WorldWideScience

Sample records for radiation belts neutron

  1. Earth's radiation belts

    International Nuclear Information System (INIS)

    Moslehi Fard, M.

    1984-01-01

    The theory of trapped particles in a magnetic field of approximated dipole is described completely in the first part. Second part contains experimental results. The mechanism of radiation belt source ''albedo neutrons'' and also types of dissipation mechanism about radiation belt is explained. The trapped protons and electrons by radiation belt is discussed and the life-time of trapped particles are presented. Finally the magnetic fields of Moon, Venus, Mars, and Saturn, measured by passengers Mariner 4,10 and pioneer 10,11 are indicated. The experimental and theoretical results for the explanation of trapped plasma around the earth which is looked like two internal and external belt have almost good correspondence

  2. Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and experimental determination of neutron density in near-Earth space

    Science.gov (United States)

    Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.

  3. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  4. Radiation Belt Test Model

    Science.gov (United States)

    Freeman, John W.

    2000-10-01

    Rice University has developed a dynamic model of the Earth's radiation belts based on real-time data driven boundary conditions and full adiabaticity. The Radiation Belt Test Model (RBTM) successfully replicates the major features of storm-time behavior of energetic electrons: sudden commencement induced main phase dropout and recovery phase enhancement. It is the only known model to accomplish the latter. The RBTM shows the extent to which new energetic electrons introduced to the magnetosphere near the geostationary orbit drift inward due to relaxation of the magnetic field. It also shows the effects of substorm related rapid motion of magnetotail field lines for which the 3rd adiabatic invariant is violated. The radial extent of this violation is seen to be sharply delineated to a region outside of 5Re, although this distance is determined by the Hilmer-Voigt magnetic field model used by the RBTM. The RBTM appears to provide an excellent platform on which to build parameterized refinements to compensate for unknown acceleration processes inside 5Re where adiabaticity is seen to hold. Moreover, built within the framework of the MSFM, it offers the prospect of an operational forecast model for MeV electrons.

  5. Jupiter's magnetosphere and radiation belts

    Science.gov (United States)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  6. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    Science.gov (United States)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  7. Electron Radiation Belts of the Solar System

    Science.gov (United States)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  8. Estimates Of Radiation Belt Remediation Requirements

    Science.gov (United States)

    Tuszewski, M.; Hoyt, R. P.; Minor, B. M.

    2004-12-01

    A low-Earth orbit nuclear detonation could produce an intense artificial radiation belt of relativistic electrons. Many satellites would be destroyed within a few weeks. We present here simple estimates of radiation belt remediation by several different techniques, including electron absorption by gas release, pitch angle scattering by steady electric and magnetic fields from tether arrays, and pitch angle scattering by wave-particle interactions from in-situ transmitters. For each technique, the mass, size, and power requirements are estimated for a one-week remediation (e-folding) timescale, assuming that a 10 kTon blast trapped 1024 fission product electrons (1 to 8 MeV) at L = 1.5 in a dipolar belt of width dL = 0.1.

  9. Bayesian inference of radiation belt loss timescales.

    Science.gov (United States)

    Camporeale, E.; Chandorkar, M.

    2017-12-01

    Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.

  10. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2006-08-01

    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  11. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2006-08-01

    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  12. Radiation Belts of Antiparticles in Planetary Magnetospheres

    Science.gov (United States)

    Pugacheva, G. I.; Gusev, A. A.; Jayanthi, U. B.; Martin, I. M.; Spjeldvik, W. N.

    2007-05-01

    The Earth's radiation belts could be populated, besides with electrons and protons, also by antiparticles, such as positrons (Basilova et al., 1982) and antiprotons (pbar). Positrons are born in the decay of pions that are directly produced in nuclear reactions of trapped relativistic inner zone protons with the residual atmosphere at altitudes in the range of about 500 to 3000 km over the Earth's surface. Antiprotons are born by high energy (E > 6 GeV) cosmic rays in p+p - p+p+p+ pbar and in p+p - p+p+n+nbar reactions. The trapping and storage of these charged anti-particles in the magnetosphere result in radiation belts similar to the classical Van Allen belts of protons and electrons. We describe the mathematical techniques used for numerical simulation of the trapped positron and antiproton belt fluxes. The pion and antiproton yields were simulated on the basis of the Russian nuclear reaction computer code MSDM, a Multy Stage Dynamical Model, Monte Carlo code, (i.e., Dementyev and Sobolevsky, 1999). For estimates of positron flux there we have accounted for ionisation, bremsstrahlung, and synchrotron energy losses. The resulting numerical estimates show that the positron flux with energy >100 MeV trapped into the radiation belt at L=1.2 is of the order ~1000 m-2 s-1 sr-1, and that it is very sensitive to the shape of the trapped proton spectrum. This confined positron flux is found to be greater than that albedo, not trapped, mixed electron/positron flux of about 50 m-2 s-1 sr-1 produced by CR in the same region at the top of the geomagnetic field line at L=1.2. As we show in report, this albedo flux also consists mostly of positrons. The trapped antiproton fluxes produced by CR in the Earth's upper rarified atmosphere were calculated in the energy range from 10 MeV to several GeV. In the simulations we included a mathematic consideration of the radial diffusion process, both an inner and an outer antiproton source, losses of particles due to ionization process

  13. Space electronics: radiation belts set new challenges

    International Nuclear Information System (INIS)

    Leray, J.L.; Barillot, C.; Boudenot, J.C.

    1999-01-01

    Telecommunications satellites have been in use since 1962 with the first satellite network (constellation) coming into operation in 1966. GPS systems have been available since the mid seventies. Until now, all these systems have avoided orbits which lie within the radiation belts. The latest constellation projects, offering much wider bandwidths, need to use orbits between 1500 and 2000 km, where the proton density is at its highest. The vulnerability of future generations of components can be predicted by extrapolating the behaviour of current devices. Screening is not a viable option due to cost and weight limitations in satellite applications. As a result, satellite and component manufacturers are seeking new methods of hardening components or making them more radiation tolerant in an environment where the radiation levels are ten times those currently experiences. (authors)

  14. On a new component of radiation belts

    International Nuclear Information System (INIS)

    Grigorov, N.L.; Kurnosova, L.V.; Razorenov, L.A.; Remizov, A.S.; Fradkin, M.I.; Moskovskij Gosudarstvennyj Univ.

    1982-01-01

    The mechanism of electron radiation belt filling with high-energy particles is discussed. Experimental data on particle fluxes in the Earth magnetosphere are presented. The experiments are carried out using the Cherenkov scintillation telescope installed on the ''Lightning-1'' satellite. Values of secondary particle flux obtained during the measurement at a height of 500 km and 30-40 th. km. coincide within the limits of errors. It is noted that secondary particle flux, equal to the albedo electron flux, is registered on large heights. This reason indicates the fact of forbidden angle filling with electrons with energies above 10 MeV

  15. Problems with models of the radiation belts

    International Nuclear Information System (INIS)

    Daly, E.J.; Lemaire, J.; Heynderickx, D.; Rodgers, D.J.

    1996-01-01

    The current standard models of the radiation-belt environment have many shortcomings, not the least of which is their extreme age. Most of the data used for them were acquired in the 1960's and early 1970's. Problems with the present models, and the ways in which data from more recent missions are being or can be used to create new models with improved functionality, are described. The phenomenology of the radiation belts, the effects on space systems, and geomagnetic coordinates and modeling are discussed. Errors found in present models, their functional limitations, and problems with their implementation and use are detailed. New modeling must address problems at low altitudes with the south Atlantic anomaly, east-west asymmetries and solar cycle variations and at high altitudes with the highly dynamic electron environment. The important issues in space environment modeling from the point of view of usability and relationship with effects evaluation are presented. New sources of data are discussed. Future requirements in the data, models, and analysis tools areas are presented

  16. Coordinates for Representing Radiation Belt Particle Flux

    Science.gov (United States)

    Roederer, Juan G.; Lejosne, Solène

    2018-02-01

    Fifty years have passed since the parameter "L-star" was introduced in geomagnetically trapped particle dynamics. It is thus timely to review the use of adiabatic theory in present-day studies of the radiation belts, with the intention of helping to prevent common misinterpretations and the frequent confusion between concepts like "distance to the equatorial point of a field line," McIlwain's L-value, and the trapped particle's adiabatic L* parameter. And too often do we miss in the recent literature a proper discussion of the extent to which some observed time and space signatures of particle flux could simply be due to changes in magnetospheric field, especially insofar as off-equatorial particles are concerned. We present a brief review on the history of radiation belt parameterization, some "recipes" on how to compute adiabatic parameters, and we illustrate our points with a real event in which magnetospheric disturbance is shown to adiabatically affect the particle fluxes measured onboard the Van Allen Probes.

  17. The Foundations of Radiation Belt Research

    Science.gov (United States)

    Ludwig, G. H.

    2008-12-01

    phenomenon. It also provided the first hint that there were two distinct radiation belts, although that conclusion was not reached until later. Although that new information was quickly announced, the results of the high altitude nuclear detonations were kept secret until well into 1959. They clearly revealed the charged particle shells created by the Argos nuclear detonations. The next major step in mapping and understanding the high-intensity radiation involved the launch of deep space probes Pioneers III and IV in December 1958 and March 1959. Although both launches fell short in their primary objective, to reach the moon, they traveled far enough from the Earth to fully meet the needs of the scientific experiment. They very clearly showed the two-radiation belt structure, and mapped its extent. They also showed the probable effect of a magnetic storm on 25 February, thus indicating the direct influence of solar activity on the outer belt. By the end of 1959, the existence of the Van Allen Radiation Belts and their general structure were solidly established, early information about the composition of the radiation was appearing in print, and energetic work was under way to understand the physics of the processes involved.

  18. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  19. Space Weather Effects in the Earth's Radiation Belts

    Science.gov (United States)

    Baker, D. N.; Erickson, P. J.; Fennell, J. F.; Foster, J. C.; Jaynes, A. N.; Verronen, P. T.

    2018-02-01

    The first major scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or belts, of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. Recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed many novel properties of the radiation belts, especially for electrons at highly relativistic and ultra-relativistic kinetic energies. In this review we summarize the space weather impacts of the radiation belts. We demonstrate that many remarkable features of energetic particle changes are driven by strong solar and solar wind forcings. Recent comprehensive data show broadly and in many ways how high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. We also discuss how radiation belt particles are intimately tied to other parts of the geospace system through atmosphere, ionosphere, and plasmasphere coupling. The new data have in many ways rewritten the textbooks about the radiation belts as a key space weather threat to human technological systems.

  20. Statistics of the outer radiation belt

    International Nuclear Information System (INIS)

    Rodgers, D.J.; Johnstone, A.D.

    1996-01-01

    The highly variable electron flux levels in the outer radiation belt come about by competition between time-dependent source and loss mechanisms. In order to identify some of the different mechanisms involved, we examine the statistics of the variability of fluxes at geostationary orbit. Data from the SEM-2 analyzer on Meteosat-3 and from GOES-7 are used. Correlation analysis is used to find time-delays between changes in flux at different energies. We see that low energy flux is added to this region during sub-storms and that higher energy fluxes appear after 2 or 3 days. Whilst the timescale for this process is brief compared to a complete cycle of the open-quote Recirculation close-quote energization process, it is consistent with the timescale of its final step endash outward radial diffusion. By isolating periods when no new injection of plasma occurs, we make an assessment of flux loss rates in a quiet magnetosphere. copyright 1996 American Institute of Physics

  1. Formation and Decay of the Inner Electron Radiation Belt

    Science.gov (United States)

    2017-01-09

    a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 09-01-2017 2. REPORT TYPE...radiation belt: CRAND and trapped solar protons......17 APPENDIX C - Inward diffusion and loss of radiation belt protons...transfer orbit that can be damaged by the intense charged -particle environment. Protons are the prominent hazard, often causing single event upsets in

  2. Survey of current situation in radiation belt modeling

    Science.gov (United States)

    Fung, Shing F.

    2004-01-01

    The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.

  3. Neutron radiation capture

    International Nuclear Information System (INIS)

    1986-01-01

    For all stable and experimentally studied radionuclides evaluated data are presented on cross sections of thermal neutrons, on resonance integrals and medium neutron cross sections with energy of 30 KeV. Refs, figs and tabs

  4. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    Science.gov (United States)

    Daglis, I.; Balasis, G.; Bourdarie, S.; Horne, R.; Khotyaintsev, Y.; Mann, I.; Santolik, O.; Turner, D.; Anastasiadis, A.; Georgiou, M.; Giannakis, O.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Angelopoulos, V.; Glauert, S.; Grison, B., Kersten T.; Kolmasova, I.; Lazaro, D.; Mella, M.; Ozeke, L.; Usanova, M.

    2013-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Multi-spacecraft particle measurements will be incorporated into data assimilation tools, leading to new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven as a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system. The MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520.

  5. Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study: Radiation Belt Seed Population

    International Nuclear Information System (INIS)

    Tang, C. L.; Wang, Y. X.; Ni, B.; Zhang, J.-C.

    2017-01-01

    Using the Van Allen Probes data, we study the radiation belt seed population and it associated with the relativistic electron dynamics during 74 geomagnetic storm events. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “non-preconditioned” and “preconditioned”. The statistical study shows that the storm intensity is of significant importance for the distribution of the seed population (336 keV electrons) in the outer radiation belt. However, substorm intensity can also be important to the evolution of the seed population for some geomagnetic storm events. For non-preconditioned storm events, the correlation between the peak fluxes and their L-shell locations of the seed population and relativistic electrons (592 keV, 1.0 MeV, 1.8 MeV, and 2.1 MeV) is consistent with the energy-dependent dynamic processes in the outer radiation belt. For preconditioned storm events, the correlation between the features of the seed population and relativistic electrons is not fully consistent with the energy-dependent processes. It is suggested that the good correlation between the radiation belt seed population and ≤1.0 MeV electrons contributes to the prediction of the evolution of ≤1.0 MeV electrons in the Earth’s outer radiation belt during periods of geomagnetic storms.

  6. An Experimental Concept for Probing Nonlinear Physics in Radiation Belts

    Science.gov (United States)

    Crabtree, C. E.; Ganguli, G.; Tejero, E. M.; Amatucci, B.; Siefring, C. L.

    2017-12-01

    A sounding rocket experiment, Space Measurement of Rocket-Released Turbulence (SMART), can be used to probe the nonlinear response to a known stimulus injected into the radiation belt. Release of high-speed neutral barium atoms (8- 10 km/s) generated by a shaped charge explosion in the ionosphere can be used as the source of free energy to seed weak turbulence in the ionosphere. The Ba atoms are photo-ionized forming a ring velocity distribution of heavy Ba+ that is known to generate lower hybrid waves. Induced nonlinear scattering will convert the lower hybrid waves into EM whistler/magnetosonic waves. The escape of the whistlers from the ionospheric region into the radiation belts has been studied and their observable signatures quantified. The novelty of the SMART experiment is to make coordinated measurement of the cause and effect of the turbulence in space plasmas and from that to deduce the role of nonlinear scattering in the radiation belts. Sounding rocket will carry a Ba release module and an instrumented daughter section that includes vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors. The goal of these measurements is to determine the whistler and lower hybrid wave amplitudes and spectrum in the ionospheric source region and look for precipitated particles. The Ba release may occur at 600-700 km near apogee. Ground based cameras and radio diagnostics can be used to characterize the Ba and Ba+ release. The Van Allen Probes can be used to detect the propagation of the scattering-generated whistler waves and their effects in the radiation belts. By detecting whistlers and measuring their energy density in the radiation belts the SMART mission will confirm the nonlinear generation of whistlers through scattering of lower hybrid along with other nonlinear responses of the radiation belts and their connection to weak turbulence.

  7. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  8. Neutron induced radiation damage

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1977-01-01

    We derive a general expression for the number of displaced atoms of type j caused by a primary knock-on of type i. The Kinchin-Pease model is used, but considerably generalised to allow for realistic atomic potentials. Two cases are considered in detail: the single particle problem causing a cascade and the neutron initiated problem which leads to multiple subcascades. Numerical results have been obtained for a variety of scattering laws. An important conclusion is that neutron initiated damage is much more severe than atom-initiated damage and leads to the number of displaced atoms being a factor of (A+1) 2 /4A larger than the single primary knock-on theory predicts. A is the ratio of the atomic mass to the neutron mass. The importance of this result to the theory of neutron sputtering is explained. (orig.) [de

  9. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    Science.gov (United States)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  10. A comparison of outer electron radiation belt dropouts during solar ...

    Indian Academy of Sciences (India)

    Utilizing multiple data sources from the year 1997–2007, this study identifies radiation belt electron dropouts which are ultimately triggered when solar wind stream interfaces (SI) arrived at ... Center for Space Research, School for Physical and Chemical Sciences, North–West University, Potchefstroom 2520, South Africa.

  11. Quantitative Simulation of QARBM Challenge Events During Radiation Belt Enhancements

    Science.gov (United States)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Chu, X.

    2017-12-01

    Various physical processes are known to affect energetic electron dynamics in the Earth's radiation belts, but their quantitative effects at different times and locations in space need further investigation. This presentation focuses on discussing the quantitative roles of various physical processes that affect Earth's radiation belt electron dynamics during radiation belt enhancement challenge events (storm-time vs. non-storm-time) selected by the GEM Quantitative Assessment of Radiation Belt Modeling (QARBM) focus group. We construct realistic global distributions of whistler-mode chorus waves, adopt various versions of radial diffusion models (statistical and event-specific), and use the global evolution of other potentially important plasma waves including plasmaspheric hiss, magnetosonic waves, and electromagnetic ion cyclotron waves from all available multi-satellite measurements. These state-of-the-art wave properties and distributions on a global scale are used to calculate diffusion coefficients, that are then adopted as inputs to simulate the dynamical electron evolution using a 3D diffusion simulation during the storm-time and the non-storm-time acceleration events respectively. We explore the similarities and differences in the dominant physical processes that cause radiation belt electron dynamics during the storm-time and non-storm-time acceleration events. The quantitative role of each physical process is determined by comparing against the Van Allen Probes electron observations at different energies, pitch angles, and L-MLT regions. This quantitative comparison further indicates instances when quasilinear theory is sufficient to explain the observed electron dynamics or when nonlinear interaction is required to reproduce the energetic electron evolution observed by the Van Allen Probes.

  12. Large enhancement of highly energetic electrons in the outer radiation belt and its transport into the inner radiation belt inferred from MDS-1 satellite observations

    Science.gov (United States)

    Obara, T.; Matsumoto, H.

    2016-03-01

    We have examined a large increase of relativistic electrons in the outer radiation belt and its penetration into the inner radiation belt over slot region using the MDS-1 satellite observations. Result of analyses demonstrates that a large increase took place in the spring and autumn seasons, and we have newly confirmed that the penetration of outer belt electrons to the inner radiation zone took place during the big magnetic storms by examining a pitch angle distribution of the penetrating electrons.

  13. Designing on-line analyzer for coal on belt conveyor using neutron activation technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Agus Cahyono

    2014-01-01

    Basic design of on-line analyzer for coal on belt conveyor using neutron activation technique has been carried out. Compared with sampling technique, this neutron activation technique has some advantages in term of analysis accuracy and time. The design activities performed include the establishment of design requirements, functional requirements, technical requirements, technical specification, detection sub-system design, data acquisition subsystem design, and operator computer console design. This program will use Nal(Tl) scintillation detector to detect gamma-rays emitted by elements in coal due to neutron activation of a neutron source, "2"5"2Cf (Californium-252). This basic design of on-line analyzer for coal on belt conveyor using neutron activation technique should be followed up with the development of detailed design, prototype construction, and field testing. (author)

  14. Dynamics of the earth's radiation belts and inner magnetosphere (geophysical monograph series)

    CERN Document Server

    2013-01-01

    Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphe...

  15. Nonlinear Whistler Wave Physics in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris

    2016-10-01

    Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data

  16. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  17. Statistical studies of energetic electrons in the outer radiation belt

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, A.D.; Rodgers, D.J.; Jones, G.H. E-mail: g.h.jones@ic.ac.uk

    1999-10-01

    The medium electron A (MEA) instrument aboard the CRRES spacecraft provided data on terrestrial radiation belt electrons in the energy range from 153 to 1582 keV, during 1990-91. These data have previously been used to produce an empirical model of the radiation belts from L=1.1 to 8.9, ordered according to 17 energy bands, 18 pitch angle bins, and 5 Kp ranges. Empirical models such as this are very valuable, but are prone to statistical fluctuations and gaps in coverage. In this study, in order to smooth the data and make it more easy to interpolate within data gaps, the pitch angle distribution at each energy in the model was fitted with a Bessel function. This provided a way to characterize the pitch angle in terms of only two parameters for each energy. It was not possible to model fluxes reliably within the loss cone because of poor statistics. The fitted distributions give an indication of the way in which pitch angle diffusion varies in the outer radiation belts. The two parameters of the Bessel function were found to vary systematically with L value, energy and Kp. Through the fitting of a simple function to these systematic variations, the number of parameters required to describe the model could be reduced drastically.

  18. Canadian radiation belt science in the ILWS era

    Science.gov (United States)

    Mann, I. R.

    The Outer Radiation Belt Injection, Transport, Acceleration, and Loss Satellite (ORBITALS) is a Canadian Space Agency small satellite mission proposed as a Canadian contribution to the satellite infrastructure for the International Living With a Star (ILWS) program. Planned to operate contemporaneously with the NASA Radiation Belt Storm Probes (RBSP), the ORBITALS will monitor the energetic electron and ion populations in the inner magnetosphere across a wide range of energies (keV to tens of MeV) as well as the dynamic electric and magnetic fields, waves, and cold plasma environment which govern the injection, transport, acceleration and loss of these energetic and space weather critical particle populations in the inner magnetosphere. Currently in Phase A Design Study, the ORBITALS will be launched into a low-inclination GTO-like orbit which every second orbit maximizes the long lasting apogee-pass conjunctions with both the ground-based instruments of the Canadian Geospace Monitoring (CGSM) array as well as with the GOES East and West and geosynchronous communications satellites in the North American sector. In a twelve-hour orbit, every second apogee will conjunct with instrumentation 180 degree in longitude away in the Asian sector. Specifically, the ORBITALS will make the measurements necessary to reach reveal fundamental new understanding of the relative importance of different physical processes (for example VLF verses ULF waves) which shape the energetic particle populations in the inner magnetosphere, as well as providing the raw radiation measurements at MEO altitudes necessary for the development of the next-generation of radiation belt specification models. On-board experiments will also monitor the dose, single event upset, and deep-dielectric charging responses of electronic components on-orbit. Supporting ground-based measurements of ULF and higher frequency wave fields from the Canadian CARISMA (www.carisma.ca) magnetometer array, as well as from

  19. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  20. Internal Charging Design Environments for the Earths Radiation Belts

    Science.gov (United States)

    Minow, Joseph I.; Edwards, David L.

    2009-01-01

    Relativistic electrons in the Earth's radiation belts are a widely recognized threat to spacecraft because they penetrate lightly shielded vehicle hulls and deep into insulating materials where they accumulate to sufficient levels to produce electrostatic discharges. Strategies for evaluating the magnitude of the relativistic electron flux environment and its potential for producing ESD events are varied. Simple "rule of thumb" estimates such as the widely used 10(exp 10) e-/sq cm fluence within 10 hour threshold for the onset of pulsing in dielectric materials provide a quick estimate of when to expect charging issues. More sophisticated strategies based on models of the trapped electron flux within the Earth s magnetic field provide time dependent estimates of electron flux along spacecraft orbits and orbit integrate electron flux. Finally, measurements of electron flux can be used to demonstrate mean and extreme relativistic electron environments. This presentation will evaluate strategies used to specify energetic electron flux and fluence environments along spacecraft trajectories in the Earth s radiation belts.

  1. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  2. Examining Relativistic Electron Loss in the Outer Radiation Belt

    Science.gov (United States)

    Green, J. C.; Onsager, T. G.; O'Brien, P.

    2003-12-01

    Since the discovery of earth's radiation belts researchers have sought to identify the mechanisms that dictate the seemingly erratic relativistic electron flux levels in the outer belt. Contrary to intuition, relativistic electron flux levels do not always increase during geomagnetic storms even though these storms signify enhanced energy input from the solar wind to the magnetosphere [Reeves et al., 2003; O'Brien et al., 2001]. The fickle response of the radiation belt electrons to geomagnetic activity suggests that flux levels are determined by the outcome of a continuous competition between acceleration and loss. Some progress has been made developing and testing acceleration mechanisms but little is known about how relativistic electrons are lost. We examine relativistic electron losses in the outer belt focusing our attention on flux decrease events of the type first described by Onsager et al. [2002]. The study showed a sudden decrease of geosynchronous >2MeV electron flux occurring simultaneously with local stretching of the magnetic field. The decrease was first observed near 15:00 MLT and progressed to all local times after a period of ˜10 hours. Expanding on the work of Onsager et al. [2002], we have identified ˜ 51 such flux decrease events in the GOES and LANL data and present the results of a superposed epoch analysis of solar wind data, geomagnetic activity indicators, and locally measured magnetic field and plasma data. The analysis shows that flux decreases occur after 1-2 days of quiet condition. They begin when either the solar wind dynamic pressure increases or Bz turns southward pushing hot dense plasma earthward to form a partial ring current and stretched magnetic field at dusk. Adiabatic electron motion in response to the stretched magnetic field may explain the initial flux reduction; however, often the flux does not recover with the magnetic field recovery, indicating that true loss from the magnetosphere is occurring. Using Polar and

  3. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  4. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  5. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  6. Level gauge using neutron radiation

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1985-01-01

    Apparatus for determining the level of a solid or liquid material in a container comprises: a vertical guide within or alongside the container; a sensor positioned within the guide; means for moving the sensor along the guide; and means for monitoring the position of the sensor. The sensor comprises a source of fast neutrons, a detector for thermal neutrons, and a body of a neutron moderating material in close proximity to the detector. Thermal neutrons produced by fast neutron irradiation of the solid or liquid material, or thermal neutrons produced by irradiation of the neutron-moderating material by fast or epithermal neutrons reflected by the solid or liquid material, are detected when the sensor is positioned at or below the level of the material in the container

  7. Method and apparatus for neutron radiation monitoring

    International Nuclear Information System (INIS)

    Schwarzmann, A.

    1985-01-01

    A self-calibrated neutron radiation monitor includes a flux responsive element comprised of intrinsic silicon neutron detectors and self-calibration resistors in a single structure. As the resistance of the flux responsive element increases to the value of successive calibration resistors, known increments of flux have been encountered

  8. The evolution of Saturn's radiation belts modulated by changes in radial diffusion

    Science.gov (United States)

    Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.

    2017-12-01

    Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

  9. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    Science.gov (United States)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  10. Forecasting of Radiation Belts: Results From the PROGRESS Project.

    Science.gov (United States)

    Balikhin, M. A.; Arber, T. D.; Ganushkina, N. Y.; Walker, S. N.

    2017-12-01

    Forecasting of Radiation Belts: Results from the PROGRESS Project. The overall goal of the PROGRESS project, funded in frame of EU Horizon2020 programme, is to combine first principles based models with the systems science methodologies to achieve reliable forecasts of the geo-space particle radiation environment.The PROGRESS incorporates three themes : The propagation of the solar wind to L1, Forecast of geomagnetic indices, and forecast of fluxes of energetic electrons within the magnetosphere. One of the important aspects of the PROGRESS project is the development of statistical wave models for magnetospheric waves that affect the dynamics of energetic electrons such as lower band chorus, hiss and equatorial noise. The error reduction ratio (ERR) concept has been used to optimise the set of solar wind and geomagnetic parameters for organisation of statistical wave models for these emissions. The resulting sets of parameters and statistical wave models will be presented and discussed. However the ERR analysis also indicates that the combination of solar wind and geomagnetic parameters accounts for only part of the variance of the emissions under investigation (lower band chorus, hiss and equatorial noise). In addition, advances in the forecast of fluxes of energetic electrons, exploiting empirical models and the first principles IMPTAM model achieved by the PROGRESS project is presented.

  11. Method and apparatus for measuring the concentration of water, iron, and aluminum in iron ore by neutron radiation

    International Nuclear Information System (INIS)

    Holmes, R.J.; Wylie, A.W.; McCracken, K.G.

    1975-01-01

    Techniques and apparatus for measuring the concentration of water and specific components in materials are described. The techniques involve irradiating the material with neutrons and monitoring the neutron flux in the vicinity of the irradiated material and the gamma radiation from excited nuclei of the specific component. Examples of the use of the invention include on-stream monitoring of ores carried by conveyor belts and borehole logging using a probe which carries a neutron source, and neutron and gamma radiation detectors. (U.S.)

  12. Neutronics methods for thermal radiative transfer

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1988-01-01

    The equations of thermal radiative transfer are time discretized in a semi-implicit manner, yielding a linear transport problem for each time step. The governing equation in this problem has the form of a neutron transport equation with fission but no scattering. Numerical methods are described, whose origins lie in neutron transport, and that have been successfully adapted to this new problem. Acceleration methods that have been developed specifically for the radiative transfer problem, but may have generalizations applicable in neutronics problems, are also discussed

  13. Nonlinear VLF Wave Physics in the Radiation Belts

    Science.gov (United States)

    Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.

    2014-12-01

    Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function

  14. Proton flux under radiation belts: near-equatorial zone

    International Nuclear Information System (INIS)

    Grigoryan, O.R.; Panasyuk, M.I.; Petrov, A.N.; Kudela, K.

    2005-01-01

    In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter L th the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)

  15. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  16. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    International Nuclear Information System (INIS)

    Yang, Chang; Changsha University of Science and Technology, Changsha; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan

    2016-01-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  17. Neutron Spectrometry for Radiation Protection Purposes

    International Nuclear Information System (INIS)

    McDonald, Joseph C.

    2001-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is necessary to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here

  18. Neutron spectrometry for radiation protection purposes

    CERN Document Server

    McDonald, J C; Alberts, W G

    2002-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.

  19. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2005-01-01

    Full text: Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions. (authors)

  20. Radiation shielding for neutron guides

    International Nuclear Information System (INIS)

    Ersez, T.; Braoudakis, G.; Osborn, J.C.

    2006-01-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions

  1. Detailed Characteristics of Radiation Belt Electrons Revealed by CSSWE/REPTile Measurements

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D. T.; Millan, R. M.

    2016-12-01

    The outer radiation belt electrons are highly dynamic. We study the detailed characteristics of the relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit Cubesat, which transverses the radiation belt four times in one orbit ( 1.5 hr) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitations. Among the features of the relativistic electrons, we show the measured electron distribution as a function of geomagnetic activities and local magnetic field strength. Moreover, a specific precipitation band, which happened on 19 Jan 2013, is investigated based on the conjunctive measurement of CSSWE and the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL). In this precipitation band event, the net loss of the 0.58 1.63 MeV electrons (L=3.5 6) is estimated to account for 6.84% of the total electron content.

  2. Neutron radiation damage studies on silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Chen, W.; Kraner, H.W.

    1990-10-01

    Effects of neutron radiation on electrical properties of Si detectors have been studied. At high neutron fluence (Φ n ≥ 10 12 n/cm 2 ), C-V characteristics of detectors with high resistivities (ρ ≥ 1 kΩ-cm) become frequency dependent. A two-trap level model describing this frequency dependent effect is proposed. Room temperature anneal of neutron damaged (at LN 2 temperature) detectors shows three anneal stages, while only two anneal stages were observed in elevated temperature anneal. 19 refs., 14 figs

  3. RF communications subsystem for the Radiation Belt Storm Probes mission

    Science.gov (United States)

    Srinivasan, Dipak K.; Artis, David; Baker, Ben; Stilwell, Robert; Wallis, Robert

    2009-12-01

    The NASA Radiation Belt Storm Probes (RBSP) mission, currently in Phase B, is a two-spacecraft, Earth-orbiting mission, which will launch in 2012. The spacecraft's S-band radio frequency (RF) telecommunications subsystem has three primary functions: provide spacecraft command capability, provide spacecraft telemetry and science data return, and provide accurate Doppler data for navigation. The primary communications link to the ground is via the Johns Hopkins University Applied Physics Laboratory's (JHU/APL) 18 m dish, with secondary links to the NASA 13 m Ground Network and the Tracking and Data Relay Spacecraft System (TDRSS) in single-access mode. The on-board RF subsystem features the APL-built coherent transceiver and in-house builds of a solid-state power amplifier and conical bifilar helix broad-beam antennas. The coherent transceiver provides coherency digitally, and controls the downlink data rate and encoding within its field-programmable gate array (FPGA). The transceiver also provides a critical command decoder (CCD) function, which is used to protect against box-level upsets in the C&DH subsystem. Because RBSP is a spin-stabilized mission, the antennas must be symmetric about the spin axis. Two broad-beam antennas point along both ends of the spin axis, providing communication coverage from boresight to 70°. An RF splitter excites both antennas; therefore, the mission is designed such that no communications are required close to 90° from the spin axis due to the interferometer effect from the two antennas. To maximize the total downlink volume from the spacecraft, the CCSDS File Delivery Protocol (CFDP) has been baselined for the RBSP mission. During real-time ground contacts with the APL ground station, downlinked files are checked for errors. Handshaking between flight and ground CFDP software results in requests to retransmit only the file fragments lost due to dropouts. This allows minimization of RF link margins, thereby maximizing data rate and

  4. The impact of radiation belts region on top side ionosphere condition during last solar minimum.

    Science.gov (United States)

    Rothkaehl, Hanna; Przepiórka, Dororta; Matyjasiak, Barbara

    2014-05-01

    The wave particle interactions in radiation belts region are one of the key parameters in understanding the global physical processes which govern the near Earth environment. The populations of outer radiation belts electrons increasing in response to changes in the solar wind and the interplanetary magnetic field, and decreasing as a result of scattering into the loss cone and subsequent absorption by the atmosphere. The most important question in relation to understanding the physical processes in radiation belts region relates to estimate the ratio between acceleration and loss processes. This can be also very useful for construct adequate models adopted in Space Weather program. Moreover the wave particle interaction in inner radiation zone and in outer radiation zone have significant influence on the space plasma property at ionospheric altitude. The aim of this presentation is to show the manifestation of radiation belts region at the top side ionosphere during the last long solar minimum. The presentation of longitude and seasonal changes of plasma parameters affected by process occurred in radiation belts region has been performed on the base of the DEMETER and COSMIC 3 satellite registration. This research is partly supported by grant O N517 418440

  5. Radiation therapy with fast neutrons: A review

    International Nuclear Information System (INIS)

    Jones, D.T.L.; Wambersie, A.

    2007-01-01

    Because of their biological effects fast neutrons are most effective in treating large, slow-growing tumours which are resistant to conventional X-radiation. Patients are treated typically 3-4 times per week for 4-5 weeks (sometimes in combination with X-radiation) for a variety of conditions such as carcinomas of the head and neck, salivary gland, paranasal sinus and breast; soft tissue, bone and uterine sarcomas and malignant melanomas. It is estimated that about 27,000 patients have undergone fast neutron therapy to date

  6. Conceptual design of a Moving Belt Radiator (MBR) shuttle-attached experiment

    Science.gov (United States)

    Aguilar, Jerry L.

    1990-01-01

    The conceptual design of a shuttle-attached Moving Belt Radiator (MBR) experiment is presented. The MBR is an advanced radiator concept in which a rotating belt is used to radiate thermal energy to space. The experiment is developed with the primary focus being the verification of the dynamic characteristics of a rotating belt with a secondary objective of proving the thermal and sealing aspects in a reduced gravity, vacuum environment. The mechanical design, selection of the belt material and working fluid, a preliminary test plan, and program plan are presented. The strategy used for selecting the basic sizes and materials of the components are discussed. Shuttle and crew member requirements are presented with some options for increasing or decreasing the demands on the STS. An STS carrier and the criteria used in the selection process are presented. The proposed carrier for the Moving Belt Radiator experiment is the Hitchhiker-M. Safety issues are also listed with possible results. This experiment is designed so that a belt can be deployed, run at steady state conditions, run with dynamic perturbations imposed, verify the operation of the interface heat exchanger and seals, and finally be retracted into a stowed position for transport back to earth.

  7. A three-dimensional phase space dynamical model of the Earth's radiation belt

    International Nuclear Information System (INIS)

    Boscher, D. M.; Beutier, T.; Bourdarie, S.

    1996-01-01

    A three dimensional phase space model of the Earth's radiation belt is presented. We have taken into account the magnetic and electric radial diffusions, the pitch angle diffusions due to Coulomb interactions and interactions with the plasmaspheric hiss, and the Coulomb drag. First, a steady state of the belt is presented. Two main maxima are obtained, corresponding to the inner and outer parts of the belt. Then, we have modelled a simple injection at the external boundary. The particle transport seems like what was measured aboard satellites. A high energy particle loss is found, by comparing the model results and the measurements. It remains to be explained

  8. The study of thickness and density compensation of neutron-measuring moisture system on conveyor belt

    International Nuclear Information System (INIS)

    Jia Wenbao; Su Tongling; Zhang Xiaomin; Xu Zhongfeng

    1999-01-01

    The neutron-measuring transmission moisture system on the conveyer belt is systematically studied. A method of density and thickness compensation has been used to carryout the on-line measurements of the moisture of the unshaped, discontinuous and irregular moving matter. At the same time, the thickness weighed average method is employed to modify the prompt moisture at a fixed time, and to improve the accuracy of measuring the moisture. The experimental data show that the measurement errors are within ±2.5% when the thickness is between 2 cm and 16 cm and the water percentage is between 6% and 16%. The errors can reach 0.2% if thickness weighed average for moving matter lasts for a long time

  9. Measuring element for the detection and determination of radiation doses of gamma radiation and neutrons

    International Nuclear Information System (INIS)

    Jahn, W.; Piesch, E.

    1975-01-01

    A measuring element detects and proves both gamma and neutron radiation. The element includes a photoluminescent material which stores gamma radiation and particles of arsenic and phosphorus embedded in the photoluminescent material for detecting neutron radiation. (U.S.)

  10. Neutron measuring instruments for radiation protection

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Schneider, W.; Hoefert, M.; Kuehn, H.; Jahr, R.; Wagner, S.; Piesch, E.

    1979-09-01

    The present report deals with selected topics from the field of neutron dosimetry for radiation protection connected with the work of the subcommittee 6802 in the Standards Committee on Radiology (NAR) of the German Standards Institute (DIN). It is a sort of material collection. The topics are: 1. Measurement of the absorbed-energy dose by a) ionization chambers in fields of mixed radiation and b) recoil-proton proportional counting tubes. 2. Measurement of the equivalent dose, neutron monitors, combination methods by a) rem-meters, b) recoil-proton counting tubes, c) recombination method, tissue-equivalent proportional counters, activation methods for high energies in fields of mixed radiation, d) personnel dosimetry by means of ionization chambers and counting tubes, e) dosimetry by means of activation methods, nuclear track films, nonphotographic nuclear track detectors and solid-state dosimeters. (orig./HP) [de

  11. Measurements of neutron radiation in aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I.; Faj, D.; Stanic, D.; Planinic, J.

    2010-01-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21 o to 58 o ; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H n =5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H f =1.4 μSv/h.

  12. Measurements of neutron radiation in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Faj, D. [Clinical Hospital Osijek (Croatia); Stanic, D. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J., E-mail: planinic@ffos.h [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)

    2010-12-15

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21{sup o} to 58{sup o}; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H{sub n}=5.9 {mu}Sv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H{sub f}=1.4 {mu}Sv/h.

  13. Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves

    Science.gov (United States)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.

    2005-12-01

    Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.

  14. Trapping in stochastic mechanics and applications to covers of clouds and radiation belts

    International Nuclear Information System (INIS)

    Albeverio, S.; Blanchard, P.; Combe, P.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.

    1984-11-01

    It is possible to assign a stochastic acceleration to conservative stochastic diffusion processes. As a basic assumption, this stochastic acceleration is set equal to the deterministic smooth component of the external force acting on the particle, whereas the influences of the remainder is modelled by a diffusion coefficient. In this paper, we shall try to see whether it can account for the observation in two cases: the cover of clouds of planets and the radiation belts in the planetary magnetic field. We describe the basic properties of Newtonian Diffusion Stochastic Processes and indicate their connection with Schroedinger-like equations. Furthermore we give a heuristic interpretation of the nodal surfaces as impenetrable barriers for Newtonian Stochastic Diffusion Processes. The possible applications to the observed average cloud covering in the planetary atmosphere are presented we discuss the radiation belts (Van Allen Belts) along the previous ideas

  15. The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms

    Science.gov (United States)

    Murphy, K. R.; Watt, C. E. J.; Mann, I. R.; Jonathan Rae, I.; Sibeck, D. G.; Boyd, A. J.; Forsyth, C. F.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J.

    2018-05-01

    Using the total radiation belt electron content calculated from Van Allen Probe phase space density, the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using phase space density reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and nonadiabatic effects and revealing a clear modality and repeatable sequence of events in storm time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ)-dependent behavior in the seed (150 MeV/G), relativistic (1,000 MeV/G), and ultrarelativistic (4,000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, while the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

  16. Oscillations of the Outer Boundary of the Outer Radiation Belt During Sawtooth Oscillations

    Directory of Open Access Journals (Sweden)

    Jae-Hun Kim

    2006-09-01

    Full Text Available We report three sawtooth oscillation events observed at geosynchronous orbit where we find quasi-periodic (every 2-3 hours sudden flux increases followed by slow flux decreases at the energy levels of ˜50-400 keV. For these three sawtooth events, we have examined variations of the outer boundary of the outer radiation belt. In order to determine L values of the outer boundary, we have used data of relativistic electron flux observed by the SAMPEX satellite. We find that the outer boundary of the outer radiation belt oscillates periodically being consistent with sawtooth oscillation phases. Specifically, the outer boundary of the outer radiation belt expands (namely, the boundary L value increases following the sawtooth particle flux enhancement of each tooth, and then contracts (namely, the boundary L value decreases while the sawtooth flux decreases gradually until the next flux enhancement. On the other hand, it is repeatedly seen that the asymmetry of the magnetic field intensity between dayside and nightside decreases (increases due to the dipolarization (the stretching on the nightside as the sawtooth flux increases (decreases. This implies that the periodic magnetic field variations during the sawtooth oscillations are likely responsible for the expansion-contraction oscillations of the outer boundary of the outer radiation belt.

  17. Studies on the evaluation of thermal belts and radiation fog over mountainous regions by LANDSAT data

    International Nuclear Information System (INIS)

    Kurose, Y.; Hayashi, Y.; Horiguchi, I.; Fukaishi, K.; Kanechika, O.; Ishida, H.; Sakurai, Y.; Sakai, T.; Yamauchi, Y.; Kohno, Y.

    1996-01-01

    Local meteorological phenomena and characteristics under conditions of nocturnal radiative cooling in winter were investigated using Landsat data and physiographic parameters over the hilly and mountainous regions of the western part of shikoku. (1) Relative elevation between thermal belts and underlying ground such as bottom of basin or valley was 400m on an average. (2) Thermal belts appeared in the zone between 400m and 1000m above the sea level in the western part of Shikoku. (3) Temperature of the thermal belts varied with the elevation in a ratio of about 1 degrees C/100m. This observation indicated that the thermal belt temperature was closely related to the altitude of the zone where the thermal belts originated. (4) Radiation fog was frequently recorded over some part along the Hiji river and over the area along Ootoyo to Motoyama; fog was present even at 10 a.m. (3 hours after sunrise). (5) Upper surface of the fog layer was located at 200m and 600m above the sea level in the Oozu basin and in the area along Ootoyo to Motoyama respectively. (6) In the Oozu basin, the distribution of hamlets on the mountainside was often recognized in the localities within the upper limit of foggy areas

  18. Detection of the strange bodies on the conveyor belt using gamma radiation technique

    International Nuclear Information System (INIS)

    Barna, A.; Ochiana, G.; Oncescu, M.

    1990-01-01

    The aim of this paper is to present a method for the computation of the activity of a gamma radiation source used in a radiometric assembly designed to detect the strange bodies (iron, stone or wood-made granules) within the textile material on the conveyor belt. The mathematical modelling method based on the Monte Carlo procedure has been used, with different values of the errors of types I and II; the investigation method is the transmission of gamma radiations. (Author)

  19. Reference neutron radiations. Part 1: Characteristics and methods of production

    International Nuclear Information System (INIS)

    2001-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 1. of ISO 8529 specifies the reference neutron radiations, in the energy range from thermal up to 20 MeV, for calibrating neutron-measuring devices used for radiation protection purposes and for determining their response as a function of neutron energy. Reference radiations are given for neutron fluence rates of up to 1x10 9 m 2 s-1 , corresponding, at a neutron energy of 1 MeV, to dose-equivalent rates of up to 100 mSv h -1 . This part of ISO 8529 is concerned only with the methods of producing and characterizing the neutron reference radiations. The procedures for applying these radiations for calibrations are described in ISO 8529-2 and ISO 8529-3. The reference radiations specified are the following: neutrons from radionuclide sources, including neutrons from sources in a moderator; neutrons produced by nuclear reactions with charged particles from accelerators; neutrons from reactors. In view of the methods of production and use of them, these reference radiations are divided, for the purposes of this part of ISO 8529, into the following two separate sections. In clause 4, radionuclide neutron sources with wide spectra are specified for the calibration of neutron measuring devices. These sources should be used by laboratories engaged in the routine calibration of neutron-measuring devices, the particular design of which has already been type tested. In clause 5, accelerator-produced monoenergetic neutrons and reactor-produced neutrons with wide or quasi monoenergetic spectra are specified for determining the response of neutron-measuring devices

  20. Portable neutron and gamma-radiation instruments

    International Nuclear Information System (INIS)

    Murray, W.S.; Butterfield, K.B.

    1990-01-01

    This paper reports on the design and building of a smart neutron and gamma-radiation detection systems with embedded microprocessors programmed in the FORTH language. These portable instruments can be battery-powered and can provide many analysis functions not available in most radiation detectors. Local operation of the instruments is menu-driven through a graphics liquid crystal display and hex keypad; remote operation is through a serial communications link. While some instruments simply count particles, others determine the energy of the radiation as well as the intensity. The functions the authors have provided include absolute source-strength determination. Feynmann variance analysis, sequential-probability ratio test, and time-history recording

  1. Upper limit on the inner radiation belt MeV electron intensity

    Science.gov (United States)

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  2. Partial radiative capture of resonance neutrons

    International Nuclear Information System (INIS)

    Samour, C.

    1969-01-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. 195 Pt + n and 183 W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of γ i > with E γ . The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in 195 Pt + n, 197 Au + n and 59 Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [fr

  3. Low altitude observations of the energetic electrons in the outer radiation belt during isolated substorms

    International Nuclear Information System (INIS)

    Varga, L.; Venkatesan, D.; Johns Hopkins Univ., Laurel, MD; Meng, C.I.

    1985-01-01

    The low energy (1-20 keV) detector registering particles onboard the polar-orbiting low altitude (approx. 850 km) DMSP-F2 and -F3 satellites also records high energy electrons penetrating the detector walls. Thus the dynamics of this electron population at L=3.5 can be studied during isolated periods of magnetospheric substorms identified by the indices of auroral electrojet (AE), geomagnetic (Ksub(p)) and ring current (Dsub(st)). Temporal changes in the electron flux during the substorms are observed to be an additional contribution riding over the top of the pre-storm (or geomagnetically quiet-time) electron population; the duration of the interval of intensity variations is observed to be about the same as that of the enhancement of the AE index. This indicates the temporal response of the outer radiation belt to the substorm activity, since the observation was made in the ''horns'' of the outer radiation belt. The observed enhanced radiation at low altitude may associate with the instantaneous increase and/or dumping of the outer radiation belt energetic electrons during each isolated substorm activity. (author)

  4. The dependence of radiation damage analysis on neutron dosimetry

    International Nuclear Information System (INIS)

    Goland, A.N.; Parkin, D.M.

    1977-01-01

    The characteristics of defect production in neutron spectra can be determined by utilizing neutron cross section data (e.g. ENDF/B), detailed neutron spectral data and radiation damage models. The combination of neutron cross section and spectral data is a fundamental starting point in applying damage models. Calculations using these data and damage models show that there are significant differences in the way defects are produced in various neutron spectra. Nonelastic events dominate the recoil energy distribution in high-energy neutron sources such as those based upon fusion and deuteron-breakup reactions. Therefore, high-energy neutron cross sections must be measured or calculated to supplement existing data files. Radiation damage models can then be used to further characterize the diverse neutron spectra

  5. Average radiation weighting factors for specific distributed neutron spectra

    International Nuclear Information System (INIS)

    Ninkovic, M.M.; Raicevic, J.J.

    1993-01-01

    Spectrum averaged radiation weighting factors for 6 specific neutron fields in the environment of 3 categories of the neutron sources (fission, spontaneous fission and (α,n)) are determined in this paper. Obtained values of these factors are greater 1.5 to 2 times than the corresponding quality factors used for the same purpose until a few years ago. This fact is very important to have in mind in the conversion of the neutron fluence into the neutron dose equivalent. (author)

  6. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended to... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... analysis and display equipment, patient and equipment support, treatment planning computer programs...

  7. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  8. Study the Precipitation of Radiation Belt Electrons during the Rapid Dropout Events

    Science.gov (United States)

    Tu, W.; Cunningham, G.; Li, X.; Chen, Y.

    2015-12-01

    During the main phase of storms, the relativistic electron flux in the radiation belt can drop by orders of magnitude on timescales of a few hours. Where do the electrons go? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by transport across the magnetopause into interplanetary space or by precipitation into the atmosphere. In this work we first conduct a survey of the MeV electron dropouts using the Van Allen Probes data in conjunction with the low-altitude measurements of precipitating electrons by 6 NOAA/POES satellites. The dropout events are categorized into three types: precipitation-loss dominant, outward radial diffusion dominant, or with contributions from both mechanisms. The survey results suggest the relative importance of precipitation and outward radial diffusion to the fast dropouts of radiation belt electrons, and their extent in L-shell and electron energy. Then, for specific events identified as dominated by precipitation loss, we use the Drift-Diffusion model, which includes the effects of azimuthal drift and pitch angle diffusion, to simulate both the electron dropout observed by Van Allen Probes and the distributions of drift-loss-cone electrons observed by multiple low-earth-orbit satellites (6 POES and the Colorado Student Space Weather Experiment). The model quantifies the electron precipitation loss and pitch angle diffusion coefficient, Dxx, with high temporal and spatial resolution. Finally, by comparing the Dxx derived from the model with those estimated from the quasi-linear theory using wave data from Van Allen Probes and other event-specific wave models, we are able to test the validity of quasi-linear theory and seek direct evidence of the wave-particle interactions during the dropouts.

  9. Effects of Electromagnetic Perturbations on Particles Trapped in the Radiation Belts

    Energy Technology Data Exchange (ETDEWEB)

    Dungey, J. W. [Imperial College of Science and Technology, London (United Kingdom)

    1965-06-15

    Since the radiation belts were discovered by Van Allen in 1958, observations of trapped particles have rapidly built up a large body of information. Knowledge of the neutral atmosphere as well as the ionosphere shows that for energetic particles the probable time before colliding with another particle of any kind may be extremely long. Then the only feature known to affect the motion of the particle is the electromagnetic field and, conversely, over a long time even weak electromagnetic disturbances can be important. Consequently, electromagnetic disturbances should be important in determining the form of the radiation belts, and it will be seen that certain features encourage an interpretation of this kind. The physics of the radiation belts may be regarded as a part of plasma physics, namely the realm in which collisions are negligible. This needs qualifying in that there is a boundary layer (the ionosphere) where collisions are important, and this is analogous to laboratory plasma containment devices. The energy range of trapped particles is wide, but includes the energy range required for fusion reactors. The mean free time in the radiation belts is extreme, but the neglect of collisions yields a great simplification in theoretical work, and an understanding of collision-free plasmas is expected to be useful. Observations in space have great advantages. The quantity measured by a particle-detector sensitive to a limited range of energy and with a limited cone of acceptance is the velocity distribution function, which is fundamental in theoretical work. Local electric and magnetic measurements are also made with very little disturbance by the spacecraft. The disadvantage is that simultaneous measurements cannot be made at many different points.

  10. Polar PWI and CEPPAD observations of chorus emissions and radiation belt electron acceleration: Four case studies

    Czech Academy of Sciences Publication Activity Database

    Sigsbee, K.; Menietti, J. D.; Santolík, Ondřej; Blake, J. B.

    2008-01-01

    Roč. 70, č. 14 (2008), s. 1774-1788 ISSN 1364-6826 R&D Projects: GA AV ČR IAA301120601 Grant - others: NASA (US) NNG05GM52G; NSF(US) 0307319 Institutional research plan: CEZ:AV0Z30420517 Keywords : chorus * outer radiation belt Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.667, year: 2008

  11. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  12. Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts

    Science.gov (United States)

    Goyal, R.; Sharma, R. P.; Gupta, D. N.

    2017-12-01

    A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.

  13. Application of multi-parameter chorus and plasmaspheric hiss wave models in radiation belt modeling

    Science.gov (United States)

    Aryan, H.; Kang, S. B.; Balikhin, M. A.; Fok, M. C. H.; Agapitov, O. V.; Komar, C. M.; Kanekal, S. G.; Nagai, T.; Sibeck, D. G.

    2017-12-01

    Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model along with many other radiation belt models require inputs for pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. In this study we incorporate recently developed multi-parameter chorus and plasmaspheric hiss wave models based on geomagnetic index and solar wind parameters. We perform CIMI simulations for two geomagnetic storms and compare the flux enhancement of MeV electrons with data from the Van Allen Probes and Akebono satellites. We show that the relativistic electron fluxes calculated with multi-parameter wave models resembles the observations more accurately than the relativistic electron fluxes calculated with single-parameter wave models. This indicates that wave models based on a combination of geomagnetic index and solar wind parameters are more effective as inputs to radiation belt models.

  14. Modeling radiation belt dynamics using a 3-D layer method code

    Science.gov (United States)

    Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J. M.; Chan, A. A.; Li, W.; Ni, B.; Lu, Q.; Wang, S.

    2017-08-01

    A new 3-D diffusion code using a recently published layer method has been developed to analyze radiation belt electron dynamics. The code guarantees the positivity of the solution even when mixed diffusion terms are included. Unlike most of the previous codes, our 3-D code is developed directly in equatorial pitch angle (α0), momentum (p), and L shell coordinates; this eliminates the need to transform back and forth between (α0,p) coordinates and adiabatic invariant coordinates. Using (α0,p,L) is also convenient for direct comparison with satellite data. The new code has been validated by various numerical tests, and we apply the 3-D code to model the rapid electron flux enhancement following the geomagnetic storm on 17 March 2013, which is one of the Geospace Environment Modeling Focus Group challenge events. An event-specific global chorus wave model, an AL-dependent statistical plasmaspheric hiss wave model, and a recently published radial diffusion coefficient formula from Time History of Events and Macroscale Interactions during Substorms (THEMIS) statistics are used. The simulation results show good agreement with satellite observations, in general, supporting the scenario that the rapid enhancement of radiation belt electron flux for this event results from an increased level of the seed population by radial diffusion, with subsequent acceleration by chorus waves. Our results prove that the layer method can be readily used to model global radiation belt dynamics in three dimensions.

  15. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  16. Modeling of electron time variations in the radiation belts

    International Nuclear Information System (INIS)

    Chan, K.W.; Teague, M.J.; Schofield, N.J.; Vette, J.I.

    1979-01-01

    A review of the temporal variation in the trapped electron population of the inner and outer radiation zones is presented. Techniques presently used for modeling these zones are discussed and their deficiencies identified. An intermediate region is indicated between the zones in which the present modeling techniques are inadequate due to the magnitude and frequency of magnetic storms. Future trends are examined, and it is suggested that modeling of individual magnetic storms may be required in certain L bands. An analysis of seven magnetic storms is presented, establishing the independence of the depletion time of the storm flux and the storm magnitude. Provisional correlation between the storm magnitude and the Dst index is demonstrated

  17. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations over two solar cycles, and operational forecasting.

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2015-12-01

    Understanding of the dynamics in Earth's radiation belts is critical to accurate modeling and forecasting of space weather conditions, both which are important for design, and protection of our space-borne assets. In the current study, we utilize the Versatile Electron Radiation Belt (VERB) code, multi-spacecraft measurements, and a split-operator Kalman filter to recontructe the global state of the radiation belt system in the CRRES era and the current era. The reanalysis has revealed a never before seen 4-belt structure in the radiation belts during the March 1991 superstorm, and highlights several important aspects in regards to the the competition between the source, acceleration, loss, and transport of particles. In addition to the above, performing reanalysis in adiabatic coordinates relies on specification of the Earth's magnetic field, and associated observational, and model errors. We determine the observational errors for the Kalman filter directly from cross-spacecraft phase-space density (PSD) conjunctions, and obtain the error in VERB by comparison with reanalysis over a long time period. Specification of errors associated with several magnetic field models provides an important insight into the applicability of such models for radiation belt research. The comparison of CRRES area reanalysis with Van Allen Probe era reanalysis allows us to perform a global comparison of the dynamics of the radiation belts during different parts of the solar cycle and during different solar cycles. The data assimilative model is presently used to perform operational forecasts of the radiation belts (http://rbm.epss.ucla.edu/realtime-forecast/).

  18. Neutron spectrometry by diamond detector for nuclear radiation

    International Nuclear Information System (INIS)

    Kozlov, S.F.; Konorova, E.A.; Barinov, A.L.; Jarkov, V.P.

    1975-01-01

    Experiments on fast neutron spectrometry using the nuclear radiation diamond detector inside a horizontal channel of a water-cooled and water-moderated reactor are described. It is shown that the diamond detector enables neutron spectra to be measured within the energy range of 0.3 to 10 MeV against reactor gamma-radiation background and has radiation resistance higher than that of conventional semiconductor detectors. (U.S.)

  19. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations of a four-zone structure using five spacecraft and the VERB code

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y. Y.; Kondrashov, D.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2014-11-01

    Obtaining the global state of radiation belt electrons through reanalysis is an important step toward validating our current understanding of radiation belt dynamics and for identification of new physical processes. In the current study, reanalysis of radiation belt electrons is achieved through data assimilation of five spacecraft with the 3-D Versatile Electron Radiation Belt (VERB) code using a split-operator Kalman filter technique. The spacecraft data are cleaned for noise, saturation effects, and then intercalibrated on an individual energy channel basis, by considering phase space density conjunctions in the T96 field model. Reanalysis during the CRRES era reveals a never-before-reported four-zone structure in the Earth's radiation belts during the 24 March 1991 shock-induced injection superstorm: (1) an inner belt, (2) the high-energy shock-injection belt, (3) a remnant outer radiation belt, and (4) a second outer radiation belt. The third belt formed near the same time as the second belt and was later enhanced across keV to MeV energies by a second particle injection observed by CRRES and the Northern Solar Terrestrial Array riometer network. During the recovery phase of the storm, the fourth belt was created near L*=4RE, lasting for several days. Evidence is provided that the fourth belt was likely created by a dominant local heating process. This study outlines the necessity to consider all diffusive processes acting simultaneously and the advantage of supporting ground-based data in quantifying the observed radiation belt dynamics. It is demonstrated that 3-D data assimilation can resolve various nondiffusive processes and provides a comprehensive picture of the electron radiation belts.

  20. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  1. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  2. To the problem on a charge state of energetic ions of radiation belts

    International Nuclear Information System (INIS)

    Panasyuk, M.I.

    1980-01-01

    Estimation of the effect of recharging processes upon formation of intensity maxima of radiation belt ions of different types is obtained as well as the ion charge states in the area of intensity maxima. Comparison of spatial position of intensity maxima of the H, He, C, O ions with the energies more than 1 MeV with the calculation results is presented. It provides the particle radial drift under the effect of sudden impulses and death at the expence of ionization losses. Application of adiabaticity criterion of the particle movement to the analysis of position of outer edge of radiation belt of heavy ions permitted to carry out estimation of the He, C, O ion charge state. He ions with the energy more than 1 MeV possess mainly the charge state of +2, C and O ions with the energy of several MeV over L=5-6 are in the ionized state almost completely, and during the drift into the depth of the belts the ion charge decreases to 3-4 over L approximately 3.5 with the energy increase. At the energies higher than several MeV the recharge processes are significant for the C and.O ions. For He ions with the energy higher 1 MeV and for H ions with more than 0.1 MeV the recharge role is not considerable

  3. Plant trial of a fast neutron and gamma-ray transmission gauge for the on-belt determination of moisture in lump coke

    International Nuclear Information System (INIS)

    Millen, M.J.; Rafter, P.T.; Sowerby, B.D.; Rainbow, M.T.; Jelenich, L.

    1990-01-01

    A fast neutron and γ-ray transmission (FNGT) gauge has been used to determine the moisture content of lump coke on the conveyor belt supplying the No. 3 blast furnace at the BHP Newcastle Steelworks. The gauge was operated on-line over the period June 1988-March 1989. Gauge moisture was compared with laboratory moisture, based on 30 increment composite samples taken from the belt, and with moisture determined by a second FNGT gauge on one of the hoppers feeding the conveyor belt. The r.m.s. difference between conveyor gauge moisture and laboratory moisture was 0.24 wt% during the calibration period for two hopper flow on the belt, which is normal plant condition. The accuracy of the conveyor belt gauge was maintained to within 0.37 wt% moisture over the full period of the plant trial. (author)

  4. Empirical radiation belt models: Comparison with in situ data and implications for environment definition

    Science.gov (United States)

    de Soria-Santacruz Pich, Maria; Jun, Insoo; Evans, Robin

    2017-09-01

    The empirical AP8/AE8 model has been the de facto Earth's radiation belts engineering reference for decades. The need from the community for a better model incubated the development of AP9/AE9/SPM, which addresses several shortcomings of the old model. We provide additional validation of AP9/AE9 by comparing in situ electron and proton data from Jason-2, Polar Orbiting Environmental Satellites (POES), and the Van Allen Probes spacecraft with the 5th, 50th, and 95th percentiles from AE9/AP9 and with the model outputs from AE8/AP8. The relatively short duration of Van Allen Probes and Jason-2 missions means that their measurements are most certainly the result of specific climatological conditions. In low Earth orbit (LEO), the Jason-2 proton flux is better reproduced by AP8 compared to AP9, while the POES electron data are well enveloped by AE9 5th and 95th percentiles. The shape of the South Atlantic anomaly (SAA) from Jason-2 data is better captured by AP9 compared to AP8, while the peak SAA flux is better reproduced by AP8. The <1.5 MeV inner belt electrons from Magnetic Electron Ion Spectrometer (MagEIS) are well enveloped by AE9 5th and 95th percentiles, while AE8 overpredicts the measurements. In the outer radiation belt, MagEIS and Relativistic Electron and Proton Telescope (REPT) electrons closely follow the median estimate from AE9, while AP9 5th and 95th percentiles generally envelope REPT proton measurements in the inner belt and slot regions. While AE9/AP9 offer the flexibility to specify the environment with different confidence levels, the dose and trapped proton peak flux for POES and Jason-2 trajectories from the AE9/AP9 50th percentile and above are larger than the estimates from the AE8/AP8 models.

  5. Neutron radiation capture; Radiatsionnyj zakhvat nejtronov

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-12-31

    For all stable and experimentally studied radionuclides evaluated data are presented on cross sections of thermal neutrons, on resonance integrals and medium neutron cross sections with energy of 30 KeV. Refs, figs and tabs.

  6. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  7. Specification of fast neutron radiation quality from cell transformation data

    International Nuclear Information System (INIS)

    Coppola, M.

    1992-01-01

    Experimental data on the neoplastic transformation of C3H 10T1/2 cells measured at Casaccia after neutron and X-ray irradiation were used to determine neutron RBE values for the RSV-Tapiro fast reactor energy spectrum and for monoenergetic neutrons of 0.5, 1, and 6 MeV. In parallel, micro-dosimetric measurements provided the actual lineal energy distributions and related mean parameters for the reactor radiation. From these experiments, values of the neutron quality factor were derived for the reactor neutron energy spectrum and, in turn, for the other neutron energies tested. A mathematical expression giving a smooth dependence on neutron energy was also determined for the effective quality factor in the entire energy range examined. The results were compared with other proposals

  8. Radiation hygiene aspects of mixed neutron-gamma field dosimetry

    International Nuclear Information System (INIS)

    Nikodemova, O.; Hrabovcova, A.

    1982-01-01

    Various possibilities are analyzed of determining the dose equivalent of neutrons, as is the reliability of the techniques and the correct interpretation for the purposes of radiation hygiene. (author)

  9. Electron flux enhancement in the inner radiation belt during moderate magnetic storms

    Directory of Open Access Journals (Sweden)

    H. Tadokoro

    2007-06-01

    Full Text Available During moderate magnetic storms, an electron channel (300–1100 keV of the NOAA satellite has shown sudden electron flux enhancements in the inner radiation belt. After examinating the possibility of contamination by different energetic particles, we conclude that these electron flux enhancements are reliable enough to be considered as natural phenomena, at least for the cases of small to moderate magnetic storms. Here, we define small and moderate storms to be those in which the minimum Dst ranges between −30 and −100 nT. The electron flux enhancements appear with over one order of magnitude at L~2 during these storms. The enhancement is not accompanied by any transport of electron flux from the outer belt. Statistical analysis shows that these phenomena have a duration of approximately 1 day during the period, starting with the main phase to the early recovery phase of the storms. The flux enhancement shows a dawn-dusk asymmetry; the amount of increased flux is larger in the dusk side. We suggest that this phenomenon could not be caused by the radial diffusion but would be due to pitch-angle scattering at the magnetic equator. The inner belt is not in a stationary state, as was previously believed, but is variable in response to the magnetic activity.

  10. Prediction Model of the Outer Radiation Belt Developed by Chungbuk National University

    Directory of Open Access Journals (Sweden)

    Dae-Kyu Shin

    2014-12-01

    Full Text Available The Earth’s outer radiation belt often suffers from drastic changes in the electron fluxes. Since the electrons can be a potential threat to satellites, efforts have long been made to model and predict electron flux variations. In this paper, we describe a prediction model for the outer belt electrons that we have recently developed at Chungbuk National University. The model is based on a one-dimensional radial diffusion equation with observationally determined specifications of a few major ingredients in the following way. First, the boundary condition of the outer edge of the outer belt is specified by empirical functions that we determine using the THEMIS satellite observations of energetic electrons near the boundary. Second, the plasmapause locations are specified by empirical functions that we determine using the electron density data of THEMIS. Third, the model incorporates the local acceleration effect by chorus waves into the one-dimensional radial diffusion equation. We determine this chorus acceleration effect by first obtaining an empirical formula of chorus intensity as a function of drift shell parameter L*, incorporating it as a source term in the one-dimensional diffusion equation, and lastly calibrating the term to best agree with observations of a certain interval. We present a comparison of the model run results with and without the chorus acceleration effect, demonstrating that the chorus effect has been incorporated into the model to a reasonable degree.

  11. The Magnetic Local Time Distribution of Energetic Electrons in the Radiation Belt Region

    Science.gov (United States)

    Allison, H. J.

    2017-12-01

    Using fourteen years of electron flux data from the National Oceanic and Atmospheric Administration Polar Operational Environmental Satellites (POES), a statistical study of the magnetic local time (MLT) distribution of the electron population is performed across a range of activity levels, defined by AE, AE*, Kp, solar wind velocity (Vsw), and VswBz. Three electron energies (>30, >100, and >300 keV) are considered. Dawn-dusk flux asymmetries larger than order of magnitude were observed for >30 and >100 keV electrons. For >300 keV electrons, dawn-dusk asymmetries were primarily due to a decrease in the average dusk-side flux beyond L* ˜ 4.5 that arose with increasing activity. For the >30 keV population, substorm injections enhance the dawn-side flux, which may not reach the dusk-side as the electrons can be on open drift paths and lost to the magnetopause. The asymmetries in the >300 keV population are attributed to the combination of magnetopause shadowing and >300 keV electron injections by large electric fields. We suggest that 3D radiation belt models could set the minimum energy boundary (Emin) to 30 keV or above at L* ˜6 during periods of low activity. However, for more moderate conditions, Emin should be larger than 100 keV and, for very extreme activities, ˜300 keV. Our observations show the extent that in-situ electron flux readings may vary during active periods due to the MLT of the satellite and highlight the importance of 4D radiation belt models to fully understand radiation belt processes.

  12. Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss

    Science.gov (United States)

    Blum, L. W.

    2017-12-01

    Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.

  13. Quantifying the Precipitation Loss of Radiation Belt Electrons during a Rapid Dropout Event

    Science.gov (United States)

    Pham, K. H.; Tu, W.; Xiang, Z.

    2017-12-01

    Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on May 1, 2013. The event shows fast dropout of MeV energy electrons at L>4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolution and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell, and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L>4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate show strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The estimated pitch angle diffusion rates from the model are then compared with in situ wave measurements from Van Allen Probes to uncover the underlying wave-particle-interaction mechanisms that are responsible for the fast electron precipitation. Comparing the resolved precipitation loss with the observed electron dropouts at high altitudes, our results will suggest the relative role of electron precipitation loss and outward radial diffusion to the radiation belt dropouts during storm and non-storm times, in addition to its energy and L dependence.

  14. Modelling formation of new radiation belts and response to ULF oscillations following March 24, 1991 SSC

    International Nuclear Information System (INIS)

    Hudson, M.K.; Kotelnikov, A.D.; Li, X.; Lyon, J.G.; Roth, I.; Temerin, M.; Wygant, J.R.; Blake, J.B.; Gussenhoven, M.S.; Yumoto, K.; Shiokawa, K.

    1996-01-01

    The rapid formation of a new proton radiation belt at L≅2.5 following the March 24, 1991 Storm Sudden Commencement (SSC) observed at the CRRES satellite is modelled using a relativistic guiding center test particle code. The new radiation belt formed on a time scale shorter than the drift period of eg. 20 MeV protons. The SSC is modelled by a bipolar electric field and associated compression and relaxation in the magnetic field, superimposed on a background dipole magnetic field. The source population consists of solar protons that populated the outer magnetosphere during the solar proton event that preceeded the SSC and trapped inner zone protons. The simulations show that both populations contribute to drift echoes in the 20 endash 80 MeV range measured by the Aerospace instrument and in lower energy channels of the Protel instrument on CRRES, while primary contribution to the newly trapped population is from solar protons. Proton acceleration by the SSC differs from electron acceleration in two notable ways: different source populations contribute and nonrelativistic conservation of the first adiabatic invariant leads to greater energization of protons for a given decrease in L than for relativistic electrons. Model drift echoes, energy spectra and flux distribution in L at the time of injection compare well with CRRES observations. On the outbound pass, ∼2 hours after the SSC, the broad spectral peak of the new radiation belt extends to higher energies (20 endash 40 MeV) than immediately after formation. Electron flux oscillations observed at this later time are attributed to post-SSC impulses evident in ground magnetograms, while two minute period ULF oscillations also evident in CRRES field data appear to be cavity modes in the inner magnetosphere. copyright 1996 American Institute of Physics

  15. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  16. A virtual radiation belt observatory: Looking forward to the electronic geophysical year

    Science.gov (United States)

    Baker, D. N.; Green, J. C.; Kroehl, H. W.; Kihn, E.; Virbo Team

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We are developing the concept of a Virtual Radiation Belt Observatory (ViRBO) that will bring together near-earth particle and field measurements acquired by NASA, NOAA, DoD, DOE, and other spacecraft. We discuss plans to aggregate these measurements into a readily accessible database along with analysis, visualization, and display tools that will make radiation belt information available and useful both to the scientific community and to the user community. We envision that data from the various agencies along with models being developed under the auspices of the National Science Foundation Center for Integrated Space Weather Modeling (CISM) will help us to provide an excellent `climatology' of the radiation belts over the past several decades. In particular, we would plan to use these data to drive physical models of the radiation belts to form a gridded database which would characterize particle and field properties on solar-cycle (11-year) time scales. ViRBO will also provide up-to-date specification of conditions for event analysis and anomaly resolution. We are even examining the possibilities for near-realtime acquisition of

  17. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  18. Application of neutron radiation inspection at the Pantex Plant

    International Nuclear Information System (INIS)

    Cassidy, J.P.

    1983-01-01

    A neutron radiographic capability has been established at the Pantex Plant in Amarillo, Texas, which is operated for the Department of Energy by Mason and Hanger-Silas Mason Co. A 3 MeV Van de Graaf accelerator is employed as the neutron source. Neutron radiation inspection techniques have been developed to detect and observe discontinuities in explosive materials encased in aluminum, lead, steel and combinations of these casement materials. These data demonstrate that the capability exists for obtaining satisfactory neutron radiographs of many explosive-loaded components. Additional work will be performed in order to further determine applicable capabilities of the 3 MeV Van de Graaf accelerator. (Auth.)

  19. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  20. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  1. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  2. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  3. Mass spectrometer determinations of solar wind He, Ne, and Ar and radiation belt He

    International Nuclear Information System (INIS)

    Warasila, R.L.

    1976-01-01

    A unique mass spectrometer system was built and used to measure He, Ne, and Ar abundances and isotopic ratios in various samples of spacecraft that have been exposed to the space environment. The Apollo 12 mission brought back sections of the Surveyor 3 vehicle suitable for mass spectrometric studies of implanted solar wind and solar cosmic ray particles. Using the mass spectrometer, a 4 He flux of 6-8 x 10 6 ions/cm 2 --sec was measured, and in addition 4 He/ 3 He = 2700 +- 50; 4 He/ 20 Ne = 410 + 30; 20 Ne/ 22 Ne = 13.5 +- 0.2; 20 Ne/ 36 Ar = 24.5 +- 2.5; and 36 Ar/ 38 Ar = 5.41 +- 0.20 isotopic abundances were measured. An upper limit for the flux of SCR 3 He in the 10-20 MeV/nucleon range was also determined, for the thirty-one month exposure period. In the radiation belt environment, 3 He was found in the aluminum antenna housing from the recovered second stage of a pre-Apollo Saturn test flight launched January 28, 1964 and returned to earth on April 28, 1966. The amount of 3 He found was about 6 x 10 -10 cc(STP)/cm 2 with a 4 He/ 3 He ratio of 145 or less. The 3 He was shown to come from the lower radiation belt as all other sources of 3 He were orders of magnitude lower than the observed value

  4. The quiet time structure of energetic (35--560 keV) radiation belt electrons

    International Nuclear Information System (INIS)

    Lyons, L.R.; Williams, D.J.

    1975-01-01

    Detailed Explorer 45 equatorial observations of the quiet time structure of radiation belt electrons (35--560 keV) for 1.7approximately-less-thanLapproximately-less-than5.2 are presented. Throughout the slot region and outer regions of the plasmasphere the observed pitch angle distributions are found to agree with those expected from resonant interactions with the plasmaspheric whistler mode wave band. Coulomb collisions become the dominant loss mechanism within the inner zone. The overall two-zone structure of the observed radial profiles is found to agree with the equilibrium structure expected to result from a balance between pitch angle scattering losses and radial diffusion from an average outer zone source. This agreement suggests that the dominant quiet time source and loss mechanisms have been identified and evaluated for energetic radiation belt electrons within the plasmasphere. In the outer regions of the plasmasphere (Lapprox.5) the equilibrium structure is observed to be modified by daily flux variations associated with changes in the level of magnetic activity that occur even during relatively quiet times. Within the inner region of the plasmasphere (Lapproximately-less-than3.5), electron fluxes are decoupled from these magnetic activity variations by the long time scales (>10 days) required for pitch angle and radial diffusion. Consequently, fluxes of these electrons are observed to remain nearly constant at equilibrium levels throughout the quiet periods examined

  5. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  6. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    Science.gov (United States)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  7. Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts

    Science.gov (United States)

    Sen Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode chorus elements in the Van Allen radiation belts. Specifically, we develop signal processing techniques based on the radon transform that disambiguate chorus elements with a dominant sweep rate against hiss-like chorus. We present representative results validating our techniques and also provide statistical characterization of detected chorus elements across a case study of a 6 s epoch.

  8. Wave-Particle Interactions in the Earth's Radiation Belts: Recent Advances and Unprecedented Future Opportunities

    Science.gov (United States)

    Li, W.

    2017-12-01

    In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.

  9. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    Science.gov (United States)

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  10. Radiation damage in molybdenum and tungsten in high neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S; Milasin, N [Institute of Nuclear Sciences Boris Kidric, Department of Reactor Materials, Vinca, Beograd (Serbia and Montenegro)

    1964-04-15

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  11. Radiation damage in molybdenum and tungsten in high neutron fluxes

    International Nuclear Information System (INIS)

    Veljkovic, S.; Milasin, N.

    1964-01-01

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  12. Radiobiological basis for setting neutron radiation safety standards

    International Nuclear Information System (INIS)

    Straume, T.

    1985-01-01

    Present neutron standards, adopted more than 20 yr ago from a weak radiobiological data base, have been in doubt for a number of years and are currently under challenge. Moreover, recent dosimetric re-evaluations indicate that Hiroshima neutron doses may have been much lower than previously thought, suggesting that direct data for neutron-induced cancer in humans may in fact not be available. These recent developments make it urgent to determine the extent to which neutron cancer risk in man can be estimated from data that are available. Two approaches are proposed here that are anchored in particularly robust epidemiological and experimental data and appear most likely to provide reliable estimates of neutron cancer risk in man. The first approach uses gamma-ray dose-response relationships for human carcinogenesis, available from Nagasaki (Hiroshima data are also considered), together with highly characterized neutron and gamma-ray data for human cytogenetics. When tested against relevant experimental data, this approach either adequately predicts or somewhat overestimates neutron tumorigenesis (and mutagenesis) in animals. The second approach also uses the Nagasaki gamma-ray cancer data, but together with neutron RBEs from animal tumorigenesis studies. Both approaches give similar results and provide a basis for setting neutron radiation safety standards. They appear to be an improvement over previous approaches, including those that rely on highly uncertain maximum neutron RBEs and unnecessary extrapolations of gamma-ray data to very low doses. Results suggest that, at the presently accepted neutron dose limit of 0.5 rad/yr, the cancer mortality risk to radiation workers is not very different from accidental mortality risks to workers in various nonradiation occupations

  13. Detailed characteristics of radiation belt electrons revealed by CSSWE/REPTile measurements: Geomagnetic activity response and precipitation observation

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D.; Zhao, H.; Millan, R.

    2017-08-01

    Earth's outer radiation belt electrons are highly dynamic. We study the detailed characteristics of relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit (LEO) CubeSat, which traverses the radiation belt four times in one orbit ( 1.5 h) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitation. We focus on the measured electron response to geomagnetic activity for different energies to show that there are abundant sub-MeV electrons in the inner belt and slot region. These electrons are further enhanced during active times, while there is a lack of >1.63 MeV electrons in these regions. We also show that the variation of measured electron flux at LEO is strongly dependent on the local magnetic field strength, which is far from a dipole approximation. Moreover, a specific precipitation band, which happened on 19 January 2013, is investigated based on the conjunctive measurement of CSSWE, the Balloon Array for Radiation belt Relativistic Electron Losses, and one of the Polar Operational Environmental Satellites. In this precipitation band event, the net loss of the 0.58-1.63 MeV electrons (L = 3.5-6) is estimated to account for 6.8% of the total electron content.

  14. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  15. Characterization of the radiation background at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Hall-Wilton, Richard J.; Bentley, Phillip M.; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.

    2016-01-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4 He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden. (paper)

  16. Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-04-01

    Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.

  17. Present status of the radiative neutron capture mechanisms -nonstatistical effects

    International Nuclear Information System (INIS)

    Brzosko, J.S.

    1976-01-01

    The present status of our knowledge about neutron radiative capture mechanisms is described. In the first section there are given a review on mathematical description of the neutron capture cross section and possible sources of correlation effects. The point of lecture is the explanation of connections between the intermediate structures and correlation effects. In one of the sections the explanation of the bump in γ-ray spectra is discussed. The typical experimental results are presented. (author)

  18. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  19. Partial radiative capture of resonance neutrons; Capture radiative partielle des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Samour, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. {sup 195}Pt + n and {sup 183}W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of < {gamma}{sub {gamma}{sub i}} > with E{sub {gamma}}. The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in {sup 195}Pt + n, {sup 197}Au + n and {sup 59}Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [French] La capture radiative des neutrons de resonance a ete etudiee pres de l'accelerateur lineaire de Saclay entre 0,5 et 700 eV a l'aide de la methode du temps-de-vol et d'un detecteur Ge(Li). Les noyaux {sup 195}Pt + n et {sup 183}W + n permettent l'analyse de la distribution de resonance en resonance des largeurs radiatives partielles {gamma}{sub {gamma}{sub i}} et de leur eventuelle correlation, ainsi que l'etude de la variation de < {gamma}{sub {gamma}{sub i}} > en fonction de E{sub {gamma}}. Les intensites moyennes des transitions Ml et El sont comparees pour quelques isotopes de l'etain. Des effets d'interference, soit entre resonances, soit entre capture directe et capture resonnante sont mis en evidence dans {sup 195}Pt + n, {sup 197}Au + n et {sup 59}Co + n. Enfin les schemas des etats excites d'un grand nombre de noyaux sont obtenus et compares avec les predictions theoriques. Cette etude a ete completee par une analyse des spectres thermiques. (auteur)

  20. Introduction of neutron metrology for reactor radiation damage

    International Nuclear Information System (INIS)

    Alberman, A.; Genthon, J.P.; Schneider, W.; Wright, S.B.; Zijp, W.L.

    1979-01-01

    The background of the procedures for determining irradiation parameters which are of interest in radiation damage experiments is described. The first two chapters outline the concept of damage functions and damage models. The next two chapters give information on methods to determine neutron fluences and neutron spectra. The fifth chapter gives a review of correlation data available for graphite and steels. The last chapter gives guidance how to report the relevant irradiation parameters. Attention is given to the role of the neutron spectrum in deriving values for damage fluence, energy transferred to the lattice, and number of displacements

  1. Variation of Neutron Moderating Power on HDPE by Gamma Radiation

    International Nuclear Information System (INIS)

    Park, Kwang June; Ju, June Sik; Kang, Hee Young; Shin, Hee Sung; Kim, Ho Dong

    2009-01-01

    High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a 60 Co source to a level of 10 5 -10 9 rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the 105 rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study

  2. Development of ITER diagnostics: Neutronic analysis and radiation hardness

    Energy Technology Data Exchange (ETDEWEB)

    Vukolov, Konstantin, E-mail: vukolov_KY@nrcki.ru; Borisov, Andrey; Deryabina, Natalya; Orlovskiy, Ilya

    2015-10-15

    Highlights: • Problems of ITER diagnostics caused by neutron radiation from hot DT plasma considered. • Careful neutronic analysis is necessary for ITER diagnostics development. • Effective nuclear shielding for ITER diagnostics in the 11th equatorial port plug proposed. • Requirements for study of radiation hardness of diagnostic elements defined. • Results of optical glasses irradiation tests in a fission reactor given. - Abstract: The paper is dedicated to the problems of ITER diagnostics caused by effects of radiation from hot DT plasma. An effective nuclear shielding must be arranged in diagnostic port plugs to meet the nuclear safety requirements and to provide reliable operation of the diagnostics. This task can be solved with the help of neutronic analysis of the diagnostics environment within the port plugs at the design stage. Problems of neutronic calculations are demonstrated for the 11th equatorial port plug. The numerical simulation includes the calculations of neutron fluxes in the port-plug and in the interspace. Options for nuclear shielding, such as tungsten collimator, boron carbide and water moderators, stainless steel and lead screens are considered. Data on neutron fluxes along diagnostic labyrinths allow to define radiation hardness requirements for the diagnostic components and to specify their materials. Options for windows and lenses materials for optical diagnostics are described. The results of irradiation of flint and silica glasses in nuclear reactor have shown that silica KU-1 and KS-4V retain transparency in visible range after neutron fluence of 10{sup 17} cm{sup −2}. Flints required for achromatic objectives have much less radiation hardness about 5 × 10{sup 14} n/cm{sup 2}.

  3. Investigation of radiation damage effects in neutron irradiated CCD

    International Nuclear Information System (INIS)

    Brau, James E.; Igonkina, Olga; Potter, Chris T.; Sinev, Nikolai B.

    2005-01-01

    A Charge Coupled Devices (CCD)-based vertex detector is a leading option for vertex detection at the future linear collider. A major issue for this application is the radiation hardness of such devices. Tests of radiation hardness of CCDs used in the SLD vertex detector, VXD3, have been reported earlier. The first measurements of 1998 involved a spare VXD3 CCD that was irradiated with neutrons from a radioactive source (Pu-Be), and from a nuclear reactor. In 2003, we had the opportunity to disassemble the VXD3 detector and study the nature of the radiation damage it incurred during 3 years of operation at SLC. In the preparation for this study, additional experiments with the spare VXD3 CCD were performed. These included measurements of trapping times in neutron irradiated CCDs. Results, reported here, will help us better understand the mechanism of radiation damage effects and develop techniques to minimize performance degradation due to radiation damage

  4. Isotonic and isotopic dependence of the radiative neutron capture cross-section on the neutron excess

    International Nuclear Information System (INIS)

    Trofimov, Yu.N.

    1991-01-01

    The radiative neutron capture cross-section of nuclei has been derived as a function of neutron excess on the basis of the exponential dependence of the cross-section on the reaction energy. It is shown that unknown cross-sections of stable and radioactive nuclei may be evaluated by using the isotonic and isotopic dependence together with available reference cross-section measurements. (author). 4 refs, 3 figs

  5. Relativistic electrons of the outer radiation belt and methods of their forecast (review

    Directory of Open Access Journals (Sweden)

    Potapov A.S.

    2017-03-01

    Full Text Available The paper reviews studies of the dynamics of relativistic electrons in the geosynchronous region. It lists the physical processes that lead to the acceleration of electrons filling the outer radiation belt. As one of the space weather factors, high-energy electron fluxes pose a serious threat to the operation of satellite equipment in one of the most populated orbital regions. Necessity is emphasized for efforts to develop methods for forecasting the situation in this part of the magnetosphere, possible predictors are listed, and their classification is given. An example of a predictive model for forecasting relativistic electron flux with a 1–2-day lead time is proposed. Some questions of practical organization of prediction are discussed; the main objectives of short-term, medium-term, and long-term forecasts are listed.

  6. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  7. Wave-Particle Interactions in the Radiation Belts, Aurora,and Solar Wind: Opportunities for Lab Experiments

    Science.gov (United States)

    Kletzing, C.

    2017-12-01

    The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.

  8. Combined convective and diffusive modeling of the ring current and radiation belt electron dynamics using the VERB-4D code

    Science.gov (United States)

    Aseev, N.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Wang, D.

    2017-12-01

    Ring current and radiation belts are key elements in the global dynamics of the Earth's magnetosphere. Comprehensive mathematical models are useful tools that allow us to understand the multiscale dynamics of these charged particle populations. In this work, we present results of simulations of combined ring current - radiation belt electron dynamics using the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. The VERB-4D code solves the modified Fokker-Planck equation including convective terms and models simultaneously ring current (1 - 100 keV) and radiation belt (100 keV - several MeV) electron dynamics. We apply the code to the number of geomagnetic storms that occurred in the past, compare the results with different satellite observations, and show how low-energy particles can affect the high-energy populations. Particularly, we use data from Polar Operational Environmental Satellite (POES) mission that provides a very good MLT coverage with 1.5-hour time resolution. The POES data allow us to validate the approach of the VERB-4D code for modeling MLT-dependent processes such as electron drift, wave-particle interactions, and magnetopause shadowing. We also show how different simulation parameters and empirical models can affect the results, making a particular emphasis on the electric and magnetic field models. This work will help us reveal advantages and disadvantages of the approach behind the code and determine its prediction efficiency.

  9. Importance of the neutron spectrum for determination of radiation damage

    International Nuclear Information System (INIS)

    Hehn, G.; Stiller, P.; Mattes, M.

    1977-01-01

    Since the radiation effects of neutrons depend strongly on the neutron energy, the correlation between the induced damage and the fluence of the fast neutrons shows appreciable disadvantages. The measured values of changes in material properties resulted in large differences for the same fast neutron fluence, being partly due to different neutron spectra. The uncertainties in damage data led to strong overdesign of important structural components. Different neutron environment at surveillance sample position may give an underestimation of the embrittlement in the reactor pressure vessel, which has to be avoided. The application of damage functions combined with accurately calculated neutron spectra, promise to be a reasonable solution. The damage function has the advantage of a phenomenological quantity that all spectral effects are included. But the correlation quantity has to be determined of high experimental costs. Therefore approximations of its energy distributions are very important. For the keV energy region the kerma function is reasonably good. For the MeV energy region a higher effort is needed to calculate the displacement cross section. The same holds for the low energy part. In all three parts the formation of stable material property levels may vary, so that the final correlation can be determined only by measurements of material properties in different neutron spectra. In material samples the spectra distribution of the displacement production rate was determined at different local positions outside the reactor core of a PWR and a fast breeder showing the most important energy regions of both reactors. (orig.) [de

  10. Measurement of radiation skyshine with D-T neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Nishitani, T. E-mail: nisitani@naka.jaeri.go.jp; Ochiai, K.; Kaneko, J.; Hori, J.; Sato, S.; Yamauchi, M.; Tanaka, R.; Nakao, M.; Wada, M.; Wakisaka, M.; Murata, I.; Kutsukake, C.; Tanaka, S.; Sawamura, T.; Takahashi, A

    2003-09-01

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of {approx}1.7x10{sup 11} n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9x0.9 m{sup 2} was open during the experimental period. The radiation dose rate outside the target room was measured a maximum distance of 550 m from the D-T target point with a spherical rem-counter. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation counters. The highest neutron dose was about 9x10{sup -22} Sv/(source neutron) at a distance of 30 m from the D-T target point and the dose rate was attenuated to 4x10{sup -24} Sv/(source neutron) at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 230 m. The line source model agrees well with the experimental results within the distance of 350 m.

  11. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    International Nuclear Information System (INIS)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Zhang, X.-J.

    2016-01-01

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

  12. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    Science.gov (United States)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  13. Neutron radiative capture methods for surface elemental analysis

    Science.gov (United States)

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  14. Neutron radiation from medical electron accelerators

    International Nuclear Information System (INIS)

    McCall, R.C.

    1983-01-01

    A method is described using simple gold foils and relatively inexpensive moderators to measure neutron fluences, both fast nd thermal, which then can be converted to dose equivalent using a few simple formulas. The method is sensitive, easy to calibrate, and should work at most accelerators regardless of energy or room geometry

  15. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  16. Detector and dosimeter for neutrons and other radiation

    International Nuclear Information System (INIS)

    Apfel, R.E.

    1979-01-01

    A radiation detector and dosimeter is based on the fact that a sufficiently finely-dispersed liquid suspended in a host liquid of high viscosity or gel is stable at temperatures above its normal boiling point for long periods of time provided it is protected from contact with walls, or other types of initiators which can cause volatilization or vaporization of the droplets. Radiation, and particularly neutron radiation of sufficient energy and intensity on coming in contact with such droplets can trigger volatilization. The volume of vapor evolved can then serve as a measure of radiation intensity and dosage

  17. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  18. Atomic structure of radiation damages in FCC-metals after neutron irradiation

    International Nuclear Information System (INIS)

    Popova, E.V.; Ivchenko, V.A.; Kozlov, A.V.

    2005-01-01

    Full text: Radiation clusters, formed at a neutron irradiation, are a product of evolution of cascade areas. The quantitative information about clusters can be used for verification of calculations of cascade damage ability, in particular, cascade efficiency. Data about concentration clusters and an average of the vacancies containing in them, allow to receive total of the vacancies reserved in them and to use them for comparison to results of calculations of cascade damage ability. A correctness of such comparison by that above, than below temperature of a neutron irradiation. The purpose of work was experimental studying radiation clusters formed in FCC-metals at a low temperature neutron irradiation methods of dilatometry, field ion (FIM) and transmission electronic microscopy (TEM). Radiation clusters were studied: in industrial austenite steel C0.05Crl6Nil5Mo2Mnl, irradiated in reactor Rw-2a at temperature 310 K up to fluence intermediate and fast neutrons (with E > 0,1 MeV) 6.7·l0 21 m -2 ; in a modelling material - Pt (cleanliness of 99.99 %) with the same - FCC-structure in an initial condition and after an irradiation in reactor RWW-2M at temperature 310 K up to fluence intermediate and fast neutrons (with E > 0.1 MeV) 3.5·10 22 m -2 . As a result of an irradiation of steel and pure Pt, in these materials by methods FIM and TEM many radiation clusters, the accelerated neutrons initiated by interaction with substance was revealed. It is established that these damage areas represent the depleted zones containing separate vacancies, and also small vacancy complexes, with the 'belt' interstitial atoms. The quantitative estimation of the sizes of such radiating defects is lead and their density in volume is experimentally established. So the neutron irradiation of steel at temperature 310 K up to fluence 6.7·10 21 m -2 causes formation radiation clusters which average diameter according to TEM makes 3 nanometers. Observable by methods FIM clusters have the

  19. Design, construction and characterization of a dosimeter for neutron radiation

    International Nuclear Information System (INIS)

    Souto, Eduardo de Brito

    2007-01-01

    An individual dosimeter for neutron-gamma mixed field dosimetry was design and developed aiming monitoring the increasing number of workers potentially exposed to neutrons. The proposed dosimeter was characterized to an Americium-Beryllium source spectrum and dose range of radiation protection interest (up to 20 mSv). Thermoluminescent albedo dosimetry and nuclear tracks dosimetry, traditional techniques found in the international literature, with materials of low cost and national production, were used. A commercial polycarbonate, named SS-1, was characterized for solid state tack detector application. The chemical etching parameters and the methodology of detectors evaluation were determined. The response of TLD-600, TLD-700 and SS-1 were studied and algorithms for dose calculation of neutron and gamma radiation of Americium- Beryllium sources were proposed. The ratio between thermal, albedo and fast neutrons responses, allows analyzing the spectrum to which the dosimeter was submitted and correcting the track detector response to variations in the radiation incidence angle. The new dosimeter is fully characterized, having sufficient performance to be applied as neutron dosimeter in Brazil. (author)

  20. Undergraduate experiments using the neutron radiation from californium-252

    International Nuclear Information System (INIS)

    Rossel, J.; Golecki, I.

    1976-01-01

    Three experiments designed to demonstrate and measure several properties of the neutron radiation emitted by a 3μg 252 Cf source are described. The experiments constitute a special project carried out by a third-year undergraduate student at the Institute of Physics of the University of Neuchatel. The 252 Cf source is enclosed in a shield which allows a pencil of fast neutrons to pass through a central tube, while reducing the ambient radiation below the tolerance level. The shield consists of layers of borated paraffin wax, iron and cadmium. The first experiment uses an air-alcohol diffusion cloud chamber for the demonstration of tracks of recoil protons produced by the neutrons. Semi-quantitative measurements of track lengths give the correct order of magnitude of the proton energies. In the second experiment a liquid scintillator detector is used to scan the beam profile across the radiation shield enclosing the source. A pulse-shape-discrimination system discriminates between neutrons and gamma photons. The third experiment makes use of the nuclear emulsion technique to study the neutron energy distribution of 252 Cf. Preliminary results are compared with published values. (author)

  1. Chromatin damage induced by fast neutrons or UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I

    2002-07-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m{sup -2}. The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  2. Chromatin damage induced by fast neutrons or UV laser radiation

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I.

    2002-01-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m -2 . The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  3. A new, passive dosemeter for gamma, beta and neutron radiations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L A; Stokes, R P, E-mail: rpstokes@dstl.gov.uk [Defence Science and Technology Laboratory, Environmental Sciences Department, Alverstoke, Gosport, Hants, PO12 2DL (United Kingdom)

    2011-03-01

    The Defence Science and Technology Laboratory (Dstl) provides personal radiation dosimetry to the UK Ministry of Defence. Dstl has recently developed a dosemeter that is based on a combination of thermoluminescent and etched-track detectors. The Dstl Combined Dosemeter is capable of assessing doses due to photons, beta particles and neutrons. This paper presents the laboratory type testing results for the Combined Dosemeter, and also describes the procedure for calibrating the dosemeter for use in workplace neutron fields. The Combined Dosemeter meets the type test requirements that are relevant to its intended applications, and gives neutron doses that are within 50% of the true dose in the workplaces in which it is used, even when the wearer has the potential to be exposed to a variety of neutron spectra (e.g. on board nuclear-powered submarines).

  4. A new, passive dosemeter for gamma, beta and neutron radiations

    International Nuclear Information System (INIS)

    Jones, L A; Stokes, R P

    2011-01-01

    The Defence Science and Technology Laboratory (Dstl) provides personal radiation dosimetry to the UK Ministry of Defence. Dstl has recently developed a dosemeter that is based on a combination of thermoluminescent and etched-track detectors. The Dstl Combined Dosemeter is capable of assessing doses due to photons, beta particles and neutrons. This paper presents the laboratory type testing results for the Combined Dosemeter, and also describes the procedure for calibrating the dosemeter for use in workplace neutron fields. The Combined Dosemeter meets the type test requirements that are relevant to its intended applications, and gives neutron doses that are within 50% of the true dose in the workplaces in which it is used, even when the wearer has the potential to be exposed to a variety of neutron spectra (e.g. on board nuclear-powered submarines).

  5. Competition of neutrino and gravitational radiation in neutron star formation

    International Nuclear Information System (INIS)

    Kazanas, D.; Schramm, D.N.

    1976-01-01

    The possibility is explored that neutrino radiation, rather than gravitational radiation, may be the dominant way by which non-radial pulsations are damped out in a collapsing star. If this is so it implies that hopes of detecting gravity waves from supernovae explosions are very optimistic. Neutron stars and black holes are probably the collapsed central remnants of a supernovae explosion. These objects presumably originate from collapse of the cores of sufficiently massive stars, following the cessation of thermonuclear burning. Although there is at present no completely consistent detailed theory as to how collapse of the core and the subsequent supernova explosion take place, a general model exists for the final stages of stellar evolution and supernovae explosions. According to this model the electrons of a sufficiently massive stellar core, due to the high density and temperature, become absorbed by the protons through the reaction p + e - → n + v. Very large numbers of neutrinos, resulting from this and other thermal processes, such as pair annihilation, plasma decay, and Bremsstrahlung, are emitted, taking away most of the gravitational energy of the collapse. These neutrinos possibly drive ejection of the overlying stellar mantle, whilst the neutron-rich core collapses further to a condensed remnant. Gravitational radiation comes into play only at very late stages of the collapse. All of this implies that neutrino radiation might contribute to the decay of the non-radial oscillations of the collapsing core and the newly formed neutron star, possibly damping out these oscillations much faster than gravitational radiation. In order to obtain a more quantitative answer to the question the effects of neutrino radiation on the non-radial oscillations are examined. The implication is that neutrino radiation, by more rapid damping of the non-radial oscillations of a newly formed neutron star in a supernova explosion, would hinder gravitational radiation and

  6. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    International Nuclear Information System (INIS)

    Michel, Anne; Artioli, G.; Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J.; Dumas, P.; Somogyl, A.; Cotte, M.; Kockelmann, W.; Kolar, J.; Areon, I.; Meden, A.; Strlie, M.; Pantos, M.; Vendrell, M.; Wess, T.; Gunneweg, J.

    2007-01-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures

  7. Moessbauer studies of hemoglobin in erythrocytes exposed to neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Niemiec, Katarzyna; Kaczmarska, Magdalena; Buczkowski, Mateusz [AGH University, Faculty of Physics and Computer Science, Department of Medical Physics and Biophysics (Poland); Fornal, Maria [Collegium Medicum, Jagiellonian University, Department of Internal Medicine and Gerontology (Poland); Pohorecki, Wladyslaw [AGH University, Faculty of Energy and Fuels (Poland); Matlak, Krzysztof; Korecki, Jozef [AGH University, Faculty of Physics and Computer Science, Department of Solid State Physics (Poland); Grodzicki, Tomasz [Collegium Medicum, Jagiellonian University, Department of Internal Medicine and Gerontology (Poland); Burda, Kvetoslava, E-mail: kvetoslava.burda@fis.agh.edu.pl [AGH University, Faculty of Physics and Computer Science, Department of Medical Physics and Biophysics (Poland)

    2012-03-15

    We studied radiation effects on the stability of various states of hemoglobin (Hb) in red blood cells (RBC) irradiated with a very low dose of neutron rays, 50 {mu}Gy. We investigated RBCs isolated from blood of healthy donors. Moessbauer spectroscopy was applied to monitor different forms of Hb. Our results show, for the first time, that oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoxyHb) are two Hb forms sensitive to such a low neutron radiation. Both Hbs change into a new Hb form (Hb{sub irr}). Additionally, OxyHb transfers into HbOH/H{sub 2}O, which under our experimental conditions is resistant to the action of neutron rays.

  8. HSC5: synchrotron radiation and neutrons for cultural heritage studies

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Anne [Institut Neel - CNRS, 38 - Grenoble (France); Artioli, G. [Padova Univ. (Italy); Bleuet, P.; Cotte, M.; Tafforeau, P.; Susini, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Dumas, P.; Somogyl, A. [SOLEIL Synchrotron, 91 - Gif sur Yvette (France); Cotte, M. [Centre de Recherche et de Restauration des Musees de France, UMR171, 75 - Paris (France)]|[European Synchrotron Radiation Facility, 38 - Grenoble (France); Kockelmann, W. [Science and Technology Facilities Council, Rutherford Appleton Lab. (United Kingdom); Kolar, J. [Ljubljana Univ., Morana RTD, Slovenia, Faculty of Chemistry and Chemical Technology (Slovenia); Areon, I. [Nova Gorica Univ. (Slovenia); Meden, A.; Strlie, M. [Ljubljana Univ., Faculty of Chemistry and Chemical Technology (Slovenia); Pantos, M. [Daresbury Laboratory, Warrington (United Kingdom); Vendrell, M. [Barcelona Univ., dept. of Crystallography and Mineralogy (Spain); Wess, T. [Cardiff Univ., School of Optometry and Institute of Vision (Ireland); Gunneweg, J. [Hebrew Univ., Jerusalem (Israel)

    2007-07-01

    Synchrotron and neutron sources offer recent and additional insight into the records of our cultural past. Over the last years, there has been an increasing demand for access to synchrotron radiation- and neutron-based techniques, and their applications in the fields of archaeological science and cultural heritage. The purpose of this Hercules Specialized Course is to give the participants an introduction to the basic principles of synchrotron radiation and neutron techniques (imaging, microscopy, diffraction, absorption and fluorescence, IR spectroscopy). The school provides cross-disciplinary examples illustrating the abilities of these techniques in a representative range of scientific cases concerning painting, archaeological artefacts, inks, pigments, fossils and the Dead Sea scrolls. This document gathers only the resumes of the lectures.

  9. Polycrystalline Materials as a Cold Neutron and Gamma Radiation Filter

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The total neutron cross-section of polycrystalline beryllium, graphite and iron has been calculated beyond their cut-off wavelength using a general formula. The computer Cold Filter code was developed in order to provide the required calculations. The code also permits the calculation of attenuation of reactor gamma radiation, The calculated neutron transmissions through polycrystalline Be graphite and iron at different temperatures were compared with the experimental data measured at the ETRR-1 reactor using two TOF spectrometers. An overall agreement is obtained between the formula fits and experimental data at different temperatures. A feasibility study is carried on using polycrystalline Be, graphite and iron an efficient filter for cold neutrons and gamma radiation.

  10. Neutron diffraction measurements at the INES diffractometer using a neutron radiative capture based counting technique

    Energy Technology Data Exchange (ETDEWEB)

    Festa, G. [Centro NAST, Universita degli Studi di Roma Tor Vergata, Roma (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@roma2.infn.it [Centro NAST, Universita degli Studi di Roma Tor Vergata, Roma (Italy); Grazzi, F.; Barzagli, E. [CNR-ISC Firenze (Italy); Scherillo, A. [CNR-ISC Firenze (Italy); ISIS facility Rutherford Appleton Laboratory (United Kingdom); Schooneveld, E.M. [ISIS facility Rutherford Appleton Laboratory (United Kingdom)

    2011-10-21

    The global shortage of {sup 3}He gas is an issue to be addressed in neutron detection. In the context of the research and development activity related to the replacement of {sup 3}He for neutron counting systems, neutron diffraction measurements performed on the INES beam line at the ISIS pulsed spallation neutron source are presented. For these measurements two different neutron counting devices have been used: a 20 bar pressure squashed {sup 3}He tube and a Yttrium-Aluminum-Perovskite scintillation detector. The scintillation detector was coupled to a cadmium sheet that registers the prompt radiative capture gamma rays generated by the (n,{gamma}) nuclear reactions occurring in cadmium. The assessment of the scintillator based counting system was done by performing a Rietveld refinement analysis on the diffraction pattern from an ancient Japanese blade and comparing the results with those obtained by a {sup 3}He tube placed at the same angular position. The results obtained demonstrate the considerable potential of the proposed counting approach based on the radiative capture gamma rays at spallation neutron sources.

  11. Buckling analysis of a cylindrical shell, under neutron radiation environment

    International Nuclear Information System (INIS)

    Arani, A. Ghorbanpour; Ahmadi, M.; Ahmadi, A.; Rastgoo, A.; Sepyani, H.A.

    2012-01-01

    Highlights: ► The work investigates the buckling of a shell in the neutron radiation environment. ► Radiation induced porosity in elastic materials affects the material's properties. ► The data based technique was used to determine the volume fraction porosity. ► The theoretical formulations are presented based on the classical shell theory (CST). ► It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2–15e−7 dPa/s at 345–650 °C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.

  12. Semiconductor dosimetry system for gamma and neutron radiation

    International Nuclear Information System (INIS)

    Savic, Z.; Pavlovic, Z.

    1995-01-01

    The semiconductor dosimetry system for gamma and neutron radiation based on pMOS transistor and PIN diode is described. It is intended for tactical or accidental personal dosimetry. The production steps are given. The temperature, dose and time (fading) response are reported. Hardware and software requirements which are needed for obtaining the desired measurement error are pointed. (author)

  13. EVIDOS: Individual dosimetry in mixed neutron and photon radiation fields

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2006-01-01

    The EVIDOS project (partly funded by the European Commission RTD Programme: Nuclear Energy, Euratom Framework Programme V, 1998-2002, Contract No FIKR-CT-2001-00175) aimed at improving individual monitoring in mixed neutron-photon radiation fields by evaluating the performance of routine and novel personal dosimeters for mixed radiation, and by giving guidelines for deriving sufficiently accurate values of personal dose equivalent from the readings of area survey instruments and dosimeters. The main objective of EVIDOS was to evaluate different methods for individual dosimetry in mixed neutron-photon work-places in nuclear industry. This implied a determination of the capabilities and limitations of personal dosimeters and the establishment of methods to enable sufficiently accurate values of personal dose equivalent from spectrometers, area survey instruments and routine personal dosimeters. Also novel electronic personal dosimeters were investigated. To this end spectrometric and dosimetric investigations in selected representative workplaces in nuclear industry where workers can receive significant neutron doses were performed. As part of this project, a number of tasks were executed, in particular: (1) the determination of the energy and direction distribution of the neutron fluence; (2) the derivation of the (conventionally true) values of radiation protection quantities; (3) the determination of the readings of routine and innovative personal dosimeters and of area monitors; and (4) the comparison between dosimeter readings and values of the radiation protection quantities

  14. Characteristics of pitch angle distributions of hundreds of keV electrons in the slot region and inner radiation belt

    Science.gov (United States)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D. M.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-the-art pitch angle-resolved data from the Magnetic Electron Ion Spectrometer instrument onboard the Van Allen Probes, a detailed analysis of hundreds of keV electron PADs below L = 4 is performed, in which the PADs are categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°), and 90° minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of ˜460 keV electrons for over a year, we find that the 90° minimum PADs are generally present in the inner belt (Lpitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L = 3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2 mechanism can hardly explain the formation of 90° minimum PADs at the center of inner belt.

  15. Lognormal Kalman filter for assimilating phase space density data in the radiation belts

    Science.gov (United States)

    Kondrashov, D.; Ghil, M.; Shprits, Y.

    2011-11-01

    Data assimilation combines a physical model with sparse observations and has become an increasingly important tool for scientists and engineers in the design, operation, and use of satellites and other high-technology systems in the near-Earth space environment. Of particular importance is predicting fluxes of high-energy particles in the Van Allen radiation belts, since these fluxes can damage spaceborne platforms and instruments during strong geomagnetic storms. In transiting from a research setting to operational prediction of these fluxes, improved data assimilation is of the essence. The present study is motivated by the fact that phase space densities (PSDs) of high-energy electrons in the outer radiation belt—both simulated and observed—are subject to spatiotemporal variations that span several orders of magnitude. Standard data assimilation methods that are based on least squares minimization of normally distributed errors may not be adequate for handling the range of these variations. We propose herein a modification of Kalman filtering that uses a log-transformed, one-dimensional radial diffusion model for the PSDs and includes parameterized losses. The proposed methodology is first verified on model-simulated, synthetic data and then applied to actual satellite measurements. When the model errors are sufficiently smaller then observational errors, our methodology can significantly improve analysis and prediction skill for the PSDs compared to those of the standard Kalman filter formulation. This improvement is documented by monitoring the variance of the innovation sequence.

  16. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy

    Science.gov (United States)

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615

  17. Options for the modified radiation weighting factor of neutrons

    International Nuclear Information System (INIS)

    Kellerer, A. M.; Leuthold, G.; Mares, V.; Schraube, H.

    2004-01-01

    The recent ICRP Report 92 has noted that the current radiation weighting factor, w R , depends on the energy of the incident neutrons in a manner that differs substantially from the dependence, which results from the current convention, Q(L). At all neutron energies, but most conspicuously below 1 MeV, the values of w R exceed those of the effective quality factor, q E . The discrepancy is largely due to the fact that - in the absence of computed values of the effective quality factor for neutrons - w R has been patterned after the values of the ambient quality factor, which accounts insufficiently for the low-linear energy transfer (LET) gamma ray component from neutron capture in the human body. There are different options to remove the discrepancy. Option 1 is to reduce w R substantially at all neutron energies to make it equal to q E for a standard condition, such as isotropic incidence of the neutrons. Since such a reduction may cause problems in those countries where the current w R values are already legally implemented, ICRP 92 has proposed what is here termed Option 2. It recommended to replace Q(L) by the increased value 1.6 Q(L) - 0.6 and, accordingly, to make the radiation weighting factor equal to 1.6 q E - 0.6. With Option 2 the radiation weighting factor needs to be decreased appreciably at low neutron energies, but for fission neutron spectra the overall changes are minor. To guide - regardless which option is chosen - the selection of the numerical values, the effective quality factor, q E , is computed here for different directional distributions of neutrons incident on the anthropomorphic phantoms ADAM and EVA. None of the sex averaged numerical values is found to deviate much from those for isotropic incidence. Isotropic incidence can, thus, be used as an adequate standard condition. A numerical approximation is proposed for the standard q E that is nearly equivalent to a formula invoked by ICRP 92, but is somewhat simpler and provides realistic

  18. Individual neutron monitoring in workplaces with mixed neutron/proton radiation

    International Nuclear Information System (INIS)

    Bolognese-Milsztajn, T.; Bartlett, D.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Giusti, V.; Gressier, V.; Kylloenen, J.; Lacoste, V.; Lindborg, L.; Luszik-Bhadra, M.; Molinos, C.; Pelcot, G.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.; Derdau, D.

    2004-01-01

    EVIDOS ('evaluation of individual dosimetry in mixed neutron and photon radiation fields') is an European Commission (EC)-sponsored project that aims at a significant improvement of radiation protection dosimetry in mixed neutron/photon fields via spectrometric and dosimetric investigations in representative workplaces of the nuclear industry. In particular, new spectrometry methods are developed that provide the energy and direction distribution of the neutron fluence from which the reference dosimetric quantities are derived and compared to the readings of dosemeters. The final results of the project will be a comprehensive set of spectrometric and dosimetric data for the workplaces and an analysis of the performance of dosemeters, including novel electronic dosemeters. This paper gives an overview of the project and focuses on the results from measurements performed in calibration fields with broad energy distributions (simulated workplace fields) and on the first results from workplaces in the nuclear industry, inside a boiling water reactor and around a spent fuel transport cask. (authors)

  19. Explaining the Diverse Response of the Ultra-relativistic Van Allen Radiation Belt to Solar Wind Forcing

    Science.gov (United States)

    Mann, I. R.; Ozeke, L.; Murphy, K. R.; Claudepierre, S. G.; Rae, J.; Milling, D. K.; Kale, A.; Baker, D. N.

    2017-12-01

    The NASA Van Allen Probes have opened a new window on the dynamics of ultra-relativistic electrons in the Van Allen radiation belts. Under different solar wind forcing the outer belt is seen to respond in a variety of apparently diverse and sometimes remarkable ways. For example, sometimes a third radiation belt is carved out (e.g., September 2012), or the belts can remain depleted for 10 days or more (September 2014). More usually there is a sequential response of a strong and sometimes rapid depletion followed by a re-energization, the latter increasing outer belt electron flux by orders of magnitude on hour timescales during some of the strongest storms of this solar cycle (e.g., March 2013, March 2015). Such dynamics also appear to be often bounded at low-L by an apparently impenetrable barrier at L 2.8 through which ultra-relativistic electrons do not penetrate. Many studies in the Van Allen Probes era have sought explanations for these apparently diverse features, often incorporating the effects from multiple plasma waves. In contrast, we show how this apparently diverse behaviour can instead be explained by one dominant process: ULF wave radial transport. Once ULF wave transport rates are accurately specified by observations, and coupled to the dynamical variation of the outer boundary condition at the edge of the outer belt, the observed diverse responses can all be explained. However, in order to get good agreement with observations, the modeling reveals the importance of still currently unexplained very fast loss in the main phase which results in an almost total extinction of the belts and decouples pre- and post-storm ultra-relativistic electron flux on hour timescales. Similarly, varying plasmasheet source populations are seen to be of critical importance such that near-tail dynamics play a crucial role in Van Allen belt dynamics. Nonetheless, simple models incorporating accurate transport rates derived directly from ULF wave measurements are shown to

  20. ICME-driven sheath regions deplete the outer radiation belt electrons

    Science.gov (United States)

    Hietala, H.; Kilpua, E. K.; Turner, D. L.

    2013-12-01

    It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward

  1. Repair of radiation damage caused by cyclotron-produced neutrons

    International Nuclear Information System (INIS)

    Martins, B.I.

    1979-01-01

    Hall et al. present experimental data on repair of sublethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 60 Co γ rays. Hall and Kraljevic present experimental data on repair of potentially lethal damage in cultured mammalian cells exposed to 35 MeV neutrons and 210 kVp x rays. These results of Hall et al. are very difficult to explain from basic concepts in radiobiology. Contrary to Rossi, these data do not support his thesis that repair of radiation damage is dose-dependent and linear energy transfer independent. Nor do these results meet the expectations of multitarget-single hit theory which would require dose-independent repair equal to n. The observation of the same extrapolation number for neutrons and for x rays is also surprising. From the point of view of radiotherapy, the doses of interest are about 140 rad for neutrons and about 300 rad for x rays. There are no data for repair of potentially lethal damage below 800 rad for x rays and 400 rad for neutrons. The difference in survival between single and split dose is negligible up to a total of about 600 rad of x rays or of neutrons. These data of Hall et al. therefore have little significance to radiotherapists and are an enigma to radiobiologists

  2. Radiative neutron capture: Hauser Feshbach vs. statistical resonances

    Energy Technology Data Exchange (ETDEWEB)

    Rochman, D., E-mail: dimitri-alexandre.rochman@psi.ch [Reactor Physics and Systems Behavior Laboratory, Paul Scherrer Institute, Villigen (Switzerland); Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Koning, A.J. [Nuclear Data Section, IAEA, Vienna (Austria); Uppsala University, Uppsala (Sweden); Ferroukhi, H. [Reactor Physics and Systems Behavior Laboratory, Paul Scherrer Institute, Villigen (Switzerland)

    2017-01-10

    The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated on the basis of the statistical Hauser Feshbach (HF) reaction model, leading to smooth and monotonically varying temperature-dependent Maxwellian-averaged cross sections (MACS). The HF approximation is known to be valid if the number of resonances in the compound system is relatively high. However, such a condition is hardly fulfilled for keV neutrons captured on light or exotic neutron-rich nuclei. For this reason, a different procedure is proposed here, based on the generation of statistical resonances. This novel technique, called the “High Fidelity Resonance” (HFR) method is shown to provide similar results as the HF approach for nuclei with a high level density but to deviate and be more realistic than HF predictions for light and neutron-rich nuclei or at relatively low sub-keV energies. The MACS derived with the HFR method are systematically compared with the traditional HF calculations for some 3300 neutron-rich nuclei and shown to give rise to significantly larger predictions with respect to the HF approach at energies of astrophysical relevance. For this reason, the HF approach should not be applied to light or neutron-rich nuclei. The Doppler broadening of the generated resonances is also studied and found to have a negligible impact on the calculated MACS.

  3. Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations

    Science.gov (United States)

    Ni, Binbin; Shprits, Yuri; Nagai, Tsugunobu; Thorne, Richard; Chen, Yue; Kondrashov, Dmitri; Kim, Hee-jeong

    2009-05-01

    Data assimilation techniques provide algorithms that allow for blending of incomplete and inaccurate data with physics-based dynamic models to reconstruct the electron phase space density (PSD) in the radiation belts. In this study, we perform reanalyses of the radial PSD profile using two independent data sources from the nearly equatorial CRRES Medium Electron A (MEA) observations and the polar-orbiting Akebono Radiation Monitor (RDM) measurements for a 50-day period from 18 August to 6 October 1990. We utilize the University of California, Los Angeles, One-Dimensional Versatile Electron Radiation Belt (UCLA 1-D VERB) code and a Kalman filtering approach. Comparison of the reanalyses obtained independently using the CRRES MEA and Akebono RDM measurements shows that the dynamics of the PSD can be accurately reconstructed using Kalman filtering even when available data are sparse, inaccurate, and contaminated by random errors. The reanalyses exhibit similarities in the locations and magnitudes of peaks in radial profiles of PSD and the rate and radial extent of the dropouts during storms. This study shows that when unidirectional data are not available, pitch angle averaged flux measurements can be used to infer the long-term behavior (climatology) of the radiation belts. The methodology of obtaining PSD from pitch angle averaged and unidirectional fluxes using the Tsyganenko and Stern (1996) magnetic field model is described in detail.

  4. Calibration of a special neutron dosemeter based on solid-state track detectors and fission radiators in various neutron fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Krusche, M.; Schuricht, V.

    1980-01-01

    The calibration of a personnel neutron dosemeter in different neutron fields is described. The badge-like dosemeter contains 5 detectors: polycarbonate foil (10 μm, Makrofol KG), 232 Th, natural uranium, natural uranium with boron, and natural uranium with cadmium. Detector sensitivity and calibration factors have been calculated and measured in radiation fields of 252 Cf fission neutrons, WWR-S reactor neutrons with and without Cd and Fe shielding, 3-MeV (d,t) generator neutrons, and 238 PuBe neutrons. Measurement range and achievable accuracy are discussed from the point of view of applying the dosemeter in routine and emergency uses

  5. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  6. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    Science.gov (United States)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  7. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    Science.gov (United States)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  8. Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells

    Science.gov (United States)

    Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael

    2018-04-01

    In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.

  9. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    Science.gov (United States)

    Abel, Bob; Thorne, Richard M.

    1994-10-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  10. Introduction to neutron metrology for reactor radiation damage

    International Nuclear Information System (INIS)

    Alberman, A.; Genthon, J.P.; Wright, S.B.; Zijp, W.L.

    1977-01-01

    This document, prepared by members of the Irradiation Damage Subgroup of the Euratom Working Group on Reactor Dosimetry (EWGRD) describes the background of the procedures for determining irradiation parameters which are of interest in radiation damage experiments. The first two chapters outline the concept of damage functions and damge models. The next two chapters give information on methods to determine neutron fluences and neutron spectra. The fifth chapter gives a review of correlation data available for graphite and steels. The last chapter gives guidance how to report the relevant irradiation parameters. Attention is given to the role of the neutron spectrum in deriving values for damage fluence, energy transferred to the lattice, and number of displacements. A suggested list to report data relevant to the irradiation, the instrumentation and the testing of material is included

  11. Radiation problems expected for the German spallation neutron source

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  12. Long distance elementary measurement of the radiation dose ratio produced by neutron activation

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Wu Chunlei; Hu Yonghong; Li Yan

    2009-04-01

    The working principle and the structure and performances of a long distance controllable individual radiation dose ratio instrument are described. The radiation dose ratio produced by neutron activation is elementarily measured by using this instrument in the neutron generator hall with high neutron yield. When neutron yield arrives to 2 x 10 11 s -1 , the radiation dose ratio produced by neutron activation is 99.9 μSv/h in 1 h after the generator being stopped. The radiation dose ratio is reduced to 24.4 μSv/h in 39 h after the generator being stopped. When neutron yield is 3.2 x 10 10 s -1 , the radiation dose ratio produced by neutron activation is 21.9 μSv/h in 36 min, after the generator being stopped. The measurement results may provide reference for physical experimenters and neutron generator operators. (authors)

  13. Neutron radiation characteristics of the IVth generation reactor spent fuel

    Science.gov (United States)

    Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey

    2018-03-01

    Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.

  14. Radiation protection aspects of a high flux, fast neutron generator

    International Nuclear Information System (INIS)

    DeLuca, P.M.; Torti, R.P.; Chenevert, G.M.; Tesmer, J.R.; Kelsey, C.A.

    1976-01-01

    During the development and operation of a gas target, DT neutron generator for use in cancer therapy, two radiation hazards were routinely encountered - personnel exposure to neutrons and to tritium. The principal hazard was irradiation by fast neutrons. By assembling the source below ground level, adding shielding and the use of a controlled access, key identification interlock, the neutron hazard has been reduced. With the present source strength of 2 x 10 12 n/sec, an average neutron dose rate in the control room of 20 mrem/hr was measured- a level compatible with a limited run schedule. The second hazard was exposure to tritium in both gaseous and solid forms. A target inventory of 90 Ci, and overall inventory of 500 Ci, and the need to modify and repair the generator present significant potential hazard due to tritium exposure. The use of protective gloves, wipe tests, urine assays, continuous room air monitoring, and equipment decontamination minimized personnel exposure and effectively confined contamination. The dose due to tritium has been ∼ 0.5 rem/year and negligible spread of contamination has occurred

  15. Neutron and photon spectrometry in mixed radiation fields

    International Nuclear Information System (INIS)

    Jancar, A.; Kopecky, Z.; Veskrna, M.

    2014-01-01

    Spectrometric measurements of the mixed fields of neutron and photon radiation in the workplaces with the L-R-0 research reactor located in the UJV Rez and with the Van de Graaff accelerator, located in the UTEF laboratories Prague, are presented in this paper. The experimental spectrometric measurements were performed using a newly developed digital measuring system, based on the technology of analog-digital converters with a very high sampling frequency (up to 2 GHz), in connection with organic scintillation detector, type BC-501A, and stilbene detector. The results of experimental measurements show high quality of spectrometry mixed fields of neutron and photon radiation across the wide dynamic range of measured energy. (authors)

  16. Radiation effects in materials for accelerator-driven neutron technologies

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.; Daemen, L.L.; Ferguson, P.D.

    1997-01-01

    The materials exposed to the most damaging radiation environments in an SNS (spallation neutron source) are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. The major solid targets in operating SNS's and under consideration for the 1--5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the project target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  17. Global crystallographic textures obtained by neutron and synchrotron radiation

    International Nuclear Information System (INIS)

    Brokmeier, Heinz-Guenter

    2006-01-01

    Global crystallographic textures belong to the main characteristic parameters of engineering materials. The global crystallographic texture is always the average texture of a well-defined sample volume which is representative to solve practical engineering problems. Thus a beam having a high penetration power is needed available as neutron or high energetic X-ray radiation. Texture type and texture sharpness are of great importance for materials properties such as the deep drawing behaviour, one of the basic techniques in many industries. Advantages and disadvantages of both radiations make them complementary for measuring crystallographic textures in a wide range of materials

  18. Area radiation monitor at the intense pulsed-neutron source

    International Nuclear Information System (INIS)

    Eichholz, J.J.; Lynch, F.J.; Mundis, R.L.; Howe, M.L.; Dolecek, E.H.

    1981-01-01

    A tissue-equivalent ionization chamber with associated circuitry has been developed for area radiation monitoring in the Intense Pulsed-Neutron Source (IPNS) facility at Argonne National Laboratory. The conventional chamber configuration was modified in order to increase the electric field and effective volume thereby achieving higher sensitivity and linearity. The instrument provides local and remote radiation level indications and a high level alarm. Twenty-four of these instruments were fabricated for use at various locations in the experimental area of the IPNS-1 facility

  19. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1979-01-01

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  20. Use of high voltage electron microscope to simulate radiation damage by neutrons

    International Nuclear Information System (INIS)

    Mayer, R.M.

    1976-01-01

    The use of the high voltage electron microscope to simulate radiation damage by neutrons is briefly reviewed. This information is important in explaining how alloying affects void formation during neutron irradiation

  1. Combined Global MHD and Test-Particle Simulation of a Radiation Belt Storm: Comparing Depletion, Recovery and Enhancement with in Situ Measurements

    Science.gov (United States)

    Sorathia, K.; Ukhorskiy, A. Y.; Merkin, V. G.; Wiltberger, M. J.; Lyon, J.; Claudepierre, S. G.; Fennell, J. F.

    2017-12-01

    During geomagnetic storms the intensities of radiation belt electrons exhibit dramatic variability. In the main phase electron intensities exhibit deep depletion over a broad region of the outer belt. The intensities then increase during the recovery phase, often to levels that significantly exceed their pre-storm values. In this study we analyze the depletion, recovery and enhancement of radiation belt intensities during the 2013 St. Patrick's geomagnetic storm. We simulate the dynamics of high-energy electrons using our newly-developed test-particle radiation belt model (CHIMP) based on a hybrid guiding-center/Lorentz integrator and electromagnetic fields derived from high-resolution global MHD (LFM) simulations. Our approach differs from previous work in that we use MHD flow information to identify and seed test-particles into regions of strong convection in the magnetotail. We address two science questions: 1) what are the relative roles of magnetopause losses, transport-driven atmospheric precipitation, and adiabatic cooling in the radiation belt depletion during the storm main phase? and 2) to what extent can enhanced convection/mesoscale injections account for the radiation belt buildup during the recovery phase? Our analysis is based on long-term model simulation and the comparison of our model results with electron intensity measurements from the MAGEIS experiment of the Van Allen Probes mission.

  2. Trial production of hyper-thermal neutron generator for Neutron Capture Therapy (NCT) and its radiation properties

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Toru

    1999-01-01

    In NCT, it was at first important to give a cancer portion to radiation dose required for its recovery. By finding out that whole cross-section of water comprising of a living body decreased monotonously with increase of neutron energy from about 100 barn against thermal neutron, became about 40 barn at about 0.5 eV and kept constant to 40 barn till at about 100 eV, application of thermal neutron shifted to higher temperature side, called Hyper thermal neutron, to NCT is proposed. The Hyper thermal neutron radiation can be expected to have similar controllability to that of the thermal neutron radiation. In 1977 fiscal year, a trial Hyper thermal neutron generator was produced on a base of up-to-date investigation results. As a part of property evaluation of the generator, evaluation of energy spectra in the Hyper thermal neutron generated at LINAC by TOF was conducted to confirm shift of the spectra to high temperature side. And, a Fantom experiment at KUR heavy water neutron radiation facility was also conducted to confirm effect of improvement in deep portion dose distribution. (G.K.)

  3. Wave-Particle Interactions Involving Correlated Electron Bursts and Whistler Chorus in Earth's Radiation Belts

    Science.gov (United States)

    Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.

    2017-12-01

    During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.

  4. Observations of energetic helium ions in the Earth's radiation belts during a sequence of geomagnetic storms

    International Nuclear Information System (INIS)

    Spjeldvik, W.N.; Fritz, T.A.

    1981-01-01

    Every year a significant number of magnetic storms disturb the earth's magnetosphere and the trapped particle populations. In this paper, we present observations of energetic (MeV) helium ions made with Explorer 45 during a sequence of magnetic storms during June through December of 1972. The first of these storms started on June 17 and had a Dst index excursion to approx.190 gamma, and the MeV helium ions were perturbed primarily beyond 3 earth radii in the equatorial radiation belts with a typical flux increase of an order of magnitude at L = 4. The second storm period took place during August and was associated with very major solar flare activity. Although the Dst extremum was at best 35 gamma less than the June storm, this period can be characterized as irregular (or multi-storm) with strong compression of the magnetosphere and very large (order of magnitude) MeV helium ion flux enhancements down to Lapprox.2. Following this injection the trapped helium ion fluxes showed positive spectral slope with the peak beyond 3.15 MeV at L = 2.5; and at the lowest observable L shells (Lapprox.2--3) little flux decay (tau>100 days) was seen during the rest of the year. Any effects of two subsequent major magnetic storms in September and November were essentially undetectable in the prolonged after-effect of the August solar flare associated MeV helium ion injection. The helium ion radial profile of the phase space density showed a significant negative slope during this period, and we infer that radial diffusion constitutes a significant loss of helium ions on L shells above Lapprox. =4 during the aftermath of the August 1972 magnetic storm

  5. Command and Data Handling Flight Software test framework: A Radiation Belt Storm Probes practice

    Science.gov (United States)

    Hill, T. A.; Reid, W. M.; Wortman, K. A.

    During the Radiation Belt Storm Probes (RBSP) mission, a test framework was developed by the Embedded Applications Group in the Space Department at the Johns Hopkins Applied Physics Laboratory (APL). The test framework is implemented for verification of the Command and Data Handling (C& DH) Flight Software. The RBSP C& DH Flight Software consists of applications developed for use with Goddard Space Flight Center's core Flight Executive (cFE) architecture. The test framework's initial concept originated with tests developed for verification of the Autonomy rules that execute with the Autonomy Engine application of the RBSP C& DH Flight Software. The test framework was adopted and expanded for system and requirements verification of the RBSP C& DH Flight Software. During the evolution of the RBSP C& DH Flight Software test framework design, a set of script conventions and a script library were developed. The script conventions and library eased integration of system and requirements verification tests into a comprehensive automated test suite. The comprehensive test suite is currently being used to verify releases of the RBSP C& DH Flight Software. In addition to providing the details and benefits of the test framework, the discussion will include several lessons learned throughout the verification process of RBSP C& DH Flight Software. Our next mission, Solar Probe Plus (SPP), will use the cFE architecture for the C& DH Flight Software. SPP also plans to use the same ground system as RBSP. Many of the RBSP C& DH Flight Software applications are reusable on the SPP mission, therefore there is potential for test design and test framework reuse for system and requirements verification.

  6. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  7. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  8. Impurity radiation from a beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1995-01-01

    Impurity radiation, in a worst case evaluation for a beam-plasma neutron source (BPNS), does not limit performance. Impurities originate from four sources: (a) sputtering from walls by charge exchange or alpha particle bombardment, (b) sputtering from limiters, (c) plasma desorption of gas from walls and (d) injection with neutral beams. Sources (c) and (d) are negligible; adsorbed gas on the walls of the confinement chamber and the neutral beam sources is removed by the steady state discharge. Source (b) is negligible for impinging ion energies below the sputtering threshold (T i ≤ 0.025 keV on tungsten) and for power densities to the limiter within the capabilities of water cooling (30-40 MW/m 2 ); both conditions can be satisfied in the BPNS. Source (a) radiates 0.025 MW/m 2 to the neutron irradiation samples, compared with 5 to 10 MW/m 2 of neutrons; and radiates a total of 0.08 MW from the plasma column, compared with 60 MW of injected power. The particle bombardment that yields source (a) deposits an average of 2.7 MW/m 2 on the samples, within the capabilities of helium gas cooling (10 MW/m 2 ). An additional worst case for source (d) is evaluated for present day 2 to 5 s pulsed neutral beams with 0.1% impurity density and is benchmarked against 2XIIB. The total radiation would increase a factor of 1.5 to ≤ 0.12 MW, supporting the conclusion that impurities will not have a significant impact on a BPN. (author). 61 refs, 7 figs, 2 tabs

  9. Rechargeable solid state neutron detector and visible radiation indicator

    Science.gov (United States)

    Stowe, Ashley C.; Wiggins, Brenden; Burger, Arnold

    2017-05-23

    A radiation detection device, including: a support structure; and a chalcopyrite crystal coupled to the support structure; wherein, when the chalcopyrite crystal is exposed to radiation, a visible spectrum of the chalcopyrite crystal changes from an initial color to a modified color. The visible spectrum of the chalcopyrite crystal is changed back from the modified color to the initial color by annealing the chalcopyrite crystal at an elevated temperature below a melting point of the chalcopyrite crystal over time. The chalcopyrite crystal is optionally a .sup.6LiInSe.sub.2 crystal. The radiation is comprised of neutrons that decrease the .sup.6Li concentration of the chalcopyrite crystal via a .sup.6Li(n,.alpha.) reaction. The initial color is yellow and the modified color is one of orange and red. The annealing temperature is between about 450 degrees C. and about 650 degrees C. and the annealing time is between about 12 hrs and about 36 hrs.

  10. Observational evidence of competing source, loss, and transport processes for relativistic electrons in Earth's outer radiation belt

    Science.gov (United States)

    Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan

    Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a

  11. Particle and photon detection for a neutron radiative decay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, T.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)], E-mail: thomas.gentile@nist.gov; Dewey, M.S.; Mumm, H.P.; Nico, J.S.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Cooper, R.L. [University of Michigan, Ann Arbor, MI 48109 (United States)], E-mail: cooperrl@umich.edu; Fisher, B.M.; Kremsky, I.; Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States); Kiriluk, K.G.; Beise, E.J. [University of Maryland, College Park, MD 20742 (United States)

    2007-08-21

    We present the particle and photon detection methods employed in a program to observe neutron radiative beta-decay. The experiment is located at the NG-6 beam line at the National Institute of Standards and Technology Center for Neutron Research. Electrons and protons are guided by a 4.6 T magnetic field and detected by a silicon surface barrier detector. Photons with energies between 15 and 750 keV are registered by a detector consisting of a bismuth germanate scintillator coupled to a large area avalanche photodiode. The photon detector operates at a temperature near 80 K in the bore of a superconducting magnet. We discuss CsI as an alternative scintillator, and avalanche photodiodes for direct detection of photons in the 0.1-10 keV range.

  12. Effect of neutron and proton radiations on magnetization of biotite

    CERN Document Server

    Abdurakhimov, A U; Sharipov, S M; Yugaj, V P; Granovskij, A B; Radkovskaya, A A

    2002-01-01

    One analyzes curves of field dependence of magnetization of biotite measured in the initial state under 4.2 K temperature subsequent to irradiation of 14 MeV energy and 1.2 x 10 sup 1 sup 3 cm sup - sup 2 dose neutrons and by 3 MeV energy and 2.2 x 10 sup 1 sup 4 cm sup - sup 2 dose protons, as well as, subsequent to annealing under 1000 deg temperature during 15 min. Irradiation by neutrons and protons was determined to result in increase of magneto-ordered phase content in biotite and, thus, in increase of magnetization of specimen. It is accounted for by formation of oxides in melt radiation thermal peaks and by freezing of high-temperature phase states corresponding to magnetite or solid solution of magnetite and hematite there. Thermal treatment does not change content of magneto-ordered phase in specimens

  13. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    International Nuclear Information System (INIS)

    Chadwick, M.B.

    1998-01-01

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given

  14. Neutron Radiation Effect On 2N2222 And NTE 123 NPN Silicon Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Oo, Myo Min; Rashid, N K A Md; Hasbullah, N F; Karim, J Abdul; Zin, M R Mohamed

    2013-01-01

    This paper examines neutron radiation with PTS (Pneumatic Transfer System) effect on silicon NPN bipolar junction transistors (2N2222 and NTE 123) and analysis of the transistors in terms of electrical characterization such as current gain after neutron radiation. The key parameters are measured with Keithley 4200SCS. Experiment results show that the current gain degradation of the transistors is very sensitive to neutron radiation. The neutron radiation can cause displacement damage in the bulk layer of the transistor structure. The current degradation is believed to be governed by increasing recombination current between the base and emitter depletion region

  15. Intensity increase of energetic electrons in the outer radiation belt of the Earth in July 1972 according to data of the ''Prognoz-2'' artificial Earth satellite

    International Nuclear Information System (INIS)

    Blyudov, V.A.; Volodichev, N.N.; Nechaev, O.Yu.; Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    Carried out is the investigation of the 6-10 MeV electrons in the outer radiation belt of the Earth at the ''Prognoz-2'' artificial Earth satellite along the trajectory of the satellite motion according to the Mac Ilvain parameter L. With the help of a ternary coincidance telescope in Juny 1972, the formationand decay of the belt of energetic electrons with the maximum intensity in the L=3.7 region was recorded. The maximum fluxer of this belt electrons are estimated. It is supposed that the event recorded is the consequence of the magnetospherical disturbance that occured on 18.4.1972

  16. Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST

    Directory of Open Access Journals (Sweden)

    Poedts Stefaan

    2013-05-01

    Full Text Available High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7–8 October 2012, and the period following a fast solar wind stream on 25–26 October 2012 to within a factor of 5 or so. At lower energies of 10 – a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

  17. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  18. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  19. A review of nanostructured based radiation sensors for neutron

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Pervaiz; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Center of Excellence in Nanotechnology Department of Fundamental and Applied Sciences, Department of Electrical and Electronic Engineering Universiti Teknologi PETRONAS (Malaysia)

    2012-09-26

    Currently radiation sensors with various mechanisms such as radio thermo luminescence, radiographic and radiochromic film, semiconductor and ionization have been used for the detection of nuclear radiation. Sensitivity, handling procedure, heating condition, energy response, nonlinearity, polarization, non-uniform electric field, high bias voltage and spatial resolution due to large physical size are some of the key issues faced by these sensors. Due to the excellent electrical and mechanical properties, nanostructured materials such as carbon nanotubes (CNTs) have been researched as sensing elements in the sensors to overcome the mentioned problems. However CNTs are found to pose different problems, arising from the uncontrolled helicity and small cross-sectional area. Therefore, alternative sensing elements are still been sought after and the possibility of using boron nitride nanotubes for sensing neutron is considered in this review.

  20. Neutron and/or gamma radiation detecting system

    International Nuclear Information System (INIS)

    Cerff, K.

    1985-01-01

    A large reception surface for the radiation to be detected is formed on a body of scintillation material (ZnS-AG with B matrix) which is adapted to convert neutron or gamma radiation into light energy. A large number of fiber light conductors is embedded in the body of scintillation material such that the fibers extend essentially parallel and fully across the reception surface of the body of scintillation material. The light energy, upon propagation along the fiber light conductors, is coupled into the conductors along the surface of the fibers which are unisotropic. This arrangement permits the use of unisotropic light conductor systems which provide for a separation of light collecting and light transmitting functions which results in a substantial reduction of light absorption losses during light transmission so that most of the light energy coupled into the fiber light conductors reaches the optoelectronic amplifier coupled to the end of the light conductors. (orig./HP) [de

  1. Surface erosion of fusion reactor components due to radiation blistering and neutron sputtering

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1975-01-01

    Radiation blistering and neutron sputtering can lead to the surface erosion of fusion reactor components exposed to plasma radiations. Recent studies of methods to reduce the surface erosion caused by these processes are discussed

  2. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN, SP, Brazil

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson; Valeriano, Caio C.S.; Caldas, Linda V.E.; Federico, Claudio A.

    2016-01-01

    With the increased use of techniques using neutron radiation, there has been a considerable growth in the number of detectors for this kind of radiation. A neutron calibration laboratory with neutron radiation ("2"4"1AmBe) was designed. In practical situations of this type of laboratory, one of the main problems is related to the knowledge of scattered radiation. In order to evaluate this scattered radiation, simulations were carried out without the presence of structural elements and with the complete room. Fourteen measuring points were evaluated in different directions at various distances. (author)

  3. The radiation biology of Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Coderre, J.A.

    2003-01-01

    Boron Neutron Capture Therapy (BNCT) produces a complex mixture of high and low-LET radiations in tissue. Using data on the biological effectiveness of these various dose components, derived primarily in small animals irradiated with thermal neutrons, it has been possible to express clinical BNCT doses in photon-equivalent units. The accuracy of these calculated doses in normal tissue and tumor will be reviewed. Clinical trials are underway at a number of centers. There are differences in the neutron beams at these centers, and differences in the details of the clinical protocols. Ideally, data from all centers using similar boron compounds and treatment protocols should be compared and combined, if appropriate, in a multi-institutional study in order to strengthen statistical analysis. An international dosimetry exchange is underway that will allow the physical doses from the various treatment centers to be quantitatively compared. As a first step towards the comparison of the clinical data, the normal brain tolerance data from the patients treated in the initial Brookhaven National Laboratory and the Harvard/MIT BNCT clinical trials have been compared. The data provide a good estimate of the normal brain tolerance for a somnolence syndrome endpoint, and provide guidance for setting normal brain tolerance limits in ongoing and future clinical trials. Escalation of the dose in BNCT can be accomplished by increasing the amount of the boron compound administered, increasing the duration of the neutron exposure, or both. The dose escalations that have been carried out to date at the various treatment centers will be compared and contrasted. Possible future clinical trials using BNCT in combination with other modalities will be discussed

  4. Spatial characterization of relativistic electron enhancements in the Earth's outer radiation belt during the Van Allen Probes era

    Science.gov (United States)

    Pinto, V. A.; Bortnik, J.; Moya, P. S.; Lyons, L. R.; Sibeck, D. G.; Kanekal, S. G.

    2017-12-01

    Using Van Allen Probes Relativistic Electron-Proton Telescope (REPT) instrument we have identified 73 relativistic electron enhancement events in the outer radiation belt that occurred at different L values between L = 2.5 and L = 6.0. To determine an enhancement, we have used three different identification methods. We then determine the radial location, MLT location, timing and strength of those enhancements. We discuss the differences of each of the methods and test them to pinpoint the origin and spatial propagation of each enhancement. We have classified the events based on the radial propagation, speed of enhancement and intensity of fluxes and response for energy channels ranging from 1.8 MeV to 6.3 MeV. In addition, we have used OMNI data to study the statistical properties of the solar wind during each event and have classified similarities and differences that might be relevant for each group of enhancements and help us determine the physical process responsible for different types of enhancements. Additionally, we have used >2 MeV electron fluxes at geostationary orbit as measured by the GOES 13 and 15 Energetic Particle Sensor (EPS) instrument to compare our results with the geostationary orbit. Our results suggest that under certain conditions GOES data can be used to predict fluxes at the core of the radiation belt and vice-versa.

  5. Reference neutron radiations. Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field

    International Nuclear Information System (INIS)

    2000-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 2. of ISO 8529 takes as its starting point the neutron sources described in ISO 8529-1. It specifies the procedures to be used for realizing the calibration conditions of radiation protection devices in neutron fields produced by these calibration sources, with particular emphasis on the corrections for extraneous effects (e.g., the neutrons scattered from the walls of the calibration room). In this part of ISO 8529, particular emphasis is placed on calibrations using radionuclide sources (clauses 4 to 6) due to their widespread application, with less details given on the use of accelerator and reactor sources (8.2 and 8.3). This part of ISO 8529 then leads to ISO 8529-3 which gives conversion coefficients and the general rules and procedures for calibration

  6. Utilizations of intense pulsed neutron source in radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shiokawa, Takanobu; Yoshihara, Kenji; Kaji, Harumi; Kusaka, Yuzuru; Tabata, Yoneho.

    1975-01-01

    Intense pulsed neutron sources is expected to supply more useful and fundamental informations in radiochemistry and radiation chemistry. Short-lived intermediate species may be detected and the mechanisms of radiation induced reactions will be elucidated more precisely. Analytical application of pulsed neutrons is also very useful. (auth.)

  7. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-01-01

    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  8. Van Allen Probes Mission Space Academy: Educating middle school students about Earth's mysterious radiation belts

    Science.gov (United States)

    Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.

    2013-12-01

    How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of

  9. Neutron activation as an online procedure in cement plants; Neutronenaktivierung als Online-Verfahren in Zementwerken

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-07-01

    The use of PGNAA (Prompt Gamma Neutron Activation Analysis) makes it possible to determine the content of the components in bulk flows in cement plants directly online on the conveyor belt. The nature of the excitation and radiation means that the material can be penetrated even with large layer thicknesses on the belt. (orig.)

  10. A practical proposal for neutron dosimetry in radiation protection

    International Nuclear Information System (INIS)

    Busuoli, G.; Pelliccioni, M.

    1985-01-01

    The innovations recommended in ICRP Publication 26 give rise to questionable consequences for current radiation protection practice. One of the most efficient is a proliferation of quantities for external exposure, the so called ''operational quantities'', devoid of any physical basis and scientifically undesirable. This risks undermining the unitary order given to the formulation of the limits. Moreover, as soon as an agreement is reached, then most of the instrumentation used at present should be replaced or modified. In the case of neutron dosimetry, at the moment, changes would be inappropriate. This is because one must take into account the results from the reassessment of the doses received by Japanese who were exposed at Hiroshima and Nagasaki, and the recent rumours about an increase of the quality factor at low doses. While awaiting further reflection on the matter, the way to continue to use the most popular neutron environmental instrument, the rem-counter is explained. The proposed solution, which is as open to question as any other, should at least allow considerable economical advantages and secure the continuity of current practice. (author)

  11. Analysis of average radiation widths of neutron resonances

    International Nuclear Information System (INIS)

    Malezki, H.; Popov, A.B.; Trzeciak, K.

    1982-01-01

    On the basis of the available data on parameters of neutron resonances average values of radiation widths (GITAsub(γ)) are calculated for a wide range of nuclei in the 50 upto 250 atomic weight range. Experimental values are compared with different variants of theoretical estimates of GITAsub(γ) which are reduced to the GITAsub(γ) dependence upon atomic weight A, excitation energy U and level density parameter a as GITAsub(γ)=CAsup(α)Usup(β)asup(γ). Besides, empirical values C, α, β, γ are selected satisfying the experimental data best of all. It is determined that the use of a=kA hypothesis leads to a sufficiently better agreement between all theoretical estimates of GITAsub(γ) and experimental values. It turned out that the estimations by Weisskopf, Bondarenko-Urin or with empirically chosen parameters give an approximately similar correspondence of calculated values GITAsub(γ)sup(p) to experimental data [ru

  12. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    Directory of Open Access Journals (Sweden)

    J. Koller

    2009-07-01

    Full Text Available We describe here a new method for calculating the magnetic drift invariant, L*, that is used for modeling radiation belt dynamics and for other space weather applications. L* (pronounced L-star is directly proportional to the integral of the magnetic flux contained within the surface defined by a charged particle moving in the Earth's geomagnetic field. Under adiabatic changes to the geomagnetic field L* is a conserved quantity, while under quasi-adiabatic fluctuations diffusion (with respect to a particle's L* is the primary term in equations of particle dynamics. In particular the equations of motion for the very energetic particles that populate the Earth's radiation belts are most commonly expressed by diffusion in three dimensions: L*, energy (or momentum, and pitch angle (the dot product of velocity and the magnetic field vector. Expressing dynamics in these coordinates reduces the dimensionality of the problem by referencing the particle distribution functions to values at the magnetic equatorial point of a magnetic "drift shell" (or L-shell irrespective of local time (or longitude. While the use of L* aids in simplifying the equations of motion, practical applications such as space weather forecasting using realistic geomagnetic fields require sophisticated magnetic field models that, in turn, require computationally intensive numerical integration. Typically a single L* calculation can require on the order of 105 calls to a magnetic field model and each point in the simulation domain and each calculated pitch angle has a different value of L*. We describe here the development and validation of a neural network surrogate model for calculating L* in sophisticated geomagnetic field models with a high degree of fidelity at computational speeds that are millions of times faster than direct numerical field line mapping and integration. This new surrogate model has

  13. Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

    2010-01-01

    Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

  14. Calculations of radiation damage in target, container and window materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Mansur, L.K.

    1996-01-01

    Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies

  15. An estimate of the radiation-induced cancer risk from the whole-body stray radiation exposure in neutron radiotherapy

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1982-01-01

    1980 BEIR III risk factors have been used to estimate the secondary cancer risks from the whole-body stray radiation exposures occurring in neutron radiotherapy. Risks were calculated using linear, linear-quadratic and quadratic dose-response models for the gamma component of the stray radiation. The linear dose-response model was used to calculate risk for the neutron component of the stray radiation. These estimates take into consideration for the first time the age and sex distribution of patients undergoing neutron therapy. Changes in risk as a function of the RBE (10-100) assigned to the stray neutron radiation component have also been assessed. Excess risks in neutron-treated patients have been compared with excess risks for photon-treated patients and with the expected incidence of cancer in a normal population having the same age and sex distribution. Results indicate that it will be necessary to tolerate a higher incidence of secondary cancers in patients undergoing fast neutron therapy than is the case with conventional photon therapy. For neutron RBEs of less than 50 the increased risk is only a fraction of the normal expected incidence of cancer in this population. Comparison of the radiation-induced risk with reported normal tissue complication rates in the treatment volume indicates that the excess cancer risk is substantially lower than the risk from other late normal tissue effects. (author)

  16. Calibration of an electron/proton monitor for the earth's radiation belt at 4 R/sub E/

    International Nuclear Information System (INIS)

    Higbie, P.R.; Belian, R.D.; Argo, H.V.; Baker, D.N.

    1982-03-01

    A charged particle dosimeter (the Burst Detector Dosimeter or BDD) was designed and fabricated and will be flown on certain of the Global Positioning Satellite (GPS) series of spacecraft. The BDD will monitor the dose received by the GPS spacecraft from the fluxes of electrons and protons in the Earth's radiation belt. The BDD uses absorbers in front of silicon sensors to determine the energy thresholds for measuring incident particle fluxes; and the magnitude of energy loss in a single sensor distinguishes between ions and electrons over a wide range of energies. Our electron calibrations were performed to determine accurately the energy response function of the dosimeter. The experimentally determined energy and angular responses are used to determine the equivalent energy thresholds and geometric factors for idealized step function responses

  17. FIREBIRD: A Dual Satellite Mission to Examine the Spatial and Energy Coherence Scales of Radiation Belt Electron Microbursts

    Science.gov (United States)

    Klumpar, D. M.; Spence, H. E.; Larsen, B. A.; Blake, J. B.; Springer, L.; Crew, A. B.; Mosleh, E.; Mashburn, K. W.

    2009-12-01

    FIREBIRD (Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics), a mission under NSF’s “CubeSat-based Science Missions for Space Weather and Atmospheric Research”, will address the broad scientific question: What is the role of microburst electron precipitation in radiation belt dynamics? There are four major candidate processes for losses of relativistic electrons from the outer radiation belt [Millan and Thorne, 2007]: wave-particle interactions with whistler-mode chorus, wave-particle interactions with electromagnetic ion-cyclotron (EMIC) waves, outward radial diffusion to the magnetopause, and loss of adiabaticity on stretched magnetic field lines. FIREBIRD will further investigate the role of whistler-mode chorus, by examining the microburst electron precipitation phenomenon attributed to chorus. Microbursts are thought to be a hallmark of rapid radiation belt losses, possibly removing the entire pre-storm outer zone in a single day [Lorentzen 2001b; O'Brien et al., 2004], yet they are also intimately tied to in-situ acceleration mechanisms. FIREBIRD’s two 1.5U (10 x 10 x 15 cm) CubeSats, each weighing up to 2 kg, will be placed into a common high-inclination bead-on-a-string orbit. The two satellites will remain within ~500 km of one another for six to twelve months, allowing characterization over the spatial scale regime from 10 - 500 km. Each satellite will carry an identical co-aligned pair of solid-state detectors sensitive to electrons from 30 keV to ~3 MeV with 100 msec time resolution. Simultaneous dual measurements provided by the twin FIREBIRD satellites will permit, for the first time, the determination of spatial scales of single microburst events. Along with energy-resolved spectra, these measurements will provide the critically needed answers on the radiation belt loss rate attributed to microbursts. There are three critical questions about relativistic electron microbursts that FIREBIRD can answer: 1) What

  18. Monte-Carlo study on primary knock-on atom energy spectrum produced by neutron radiation

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Yongkang; Deng Yongjun; Ma Jimin

    2012-01-01

    Computational method on energy distribution of primary knock-on atom (PKA) produced by neutron radiation was built in the paper. Based on the DBCN card in MCNP, reaction position, reaction type and energy transfer between neutrons and atoms were recorded. According to statistic of these data, energy and space distributions of PKAs were obtained. The method resolves preferably randomicity of random number and efficiency of random sampling computation. The results show small statistical fluctuation and well statistical. Three-dimensional figure of energy and space distribution of PKAs were obtained, which would be important to evaluate radiation capability of materials and study radiation damage by neutrons. (authors)

  19. Synergistic interaction between the neutron and gamma radiation on LACA mice hemopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H

    1982-02-01

    Based on the radiation action dual theory of DNA single and double strand breaks, a hypothetical RBE mathematical model for the effect of the mixed radiation of neutron and gamma rays on LACA mice hemopoietic stem cells was formulated. In comparison of the RBE values of different ratio of neutron and gamma-ray mixed radiation with their theoretical additive RBE values, the preliminary impression is that the mixed radiation is more effective than that of the theoretical additive effect. It seems that the existence of synergist in the mixed radiation might be valid.

  20. Reference radiation fields - Simulated workplace neutron fields - Part 2: Calibration fundamentals related to the basic quantities

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 8529-1, ISO 8529-2 and ISO 8529-3, deal with the production, characterization and use of neutron fields for the calibration of personal dosimeters and area survey meters. These International Standards describe reference radiations with neutron energy spectra that are well defined and well suited for use in the calibration laboratory. However, the neutron spectra commonly encountered in routine radiation protection situations are, in many cases, quite different from those produced by the sources specified in the International Standards. Since personal neutron dosimeters, and to a lesser extent survey meters, are generally quite energy dependent in their dose equivalent response, it might not be possible to achieve an appropriate calibration for a device that is used in a workplace where the neutron energy spectrum and angular distribution differ significantly from those of the reference radiation used for calibration. ISO 8529-1 describes four radionuclide based neutron reference radiations in detail. This part of ISO 12789 includes the specification of neutron reference radiations that were developed to closely resemble radiation that is encountered in practice

  1. Electromagnetic and Radiative Properties of Neutron Star Magnetospheres

    Science.gov (United States)

    Li, Jason G.

    2014-05-01

    Magnetospheres of neutron stars are commonly modeled as either devoid of plasma in "vacuum'' models or filled with perfectly conducting plasma with negligible inertia in "force-free'' models. While numerically tractable, neither of these idealized limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. In this work we improve upon these models by considering the structure of magnetospheres filled with resistive plasma. We formulate Ohm's Law in the minimal velocity fluid frame and implement a time-dependent numerical code to construct a family of resistive solutions that smoothly bridges the gap between the vacuum and force-free magnetosphere solutions. We further apply our method to create a self-consistent model for the recently discovered intermittent pulsars that switch between two distinct states: an "on'', radio-loud state, and an "off'', radio-quiet state with lower spin-down luminosity. Essentially, we allow plasma to leak off open field lines in the absence of pair production in the "off'' state, reproducing observed differences in spin-down rates. Next, we examine models in which the high-energy emission from gamma-ray pulsars comes from reconnecting current sheets and layers near and beyond the light cylinder. The reconnected magnetic field provides a reservoir of energy that heats particles and can power high-energy synchrotron radiation. Emitting particles confined to the sheet naturally result in a strong caustic on the skymap and double peaked light curves for a broad range of observer angles. Interpulse bridge emission likely arises from interior to the light cylinder, along last open field lines that traverse the space between the polar caps and the current sheet. Finally, we apply our code to solve for the magnetospheric structure of merging neutron star binaries. We find that the scaling of electromagnetic

  2. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    Science.gov (United States)

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  3. Pulsed neutron well logging apparatus having means for determining background radiation

    International Nuclear Information System (INIS)

    Randall, R.R.

    1979-01-01

    A neutron generator in a well logging instrument is periodically pulsed and has an off period between pulses of 1000 microseconds. A neutron detector is gated on at intervals of 400 to 500, 550 to 650, and 700 to 800 microseconds, respectively, following the termination of each burst of fast neutrons. Circuitry is provided for determining the background radiation and for determining the macroscopic absorption. 3 claims

  4. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    Science.gov (United States)

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  5. Hematologic status of mice submitted to sublethal total body irradiation with mixed neutron-gamma radiation

    International Nuclear Information System (INIS)

    Herodin, F.; Court, L.

    1989-01-01

    The hematologic status of mice exposed to sublethal whole body irradiation with mixed neutron-gamma radiation (mainly neutrons) is studied. A slight decrease of the blood cell count is still observed below 1 Gy. The recovery of bone marrow granulocyte-macrophage progenitors seems to require more time than after pure gamma irradiation [fr

  6. Characteristics of rotating target neutron source and its use in radiation effects studies

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Barschall, H.H.; Booth, R.; Wong, C.

    1975-07-01

    The Rotating Target Neutron Source (RTNS) at Lawrence Livermore Laboratory is currently the most intense source of DT fusion neutrons available for the study of radiation effects in materials. This paper will present a brief description of the machine, outline the history of its development and discuss its performance characteristics and its application to CTR materials research. (U.S.)

  7. Designing research of fast neutron radiation field based on the reactor

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Zhang Xiaomin

    2009-01-01

    Based on the Tsinghua University experimental nuclear reactor neutron source, this research designed moderate theory technical scheme, and the thickness of materials in the scheme were selected by means of Monte Carlo simulating method. An fast neutron radiation field was gained. (authors)

  8. Program system for calculating streaming neutron radiation field in reactor cavity

    International Nuclear Information System (INIS)

    He Zhongliang; Zhao Shu.

    1986-01-01

    The A23 neutron albedo data base based on Monte Carlo method well agrees with SAIL albedo data base. RSCAM program system, using Monte Carlo method with albedo approach, is used to calculate streaming neutron radiation field in reactor cavity and containment operating hall. The dose rate distributions calculated with RSCAM in square concrete duct well agree with experiments

  9. Assessment of radiation fields from neutron irradiated structural components of the 40 MW research reactor CIRUS

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sharma, S.K.

    1993-01-01

    The paper summarizes the results of an assessment of the radiation fields from the long-lived neutron activation products (including the decay chain products) in the various structural components of the CIRUS reactor. Special attention is given for the analysis of neutron activation of impurity elements present in the materials of the structure. 16 refs, 4 figs, 4 tabs

  10. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    Abdul Razak Daud

    1995-01-01

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  11. Radiation doses from radiation sources of neutrons and photons by different computer calculation

    International Nuclear Information System (INIS)

    Siciliano, F.; Lippolis, G.; Bruno, S.G.

    1995-12-01

    In the present paper the calculation technique aspects of dose rate from neutron and photon radiation sources are covered with reference both to the basic theoretical modeling of the MERCURE-4, XSDRNPM-S and MCNP-3A codes and from practical point of view performing safety analyses of irradiation risk of two transportation casks. The input data set of these calculations -regarding the CEN 10/200 HLW container and dry PWR spent fuel assemblies shipping cask- is frequently commented as for as connecting points of input data and understanding theoric background are concerned

  12. Comparing of γ-ray, proton and neutron radiation effects on optoelectronics for space

    International Nuclear Information System (INIS)

    Yu Qingkui; Tang Min; Meng Meng; Li Pengwei; Wen Ping; Li Haian; Tang Jiesen; Wang Sixin; Song Yamei

    2014-01-01

    We performed irradiation test on optoelectronics with γ-rays, proton and neutron. The electrical measurements were performed pre and after irradiation. The degradations induced by each radiation source was compared. (authors)

  13. Parity non-conserving effects in thermal neutron-deuteron radiative capture

    International Nuclear Information System (INIS)

    Desplanques, B.

    1985-01-01

    Predictions of parity non-conserving effects in thermal neutron-deuteron radiative capture are presented. The sensitivity of the results to models of the strong interaction as well as the validity of approximations made in previous calculations are discussed

  14. Analysis of coupled neutron-gamma radiations, applied to shieldings in multigroup albedo method

    International Nuclear Information System (INIS)

    Dunley, Leonardo Souza

    2002-01-01

    The principal mathematical tools frequently available for calculations in Nuclear Engineering, including coupled neutron-gamma radiations shielding problems, involve the full Transport Theory or the Monte Carlo techniques. The Multigroup Albedo Method applied to shieldings is characterized by following the radiations through distinct layers of materials, allowing the determination of the neutron and gamma fractions reflected from, transmitted through and absorbed in the irradiated media when a neutronic stream hits the first layer of material, independently of flux calculations. Then, the method is a complementary tool of great didactic value due to its clarity and simplicity in solving neutron and/or gamma shielding problems. The outstanding results achieved in previous works motivated the elaboration and the development of this study that is presented in this dissertation. The radiation balance resulting from the incidence of a neutronic stream into a shielding composed by 'm' non-multiplying slab layers for neutrons was determined by the Albedo method, considering 'n' energy groups for neutrons and 'g' energy groups for gammas. It was taken into account there is no upscattering of neutrons and gammas. However, it was considered that neutrons from any energy groups are able to produce gammas of all energy groups. The ANISN code, for an angular quadrature order S 2 , was used as a standard for comparison of the results obtained by the Albedo method. So, it was necessary to choose an identical system configuration, both for ANISN and Albedo methods. This configuration was six neutron energy groups and eight gamma energy groups, using three slab layers (iron aluminum - manganese). The excellent results expressed in comparative tables show great agreement between the values determined by the deterministic code adopted as standard and, the values determined by the computational program created using the Albedo method and the algorithm developed for coupled neutron

  15. Characteristics of Pitch Angle Distributions of 100s Kev Electrons in the Slot Region and Inner Radiation Belt­­­­­­­­

    Science.gov (United States)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100s keV electron PADs below L =4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°) and 90°-minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of 460 keV electrons for over a year, we find that the 90°-minimum PADs are generally present in the inner belt (Lpitch angle scattering of hiss waves. Fitting the normal PADs into sinnα form, the parameter n is much higher below L=3 than that in the outer belt and relatively constant in the inner belt but changes significantly in the slot region (2mechanism can hardly explain the formation of 90°-minimum PADs at the center of inner belt. These new and compelling observations, made possible by the high-quality measurements of MagEIS, present a challenge for the wave modelers, and future work is still needed to fully understand them.

  16. Radiation damage in stainless steel under varying temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1998-03-01

    Microstructural evolution of model alloys of 316SS was examined by neutron irradiation at JMTR under cyclic temperature varying condition. In the case of Fe-16Cr-17Ni, formation of interstitial loops and voids are strongly suppressed by varying the temperature from 473K to 673K. By adding Ti as miner element (0.25wt%), however, abnormal accumulation of vacancies (void swelling of 11%dpa at 0.1dpa) was observed. Theoretical analysis standing on the rate theory of defect clustering and simulation irradiation experiments with heavy ions indicates that the vacancy-rich condition which appears temporally during and after changing the temperature from low to high brings these results. It was also shown that only 1 dpa pre-irradiation at low temperature changes swelling behavior at high temperature above several 10 dpa. The understanding of non-steady-state defect processes under temperature varying irradiation is very important to estimate the radiation damage under fusion environment where short-term and long-term temperature variation is expected. (author)

  17. Experimental Determination of the Neutron Radiation-Dose Distribution in the Human Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Stipcic, Neda [Institute Rudjer Bogkovic, Zagreb, Yugoslavia (Serbia)

    1967-01-15

    The quality of the radiation delivering the radiation dose to the human phantom is quite different from that of the incident neutron beam. This paper describes the experimental investigation of the variation of neutron dose related to the variation of neutron fluence with depth in the human phantom. The distribution of neutron radiation was determined in the human phantom - a cube of paraffin wax 25 cm x 25 cm x 50 cm with a density of 0.92 cm{sup -3}. Po-Be and Ra-Be point sources were used as neutron sources. Neutron fluences were measured using different types of detector: scintillation detector, BF{sub 3} counter, and nuclear-track emulsions. Since the fluence measurements with these three types of detectors were carried out under the same experimental conditions, it was possible to separate and analyse each part of the radiation dose in the paraffin. From the investigations, the distribution of the total radiation dose was obtained as a function of the paraffin depth. The maximum value of this dose distribution is constant with respect to the distance between the source and the paraffin phantom. From the results obtained, some conclusions may be drawn concerning the amount of absorbed radiation dose in the human phantom. (author)

  18. Silicon photo-multiplier radiation hardness tests with a beam controlled neutron source

    International Nuclear Information System (INIS)

    Angelone, M.; Pillon, M.; Faccini, R.; Pinci, D.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Cotta Ramusino, A.; Malaguti, R.; Pozzati, M.

    2010-01-01

    Radiation hardness tests were performed at the Frascati Neutron Generator on silicon Photo-Multipliers that were made of semiconductor photon detectors built from a square matrix of avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated, integrating up to 7x10 10 1-MeV-equivalent neutrons per cm 2 . Detector performance was recorded during the neutron irradiation, and a gradual deterioration of their properties began after an integrated fluence of the order of 10 8 1-MeV-equivalent neutrons per cm 2 was reached.

  19. The characters and developments of therapy and research of neutron-induced acute radiation sickness

    International Nuclear Information System (INIS)

    Wang Xinru; Luo Qingliang; Wang Baoqing; Dong Shukui

    2003-01-01

    Neutron radiation will exert seriously lesions on body and lead to acute radiation sickness (ARS). Neutron induced ARS is characterized by complicated symptoms of gastrointestinal, high earlier death rate and lacking of specially therapeutic approaches. The primarily curable method is to treat patients with comprehensive means such as anti-infection, anti-bleeding and blood infusion, et. Cytokines can improve the hematopoietic functions of bone marrow. With the rapid development of the molecular biology and the emergence of cytokines such as recombinant human interleukin-11 that could help the regeneration of the gastrointestinal mucosa, neutron-induced ARS will be treated with new methods

  20. Measurement of Relative Biological Effectiveness (RBE) for the Radiation Beam from Neutron Source Reactor YAYOI -Comparisons with Cyclotron Neutron and 60Co Gamma Ray-

    OpenAIRE

    HIROAKI, WAKABAYASHI; SHOZO, SUZUKI; AKIRA, ITO; Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo; Institute of Medical Science, the University of Tokyo; Institute of Medical Science, the University of Tokyo

    1983-01-01

    Radiation biology and/or therapy research and development for a research reactor beam need specific RBEs of neutrons as well as of specific reactions. RBEs for reactor beams measured in situ condition are interesting because actual radiation effects on each biological system are different depending on detailed conditions of irradiation. A small powered research reactor (Fast Neutron Source Reactor: YAYOI) was examined here as a neutron beam source for obtaining survival curves in a manner usu...

  1. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-01-01

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, α)7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,γ)2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning

  2. Effect of reactor neutron radiation and temperature on the structure of InP single crystals

    International Nuclear Information System (INIS)

    Bojko, V.M.; Kolin, N.G.; Merkurisov, D.I.; Bublik, V.T.; Voronova, M.I.; Shcherbachev, K.D.

    2006-01-01

    The structural characteristics of InP single crystals have been investigated depending on the radiation effects produced by fast and full spectrum neutrons and subsequent heat treatment. A lattice period in InP single crystals decreases under neutron irradiation. Fast neutrons make the main contribution into the change of the lattice period. Availability of the thermal neutrons initiates the formation of Sn atoms, but does not make a significant influence on the change of the lattice period. Heat treatment of the irradiated samples up to 600 deg C causes the annealing of radiation defects and recovery of the lattice period. With increasing neutron fluences a lattice period becomes even higher than before irradiation [ru

  3. Radiation shielding design of BNCT treatment room for D-T neutron source.

    Science.gov (United States)

    Pouryavi, Mehdi; Farhad Masoudi, S; Rahmani, Faezeh

    2015-05-01

    Recent studies have shown that D-T neutron generator can be used as a proper neutron source for Boron Neutron Capture Therapy (BNCT) of deep-seated brain tumors. In this paper, radiation shielding calculations have been conducted based on the computational method for designing a BNCT treatment room for a recent proposed D-T neutron source. By using the MCNP-4C code, the geometry of the treatment room has been designed and optimized in such a way that the equivalent dose rate out of the treatment room to be less than 0.5μSv/h for uncontrolled areas. The treatment room contains walls, monitoring window, maze and entrance door. According to the radiation protection viewpoint, dose rate results of out of the proposed room showed that using D-T neutron source for BNCT is safe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Radiation Shielding Information Center: a source of computer codes and data for fusion neutronics studies

    International Nuclear Information System (INIS)

    McGill, B.L.; Roussin, R.W.; Trubey, D.K.; Maskewitz, B.F.

    1980-01-01

    The Radiation Shielding Information Center (RSIC), established in 1962 to collect, package, analyze, and disseminate information, computer codes, and data in the area of radiation transport related to fission, is now being utilized to support fusion neutronics technology. The major activities include: (1) answering technical inquiries on radiation transport problems, (2) collecting, packaging, testing, and disseminating computing technology and data libraries, and (3) reviewing literature and operating a computer-based information retrieval system containing material pertinent to radiation transport analysis. The computer codes emphasize methods for solving the Boltzmann equation such as the discrete ordinates and Monte Carlo techniques, both of which are widely used in fusion neutronics. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results

  5. Residual stress evaluation by neutron and synchrotron radiation

    International Nuclear Information System (INIS)

    Lodini, A.

    2000-01-01

    This lecture is dedicated to the residual stress evaluation using neutron and X ray synchrotron radiation. Residual stress evaluation is an important step for the improvement or the performance of materials, the control of the deformation of the components and the understanding of industrial process. In general, residual stress has various origins: mechanical, thermal, thermomechanical or thermochemical. In general, these residual stresses are caused by plastic deformation, or some source of local incompatibilities and are generated by three fundamental physical origins: plastic flow, volume change and thermal dilatation. These incompatibilities are compensated for partly by the elastic deformation that generates some internal stresses. In the solid, these local incompatibilities are caused by crystal defects. The exact origin of a stress is going to depend on the scale of observation. A classification of the residual stresses in three orders, related to the scale on which one considers materials, is proposed. The diffraction method for determination of macrostresses is based on the measurement of interplanar spacing for various direction in a diffraction experiment. Different examples are proposed. Polycrystalline grains or composite have different physical and elastic properties hence the stress for a particular grains or phase differs from the average value (value of macrostress). This difference is defined as the second order stress. The second order stresses occur because of small scale anisotropy or inhomogeneity in the material : for example, due to mismatch in coefficient of thermal expansion, elastic constants or plastic flow. However, the second order stress averaged over all grains or phase is not equal to zero and this average is called the mismatch stress. Using the experimental macro stress it is possible to calculate the mismatch stresses. More recently, this technique of diffraction has also been applied for the determination of microstrain (third

  6. Study of neutron radiation effects on MOS structures

    International Nuclear Information System (INIS)

    Vaidya, Sangeeta J.

    2003-01-01

    We have studied charge trapping in the oxide and generation of interface states due to neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization and interface damage and it is significant under biased irradiation conditions. One of the important features of this work is that neutron irradiation was carried out in a nuclear reactor (swimming pool type) itself in contrast to the earlier reported work which used separate neutron sources for similar studies. To simulate real life situations, all our devices were biased during irradiation. In our belief, both of these facts gave credence to our observed experimental results. (author)

  7. Van Allen Probes Science Gateway: Single-Point Access to Long-Term Radiation Belt Measurements and Space Weather Nowcasting

    Science.gov (United States)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G.

    2017-12-01

    The Science Gateway gives single-point access to over 4.5 years of comprehensive wave and particle measurements from the Van Allen Probes NASA twin-spacecraft mission. The Gateway provides a set of visualization and data analysis tools including: HTML5-based interactive visualization of high-level data products from all instrument teams in the form of: line plots, orbital content plots, dynamical energy spectra, L-shell context plots (including two-spacecraft plotting), FFT spectra of wave data, solar wind and geomagnetic indices data, etc.; download custom multi-instrument CDF data files of selected data products; publication quality plots of digital data; combined orbit predicts for mission planning and coordination including: Van Allen Probes, MMS, THEMIS, Arase (ERG), Cluster, GOES, Geotail, FIREBIRD; magnetic footpoint calculator for coordination with LEO and ground-based assets; real-time computation and processing of empirical magnetic field models - computation of magnetic ephemeris, computation of adiabatic invariants. Van Allen Probes is the first spacecraft mission to provide a nowcast of the radiation environment in the heart of the radiation belts, where the radiation levels are the highest and most dangerous for spacecraft operations. For this purpose, all instruments continuously broadcast a subset of their science data in real time. Van Allen Probes partners with four foreign institutions who operate ground stations that receive the broadcast: Korea (KASI), the Czech republic (CAS), Argentina (CONAE), and Brazil (INPE). The SpWx broadcast is then collected at APL and delivered to the community via the Science Gateway.

  8. Radioactivity induced by neutrons: Enrico Fermi and a thermodynamic approach to radiative capture

    Science.gov (United States)

    De Gregorio, Alberto

    2006-07-01

    When Fermi learned that slow neutrons are much more effective than fast ones in inducing radioactivity, he explained this phenomenon by mentioning the well-known scattering cross section between neutrons and protons. At this early stage, he did not refer to the capture cross section by target nuclei. At the same time a thermodynamic approach to neutron-proton capture was being discussed by physicists: neutron capture was interpretated as the reverse of deuteron photodissociation and detailed balance among neutrons, protons, deuterons, and radiation was invoked. This thermodynamic approach might underlie Fermi's early explanation of the great efficiency of slow neutrons. Fermi repeatedly used a thermodynamic approach that had been used in describing some of the physical properties of conductors by Richardson and had been influential in Fermi's youth.

  9. Attenuation of Reactor Gamma Radiation and Fast Neutrons Through Large Single-Crystal Materials

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A generalized formula is given which, for neutron energies in the range 10-4< E< 10 eV and gamma rays with average energy 2 MeV , permits calculation of the transmission properties of several single crystal materials important for neutron scattering instrumentation. A computer program Filter was developed which permits the calculation of attenuation of gamma radiation, nuclear capture, thermal diffuse and Bragg-scattering cross-sections as a function of materials constants, temperature and neutron energy. The applicability of the deduced formula along with the code checked from the obtained agreement between the calculated and experimental neutron transmission through various single-crystals A feasibility study for use of Si, Ge, Pb, Bi and sapphire is detailed in terms of optimum crystal thickness, mosaic spread and cutting plane for efficient transmission of thermal reactor neutrons and for rejection of the accompanying fast neutrons and gamma rays.

  10. Measurement of neutron radiation exposure of commercial airline pilots using bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Kosierb, R. (Royal Military College of Canada, Kingston, Ontario (Canada). Dept. of Chemistry and Chemical Engineering); Cousins, T. (Defense Research Establishment Ottawa, Ontario (Canada). Space Systems and Technology Section); Hudson, D.F. (Air Canada Flight Operations, Vancouver, British Columbia (Canada)); Guery, G. (Air France-Direction des Operations Aeriennes, Roissy Charles de Gaulle (France))

    1994-06-01

    Neutron bubble detectors have been used over a 1-yr period by commercial airline pilots from Air Canada and Air France to measure the high-altitude neutron radiation exposure produced by galactic cosmic rays. The present work yielded measurements of the neutron flux of 1.0 to 4.6 n/cm[sup 2][center dot]s, and the neutron dose equivalent rates of 1.7 to 7.7 [mu]S[nu]/h. These measurements are in agreement with previous studies using high-altitude aircraft and conventional neutron instrumentation. The total dose equivalents for the Air Canada flights are also consistent with predictions of the CARI code. Considering that the neutron component contributes [approximately] 50% of the total dose equivalent, this study indicates that the annual dose for the air crew member would exceed the new recommendations of the International Commission on Radiological Protection (ICRP-60) for the general public.

  11. Measurement of neutron radiation exposure of commercial airline pilots using bubble detectors

    International Nuclear Information System (INIS)

    Lewis, B.J.; Kosierb, R.; Guery, G.

    1994-01-01

    Neutron bubble detectors have been used over a 1-yr period by commercial airline pilots from Air Canada and Air France to measure the high-altitude neutron radiation exposure produced by galactic cosmic rays. The present work yielded measurements of the neutron flux of 1.0 to 4.6 n/cm 2 ·s, and the neutron dose equivalent rates of 1.7 to 7.7 μSν/h. These measurements are in agreement with previous studies using high-altitude aircraft and conventional neutron instrumentation. The total dose equivalents for the Air Canada flights are also consistent with predictions of the CARI code. Considering that the neutron component contributes ∼ 50% of the total dose equivalent, this study indicates that the annual dose for the air crew member would exceed the new recommendations of the International Commission on Radiological Protection (ICRP-60) for the general public

  12. Proceedings of the 5. Symposium on neutron dosimetry. Radiation protection aspects

    International Nuclear Information System (INIS)

    Schraube, H.; Burger, G.; Booz, J.

    1985-01-01

    Proceedings of the fifth symposium on neutron dosimetry, organized at Neuherberg, 17-21 September 1984, by the Commission of the European Communities and the GSF Neuherberg, with the co-sponsorship of the US Department of Energy, Office of Health and Environmental Research. The proceedings deal with research on concepts, instruments and methods in radiological protection for neutrons and mixed neutron-gamma fields, including the generation, collection and evaluation of new dosimetric data, the derivation of relevant radiation protection quantities, and the harmonization of experimental methods and instrumentation by intercomparison programmes. Besides radiation protection monitoring, the proceedings also report on the improvement of neutron beam dosimetry in the fields of radiobiology and radiation therapy

  13. Device for characterization of fissile materials comprising at least a neutron detector embedded inside a scintillator for gamma radiation detection

    International Nuclear Information System (INIS)

    Bernard, P.; Dherbey, J.R.; Bosser, R.; Berne, R.

    1989-01-01

    Fissile materials, for instance in radioactive wastes, are characterized by measurement of prompt and delayed neutrons and gamma radiation from induced fission by a neutron source. Gamma radiation is detected with a scintillation detector associated to a photomultiplier, the scintillation material is at the same time a moderator for thermalization of fast neutrons emitted by the neutron source and also of neutrons from spontaneous fission, (α, n) reactions and neutrons from induced fission in the fissile material. Preferentially the moderator is made of Altustipe (Plexiglas with anthracene as additive) [fr

  14. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O. [Institute for Scintillation Materials of the NAS of Ukraine, Kharkov, (Ukraine); Naydenov, S. [Institute for Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, (Ukraine); Pochet, T. [DETEC-Europe, Vannes (France); Smith, C. [Naval Postgraduate School, Monterey, CA (United States)

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n

  15. A new high background radiation area in the Geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa, India

    International Nuclear Information System (INIS)

    Baranwal, V.C.; Sharma, S.P.; Sengupta, D.; Sandilya, M.K.; Bhaumik, B.K.; Guin, R.; Saha, S.K.

    2006-01-01

    A high natural radiation zone is investigated for the first time in a geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa state in India. The surrounding area comprises a geothermal region which has surveyed using a portable pulsed Geiger-Muller counter. On the basis of findings of GM counter, an area was marked as a high radiation zone. Soil and rock samples collected from the high radiation zone were analyzed by γ-ray spectrometry (GRS) using NaI(Tl) detector. The radioactivity is found to be contributed mainly by thorium. Concentration of thorium is reported to be very high compared to their normal abundance in crustal rocks. Further, concentrations of 238 U and 40 K are also high compared to normal abundance in crustal rocks but their magnitude is comparatively less than that of thorium. The average concentrations of 238 U (i.e. U(β-γ)), 232 Th and 40 K are found to be 33, 459ppm and 3%, respectively, in soils and 312, 1723ppm and 5%, respectively, in the granitic rocks. Maximum concentrations of 238 U, 232 Th and 40 K are found to be 95, 1194ppm and 4%, respectively, in soils and 1434, 10,590ppm and 8%, respectively, in the granitic rocks. Radioactive element emits various energies in its decay chain. High energies are utilized to estimate the concentration of actual 238 U, 232 Th and 40 K using a NaI(Tl) detector, however, low energies are used for the same in an HPGe detector. Some of the rock samples (eight in number) were also analyzed using HPGe detector for studying the behavior of low energies emitted in the decay series of uranium and thorium. The absorbed gamma dose rate in air and external annual dose rate of the high radiation zone are calculated to be 2431nGy/h and 3.0mSv/y, respectively. It is approximately 10 times greater than the dose rates obtained outside the high radiation zone. The high concentration of uranium and thorium may be one of the possible heat sources together with the normal geothermal gradient for hot springs

  16. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    International Nuclear Information System (INIS)

    Choi, C.-R.; Dokgo, K.; Min, K.-W.; Woo, M.-H.; Choi, E.-J.; Hwang, J.; Park, Y.-D.; Lee, D.-Y.

    2015-01-01

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts

  17. Microscopic integral cross section measurements in the Be(d,n) neutron spectrum for applications in neutron dosimetry, radiation damage and the production of long-lived radionuclides

    International Nuclear Information System (INIS)

    Smith, D.L.; Meadows, J.W.; Greenwood, L.R.

    1990-01-01

    Integral neutron-reaction cross sections have been measured, relative to the U-238 neutron fission cross-section standard, for 27 reactions which are of contemporary interest in various nuclear applications (e.g., fast-neutron dosimetry, neutron radiation damage and the production of long-lived activities which affect nuclear waste disposal). The neutron radiation field employed in this study was produced by bombarding a thick Be-metal target with 7-MeV deuterons from an accelerator. The experimental results are reported along with detailed information on the associated measurement uncertainties and their correlations. These data are also compared with corresponding calculated values, based on contemporary knowledge of the differential cross sections and of the Be(d,n) neutron spectrum. Some conclusions are reached on the utility of this procedure for neutron-reaction data testing

  18. Biological effects of neutron radiation and their implications for the nuclear power industry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1983-01-01

    Stimulated biophysical theories of the action of radiation on the cells of mammalian tissues, research on the effects of neutrons has been interpreted as implying that neutron radiation is about 60 times more effective than gamma radiation for the induction of tumours in rodents and for shortening their lives. This contrasts with the assumption made for protection purposes that it is only about ten times as effective. However, the same experiments can be interpreted also as implying that gamma radiation at the dose rates encountered in the workplace is five to ten times less effective than is generally assumed. Taken together these observations suggest that the real risks to humans from neutrons are comparable with the assumed risks from X- and gamma radiation. Further data are required to confirm these observations and their interpretation, and in the short term there is no need to change the current practices of radiological protection as regards neutron radiation. Nevertheless, it might be wise for long-term planning purposes to anticipate a reduction in the maximum permissible fluences of neutrons by a factor of about 3. (author)

  19. Simulation of Thermal, Neutronic and Radiation Characteristics in Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Bartkus, G.

    1999-01-01

    The overview of the activities in the Division of Thermo hydro-mechanics related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Also some new data about radiation characteristics of the RBMK-1500 spent nuclear fuel are presented. (author)

  20. A revised model of Jupiter's inner electron belts: Updating the Divine radiation model

    Science.gov (United States)

    Garrett, Henry B.; Levin, Steven M.; Bolton, Scott J.; Evans, Robin W.; Bhattacharya, Bidushi

    2005-02-01

    In 1983, Divine presented a comprehensive model of the Jovian charged particle environment that has long served as a reference for missions to Jupiter. However, in situ observations by Galileo and synchrotron observations from Earth indicate the need to update the model in the inner radiation zone. Specifically, a review of the model for 1 MeV data. Further modifications incorporating observations from the Galileo and Cassini spacecraft will be reported in the future.

  1. Ducting of the Whistler-Mode Waves by Magnetic Field-Aligned Density Enhancements in the Radiation Belt

    Science.gov (United States)

    Streltsov, A. V.; Bengtson, M.; English, D.; Miller, M.; Turco, L.

    2017-12-01

    Whistler-mode waves (or whistlers) are the right-hand polarized electromagnetic waves with a frequency in the range above the lower hybrid frequency and below the electron cyclotron frequency. They can efficiently interact with energetic electrons in the equatorial magnetosphere and remediate them from the earth's radiation belt. These interactions are non-linear, they depend on the wave amplitude, and for them to be efficient the wave power needs to be delivered from the transmitter to the interaction region without significant losses. The main physical mechanism which can solve this problem is ducting/guiding of whistlers by magnetic field-aligned density inhomogeneities or ducts. We present results from a modeling of whistler-mode waves observed by the NASA Van Allen Probes satellites inside the ducts formed by density enhancements (also known as, high-density ducts or HDD). Our previous studies suggest that HDD can confine without leakage only waves with some particular parameters (frequency, perpendicular and parallel wavelength) connected with the parameters of the duct (like duct's "width" and "depth"). Our numerical results confirm that 1) the high-density ducts with amplitudes and perpendicular sizes observed by the RBSP satellites can indeed guide whistlers over significant distances along the ambient magnetic field with small leakage, and 2) the quality of the ducting indeed depends on the wave perpendicular and parallel wavelengths and, therefore, the fact that the wave is ducted by HDD can be used to determine parameters of the wave.

  2. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

    International Nuclear Information System (INIS)

    Yang, Chang; Su, Z.; Xiao, F.; Zheng, H.

    2017-01-01

    Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistlermode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches ~ 35–95 pT in the case of distinct butterfly distributions with BI > 1:3. For magnetosonic waves with amplitudes > 50 pT, the occurrence rate of butterfly distribution is above 80%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

  3. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  4. Thermal electron acceleration by electric field spikes in the outer radiation belt: generation of field-aligned pitch angle distributions

    Science.gov (United States)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2015-12-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance non-linear electrostatic stucture called Time Domain Structures (TDS). One of the type of TDS is electrostatic electron-acoustic double layers (DL). Observed DLs are frequently accompanied by field-aligned (bi-directional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV (rarely up to tens of keV). We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e. due to reflections from DL potential humps. Due to this interaction some fraction of electrons is scattered into the loss cone. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher energy electrons.

  5. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    Czech Academy of Sciences Publication Activity Database

    Ripoll, J.-F.; Reeves, G. D.; Cunningham, G. S.; Loridan, V.; Denton, M.; Santolík, Ondřej; Kurth, W. S.; Kletzing, C. A.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, A. Y.

    2016-01-01

    Roč. 43, č. 11 (2016), s. 5616-5625 ISSN 0094-8276 R&D Projects: GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : radiation belts * slot region * electron losses * wave particle interactions * hiss wave s * electron lifetimes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016GL068869/full

  6. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  7. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  8. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)], e-mail: psouza@cnen.gov.br, e-mail: jodinilson@cnen.gov.br; Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  9. Influence of non-LTE radiation ablation on imploding neutron yield

    International Nuclear Information System (INIS)

    Sheng Jiatian; Li Yunsheng; Gao Yaomin; Li Meng; Feng Tinggui; Zhang Lifa; Zeng Xiancai; Mou Wenyong; Feng Jie; Chen Jiabin

    2005-01-01

    The process of radiative ablation and neutron yields of DD-capsule with CH shell implosion driven by Plank spectrum and nonequilibrium spectrum radiation fields was numerically studied using 1-D RDMG code of multigroup-nonequilibrium radiation hydrodynamics. The simulation results were compared with the experimental results. The results of the simulation show that the nonequilibrium of energy spectrum distribution of the hohlraum radiation source, especially the M-band of it, will preheat DD in the capsule obviously, decrease the compressing ratio, electron and ion temperatures of DD gas, and therefore decrease the neutron yields markedly. The simulation results also show that the law of decreasing of neutron yields with increasing of the CH-sell thickness is in agreement with the experiment basically. (authors)

  10. A 2D simulation of the proton radiation belt with PELLPACK code

    International Nuclear Information System (INIS)

    Gusev, A.; Martin, I.; Pugacheva, G.; Christy, A.; Spjeldvik, W.

    1999-01-01

    The numerical solution of diffusion equation for geomagnetically trapped protons taking into account deceleration of protons by Coulomb interactions with free and bounded electrons, the charge exchange process, the cosmic ray albedo neutron decay source and electric and magnetic radial diffusion was obtained using the PELLPACK code based on the finite element method. The advantage of the method in comparison with the traditional finite differences method is a several order greater speed of computation at the same precision. When boundary conditions at L=7 are given with the distribution function extracted from proton spectrum obtained on board of ATS 6 satellite, the PELLPACK code produces 2D unidirectional proton flux at the top of geomagnetic lines from L=1 up to L=7 that satisfactory agrees with the AP8 model proton flux for all proton energies more than ∼ 300-500 keV. For less proton energies AP8 model predicts the trapped protons fluxes on several orders of magnitude greater than the PELLPACK code at L < 4 that possibly could be explained by uncertainty of very low energy proton flux data at L=7. The detailed fitness of observational model proton fluxes by numerical theoretical solution of transport equation is still not attained. (author)

  11. Neutron spectra measurements and neutron flux monitoring for radiation damage purposes

    International Nuclear Information System (INIS)

    Osmera, B.; Petr, J.; Racek, J.; Rumler, C.; Turzik, Z.; Franc, L.; Holman, M.; Hogel, J.; Kovarik, K.; Marik, P.; Vespalec, R.; Albert, D.; Hansen, V.; Vogel, W.

    1979-09-01

    Neutron spectra were measured for the TR-0, WWR-S and SR-0 experimental reactors using the recoil proton method, 6 Li spectrometry, scintillation spectrometry and activation detectors in a variety of conditions. Neutron fluence was also measured and calculated. (M.S.)

  12. Empirical model of the high-latitude boundary of the Earth's outer radiation belt at altitudes of up to 1000 km

    Science.gov (United States)

    Kalegaev, V. V.; Barinova, W. O.; Myagkova, I. N.; Eremeev, V. E.; Parunakyan, D. A.; Nguyen, M. D.; Barinov, O. G.

    2018-01-01

    An empirical model of the high-latitude boundary of the outer Earth's radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth's magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014-2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.

  13. Construction of prototype of on-line analyzer detection system for coal on belt conveyor using neutron activation technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Agus Cahyono; MP Indarzah; SG Usep; Sukandar

    2015-01-01

    The use of on-line neutron activation technique for coal analysis is proposed as an alternative method for analysis based on sampling technique. Compared to this conventional technique, the on-line neutron activation technique has much shorter time of analysis and more accurate results. The construction of detection system prototype for the on-line analyzer is described in this paper. This on-line analyzer consists of detection system, data acquisition system, and computer console. This detection system comprises several modules, i.e. NaI(Tl) scintillation detector completed with a photomultiplier tube (PMT), pre-amplifier, single channel analyzer (SCA), and analog signal transmitter and pulse counter processor. The construction processes of these four modules include the development of configuration block, lay out, and selection of electronic components. The modules have been integrated and tested. This detection system was tested using radioactive element Zn-65 having energy of 1115.5 keV and activity of 1 μCi. The test results show that the prototype of the on-line analyzer detection system has functioned as expected. (author)

  14. Towards radiation hard converter material for SiC-based fast neutron detectors

    Science.gov (United States)

    Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.

    2018-05-01

    In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection

  15. Hydrogen and helium isotope inner radiation belts in the Earth's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. I. Pugacheva

    Full Text Available Radial transport theory for inner radiation zone MeV ions has been extended by combining radial diffusive transport and losses due to Coulomb friction with local generation of D, T and 3He ions from nuclear reactions taking place on the inner edge of the inner radiation zone. Based on interactions between high energy trapped protons and upper atmospheric constituents we have included a nuclear reaction yield D, T and 3He flux source that was numerically derived from a nuclear reaction model code originally developed at the Institute of Nuclear Researches in Moscow, Russia. Magnetospheric transport computations have been made covering the L-shell range L=1.0–1.6. The resulting MeV energy D, T and 3He ion flux distributions show a strong influence of the local nuclear source mechanism on the inner zone energetic D, T and 3He ion content.

    Key words: Atmospheric composition and structure (Thermosphere-composition and chemistry · Magnetospheric physics (Energetic particles · trapped.

  16. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  17. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  18. Long-term prognosis of maxillary sinus malignant tumor patients treated by fast neutron radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Hirohisa; Numata, Tsutomu; Yuza, Jun; Suzuki, Haruhiko; Konno, Akiyoshi [Chiba Univ. (Japan). School of Medicine; Miyamoto, Tadaaki

    1995-03-01

    From 1976 through 1990, 19 patients with maxillary sinus malignant tumor were treated with combination therapy consisting of maxillectomy and radiation of fast neutron. Fast neutron radiotherapy was performed at National Institute of Radiological Sciences. Eight patients had adenoid cystic carcinomas, three patients squamous cell carcinomas, one patient a carcinoma in pleomorphic adenoma, four patients fibrosarcomas, one patient osteosarcoma, one patient chondrosarcoma and one patient rhabdomyosarcoma. Fast neutron therapy after/before surgery was effective in fresh cases with T2-3N0M0 adenoid cystic carcinomas and sarcomas (except for fibrosarcoma). Nine patients were alive more than three years after treatment. And serious complications of fast neutron radiation therapy appeared in six of these nine patients. Visual impairment of opposite side occurred in four patients. Bone necrosis occured in one patient and brain dysfunction in one patient. (author).

  19. Long-term prognosis of maxillary sinus malignant tumor patients treated by fast neutron radiation therapy

    International Nuclear Information System (INIS)

    Kishi, Hirohisa; Numata, Tsutomu; Yuza, Jun; Suzuki, Haruhiko; Konno, Akiyoshi; Miyamoto, Tadaaki.

    1995-01-01

    From 1976 through 1990, 19 patients with maxillary sinus malignant tumor were treated with combination therapy consisting of maxillectomy and radiation of fast neutron. Fast neutron radiotherapy was performed at National Institute of Radiological Sciences. Eight patients had adenoid cystic carcinomas, three patients squamous cell carcinomas, one patient a carcinoma in pleomorphic adenoma, four patients fibrosarcomas, one patient osteosarcoma, one patient chondrosarcoma and one patient rhabdomyosarcoma. Fast neutron therapy after/before surgery was effective in fresh cases with T2-3N0M0 adenoid cystic carcinomas and sarcomas (except for fibrosarcoma). Nine patients were alive more than three years after treatment. And serious complications of fast neutron radiation therapy appeared in six of these nine patients. Visual impairment of opposite side occurred in four patients. Bone necrosis occured in one patient and brain dysfunction in one patient. (author)

  20. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  1. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    International Nuclear Information System (INIS)

    Tan, V H; Son, P N

    2016-01-01

    The thermal neutron radiative capture cross section for 186 W(n, γ) 187 W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of R cd = 420 and peak energy E n = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197 Au(n, γ) 198 Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations. (paper)

  2. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  3. The Effect of Radiator on CR-39 Registration of Fast Neutrons

    International Nuclear Information System (INIS)

    El-Badrya, B.A.; Hegazya, T.M.; Morsya, A.A.; Zaki, M.F.

    2008-01-01

    Three different configurations of a personal neutron dosimeter using CR-39 plastic detector were placed in Plastiplast pouch composed from inside to outside of Aluminum ( 27 Al, 40 Ξ m), polyethylene (PE, 20 Ξ m), Cellulose Nitrate (CN, 40 Ξ m). One dosimeter was composed of a CR-39 detector and a PE radiator (1 mm thick), another of two CR-39 detectors with one serving as radiator, and the other of CR-39 alone (without radiator). These dosimeters have been irradiated with fast neutrons of average energy 4.5 MeV with neutron fluence ranging from 5.5 x 10 6 to 0.5 x 10 8 cm - 2 emitted from 241 Am-Be neutron source. The polymeric materials have been chosen on the basis of their hydrogen contents, which are as followed: CR-39, 48%, Polyethylene, 66.7% and CN, 32% by atomic ratio to produce protons via (n, p) elastic scattering with hydrogen and increasing the detection efficiency of CR-39. After irradiation, the dose equivalent response of the detectors has been studied by using conventional etching for two periods, 6h and 8h for these configurations. The thicknesses and compositions of the radiators are chosen so as to suppress the CR-39 response below 4 MeV by preventing the recoils of hydrogen nuclei, out of the hydrogen-rich radiators (PE, CR-39), from reaching the post-etch surface of the detector. Track counting was performed using an automated system. It was found that the dosemeter responses were linear as a function of a neutron equivalent dose and that the CR-39 detector has the same response with radiator or without radiator and thus appears as a promising fast neutron dosimeter. The results are discussed and compared with the literature

  4. Comparative study of structural properties of trehalose water solutions by neutron diffraction, synchrotron radiation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cesaro, A.; Magazu, V.; Migliardo, F.; Sussich, F.; Vadala, M

    2004-07-15

    Neutron diffraction measurements combined with H/D substitution have been performed on trehalose aqueous solutions as a function of temperature and concentration by using the SANDALS diffractometer at ISIS Facility (UK). The findings point out a high capability of trehalose to strongly affect the tetrahedral hydrogen bond network of water. The neutron diffraction results are also compared with simulation and experimental data obtained by synchrotron radiation on the phospholipid bilayer membranes (DPPC)/trehalose/H{sub 2}O ternary system.

  5. Silicon Photo-Multiplier Radiation Hardness Tests with a White Neutron Beam

    International Nuclear Information System (INIS)

    Montanari, A.; Tosi, N.; Pietropaolo, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Cotta Ramusino, A.; Malaguti, R.; Santoro, V.; Tellarini, G.; Tomassetti, L.; De Donato, C.; Reali, E.

    2013-06-01

    We report radiation hardness tests performed, with a white neutron beam, at the Geel Electron Linear Accelerator in Belgium on silicon Photo-Multipliers. These are semiconductor photon detectors made of a square matrix of Geiger-Mode Avalanche photo-diodes on a silicon substrate. Several samples from different manufacturers have been irradiated integrating up to about 6.2 x 10 9 1-MeV-equivalent neutrons per cm 2 . (authors)

  6. Calculation of neutron radiation energy deposition distribution in subcellular parts of tissue using recombination chamber microdosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    Recombination chamber microdosimetry was used as an instrument for determination of local neutron radiation energy deposition distribution. The method allows to simulate of subcellular regions of tissue of the order of 70 nm in size. The results obtained qualitatively correspond to relationship between biological efficiency and neutron energy, and show regular differences of distributions achieved by the recombination method and distributions measured using tissue equivalent proportional counters (TEPC), which simulates greater tissue regions of 1 μm in size

  7. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  8. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  9. The calibration method for personal dosimetry system in photon and neutron radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Trousil, J; Plichta, J [CSOD, Prague (Czech Republic); Nikodemova, D [SOD, Bratislava (Slovakia)

    1996-12-31

    The type testing of dosimetry system was performed with standard photon radiation fields within the energy range 15 keV to 1.25 MeV and electron radiation fields within the range 0.2 MeV to 3 MeV. For type testing of neutron dosimeters {sup 252}Cf and {sup 241}Am-Be radionuclide neutron sources was used, as well as a 14 MeV neutron generator. The neutron sources moderated by various moderating and absorbing materials was also used. The routine calibration of individual photon dosemeters was carried out using a {sup 137}Cs calibration source in the air kerma quality in the dose range 0.2 mGy to 6 Gy. The type testing of neutron dosemeters was performed in collaboration with Nueherberg laboratory on neutron generator with neutron energies -.57; 1.0;; 5.3 and 15.1 MeV. The fading and angular dependence testing was also included in the tests of both dosemeter systems. (J.K.).

  10. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-01-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS's) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS's are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS's and under consideration for the 1-5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  11. Activation measurements of fast neutron radiative capture for 139La

    International Nuclear Information System (INIS)

    Luo, Junhua; Han, Jiuning; Liu, Rong; Jiang, Li; Liu, Zhenlai; Sun, Guihua; Ge, Suhong

    2013-01-01

    The neutron capture cross section of the neutron magic isotope 139 La has been measured relative to that of 27 Al by means of the activation method. The fast neutrons were produced via the 3 H(d,n) 4 He reaction on Pd-300 neutron generator. The natural high-purity La 2 O 3 powder was used as target material. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with high-purity germanium (HPGe) detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The new values for E n =13.5±0.2, 14.1±0.2, and 14.8±0.2 MeV are found to be 1.30±0.08, 1.15±0.08 and 0.99±0.07 mb, respectively. Results were discussed and compared with some corresponding values found in the literature. - Highlights: ► D–T neutron source was used to measure cross sections using activation method. ► 27 Al(n,α) 24 Na was used as the monitor for the measurement. ► The cross sections for the (n,γ) reactions on neutron magic isotope 139 La have been measured. ► The data for 139 La(n,γ) 140 La reaction are presented. ► The results were compared with previous data and with evaluation data

  12. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    International Nuclear Information System (INIS)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R.; Silva, Ademir X.

    2015-01-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into i nitial nuclear radiation , referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10) n - . (author)

  13. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R., E-mail: rebello@ime.eb.br, E-mail: daltongirao@yahoo.com.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, Ademir X., E-mail: ademir@nuclear.ufrj.br [Corrdenacao dos Programas de Pos-Graduacao em Egenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into {sup i}nitial nuclear radiation{sup ,} referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10){sub n}{sup -}. (author)

  14. Fast analysis of carbon content by inelastic scattering of neutrons

    International Nuclear Information System (INIS)

    Heinrich, B.; Irmer, K.; Poetschke, R.

    1986-01-01

    The direct measurement of carbon concentration of conveyor belts is a difficult problem. The great penetration depth by the fast neutrons and the 4.43 MeV γ-radiation gives an especially suitable method. The measurement were performed by the following methods: excitation of γ-radiation by a Pu-Be neutron source, excitation of γ-radiation by DT-neutron generator in stationary regime, in pulse regime, or coupled with time correlated associated particle method. Furthermore, a special Monte Carlo code in which the geometry of the measuring equipment could be specified, was written to calculate the 4.43 MeV γ counting rate for backscatter geometries and for penetration geometries. The influence of conveyor belt, of content of H, O, Fe and of mass by surface for 4.43 MeV γ-radiation was calculated for application brown coal in industry. (author)

  15. Experimental arrangement for production and use of gamma radiation from neutron capture

    International Nuclear Information System (INIS)

    Mafra, Olga Yajgunovitch

    1969-01-01

    This dissertation presents the main characteristics and construction details of collimator system for gamma radiation emitted by atomic nuclei after capturing thermal neutrons. This construction was made in one of the cross channels of IEAR-1 swimming pool reactor of the Atomic Energy Institute of Sao Paulo, Brazil. The energies of gamma radiation available vary range from about 4 MeV and 11 MeV, discreetly. With this experimental arrangement is obtained: high intensity, good collimation and monochrome gamma radiation, important for conducting experiments with gamma radiation. It is also present in this dissertation the description of the techniques employed in determining the intensity of gamma radiation and the extent of contamination in the neutron beam as well as the program list GAMAU that adjusts the gamma spectrum photopeak taken as a Gaussian curve. We intend to use this experimental arrangement for the measurement of cross sections of photonuclear reactions

  16. Thermoluminescent dosemeters (TLD) exposed to high fluxes of gamma radiation, thermal neutrons and protons

    International Nuclear Information System (INIS)

    Gambarini, G.; Martini, M.; Meinardi, F.; Raffaglio, C.; Salvadori, P.; Scacco, A.; Sichirollo, A.E.

    1996-01-01

    Thermoluminescent dosemeters (TLD), widely experimented and utilized in personal dosimetry, have some advantageous characteristics which induce one to employ them also in radiotherapy. The new radiotherapy techniques are aimed at selectively depositing a high dose in cancerous tissues. This goal is reached by utilising both conventional and other more recently proposed radiation, such as thermal neutrons and heavy charged particles. In these inhomogeneous radiation fields a reliable mapping of the spatial distribution of absorbed dose is desirable, and the utilized dosemeters have to give such a possibility without notably perturbing the radiation field with the materials of the dosemeters themselves. TLDs, for their small dimension and their tissue equivalence for most radiation, give good support in the mapping of radiation fields. After exposure to the high fluxes of therapeutic beams, some commercial TL dosemeters have shown a loss of reliability. An investigation has therefore be performed, both on commercial and on laboratory made phosphors, in order to investigate their behaviour in such radiation fields. In particular the thermal neutron and gamma ray mixed field of the thermal column of a nuclear reactor, of interest for Boron Neutron Capture Therapy (B.N.C.T.) and a proton beam, of interest for proton therapy, were considered. Here some results obtained with new TL phosphors exposed in such radiation fields are presented, after a short description of some radiation damage effect on commercial LiF TLDs exposed in the (n th ,γ) field of the thermal column of a reactor. (author)

  17. Radiation hardness of GaAs sensors against gamma-rays, neutrons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Šagátová, Andrea, E-mail: andrea.sagatova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava (Slovakia); University Centre of Electron Accelerators, Slovak Medical University, Ku kyselke 497, 911 06 Trenčín (Slovakia); Zaťko, Bohumír; Dubecký, František [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Ly Anh, Tu [Faculty of Applied Science, University of Technology VNU HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Nečas, Vladimír; Sedlačková, Katarína; Pavlovič, Márius [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava (Slovakia); Fülöp, Marko [University Centre of Electron Accelerators, Slovak Medical University, Ku kyselke 497, 911 06 Trenčín (Slovakia)

    2017-02-15

    Highlights: • Radiation hardness of SI GaAs detectors against gamma-rays, neutrons and electrons was compared. • Good agreement was achieved between the experimental results and displacement damage factor of different types of radiation. • CCE and FWHM first slightly improved (by 1–8%) and just then degraded with the cumulative dose. • An increase of detection efficiency with cumulative dose was observed. - Abstract: Radiation hardness of semi-insulating GaAs detectors against {sup 60}Co gamma-rays, fast neutrons and 5 MeV electrons was compared. Slight improvements in charge collection efficiency (CCE) and energy resolution in FWHM (Full Width at Half Maximum) were observed at low doses with all kinds of radiation followed by their degradation. The effect occurred at a dose of about 10 Gy of neutrons (CCE improved by 1%, FWHM by 5% on average), at 1 kGy of electrons (FWHM decreased by 3% on average) and at 10 kGy of gamma-rays (CCE raised by 5% and FWHM dropped by 8% on average), which is in agreement with the relative displacement damage of the used types of radiation. Gamma-rays of MeV energies are 1000-times less damaging than similar neutrons and electrons about 10-times more damaging than photons. On irradiating the detectors with neutrons and electrons, we observed a global increase in their detection efficiency, which was caused probably by enlargement of the active detector area as a consequence of created radiation defects in the base material. Detectors were still functional after a dose of 1140 kGy of ∼1 MeV photons, 104 kGy of 5 MeV electrons but only up to 0.576 kGy of fast (∼2 to 30 MeV) neutrons.

  18. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    International Nuclear Information System (INIS)

    Yu, J.

    2015-01-01

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.

  19. Detection of Chorus Elements and other Wave Signatures Using Geometric Computational Techniques in the Van Allen radiation belts

    Science.gov (United States)

    Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.

    2017-12-01

    An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.

  20. Influence of gamma radiation and fast neutrons on the growth of Haplopappus gracilis (Nutt) A. Gray callus

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Wajda, L.; Korzonek, M.; Polska Akademia Nauk, Krakow. Inst. Fizjologii Roslin)

    1979-01-01

    The sensitivity of the callus of Haplopappus gracilis to gamma radiation and fast neutrons was studied. High doses of radiation cause inhibition of callus growth. At small doses the effect is less pronounced. Stimulation of callus growth was seen. Apart from morphological changes, ionizing radiations lowered the fresh weight ratio of the callus. The RBE value for 5.5 MeV neutrons depended on the dose rate of radiation and the combination of growth medium. (author)

  1. Expanding options in radiation oncology: neutron beam therapy

    International Nuclear Information System (INIS)

    Cohen, L.

    1982-01-01

    Twelve years experience with neutron beam therapy in Britain, the USA, Europe and Japan shows that local control is achievable in late-stage epidermoid cancer somewhat more frequently than with conventional radiotherapy. Tumours reputed to be radioresistant (salivary gland, bladder, rectosigmoid, melanoma, bone and soft-tissue sarcomas) have proved to be particularly responsive to neutrons. Pilot studies in brain and pancreatic tumours suggest promising new approaches to management of cancer in these sites. The availability of neutron therapy in the clinical environment opens new prospects for irradiation of 'radioresistant' tumours, permits more conservative cancer surgery, expands the use of elective chemotherapy and provides a wider range of options for cancer patients. (author)

  2. Study of plasma in MAGO chamber by own neutron radiation

    International Nuclear Information System (INIS)

    Burenkov, O.M.; Garanin, S.F.; Demin, A.N.; Dudin, I.F.; Korchagin, V.P.; Morozov, I.V.; Mokhov, V.N.; Pavlovskij, E.S.; Chernyshev, V.K.; Yakubov, V.B.

    1996-01-01

    The measured ratio of the DD and DT reaction rates is used for determining the ion temperature in the MAGO hot plasma chamber driven by explosive magnetic generator. The method exploits the differences in the temperature dependence of the DD and DT reaction rates. The reaction rates are estimated from the DD and DT neutron spectra measured by the time-of flight method. In the paper the MAGO experimental arrangement is described in detail, and the problems arising at interpretation of the somewhat contradictory results of neutron diagnostics are discussed. A reasonable value of the ion temperature (5.5 keV maximum) can be obtained when assuming a strong anisotropy of the ion distribution. In order to verify the reported results further more detailed neutron diagnostic experiments are planned. (J.U.). 7 figs., 6 refs

  3. EPR dosimetry in a mixed neutron and gamma radiation field.

    Science.gov (United States)

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  4. Study of plasma in MAGO chamber by own neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Burenkov, O M; Garanin, S F; Demin, A N; Dudin, I F; Korchagin, V P; Morozov, I V; Mokhov, V N; Pavlovskij, E S; Chernyshev, V K; Yakubov, V B [All-Russian Scientific Research Institute of Experimental Physics, Arzamas (Russian Federation)

    1997-12-31

    The measured ratio of the DD and DT reaction rates is used for determining the ion temperature in the MAGO hot plasma chamber driven by explosive magnetic generator. The method exploits the differences in the temperature dependence of the DD and DT reaction rates. The reaction rates are estimated from the DD and DT neutron spectra measured by the time-of flight method. In the paper the MAGO experimental arrangement is described in detail, and the problems arising at interpretation of the somewhat contradictory results of neutron diagnostics are discussed. A reasonable value of the ion temperature (5.5 keV maximum) can be obtained when assuming a strong anisotropy of the ion distribution. In order to verify the reported results further more detailed neutron diagnostic experiments are planned. (J.U.). 7 figs., 6 refs.

  5. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  6. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2 - Neutron Radiation ORAUT-OTIB-0045

    International Nuclear Information System (INIS)

    Kerr, G.D.; Frome, E.L.; Watkins, J.P.; Tankersley, W.G.

    2009-01-01

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  7. Historical Evaluation of Film Badge Dosimetry Y-12 Plant: Part 2–Neutron Radiation ORAUT-OTIB-0045

    Energy Technology Data Exchange (ETDEWEB)

    Kerr GD, Frome EL, Watkins JP, Tankersley WG

    2009-12-14

    A summary of the major neutron sources involved in radiation exposures to Y-12 workers is presented in this TIB. Graphical methods are used to evaluate available neutron dose data from quarterly exposures to Y-12 workers and to determine how the data could be used to derive neutron-to-gamma dose ratios for dose reconstruction purposes. This TIB provides estimates of neutron-to-gamma dose ratios for specific departments and a default value for the neutron-to-gamma dose ratio based on the pooled neutron dose data for all Y-12 departments.

  8. Radiation dosimetry by neutron or X ray fluorescence activation of residual silver in ionographic emulsions

    International Nuclear Information System (INIS)

    Heilmann, C.

    1987-01-01

    A global measuring technique which is sensitive enough to detect small silver contents in films for dosimetry applications is presented. The applications studied are neutron dosimetry by measuring residual silver due to recoil protons in developed emulsions and high dose dosimetry by the detection of photolytic silver in fixed emulsions. An individual fast neutron dosimeter which can be used in radiation protection was developed, along with an automatic data analysis and readout system. Application of this technique to the measurement of high radiation doses (100 to 1 million Gy) via the measurement of photolytic silver in fixed, but undeveloped, emulsions confirms the usefulness of the method [fr

  9. Neutron activation: an invaluable technique for teaching applied radiation

    International Nuclear Information System (INIS)

    Trainer, Matthew

    2002-01-01

    This experiment introduces students to the important method of neutron activation. A sample of aluminium was irradiated with neutrons from an isotropic 241 Am-Be source. Using γ-ray spectroscopy, two radionuclide products were identified as 27 Mg and 28 Al. Applying a cadmium cut-off filter and an optimum irradiation time of 45 min, the half-life of 27 Mg was determined as 9.46±0.50 min. The half-life of the 28 Al radionuclide was determined as 2.28±0.10 min using a polythene moderator and an optimum irradiation time of 10 min. (author)

  10. Status of neutron monitoring meters for radiation protection purpose

    International Nuclear Information System (INIS)

    Li Taosheng

    2003-01-01

    The status of and trends towards the development of neutron monitoring meters, such as dose survey meter, workplace (ambient) spectrometer and individual dosimeters, are discussed in the present paper from the perspectives of workplace and individual dose monitoring. Over the past 4 decades, both neutron dose survey meter and workplace spectrometer have declined to be more reasonable in design of their probes, with more broaden applications. With the development of electronic technology, there is a trend towards being more small-compacted and smart. Although many technical difficulties in the practical measurement, some significant progresses have be made in the development and research of these kinds of meters. (authors)

  11. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Carpano, Marina; Perona, Marina; Thomasz, Lisa; Juvenal, Guillermo J.; Pisarev, Mario; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10 B to capture thermal neutrons leading to the production of 4 He and 7 Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10 B) + neutrons; 2) BOPP (10 ppm 10 B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 10 9 n/cm 2 sec) or with 60 Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10 BPA or 10 BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  12. Mapping lightning discharges on Earth with lightning-generated whistlers wave emission in space and their effects on radiation belt electrons

    Science.gov (United States)

    Farges, T.; Ripoll, J. F.; Santolik, O.; Kolmasova, I.; Kurth, W. S.; Hospodarsky, G. B.; Kletzing, C.

    2017-12-01

    It is widely accepted that the slot region of the Van Allen radiation belts is sculpted by the presence of whistler mode waves especially by plasmaspheric hiss emissions. In this work, we investigate the role of lightning-generated whistler waves (LGW), which also contribute to scatter electrons trapped in the plasmaphere but, in general, to a lesser extent due to their low mean amplitude and occurrence rate. Our goal is to revisit the characterization of LGW occurrence in the Earth's atmosphere and in space as well as the computation of LGW effects by looking at a series of particular events, among which intense events, in order to characterize maximal scattering effects. We use multicomponent measurements of whistler mode waves by the Waves instrument of Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft as our primary data source. We combine this data set with local measurements of the plasma density. We also use the data of the World Wide Lightning Location Network in order to localize the source of lightning discharges on Earth and their radiated energy, both locally at the footprint of the spacecraft and, globally, along the drift path. We discuss how to relate the signal measured in space with the estimation of the power emitted in the atmosphere and the associated complexity. Using these unique data sets we model the coefficients of quasi-linear pitch angle diffusion and we estimate effects of these waves on radiation belt electrons. We show evidence that lightning generated whistlers can, at least in some cases, influence the radiation belt dynamics.

  13. Nuclear radiation detectors using high resistivity neutron transmutation doped silicon

    International Nuclear Information System (INIS)

    Gessner, T.; Irmer, K.

    1983-01-01

    A method for the production of semiconductor detectors based on high resistivity n-type silicon is described. The n-type silicon is produced by neutron irradiation of p-type silicon. The detectors are produced by planar technique. They are suitable for the spectrometry of alpha particles and for the pulse count measurement of beta particles at room temperature. (author)

  14. Systematic Analysis of the Effects of Mode Conversion on Thermal Radiation from Neutron Stars

    Science.gov (United States)

    Yatabe, Akihiro; Yamada, Shoichi

    2017-12-01

    In this paper, we systematically calculate the polarization in soft X-rays emitted from magnetized neutron stars, which are expected to be observed by next-generation X-ray satellites. Magnetars are one of the targets for these observations. This is because thermal radiation is normally observed in the soft X-ray band, and it is thought to be linearly polarized because of different opacities for two polarization modes of photons in the magnetized atmosphere of neutron stars and the dielectric properties of the vacuum in strong magnetic fields. In their study, Taverna et al. illustrated how strong magnetic fields influence the behavior of the polarization observables for radiation propagating in vacuo without addressing a precise, physical emission model. In this paper, we pay attention to the conversion of photon polarization modes that can occur in the presence of an atmospheric layer above the neutron star surface, computing the polarization angle and fraction and systematically changing the magnetic field strength, radii of the emission region, temperature, mass, and radii of the neutron stars. We confirmed that if plasma is present, the effects of mode conversion cannot be neglected when the magnetic field is relatively weak, B∼ {10}13 {{G}}. Our results indicate that strongly magnetized (B≳ {10}14 {{G}}) neutron stars are suitable to detect polarizations, but not-so-strongly magnetized (B∼ {10}13 {{G}}) neutron stars will be the ones to confirm the mode conversion.

  15. Absence of storage effects on radiation damage after thermal neutron irradiation of dry rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kowyama, Y. [Mie Univ., Tsu (Japan); Saito, M.; Kawase, T.

    1987-09-15

    Storage effects on dry rice seeds equilibrated to 6.8% moisture content were examined after irradiation with X-rays of 5, 10, 20 and 40 kR and with thermal neutrons of 2.1, 4.2, 6.3 and 8.4×10{sup 13}N{sub th}/cm{sup 2}. Reduction in root growth was estimated from dose response curves after storage periods of 1 hr to 21 days. The longer the storage period, the greater enhancement of radiation damages in X-irradiated seeds. There were two components in the storage effect, i. e., a rapid increase of radiosensitivity within the first 24 hr and a slow increase up to 21 days. An almost complete absence of a storage effect was observed after thermal neutron exposure, in spite of considerably high radioactivities of the induced nuclides, {sup 56}Mn, {sup 42}K and {sup 24}Na, which were detected from gamma-ray spectrometry of the irradiated seeds. The present results suggest that the contributions of gamma-rays from the activated nuclides and of inherent contaminating gamma-rays are little or negligible against the neutron-induced damage, and that the main radiobiological effects of thermal neutrons are ascribed to in situ radiations, i, e., heavy particles resulting from neutron-capture reaction of atom. A mechanism underlying the absence of storage effect after thermal neutron irradiation was briefly discussed on the basis of radical formation and decay. (author)

  16. Characteristic Investigation of Unfolded Neutron Spectra with Different Priori Information and Gamma Radiation Interference

    International Nuclear Information System (INIS)

    Kim, Bong Hwan

    2006-01-01

    Neutron field spectrometry using multi spheres such as Bonner Spheres (BS) has been almost essential in radiation protection dosimetry for a long time at workplace in spite of poor energy resolution because it is not asking the fine energy resolution but requiring easy operation and measurement performance over a wide range of energy interested. KAERI has developed and used extended BS system based on a LiI(Eu) scintillator as the representative neutron spectrometry system for workplace monitoring as well as for the quantification of neutron calibration fields such as those recommended by ISO 8529. Major topics in using BS are how close the unfolded spectra is the real one and to minimize the interference of gamma radiation in neutron/gamma mixed fields in case of active instrument such as a BS with a LiI(Eu) scintillator. The former is related with choosing a priori information when unfolding the measured data and the latter is depend on how to discriminate it in intense gamma radiation fields. Influence of a priori information in unfolding and effect of counting loss due to pile-up of signals for the KAERI BS system were investigated analyzing the spectral measurement results of Scattered Neutron Calibration Fields (SNCF)

  17. Development and testing of a thermoluminescent dosemeter for mixed neutron-photon-beta radiation fields

    International Nuclear Information System (INIS)

    Zummo, J.J.; Liu, J.C.

    1998-08-01

    A new four-element thermoluminescent (TL) dosemeter and dose evaluation algorithm have been developed and tested to better characterize personnel exposure in mixed neutron-photon-beta radiation fields. The prototype dosemeter is based on a commercially available TL card (with three LiF-7 chips and one LiF-6 chip) and modified filtration elements. The new algorithm takes advantage of the high temperature peak characteristics of the LiF-6 element to better quantify the neutron dose component. The dosemeter was tested in various radiation fields, consisting of mixtures of two radiation types typically used for dosemeter performance testing, as well as mixtures of three radiation types to simulate possible exposure conditions. The new dosemeter gave superior performance, based on the tolerance levels, when using the new algorithm as compared to a conventional algorithm that did not use the high temperature peak methodology. The limitations and further improvements are discussed

  18. The use of the SRIM code for calculation of radiation damage induced by neutrons

    Science.gov (United States)

    Mohammadi, A.; Hamidi, S.; Asadabad, Mohsen Asadi

    2017-12-01

    Materials subjected to neutron irradiation will being evolve to structural changes by the displacement cascades initiated by nuclear reaction. This study discusses a methodology to compute primary knock-on atoms or PKAs information that lead to radiation damage. A program AMTRACK has been developed for assessing of the PKAs information. This software determines the specifications of recoil atoms (using PTRAC card of MCNPX code) and also the kinematics of interactions. The deterministic method was used for verification of the results of (MCNPX+AMTRACK). The SRIM (formely TRIM) code is capable to compute neutron radiation damage. The PKAs information was extracted by AMTRACK program, which can be used as an input of SRIM codes for systematic analysis of primary radiation damage. Then the Bushehr Nuclear Power Plant (BNPP) radiation damage on reactor pressure vessel is calculated.

  19. Pulsed neutron well logging apparatus having means for determining background radiation

    International Nuclear Information System (INIS)

    Randall, R.R.

    1979-01-01

    A neutron generator in a well logging instrument is periodically pulsed and has an off period between pulses of 1000 microseconds. A neutron detector is gated on at intervals of 400 to 500, 550 to 650, and 700 to 800 microseconds, respectively, following the termination of each burst of fast neutrons. Circuitry is provided for determining the background radiation by the equation: B = N 1 X N 3 - N 2 2 /N 1 + N 3 - 2N 2 where B is the background, and N 1 , N 2 and N 3 are the counts observed during the three gates, respectively. Circuitry is also provided for determining the macroscopic absorption (Σ) from the equation: Σ = 1/VΔt Log [N 1 - B/N 2 - B] where V is the velocity of thermal neutrons, being a constant and Δt represents an increment of time

  20. Study of gamma ray multiplicity spectra for radiative capture of neutrons in 113,115In

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Fajkov-Stanchik, Kh.; Grigor'ev, Yu.V.; Muradyan, G.V.; Yaneva, N.B.

    1997-08-01

    Neutron radiative capture measurements were performed for the enriched isotopes 113 In and 115 In on the neutron spectrometer at the Neutron Physics Laboratory of the Joint Institute for Nuclear Research employing the gamma ray multiplicity technique and using a ''Romashka'' multi-sectional 4p detector on the 500 m time base of the IBR-30 booster. The gamma multiplicity spectra of resolved resonances were obtained for the 20-500 eV energy range. The mean gamma ray multiplicity was determined for each resonance. The dependence of the ratio S of the low-energy coincidence multiplicity spectrum to the high-energy coincidence multiplicity spectrum on resonance energy exhibits a non-statistical structure. This structure was found to correlate with the local neutron strength function. (author). 10 refs, 6 figs, 2 tabs

  1. The effect of straggling on the slowing down of neutrons in radiation protection

    International Nuclear Information System (INIS)

    Mostacci, D.; Molinari, V.; Teodori, F.; Pesic, M.

    1999-01-01

    All those techniques developed to describe neutron transport that rely on the flux isotropy conditions prevailing within the reactor core can be of no help in the study of neutron beams. Two main problems must be solved in investigating beams: determining the relevant cross-sections and solving the transport equation. Often in addressing neutron radiation protection problems, the available cross-section data are extremely detailed whereas the transport equations used are rather unrefined, making wide use of the continuous slowing down approximation to calculate stopping powers (e.g., Bethe's expressions). In this paper a simple approach to calculating stopping power and range is presented, that takes into account the effect of neutron energy straggling. Comparison with MCNP results is also presented. (author)

  2. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  3. Radiation transport calculations for the ANS [Advanced Neutron Source] beam tubes

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs

  4. Determination of radiation levels by neutrons in an accelerator for radiotherapy

    International Nuclear Information System (INIS)

    Paredes G, L.; Salazar B, M.A.; Genis S, R.

    1998-01-01

    It was determined the radiation levels by neutrons due to photonuclear reactions (γ, n) which occur in the target, levelling filter, collimators and the small pillow blinding of a medical accelerator Varian Clinac 2100C of 18 MeV, using thermoluminescent dosemeters UD-802AS and US-809AS. The experimental values were presented for the patient level, inside and outside of the radiation field, as well as for the small pillow. (Author)

  5. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mössbauer studies of hemoglobin in erythrocytes exposed to neutron radiation

    International Nuclear Information System (INIS)

    Niemiec, Katarzyna; Kaczmarska, Magdalena; Buczkowski, Mateusz; Fornal, Maria; Pohorecki, Władysław; Matlak, Krzysztof; Korecki, Józef; Grodzicki, Tomasz; Burda, Kvetoslava

    2012-01-01

    We studied radiation effects on the stability of various states of hemoglobin (Hb) in red blood cells (RBC) irradiated with a very low dose of neutron rays, 50 μGy. We investigated RBCs isolated from blood of healthy donors. Mössbauer spectroscopy was applied to monitor different forms of Hb. Our results show, for the first time, that oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoxyHb) are two Hb forms sensitive to such a low neutron radiation. Both Hbs change into a new Hb form (Hb irr ). Additionally, OxyHb transfers into HbOH/H 2 O, which under our experimental conditions is resistant to the action of neutron rays.

  7. Neutronics and radiation field studies for the RIA fragmentation target area

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)]. E-mail: reyes20@llnl.gov; Boles, Jason L. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kw for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  8. Neutronics and radiation field studies for the RIA fragmentation target area

    Science.gov (United States)

    Reyes, Susana; Boles, Jason L.; Ahle, Larry E.; Stein, Werner

    2006-06-01

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kW for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  9. Neutron and synchrotron radiation for condensed matter studies. Volume 1: theory, instruments and methods

    International Nuclear Information System (INIS)

    Baruchel, J.; Hodeau, J.L.; Lehmann, M.S.; Regnard, J.R.; Schlenker, C.

    1993-01-01

    This book provides the basic information required by a research scientist wishing to undertake studies using neutrons or synchrotron radiation at a Large Facility. These lecture notes result from 'HERCULES', a course that has been held in Grenoble since 1991 to train young scientists in these fields. They cover the production of neutrons and synchrotron radiation and describe all aspects of instrumentation. In addition, this work outlines the basics of the various fields of research pursued at these Large Facilities. It consists of a series of chapters written by experts in the particular fields. While following a progression and constituting a lecture course on neutron and x-ray scattering, these chapters can also be read independently. This first volume will be followed by two further volumes concerned with the applications to solid state physics and chemistry, and to biology and soft condensed matter properties

  10. Neutron radiation damage in NbO single crystals

    International Nuclear Information System (INIS)

    Onozuka, T.; Koiwa, M.; Ishikawa, Y.; Yamaguchi, S.; Hirabayashi, M.

    1977-01-01

    The effect of neutron irradiation and subsequent recovery has been studied for Nb0 single crystals of a defective NaCl structure containing 25% vacancies of niobium and oxygen. A very large increase (about 1%) in the lattice constant is observed after irradiation of 1.5 x 10 19 and 1 x 10 20 nvt (> 1 MeV). From the intensity measurements of x-ray and neutron diffraction, it is revealed that the knock-on atoms fill preferentially their respective vacant sites; Nb atoms occupy Nb-vacancies, and 0 atoms occupy 0-vacancies with nearly the same probabilities; 0.53 for 1.5 x 10 19 nvt. The mean threshold energy for displacement is estimated to be about 3 eV. (author)

  11. Storm-time electron flux precipitation in the inner radiation belt caused by wave-particle interactions

    Directory of Open Access Journals (Sweden)

    H. Tadokoro

    2009-04-01

    Full Text Available It has been believed that electrons in the inner belt do not show the dynamical variation during magnetic storms except for great magnetic storms. However, Tadokoro et al. (2007 recently disclosed that low-altitude electrons in the inner belt frequently show flux variations during storms (Storm Time inner belt Electron Enhancement at the Low altitude (STEEL. This paper investigates a possible mechanism explaining STEEL during small and moderate storms, and shows that it is caused not by radial transport processes but by pitch angle scattering through wave-particle interactions. The waves related to wave-particle interactions are attributed to be banded whistler mode waves around 30 kHz observed in the inner magnetosphere by the Akebono satellite. The estimated pitch angle distribution based on a numerical calculation is roughly consistent with the observed results.

  12. Evaluation of conditions of radiation protection of medical personnel in intracavitary neutron therapy of cervical cancer

    International Nuclear Information System (INIS)

    Kostromina, K.N.; Korenkov, I.P.; Bocharov, A.L.; Gladkikh, N.N.

    1991-01-01

    Combined radiation therapy was provided to cervical cancer patients. Working conditions of personnel were examined, the rate of exposure doses and flows of neutrons at working places were measured, dose exposures of the personnel were evaluated. It has been concluded that occupational conditions for the medical personnel are considered to be relatively safe

  13. Characterization of defects and microstructures by neutrons and synchrotron radiations topography

    International Nuclear Information System (INIS)

    Baruchel, J.

    1993-01-01

    Neutrons and synchrotron radiation topography are complementary for defects study, for domains or phases coexistence in magnetic or high absorbing crystals, or crystals not supporting intense X irradiation. Applications to CuGe, NiAl, CuAl, FeSi binary alloys are shortly presented. (A.B.). 8 refs, 1 fig

  14. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  15. Radiation-induced conductivity of doped silicon in response to photon, proton and neutron irradiation

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Plaksin, O.A.; Stepanov, V.A.

    2000-01-01

    The opto-electronic performance of semiconductors during reactor operation is restricted by radiation-induced conductivity (RIC) and the synergistic effects of neutrons/ions and photons. The RICs of Si due to photons, protons and pulsed neutrons have been evaluated, aiming at radiation correlation. Protons of 17 MeV with an ionizing dose rate of 10 3 Gy/s and/or photons (hν=1.3 eV) were used to irradiate impurity-doped Si (2x10 16 B atoms/cm 3 ) at 300 and 200 K. Proton-induced RIC (p-RIC) and photoconductivity (PC) were intermittently detected in an accelerator device. Neutron-induced RIC (n-RIC) was measured for the same Si in a pulsed fast-fission reactor, BARS-6, with a 70-μs pulse of 2x10 12 n/cm 2 (E>0.01 MeV) and a dose rate of up to 6x10 5 Gy/s. The neutron irradiation showed a saturation tendency in the flux dependence at 300 K due to the strong electronic excitation. Normalization of the electronic excitation, including the pulsed regime, gave a fair agreement among the different radiation environments. Detailed comparison among PC, p-RIC and n-RIC is discussed in terms of radiation correlation including the in-pile condition

  16. Radiation damages and electro-conductive characteristics of Neutron-Transmutation-Doped GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Kazuo; Sato, Masataka; Sakai, Kiyohiro [Hosei Univ., Koganei, Tokyo (Japan). Coll. of Engineering; Okada, Moritami

    1996-04-01

    Neutron Transmutation Doping (NTD) method made it possible to do homogeneous doping of impurities and to easily control the doping level. Thus, the method has been put into practice for some materials such as silicon. Here, the annealing behavior of anti-site defects generated in neutron-irradiated GaAs was studied. Electric activations of NTD-impurities were started around 550degC in P1 and P2 radiation fields, which were coincident with the beginning of extinction of electron trapping which was caused by anti-site defects due to fast neutron radiation. The electric resistivities of GaAs in neutron radiation fields; P1, P2 and P3 changed depending with the annealing temperature. The electric resistivities of GaAs in P1 and P2 fields indicate the presence of hopping conduction through radiation damages. The resistance of GaAs irradiated in P1 was smaller by nearly 2 orders than that of the untreated control. Further, the electric activation process for NTD-impurities was investigated using ESR and Raman spectroscopy. (M.N.)

  17. Exchange currents in the radiative capture of thermal neutrons by protons and deuterons

    International Nuclear Information System (INIS)

    Konijnenberg, M.W.

    1990-01-01

    Measurements are presented about the ratio between the contributions to the radiative neutron capture process by deuterons from states with total spin J = 1/2 and J = 3/2. It is shown that the outcome of these experiments can only be understood from the electromagnetic interaction with nucleons, mesons and nucleon resonances involving meson exchange. (author). 112 refs.; 27 figs.; 7 tabs

  18. Model-Independent Calculation of Radiative Neutron Capture on Lithium-7

    NARCIS (Netherlands)

    Rupak, Gautam; Higa, Renato

    2011-01-01

    The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix elements. It depends on the poorly known p-wave effective range parameter

  19. Separation of the Galactic Cosmic Rays and Inner Earth Radiation Belt Contributions to the Daily Dose Onboard the International Space Station in 2005-2011

    Science.gov (United States)

    Lishnevskii, A. E.; Benghin, V. V.

    2018-03-01

    The DB-8 detectors of the ISS radiation monitoring system (RMS) have operated almost continuously onboard the ISS service module since August 2001 till December 2014. The RMS data obtained were used for the daily monitoring of the radiation environment aboard the station. This paper considers the technique of RMS data analysis that allows one to distinguish the contributions of galactic cosmic rays and the Earth's inner radiation belt to the daily dose based on the dosimetry data obtained as a result of the station's passage in areas of the highest geomagnetic latitudes. The paper presents the results of an analysis of the dosimetry data based on this technique for 2005-2011, as well as a comparison with similar results the authors obtained previously using the technique based on an analysis of the dosimetry data obtained during station passages in the area of the South Atlantic Anomaly.

  20. Van Allen Probe Observations of Chorus Wave Activity, Source and Seed electrons, and the Radiation Belt Response During ICME and CIR Storms

    Science.gov (United States)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.

    2017-12-01

    Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.

  1. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Koller, Josep [Los Alamos National Laboratory; Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory

    2008-01-01

    Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10{sup 5} calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand

  2. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    International Nuclear Information System (INIS)

    Koller, Josep; Reeves, Geoffrey D.; Friedel, Reiner H.W.

    2008-01-01

    Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10 5 calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand physical

  3. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  4. Drift-resonant, relativistic electron acceleration at the outer planets: Insights from the response of Saturn's radiation belts to magnetospheric storms

    Science.gov (United States)

    Roussos, E.; Kollmann, P.; Krupp, N.; Paranicas, C.; Dialynas, K.; Sergis, N.; Mitchell, D. G.; Hamilton, D. C.; Krimigis, S. M.

    2018-05-01

    The short, 7.2-day orbital period of Cassini's Ring Grazing Orbits (RGO) provided an opportunity to monitor how fast the effects of an intense magnetospheric storm-time period (days 336-343/2016) propagated into Saturn's electron radiation belts. Following the storms, Cassini's MIMI/LEMMS instrument detected a transient extension of the electron radiation belts that in subsequent orbits moved towards the inner belts, intensifying them in the process. This intensification was followed by an equally fast decay, possibly due to the rapid absorption of MeV electrons by the planet's main rings. Surprisingly, all this cycle was completed within four RGOs, effectively in less than a month. That is considerably faster than the year-long time scales of Saturn's proton radiation belt evolution. In order to explain this difference, we propose that electron radial transport is partly controlled by the variability of global scale electric fields which have a fixed local time pointing. Such electric fields may distort significantly the orbits of a particular class of energetic electrons that cancel out magnetospheric corotation due to their westward gradient and curvature drifts (termed "corotation-resonant" or "local-time stationary" electrons) and transport them radially between the ring current and the radiation belts within several days and few weeks. The significance of the proposed process is highlighted by the fact that corotation resonance at Saturn occurs for electrons of few hundred keV to several MeV. These are the characteristic energies of seed electrons from the ring current that sustain the radiation belts of the planet. Our model's feasibility is demonstrated through the use of a simple test-particle simulation, where we estimate that uniform but variable electric fields with magnitudes lower that 1.0 mV/m can lead to a very efficient transport of corotation resonant electrons. Such electric fields have been consistently measured in the magnetosphere, and here we

  5. Dosimetry techniques of thermal neutrons and {gamma} radiation in reactor cores; Techniques de dosimetrie des neutrons thermiques et du rayonnement {gamma} dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, J; Draganic, I; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Chemical studies under radiation done in the reactor cores require to be followed by dosimetry. When the irradiations are done in the reflector, one can limit to the measure of the {gamma} and the neutron radiation. For the dosimetry of the {gamma} radiation, a dosimeter of ferrous sulfate is convenient until doses of about 10{sup 6} rep. The use of aired oxalic acid solutions permits to reach 10{sup 7} rep. The dosimetry of thermal neutrons has been made with solutions of cobalt sulphate or paper filter impregnated with this salt. The total chemical effect of the {gamma} and of the slow neutrons radiation is obtained with solutions of ferrous sulfate added with lithium sulphate. (M.B.) [French] Les etudes de chimie sous radiation faites dans les piles exigent d'etre suivies par dosimetrie. Lorsque les irradiations sont effectues dans le reflecteur, on peut se limiter a doser le rayonnement {gamma} et les neutrons. Pour la dosimetrie du rayonnement {gamma}, un dosimetre a sulfate ferreux convient jusqu'a des doses d'environ 10{sup 6} rep. L'emploi de solutions aerees d'acide oxalique permet d'atteindre 10{sup 7} rep. La dosimetrie des neutrons thermiques a ete faite avec des solutions de sulfate de cotalt ou du papier filtre impregne de ce sel. L'effet chimique total du rayonnement {gamma} et des neutrons lents est obtenu avec des solutions de sulfate ferreux additionne de sulfate de lithium. (M.B.)

  6. Neutron emission from 9Be nucleus under the action of β+ and γ radiation emitted in radioactive decay

    International Nuclear Information System (INIS)

    Vo Dak Bang; Gangrskij, Yu.P.; Miller, M.B.; Mikhajlov, L.V.; Fam Zui Khien; Kharisov, I.F.

    1980-01-01

    The neutron yield from the 9 Be nucleus under the action of beta and gamma-radiation emitted at the radiative decay of 11 C, 62 Cu, 66 Ga, 74 Br isotopes is measured. These isotopes differ essentially by the emitted radiation spectra. The contribution of various processes ((γ, n)-reactions, inelastic scattering and positron nonradiative annihilation) to the neutron yield observed is determined [ru

  7. Role of neutrons in late effects of radiation among A-Bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, Gilbert W [Clinical Epidemiology Branch, National Cancer Institute, Bethesda, MD (United States); Land, Charles E [Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD (United States); Jablon, Seymour [Medical Follow-Up Agency, National Research Council, National Academy of Sciences, Washington, DC (United States)

    1978-12-01

    Experimental findings of many kinds as well as the Rossi-Kellerer theory of dual radiation action suggest that neutrons and gamma rays may differ in their biological effects, especially carcinogenesis, upon man. In particular, for many but not necessarily all cancers the carcinogenic effect of neutrons may be linear, and that of gamma- or X-radiation, a more complex function with linear and quadratic terms; in addition, dose-response functions for both types of radiation probably require a modifying factor to account for the frequently observed turn-down of dose-response curves in the high-dose region. In a further analysis of leukemia among A-Bomb survivors, Ishimaru et al. have fitted the function y a{sub 0} + a{sub 1}n + a{sub 2}{gamma}{sup 2} where the a's are constants and n and {gamma} the respective neutron and gamma doses. They find not only that this function fits the data well, although not significantly better than a straight line, but also that the best estimate of relative biological effectiveness (RBE) for neutrons is 44n{sup -1/2}. In the present paper we report our efforts to re-analyze ABCC-RERF data on a variety of late radiation effects in an effort to distinguish between neutron and gamma radiation more sharply than has been possible in the past. The effects examined include: chromosomal aberrations, small heads and mental retardation, leukemia, thyroid cancer, lung cancer, breast cancer, stomach cancer, esophageal cancer, lymphomas. The results of fitting various models will be reported. Goodness of fit will be examined and efforts will be made to derive RBE estimates. (author)

  8. Mean cross sections of fast neutrons radiative capture, transmission and mean resonance parameters for the tin isotopes

    International Nuclear Information System (INIS)

    Timokhov, V.M.; Bokhovko, M.V.; Kazakov, L.E.; Kononov, V.N.; Manturov, G.N.; Poletaev, E.D.

    1988-01-01

    Results of measurements of neutron radiative capture cross sections in the energy range of 20-450 keV and of neutron transmission in the energy range of 20-1400 keV for 112,114,115,116,117,118,119,120,122 ,124S n isotopes and natural mixture of tin are presented. Analysis of the experimental data in the framework of nuclear reactions statistical theory is carried out, as a result of which data on neutron and radiation strength functions, potential scattering radii for S- and P-neutrons, as well as nuclear levels density parameters, are obtained

  9. Radiation Transport Simulation for Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, M.; Blaickner, M. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Molecular Medicine, Muthgasse 11, 1190 Wien (Austria); Ziegner, M.; Khan, R.; Boeck, H. [Vienna University of Technology, Institute of Atomic and Subatomic Physics, Stadionallee 2, 1020 Wien (Austria); Bortolussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Schmitz, T.; Hampel, G. [Nuclear Chemistry, University of Mainz, Fritz Strassmann Weg 2, 55099 Mainz (Germany)

    2011-07-01

    This work is part of a larger project initiated by the University of Mainz and aiming to use the university's TRIGA reactor to develop a treatment for liver metastases based on Boron Neutron Capture Therapy (BNCT). Diffuse distribution of cancerous cells within the organ makes complete resection difficult and the vicinity to radiosensitive organs impedes external irradiation. Therefore the method of 'autotransplantation', first established at the University of Pavia, is used. The liver is taken out of the body, irradiated in the thermal column of the reactor, therewith purged of metastases and then reimplanted. A highly precise dosimetry system is to be developed by means of measurements at the University of Mainz and computational calculations at the AIT. The stochastic MCNP-5 Monte Carlo-Code, developed by Los Alamos Laboratories, is applied. To verify the calculations of the flux and the absorbed dose in matter a number of measurements are performed irradiating different phantoms and liver sections in a 20cm x 20cm beam tube, which was created by removing graphite blocks from the thermal column of the reactor. The detector material consists of L- {alpha} -alanine pellets which are thought to be the most suitable because of their good tissue equivalence, small size and their wide response range. Another experiment focuses on the determination of the relative biological effectiveness (RBE-factor) of the neutron and photon dose for liver cells. Therefore cell culture plates with the cell medium enriched with {sup 157}Gd and {sup 10}B at different concentrations are irradiated. With regard to the alanine pellets MCNP-5 calculations give stable results. Nevertheless the absorbed dose is underestimated compared to the measurements, a phenomenon already observed in previous works. The cell culture calculations showed the enormous impact of the added isotopes with high thermal neutron cross sections, especially {sup 157}Gd, on the absorbed dose

  10. Investigation of neutron radiation effects in structural materials for CTR use

    International Nuclear Information System (INIS)

    Wiffen, F.W.

    1975-01-01

    Neutron irradiation of structural materials in the high-flux region of a Controlled Thermonuclear Reactor (CTR), especially in the first wall of the reactor, will result in swelling due to cavity formation and loss of ductility through both lattice hardening and the effect of transmutation-produced helium on the fracture mode. The intensity and relative importance of the effects will be a strong function of the material and reactor operating conditions. A consideration of the effects of the 14 MeV D-T fusion neutrons, based on calculated damage response, on the sparse available data from high-energy neutron irradiation, and on an intuitive understanding of past radiation effects experimentation, suggests that although the 14 MeV neutrons will produce damage at a higher rate than lower-energy neutrons, there is no basis for anticipating different forms of damage. Irradiation experiments designed to evaluate materials for CTR service must be conducted in a number of facilities. Used in a well-coordinated evaluation program, the combined results from all available irradiation facilities will lead to an understanding of the radiation effects that will occur in CTRs. The experimental program will involve three distinct phases: (a) correlation experiments, (b) screening studies, and (c) qualification and design data generation. Each of these phases will evaluate a number of physical and mechanical properties. The end result of this program will be the qualification of a few materials for CTR use

  11. Ascorbic acid reduced mutagenicity at the HPRT locus in CHO cells against thermal neutron radiation

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Sakurai, Yoshinori; Masunaga, Shinichiro; Suzuki, Minoru; Nagata, Kenji; Ono, Koji

    2004-01-01

    We investigated the biological effects of the long-lived radicals induced following neutron irradiation. It has been reported that radiation-induced long-lived radicals were scavenged by post-irradiation treatment of ascorbic acid (Koyama, 1998). We studied the effects of ascorbic acid acting as a long-lived radical scavenger on cell killing and mutagenicity in Chinese hamster ovary cells against thermal neutrons produced at the Kyoto University Research reactor. Ascorbic acid was added to cells 30 min after neutron irradiation and removed 150 min after irradiation. The biological end point of cell survival was measured by colony formation assay. The mutagenicity was measured by the mutant frequency in the HPRT locus. The post-irradiation treatment of ascorbic acid did not alter the cell killing effect of neutron radiation. However, the mutagenicity was decreased, especially when the cells were irradiated with boron. Our results suggested that ascorbic acid scavenged long-lived radicals effectively and caused apparent protective effects against mutagenicity of boron neutron capture therapy

  12. Potential radiation exposure in emergencies involving neutron sources

    International Nuclear Information System (INIS)

    Marathe, P.K.; Bisht, J.S.; Massand, O.P.; Venkataraman, G.; Nandakumar, A.N.

    1996-01-01

    Incidents involving neutron sources, particularly in the field of oil well logging, may involve potential hazards by way of source lost above ground, lost under water at a depth or source damaged and spread over an area. While every effort should be made for retrieving a lost source or contain the contamination, there could be occasions when abandonment of the source may be preferable to retrieval. However, the decision to abandon the source needs to be guided primarily by considerations of potential exposure and the cost of retrieval. This report briefly discusses these aspects of such emergencies. 5 refs., 3 figs., 3 tabs

  13. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  14. Somatic aberration induction in Tradescantia occidentalis by neutrons, X- and γ-radiations

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1976-01-01

    Biological results, including statistical features, are described for the irradiation of Tradescantia occidentalis 250 kVp X-rays, cobalt-60 γ-radiation and monoenergetic neutrons with energies between 0.08 and 15 MeV. The effect studied was that of the induction of pink sectors in the otherwide blue staminal hairs of the flowers at low doses of radiation. Statistical aspects of the results suggest that a fraction of the asynchronous cell population in the hairs is very sensitive to neutron radiation, but not necessarily to lower LET radiations. All the results were fitted by a least-squares method by polynominals of different degrees. Best fits to X- and γ-ray data were provided by second-degree polynominals, and to the neutron data by either second- or third-degree polynominals. Limiting r.b.e. and o.e.r. values at low doses are derived. Some computed microdosimetric parameters are presented in comparison with the r.b.e. values. It is concluded that the effect studied is complex and may not provide a critical test of bio-physical theories of radiation effects. (author)

  15. Workplace monitoring of mixed neutron-photon radiation fields and its contribution to external dosimetry

    International Nuclear Information System (INIS)

    Schuhmacher, H.

    2011-01-01

    Workplace monitoring is a common procedure for determining measures for routine radiation protection in a particular working environment. For mixed radiation fields consisting of neutrons and photons, it is of increased importance because it contributes to the improved accuracy of individual monitoring. An example is the determination of field-specific correction factors, which can be applied to the readings of personal dosemeters. This paper explains the general problems associated with individual dosimetry of neutron radiation, and describes the various options for workplace monitoring. These options cover a range from the elaborate field characterisation using transport calculations or spectrometers to the simpler approach using area monitors. Examples are given for workplaces in nuclear industry, at particle accelerators and at flight altitudes. (authors)

  16. Residual insufficiency of hematopoiesis after acute or chronic exposure to gamma radiation or neutrons

    International Nuclear Information System (INIS)

    Wangenheim, K.H. v.; Peterson, H.P.; Feinendegen, L.E.

    1983-01-01

    Recovery of the stem cell quality is possible after acute exposure to 500 rad γ radiation up to a period of 6 months. Beyond this data, a significant residual damage remains. The same applies to quantitative stem cell recovery. Chronic γ exposure leads to less radiation damage than acute exposure. After a total accumulation of 500 rad, the proliferation factors after chronic exposure were, on an average 20% higher than after acute radiation exposure. 6 MeV neutron exposure reduced the stem cell quality and stem cell count much more efficiently than γ exposure. The relative biological effect of neutrons is at least 2.5 times as high as the γ effect, both for the stem cell count and the stem cell quality. (orig.) [de

  17. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    International Nuclear Information System (INIS)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location (∼1.7 m from the target) would be ∼1.4e9/cm 2 . Previous measurements suggest the onset of significant background at a neutron fluence of ∼ 1e8/cm 2 . The radiation damage and operational upsets which starts at ∼1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor ∼50

  18. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  19. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-01-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively

  20. Spatial and energy distributions of skyshine neutron and gamma radiation from nuclear reactors on the ground-air boundary

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Y.; Netecha, M.E.; Vasiliev, A.P.; Avaev, V.N.; Vasiliev, G.A. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Zelensky, D.I.; Istomin, Y.L.; Cherepnin, Y.S. [Institute of Atomic Energy of the National Nuclear Center of the Republic of Kazakhstan, Semipalatinsk-21 (Kazakhstan); Nomura, Y. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    A set of measurements on skyshine radiation was conducted at two special research reactors. A broad range of detectors was used in the measurements to record neutron and gamma radiations. Dosimetric and radiometric field measurements of the neutrons and gamma quanta of the radiation scattered in the air were performed at distances of 50 to 1000 m from the reactor during different weather conditions. The neutron spectra in the energy range of 1 eV to 10 MeV and the gamma quanta spectra in the range of 0.1-10 MeV were measured. (author)

  1. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    Science.gov (United States)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  2. Standard model treatment of the radiative corrections to the neutron β-decay

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    2003-01-01

    Starting with the basic Lagrangian of the Standard Model, the radiative corrections to the neutron β-decay are acquired. The electroweak interactions are consistently taken into consideration amenably to the Weinberg-Salam theory. The effect of the strong quark-quark interactions on the neutron β-decay is parametrized by introducing the nucleon electromagnetic form factors and the weak nucleon transition current specified by the form factors g V , g A , ... The radiative corrections to the total decay probability W and to the asymmetry coefficient of the momentum distribution A are obtained to constitute δW ∼ 8.7 %, δA ∼ -2 %. The contribution to the radiative corrections due to allowance for the nucleon form factors and the nucleon excited states amounts up to a few per cent of the whole value of the radiative corrections. The ambiguity in description of the nucleon compositeness is surely what causes the uncertainties ∼ 0.1 % in evaluation of the neutron β-decay characteristics. For now, this puts bounds to the precision attainable in obtaining the element V ud of the CKM matrix and the g V , g A , ... values from experimental data processing

  3. Effects of low-dose gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes in a mouse model

    International Nuclear Information System (INIS)

    Phan, N.; McFarlane, N.M.; Lemon, J.; Boreham, D.R.

    2008-01-01

    Using a successful new automation of micronucleated reticulocyte (MN-RET) scoring, the effects of low-dose (< 1.0 Gy) gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes (RET) in a mouse model were investigated. Gamma and neutron irradiation induced significant (p<0.001) increases in the levels of %MN-RET and decreases in the levels of %RET (p<0.001) as the dose level increased. Increasing dose levels showed that gamma radiation induced significantly (p<0.05) more %MN-RET and more %RET than neutron radiation. The results suggest that neutron irradiation may be more cytotoxic (less %RET) than gamma irradiation; however, gamma irradiation may be producing cells with more chromosomal aberrations (more %MN-RET) than neutron irradiation. (author)

  4. Effects of low-dose gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Phan, N.; McFarlane, N.M.; Lemon, J.; Boreham, D.R. [McMaster Univ., Medical Physics and Applied Radiation Sciences Unit, Hamilton, Ontario (Canada)

    2008-07-01

    Using a successful new automation of micronucleated reticulocyte (MN-RET) scoring, the effects of low-dose (< 1.0 Gy) gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes (RET) in a mouse model were investigated. Gamma and neutron irradiation induced significant (p<0.001) increases in the levels of %MN-RET and decreases in the levels of %RET (p<0.001) as the dose level increased. Increasing dose levels showed that gamma radiation induced significantly (p<0.05) more %MN-RET and more %RET than neutron radiation. The results suggest that neutron irradiation may be more cytotoxic (less %RET) than gamma irradiation; however, gamma irradiation may be producing cells with more chromosomal aberrations (more %MN-RET) than neutron irradiation. (author)

  5. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    Science.gov (United States)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  6. Determination of neutron radiation source on components in the decy 13 cyclotron tank

    International Nuclear Information System (INIS)

    Sunardi; Silakhuddin

    2015-01-01

    In order to design the shielding on the Decy 13 cyclotron system, a study to identify the potency of neutron radiation at the cyclotron components in the vacuum tank has been carried out. The method used is to identify the kind of components material, analyzing significant nuclear reactions producing neutron, and determining the radial distribution of the formation probability of the nuclear reaction. The results of identification show that the nuclear reaction producing neutron are Cu 65 (p,n)Zn 65 , Cu 63 (p,n)Zn 63 and Fe 56 (p,n)Co 56 . The peaks of distribution curve of the formation probability of those reactions are located on the area between 37 cm and 39 cm. (author)

  7. Performance of neutron and gamma personnel dosimetry in mixed radiation fields

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1981-01-01

    From 1974 to 1980, six personnel dosimetry intercomparison studies (PDIS) were conducted at the Oak Ridge National Laboratory (ORNL) to evaluate the performance of personnel dosimeters in a variety of neutron and gamma fields produced by operating the Health Physics Research Reactor (HPRR) in the steady state mode with and without spectral modifying shields. A total of 58 different organizations participated in these studies which produced approximately 2000 measurements of neutron and gamma dose equivalents on anthropomorphic phantoms for five different reactor spectra. Based on these data, the relative performance of three basic types of neutron dosimeters [nuclear emulsion film, thermoluminescent (TLD), and track-etch] and two basic types of gamma dosimeters (film and TLD) in mixed radiation fields was assessed

  8. The moisture content monitoring device for PuO2 using self neutron radiation

    International Nuclear Information System (INIS)

    Bulanenko, Valeriy I.; Sviridov, Victor; Frolov, Vladimir V.; Ryazanov, Boris G.; Talanov, Vladimir V.

    2003-01-01

    Solutions technology of plutonium dioxide powders production inevitably leads to free or chemically bound hydrogen to be present in these powders. This work is devoted to the nondestructive method of PuO 2 powder moisture measurement based on application of the effect of neutron moderation caused by water. Plutonium dioxide is fast neutron source, while 3 He counters located in the nickel and polyethylene annular reflectors surrounding PuO 2 serve as detectors. In the work wide range of issues are considered related to practical implementation of the moisture measurement method by detecting inherent neutron radiation of plutonium dioxide powder. The most practical design of the detector has been chosen, which include two 3 He detectors having different reflectors mounted to the device. The absolute error of measurement does not exceed 0.2wt% with confidence coefficient of 0.95. Duration of analysis ∼5 minutes. (author)

  9. Radiation protection metrology at a high-energy neutron therapy facility

    International Nuclear Information System (INIS)

    Bonnett, D.E.; Sherwin, A.G.; More, B.R.

    1991-01-01

    A radiation protection survey has been carried out at a high-energy neutron therapy facility using a combination of different detectors and counters. Included in the survey were measurements with a tissue equivalent proportional counter (TEPC), a rem meter, a large volume ionisation chamber (LVI) and a Geiger counter. Dose equivalent rates, normalised to a proton beam current of 25 μA, of between 1 μSv.h -1 and 0.7 Sv.h -1 were recorded depending on the location. In general the results confirm the tendency of the rem meter to over-read in fields consisting mainly of low energy neutrons and illustrate the advantages of the diagnostic and gamma discriminating properties of the TEPC. The LVI-Geiger system was found to be the least favourable combination of dosemeters, substantially under-reading and being unable to estimate the neutron dose rate at levels below about 32 μGy.h -1 . (author)

  10. Quantitative Assessment of CRAND Contribution to the Inner Belt Electron Intensity

    Science.gov (United States)

    Zhang, K.; Li, X.; Selesnick, R.; Schiller, Q. A.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    Following the direct identification and measurements of Cosmic Ray Albedo Neutron Decay (CRAND) produced electrons near the inner edge of the inner belt by Colorado Student Space Weather Experiment (CSSWE)1, we extend the study by addressing more comprehensive questions: (1) what is the relative CRAND contribution to the inner belt compared with electrons injected from further out? (2) How does this relative contribution vary with geomagnetic activity and electron energy? (3) What is the solar cycle dependence of CRAND electrons? In order to answer the above questions, extended data of relativistic electrons in the inner belt are needed for a much longer time period and also finer energy resolution is required. Therefore, we will show results regarding the above questions based on data including other low Earth orbit measurements in addition to CSSWE, such as SAMPEX/PET, DEMETER/IDP, and PROBA-V/EPT. [1] Li, Xinlin, Richard Selesnick, Quintin Schiller, Kun Zhang, Hong Zhao, Daniel Baker, and Michael Temerin (2017), Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and determination of neutron density in near-Earth space, Nature, under review.

  11. Response of CsI:Pb Scintillator Crystal to Neutron Radiation

    Science.gov (United States)

    Costa Pereira, Maria da Conceição; Filho, Tufic Madi; Berretta, José Roberto; Náhuel Cárdenas, José Patrício; Iglesias Rodrigues, Antonio Carlos

    2018-01-01

    The helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. In the past decades, great effort was made to developed efficient and fast scintillators to detect radiation. The inorganic scintillator may be an alternative. Inorganic scintillators with much higher density should be selected for optimal neutron detection efficiency taking into consideration the relevant reactions leading to light emission. These detectors should, then, be carefully characterized both experimentally and by means of advanced simulation code. Ideally, the detector should have the capability to separate neutron and gamma induced events either by amplitude or through pulse shape differences. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Considerable progress has been achieved to develop new inorganic scintillators, in particular increasing the light output and decreasing the decay time by optimized doping. Crystals may be found to suit neutron detection. In this report, we will present the results of the study of lead doped cesium iodide crystals (CsI:Pb) grown in our laboratory, using the vertical Bridgman technique. The concentration of the lead doping element (Pb) was studied in the range 5x10-4 M to 10-2 M . The crystals grown were subjected to annealing (heat treatment). In this procedure, vacuum of 10-6 mbar and continuous temperature of 350°C, for 24 hours, were employed. In response to neutron radiation, an AmBe source with energy range of 1 MeV to 12 MeV was used. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons/second. The operating voltage of the photomultiplier tube was 1700 V; the accumulation time in the counting process was 600 s and 1800 s. The scintillator crystals used were cut with dimensions of 20 mm diameter and 10 mm height.

  12. Neutron Measurements for Radiation Protection in Low Earth Orbit - History and Future

    Science.gov (United States)

    Golightly, M. J.; Se,pmes. E/

    2003-01-01

    The neutron environment inside spacecraft has been of interest from a scientific and radiation protection perspective since early in the history of manned spaceflight. With 1:.1e exception of a few missions which carried plutonium-fueled radioisotope thermoelectric generators, all of the neutrons inside the spacecraft are secondary radiations resulting from interactions of high-energy charged particles with nuclei in the Earth's atmosphere, spacecraft structural materials, and the astronaut's own bodies. Although of great interest, definitive measurements of the spacecraft neutron field have been difficult due to the wide particle energy range and the limited available volume and power for traditional techniques involving Bonner spheres. A multitude of measurements, however, have been made of the neutron environment inside spacecraft. The majority of measurements were made using passive techniques including metal activation fo ils, fission foils, nuclear photoemulsions, plastic track detectors, and thermoluminescent detectors. Active measurements have utilized proton recoil spectrometers (stilbene), Bonner Spheres eRe proportional counter based), and LiI(Eu)phoswich scintillation detectors. For the International Space Station (ISS), only the plastic track! thermoluminescent detectors are used with any regularity. A monitoring program utilizing a set of active Bonner spheres was carried out in the ISS Lab module from March - December 200l. These measurements provide a very limited look at the crew neutron exposure, both in time coverage and neutron energy coverage. A review of the currently published data from past flights will be made and compared with the more recent results from the ISS. Future measurement efforts using currently available techniques and those in development will be also discussed.

  13. Calculation And Design Of A New Configuration For Radiation Shielding At Neutron Beam No.3 For Fundamental And Applied Researches

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Tran Tuan Anh; Nguyen Kien Cuong; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Ngoc Son; Ho Huu Thang

    2011-01-01

    The tangential horizontal channel of No. 3 of the Dalat Research Reactor has been opened and used during the 1990s. The utilizations of the thermal neutron beam at this channel were the Neutron Radiography and the Prompt Gamma Neutron Activation Analysis method (PGNAA). At present, the neutron beam used for nuclear structure data researches based on the Summing of Amplitude Coincident Pulses system (SACP). Beside, several related research equipments have been set up and operated for the research purposes. A renovation of the neutron channel, therefore, will play an important role in safe and effective utilizations of the neutron beam in fields of nuclear physic training and researches. A new configuration for radiation shielding has been simulated by MCNP code. The calculated results of dose rates for neutron and gamma at working positions are in range of dose rate limit. (author)

  14. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  15. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1984-01-01

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  16. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    Science.gov (United States)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  17. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F. [CNRS-IN2P3-IPN Orsay, Orsay (France)

    2007-07-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators ({approx}24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: {approx}20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T{approx}4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35{mu}A) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose ({approx}20%): a neutrons fluence of more than 10{sup 14} n/cm{sup 2} is achieved in {approx}20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T{approx}4.2 K. This new apparatus allows on-line automatic measurements

  18. Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium temperature

    International Nuclear Information System (INIS)

    Fouaidy, M.; Martinet, G.; Hammoudi, N.; Chatelet, F.; Olivier, A.; Blivet, S.; Galet, F.

    2007-01-01

    Piezoelectric actuators, which are integrated into the cold tuning system and used to compensate the small mechanical deformations of the cavity wall induced by Lorentz forces due to the high electromagnetic surface field, may be located in the radiation environment during particle accelerator operation. In order to provide for a reliable operation of the accelerator, the performance and life time of piezoelectric actuators (∼24.000 units for ILC) should not show any significant degradation for long periods (i.e. machine life duration: ∼20 years), even when subjected to intense radiation (i.e. gamma rays and fast neutrons). An experimental program, aimed at investigating the effect of fast neutrons radiation on the characteristics of piezoelectric actuators at liquid helium temperature (i.e. T∼4.2 K), was proposed for the working package WPNo.8 devoted to tuners development in the frame of CARE project. A neutrons irradiation facility, already installed at the CERI cyclotron located at Orleans (France), was upgraded and adapted for actuators irradiations tests purpose. A deuterons beam (maximum energy and beam current: 25 MeV and 35μA) collides with a thin (thickness: 3 mm) beryllium target producing a high neutrons flux with low gamma dose (∼20%): a neutrons fluence of more than 10 14 n/cm 2 is achieved in ∼20 hours of exposure. A dedicated cryostat was developed at IPN Orsay and used previously for radiation hardness test of calibrated cryogenic thermometers and pressure transducers used in LHC superconducting magnets. This cryostat could be operated either with liquid helium or liquid argon. This irradiation facility was upgraded for allowing fast turn-over of experiments and a dedicated experimental set-up was designed, fabricated, installed at CERI and successfully operated for radiation hardness tests of several piezoelectric actuators at T∼4.2 K. This new apparatus allows on-line automatic measurements of actuators characteristics and the

  19. Criteria for personal dosimetry in mixed radiation fields in space. [analyzing trapped protons, tissue disintegration stars, and neutrons

    Science.gov (United States)

    Schaefer, H. J.

    1974-01-01

    The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.

  20. Experimental researches of nuclear reactor neutron and gamma radiation scattering into the atmosphere

    International Nuclear Information System (INIS)

    Istomin, Yu.L.; Zelensky, D.I.; Cherepnin, Yu.S.; Orlov, Yu.V.; Netecha, M.E.; Avaev, V.N.; Vasel'ev, G.A.; Sakamoto, H.; Nomura, Y.; Naito, Y.

    1998-01-01

    In the report there are results of measuring radiation distribution on the caps of the RA and IWG.1M research reactors. Comparative analysis of the results is also in the report. There are neutron spectra in the interval of energies from 10 -9 to 13 MeV above RA and IWG.1M reactors. The spectra were measured with a set of activation detectors. Measurements were calculated to a nominal rate: for RA reactor - 300 kw, for IWG.1M - 7 MW. Thus, in the course of the experiment, vast experimental information relating to distribution of the RA and IWG.1M reactor gamma and neutron radiation scattered in the air for distances varying from 50 to 1000 m from the reactors has become available. The data obtained are to be used to verify the calculation codes and to validate the group nuclear constants

  1. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation

    International Nuclear Information System (INIS)

    Miyamaru, Hiroyuki; Takahashi, Akito; Iida, Toshiyuki

    1999-01-01

    The treatment of fast neutron pre-irradiation was applied to a CdTe radiation detector in order to improve radiation response characteristic. Electron transport property of the detector was changed by the irradiation effect to suppress pulse amplitude fluctuation in risetime. Spectroscopic performance of the pre-irradiated detector was compared with the original. Additionally, the pre-irradiated detector was employed with a detection system using electrical signal processing of risetime discrimination (RTD). Pulse height spectra of 241 Am, 133 Ba, and 137 Cs gamma rays were measured to examine the change of the detector performance. The experimental results indicated that response characteristic for high-energy photons was improved by the pre-irradiation. The combination of the pre-irradiated detector and the RTD processing was found to provide further enhancement of the energy resolution. Application of fast neutron irradiation effect to the CdTe detector was demonstrated. (author)

  2. Peculiarities of approximation for reactor neutron energy spectra during computerized simulation of radiation defects

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Stusik, G.; Omarbekova, Zh.

    2001-01-01

    Peculiarities of approximation for reactor neutron energy spectra during radiation defects computerized simulation were discussed. Approximation of neutron spectra N(E) was carried out by N(E)=α·exp(-β·E)·sh(γ·E) formula (1), where α, β, γ - approximation coefficients. In the capacity of operating reactor data experimental data on 235 U and 239 Pu were applied. The algorithm was designed, and acting soft ware for spectra parameters calculation was developed. The following values of approximation parameters were obtained: α=80.8; β=0.935;γ=2.04 (for uranium and plutonium these coefficients are less distinguishing). Then with use of formula 1 and α, β, γ coefficients the approximation curves were constructed. These curves satisfactorily describe existing experimental data and allowing to use its for radiation defects simulation in the reactor materials

  3. Spectral investigation of neutron radiation in three-sectional concrete labyrinth from a californium-252 source

    International Nuclear Information System (INIS)

    Belogorlov, E.A.; Britvich, G.I.; Getmanov, V.B.

    1985-01-01

    Construction of labyrinths in points of communication output from the storage-ring under construction is accompanied by numerous difficulties due to a considerable number of gas and cryogenic pipelines, which require large cross sections at the minimal length of the pipelines proper for their location. It results in unfavourable for radiation attenuation ratios between cross section and length of the labyrinth separate sections. Neutron spectra in a model concrete labyrinth, at the entrance to which a neutron source with fission spectrum (californium-252) and the same source in a polyethylene moderator are located, are measured. On the basis of the spectra obtained the formation of fluence and equivalent dose along the labyrinth geometric axis is analyzed. Conditions permitting actually to reduce radiation dose in the labyrinth (dead end provision, the use of cover materials, construction of diaphragms and shielding plates) are simulated

  4. Conveyor belt weigher using a nuclear technique

    International Nuclear Information System (INIS)

    Magal, B.S.

    1976-01-01

    Principles of operation of different types of continuous conveyor belt weighing machines developed for use in factories for bulk weighing of material on conveyor belts without interupting the material flow, are briefly mentioned. The design of nuclear weighing scale making use of the radiation absorption property of the material used is described in detail. The radiation source, choice of the source, detector and geometry of such a weighing scale are discussed. The nucleonic belt weigher is compared with the gravimetric belt weigher system. The advantages of the nuclear system are pointed out. The assembly drawing of the electronics, calibration procedure and performance evaluation are given. (A.K.)

  5. The Radiative Capture Cross-Section of U 238 for Fast Neutrons

    International Nuclear Information System (INIS)

    Broda, E.

    1945-01-01

    This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)

  6. The Radiative Capture Cross-Section of U 238 for Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1945-07-01

    This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)

  7. Practice of calculation of neutron-physical characteristics of reactors and radiating shielding in structure SNPS with program complex MCNP

    International Nuclear Information System (INIS)

    Krotov, A.D.; Son'ko, A.V.

    2009-01-01

    Calculation of neutron-physical properties and radiation protection of space power reactor was made by means of the MCNP code allowing simulation of neutron, γ- and electron transport by the Monte Carlo method in the systems with combined geometry. Universality of the MCNP code has been demonstrated both for the calculation of reactor-converter so for the optimization of radiation protection that allows to reserve a new level of complex simulation of SNPS [ru

  8. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Bajaj, R.; Wechsler, M.S.

    1975-01-01

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 100 0 C to about 1.3 x 10 19 neutrons/cm 2 (E greater than 1 MeV) and post-irradiation annealed up to 800 0 C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  9. Radiation-induced segregation in materials: Implications for accelerator-driven neutron source applications

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, R.B.; Song, S. [Loughborough Univ. of Technology (United Kingdom)

    1995-10-01

    This paper reviews exisiting models for radiation-induced segregation to microstrucural interfaces and surfaces. It indicates how the models have been successfully used in the past in neutron irradiation situations and how they may be modified to account for accelerator-driven RIS. The predictions of the models suggest that any impurity with large misfit will suffer RIS and that the effect is heightened as radiation damage increases. The paper suggests methods to utilise the RIS in transmutation technology by dynamically segregating long life nuclides to preferred sites in the microstructure so that subsequent transmutations occur with maximum efficiency.

  10. Radiation-induced changes in gustatory function comparison of effects of neutron and photon irradiation

    International Nuclear Information System (INIS)

    Mossman, K.L.; Chencharick, J.D.; Scheer, A.C.; Walker, W.P.; Ornitz, R.D.; Rogers, C.C.; Henkin, R.I.

    1979-01-01

    Changes in gustatory function were measured in 51 patients with various forms of cancer who received radiation to the head and neck region. Forty patients (group I) were treated with conventional photon radiation (e.g. 66 Gy/7 weeks), and 11 patients (group II) were treated with cyclotron produced fast neutrons (e.g. 22 Gy/7 weeks). Taste acuity was measured for four taste qualities (salt, sweet, sour, and bitter) by a forced choice-three stimulus drop technique which measured detection and recognition thresholds and by a forced scaling technique which measured taste intensity responsiveness. Subjective complaints of anorexia, dysgeusia, taste loss, and xerostomia were also recorded. Patients were studied before, during and up to two months after therapy. Prior to therapy, detection and recognition thresholds, intensity responsiveness, and the frequency of subjective complaints in patients from groups I and II were statistically equivalent. During and up to 2 months after therapy, taste impairment and frequency of subjective complaints increased significantly in neutron and photon treated patients, but were statistically equivalent. Results of this study indicate that gustatory tissue response as measured by taste detection and recognition and intensity responsiveness, and the frequency of subjective complaints related to taste are statistically equivalent in patients before, during, or up 2 months after they were given either neutron or photon radiation for tumors of the head and neck

  11. Novel Parallel Numerical Methods for Radiation and Neutron Transport

    International Nuclear Information System (INIS)

    Brown, P N

    2001-01-01

    In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both

  12. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  13. The use of symbolic computation in radiative, energy, and neutron transport calculations

    Science.gov (United States)

    Frankel, J. I.

    This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research.

  14. Resonance zones and quasi-linear diffusion coefficients for radiation belt energetic electron interaction with oblique chorus waves in the Dungey magnetosphere

    International Nuclear Information System (INIS)

    Shi Run; Ni, Binbin; Gu Xudong; Zhao Zhengyu; Zhou Chen

    2012-01-01

    The resonance regions for resonant interactions of radiation belt electrons with obliquely propagating whistler-mode chorus waves are investigated in detail in the Dungey magnetic fields that are parameterized by the intensity of uniform southward interplanetary magnetic field (IMF) Bz or, equivalently, by the values of D=(M/B z,0 ) 1/3 (where M is the magnetic moment of the dipole and B z,0 is the uniform southward IMF normal to the dipole’s equatorial plane). Adoption of background magnetic field model can considerably modify the determination of resonance regions. Compared to the results for the case of D = 50 (very close to the dipole field), the latitudinal coverage of resonance regions for 200 keV electrons interacting with chorus waves tends to become narrower for smaller D-values, regardless of equatorial pitch angle, resonance harmonics, and wave normal angle. In contrast, resonance regions for 1 MeV electrons tend to have very similar spatial lengths along the field line for various Dungey magnetic field models but cover different magnetic field intervals, indicative of a strong dependence on electron energy. For any given magnetic field line, the resonance regions where chorus-electron resonant interactions can take place rely closely on equatorial pitch angle, resonance harmonics, and kinetic energy. The resonance regions tend to cover broader latitudinal ranges for smaller equatorial pitch angles, higher resonance harmonics, and lower electron energies, consistent with the results in Ni and Summers [Phys. Plasmas 17, 042902, 042903 (2010)]. Calculations of quasi-linear bounce-averaged diffusion coefficients for radiation belt electrons due to nightside chorus waves indicate that the resultant scattering rates differ from using different Dungey magnetic field models, demonstrating a strong dependence of wave-induced electron scattering effect on the adoption of magnetic field model. Our results suggest that resonant wave-particle interaction processes

  15. Study of energetic electrons in the outer radiation-belt regions using data obtained by the LLL spectrometer on OGO-5 in 1968

    International Nuclear Information System (INIS)

    West, H.I. Jr.; Buck, R.M.; Davidson, G.

    1979-01-01

    An account is given of measurements of electrons made by the LLL magnetic electron spectrometer (60 to 3000 keV in seven differential energy channels) on the Ogo-5 satellite in the earth's outer-belt regions during 1968 and early 1969. The data were analyzed specifically to determine pitch-angle diffusion lifetimes as a function of energy in the L-range 2 to 5. As a part of this effort, the general dynamics of these regions were studied in terms of the time-dependent energy spectra, and pitch-angle distributions for the seven energy groups were obtained as a function of L with representative values presented for L = 2.5 to 6. The pitch-angle-diffusion results were used to analyze the dynamics of the electrons injected following the intense storms on October 31 and November 1, 1968, in terms of radial diffusion; the derived diffusion coefficients provide a quite reasonable picture of electron transport in the radiation belts. Both the radial- and pitch-angle-diffusion results are compared with earlier results. 53 references

  16. Dynamics of the outer radiation belts and their links with the polar substorms and the injection of hot plasma at the geostationary orbit

    International Nuclear Information System (INIS)

    Sauvaud, J.A.; Winckler, J.R.

    1981-01-01

    The aim of this paper is to analyse the results obtained aboard geostationary satellites and on the ground, in the auroral zone, on the dynamic changes in the outer radiation belts and their link with the time development of auroral forms during magnetospheric substorms. The measurements of high-energy particles, plasma, and magnetic induction at 6.6 Rsub(E) in the local midnight sector indicate the existence of a pre-expansion phase in substorms during which the outer belts move toward the Earth under the effect of the modification in the topology of the local magnetic induction. The pre-expansion phase coincides with an increase in the AE index, suggesting a direct link between the electrojet and the currents flowing across the tail of the magnetosphere. It also coincides in the auroral zone with the intensification and movement of the quiet arc system toward the equator. The phase is invariably terminated at the beginning of the expansion of the substorm by the break-up of the auroral arcs and the injection of hot plasma at the geostationary orbit near local midnight under the action of the induced electric field associated with the collapse of the geomagnetic field force lines. The study of the data, event by event, shows the complexity of phenomena which may be involved during the pre-expansion phase particularly with the possible presence of pseudo-substorms or aborted (minor) substorms which do not modify the general evolution described above [fr

  17. The Neutron Personal Dosimetry Service of the Centre for Radiation, Chemical and Environmental Hazards, PHE-UK

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The Centre for Radiation, Chemical and Environmental Hazards (CRCEH), that belongs to Public Health England (PHE), hosts the official Neutron Personal Dosimetry Service of the United Kingdom. They use etched-track detectors, made of a material called PADC (poly-allyl diglycol carbonate), to determinate de neutron personal dose. A two weeks visit has been made to this center, in order to learn about the facilities, the methods employed and the legislative framework of the Neutron Personal Dosimetry Service. In this work the main results of this visits are shown, which are interesting for the future development of an official neutron personal dosimetry service in Spain.

  18. Radiative capture of neutrons by deuterons n+d → 3H+γ and P-odd nuclear forces

    International Nuclear Information System (INIS)

    Rekalo, M.P.

    1987-01-01

    P odd polarization phenomena in neutron radiative capture with deuterons, n+d → 3 H+γ have been studied. It is shown, that in a general case during collisions of arbitrarily polarized neutrons with a deuteron target characterized with vector and tensor polarizations, 18 different P odd asymmetries of gamma quanta angular distribution appear. P odd contribution to density matrix of gamma quanta produced in polarized neutron capture with nonpolarized deuterons is determined by 8 substantial structural functions and P odd dependence of photon Stokes parameters on deuteron tensor polarization is characterized in a general case with ten structure functions. The number of P odd correlations decreases when capturing slow neutrons

  19. Belt of Yotvings. Radioecology

    International Nuclear Information System (INIS)

    Mazheika, J.; Petroshius, R.; Strzelecki, R.; Wolkovitcz, S.; Lewandowski, P.

    1997-01-01

    Full text: The map of gamma radiation dose of 'Belt of Yotvings' area displays the summarized gamma radiation coming from natural radionuclides of 238 U, 232 Th, 40 K and from cesium isotopes 137 Cs, 134 Cs, artificially supplied into the environment after the Chernobyl disaster. The average value of gamma radiation dose for 'Belt of Yotvings' area is 44.2 n Gy/h, with a distinct regional differentiation. The content of uranium varies from 0 to 4.5 g/t, with the average value of about 1.4 g/t. Thorium content varies from 0 to 10.3 g/t, with the average value of 4.3 g/t. Potassium content varies from 0.1 up to 2.5 %, with the average value of 1.2 %. The concentration of caesium radioisotopes reaches up to 11.6 kBq/m 2 , the average value being 3.8 kBq/m 2 . Radon concentration in soil air has been determined in 55 sites (83 analyses). Radon concentration has been noticed in volumes from trace amounts up to 55 kBq/m3.The radioecological mapping has documented that the highest concentrations of natural radioisotopes and, correspondingly, the highest total gamma radiation dose were observed in the northeastern part of the area studied, which is covered by clay-silty glaciolacustrine deposits. Slightly lower values are typical for the whole northwestern part of 'Belt of Yotvings'. Very low contents of radioactive elements and low total radiation doses are typical for eolian and sandur sands, occurring south-eastward from the line Augustow-Veisiejai. The Chernobyl NPP accident polluted the studied region with artificial cesium radioisotopes un significantly. The concentrations are low and they involve no radioecological hazard. The investigation of radon concentration in soil air have revealed several places affected by high radon emanation. These places should be studied in a more detailed way

  20. Response of CR-39 Detector Against Fast Neutron Using D-Polyethylene and H-Polyethylene Radiator

    International Nuclear Information System (INIS)

    Sofyan, Hasnel

    1996-01-01

    The research on the response of detector CR-39 by using D-Polyethylene and H-Polyethylene radiator has been carried out. The optimum number of nuclear tracks was found with the use of 30 % NaOH at 80 + 0,5oC for 80 minutes of etching time. The comparison of CR-39 detector response caused by D-Polyethylene radiator against H-Polyethylene radiator of irradiation in air, were found to be 1.18 and 0.84 for 241Am-Be neutron source and neutron source from reactor respectively. For phantom irradiation, the results were found to be 1.75 for 241Am-Be neutron source, and 0.77 for neutron source from reactor

  1. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    Science.gov (United States)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  2. The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During High-Speed Stream-Driven Storms

    Science.gov (United States)

    Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.

    2017-12-01

    Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.

  3. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    Science.gov (United States)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  4. Calculation of double energy angle differential neutron albedos for radiation shielding applications

    International Nuclear Information System (INIS)

    Litaize, O.; Diop, C.M.; Nimal, J.C.

    2000-01-01

    Void radiation shielding problems can be dealt with albedo concept which is an alternative to the complex bringing into operation of the 'exact' transport method calculations (SN, Monte Carlo). Up to here, differential albedos are used for single reflections from walls in the NARCISSE-3 propagation albedo code developed at CEA and used for project calculations. For taking into account the neutron multiple reflections on lacunar medium walls, double energy-angle differential albedos are needed. TRIPOLI-4 neutral particle transport Monte Carlo code in three dimensional geometries, has been chosen to implement a double differential albedo calculus routine and therefore to generate albedo data for different kinds of medium. The surfacic estimator, which could be used, is not enough efficient because all neutrons do not contribute to the result. A new estimator is carried out. At each collision site, during the neutron history simulation, it allows to compute the probability of the neutron to go through the medium and to come through the reflection surface in the direction and at the energy considered. This estimator is about hundred times more efficient than the surfacic estimator. (author)

  5. Computed neutron response of spherical moderator-detector systems for radiation protection monitoring

    International Nuclear Information System (INIS)

    Dhairyawan, M.P.

    1979-01-01

    Neutrons of energies below 500 keV are important from the point of view of radiation protection of personnel working around reactors. However, as no neutron sources are available at lower energies, no measured values of neutron energy response are available between thermal and 0.5 MeV (but for Sb-Be source at 24 keV). The response functions in this range are, therefore, arrived at theoretically. After giving a comprehensive review of the work done in the field of response of moderated neutron detectors, a Monte Carlo method developed for this purpose is described and used to calculate energy response functions of the two spherical moderator-detector systems, namely, one using a central BF 3 counter and the other using 6 LiI(Eu) scintillator of 0.490 dia crystal. The polythene sphere diameter ranged from 2'' to 12''. The results obtained follow the trend predicted by other calculations and experiments, but are a definite improvement over them, because the most recent data on cross sections and angular distribution are used and the opacity of the detector i.e. the presence and size of the detector within the moderator is taken into account in the present calculations. The reasons for the discrepancies in the present results and those obtained earlier by other methods are discussed. The response of the Leake counter arrived at by the present method agrees very well with experimental calibration. (M.G.B.)

  6. Neutron activation analysis, gamma ray spectrometry and radiation environment monitoring instrument concept: GEORAD

    International Nuclear Information System (INIS)

    Ambrosi, R.M.; Talboys, D.L.; Sims, M.R.; Bannister, N.P.; Makarewicz, M.; Stevenson, T.; Hutchinson, I.B.; Watterson, J.I.W.; Lanza, R.C.; Richter, L.; Mills, A.; Fraser, G.W.

    2005-01-01

    Geological processes on Earth can be related to those that may have occurred in past epochs on Mars, if analytical methods used on Earth can be operated remotely on the surface of the Red Planet. Nuclear analytical techniques commonly used in terrestrial geology are neutron activation analysis (NAA) and gamma-ray spectroscopy (GRS), which determine the elemental composition, elemental concentration and stratigraphical distribution of water in rocks and soils. We describe a detector concept called GEORAD (GEOlogical and RADiation environment package) for the proposed ExoMars rover within the ESA's Aurora Programme for the exploration of the Solar System. GEORAD consists of a compact neutron source for the NAA of rocks and soils and a GRS. The GRS has a dual role since it can be used for natural radioactivity studies and NAA. A fully depleted silicon detector coupled to neutron sensitive converters measures the solar particle and neutron flux interacting with the Martian surface. We describe how the GEORAD detector suite could contribute to the geological and biological characterisation of Mars both for the detection of extinct or extant life and to evaluate potential hazards facing future manned missions. We show how GEORAD measurements complement the astrobiological objectives of the Aurora programme

  7. Study of neutron and gamma shielding by lead borate and bismuth lead borate glasses: transparent radiation shielding

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Badiger, N.M.

    2013-01-01

    Radiation shielding for gamma and neutron is the prominent area in nuclear reactor technology, medical application, dosimetry and other industries. Shielding of these types of radiation requires an appropriate concrete with mixture of low-to-high Z elements which is an opaque medium. The transparent radiation shielding in visible light for gamma and neutron is also extremely essential in the nuclear facilities as lead window. Presently various types of lead equivalent glass oxides have been invented which are transparent as well as provide protection from radiation. In our study we have assessment of effectiveness of neutron and gamma radiation shielding of xPbO.(1-x) B 2 O 3 (x=0.15 to 0.60) and xBi 2 O 3 .(0.80-x) PbO.0.20 B 2 O 3 (x=0.10 to 0.70) transparent borate and bismuth glasses by NXCOM program. The neutron effective mass removal cross section, Σ R /ρ (cm 2 /g) of the lead, bismuth and boron oxides are given. We found invariable Σ R /ρ of various combinations of the lead borate glass for x=0.15 to 0.60 and bismuth lead borate glass for x=0.10 to 0.70. It is observed that the effective removal cross-section for fast neutron (cm -1 ) of lead borate reduces significantly whereas roughly constant for bismuth borate. The gamma mass attenuation coefficients (μ/ρ) of the glasses were also compared with possible experimental values and found comparable. High (μ/ρ) for gamma radiation of the bismuth glasses shows that it is better gamma shielding compared with lead containing glass. However lead borate glasses are better neutron shielding as the neutron removal coefficient are higher. Our investigation is very useful for nuclear reactor technology where prompt neutron of energy 17 MeV and gamma photon up to 10 MeV produced. (author)

  8. Determination of radiation levels by neutrons in an accelerator for radiotherapy; Determinacion de niveles de radiacion por neutrones en un acelerador para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Salazar B, M.A. [Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico); Genis S, R. [Fundacion Clinica Medica Sur, Puente de Piedra 150, Col. Torriello Guerra, Tlalpan 14050, Mexico D.F. (Mexico)

    1998-12-31

    It was determined the radiation levels by neutrons due to photonuclear reactions ({gamma}, n) which occur in the target, levelling filter, collimators and the small pillow blinding of a medical accelerator Varian Clinac 2100C of 18 MeV, using thermoluminescent dosemeters UD-802AS and US-809AS. The experimental values were presented for the patient level, inside and outside of the radiation field, as well as for the small pillow. (Author)

  9. Concrete shielding of neutron radiations of plasma focus and dose examination by FLUKA

    Science.gov (United States)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2013-07-01

    Plasma Focus (PF) is among those devices which are used in plasma investigations, but this device produces some dangerous radiations after each shot, which generate a hazardous area for the operators of this device; therefore, it is better for the operators to stay away as much as possible from the area, where plasma focus has been placed. In this paper FLUKA Monte Carlo simulation has been used to calculate radiations produced by a 4 kJ Amirkabir plasma focus device through different concrete shielding concepts with various thicknesses (square, labyrinth and cave concepts). The neutron yield of Amirkabir plasma focus at varying deuterium pressure (3-9 torr) and two charging voltages (11.5 and 13.5 kV) is (2.25 ± 0.2) × 108 neutrons/shot and (2.88 ± 0.29) × 108 neutrons/shot of 2.45 MeV, respectively. The most influential shield for the plasma focus device among these geometries is the labyrinth concept on four sides and the top with 20 cm concrete.

  10. A study of the chemical budget of Lake Baikal using neutron activation and synchrotron radiation

    International Nuclear Information System (INIS)

    Granina, L.; Tomza, U.; Arimoto, R.; Grachev, A.; Granin, M.

    2000-01-01

    Beginning in 1993, neutron activation analysis (NAA) and synchrotron radiation X-ray fluorescence analysis (SRXFA) have been used to investigate the composition of particles suspended in Lake Baikal and its major tributaries. Both techniques have provided data on the concentration of a wide range of elements with neutron activation offering the first data on several rare earth elements and other minor elements. While each technique appears to be more suitable for determining the concentration of certain elements than an alternate technique, both techniques are in close agreement in their analysis of most of the elements studied. International standard reference materials were used to calibrate and validate the analyses and allow results from the two methods to be compared. The results of this study have been combined with published data to calculate the total elemental input into the lake

  11. Determination of two- and three-dimensional radiation fields for neutron radiotherapy planning

    International Nuclear Information System (INIS)

    Boehm, J.K.

    1986-01-01

    The thesis deals with the computerized investigations for fast neutron radiotherapy planning, explaining the calculation and modelling of local dose distributions in patients as a result of mixed neutron and gamma radiation fields. For a computed irradiation program (elaborated for instance by the COMRAD program system), dose distribution functions are required for the simulation of multi-field or moving beam irradiations, the functions being derived semi-empirically by non-linear regression. The necessary data on stationary field doses are derived by measurements or by computed simulation with specific transport programs from the nuclear engineering sector. Transport calculations show the effects of inhomogeneities in the patient's body on the dose distribution. The determined, strong inhomogneity effects (lungs, head) have to be taken into account as precisely as possible in order to achieve optimum irradiation planning. (orig./HP) [de

  12. Attempt to detection of laser radiation effect on the neutron interaction with 139La nuclei

    International Nuclear Information System (INIS)

    Vertebnyj, V.P.; Razbudej, V.F.; Sidorov, S.V.; Muravitskij, A.V.; Vorona, P.N.

    1982-01-01

    Phenomenon predicted theoretically was attempted to discover at the WWR-M nuclear reactor. Transmission of a 139 La sample in the radiation field of a CO 2 laser was measured with a neutron spectrometer by means of the time-of-flight method. No satellite resonances near the 0.734 eV resonance, expected according to the Zaretsky-Lomonosov theory, were detected. Causes of disagreement between experiment and theory are not clear yet. The following possible causes can be suggested: 1) neutron resonance at 0.734 eV energy is not p resonance in fact; 2) atom electron shells screen nuclei and considerably weaken external electric field; 3) R=1.2xAsup(1/3)=6.216 and R'=4.9 fermi used values are not exact. Really the value (R-R') can be much less

  13. Field calibration of PADC track etch detectors for local neutron dosimetry in man using different radiation qualities

    Energy Technology Data Exchange (ETDEWEB)

    Haelg, Roger A., E-mail: rhaelg@phys.ethz.ch [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Besserer, Juergen [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Boschung, Markus; Mayer, Sabine [Division for Radiation Safety and Security, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Clasie, Benjamin [Department of Radiation Oncology, Massachusetts General Hospital, 30 Fruit Street, Boston, MA 02114 (United States); Kry, Stephen F. [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Schneider, Uwe [Institute for Radiotherapy, Radiotherapie Hirslanden AG, Hirslanden Medical Center, Rain 34, CH-5000 Aarau (Switzerland); Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH-8057 Zurich (Switzerland)

    2012-12-01

    In order to quantify the dose from neutrons to a patient for contemporary radiation treatment techniques, measurements inside phantoms, representing the patient, are necessary. Published reports on neutron dose measurements cover measurements performed free in air or on the surface of phantoms and the doses are expressed in terms of personal dose equivalent or ambient dose equivalent. This study focuses on measurements of local neutron doses inside a radiotherapy phantom and presents a field calibration procedure for PADC track etch detectors. An initial absolute calibration factor in terms of H{sub p}(10) for personal dosimetry is converted into neutron dose equivalent and additional calibration factors are derived to account for the spectral changes in the neutron fluence for different radiation therapy beam qualities and depths in the phantom. The neutron spectra used for the calculation of the calibration factors are determined in different depths by Monte Carlo simulations for the investigated radiation qualities. These spectra are used together with the energy dependent response function of the PADC detectors to account for the spectral changes in the neutron fluence. The resulting total calibration factors are 0.76 for a photon beam (in- and out-of-field), 1.00 (in-field) and 0.84 (out-of-field) for an active proton beam and 1.05 (in-field) and 0.91 (out-of-field) for a passive proton beam, respectively. The uncertainty for neutron dose measurements using this field calibration method is less than 40%. The extended calibration procedure presented in this work showed that it is possible to use PADC track etch detectors for measurements of local neutron dose equivalent inside anthropomorphic phantoms by accounting for spectral changes in the neutron fluence.

  14. Managing NIF safety equipment in a high neutron and gamma radiation environment.

    Science.gov (United States)

    Datte, Philip; Eckart, Mark; Jackson, Mark; Khater, Hesham; Manuel, Stacie; Newton, Mark

    2013-06-01

    The National Ignition Facility (NIF) is a 192 laser beam facility that supports the Inertial Confinement Fusion program. During the ignition experimental campaign, the NIF is expected to perform shots with varying fusion yield producing 14 MeV neutrons up to 20 MJ or 7.1 × 10(18) neutrons per shot and a maximum annual yield of 1,200 MJ. Several infrastructure support systems will be exposed to varying high yield shots over the facility's 30-y life span. In response to this potential exposure, analysis and testing of several facility safety systems have been conducted. A detailed MCNP (Monte Carlo N-Particle Transport Code) model has been developed for the NIF facility, and it includes most of the major structures inside the Target Bay. The model has been used in the simulation of expected neutron and gamma fluences throughout the Target Bay. Radiation susceptible components were identified and tested to fluences greater than 10(13) (n cm(-2)) for 14 MeV neutrons and γ-ray equivalent. The testing includes component irradiation using a 60Co gamma source and accelerator-based irradiation using 4- and 14- MeV neutron sources. The subsystem implementation in the facility is based on the fluence estimates after shielding and survivability guidelines derived from the dose maps and component tests results. This paper reports on the evaluation and implementation of mitigations for several infrastructure safety support systems, including video, oxygen monitoring, pressure monitors, water sensing systems, and access control interfaces found at the NIF.

  15. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    Science.gov (United States)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron

  16. Neutron capture cross section measurements: case of lutetium isotopes; Mesures de donnees de sections efficaces de capture radiative de neutrons: application au cas du lutecium

    Energy Technology Data Exchange (ETDEWEB)

    Roig, O.; Meot, V.; Belier, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-07-15

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu{sup 173}, Lu{sup 175}, Lu{sup 176} and Lu{sup 177m}, the measurement of the probability of gamma emission in the substitution reaction Yb{sup 174}(He{sup 3},p{gamma})Lu{sup 176}. The measurement of neutron cross sections on Lu{sup 177m} have permitted to highlight the process of super-elastic scattering

  17. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  18. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    International Nuclear Information System (INIS)

    Kosunen, A.

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?) water air , in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in 60 Co gamma beams. In photon beam dosimetry (S I ?) water air can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation). To improve the accuracy

  19. Small angle scattering of X radiation and slow neutrons in structural analyses of amorphous solids

    International Nuclear Information System (INIS)

    Kostorz, G.

    1980-01-01

    Small angle scattering of x radiation and slow neutrons allows to detect inhomogeneities of the dimension of ten to some thousands of Angstroem by the difference in the scattering length density. The progress made during recent years in the development of apparatusses has created the possibility of solving very complicated problems. A first outline shows that in separation processes as well as in investigating extended defects the method of small angle scattering may provide valuable contributions to the analysis of the non-crystalline state

  20. Graphs of neutron cross sections in JSD1000 for radiation shielding safety analysis

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    Graphs of neutron cross sections and self-shielding factors in the JSD1000 library are presented for radiation shielding safety analysis. The compilation contains various reaction cross sections for 42 nuclides from 1 H to 241 Am in the energy range from 3.51 x 10 -4 eV to 16.5 MeV. The Bondarenko-type self-shielding factors of each reaction are given by the background cross sections from σ 0 = 0 to σ 0 = 10000. (author)

  1. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  2. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Chadha, M.

    1996-01-01

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT

  3. The application of computer and automatic technology in dose measurement of neutron radiation

    International Nuclear Information System (INIS)

    Zhou Yu; Li Chenglin; Luo Yisheng; Guo Yong; Chen Di; Xiaojiang

    1999-01-01

    Generally the dose measurement of neutron radiation requires three electrometers, two bias, three workers in the same time. To improve the accuracy and efficiency of measurement, a Model 6517A electrometer that accommodate Model 6521 scanner cards and a portable computer are used to make up of a automatic measurement system. Corresponding software is developed and used to control it. Because of the application of computer and automatic technology, this system can not only measure dose rate automatically, but also make data's calculating, saving, querying, printing and comparing ease

  4. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Tallyson S.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Freitas, Bruno M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Fonseca, Evaldo S.; Pereira, Walsan W., E-mail: talvarenga@ipen.br, E-mail: lcaldas@ipen.br, E-mail: bfreitas@con.ufrj.br, E-mail: walsan@ird.gov.br, E-mail: evaldo@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)

  5. A fast neutron spectrometer based on an electrochemically etched CR-39 detector with degrader and front radiator

    International Nuclear Information System (INIS)

    Matiullah; Durrani, S.A.

    1987-01-01

    In addition to having promising applications for the development of a fast-neutron dosemeter, electrochemically etched (ECE) CR-39 detectors also offer the possibility of energy-selective fast-neutron detection. This property stems basically from the fact that, to produce 'sparkable' trails in the polymeric detector subjected to ECE, the charged particle resulting from a neutron interaction must fall within a definite 'energy window'. The lower and upper limits of proton energies that can yield ECE spots in CR-39 have been experimentally determined to be ∼ 50 keV and ∼ 2.2 MeV under our processing conditions. To accomplish our objective, we have developed a technique based on ECE spot-density measurements in CR-39 detectors placed in conjuction with judiciously chosen thicknesses of a polyethylene radiator and a lead degrader. The optimum thicknesses of the radiator and the degrader, for a given neutron energy, are determined by computer calculations. (author)

  6. Determination of the scattered radiation at the Neutron Calibration Laboratory of IPEN using the shadow cone method

    International Nuclear Information System (INIS)

    Alvarenga, Tallyson S.; Caldas, Linda V.E.; Freitas, Bruno M.

    2017-01-01

    Because of the increase in the demand for the calibration of neutron detectors, there is a need for new calibration services. In this context, the Calibration Laboratory of Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, which already offers calibration services of radiation detectors with standard X, gamma, beta and alpha beams, has recently projected a new test laboratory for neutron detectors. This work evaluated the contribution of dispersed neutron radiation in this laboratory, using the cone shadow method and a Bonner sphere spectrometer to take the measurements at a distance of 100 cm from the neutron source. The dosimetric quantities H⁎(10) and H⁎(10) were obtained at the laboratory, allowing the calibration of detectors. (author)

  7. Theoretical and experimental study of the dark signal in CMOS image sensors affected by neutron radiation from a nuclear reactor

    Science.gov (United States)

    Xue, Yuanyuan; Wang, Zujun; He, Baoping; Yao, Zhibin; Liu, Minbo; Ma, Wuying; Sheng, Jiangkun; Dong, Guantao; Jin, Junshan

    2017-12-01

    The CMOS image sensors (CISs) are irradiated with neutron from a nuclear reactor. The dark signal in CISs affected by neutron radiation is studied theoretically and experimentally. The Primary knock-on atoms (PKA) energy spectra for 1 MeV incident neutrons are simulated by Geant4. And the theoretical models for the mean dark signal, dark signal non-uniformity (DSNU) and dark signal distribution versus neutron fluence are established. The results are found to be in good agreement with the experimental outputs. Finally, the dark signal in the CISs under the different neutron fluence conditions is estimated. This study provides the theoretical and experimental evidence for the displacement damage effects on the dark signal CISs.

  8. Use of neutron capture gamma radiation for determining grade of iron ore in blast holes and exploration holes

    International Nuclear Information System (INIS)

    Eisler, P.L.; Huppert, P.; Mathew, P.J.; Wylie, A.W.; Youl, S.F.

    1977-01-01

    Neutron radiative capture and neutron-neutron logging have been applied to determining the grade of ore in dry blast holes and a dry exploration hole drilled into a layered iron deposit. Both thermal and epithermal neutron responses were measured as well as the gamma-ray responses due to neutron capture by iron and by hydrogen present in hydrated minerals. The results were fitted by a stepwise multiple linear regression technique to give expressions for mean grade of ore in the drill hole and 95% confidence intervals for estimation of this mean. For an overall range of ore grades of 20-68% Fe and a mean grade of 63% Fe, the confidence interval for prediction of mean grade for the neutron-gamma technique was 0.3% Fe for pooled data from all five blast holes and 0.8% Fe for a single hole. It was also shown that for this type of layered deposit a simpler neutron-neutron log incorporating simultaneous measurement of both thermal and epithermal neutron responses gave almost as good a grade prediction result for pooled results from five drill holes, namely 63+-0.4% Fe, as that obtained by the neutron-gamma technique. The results of both types of log are compared with those obtained by the spectral gamma-ray backscattering [Psub(z)] technique, or by logging of natural gamma radiations from the shale component of the ore. From this comparison conclusions are drawn regarding the most suitable technique to employ for determining grade of iron ore in various practical logging situations. (author)

  9. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Mark R., E-mail: mark.gilbert@ccfe.ac.uk [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Ghani, Zamir [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); McMillan, John E. [Department of Physics and Astronomy, University of Sheffield, Hicks building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Packer, Lee W. [United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-09-21

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model {sup 3}He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  10. Preliminary radiation transport analysis for the proposed National Spallation Neutron Source (NSNS)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Lillie, R.A.

    1997-01-01

    The use of neutrons in science and industry has increased continuously during the past 50 years with applications now widely used in physics, chemistry, biology, engineering, and medicine. Within this history, the relative merits of using pulsed accelerator spallation sources versus reactors for neutron sources as the preferred option for the future. To address this future need, the Department of Energy (DOE) has initiated a pre-conceptual design study for the National Spallation Neutron Source (NSNS) and given preliminary approval for the proposed facility to be built at Oak Ridge National Laboratory (ORNL). The DOE directive is to design and build a short pulse spallation source in the 1 MS power range with sufficient design flexibility that it can be upgraded and operated at a significantly higher power at a later stage. The pre-conceptualized design of the NSNS initially consists of an accelerator system capable of delivering a 1 to 2 GeV proton beam with 1 MW of beam power in an approximate 0.5 microsecond pulse at a 60 Hz frequency onto a single target station. The NSNS will be upgraded in stages to a 5 MW facility with two target stations (a high power station operating at 60 Hz and a low power station operating at 10 Hz). Each target station will contain four moderators (combinations of cryogenic and ambient temperature) and 18 beam liens for a total of 36 experiment stations. This paper summarizes the radiation transport analysis strategies for the proposed NSNS facility

  11. Online detection of radiation produced in Boron-10 neutron capture reaction: preliminary studies

    International Nuclear Information System (INIS)

    Portu, A.; Galván, V.; González, S.J.; Thorp, S.; Santa Cruz, G.; Saint Martin, G.; Blostein, J.J.

    2013-01-01

    Boron microdistribution in both tumor and normal tissue sections can be studied by the autoradiography technique in solid state nuclear track detectors (SSNTD). A measurement of boron concentration in tissue is obtained through the evaluation of the density of tracks produced by alpha and lithium ions generated in the neutron capture reaction 10B(n,α) 7 Li. This knowledge is pivotal when a BNCT (Boron Neutron Capture Therapy) protocol is considered. A new methodology is proposed in order to record alpha and lithium events in real time, as light spots superimposed to the tissue section image. CCD (Charge-Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) are used as detectors, with the advantage of avoiding the superposition of events. Commercial web cams were employed for the preliminary experiments. They were partially disassembled in order to get the sensor chip uncovered. These devices were exposed to different radiation sources: 6.118 MeV alpha particles (252Cf), 0.662 MeV gamma rays ( 137 Cs) and thermal neutrons (moderated 241 Am-Be source, 103n.cm2.seg-1), to analyze the characteristics of the respective images. Pictures from tissue sections put in contact with the sensor surface were also acquired. A software was developed in Matlab to perform the image capture and processing. Early results show the feasibility of using these devices to study the distribution 10B in tissue samples. (author)

  12. Fast neutron dosimetry using CR-39 track detectors with polyethylene as radiator

    International Nuclear Information System (INIS)

    Castillo, F.; Espinosa, G.; Golzarri, J.I.; Osorio, D.; Rangel, J.; Reyes, P.G.; Herrera, J.J.E.

    2013-01-01

    The chemical etching parameters (etching time, temperature, normality of etchant, etc.) for the use of CR-39 (allyl diglycol carbonate – Lantrack ® ) as a fast neutron dosimeter have been optimized. The CR-39 chips, placed under a 1.5 mm polyethylene radiator, were exposed for calibration to an 241 Am-Be source at different time intervals for a given neutron fluence. After several chemical etching processes of the detectors with different conditions, the optimum characteristics for the chemical etching were found at 6N KOH solution, 60 ± 1 °C, for 12 h. An accurate relationship between the dose and fluence calculations was obtained as a function of the track density. - Highlights: ► Optimum etching time for fast neutron irradiated CR-39 track detectors is found. ► Relationship between dose and fluence obtained as a function of the track density. ► Results are consistent with those reported elsewhere, and extend the dose range

  13. Neutron diffraction radiation of solid solution of carbon and hydrogen in the α-titanium in the homogeneity domain

    International Nuclear Information System (INIS)

    Mirzaev, B.B.; Khidirov, I.; Mukhtarova, N.N.

    2005-01-01

    In the work by the neutron-graph the homogeneity domain of the introduction solid solution TiC x H y is determined. The sample neutron grams have been taken on the neutron diffractometer (λ=.1085 nm) installed at the thermal column of the WWR-SM reactor (INF AN RUz). For the phase analysis and estimation of solid solutions homogeneity the X-ray graph was used. X-ray grams were taken on the X-ray diffractometer DRON-3M with use of CuK α radiation (λ=0.015418 nm)

  14. Modelling of neutron and photon transport in iron and concrete radiation shieldings by the Monte Carlo method - Version 2

    CERN Document Server

    Žukauskaite, A; Plukiene, R; Plukis, A

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 – γ-ray beams (1-10 MeV), HIMAC and ISIS-800 – high energy neutrons (20-800 MeV) transport in iron and concrete. The results were then compared with experimental data.

  15. Evaluation of area monitor response for neutrons in radiation field generated by a 15 MV clinic accelerator

    International Nuclear Information System (INIS)

    Salgado, Ana Paula

    2011-01-01

    The clinical importance and usage of linear accelerators in cancer treatment increased significantly in the last years. Coupled with this growth came the concern about the use of accelerators with energies over to 10 MeV which produce therapeutic beam contaminated with neutrons generated when high-energy photons interact with high-atomic-number materials such as tungsten and lead present in the accelerator itself. At these facilities, measurements of the ambient dose equivalent for neutrons present difficulties owing to the existence of a mixed radiation field and possible electromagnetic interference near the accelerator. The Neutron Laboratory of the IRD - Brazilian Institute for Radioprotection and Dosimetry, aiming to evaluate the survey meters performance at these facilities, initiated studies of instrumentation response in the presence of different neutron spectra. Neutrons sources with average energies ranging from 0.55 to 4.2 MeV, four different survey meters and one ionization chamber to obtain the ratio between the dose due to neutrons and gamma radiation were used in this work. The evaluation of these measurements, performed in a 15 MV linear accelerator room is presented. This work presents results that demonstrate the complexity and care needed to make neutrons measurements in radiotherapy treatment rooms containing high energy clinical accelerators. (author)

  16. Neutrons and synchrotron radiation in engineering materials science from fundamentals to applications

    CERN Document Server

    Schreyer, Andreas; Clemens, Helmut; Mayer, Svea

    2017-01-01

    Retaining its proven concept, the second edition of this ready reference specifically addresses the need of materials engineers for reliable, detailed information on modern material characterization methods. As such, it provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to probl...

  17. Neutrons and synchrotron radiation in engineering materials science. From fundamentals to applications. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Staron, Peter [Helmholtz-Zentrum Geesthacht, Zentrum fuer Material- und Kuestenforschung GmbH, Geesthacht (Germany). Inst. of Materials Research; Schreyer, Andreas [European Spallation Source ERIC, Lund (Sweden); Clemens, Helmut; Mayer, Svea (eds.) [Montanuniv. Leoben (Austria). Dept. of Physical Metallurgy and Materials Testing

    2017-07-01

    This book provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to problems in materials science.

  18. Effect of neutron radiation on the dielectric, mechanical and thermal properties of ceramics for RF transmission windows

    International Nuclear Information System (INIS)

    Hazelton, C.; Rice, J.; Snead, L.L.; Zinkle, S.J.

    1998-01-01

    The behavior of electrically insulating ceramics was investigated before and after exposure to neutron radiation. Mechanical, thermal and dielectric specimens were studied after exposure to a fast neutron dose of 0.1 displacements per atom (dpa) at Oak Ridge National Laboratory (ORNL). Four materials were compared to alumina: polycrystalline spinel, aluminum nitride, sialon and silicon nitride. Mechanical bend tests were performed before and after irradiation. Thermal diffusivity was measured using a room temperature laser flash technique. Dielectric loss factor was measured at 105 MHz with a special high resolution resonance cavity. The materials exhibited a significant degradation of thermal diffusivity and an increase in dielectric loss tangent. The flexural strength and physical dimensions were not significantly affected by the 0.1 dpa level of neutron radiation. The aluminum nitride and S silicon nitride showed superior RF window performance over the sialon and the alumina. The results are compared to radiation studies on similar materials

  19. A set-up for measuring neutron cross sections and radiation multiplicity from neutron-nucleus interaction

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Ermakov, V.A.; Grigor'ev, Yu.V.

    1988-01-01

    A multiplicity detector of the ''Romashka'' type has been used on the 500 m flight part of the IBR-30 pulsed reactor. The detector consists of 16 independent sections with NaJ(Tl) crystals with a total volume of 36 liters. The geometric efficiency of single-ray detection is ∼ 80%. The gamma-ray to neutron detection efficiency ratio is ≥600 for neutrons with energies below 200 keV. This detector allows one to perform neutron capture and fission cross section measurements and to study gamma-ray multiplicity and resonance selfabsorption effects in the 20 eV-200keV neutron energy range

  20. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru; Gribova, O. V., E-mail: gribova79@mail.ru; Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The analysis of clinical use of neutron therapy with 6 MeV fast neutrons compared to conventional radiation therapy was carried out. The experience of using neutron and mixed neutron and photon therapy in patients with different radio-resistant malignant tumors shows the necessity of further studies and development of the novel approaches to densely-ionizing radiation. The results of dosimetry and radiobiological studies have been the basis for planning clinical programs for neutron therapy. Clinical trials over the past 30 years have shown that neutron therapy successfully destroys radio-resistant cancers, including salivary gland tumors, adenoidcystic carcinoma, inoperable sarcomas, locally advanced head and neck tumors, and locally advanced prostate cancer. Radiation therapy with 6.3 MeV fast neutrons used alone and in combination with photon therapy resulted in improved long-term treatment outcomes in patients with radio-resistant malignant tumors.

  1. The isovector quadrupole resonance in yttrium excited by neutron radiative capture

    International Nuclear Information System (INIS)

    Zorro, R.; Bergqvist, I.

    1987-01-01

    In order to investigate the properties of the isovector giant quadrupole resonance (ΔT=1, ΔS=0) in the A=90 mass region, gamma-ray spectra from the reaction 89 Y(n,γ) 90 Y were recorded at several neutron energies in the energy range 12 to 27 MeV at 55 0 , 90 0 and 125 0 . The measured fore-aft asymmetry for the ground-state transition is very small in the low-energy region, but becomes appreciable above a neutron energy of 18 MeV. The observed asymmetry is attributed to interference between radiation from the isovector giant quadrupole resonance and radiation of opposite parity (from the high-energy tail of the giant dipole resonance and direct E1 capture). The data obtained in the present work, interpreted in terms of the direct-semidirect capture model, indicate that the excitation energy of the isovector E2 resonance in 90 Y is 26 ± 1 MeV. The data are consistent with a resonance width of 10 ± 2 MeV and with complete exhaustion of the energy-weighted sum rule for the lower isospin component of the resonance. (orig.)

  2. Recombination of radiation defects in solid methane: neutron sources and cryo-volcanism on celestial bodies

    Science.gov (United States)

    Kirichek, O.; Savchenko, E. V.; Lawson, C. R.; Khyzhniy, I. V.; Jenkins, D. M.; Uyutnov, S. A.; Bludov, M. A.; Haynes, D. J.

    2018-03-01

    Physicochemical properties of solid methane exposed to ionizing radiation have attracted significant interest in recent years. Here we present new trends in the study of radiation effects in solid methane. We particularly focus on relaxation phenomena in solid methane pre-irradiated by energetic neutrons and electron beam. We compare experimental results obtained in the temperature range from 10K to 100K with a model based on the assumption that radiolysis defect recombinations happen in two stages, at two different temperatures. In the case of slow heating up of the solid methane sample, irradiated at 10K, the first wave of recombination occurs around 20K with a further second wave taking place between 50 and 60K. We also discuss the role of the recombination mechanisms in “burp” phenomenon discovered by J. Carpenter in the late 1980s. An understanding of these mechanisms is vital for the designing and operation of solid methane moderators used in advanced neutron sources and could also be a possible explanation for the driving forces behind cryo-volcanism on celestial bodies.

  3. Effect of neutron and gamma radiations on zeolite and zeotype materials

    International Nuclear Information System (INIS)

    Durrani, S.K.

    1994-01-01

    The influence of gamma and (n, gamma)-radiation on the cation exchange and the structure of zeolite and zeotype materials has been studied. Samples were subjected to different doses of gamma-irradiation varying between 0.5 and 10 MGy and Neutron irradiation flux varied from 1.14 x 10/sup 17/ to 3.88 x /sup 10/sup 17/n cm/sup -2/. Structural effects consequent to gamma irradiation were examined by x-ray diffraction, electron scanning micrographs and FTIR measurements. Neutron and gamma-irradiation and not lead by any appreciable change in the structure, however, the displacement cations to locked-in sites results partial reduced barium and caesium uptake. The decrease of the intensities of the absorption bands of the hydroxy-groups reveals that gamma-irradiation has a strong dehydrating influence. THe effects of gamma-radiation on (UO/sub 2/)/sup 2+/ and Am/sup 3+/ uptake into NH/sub 4/-L and NH/sub 4/-SAPO-34 was also observed. K alpha of the uranyl ions increased with increasing pH up to 6.3. At pH > 3.5, the uranyl ions were precipitated and consequently K alpha values were continued to increased. (author)

  4. Novel Concrete Chemistry Achieved with Low Dose Gamma Radiation Curing and Resistance to Neutron Activation

    Science.gov (United States)

    Burnham, Steven Robert

    As much as 50% of ageing-related problems with concrete structures can be attributed to con-struction deficiencies at the time of placement. The most influential time affecting longevity of concrete structures is the curing phase, or commonly the initial 28 days following its placement. A novel advanced atomistic analysis of novel concrete chemistry is presented in this dissertation with the objective to improve concrete structural properties and its longevity. Based on experiments and computational models, this novel concrete chemistry is discussed in two cases: (a) concrete chemistry changes when exposed to low-dose gamma radiation in its early curing stage, thus improving its strength in a shorter period of time then curing for the conventional 28 days; (b) concrete chemistry is controlled by its atomistic components to assure strength is not reduced but that its activation due to long-term exposure to neutron flux in nuclear power plants is negligible. High dose gamma radiation is well documented as a degradation mechanism that decreases concrete's compressive strength; however, the effects of low-dose gamma radiation on the initial curing phase of concrete, having never been studied before, proved its compressive strength increases. Using a 137 Cs source, concrete samples were subjected to gamma radiation during the initial curing phase for seven, 14, and 28 days. The compressive strength after seven days is improved for gamma cured concrete by 24% and after 14 days by 76%. Concrete shows no improvement in compressive strength after 28 days of exposure to gamma radiation, showing that there is a threshold effect. Scanning Electron Microscopy is used to examine the microstructure of low-dose gamma radiation where no damage to its microstructure is found, showing no difference between gamma cured and conventionally cured concrete. Molecular dynamics modeling based on the MOPAC package is used to study how gamma radiation during the curing stage improves

  5. Basics of Neutrons for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Brian G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-05

    These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.

  6. Seat belt reminders.

    NARCIS (Netherlands)

    2008-01-01

    Seat belts are an effective way of reducing the number or road deaths and severe road injuries in crashes. Seat belt reminders warn car drivers and passengers if the seat belt is not fastened. This can be done by a visual signal or an acoustic signal or by a combination of the two. Seat belt

  7. FMC-based Neutron and Gamma Radiation Monitoring Module for xTCA Applications

    CERN Document Server

    Kozak, T; Napieralski, A

    2012-01-01

    The machines used in High Energy Physics (HEP) experiments, such as accelerators or tokamaks, are sources of gamma and neutron radiation fields. The radiation has a negative influence on electronics and can lead to the incorrect functioning of complex control and diagnostic system designed for HEP machines. Therefore, in most cases the electronic equipments is installed in radiation-safe areas, but in some cases this rule is omitted to decrease costs of the project. The European X-ray Free Electron Laser (E-XFEL), being under construction at DESY research center, is a good example. The E-XFEL uses single tunnel and part of the electronic system will be installed next to main beam pipe and exposed to radiation. The modern Advanced/Micro Telecommunications Computing Architecture (ATCA/μTCA) standards are foreseen as a base for control and diagnostic system for this new project. These flexible standards provide high reliability, availability and usability for the system which can be decreased by negative influe...

  8. Microdosimetric studies using a Filtered Fast Neutron Irradiation System of research reactor to application in radiation biology

    International Nuclear Information System (INIS)

    Rodrigues, Pedro Pereira

    2007-01-01

    In this work, microdosimetric measurements were performed using a Wall-less Tissue Equivalent Proportional Counter - TEPC with spherical cavity with an inner diameter of 1.27 cm. The TEPC was tilled with pure propane gas, C 3 H 8 at 5.6 kPa (42 Torr) pressure, which is equivalent to 1.3 μm in diameter of unit density tissue. The microdosimetric measurement device was irradiated with fast neutron radiation from Texas A and M University Nuclear Science Center research reactor, in College Station, Texas. The fast neutron beams were emitted with three different power values, 0.5, 1.0 and 2.0 kW. during 1h for both high gain and low gain, totalizing two hours for each power with 0.0083 Gy/min of dose rate. The neutron was filtered using the heavily filtered fast neutron irradiation system (FNIS). from Nuclear Science Center, to obtain a decrease of neutron radiation contamination by gamma ray and so, to gain the neutron microdosimetric spectra as. frequency distribution of lineal energy, dose distribution of lineal energy with good precision, and another quantities as frequency-mean of lineal energy, dose- mean of lineal energy, absorbed dose, equivalent dose and average quality factor of fast neutron. The obtained results were satisfactory, with the neutron microdosimetric spectra showing a gamma ray contamination under 5 %, especially to dose distribution of lineal energy. The results obtained in this work were in agreement when compared with another results from scientific literature, which used another procedure to reduce the neutron contamination by gamma ray. (author)

  9. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  10. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Science.gov (United States)

    Kovtyukh, Alexander S.

    2016-11-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2) periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ˜ 0.7 to ˜ 7 keV nT-1 at L ≈ 4.5-10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10-14μ-4.1L8.2 or DLL ≈ 1.3 × 105(EL)-4.1 or DLL ≈ 1.2 × 10-9fd-4.1, where fd is the drift frequency of the protons (in mHz), DLL is measured in s-1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  11. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Directory of Open Access Journals (Sweden)

    A. S. Kovtyukh

    2016-11-01

    Full Text Available From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2 periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion of trapped particles. This is done by successively solving the systems (chains of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun–Earth Explorer 1 (ISEE-1 for protons with an energy of 24 to 2081 keV at L = 2–10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2–5. Ionization losses of protons (Coulomb losses and charge exchange were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from  ∼ 0.7 to ∼ 7 keV nT−1 at L ≈ 4.5–10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10−14μ−4.1L8.2 or DLL ≈ 1.3 × 105(EL−4.1 or DLL ≈ 1.2 × 10−9fd−4.1, where fd is the drift frequency of the protons (in mHz, DLL is measured in s−1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  12. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Energy Technology Data Exchange (ETDEWEB)

    Kovtyukh, Alexander S. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2016-07-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α{sub 0} ∼ 90 during quiet and slightly disturbed (Kp≤2) periods, I directly calculated the value D{sub LL}, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ∝0.7 to ∝7 keV nT{sup -1} at L ∼ 4.5-10, the functions of D{sub LL} can be approximated by the following equivalent expressions: D{sub LL} ∼ 4.9 x 10{sup -14}μ{sup -4.1}L{sup 8.2} or D{sub LL} ∼ 1.3 x 10{sup 5}(EL){sup -4.1} or D{sub LL} ∼ 1.2 x 10{sup -9}f{sub d}{sup -4.1}, where f{sub d} is the drift frequency of the protons (in mHz), D{sub LL} is measured in s{sup -1}, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms D{sub LL} increases, and the expressions for D{sub LL} obtained here can change completely.

  13. Belt attachment and system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abraham D.; Davidson, Erick M.

    2018-03-06

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  14. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Jean M. [Univ. of Idaho, Idaho Falls, ID (United States)

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  15. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    International Nuclear Information System (INIS)

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models

  16. Quantitative radiation dose-response relationships for normal tissues in man - I. Gustatory tissues response during photon and neutron radiotherapy

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1982-01-01

    Quantitative radiation dose-response curves for normal gustatory tissue in man were studied. Taste function, expressed as taste loss, was evaluated in 84 patients who were given either photon or neutron radiotherapy for tumors in the head and neck region. Patients were treated to average tumor doses of 6600 cGy (photon) or 2200 cGy intervals for photon patients and 320-cGy intervals for neutron patients during radiotherapy. The dose-response curves for photons and neutrons were analyzed by fitting a four-parameter logistic equation to the data. Photon and neutron curves differed principally in their relative position along the dose axis. Comparison of the dose-response curves were made by determination of RBE. At 320 cGy, the lowest neutron dose at which taste measurements were made, RBE = 5.7. If this RBE is correct, then the therapeutic gain factor may be equal to or less than 1, indicating no biological advantage in using neutrons over photons for this normal tissue. These studies suggest measurements of taste function and evaluation of dose-response relationships may also be useful in quantitatively evaluating the efficacy of chemical modifiers of radiation response such as hypoxic cell radiosensitizers and radioprotectors

  17. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.

  18. Comparison of radio data and model calculations of Jupiter's synchrotron radition 2. East--west asymmetry in the radiation belts as a functon of Jovian longitude

    International Nuclear Information System (INIS)

    de Pater, I.

    1981-01-01

    On the basis of comparison of radio data and model calculations of Jupiter's synchrotron radiaton the 'hot region' or east--west asymmetry in the planet's radiation belts is proposed to be due to the combined effect of an overabundance of electrons at jovicentric longitudes lambda/sub J/approx.240 0 --360 0 and the existence of a dusk dawn directed electric field over the inner magnetosphere, generated by the wind system in the upper atmosphere. The model calculations were based upon the magnetic field configurations derived from the Pioneer data by Acuna and Ness [1976] (the O 4 model) and Davis, Jones and Smith (quoted in Smith and Gulkis [1979]) (the P 11 (3,2)A model), with an electron distribution derived in the first paper of this series [de Pater, this issue]. We would infer from the calculations that the O 4 model gives a slightly better fit to the data; the relatively large number density at lambda/sub J/approx.240 0 --360 0 , however, might indicate the presence of even higher order moments in the field

  19. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  20. Study of the fluctuations of the partial and total radiative widths by neutron capture resonance method; Etude des fluctuations des largeurs radiatives partielles et totales par la capture des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, V D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    Radiative capture experiments by neutron time-of-flight methods have been made for following studies: distribution of partial radiative widths, effects of correlation between different radiative transitions, fluctuations of total radiative widths {gamma}{sub {gamma}} from resonance to resonance, variation of {gamma}{sub {gamma}} with number of mass and the search for the existence of potential capture. Also, some other experiments with the use of neutron capture gamma-rays spectra have been investigated. (author) [French] Par la capture des neutrons de resonance dont les energies sont selectionnees a l'aide de la technique du temps de vol, differents types d'experiences ont ete realisees concernant les etudes des distributions des largeurs radiatives partielles, des effets de correlation entre differentes voies de desexcitation, de la fluctuation des largeurs radiatives totales {gamma}{sub {gamma}} de resonance a resonance, de la variation de la quantite {gamma}{sub {gamma}} en fonction du nombre de masse et de la mise en evidence de l'existence du processus de capture potentielle. Quelques autres applications de l'emploi du spectre de rayons gamma ont egalement ete presentees. (auteur)

  1. Study of the fluctuations of the partial and total radiative widths by neutron capture resonance method; Etude des fluctuations des largeurs radiatives partielles et totales par la capture des neutrons de resonance

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, V.D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-06-01

    Radiative capture experiments by neutron time-of-flight methods have been made for following studies: distribution of partial radiative widths, effects of correlation between different radiative transitions, fluctuations of total radiative widths {gamma}{sub {gamma}} from resonance to resonance, variation of {gamma}{sub {gamma}} with number of mass and the search for the existence of potential capture. Also, some other experiments with the use of neutron capture gamma-rays spectra have been investigated. (author) [French] Par la capture des neutrons de resonance dont les energies sont selectionnees a l'aide de la technique du temps de vol, differents types d'experiences ont ete realisees concernant les etudes des distributions des largeurs radiatives partielles, des effets de correlation entre differentes voies de desexcitation, de la fluctuation des largeurs radiatives totales {gamma}{sub {gamma}} de resonance a resonance, de la variation de la quantite {gamma}{sub {gamma}} en fonction du nombre de masse et de la mise en evidence de l'existence du processus de capture potentielle. Quelques autres applications de l'emploi du spectre de rayons gamma ont egalement ete presentees. (auteur)

  2. Production and use of Li(d,n) neutrons for simulation of radiation effects in fusion reactors

    International Nuclear Information System (INIS)

    Goland, A.N.; Gurinsky, D.H.; Hendrie, J.; Kukkonen, J.; Sheehan, T.; Snead, C.L. Jr.

    1975-01-01

    In the Brookhaven Accelerator-Based Neutron Generator 1.5-cm thick x 12-cm wide films of lithium flowing at the velocity of approximately 10 m sec -1 will be the targets for 30-MeV D + and D - beams 1-cm high and 10-cm wide. At this energy a beam of energetic neutrons is emitted mainly in the forward direction (theta less than or equal to 20 0 ) as a result of the Li(d,n) breakup reaction. Measurements of the neutron flux and spectrum as a function of incident deuteron energy and emission angle theta(theta less than or equal to 20 0 ) indicate that the yield increases approximately linearly with increasing deuteron energy from 25 MeV to at least 35 MeV, and that the mean energy of the neutrons (theta = 0 0 ) is about 0.4 of the incident deuteron energies between 25 and 35 MeV. The most probable neutron energy in the forward-directed (theta = 0 0 ) spectrum is also about 0.4 of the deuteron energy over this range. For a 30-MeV beam, the full width at half maximum of the neutron spectrum is 11.8 MeV (theta = 0 0 ), and the mean neutron energy is 13 MeV. Pertinent radiation-damage parameters were calculated for various materials exposed to this neutron spectrum. In Nb, for example, the helium production rate and the displacement rate simulate the values anticipated in a D-T fusion reactor spectrum of comparable flux. Furthermore, the primary-recoil-atom energy distributions produced by Li(d,n) neutrons in Al, Nb, and Au are similar to those produced by 14-MeV neutrons. (U.S.)

  3. Development of a neutron irradiation device with a cooled crystal filter: Radiation physical properties and applications in in vivo irradiations

    International Nuclear Information System (INIS)

    Braetter, P.; Galinke, E.; Gatschke, W.; Gawlik, D.; Roesick, U.

    1979-01-01

    The radiation-physical and geometrical properties of a neutron-beam, collimated with a Bi-crystal filter were investigated at the reactor BER II. The influence of the crystal temperature as well as the actions of a reflector and a collimator on neutron flux-density and neutron field of the thermal neutrons were investigated. The dose contributions of the thermal, epithermal and fast neutrons as well as γ-radiation was determined by activation of the sample respective with TLD-measurements. The influence of irradiation and measurement geometry on the sensitivity and detection probability was investigated by means of phantom irradiations. The method prooved to be suitable, to detect changes of the Ca-content in a rat hind leg by about 10%. In investigations on animal groups of about 10 animals a threshold of detectability for changes of the ca-content is to be expected by about 4%. In a further group experiment it was found, that even in the case of multiple radiation the procedure of irradiation and measurement was not followed by a significant change in the Ca-content of the hind legs of the testing animals. (orig.) [de

  4. Modeling of neutron and photon transport in iron and concrete radiation shields by using Monte Carlo method

    CERN Document Server

    Žukauskaitėa, A; Plukienė, R; Ridikas, D

    2007-01-01

    Particle accelerators and other high energy facilities produce penetrating ionizing radiation (neutrons and γ-rays) that must be shielded. The objective of this work was to model photon and neutron transport in various materials, usually used as shielding, such as concrete, iron or graphite. Monte Carlo method allows obtaining answers by simulating individual particles and recording some aspects of their average behavior. In this work several nuclear experiments were modeled: AVF 65 (AVF cyclotron of Research Center of Nuclear Physics, Osaka University, Japan) – γ-ray beams (1-10 MeV), HIMAC (heavy-ion synchrotron of the National Institute of Radiological Sciences in Chiba, Japan) and ISIS-800 (ISIS intensive spallation neutron source facility of the Rutherford Appleton laboratory, UK) – high energy neutron (20-800 MeV) transport in iron and concrete. The calculation results were then compared with experimental data.compared with experimental data.

  5. RBE of 0,85 MeV neutrons in guinea pigs with intestinal form of radiation sickness

    International Nuclear Information System (INIS)

    Shaporov, V.N.; Sokolova, T.I.; Nasonova, T.A.; Aleshin, S.N.

    1989-01-01

    Relative biological effectiveness (RBE) coefficient of 0.85 MeV neutrons was 1.87 in comparison with 0.66 MeV γ-radiation ( 137 Cs) when estimated by the death rate of guinea pigs with intestinal form of radiation sickness. LD 50/5 was 5.9 and 11.06 respectively. Features of the mortality rate dynamics, clinical picture and pathoanatomical changes are discussed

  6. RBE of 0.85 MeV neutrons in Guinea pigs with a cerebral form of radiation sickness

    International Nuclear Information System (INIS)

    Shaporov, V.N.; Sokolova, T.I.; Nasonova, T.A.; Aleshin, S.I.

    1989-01-01

    The RBE coefficient of neutrons (0.85 MeV) was 1.87 in comparison with that of electron radiation (8 MeV) as determined by the death rate of guinea pigs with the cerebral form of radiation sickness. LD 50/1.5 amounted to 43.2 and 80.7 Gy. The dynamics of clinical symptoms at the height of the disease is discussed

  7. Measuring element for detection and dose measurement of gamma radiation and neutrons and manufacturing method for the measuring element

    International Nuclear Information System (INIS)

    Piesch, E.; John, W.

    1979-01-01

    The measuring element consists of a bubble-free glass composed on the basis of metaphosphate material. The detection of the γ-radiation takes place through the photoluminescence of the element, and detection of the neutrons by means of resulting β particles producing Cerenkov radiation in the radioluminescence material, that can be measured. For this purpose in addition to Ag the glass contains As as a second excitable element. (DG) [de

  8. The local distribution of radiation quality of a collimated fast neutron beam from 15 MeV deuterons on beryllium

    International Nuclear Information System (INIS)

    Fidorra, J.; Booz, J.

    1978-01-01

    The local distribution of radiation quality (ysub(F), ysub(D)) of a collimated fast neutron beam from 14 MeV deuterons on Beryllium was studied with a spherical 1/2 inch EG and G proportional counter simulating a diameter of 2μm. The deuterons were accelerated by the compact cyclotron CV-28 of the Kernforschungsanlage Juelich. The collimator was constructed by the Cyclotron Corporation. The mean neutron energy was 6 MeV. The measurements were performed in air and in a water phantom at a target skin distance of 125 cm. The energy deposition spectra of fast neutrons obtained at various positions were separated into three components of different radiation quality: the gamma component, the recoil proton component, and the heavy ion component

  9. Effects of neutron and gamma radiation on lithium-ion batteries

    Science.gov (United States)

    Qiu, Jie; He, Dandan; Sun, Mingzhai; Li, Shimeng; Wen, Cun; Hattrick-Simpers, Jason; Zheng, Yuan F.; Cao, Lei

    2015-02-01

    Radiation induced deterioration in the performance of lithium-ion (Li-ion) batteries can result in functional failures of electronic devices in modern electronic systems. The stability of the Li-ion battery under a radiation environment is of crucial importance. In this work, the surface morphology of the cathode material of a commercial Li-ion battery before and after neutron and gamma ray irradiation was characterized by atomic force microscopy (AFM). We found growth in the particle size of the cathode material in the range of 36-45% as a result of the irradiation. In addition, X-ray diffraction (XRD) patterns revealed a disordering of the crystal structure occurring in the post-irradiation sample. All of these led to a 8.4% capacity loss of the battery for the maximum received irradiation dose (2.744 Mrad) at post-irradiation. The effects of the radiation on the Li-ion battery are discussed in this paper.

  10. Effects of neutron and gamma radiation on lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jie; He, Dandan [Nuclear Engineering Program, Department of Mechanical and Aerospace, The Ohio State University, Columbus, OH 43210 (United States); Sun, Mingzhai [Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210 (United States); Li, Shimeng [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States); Wen, Cun; Hattrick-Simpers, Jason [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Zheng, Yuan F. [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace, The Ohio State University, Columbus, OH 43210 (United States)

    2015-02-15

    Radiation induced deterioration in the performance of lithium-ion (Li-ion) batteries can result in functional failures of electronic devices in modern electronic systems. The stability of the Li-ion battery under a radiation environment is of crucial importance. In this work, the surface morphology of the cathode material of a commercial Li-ion battery before and after neutron and gamma ray irradiation was characterized by atomic force microscopy (AFM). We found growth in the particle size of the cathode material in the range of 36–45% as a result of the irradiation. In addition, X-ray diffraction (XRD) patterns revealed a disordering of the crystal structure occurring in the post-irradiation sample. All of these led to a 8.4% capacity loss of the battery for the maximum received irradiation dose (2.744 Mrad) at post-irradiation. The effects of the radiation on the Li-ion battery are discussed in this paper.

  11. Survival of tumor bearing mice by sequencing of low dose rate (LDR) neutron and photon radiation

    International Nuclear Information System (INIS)

    Onomura, C.I.; Feola, J.M.; Maruyama, Y.

    1984-01-01

    Cf-252 neutron radiation (NT) has been shown to be effective therapy for bulky, hypoxic human tumor and to produce consistent rapid clearance and 5 year cures. NT has been found to be more or less effective depending upon the schedule in which it is used and upon mixing with photon radiation. In an effort to study this scheduling and photon effect, LSA tumor was irradiated in vivo in a hypoxic, advanced state, in different schedules in combination of NT with Co-60 photons. The LSA lymphoma of C57BL/ym mice represents an accurate system to assess dose-response of tumor cells in vivo. Mean survival time was used as endpoint. A high RBE for LDR Cf-252 NT was observed with a RBE(n) of -- 5.0. The effect was not greatly sensitive to sequence in which photons were used. Comparison studies were also tested relative to LDR Cs-137 photon radiation. The results support the high efficacy of LDR NT for destruction of hypoxic tumor in vivo

  12. Effects of neutron and gamma radiation on lithium-ion batteries

    International Nuclear Information System (INIS)

    Qiu, Jie; He, Dandan; Sun, Mingzhai; Li, Shimeng; Wen, Cun; Hattrick-Simpers, Jason; Zheng, Yuan F.; Cao, Lei

    2015-01-01

    Radiation induced deterioration in the performance of lithium-ion (Li-ion) batteries can result in functional failures of electronic devices in modern electronic systems. The stability of the Li-ion battery under a radiation environment is of crucial importance. In this work, the surface morphology of the cathode material of a commercial Li-ion battery before and after neutron and gamma ray irradiation was characterized by atomic force microscopy (AFM). We found growth in the particle size of the cathode material in the range of 36–45% as a result of the irradiation. In addition, X-ray diffraction (XRD) patterns revealed a disordering of the crystal structure occurring in the post-irradiation sample. All of these led to a 8.4% capacity loss of the battery for the maximum received irradiation dose (2.744 Mrad) at post-irradiation. The effects of the radiation on the Li-ion battery are discussed in this paper

  13. GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.

    Science.gov (United States)

    Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T

    2016-09-01

    A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Radiation transport analyses in support of the SNS Target Station Neutron Beam Line Shutters Title I Design

    International Nuclear Information System (INIS)

    Miller, T.M.; Pevey, R.E.; Lillie, R.A.; Johnson, J.O.

    2000-01-01

    A detailed radiation transport analysis of the Spallation Neutron Source (SNS) shutters is important for the construction of the SNS because of its impact on conventional facility design, normal operation of the facility, and maintenance operations. Thus far the analysis of the SNS shutter travel gaps has been completed. This analysis was performed using coupled Monte Carlo and multi-dimensional discrete ordinates calculations

  15. Effect of combined treatments of neutron radiation and plant growth regulator (GA) on seed germination and growth of rice

    International Nuclear Information System (INIS)

    Xie Chonghua; Wang Dan; Chen Yongjun; Wang Ying; Luo Jie; Liao Wei; Zheng Chun

    2007-01-01

    Rice seeds were irradiated with fast-neutron impulse pile and then were treated with different concentration of GA 3 . The effect of combined treatments on seeds germination and seedling growth were studied. The results showed that lethal pouring dose of neutron radiation on Hongai B and CB was 486 x 10 10 /cm 2 , Mianhui 2009 was 900 x 10 10 /cm 2 and Mianhui 2095 and Minghui 63 were 1350 x 10 10 /cm 2 . Semi-lethal pouring dose (LD 50 ) of neutron radiation on Hongai Band CB was 198-486 x 10 10 /cm 2 , Mianhui 2009 was about 486 x 10 10 /cm 2 , Minghui 63 was 629.49 x 10 10 /cm 2 and Mianhui 2095 is 774.69 x 10 10 /cm 2 . Radiation sensitivity of rice is Hongai B, CB>Mianhui 2009>Minghui 63>Mianhui 2095. GA 3 is a kind of efficient chemical radiation protection. 40 and 80 mg/L are the proper GA 3 concentrations of neutron irradiated rice seeds. (authors)

  16. An experiment for the precision measurement of the radiative decay mode of the neutron

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.L., E-mail: cooperrl@umich.ed [University of Michigan, Ann Arbor, MI 48109 (United States); Bass, C.D. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Beise, E.J.; Breuer, H. [University of Maryland, College Park, MD 20742 (United States); Byrne, J. [University of Sussex, BN1 9QH (United Kingdom); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Coakley, K.J. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Dewey, M.S.; Fisher, B.M.; Fu, C.; Gentile, T.R. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); McGonagle, M. [University of Maryland, College Park, MD 20742 (United States); Mumm, H.P.; Nico, J.S.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States)

    2009-12-11

    The familiar neutron decay into a proton, electron, and antineutrino can be accompanied by photons with sufficient energy to be detected. We recently reported the first observation of the radiative beta decay branch for the free neutron with photons of energy 15-340 keV. We performed the experiment in the bore of a superconducting magnet where electron, proton, and photon signals were measured. A bar of bismuth germanate scintillating crystal coupled to an avalanche photodiode served as the photon detector that operated in the cryogenic, high magnetic field environment. The branching ratio for this energy region was measured and is consistent with the theoretical calculation. An experiment is under way to measure the branching ratio with an improved precision of 1% relative standard uncertainty and to measure the photon energy spectrum. In this paper, the apparatus modifications to reduce the systematic uncertainties will be described. Central to these improvements is the development of a 12-element detector based on the original photon detector design that will improve the statistical sensitivity. During data acquisition, a detailed calibration program will be performed to improve the systematic uncertainties. The development of these modifications is currently under way, and the second run of the experiment commenced in July 2008.

  17. Photon strength functions in Gd isotopes studied from radiative capture of resonance neutrons

    Directory of Open Access Journals (Sweden)

    Kroll J.

    2014-04-01

    Full Text Available The experimental spectra of γ rays following radiative neutron capture on isolated resonances of stable 152,154–158Gd targets were measured by the DANCE calorimeter installed at the Los Alamos Neutron Scattering Center in New Mexico, USA. These spectra were analyzed within the extreme statistical model to get new information on the photon strength functions. Special emphasis was put on study of the scissors vibrational mode present in these isotopes. Our data show that the scissors-mode resonances are built not only on the ground states but also on the excited levels of all studied Gd isotopes. The scissors mode strength observed in 157,159Gd products is significantly higher than in neighboring even-even nuclei 156,158Gd. Such a difference indicates the existence of an odd-even effect in the scissors mode strength. Moreover, there exists no universal parameter-free model of the electric dipole photon strength function describing the experimental data in all of the Gd isotopes studied. The results for the scissors mode are compared with the (γ, γ′ data for the ground-state transitions and with the results from 3He-induced reactions.

  18. The morphology of radiation damage in copper irradiated with neutrons at elevated temperatures

    International Nuclear Information System (INIS)

    Kemm, K.R.

    1977-01-01

    This thesis is an investigation of the radiation damage morphology of high purity copper crystals irradiated with fast neutrons at temperatures in the range of 250 to 400 degrees C. At these high temperatures neutron damage is found to accumulate into large 3-dimensional rafts up to 100 μm in size, and the well known homogeneous distribution of black dot damage which is characteristic of irradiations at low temperatures is not observed. The characteristics and composition of the rafts of damage at different temperatures in the range 250 to 400 degrees C have been compared and found to differ to a large extent. It has also been shown that the background areas between rafts contain a rather low density of damage at all temperatures studied. It is therefore concluded that many of the interstitial atoms formed during irradiation migrate over large distances through the crystal lattice to precipitate at the sites of the dislocations forming the large rafts, and so denuded inter-rafts areas are left behind. It is proposed that these large rafts originate from grown-in dislocations present in the crystal before irradiation

  19. Light ions cyclotron bombardment to simulate fast neutron radiation damage in nuclear materials

    International Nuclear Information System (INIS)

    Segura, E.; Lucki, G.; Aguiar, D.

    1984-01-01

    The applicability and limitations of the use of cyclotron light ions bombardment to simulate the effects of the neutron irradiation are presented. Light ions with energies of about 10 MeV are capable to produce homogeneous damage in specimens suitable for measuring bulk mechanical properties although their low damage rate of 10 -5 dpa.sec -1 limit the dose range to a few dpa. On the other hand, cyclotron alpha particle implantation provides a fast and convenient way of introducing helium with a minimum of side effects so that we can take advantage of this technique to get better understanding of the mechanism by which this insoluble gas produces high temperature embrittlement. Some experimental details such as dimensions and cooling techniques are described. Finally a description of the infrastructure for cyclotron alpha particle implantation and a creep-test facility of the Division of Radiation Damage at IPEN-CNEN/SP are presented. (Author) [pt

  20. Effect of neutron radiation on mechanical properties of permanent near core structures