had on DNA damage responses in a human prostate carcinoma line. Materials and Methods: DU-145 human prostate carcinoma cells previously selected by us for α6β1 expression were transfected with either a full length β4 construct or vector only. Both cell lines were grown simultaneously and maintained in geneticin for selection purposes. Cells were grown on glass coverslips in 60mm tissue culture dishes under optimal growth conditions. Radiation was delivered using a Co-60 machine with a dose rate of 35 Gy/hr. The cells were given 0, 2, 5, and 10 Gy. Three different radiation damage responses were assayed and include micronuclei (MN) formation, cell cycle distribution, and cell survival. 24 hours after irradiation, the cells were fixed and stained with propidium iodide. Micronuclei formation was detected using a Zeiss LSM10 confocal microscope, and the resulting digital images were analyzed using the NIH Image program. The observed MN were detected without the use of cytochalasin B, but were noted to contain nuclear histone and DNA and were morphologically distinct from apoptotic or necrotic bodies. Results: The quantitative analysis of MN formation revealed a radiation dose dependence of MN formation in both the α6β4 and α6β1 expressing cell lines. The presence of MN 24 hours after irradiation was observed at clinically significant doses (2 Gy) with the largest effect occurring at 5 Gy. The α6β4 expressing cells consistently produced approximately two fold more MN as compared to the α6β1 expressing cells at all radiation doses. The

  16. Very large amounts of radiation are needed to change cancer frequency

    International Nuclear Information System (INIS)

    Brooks, A.; Couch, L.

    2006-01-01

    Full text: A marked radio-phobia or excessive fear of radiation exposure is shared by the general public. A major factor in this fear is that the perception that each and every radiation-induced ionization increases the risk for cancer, thus even the smallest radiation exposure needs to be avoided. It is important to realize that this is not the case. It requires very large amounts of radiation delivered to large populations to produce an increase in cancer frequency. This has been demonstrated in many in experimental systems, animal studies and in human populations. If either the population size or the dose is reduced it is not possible to detect an increase in cancer frequency. This paper deals with real radiation-induced increases in cancer frequency that are statistically significant, rather than in extrapolated or calculated small increases in radiation-induced risks using linear models. Further, it demonstrates that there are barriers below which increases in cancer cannot be detected. Finally, the manuscript helps explain that there are transitions in the mechanisms of biological action as a function of radiation dose with very different mechanisms being triggered at high and at low doses. These transitions suggest the need for paradigm shifts. Concepts such as hit theory, independence in individual cellular responses and single mutations being responsible for cancer need to be re-evaluated. New paradigms such as b ystander effects , showing that the size of the responding target is much larger than the hit target, adaptive response demonstrating that cell/cell communication modifies individual cellular responses and genomic instability that is not dependent on radiation induced mutations in individual cells

  17. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  18. Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment

    International Nuclear Information System (INIS)

    Mattonen, Sarah A.; Palma, David A.; Johnson, Carol; Louie, Alexander V.; Landis, Mark; Rodrigues, George; Chan, Ian; Etemad-Rezai, Roya; Yeung, Timothy P.C.; Senan, Suresh; Ward, Aaron D.

    2016-01-01

    Purpose: Stereotactic ablative radiation therapy (SABR) is a guideline-specified treatment option for early-stage lung cancer. However, significant posttreatment fibrosis can occur and obfuscate the detection of local recurrence. The goal of this study was to assess physician ability to detect timely local recurrence and to compare physician performance with a radiomics tool. Methods and Materials: Posttreatment computed tomography (CT) scans (n=182) from 45 patients treated with SABR (15 with local recurrence matched to 30 with no local recurrence) were used to measure physician and radiomic performance in assessing response. Scans were individually scored by 3 thoracic radiation oncologists and 3 thoracic radiologists, all of whom were blinded to clinical outcomes. Radiomic features were extracted from the same images. Performances of the physician assessors and the radiomics signature were compared. Results: When taking into account all CT scans during the whole follow-up period, median sensitivity for physician assessment of local recurrence was 83% (range, 67%-100%), and specificity was 75% (range, 67%-87%), with only moderate interobserver agreement (κ = 0.54) and a median time to detection of recurrence of 15.5 months. When determining the early prediction of recurrence within <6 months after SABR, physicians assessed the majority of images as benign injury/no recurrence, with a mean error of 35%, false positive rate (FPR) of 1%, and false negative rate (FNR) of 99%. At the same time point, a radiomic signature consisting of 5 image-appearance features demonstrated excellent discrimination, with an area under the receiver operating characteristic curve of 0.85, classification error of 24%, FPR of 24%, and FNR of 23%. Conclusions: These results suggest that radiomics can detect early changes associated with local recurrence that are not typically considered by physicians. This decision support system could potentially allow for early salvage therapy of

  19. Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mattonen, Sarah A. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario (Canada); Baines Imaging Research Laboratory, London Regional Cancer Program, London, Ontario (Canada); Palma, David A., E-mail: david.palma@lhsc.on.ca [Department of Medical Biophysics, The University of Western Ontario, London, Ontario (Canada); Baines Imaging Research Laboratory, London Regional Cancer Program, London, Ontario (Canada); Department of Oncology, The University of Western Ontario, London, Ontario (Canada); Johnson, Carol [Baines Imaging Research Laboratory, London Regional Cancer Program, London, Ontario (Canada); Louie, Alexander V. [Department of Oncology, The University of Western Ontario, London, Ontario (Canada); Landis, Mark [Department of Diagnostic Radiology, London Health Sciences Centre, London, Ontario (Canada); Rodrigues, George [Department of Oncology, The University of Western Ontario, London, Ontario (Canada); Chan, Ian; Etemad-Rezai, Roya [Department of Diagnostic Radiology, London Health Sciences Centre, London, Ontario (Canada); Yeung, Timothy P.C. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario (Canada); Baines Imaging Research Laboratory, London Regional Cancer Program, London, Ontario (Canada); Senan, Suresh [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Ward, Aaron D. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario (Canada); Baines Imaging Research Laboratory, London Regional Cancer Program, London, Ontario (Canada); Department of Oncology, The University of Western Ontario, London, Ontario (Canada)

    2016-04-01

    Purpose: Stereotactic ablative radiation therapy (SABR) is a guideline-specified treatment option for early-stage lung cancer. However, significant posttreatment fibrosis can occur and obfuscate the detection of local recurrence. The goal of this study was to assess physician ability to detect timely local recurrence and to compare physician performance with a radiomics tool. Methods and Materials: Posttreatment computed tomography (CT) scans (n=182) from 45 patients treated with SABR (15 with local recurrence matched to 30 with no local recurrence) were used to measure physician and radiomic performance in assessing response. Scans were individually scored by 3 thoracic radiation oncologists and 3 thoracic radiologists, all of whom were blinded to clinical outcomes. Radiomic features were extracted from the same images. Performances of the physician assessors and the radiomics signature were compared. Results: When taking into account all CT scans during the whole follow-up period, median sensitivity for physician assessment of local recurrence was 83% (range, 67%-100%), and specificity was 75% (range, 67%-87%), with only moderate interobserver agreement (κ = 0.54) and a median time to detection of recurrence of 15.5 months. When determining the early prediction of recurrence within <6 months after SABR, physicians assessed the majority of images as benign injury/no recurrence, with a mean error of 35%, false positive rate (FPR) of 1%, and false negative rate (FNR) of 99%. At the same time point, a radiomic signature consisting of 5 image-appearance features demonstrated excellent discrimination, with an area under the receiver operating characteristic curve of 0.85, classification error of 24%, FPR of 24%, and FNR of 23%. Conclusions: These results suggest that radiomics can detect early changes associated with local recurrence that are not typically considered by physicians. This decision support system could potentially allow for early salvage therapy of

  20. Signalling detection of DNA damage induced by low doses of ionizing radiation in human lymphocytes

    International Nuclear Information System (INIS)

    Valente, M.

    2011-01-01

    Individuals spontaneously present different sensitivities to ionizing radiation, measured by the severity of their post-radiotherapy side-effects. Cells from some patients with extreme clinical radiosensitivity have shown altered cellular radiosensitivity measured by different endpoints as apoptosis or DNA damage. Linking clinical and cellular sensitivity is of fundamental importance to establish a clinical test capable of predicting a person's radiosensitivity from a sample. Easily sampled, peripheral blood lymphocytes (PBL) are an appealing cellular model to study individual radiosensitivity as they have been shown to be the most radiosensitive hematopoietic cells. DNA damages and repair can be visualized by observing the kinetics of appearance and disappearance of gamma-H2AX foci on DNA double-strand breaks through immunofluorescence microscopy. The experimental strategy chosen here was to follow lymphocyte gamma-H2AX foci kinetics in response to different levels of irradiation as delayed gamma-H2AX foci disappearance has been observed in cells of individuals with high clinical radiosensitivity. For our initial study we irradiated in vitro samples of radiotherapy patients with different clinical radiosensitivities. The groups of distinct clinical sensitivities showed no corresponding differences in their cellular gamma-H2AX response. In addition, several samples were lost, mainly due to the long transportation period before being treated in our lab. To render this method usable for clinical applications, several changes were made: after improving sample viability, speed was increased by automation of image acquisition (Metasystem) and gamma-H2AX focus scoring (freeware CellProfiler). This technique was able to detect doses as low as 0.005 Gy and gave similar results to manual focus scoring. The possibility of discriminating different lymphocyte subsets (CD4, CD8 and CD19) during analysis was added to identify among the lymphocyte subsets the one producing more