WorldWideScience

Sample records for radiating current-carrying plasma

  1. Magnetoacoustic waves in current-carrying plasmas

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1980-04-01

    The results of theoretical and experimental investigations of the characteristics of magnetoacoustic waves in non-uniform, current-carrying plasmas are reviewed. Dissipative MHD and collisionless theories are considered. Also discussed is the use of magnetoacoustic waves in plasma diagnostics and plasma heating

  2. Necking down of sausages in current-carrying plasma pinches

    International Nuclear Information System (INIS)

    Trubnikov, B.A.; Zhdanov, S.K.

    1986-01-01

    The evolution of long-wave perturbations is shown to be equivalent, for various unstable media, to the dynamics of a gas with a negative adiabatic index γ. This evolution is described (for various values at N) by the quasi-Chaplygin system of equations Several examples of such media are considered, including a ''Chaplygin gas'' (N = 3), drops on a ceiling or ''solitons which have broken'' (N = 0), necks in a current-carrying plasma pinch with a skin effect, for both incompressible and compressible models (N = 2), and the breakup of liquid jets into drops (N = 3/2). A principle for selecting evolutionary solutions corresponding to the absence of perturbations in the limit t → -∞ is formulated. In the cases N = 0 and N = 2, a hodograph transformation reduces system (1) to a magnetostatic equation (ΔA)/sub phi/ = -(4π/c)j/sub phi/ and all the instability modes are equivalent to multipoles of circular currents which are localized on a circle. Exact solutions are given for periodic and isolated (localized) perturbations. The breakup of a medium into distinct blobs, in particular, the rupture of necks in a current-carrying plasma pinch, is demonstrated

  3. Langmuir probe characteristic in a current - carrying magnetized plasma

    International Nuclear Information System (INIS)

    Stanojevic, M.; Cercek, M.; Gyergyek, T.

    1995-01-01

    Experimental investigation of the Langmuir probe characteristic is a magnetized plasma with an electron current along the magnetic field direction shows that the standard procedure for determination of the electron temperature and plasma density, which is applicable in a current - free magnetized plasma, gives erroneous results for these plasma parameters. However, more precise values of the plasma parameters can be calculated from the ion saturation currents and electron temperatures obtained with that procedure for two opposite orientations of the one - sided planar probe collecting surface with respect to the direction of the electron drift. With the existing theoretical models only the order of magnitude of the electron drift velocity can be accurately determined from the measured electron saturation currents for the two probe orientations. (author)

  4. Stationary spectra in a quasi neutral current-carrying plasma

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    The low-frequency short-wave equilibrium spectra of electromagnetic fluctuations are obtained, accounting for cross-field correlations. The statistical analysis shows that a longitudinal current in a dense quasi neutral (α e ≡4πnomec 2 /Bo 2 >>1) plasma destroys the stationary of fluctuation spectra corresponding to zero fluxes of motion invariants, and may alter also the anomalous electron heat conductivity. 2 refs. (author)

  5. Chaotic behavior of current-carrying plasmas in external periodic oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Noriyasu; Tanaka, Masayoshi; Komori, Akio; Kawai, Yoshinobu

    1989-01-01

    A set of cascading bifurcations and a chaotic state in the presence of an external periodic oscillation are experimentally investigated in a current-carrying plasma. The measured bifurcation sequence leading to chaos, which is controlled by changing plasma densities and the frequencies of external oscillations, is in qualitative agreement with a theory which describes anharmonic systems in periodic fields. (author).

  6. Emissions from heavy current carrying high density plasma and their diagnostics

    International Nuclear Information System (INIS)

    Hirano, Katsumi

    1987-06-01

    Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)

  7. Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transform

    International Nuclear Information System (INIS)

    ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Maurer, D. A.; Pandya, M. D.; Traverso, P.

    2014-01-01

    The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium

  8. Observation of minor collapse of current-carrying plasma in LHD

    International Nuclear Information System (INIS)

    Narushima, Yoshiro; Sakakibara, Satoru; Watanabe, Kiyomasa

    2006-01-01

    A minor collapse observed in current-carrying plasma has been investigated in Large Helical Device (LHD). The magnetic configuration with high central rotational transform has ι/2π=1 surface at the core region and is relatively unstable for the m/n=1/1 mode (here, m and n are the poloidal and toroidal mode number, respectively). When the beam-driven current exceeds a certain value, the m/n=1/1 mode grows with a growth time of ∼30 ms and causes a sudden drop of the plasma stored energy and the electron temperature, and it also limits the plasma current itself. A local flattening in an electron temperature profile appears just after the minor collapse. The mode does not rotate and stays at the same spatial location. The possibility of pressure- and current-driven magneto-hydro dynamics (MHD) instabilities is discussed. (author)

  9. Expansion of a multicomponent current-carrying plasma jet into vacuum

    International Nuclear Information System (INIS)

    Krasov, V. I.; Paperny, V. L.

    2017-01-01

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z 1 = +1 and Z 2 = +2 and (ii) plasma with ions in equal charge states but with the mass ratio m 1 /m 2 = 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.

  10. Expansion of a multicomponent current-carrying plasma jet into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Krasov, V. I.; Paperny, V. L., E-mail: paperny@math.isu.runnet.ru [Irkutsk State University (Russian Federation)

    2017-03-15

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z{sub 1}= +1 and Z{sub 2}= +2 and (ii) plasma with ions in equal charge states but with the mass ratio m{sub 1}/m{sub 2} = 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.

  11. Evolution of ion-acoustic potential well in a current-carrying plasma

    International Nuclear Information System (INIS)

    Maslov, V.I.

    1990-01-01

    Properties and evolution of nonlinear correlated collective disturbance of potential well in current-carrying limited plasma are described. Study shows, that potential well intensifies while exchanging energy with resonance electrons reflecting from it with distribution unstable function. In this case, electron deficiency occurs ahead of the well and electron excess - behined it due to asymmetry, relatively to well velocity, of distribution function of electrons injected at boundaries, in velocity space and due to their reflection from well. Quasineutrality is reduced by self-congruent formation of potential jump within well range. With amplitude growth at its essential values the well is braked. Similar pattern of localized disturbance evolution was observed during numerical and laboratory experiments

  12. Magneto-acoustic resonance in a non-uniform current carrying plasma column

    OpenAIRE

    Vaclavik, J.

    2017-01-01

    The forced radial magneto-acoustic oscillations in a plasma column with nonuniform mass density and temperature are investigated. It turns out that the oscillations have a resonant character similar to that of the magneto-acoustic oscillations in a uniform plasma column. The properties of the axial and azimuthal components of the oscillating magnetic field are discussed in detail

  13. Hybrid simulations of current-carrying instabilities in Z-pinch plasmas with sheared axial flow

    International Nuclear Information System (INIS)

    Sotnikov, Vladimir I.; Makhin, Volodymyr; Bauer, Bruno S.; Hellinger, Petr; Travnicek, Pavel; Fiala, Vladimir; Leboeuf, Jean-Noel

    2002-01-01

    The development of instabilities in z-pinch plasmas has been studied with three-dimensional (3D) hybrid simulations. Plasma equilibria without and with sheared axial flow have been considered. Results from the linear phase of the hybrid simulations compare well with linear Hall magnetohydrodynamics (MHD) calculations for sausage modes. The hybrid simulations show that sheared axial flow has a stabilizing effect on the development of both sausage and kink modes

  14. Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Urrutia, J.M.; Rousculp, C.L.

    1995-01-01

    Electromagnetic properties of current pulses carried by whistler wave packets are obtained from a basic laboratory experiment. While the magnetic field and current density are described in the preceding companion paper (Part III), the present analysis starts with the electric field. The inductive and space charge electric field contributions are separately calculated in Fourier space from the measured magnetic field and Ohm's law along B 0 . Inverse Fourier transformation yields the total electric field in space and time, separated into rotational and divergent contributions. The space-charge density in whistler wave packets is obtained. The cross-field tensor conductivity is determined. The frozen-in condition is nearly satisfied, E+v e xB congruent 0. The dissipation is obtained from Poynting's theorem. The waves are collisionally damped; Landau damping is negligible. A radiation resistance for the electrode is determined. Analogous to Poynting's theorem, the transport of helicity is analyzed. Current helicity is generated by a flow of helicity between pulses traveling in opposite directions which carry opposite signs of helicity. Helicity is dissipated by collisions. These observations complete a detailed description of whistler/current pulses which can occur in various laboratory and space plasmas. copyright 1995 American Institute of Physics

  15. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    International Nuclear Information System (INIS)

    Peters, M.

    1996-01-01

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity χ to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.)

  16. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M

    1996-01-16

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).

  17. Low edge safety factor operation and passive disruption avoidance in current carrying plasmas by the addition of stellarator rotational transform

    Science.gov (United States)

    Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) disruption phenomenology observed.

  18. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    Energy Technology Data Exchange (ETDEWEB)

    Koliner, J. J.; Boguski, J., E-mail: boguski@wisc.edu; Anderson, J. K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J. R.; Goetz, J. A.; McGarry, M.; Morton, L. A.; Parke, E. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Cianciosa, M. R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)

    2016-03-15

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B{sub θ} measurement loops around the plasma minor diameter with qualitative agreement between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B{sub θ} at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.

  19. Relaxation phenomena in current-carrying toroidal plasmas

    International Nuclear Information System (INIS)

    Yoshida, Zensho

    1986-01-01

    A theory of intrinsic dissipative structure is developed, which is to analyze the decay of a dissipative dynamical system. The theory is applied to the study of stable equilibria in magnetohydrodynamic (MHD) systems. Special sets of MHD equilibria are characterized as attractors of MHD systems, and they are shown to be classified into four classes, which cover wide range of experimentally observed MHD equilibria. (author)

  20. Characterization of LH induced current carrying fast electrons in JET

    Energy Technology Data Exchange (ETDEWEB)

    Ramponi, G.; Airoldi, A. [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica del Plasma; Bartlett, D.; Brusati, M.; Froissard, P.; Gormezano, C.; Rimini, F.; Silva, R.P. da; Tanzi, C.P. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1992-12-31

    Lower Hybrid Current Drive (LHCD) experiments have recently been made at JET by coupling up to 2.4 MW of RF power at 3.7 GHz, with a power spectrum centered at n{sub ||} = 1.8 {+-} 0.2 corresponding to a resonating electron energy of about 100 keV via Electron Landau Damping. The Current Drive (CD) efficiency has been observed to increase when LH and ICRH power are applied simultaneously to the plasma, suggesting that a part of the fast magnetosonic wave is absorbed on the LH-generated fast electrons. An important problem of CD experiments in tokamaks is the determination of the radial distribution of the driven current and the characterization in the momentum space of the current carrying fast electrons by using appropriate diagnostic tools. For this purpose, a combined analysis of the Electron Cyclotron Emission (ECE) and of the Fast Electron Bremsstrahlung (FEB) measurements has been made, allowing the relevant parameters of the suprathermal electrons to be estimated. (author) 5 refs., 5 figs., 2 tabs.

  1. Characterization of LH induced current carrying fast electrons in JET

    International Nuclear Information System (INIS)

    Ramponi, G.; Airoldi, A.; Bartlett, D.; Brusati, M.; Froissard, P.; Gormezano, C.; Rimini, F.; Silva, R.P. da; Tanzi, C.P.

    1992-01-01

    Lower Hybrid Current Drive (LHCD) experiments have recently been made at JET by coupling up to 2.4 MW of RF power at 3.7 GHz, with a power spectrum centered at n || = 1.8 ± 0.2 corresponding to a resonating electron energy of about 100 keV via Electron Landau Damping. The Current Drive (CD) efficiency has been observed to increase when LH and ICRH power are applied simultaneously to the plasma, suggesting that a part of the fast magnetosonic wave is absorbed on the LH-generated fast electrons. An important problem of CD experiments in tokamaks is the determination of the radial distribution of the driven current and the characterization in the momentum space of the current carrying fast electrons by using appropriate diagnostic tools. For this purpose, a combined analysis of the Electron Cyclotron Emission (ECE) and of the Fast Electron Bremsstrahlung (FEB) measurements has been made, allowing the relevant parameters of the suprathermal electrons to be estimated. (author) 5 refs., 5 figs., 2 tabs

  2. Single-electron states near a current-carrying core

    International Nuclear Information System (INIS)

    Masale, M.

    2004-01-01

    The energy spectrum of an electron confined near a current-carrying core is obtained as a function of the azimuthal applied magnetic field within the effective-mass approximation. The double degeneracy of the non-zero electron's axial wave number (k z ) states is lifted by the current-induced magnetic field while that of the non-zero azimuthal quantum number (m) states is preserved. A further analysis is the evaluations of the oscillator strengths for optical transitions involving the lowest-order pair of the electron's energy subbands within the dipole approximation. The radiation field is taken as that of elliptically polarized light incident along the core axis. In this polarization and within the dipole approximation, the allowed transitions are only those governed by the following specific selection rules. The azimuthal quantum numbers of the initial and final states must differ by unity while the electron's axial wave number is conserved. The azimuthal magnetic field is also found to lift the multiple degeneracies of the k z ≠0 interaction integrals as well as those of the oscillator strengths for optical transitions

  3. General relativistic galvano-gravitomagnetic effect in current carrying conductors

    International Nuclear Information System (INIS)

    Ahmedov, B.J.

    1998-11-01

    The analogy between general relativity and electromagnetism suggests that there is a galvano-gravitomagnetic effect, which is the gravitational analogue of the Hall effect. This new effect takes place when a current carrying conductor is placed in a gravitomagnetic field and the conduction electrons moving inside the conductor are deflected transversally with respect to the current flow. In connection with this galvano-gravitomagnetic effect, we explore the possibility of using current carrying conductors for detecting the gravitomagnetic field of the Earth. (author)

  4. Hotspot relaxation dynamics in a current-carrying superconductor

    Science.gov (United States)

    Marsili, F.; Stevens, M. J.; Kozorezov, A.; Verma, V. B.; Lambert, Colin; Stern, J. A.; Horansky, R. D.; Dyer, S.; Duff, S.; Pappas, D. P.; Lita, A. E.; Shaw, M. D.; Mirin, R. P.; Nam, S. W.

    2016-03-01

    We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors.

  5. Cyclotron radiation from hot plasmas

    International Nuclear Information System (INIS)

    Pohl, F.; Henning, J.; Duechs, D.

    1975-11-01

    In calculating the energy transport and losses due to cyclotron radiation there are two major requirements: the absorption coefficient has to be known and the proper geometry of the plasma has to be taken into account. In this report Trubnikov's integral formulae for the absorption coefficient have been evaluated numerically and compared with the approximative formulas of previous authors. Deviations by a factor of 2 - 10 in various frequency regimes are not unusual. With these coefficients the rate of change of the energy density due to cyclotron radiation in a plasma as well as the radiation density at a plasma surface are computed for plasma slab and plasma cylinder. Sometimes considerable differences to the results of previons papers can found. Many simple formulae interpolating the numerical results are given in the text, and the FORTRAN computer programs have been reproduced in the appendices. (orig.) [de

  6. Some new radiation processes in plasmas

    International Nuclear Information System (INIS)

    Wu, C.S.

    1981-01-01

    Some new plasma radiation processes are reviewed, viz., (1) emission near the electron plasma frequency, (2) direct amplification of radiation near the electron cycloton frequency, and (3) parametic amplification of radiation by stimulated scattering. (L.C.) [pt

  7. Stabilization of magnetohydrodynamic instabilities in a current-carrying stellarator

    International Nuclear Information System (INIS)

    Matsuoka, K.; Miyamoto, K.

    1979-02-01

    Stable profiles against MHD instabilities are given in a cylindrical current-carrying stellarator. The comparison theorem, i.e., guiding principle for stabilization, is obtained in the same way as in a tokamak. As the external rotational transform due to an l = 2 helical field increases, MHD properties in a stellarator are improved than in a tokamak and the minimum value of q(a) which provides simultaneous stabilization of MHD modes can be lowered less than 2 even without a conducting shell. In an l = 3 stellarator, however, as shown from the Euler equation, the configuration becomes more unstable than in a tokamak and strong tailoring of the current profile is necessary in order to stabilize MHD modes. (author)

  8. Radiating properties of solar plasmas

    Science.gov (United States)

    Bruner, M. E.; Mcwhirter, R. W. P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma.

  9. Radiating properties of solar plasmas

    International Nuclear Information System (INIS)

    Bruner, M.E.; Mcwhirter, R.W.P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma. 21 references

  10. Generation of zonal magnetic fields by drift waves in a current carrying nonuniform magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    It is shown that zonal magnetic fields (ZMFs) can be nonlinearly excited by incoherent drift waves (DWs) in a current carrying nonuniform magnetoplasma. The dynamics of incoherent DWs in the presence of ZMFs is governed by a wave-kinetic equation. The governing equation for ZMFs in the presence of nonlinear advection force of the DWs is obtained from the parallel component of the electron momentum equation and the Faraday law. Standard techniques are used to derive a nonlinear dispersion relation, which depicts instability via which ZMFs are excited in plasmas. ZMFs may inhibit the turbulent cross-field particle and energy transport in a nonuniform magnetoplasma.

  11. Continuum radiation of argon plasma

    International Nuclear Information System (INIS)

    D'Yachkov, L.G.

    1995-01-01

    A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions

  12. Plasma radiation in tokamak disruption simulation experiments

    International Nuclear Information System (INIS)

    Arkhipov, N.; Bakhtin, V.; Safronov, V.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A.; Wuerz, H.

    1995-01-01

    Plasma impact results in sudden evaporation of divertor plate material and produces a plasma cloud which acts as a protective shield. The incoming energy flux is absorbed in the plasma shield and is converted mainly into radiation. Thus the radiative characteristics of the target plasma determine the dissipation of the incoming energy and the heat load at the target. Radiation of target plasma is studied at the two plasma gun facility 2MK-200 at Troitsk. Space- and time-resolved spectroscopy and time-integrated space-resolved calorimetry are employed as diagnostics. Graphite and tungsten samples are exposed to deuterium plasma streams. It is found that the radiative characteristics depend strongly on the target material. Tungsten plasma arises within 1 micros close to the surface and shows continuum radiation only. Expansion of tungsten plasma is restricted. For a graphite target the plasma shield is a mixture of carbon and deuterium. It expands along the magnetic field lines with a velocity of v = (3--4) 10 6 cm/s. The plasma shield is a two zone plasma with a hot low dense corona and a cold dense layer close to the target. The plasma corona emits intense soft x-ray (SXR) line radiation in the frequency range from 300--380 eV mainly from CV ions. It acts as effective dissipation system and converts volumetrically the incoming energy flux into SXR radiation

  13. Nonlinear calculation of the M=1 internal kink instability in current carrying stellarators

    International Nuclear Information System (INIS)

    Wakatani, M.

    1978-02-01

    Nonlinear properties of the m = 1 internal kink mode are shown in a low β current carrying stellarator. The effects of the external helical magnetic fields are considered through a rotational transform and the magnetic surface is assumed to be circular. Magnetic surfaces inside the iota sub(h) + iota sub(σ) = 1 surface shift and deform non-circularly, while magnetic surfaces outside the iota sub(h) + iota sub(σ) = 1 are not disturbed, where iota sub(h) is a rotational transform due to helical magnetic fields and iota sub(σ) is due to a plasma current. Many higher harmonics are excited after the fundamental mode saturates. When the external helical magnetic fields are lowered, the m = 1 tearing mode similar to that in a low β tokamak grows and magnetic islands appear near the iota sub(h) + iota sub(σ) = 1 surface. For adequate helical magnetic fields, the current carrying stellarator becomes stable against both the m = 1 internal kink mode and the m = 1 tearing mode, without lowering the rotational transform. (auth.)

  14. Electromagnetic radiation from beam-plasma instabilities

    Science.gov (United States)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  15. Radiation phenomena of plasma waves, 1

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1978-06-01

    The fundamental radiation theories on radiation phenomena of plasma waves are presented. As the fundamental concepts of propagating waves, phase, group and ray velocities are explained, and phase velocity surface, group velocity surface, ray velocity surface and refractive index surface are considered. These concepts are important in anisotropic plasma. Fundamental equations for electron plasma waves in a fluid model and fundamental equations for ion plasma waves can be expressed with the above mentioned concepts. Kuehl derived the formulas for general radiation fields of electromagnetic and electrostatic waves which are radiated from an arbitrary current source. Fundamental equations for kinetic model are the Vlasov equation and Maxwell equations. By investigating electromagnetic radiation in cold anisotropic plasma, Kuehl found the important behavior that the fields radiated from a source become very large in certain directions for some ranges of plasma parameters. The fact is the so-called high frequency resonance cone. A fundamental formula for quasi-static radiation from an oscillating point source in warm anisotropic plasma includes the near field of electromagnetic mode and the field of electrostatic mode, which are radiated from the source. This paper presents the formula in a generalized form. (Kato, T.)

  16. Electromagnetic radiation from beam-plasma instabilities

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Whelan, D.A.

    1982-01-01

    This chapter investigates the mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves. Electromagnetic radiation arises from both natural beam-plasma systems (e.g., type III solar bursts and kilometric radiation), and from man-made electron beams injected from rockets and spacecraft. A pulsed magnetized discharge plasma is produced with a 1 m diam. oxide-coated cathode and the discussed experiment is performed in the quiescent afterglow. The primary beam-plasma instability involves the excitation of electrostatic plasma waves. Electromagnetic radiation from the beam-plasma system is observed with microwave antennas outside the plasma (all probes removed) or with coax-fed dipoles which can be inserted radially and axially into the plasma. The physical process of mode coupling by which electromagnetic radiation is generated in an electrostatic beam-plasma instability is identified. The results are relevant to beam injection experiments from rockets or satellites into space plasmas. The limited penetration of the beam current into the plasma due to instabilities is demonstrated

  17. Theory of relativistic radiation reflection from plasmas

    Science.gov (United States)

    Gonoskov, Arkady

    2018-01-01

    We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons' tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in [Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of incidence. We confirm with ab initio PIC simulations that the developed theory accurately describes laser-plasma interactions in the regime where the reflection of relativistically strong radiation is accompanied by significant, repeated relocation of plasma electrons. In particular, the theory can be applied for the studies of plasma heating and coherent and incoherent emissions in the RES regime of high-intensity laser-plasma interaction.

  18. Kinetic and radiation processes in cluster plasmas

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1996-01-01

    The analysis of processes is made for a cluster plasma which is a xenon arc plasma of a high pressure with an admixture of tungsten cluster ions. Because cluster ions emit radiation, this system is a light source which parameters are determined by various processes such as heat release and transport of charged particles in the plasma, radiative processes involving clusters, processes of cluster evaporation and attachment of atoms to it that leads to an equilibrium between clusters and vapor of their atoms, processes of cluster generation, processes of the ionization equilibrium between cluster ions and plasma electrons, transport of cluster ions in the discharge plasma in all directions. These processes govern by properties of a specific cluster plasma under consideration. (author)

  19. Plasma mechanizm for auroral kilometer wave radiation

    International Nuclear Information System (INIS)

    Vlasov, V.G.

    1989-01-01

    The linear mechanism of auroral kilometer radiation (AKR) on the Cherenkov resonance is developed. The point is that plasma waves swinged by the electron beam in a dimer auroral plasma cavern on the Cherenkov resonance excercise 100% transformation under conventional and inconventional AKR modes under definite conditions

  20. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs

  1. Plasma x-ray radiation source.

    Science.gov (United States)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  2. Reconfigurable antennas radiations using plasma Faraday cage

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2015-01-01

    International audience; This letter presents a new reconfigurable plasma antenna associated with a Faraday cage. The Faraday cage is realized using a fluorescent lamp. A patch antenna with a broadside radiation pattern or a monopole antenna with an end-fire radiation pattern , operating at 2.45 GHz, is placed inside Faraday cage. The performance of the reconfigurable system is observed in terms of input reflection coefficient, gain and radiation pattern via simulation and measurement. It is s...

  3. Radiation hydrodynamics of z-pinch plasmas

    International Nuclear Information System (INIS)

    Davis, J.

    1993-01-01

    Over the years there has been a sustained interest in and fascination with Z-pinch plasmas. Whether the interest is in radiation source development, fusion plasmas, or basic research there exits an extensive bibliography of literature promulgating and perpetuating a variety of claims regarding the performance of Z-pinch plasmas. In this paper an attempt will be made to present a coherent picture of the documented and commonly held views for a class of Z-pinch plasmas concerned primarily with soft x-ray radiation source development. Many of the issues and findings are common to Z-pinch plasmas in general but the attention here will be focused on gas puffs and multiple wire arrays. The role and importance of radiation on the dynamics and the interplay between the radiation and the dynamics will also be presented and discussed. A number of comparisons with experimental results will be made with 0-, 1-, and 2-D numerical simulations for several pulsed power drivers ranging in current from several mega-amps to 10's of mega-amps for a variety of risetimes and load materials

  4. Coaxial discharge plasma parameters and radiation emission

    International Nuclear Information System (INIS)

    Solimen, H.M.

    1993-01-01

    Results are reported for experiments carried out on a Mather type coaxial discharge plasma device. Experimental measurements of the electron temperature and density for the plasma propagated from the coaxial discharge are determined by using a biased double electric probe. The experimental results illustrated that , there are two groups of the plasma in the ejected plasma bulk, at 9 cm from the muzzle axis, the plasma reached the probe at 20 μsec from the start of discharge. The first group has electron temperature and density 27 eV and 3 x 10 14 cm -3 respectively,while The second group has 25 eV and 3 x 10 14 cm -3 respectively. The decay rate of the electron temperature and density of each group is presented. The plasma radiation spectrum is detected by a dielectric filter at 3500 A degree or 6100 A degree . The experimental measurements showed that, without or with dielectric filters, the visible radiation consists from two pulses with different magnitudes within the same half cycle of discharge. The time resolution of the soft x-ray is achieved by means of scintillator detector. The detected x-ray pulse during the first half cycle of discharge had a double peaks with different structures. All the experimental results present in this paper showed that the plasma bulk propagated in the expansion chamber, consists of two-groups. 6 fig

  5. Nonthermal Radiation Processes in Interplanetary Plasmas

    Science.gov (United States)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  6. Absorption of turbulent laser plasma radiation

    International Nuclear Information System (INIS)

    Silin, V.P.

    1979-02-01

    Some theoretical results relating to the interaction of high-power laser radiation with a plasma are presented including the development of a theory of parametric instabilities in an inhomogeneous laser plasma which shows that the size of the spatial region in which the turbulent state develops is comparable with the characteristic dimension of a several-fold fluctuation in the plasma density close to its critical value. The conditions are identified under which parametric turbulence gives an anomalous effective collision frequency substantially greater than the normal electron-ion collision frequency. Even during the build-up of strong parametric turbulence, conditions are found for the development of anomalous dissipation which results in heating of the bulk of the electrons. Under opposite conditions, the dynamic behaviour due to the influence of the ponderomotive forces associated with the p component of the radiation field shows that under slow plasma flow conditions, a considerable proportion of the laser energy absorbed by the plasma is transferred to the fast electrons. Suppression of the Cherenkov mechanism for generation of the fast electron component is observed on transition to fast plasma flow conditions. (author)

  7. Thermal radiation properties of PTFE plasma

    Science.gov (United States)

    Liu, Xiangyang; Wang, Siyu; Zhou, Yang; Wu, Zhiwen; Xie, Kan; Wang, Ningfei

    2017-06-01

    To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene (PTFE) as ablation materials, the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium (LTE) and optical thin assumptions. It is clarified that line radiation is the dominant mechanism of PTFE plasma. The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above 15 000 K. The emission coefficient increases with increasing temperature and pressure. Furthermore, it has a good log linear relation with pressure. Equivalent emissivity varies complexly with temperature, and has a critical point between 20 000 K to 25 000 K. The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.

  8. Radiative damping in plasma-based accelerators

    Directory of Open Access Journals (Sweden)

    I. Yu. Kostyukov

    2012-11-01

    Full Text Available The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  9. On the Behaviour of Current-Carrying Wire-Conductors and Bucking of a Column

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Fereidoon, A.

    2013-01-01

    This paper applies approximate analytical methods namely Iteration Perturbation Method (IPM), variational approach (VA) and Parameter Expanding Method (PEM) to Single-Degree-Of-Freedom (SDOF) nonlinear oscillation systems. Some numerical cases as dynamic behavior of current-carrying wire-conductors...

  10. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    Science.gov (United States)

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  11. Plasma diagnostics using synchrotron radiation in tokamaks

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.; Granata, G.

    1995-09-01

    This report deal with the use of synchrotron radiation in tokamaks. The main advantage of this new method is that it enables to overcome several deficiencies, caused by cut-off, refraction, and harmonic overlap. It also makes it possible to enhance the informative contents of the familiar low harmonic scheme. The basic theory of the method is presented and illustrated by numerical applications, for plasma parameters of relevance in present and next step tokamaks. (TEC). 10 refs., 13 figs

  12. Infrared Signature Masking by Air Plasma Radiation

    Science.gov (United States)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  13. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    Science.gov (United States)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  14. Radiation from nonlinear coupling of plasma waves

    International Nuclear Information System (INIS)

    Fung, S.F.

    1986-01-01

    The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet

  15. Plasma focus - a pulsed radiation source

    International Nuclear Information System (INIS)

    Blagoev, Alexandar; Zapryanov, Stanislav; Gol'tsev, Vasilii; Gemishev, Orlin

    2014-01-01

    The article is devoted to the applications of plasma focus (PF) in radiobiology. Briefly describes the principle of operation of the device and the parameters of the PF type 'Mader' at the Physics Department of the University. Phase pinch discharge zones appear hot and dense plasma, which is a source of X-ray and neutron pulse when the working gas is deuterium. These radiations are essential for biological applications. Besides these bundles are obtained from accelerated charged particles and shock wave of ionized gas. Described are some of the contributions of other authors using PF in radiobiology. Given the results in the exposure of living organisms with soft X-ray emission of PF. We examined the viability of the cells of the two types of yeasts, after irradiation with X-rays at a dose of 65 mSv, where no change was found on the performance. It is shown that soft X-ray radiation doses on the order of tens of mSv, cause a significant change in the productivity of the electronic transport in the photosynthetic apparatus of Chlamydomonas reinhardtii. Trichoderma reesei M7 shows remarkable vitality irradiation with substantial doses of hard X-ray radiation (tens Sv). Appear endoglyukonazata changes in the protein component and the residual mass

  16. Nonlinear radiation of waves at combination frequencies due to radiation-surface wave interaction in plasmas

    International Nuclear Information System (INIS)

    El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1992-09-01

    Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs

  17. Radiation loss driven instabilities in laser heated plasmas

    International Nuclear Information System (INIS)

    Evans, R.G.

    1985-01-01

    Any plasma in which a significant part of the power balance is due to optically thin radiative losses may be subject to a radiation cooling instability. A simple analytical model gives the dispersion relation for the instability and inclusion of a realistic radiation loss term in a two dimensional hydrodynamic simulation shows that ''jet'' like features form in moderate to high Z plasmas

  18. Levitation of current carrying states in the lattice model for the integer quantum Hall effect.

    Science.gov (United States)

    Koschny, T; Potempa, H; Schweitzer, L

    2001-04-23

    The disorder driven quantum Hall to insulator transition is investigated for a two-dimensional lattice model. The Hall conductivity and the localization length are calculated numerically near the transition. For uncorrelated and weakly correlated disorder potentials the current carrying states are annihilated by the negative Chern states originating from the band center. In the presence of correlated disorder potentials with correlation length larger than approximately half the lattice constant the floating up of the critical states in energy without merging is observed. This behavior is similar to the levitation scenario proposed for the continuum model.

  19. Forces on a current-carrying wire in a magnetic field: the macro-micro connection

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo; Kneubil, Fabiana; Robilotta, Manoel

    2017-01-01

    The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature...... of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge...

  20. Anomalous x-ray radiation of beam plasma

    International Nuclear Information System (INIS)

    Dimitrov, S.K.; Zavyalov, M.A.; Mikhin, S.G.; Tarasenkov, V.A.; Telkovskij, V.G.; Khrabrov, V.A.

    1985-01-01

    The properties of non-equilibrium stationary plasma under the conditions of the planned plasma-chemical reactors based on beam-plasma discharge were investigated. The x-ray spectrum of the beam-plasma was measured and anomalous spectral properties were analyzed. Starting with some critical pressure the anomalous radiation was added to the classical bremsstrahlung spectrum. The occurrence of anomalous radiation can be used to diagnose the condition of beam transportation in such systems. (D.Gy.)

  1. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite

    Science.gov (United States)

    Subramaniam, Chandramouli; Yamada, Takeo; Kobashi, Kazufumi; Sekiguchi, Atsuko; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2013-07-01

    Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube-copper composite exhibiting similar conductivity (2.3-4.7 × 105Scm-1) as copper (5.8 × 105Scm-1), but with a 100-times higher ampacity (6 × 108Acm-2). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (~2.0eV) in carbon nanotube-copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters.

  2. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers

    Science.gov (United States)

    Song, Li; Toth, Geza; Wei, Jinquan; Liu, Zheng; Gao, Wei; Ci, Lijie; Vajtai, Robert; Endo, Morinobu; Ajayan, Pulickel M.

    2012-01-01

    We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5-20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m - 1 and over 1 × 105 A cm - 2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.

  3. Electronic cyclotron radiation amplification in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Ziebell, L.F.

    1983-01-01

    The amplified emission of electron cyclotron radiation near the fundamental frequency from an inhomogeneous, anisotropic plasma slab is investigated in a linear theory. Plasma polarization effects are consistently included. Expressions are developed in the WKB approximation for emission in the ordinary and the extraordinary modes, for propagation perpendicular to the magnetic field. Numerical results are given for the extraordinary mode, for which effects are strongest. For the case of a loss-cone-type electron momentum distribution, it is shown that the amplification is sensitively dependent on the ratio of parallel-to-perpendicular temperature and on inhomogeneities in the magnetic field. The dependence of the amplification on the distribution is further investigated by considering superpositions of loss-cone and Maxwellian components. It is show that the presence of a Maxwellian component in general reduces the emission relative to the pure loss-cone case, and situations occur in which a layer in the slab very effectively absorbs all the radiation amplified elsewhere. A peculiar behaviour of the refractive index, which occurs in the transition from the pure loss-cone to the pure Maxwellian case, is discussed. (author)

  4. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, UFRGS, Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701, South Korea and University of Maryland, College Park, Maryland 20742 (United States); Simões, F. J. R.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, Rio Grande do Sul (Brazil); Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul (Brazil)

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  5. Phonon induced optical gain in a current carrying two-level quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 1983963113 (Iran, Islamic Republic of); School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran (Iran, Islamic Republic of)

    2017-05-15

    In this work we consider a current carrying two level quantum dot (QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.

  6. Influence of ionizing radiation on the plasma membrane proteins

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1992-01-01

    The effect of ionizing radiation on the meat cattle thymocytes plasma membranes was studied. Using fluorescence quenching technique the effect of irradiation of proteins conformation was investigated. The influence of ionizing radiation on the plasma membranes was shown to be followed by changes of the protein structure-dynamic organization

  7. Radiative properties of strongly magnetized plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1993-11-01

    The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems - the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom open-quotes paradigmclose quotes remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B > 10 8 Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal

  8. Bremsstrahlung radiation of a plasma expanding into vacuum

    International Nuclear Information System (INIS)

    Grigor'ev, V.G.; Silakov, V.P.; Fetisov, V.S.

    1978-01-01

    Bremsstrahlung of a flat layer of a dense hot homogeneous plasma expanding to vacuum is considered. The spread of plasma is assumed to be adiabatic, and the plasma density and temperature are considered as known functions of coordinates and time in the radiation transport equation. Formulae for radiation intensity have been obtained in cases when the plasma layer covered by the rarefaction wave are optically thin and optically thick. The dependences of radiation intensity on the parameter α characterizing the optical thickness of the plasma layer and the spectrum of radiation of the spreading layer are presented graphically. It is shown that spread has an essential effect on the heat transfer and the spectral composition of the bremsstrahlung of a dense high-temperature plasma

  9. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  10. Simulation of radiation in laser produced plasmas

    Science.gov (United States)

    Colombant, D. G.; Klapisch, M.; Deniz, A. V.; Weaver, J.; Schmitt, A.

    1999-11-01

    The radiation hydrodynamics code FAST1D(J.H.Gardner,A.J.Schmitt,J.P.Dahlburg,C.J.Pawley,S.E.Bodner,S.P.Obenschain,V.Serlin and Y.Aglitskiy,Phys. Plasmas,5,1935(1998)) was used directly (i.e. without postprocessor) to simulate radiation emitted from flat targets irradiated by the Nike laser, from 10^12 W/cm^2 to 10^13W/cm^2. We use enough photon groups to resolve spectral lines. Opacities are obtained from the STA code(A.Bar-Shalom,J.Oreg,M.Klapisch and T.Lehecka,Phys.Rev.E,59,3512(1999)), and non LTE effects are described with the Busquet model(M.Busquet,Phys.Fluids B,5,4191(1993)). Results are compared to transmission grating spectra in the range 100-600eV, and to time-resolved calibrated filtered diodes (spectral windows around 100, 180, 280 and 450 eV).

  11. Calibration of magnetic force microscopy tips by using nanoscale current-carrying parallel wires

    International Nuclear Information System (INIS)

    Kebe, Th.; Carl, A.

    2004-01-01

    Experimental results on the characterization of commercially available magnetic force microscopy (MFM) thin film tips as a function of an external magnetic field are presented. Magnetic stray fields with a definitive z-component (perpendicular to the substrate) and a magnetic field strength of up to H z =±45 Oe are produced with current carrying parallel nanowires with a thickness of t=60 nm, which are fabricated by electron-beam lithography. The magnetic fields are generated by electrical dc-currents of up to ±6 mA which are directed antiparallel through the nanowires. The geometry and the dimensions of the nanowires are systematically varied by choosing different wire widths w as well as separations b between the parallel wires for two different sets of samples. On the one hand, the wire width w is varied within 380 nm< w<2460 nm while the separation b≅450 nm between the wires is kept constant. On the other hand the separation b between the parallel wires is varied within 120 nm< b<5100 nm, while the wire width w=960 nm is kept constant. For all the geometrical configurations of parallel wires the resulting magnetic contrast is imaged by MFM at various tip lift-heights. By treating the MFM tip as a point probe, the analysis of the image contrast as a function of both the magnetic field strength and the tip lift height allows one to quantitatively determine the effective magnetic dipole and monopole moments of the tip as well as their imaginary locations within the real physical tip. Our systematic study quantitatively relates the above point-probe parameters to (i) the dimensions of the parallel wires and (ii) to the characteristic decay length of the z-component of the magnetic field of parallel wires. From this the effective tip-volume of the real thin film tip is determined which is relevant in MFM-imaging. Our results confirm the reliability of earlier tip calibration schemes for which nanofabricated current carrying rings were used instead of parallel

  12. Deformation of current-carrying jets by nonviscous electrically conducting fluid

    International Nuclear Information System (INIS)

    Morozova, V.I.

    1986-01-01

    The change in the form of the transverse cross section of the jet under the action of the current flowing along it is investigated. The reults of computations for solitary current carrying jets of square and rectangular cross sections, and for systems of six and twelve azimuthally periodic jets with currents alternating in direction, are shown in figures. A solitary jet with square transverse cross section at the initial instant executes a periodic motion involving transition from square cross section, through circular, back to square rotated by 45 0 with respect to the initial section, and later going through circular cross section and returning to the initial position is shown in a figure. Other figures show similar deformations occuring with a solitary rectangular cross section, and deformations of the systems of jets which are accompanied by their radial separation. The authors note that the present formulation uses only geometric criteria of similarity; therefore the dependences of the deformations on time, presented in figures, are universal

  13. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    Science.gov (United States)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  14. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    International Nuclear Information System (INIS)

    Frank, A; Heller, R; Goldacker, W; Kling, A; Schmidt, C

    2008-01-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability

  15. Generation of radiation by intense plasma and electromagnetic undulators

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.

  16. Generation of radiation by intense plasma and electromagnetic undulators

    International Nuclear Information System (INIS)

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs

  17. Collisionless emission of radiation by an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Mejerovich, B.Eh.

    1976-01-01

    Collisionless emission of radiation by an inhomogeneous plasma due to the finite motion of charges in the field of external forces and collective interaction forces is studied. The intensity of the radiation is inversely proportional to the square of the transverse dimensions of the plasma. It apparently makes the main contribution to the radiation from a vacuum spark and other relativitstic beams compressed to a small size by collective interaction forces. The intensity of the collisionless radiation is calculated by taking into account Fermi statistics of the electrons. The spectral radiance in the low frequency range increases with frequency, reaches a maximum at the frequency of the finite motion of the emitters and then decreases. Measurement of collisionless radiation emission by a plasma compressed to a small size by the pinch effect is a natural way of diagnosing the plasma

  18. On plasma radiative properties in stellar conditions

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Delahaye, F.; Gilles, D.; Loisel, G.; Piau, L.; Loisel, G.

    2009-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative interactions properly estimated and what is the proper role of the opacity in the excitation of the non-radial modes in the envelop of the β Cepheids and the Be stars? At the end of the paper we point out the difficulties of the experimental approach that we need to overcome. (authors)

  19. Plasma acceleration by means of microwave radiation pressure

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1977-01-01

    In the electric discharge of gas with microwaves, intense reflection waves occur simultaneously with the discharge, so the plasma ionized and formed by the microwaves is accelerated due to large radiation pressure. The basic experiment made, aiming at plasma gun, is described. In the gas electric discharge, the plasma flow velocity proportional to the reflected power is obtained. For 550 W microwave input power, the plasma velocity of 1 x 10 4 m/s was obtained. The accelerated plasma is bunched; its front as mass travels, recombines and disappears. (Mori, K.)

  20. Trapping of pellet cloud radiation in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Sergeev, V.Yu.; Miroshinikov, I.V.; Sudo, Shigeru; Namba, C.; Lisitsa, V.S.

    2001-01-01

    The experimental and theoretical data on radiation trapping in clouds of pellets injected into thermonuclear plasmas are presented. The theoretical modeling is performed in terms of equivalent Stark spectral line widths under condition of LTE (Sakha-Boltzman) in pellet cloud plasmas. It is shown that a domain of blackbody radiation could exist in hydrogen pellet clouds resulting in ''pellet disappearance'' effect which is absent in a case of impurity pellet clouds. Reasons for this difference are discussed. (author)

  1. Current carrying properties of double layers and low frequency auroral fluctuations

    International Nuclear Information System (INIS)

    Singh, N.; Schunk, R.W.

    1982-01-01

    Numerical simulations showed recurring interruption and recovery of electron and ion currents through double layers. The time period tau of the recurring phenomena is governed by the ion dynamics; for ions with a drift V/sub i/ entering the simulation plasma such that V/sub i/ V/sub ti/ ion-acoustic modes also appear in the electron- and ion-current fluctuations. The electron current fluctuations are governed by the ion current through the Langmuir criterion. It is suggested that some low frequency auroral fluctuations could possibly be explained by current fluctuations through double layers

  2. Radiation-magnetohydrodynamics of fusion plasmas on parallel supercomputers

    International Nuclear Information System (INIS)

    Yasar, O.; Moses, G.A.; Tautges, T.J.

    1993-01-01

    A parallel computational model to simulate fusion plasmas in the radiation-magnetohydrodynamics (R-MHD) framework is presented. Plasmas are often treated in a fluid dynamics context (magnetohydrodynamics, MHD), but when the flow field is coupled with the radiation field it falls into a more complex category, radiation magnetohydrodynamics (R-MHD), where the interaction between the flow field and the radiation field is nonlinear. The solution for the radiation field usually dominates the R-MHD computation. To solve for the radiation field, one usually chooses the S N discrete ordinates method (a deterministic method) rather than the Monte Carlo method if the geometry is not complex. The discrete ordinates method on a massively parallel processor (Intel iPSC/860) is implemented. The speedup is 14 for a run on 16 processors and the performance is 3.7 times better than a single CRAY YMP processor implementation. (orig./DG)

  3. Betatron radiation from a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schnell, Michael

    2014-01-01

    The presented thesis investigates the processes which lead to the generation of highenergetic X-ray radiation, also known as ''betatron radiation'', by means of a relativistic laser-plasma interaction. The generated betatron radiation has been extensively characterized by measuring its radiated intensity, energy distribution, far-field beam profile, and source size. It was shown for the first time that betatron radiation can be used as a non-invasive diagnostic tool to retrieve very subtle information on the electron acceleration dynamics within the plasma wave. Furthermore, a compact polarimeter setup has been developed in a unique experiment in which the polarization state of the laser-plasma generated betatron radiation was measured in single-shot mode. This lead to a detailed study of the orientation of the electron trajectory within the plasma interaction. By controlling the injection of the electrons into the plasma wave it was demonstrated that one can tune the polarization state of the emitted X-rays. This result is very promising for further applications, particularly for feeding the electrons into an additional conventional accelerator or a permanent magnet based undulator for the production of intense X-ray beams. During this work, the experimental setup for accelerating electrons and generating high-energy X-ray beams was consistently improved: to enhance both its reliability and stability. Subsequently, the betatron radiation was used as a reliable diagnostic tool of the electron dynamics within the plasma. Parallel to the experimental work, 3-Dimensional Particle-In-Cell (3D-PlC) simulations were performed together with colleagues from the University of Duesseldorf. The simulations included the electron acceleration and the X-ray generation processes together with the recoil force acting on an accelerating electron caused by the emitted radiation during which one can also ascertain its polarization state. The simulations proved to be in good agreement

  4. An introduction to the atomic and radiation physics of plasmas

    CERN Document Server

    Tallents, G J

    2018-01-01

    Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.

  5. Quantitative analysis of carbon radiation in edge plasmas of LHD

    International Nuclear Information System (INIS)

    Dong, C.F.; Morita, S.; Oishi, T.; Goto, M.; Murakami, I.; Wang, E.R.; Huang, X.L.

    2013-01-01

    It is of interest to compare the carbon radiation loss between LHD and tokamaks. Since the radiation from C"3"+ is much smaller than that from C"5"+, it is also interesting to examine the difference in the detached plasma. In addition, it is important to study quantitatively the radiation from each ionization stage of carbon which is uniquely the dominant impurity in most tokamaks and LHD. (J.P.N.)

  6. Numerical calculation of radiation pattern of plasma channel antenna

    International Nuclear Information System (INIS)

    Xia Xinren; Yin Chengyou

    2010-01-01

    The idea of plasma channel antenna (PCA) for high power microwave weapon is presented in this paper. The radiation pattern of PCA is calculated. The directivity functions of general antenna are derived. The near electromagnetic model of PCA is created based on physical circumstances. The electromagnetic fields of PCA and surrounding air in cylindrical coordinate are given. The dispersion equation of PCA is deduced by applying the boundary conditions of electromagnetic fields. The surface wave vector of PCA is achieved. The variations of radiation characteristic with plasma density, antenna length and antenna radius are emphatically discussed. The controllability of PCA's radiation patterns is confirmed. (authors)

  7. Simulations of radiative shocks and jet formation in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, P; Gonzalez, M; GarcIa-Fernandez, C; Oliva, E [Instituto de Fusion Nuclear, Universidad Politcnica de Madrid, Madrid (Spain) (Spain); Kasperczuk, A; Pisarczyk, T [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland) (Poland); Ullschmied, J [Institute of Plasma Physics AS CR, Prague (Czech Republic) (Czech Republic); Stehle, C [LERMA, Observatoire de Paris, Meudon (France) (France); Rus, B [Institute of Physics, PALS Center, Prague (Czech Republic) (Czech Republic); GarcIa-Senz, D; Bravo, E; Relano, A [Departament de Fisica i Enginyeria Nuclear. Universitat Politecnica de Catalunya. Barcelona (Spain) (Spain)], E-mail: velarde@din.upm.es

    2008-05-01

    We present the simulations of two relevant hydrodynamical problems related to astrophysical phenomena performed by three different codes. The numerical results from these codes will be compared in order to test both the numerical method implemented inside them and the influence of the physical phenomena simulated by the codes. Under some conditions laser produced plasmas could be scaled to the typical conditions prevailing in astrophysical plasmas. Therefore, such similarity allows to use existing laser facilities and numerical codes suitable to a laser plasma regime, for studying astrophysical proccesses. The codes are the radiation fluid dynamic 2D ARWEN code and the 3D HERACLES, and, without radiation energy transport, a Smoothed-Particle Hydrodynamics (SPH) code. These codes use different numerical techniques and have overlapping range of application, from laser produced plasmas to astrophysical plasmas. We also present the first laser experiments obtaining cumulative jets with a velocity higher than 100 km/s.

  8. Simplified models for radiational losses calculating a tokamak plasma

    International Nuclear Information System (INIS)

    Arutiunov, A.B.; Krasheninnikov, S.I.; Prokhorov, D.Yu.

    1990-01-01

    To determine the magnitudes and profiles of radiational losses in a Tokamak plasma, particularly for high plasma densities, when formation of MARFE or detached-plasma takes place, it is necessary to know impurity distribution over the ionization states. Equations describing time evolution of this distribution are rather cumbersome, besides that, transport coefficients as well as rate constants of the processes involving complex ions are known nowadays with high degree of uncertainty, thus it is believed necessary to develop simplified, half-analytical models describing time evolution of the impurities analysis of physical processes taking place in a Tokamak plasma on the base of the experimental data. (author) 6 refs., 2 figs

  9. Radiation losses and global power balance of JT-60 plasmas

    International Nuclear Information System (INIS)

    Nishitani, T.; Itami, K.; Nagashima, K.; Tsuji, S.; Hosogane, N.; Yoshida, H.; Ando, T.; Kubo, H.; Takeuchi, H.

    1990-01-01

    The radiation losses and the global power balance for Ohmic and neutral beam heated plasmas have been investigated in different JT-60 configurations. Discharges with a TiC coated molybdenum wall and with a graphite wall, with limiter, outer and lower X-point configurations have been studied by bolometric measurements, thermocouples and an infrared TV camera. In neutral beam heated outer X-point discharges with a TiC coated molybdenum first wall, the radiation loss of the main plasma was very low (10% of the absorbed power). The radiation loss due to oxygen was dominant in this case. On the contrary, in discharges with TiC coated molybdenum limiters the radiation loss was very high (>60% of the absorbed power). In the discharges with a graphite wall the radiated power from the main plasma was 20-25% for both limiter and lower X-point configurations. In lower X-point discharges the main contributor to the radiation loss was oxygen, whereas in limiter discharges the loss due to carbon was equal to the loss due to oxygen. The radiation loss from the lower X-point divertor increased with increasing electron density of the main plasma. (author). 33 refs, 14 figs, 1 tab

  10. Emission of electromagnetic radiation from beam driven plasmas

    International Nuclear Information System (INIS)

    Newman, D.L.

    1985-01-01

    Two production mechanisms for electromagnetic radiation from a plasma containing electron-beam-driven weak Langmuir turbulence are studied: induced Compton conversion and two-Langmuir-wave coalescence. Induced Compton conversion in which a Langmuir wave scatters off a relativistic electron while converting into a transversely polarized electromagnetic wave is considered as a means for producing amplified electromagnetic radiation from a beam-plasma system at frequencies well above the electron plasma frequency. The induced emission growth rates of the radiation produced by a monoenergetic ultrarelativistic electron beam are determined as a function of the Langmuir turbulence spectrum in the background plasma and are numerically evaluated for a range of model Langmuir spectra. Induced Compton conversion can play a role in emission from astrophysical beam-plasma systems if the electron beam is highly relativistic and sufficiently narrow. However, it is found that the growth rates for this process are too small in all cases studied to account for the intense high-frequency radiation observed in laboratory experiments. Two-Langmuir-wave coalescence as a means of producing radiation at 2omega/sub p/ is investigated in the setting of the earth's foreshock

  11. Technology development and commercial production of current-carrying elements on the basis of Nb3Sn superconductor

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Davydov, I.I.

    1995-01-01

    A description of a current carrying element intended for Tokamak-15 magnetic system is presented. The element is produced from multicore wires with superconducting Nb 3 Sn cores and calculated for 8.5 kA critical current in magnetic field of 8 T. Main processing procedures of its manufacturing are shown. Extrusion conditions needed for production of composite bronze-niobium rods and multicore wire 1.5 mm in diameter with 14641 niobium cores are determined. Heat treatment used results in formation of Nb 3 Sn intermetallics and assures maximal current-carrying capacity of 910-920 A in 8 T magnetic field. 15 refs., 9 figs

  12. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  13. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp [Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, RIKEN, Sendai, Miyagi 980-0845 (Japan); Midorikawa, Katsumi [Attosecond Science Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  14. Modern methods in collisional-radiative modeling of plasmas

    CERN Document Server

    2016-01-01

    This book provides a compact yet comprehensive overview of recent developments in collisional-radiative (CR) modeling of laboratory and astrophysical plasmas. It describes advances across the entire field, from basic considerations of model completeness to validation and verification of CR models to calculation of plasma kinetic characteristics and spectra in diverse plasmas. Various approaches to CR modeling are presented, together with numerous examples of applications. A number of important topics, such as atomic models for CR modeling, atomic data and its availability and quality, radiation transport, non-Maxwellian effects on plasma emission, ionization potential lowering, and verification and validation of CR models, are thoroughly addressed. Strong emphasis is placed on the most recent developments in the field, such as XFEL spectroscopy. Written by leading international research scientists from a number of key laboratories, the book offers a timely summary of the most recent progress in this area. It ...

  15. Experiment and research on materials irradiated by plasma radiation

    International Nuclear Information System (INIS)

    Hong Wenyu; Yao Lianghua; Tang Sujun; Chang Shufen; Li Guodong

    1992-08-01

    The TiC and SiC coating on the graphite substrate and wall carbonization were studied by plasma radiation in HL-1 tokamak. Samples were analysed with AES (auger electron spectroscopy), SEM (scanning electron microscopy), XPS (X-ray photoelectron spectroscopy) and XDS (X-ray diffraction spectroscopy). The results show that the TiC and SiC materials coated on limiter and wall and wall carbonization can reduce the metal and oxygen impurities and improve the plasma merit

  16. Terahertz radiation in alkali vapor plasmas

    International Nuclear Information System (INIS)

    Sun, Xuan; Zhang, X.-C.

    2014-01-01

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization

  17. Study of the radiation in divertor plasmas; Etude du rayonnement dans les plasmas de divertor

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, F

    2000-10-19

    We have studied the cooling of the edge plasma by radiation in the divertor volume, in order to optimize the extraction of power in tokamaks and to limit the wall erosion. In attached divertor plasmas experiments, the concentration of intrinsic impurities at the edge is related to the response of the wall to the incident energy flow of plasma, depending on a phenomenological law. We carried out an analysis of the radiation according to this law and to the control parameters of the discharges. The largest radiated fraction and best synergy are obtained when the concentration of intrinsic impurities strongly increases with the energy of incident plasma. On the other hand, the erosion of the wall is stronger. In detached plasmas, we proved that the performances in terms of incident plasma energy loss and pressure loss are optimal when the density of the slowest neutrals is strong at the edge and when their radial penetration is small. On Tore Supra, we highlighted the correlations between the maximum Mach number of incident plasma flow, the radiation front and the penetration of the neutrals. A simple diagnostic based on the localization of the maximum Mach number proves that detached mode is not optimal on Tore Supra, because the radial penetration of the slowest neutrals is not sufficiently small. In the last part, we obtained the three-dimensional topology of the radiation in the ergodic divertor using a spectral analysis code and boundary conditions consistent with the temperature distribution on the wall. The radiation is maximum in front of the divertor modules. As a consequence, radiated power is underestimated by standards measurements of Tore Supra that are located between the modules. We finally showed that the profiles of temperature along the field lines are modulated, this is specific to the ergodic divertor. (author)

  18. Research on Radiation Characteristic of Plasma Antenna through FDTD Method

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2014-01-01

    Full Text Available The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML. Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  19. Research on radiation characteristic of plasma antenna through FDTD method.

    Science.gov (United States)

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  20. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    International Nuclear Information System (INIS)

    Albajar, F.; Johner, J.; Granata, G.

    2000-08-01

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  1. Robustness of radiative mantle plasma power exhaust solutions for ITER

    International Nuclear Information System (INIS)

    Mandrekas, J.; Stacey, W.M.; Kelly, F.A.

    1997-01-01

    The robustness of impurity-seeded radiative mantle solutions for ITER to uncertainties in several physics and operating parameters is examined. The results indicate that ∼ 50--90% of the input power can be radiated from inside the separatrix with Ne, Ar and Kr injection, without significant detriment to the core power balance or collapse of the edge temperature profile, for a wide range of conditions on the impurity pinch velocity, edge temperature pedestal, and plasma density

  2. Generation of radiation by intense plasma and electromagnetic undulators

    International Nuclear Information System (INIS)

    Joshi, C.

    1989-01-01

    This is a second year progress report which details the work on the generation of radiation by intense plasma and electromagnetic undulators being carried out at UCLA. The status of the experimental work is described and the future directions are outlined. We have completed the first phase of experiments on the plasma wiggler generation and characterization. Suitability of a null-pinch as a plasma source was investigated in great detail. It is found that a w of a few percent can be excited but there are trapped magnetic fields within null-pinch plasma which hinder the injection of the electrons. A new more uniform and field-free plasma source is now being characterized

  3. Generation of radiation by intense plasma and electromagnetic undulators

    International Nuclear Information System (INIS)

    Joshi, C.

    1989-01-01

    This is a second year progress report which details the work on the generation of radiation by intense plasma and electromagnetic undulators being carried out at UCLA. The status of the experimental work is described and the future directions are outlined. We have completed the first phase of experiments on the plasma wiggler generation and characterization. Suitability of a θ-pinch as a plasma source was investigated in great detail. It is found that a w of a few percent can be excited but there are trapped magnetic fields within θ-pinch plasma which hinder the injection of the electrons. A few more uniform and field-free plasma source is now being characterized. 8 refs., 5 figs

  4. Parametric plasma surface instabilities with s-polarized radiation

    International Nuclear Information System (INIS)

    Rappaport, H.L.

    1994-01-01

    The authors argue that parametric plasma surface mode excitation is a viable broadband instability mechanism in the microwave regime since the wavelength of incident radiation ca be large compared to plasma ion density gradient scale lengths. They restrict their attention to plasmas which are uniform in the planes perpendicular to the density gradients. The boundary is characterized by three parameters: (1) the ion density gradient scale length, (2) the electron Debye length, and (3) the excursion of boundary electrons as they move in response to monochromatic radiation. For s-polarized radiation, equilibrium fluid motion is parallel to the boundary when the ratio of the pump quiver velocity to the speed of light is small. In this case, an abruptly bounded plasma may be modeled with no transition width. If in this case the cold fluid approximation is used as well, the specular and diffuse boundary approximations become the same. A new formation is presented in which pump induced perturbations are expressed as an explicit superposition of linear and non-linear plasma half-space modes. A four-wave interaction is found to produce instability as well as surface wave frequency-shift. This mode is compared against other modes known to exist in this geometry. The theory of surface wave linear mode conversion is reviewed with special attention paid to power flow and energy conservation in this system

  5. Anomalous Shf radiation of a stationary plasma engine

    International Nuclear Information System (INIS)

    Kirdyashev, K.P.; Efimov, A.I.; Lukin, D.S.

    2002-01-01

    The results of the preflight radio technical tests of the thrust moduli of the combined engine facility of the Jamal-100 space vehicle are presented. The pulse constituent of the electromagnetic radiation, connected with the unstable processes of the electron emission from the hollow cathode - compensator plasma, is identified [ru

  6. Line radiation effects in laboratory and astrophysical plasmas

    Czech Academy of Sciences Publication Activity Database

    Kerr, F.M.; Gouveia, A.; Renner, Oldřich; Rose, S. J.; Scott, H.A.; Wark, J. S.

    2006-01-01

    Roč. 99, - (2006), s. 363-369 ISSN 0022-4073 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : radiation transport * plasmas * opacity effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.599, year: 2006

  7. Confirmation of radiation pressure effects in laser--plasma interactions

    International Nuclear Information System (INIS)

    Attwood, D.T.; Sweeney, D.W.; Auerbach, J.M.; Lee, P.H.Y.

    1977-10-01

    Interferometric data resolved in 1μm and 15 psec confirms the dominant role of radiation pressure during high intensity laser-plasma interactions. Specifically observed manifestations include electron density profiles steepened to 1 μm scale length, clearly defined upper and lower density shelves, and small and large scale deformation of transverse isodensity surfaces

  8. Deformation of the free surface of a conducting fluid in the magnetic field of current-carrying linear conductors

    International Nuclear Information System (INIS)

    Zubarev, N.M.; Zubareva, O.V.

    2017-01-01

    The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.

  9. Deformation of the free surface of a conducting fluid in the magnetic field of current-carrying linear conductors

    Science.gov (United States)

    Zubarev, N. M.; Zubareva, O. V.

    2017-06-01

    The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.

  10. On the possibility of a relativistic correction to the E and B fields around a current-carrying wire

    International Nuclear Information System (INIS)

    Folman, Ron

    2013-01-01

    It is well known that electric and magnetic fields may change when they are observed from different frames of reference. For example, the motion of a charged probe particle moving parallel to a current-carrying wire would be described by utilizing different electric or magnetic fields, depending on from which frame of reference the system is observed and described. To describe the situation in all frames by utilizing the theory of relativity, one has to first describe the situation in one particular frame, and this choice in the case of a current-carrying wire is the topic of this paper. Specifically, I consider the question of in which frame the current carrying wire is neutral. The importance of relaxation processes is emphasized. As an example, I examine a specific alternative to the standard choice, and consider its theoretical and experimental validity. An outcome of alternative approaches is that in the rest frame of a wire, running a current introduces also an electric field by giving rise to a minute charge. Present day experimental sensitivities, specifically those of cold ions, may be able to differentiate between the observable signatures predicted by the different approaches.

  11. Efficiency of application of instantaneous radiation of seeds by plasma

    International Nuclear Information System (INIS)

    Tsyganov, A.R.; Gordeev, Yu.A.; Poddubnaya, O.V.

    2009-01-01

    The efficiency of application of instantaneous (impulse) radiation of seeds of spring wheat (Triticum aestivum) and oat (Avena sativa) by plasma was analyzed. Research results showed that presowing treatment of seeds with instantaneous helium radiation in course of 0,01 seconds (the total duration of seed treatment with plasmatron ion source impulses – one second). In course of the practical experiments there was proved possibility of application impulse radiation technologies in modern agricultural production. Seed germination capacity exceeded the control variants on 14%. Results of influence of applied irradiation on length of sprouts, length of roots and their germinating ability were presented. Irradiation efficiency developed in course of plant vegetation. In accordance with research results and accumulated experimental material on presowing seed treatment with impulses of low temperature helium plasma could make it possible to obtain yields with higher capacity and quality with the minimal expenses for seed treatment

  12. The phenomenon of radiative compression in dense magnetized plasmas

    International Nuclear Information System (INIS)

    Choi, Peter

    1998-01-01

    Full text: Localized regions of extremely high energy density have long been observed in dense magnetized plasma, created in different experiments, including vacuum spark, exploding wire, Z-pinch and plasma focus. The physical dimensions of these regions are typically tens to hundreds of microns with a characteristic temperature of few hundred eV upward. A theory of self-compression under enhanced cooling, when the radiation rate exceeds the joule heating rate, was first put forward by Shearer to explain the possible responsible mechanism. More recent work suggests that a radiative collapse formalism could indeed produce eaters of ultra-high density. In the paper the experimental evidences are examined, and the applicability limit of the radiative collapse picture is discussed, when the properties of the driving generator are considered. A new set of relations connecting the driver parameters and the limiting size of the compression is proposed

  13. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  14. Radiation control in fusion plasmas by magnetic confinement

    International Nuclear Information System (INIS)

    Dachicourt, R.

    2012-10-01

    The present work addresses two important issues for the industrial use of fusion: plasma radiation control, as a part of the more general power handling issue, and high density tokamak operation. These two issues will be most critical in the demonstration reactor, called DEMO, intermediate step between ITER and a future commercial reactor. For DEMO, the need to radiate a large fraction of the power so as to limit the peak power load on the divertor will be a key constraint. High confinement will have to be combined with high radiated power fraction, and the required level of plasma purity. The main achievement of this thesis is to have shown experimental evidence of the existence of a stable plasma regime meeting the most critical requirements of a DEMO scenario: an electron density up to 40% above the Greenwald value, together with a fraction of radiated power close to 80%, with a good energy confinement and limited dilution. The plasma is additionally heated with ion cyclotron waves in a central electron heating scenario, featuring alpha particle heating. The original observations reported in this work bring highly valuable new pieces of information both to the physics of the tokamak edge layer and to the construction of an 'integrated operational scenario' required to successfully operate fusion devices. In the way for getting high density plasmas, the new observations involve the following topics. First, the formation of a poloidal asymmetry in the edge electron density profile, with a maximum density located close to toroidal pumped limiter. This asymmetry occurs inside the separatrix, with a constant plasma pressure on magnetic surfaces. Secondly, a correlative decrease of the electron temperature in the same edge region. Thirdly, the excellent coupling capabilities of the ICRH waves, up to a central line averaged electron density of 1.4 times the Greenwald density. Fourthly, a poloidally asymmetric edge radiation region, providing the dissipation of 80% of

  15. Theory for beam-plasma millimeter-wave radiation source experiments

    International Nuclear Information System (INIS)

    Rosenberg, M.; Krall, N.A.

    1989-01-01

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  16. Parametric plasma surface instabilities with p-polarized radiation

    International Nuclear Information System (INIS)

    Rappaport, H.L.

    1994-01-01

    The authors argue that parametric plasma surface mode excitation is a viable broadband instability mechanism in the microwave regime since the wavelength of incident radiation can be large compared to plasma ion density gradient scale lengths. The authors restrict their attention to plasmas which are uniform in the planes perpendicular to the density gradients. The boundary region is characterized by three parameters: (1) the ion density gradient length; (2) the electron Debye length; and (3) the excursion of boundary electrons as they move in response to monochromatic p-polarized radiation. A thin vacuum plasma transition layer, in which the ion density gradient scale length is large compared with the Debye length and the electron excursion, is included in the analysis of plasma stability. The recently proposed Lagrangian Frame Two-Plasmon Decay mode (LFTPD) is investigated in the regime in which the instability is not resonantly coupled to surface waves propagating along the boundary region. In this case they have found both spatially dependent growth rate profiles and spatially dependent transit layer magnetic fields due to nonlinear surface currents. LFTPD growth rate profiles are displayed as a function of pump amplitude. The results of a time domain simulation of this mode is also shown

  17. Cherenkov radiation in a plasma-filled, dielectric coaxial waveguide

    International Nuclear Information System (INIS)

    Wu Jianqiang

    2004-01-01

    Using the self-consistent linear field theory, Cherenkov radiation excitated by the beam-wave interaction of a thin annular relativistic electron beam in a plasma-filled, dielectric coaxial cylindrical waveguide was analyzed. The dispersion equation of the interaction, the synchronized condition and the wave growth rate were derived. The energy exchange between the wave and the electron beam in the presence of background plasma was discussed, and the effects of plasma density on the dispersion characteristics, the wave growth rate and the beam-wave energy exchange were calculated and discussed. It was clear that the Cherenkov radiation results from the coupling between the slow TM mode propagated along the waveguide and the negative-energy space-charge mode propagated along the beam, and the coupling strength is proportional to the beam density. It was theoretically demonstrated that due to the background plasma, the plasma-filled coaxial cylindrical Cherenkov maser could operate at higher frequency, get higher wave growth rate, or have higher beam current at the same operating frequency, leading to higher microwave output power. (authors)

  18. Reduction of collisional-radiative models for transient, atomic plasmas

    Science.gov (United States)

    Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai

    2017-10-01

    Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).

  19. Electromagnetic radiation generated by arcing in low density plasma

    Science.gov (United States)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  20. XUV radiation from gaseous nitrogen and argon target laser plasmas

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Brůža, P.; Pánek, D.; Krejčí, F.; Kroupa, M.; Jakůbek, J.

    2012-01-01

    Roč. 370, č. 1 (2012), s. 012049 ISSN 1742-6588. [Latin American Workshop on Plasma Physics (LAWPP 2011)/14/. Mar del Plata, 20.11.2011-25.11.2011] R&D Projects: GA MŠk LA08024; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : Laser plasma source of XUV radiation in water window range * RHMD Z* engine code Subject RIV: BH - Optics, Masers, Lasers http://iopscience.iop.org/1742-6596/370/1/012049/pdf/1742-6596_370_1_012049.pdf

  1. Multigroup Approximation of Radiation Transfer in SF6 Arc Plasmas

    Directory of Open Access Journals (Sweden)

    Milada Bartlova

    2013-01-01

    Full Text Available The first order of the method of spherical harmonics (P1-approximation has been used to evaluate the radiation properties of arc plasmas of various mixtures of SF6 and PTFE ((C2F4n, polytetrafluoroethylene in the temperature range (1000 ÷ 35 000 K and pressures from 0.5 to 5 MPa. Calculations have been performed for isothermal cylindrical plasma of various radii (0.01 ÷ 10 cm. The frequency dependence of the absorption coefficients has been handled using the Planck and Rosseland averaging methods for several frequency intervals. Results obtained using various means calculated for different choices of frequency intervals are discussed.

  2. Jeans instability of rotating magnetized quantum plasma: Influence of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, H., E-mail: hjoshi8525@yahoo.com [Department of Physics, Mewar University, Chittorgarh (Raj.) India (India); Pensia, R. K. [Department of Physics, Govt. Girls College, Neemuch (M.P.) India (India)

    2015-07-31

    The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.

  3. Calculation of the line shapes of radiators immersed in plasma

    International Nuclear Information System (INIS)

    Hayrapetian, A.S.

    1987-01-01

    This work reports the results of theoretical calculations of line shapes of radiators immersed in plasma. The fluctuating electric field of the plasma perturbs the atomic structure of the immersed ions or atoms. The perturbed line shape is an important diagnostic tool for the temperature and density measurements of plasma. The line-shape calculation here is done by first deriving the line-shape expression, then it is shown that the problem is equivalent to calculating the temperature Green's function of the bound electron. The total Hamiltonian of the system includes the atomic, plasma, and atom-plasma parts. The temperature Green's function is calculated perturbatively by expanding in orders of atom-plasma interaction. By solving a Dyson equation, the dressed Green's functions of the bound electrons are obtained. At this point, the line shape is calculated by an analytic continuation from the complex frequency plane to real line. To derive the atomic electron Green's function, the momentum integral in the self-energy is approximated by a Riemann sum. With this approximation, the algebraic form of the line shape is obtained for an undetermined number of terms in the Riemann sum. Numerical calculation of line shape is done by using this result

  4. Comparison of Ne and Ar seeded radiative divertor plasmas in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T., E-mail: nakano.tomohide@jaea.go.jp

    2015-08-15

    In H-mode plasmas with Ne, Ar and a mixture of Ne and Ar injection, the divertor radiation power fractions amongst these impurities in addition to an intrinsic impurity, C, are investigated. In plasmas with the inner divertor plasma attached, carbon is the biggest radiator, whichever impurity, Ne, Ar or a mixture of Ar and Ne is injected. In contrast, in plasmas with the inner divertor plasma detached, Ne is the biggest radiator due to a significantly high recombination radiation from Ne VIII. Ar is always a minor contributor in plasmas with the inner divertor both attached and detached.

  5. Nonlinear generation of the fundamental radiation in plasmas

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Rizzato, F.B.

    1993-01-01

    Nonlinear generation of coherent electromagnetic radiation by intense Langmuir waves in the vicinity of the fundamental plasma frequency f p is of current interest in space and laboratory plasmas. In a pioneer work, Lashmore-Davies demonstrated that an efficient process for converting intense Langmuir waves into f p electromagnetic radiation can be achieved by two counterstreaming Langmuir pump waves through an electromagnetic oscillating two-stream instability. Recently Chian and Alves, Akimoto and Rizzato and Chian extended the formalism of Lashmore-Davies in order to include mixed processes with induced modes which are purely electrostatic or electromagnetic. In this paper we extend our previous analysis, in order to study the nonlinear interaction involving travelling electromagnetic pumps, low-frequency density fluctuations and high-frequency f p modes which can be electrostatic-electromagnetic hybrids. (author) 5 refs., 2 figs

  6. A collisional-radiative average atom model for hot plasmas

    International Nuclear Information System (INIS)

    Rozsnyai, B.F.

    1996-01-01

    A collisional-radiative 'average atom' (AA) model is presented for the calculation of opacities of hot plasmas not in the condition of local thermodynamic equilibrium (LTE). The electron impact and radiative rate constants are calculated using the dipole oscillator strengths of the average atom. A key element of the model is the photon escape probability which at present is calculated for a semi infinite slab. The Fermi statistics renders the rate equation for the AA level occupancies nonlinear, which requires iterations until the steady state. AA level occupancies are found. Detailed electronic configurations are built into the model after the self-consistent non-LTE AA state is found. The model shows a continuous transition from the non-LTE to the LTE state depending on the optical thickness of the plasma. 22 refs., 13 figs., 1 tab

  7. Radiative redistribution modeling for hot and dense plasmas

    International Nuclear Information System (INIS)

    Mosse, C.; Calisti, A.; Talin, B.; Stamm, R.; Lee, R. W.; Klein, L.

    1999-01-01

    A model based on an extension of the Frequency Fluctuation Model (FFM) is developed to investigate the two-photon processes and particularly the radiative redistribution functions for complex emitters in a wide range of plasmas conditions. The FFM, originally, designed as a fast and reliable numerical procedure for the calculation of the spectral shape of the Stark broadened lines emitted by multi-electron ions, relies on the hypothesis that the emitter-plasma system can be well represented by a set of 'Stark Dressed Transitions', SDT. These transitions connected to each others through a stochastic mixing process accounting for the local microfield random fluctuations, form the basis for the extension of the FFM to computation of non-linear response functions. The formalism of the second order radiative redistribution function is presented and examples are shown

  8. Radiative divertor plasmas with convection in DIII-D

    International Nuclear Information System (INIS)

    Leornard, A.W.; Porter, G.D.; Wood, R.D.

    1998-01-01

    The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features

  9. Graphene-on-diamond devices with increased current-carrying capacity: carbon sp2-on-sp3 technology.

    Science.gov (United States)

    Yu, Jie; Liu, Guanxiong; Sumant, Anirudha V; Goyal, Vivek; Balandin, Alexander A

    2012-03-14

    Graphene demonstrated potential for practical applications owing to its excellent electronic and thermal properties. Typical graphene field-effect transistors and interconnects built on conventional SiO(2)/Si substrates reveal the breakdown current density on the order of 1 μA/nm(2) (i.e., 10(8) A/cm(2)), which is ~100× larger than the fundamental limit for the metals but still smaller than the maximum achieved in carbon nanotubes. We show that by replacing SiO(2) with synthetic diamond, one can substantially increase the current-carrying capacity of graphene to as high as ~18 μA/nm(2) even at ambient conditions. Our results indicate that graphene's current-induced breakdown is thermally activated. We also found that the current carrying capacity of graphene can be improved not only on the single-crystal diamond substrates but also on an inexpensive ultrananocrystalline diamond, which can be produced in a process compatible with a conventional Si technology. The latter was attributed to the decreased thermal resistance of the ultrananocrystalline diamond layer at elevated temperatures. The obtained results are important for graphene's applications in high-frequency transistors, interconnects, and transparent electrodes and can lead to the new planar sp(2)-on-sp(3) carbon-on-carbon technology. © 2012 American Chemical Society

  10. Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect

    OpenAIRE

    Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier

    2016-01-01

    International audience; This letter presents a new reconfigurable antenna associated with a plasma Faraday shield effect. The Faraday shield effect is realized by using a fluorescent lamp. A patch antenna operating at 2.45 GHz is placed inside the lamp. The performance of the reconfigurable system is observed in terms of S11, gain and radiation patterns by simulation and measurement. It is shown that by switching ON the fluorescent lamp, the gain of the antenna decreases and the antenna syste...

  11. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2009-01-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  12. Energy distributions and radiation transport in uranium plasmas

    International Nuclear Information System (INIS)

    Miley, G.; Bathke, C.; Maceda, E.; Choi, C.

    1976-01-01

    Electron energy distribution functions have been calculated in a 235 U-plasma at 1 atmosphere for various plasma temperatures (5000 to 8000 0 K) and neutron fluxes (2 x 10 12 to 2 x 10 16 neutrons/(cm 2 -sec)). Two sources of energetic electrons are included; namely fission-fragment and electron-impact ionization, resulting in a high-energy tail superimposed on the thermalized electron distribution. Consequential derivations from equilibrium collision rates are of interest relative to direct pumping of lasers and radiation emission. Results suggest that non-equilibrium excitation can best be achieved with an additive gas such as helium or in lower temperature plasmas requiring UF 6 . An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random-walk treatment of inelastic collisions

  13. Hybrid formulation of radiation transport in optically thick divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)

    2016-08-15

    Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  14. Collisional-radiative model: a plasma spectroscopy theory for experimentalists

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi [Kyoto Univ. (Japan); Sawada, Keiji

    1997-01-01

    The rate equation describing the population n(p) of an excited (and the ground state) level p of ions immersed in plasma is shown. In 1962, the method of quasi-steady state solution (collisional-radiative model) was proposed. Its idea is explained. The coupled differential equations reduce to a set of coupled linear equations for excited levels. The solution of these coupled equations is presented. The equations giving the ionization and recombination of this system of ions under consideration are described in terms of the effective rate coefficients. The collisional-radiative ionization and recombination rate coefficients are expressed in terms of the population coefficients for p > 1. As for ionizing plasma, the excited level populations, the populations, the population distribution among the excited levels, two regimes of the excited levels, the dominant flows of electrons among the levels and so on are shown. As for recombining plasma, the excited level populations, the population distribution among the excited levels, the dominant flows of electrons and so on are shown. Ionization balance plasma may be considered. (K.I.)

  15. Radiative processes in a laser-fusion plasma

    International Nuclear Information System (INIS)

    Campbell, P.M.; Kubis, J.J.; Mitrovich, D.

    1976-01-01

    Plasmas compressed and heated by an intense laser pulse offer promise for the ignition of propagating thermonuclear burn and, ultimately, for use in fusion reactors. It is evident theoretically that the emission and absorption of x-rays by the plasma has a significant effect on the dynamics of the laser compression process. In order to achieve densities high enough for efficient thermonuclear burn, the fusion pellet must be compressed along a low adiabat. This will not be possible if the compressed region of the pellet is significantly preheated by x-rays originating in the hot outer regions. A satisfactory model of compression hydrodynamics must, therefore, include a comprehensive treatment of radiation transport based on a non-LTE model of the plasma. The model must be valid for Fermi-Dirac statistics, since high compression along a low adiabat will, in general, produce degenerate electron distributions. This report is concerned with the plasma model and the corresponding radiation emission and absorption coefficients, including nonthermal processes which occur in the laser deposition region

  16. Measurements of radiative material properties for astrophysical plasmas

    International Nuclear Information System (INIS)

    Bailey, James E.

    2010-01-01

    The new generation of z-pinch, laser, and XFEL facilities opens the possibility to produce astrophysically-relevant laboratory plasmas with energy densities beyond what was previously possible. Furthermore, macroscopic plasmas with uniform conditions can now be created, enabling more accurate determination of the material properties. This presentation will provide an overview of our research at the Z facility investigating stellar interior opacities, AGN warm-absorber photoionized plasmas, and white dwarf photospheres. Atomic physics in plasmas heavily influence these topics. Stellar opacities are an essential ingredient of stellar models and they affect what we know about the structure and evolution of stars. Opacity models have become highly sophisticated, but laboratory tests have not been done at the conditions existing inside stars. Our research is presently focused on measuring Fe at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9 x 10 22 e/cc, respectively. The second project is aimed at testing atomic kinetics models for photoionized plasmas. Photoionization is an important process in many astrophysical plasmas and the spectral signatures are routinely used to infer astrophysical object's characteristics. However, the spectral synthesis models at the heart of these interpretations have been the subject of very limited experimental tests. Our current research examines photoionization of neon plasma subjected to radiation flux similar to the warm absorber that surrounds active galactic nuclei. The third project is a recent initiative aimed at producing a white dwarf photosphere in the laboratory. Emergent spectra from the photosphere are used to infer the star's effective temperature and surface gravity. The results depend on knowledge of H, He, and C spectral line profiles under conditions where complex physics such as quasi-molecule formation may be important. These

  17. Feasibility study of the plasma electron density measurement by electromagnetic radiation from the laser-driven plasma wave

    International Nuclear Information System (INIS)

    Jang, D G; Kim, J J; Suk, H; Hur, M S

    2012-01-01

    When an intense laser beam is focused in a plasma, a plasma wake wave is generated and the oscillatary motion of the plasma electrons produces a strong electromagnetic wave by a Cherenkov-like process. Spectrum of the genetated electromagnetic wave has dependence on the plasma density. In this paper, we propose to use the emitted electromagnetic radiation for plasma diagnostic, which may provide an accurate information for local electron densities of the plasma and will be very useful for three-dimensional plasma density profiles by changing the focal point location of the laser beam. Two-dimensional (2-D) particle-in-cell (PIC) simulation is used to study the correlation between the spectrum of the emitted radiation and plasma density, and the results demonstrate that this method is promising for the electron density measurement in the plasma.

  18. Impurity radiation from a beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1995-01-01

    Impurity radiation, in a worst case evaluation for a beam-plasma neutron source (BPNS), does not limit performance. Impurities originate from four sources: (a) sputtering from walls by charge exchange or alpha particle bombardment, (b) sputtering from limiters, (c) plasma desorption of gas from walls and (d) injection with neutral beams. Sources (c) and (d) are negligible; adsorbed gas on the walls of the confinement chamber and the neutral beam sources is removed by the steady state discharge. Source (b) is negligible for impinging ion energies below the sputtering threshold (T i ≤ 0.025 keV on tungsten) and for power densities to the limiter within the capabilities of water cooling (30-40 MW/m 2 ); both conditions can be satisfied in the BPNS. Source (a) radiates 0.025 MW/m 2 to the neutron irradiation samples, compared with 5 to 10 MW/m 2 of neutrons; and radiates a total of 0.08 MW from the plasma column, compared with 60 MW of injected power. The particle bombardment that yields source (a) deposits an average of 2.7 MW/m 2 on the samples, within the capabilities of helium gas cooling (10 MW/m 2 ). An additional worst case for source (d) is evaluated for present day 2 to 5 s pulsed neutral beams with 0.1% impurity density and is benchmarked against 2XIIB. The total radiation would increase a factor of 1.5 to ≤ 0.12 MW, supporting the conclusion that impurities will not have a significant impact on a BPN. (author). 61 refs, 7 figs, 2 tabs

  19. Collisional and radiative processes in high-pressure discharge plasmas

    Science.gov (United States)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  20. Radiative divertor plasmas with convection in DIII-D

    International Nuclear Information System (INIS)

    Leonard, A.W.; Porter, G.D.; Wood, R.D.; Allen, S.L.; Boedo, J.; Brooks, N.H.; Evans, T.E.; Fenstermacher, M.E.; Hill, D.N.; Isler, R.C.; Lasnier, C.J.; Lehmer, R.D.; Mahdavi, M.A.; Maingi, R.; Moyer, R.A.; Petrie, T.W.; Schaffer, M.J.; Wade, M.R.; Watkins, J.G.; West, W.P.; Whyte, D.G.

    1998-01-01

    The radiation of divertor heat flux on DIII-D [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low-Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction-dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE [T. Rognlien, J. L. Milovich, M. E. Rensink, and G. D. Porter, J. Nucl. Mater. 196 endash 198, 347 (1992)] has reproduced many of the observed experimental features. copyright 1998 American Institute of Physics

  1. Electromagnetic radiation trapped in the magnetosphere above the plasma frequency

    Science.gov (United States)

    Gurnett, D. A.; Shaw, R. R.

    1973-01-01

    An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.

  2. On the time-dependent radiative transfer in photospheric plasmas

    International Nuclear Information System (INIS)

    Schultz, A.L.; Schweizer, M.A.

    1987-01-01

    The paper is the second of a series investigating time-dependent radiative transfer processes of x-rays in photospheric plasmas. A quantitative discussion is presented of analytical results derived earlier along with a comparison with Monte Carlo simulations. The geometry considered is a homogeneous plasma ball with radius R. The source is concentrated on a concentric shell with radius r 0 < R. Point sources at the centre of the ball or semi-infinite geometries are discussed as limiting cases. Diffusion profiles are given for every scattering order and the total profile appears as the sum over these individual profiles. The comparison with Monte Carlo results is used to test the accuracy of the analytical approach and to adjust the time profiles of the first few scattering orders. The analytical theory yields good results over a wide range of situations. (author)

  3. Electronic radiation of a plasma in a magnetic field

    International Nuclear Information System (INIS)

    Canobbio, E.; Consoli, T.; Ichtchenko, G.; Parlance, F.

    1965-01-01

    The influence on the microwave spectrum of the number of fast electrons, density, pressure and plasma inhomogeneities, has been studied in a hot cathode reflex discharge, operating either in a steady state either in a pulsed regime. Under some conditions a strong emission is observed between the harmonics of the electron gyrofrequency. A theoretical interpretation of the results is advanced by extending a model already proposed by CANOBBIO and CROCI. In particular it is indicated that the transition radiation can be responsible for the emission observed between the harmonics. (authors) [fr

  4. Information content of transient synchrotron radiation in tokamak plasmas

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1989-04-01

    A brief, deliberate, perturbation of hot tokamak electrons produces a transient, synchrotron radiation signal, in frequency-time space, with impressive informative potential on plasma parameters; for example, the dc toroidal electric field, not available by other means, may be measurably. Very fast algorithms have been developed, making tractable a statistical analysis that compares essentially all parameter sets that might possibly explain the transient signal. By simulating data numerically, we can estimate the informative worth of data prior to obtaining it. 20 refs., 2 figs

  5. Estimates of the field-aligned current density in current-carrying filaments using auroral zone ground-based observations

    Directory of Open Access Journals (Sweden)

    M. A. Danielides

    Full Text Available We described the ground signatures of dynamic substorm features as observed by the imaging riometer, magnetometers and all-sky camera (ASC at Kilpisjärvi, Finland on 5 and 25 October 1999 during the late evening hours. The magnetometer data was consistent with the motion of up-ward field-aligned currents (FACs associated with absorption patches moving within the field of view of the riometer. We used riometer data in order to estimate the intensity of FACs associated with these local current-carrying filaments. It is shown that during these events, the estimated FAC intensity exceeds a threshold value that corresponds to the excitation of the low-frequency turbulence in the upper ionosphere. As a result, a quasi-oscillating regime of anomalous resistivity on the auroral field lines can give rise to the burst-like electron acceleration responsible for simultaneously observed auroral forms and bursts of Pi1B pulsations.

    Key words. Ionosphere (active experiments; auroral ionosphere; electric fields and currents

  6. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    Science.gov (United States)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  7. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  8. Terahertz Pulse Generation in Underdense Relativistic Plasmas: From Photoionization-Induced Radiation to Coherent Transition Radiation

    Science.gov (United States)

    Déchard, J.; Debayle, A.; Davoine, X.; Gremillet, L.; Bergé, L.

    2018-04-01

    Terahertz to far-infrared emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities (>1019 W /cm2 ) is investigated by means of 3D particle-in-cell simulations. The terahertz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse, and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. We exhibit laser-plasma parameters for which CTR proves to be the dominant process, providing terahertz bursts with field strength as high as 100 GV /m and energy in excess of 10 mJ. Analytical models are developed for both the PIR and CTR processes, which correctly reproduce the simulation data.

  9. Substrate decoration for improvement of current-carrying capabilities of YBa2Cu3Ox thin films

    International Nuclear Information System (INIS)

    Khoryushin, Alexey V.; Mozhaev, Peter B.; Mozhaeva, Julia E.; Bdikin, Igor K.; Zhao, Yue; Andersen, Niels H.; Jacobsen, Claus S.; Hansen, Jørn Bindslev

    2013-01-01

    Highlights: ► Effects of substrate decoration on properties of YBCO thin films were studied. ► Y 2 O 3 nanoparticles, ultra-thin Y 2 O 3 and Y:ZrO 2 layers were used as decoration layer. ► Decoration improves j C (5 T and 50 K) up to 0.97 MA/cm 2 vs. 0.76 MA/cm 2 for a reference film. ► Ultra-thin layer of yttria and yttria nanoparticles have a similar effect on YBCO. ► Y 2 O 3 decoration results in power law coefficient α = 0.3 vs. α = 0.4 for a reference film. -- Abstract: The effects of substrate decoration with yttria and Y:ZrO 2 on the structural and electrical properties of the YBa 2 Cu 3 O x (YBCO) thin films are studied. The films were deposited on (LaAlO 3 ) 3 –(Sr 2 AlTaO 8 ) 7 substrates by pulsed laser deposition. Two different structures of decoration layer were applied, a template layer of nanoparticles and an uniform ultra-thin layer. Significant improvement of current-carrying capabilities was observed, especially at high external magnetic fields. Structural studies of these films reveal the presence of extended linear defects in the YBCO matrix. The formation of these structures is attributed to seeding of randomly oriented YBCO grains due to suppression of epitaxy in the very beginning of the deposition. The films of both kinds of decoration layers show nearly the same improvement of j C over the reference film at 77 and 50 K: j C (5T and 50 K) reaches 0.92 and 0.97 MA/cm 2 for uniform and template decoration layers. At 5 and 20 K the effect of template decoration layers is more beneficial: j C (5T and 20 K) values are 3.5 and 4.1 MA/cm 2 , j C (5T and 5 K) values are 6.4 and 7.9 MA/cm 2 , for uniform and template decoration layers, respectively

  10. Determination of current and rotational transform profiles in a current-carrying stellarator using soft x-ray emissivity measurements

    Science.gov (United States)

    Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.

    2018-01-01

    Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.

  11. Laser radiation forces in laser-produced plasmas

    International Nuclear Information System (INIS)

    Stamper, J.A.

    1975-01-01

    There are two contributions to laser radiation forces acting on the electrons. Transfer of momentum from the fields to the electrons results in a field pressure contribution and occurs whenever there is absorption or reflection. The quiver pressure contribution, associated with electron quiver motion, is due to inhomogeneous fields inducing momentum transfer within the electron system. It is shown that the ponderomotive force with force density, (epsilon-1)/8πdel 2 >, does not include the field contribution and does not lead to a general description of macroscopic processes. A theory is discussed which does give a general macroscopic description (absorption, reflection, refraction, and magnetic field generation) and which reduces to the ponderomotive force for purely sinusoidal fields in a neutral, homogeneous, nonabsorbing plasma

  12. Immobilized enzymes in blood plasma exchangers via radiation grafting

    Science.gov (United States)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  13. Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection

    International Nuclear Information System (INIS)

    Soloshenko, I.O.; Bazhenov, V.Yu.; Khomych, V.O.; Tsiolko, V.V.; Potapchenko, N.G.; Goncharuk, V.V.

    2006-01-01

    We study the possibility to use the ultraviolet radiation of a hollow cathode discharge plasma for water disinfection. We have performed the comparative experiments on the influence of ultraviolet radiation of the mentioned discharge plasma, as well as that of a standard low pressure mercury lamp

  14. Polarization mechanism for Bremsstrahlung and radiative recombination in a plasma with heavy ions

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.

    2002-01-01

    Contribution of polarization channel into radiation and recombination of electrons in plasma with heavy ions is investigated. Cases of hot plasma with temperature T e = 0.5 keV and Fe, Mo, W, U ions and relatively cold plasma with temperature 0.1-10 eV are considered. Calculations of spectral characteristics, full cross sections and recombination rates in plasma are made, bearing in mind its real ionization equilibrium. The calculations are made on the basis of quasiclassical approximation for electron scattering and statistical model of ions. It is shown that contribution of polarization channel is essential both for effective radiation and full rate of radiative recombination [ru

  15. Influence of radiative processes on the ignition of deuterium–tritium plasma containing inactive impurities

    Energy Technology Data Exchange (ETDEWEB)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Sherman, V. E. [Peter the Great St. Petersburg Polytechnic University (Russian Federation)

    2016-08-15

    The degree of influence of radiative processes on the ignition of deuterium–tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result of using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.

  16. ELECTROMECHANICAL TRANSIENT PROCESSES DURING SUPPLY VOLTAGE CHANGING IN THE SYSTEM OF POLYMER INSULATION COVERING OF THE CURRENT-CARRYING CORE OF ULTRA HIGH VOLTAGE CABLES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2018-04-01

    Full Text Available Aim. The article is devoted to the analysis of the electromechanical transient processes in a system of three frequency-controlled electric drives based on asynchronous motors that control current-carrying core motion, as well as to the study of the effect of such processes on the modes applying three-layer polymer insulation to the current-carrying core. Technique. The study was conducted based on the concepts of electromechanics, electromagnetic field theory, mathematical physics, mathematical modeling. Results. A mathematical model has been developed to analyze transients in an electromechanical system consisting of three frequency-controlled electric drives providing current-carrying core motion of ultra-high voltage cables in an inclined extrusion line. The coordination of the electromechanical parameters of the system drives has been carried out and the permissible changes in the supply voltage at the limiting mass while moving current-carrying core of ultra-high voltage cables with applied polymer insulation have been estimated. Scientific novelty. For the first time it is determined that with the limiting mass of the current-carrying core, the electromechanical system allows to stabilize the current-carrying core speed with the required accuracy at short-term decreases in the supply voltage by no more than 27 % of its amplitude value. It is also shown that this system is resistant to short-term increases in voltage by 32 % for 0.2 s. Practical significance. Using the developed model, it is possible to calculate the change in the configuration and speed of the slack current-carrying core when applying polymer insulation, depending on the specific mass of the current-carrying core per unit length, its tension at the bottom, the torque of the traction motor and the supply voltage to achieve stable operation of the system and accurate working of the set parameters.

  17. Radiative corrections to the Coulomb law and model of dense quantum plasmas: Dispersion of longitudinal waves in magnetized quantum plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2018-04-01

    Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.

  18. The Pedersen current carried by electrons: a non-linear response of the ionosphere to magnetospheric forcing

    Directory of Open Access Journals (Sweden)

    S. C. Buchert

    2008-09-01

    Full Text Available Observations by the EISCAT Svalbard radar show that electron temperatures Te in the cusp electrojet reach up to about 4000 K. The heat is tapped and converted from plasma convection in the near Earth space by a Pedersen current that is carried by electrons due to the presence of irregularities and their demagnetising effect. The heat is transfered to the neutral gas by collisions. In order to enhance Te to such high temperatures the maximally possible dissipation at 50% demagnetisation must nearly be reached. The effective Pedersen conductances are found to be enhanced by up to 60% compared to classical values. Conductivities and conductances respond significantly to variations of the electric field strength E, and "Ohm's law" for the ionosphere becomes non-linear for large E.

  19. Theory of coherent transition radiation generated at a plasma-vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B.; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim P.

    2003-06-26

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long wavelength radiation. This method of transition radiation generation has the capability of producing high peak power THz radiation, of order 100 (mu)J/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art THz sources.

  20. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    Science.gov (United States)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  1. Influence of ions on relativistic double layers radiation in astrophysical plasmas

    Directory of Open Access Journals (Sweden)

    AM Ahadi

    2009-12-01

    Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.

  2. Pion radiation by hot quark-gluon plasma

    International Nuclear Information System (INIS)

    Rafelski, J.; Danos, M.; Universitaet Frankfurt, Germany; National Bureau of Standards, Washington, DC)

    1983-01-01

    We consider here an approximately spherical region of the perturbative QCD vacuum, filled with quarks, antiquarks and gluons. For an impenetrable surface between the perturbative and true vacuum states, the inside thermal and degeneracy pressure would lead to an expansion until either pressure equilibrium or a phase transition into individual hadrons is reached. However, if the surface is penetrable, i.e., if it allows transmission of momentum and energy (but not colour) from the inside, then this can lead to a substantial internal energy and pressure loss by radiation - the pressure acting on the surface is reduced, as not all the momentum impinging on the surface has to be reflected. On first thought, the microscopic mechanism for this transmission arises in the following manner: when a fast quark or antiquark hits the boundary, a jet-like structure filled with colour field flux, i.e., a fluxtube might be formed. For sufficiently high quark momentum, this tube, instead of retracting, splits by q anti q pair creation. The leading particle associates with the antiparticle of the pair to form a meson, while the remaining pair particle may retract into the plasma. Difficulties with this model are discussed

  3. Radiation characteristics of input power from surface wave sustained plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)

    2016-09-15

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  4. Radiation characteristics of input power from surface wave sustained plasma antenna

    International Nuclear Information System (INIS)

    Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.

    2016-01-01

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  5. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V., E-mail: vsizyuk@purdue.edu; Hassanein, A., E-mail: hassanein@purdue.edu [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2015-01-15

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  6. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    1999-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≥ 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  7. Highly radiative plasmas for local transport studies and power and particle handling in reactor regimes

    International Nuclear Information System (INIS)

    Hill, K.W.; Bell, M.G.; Budny, R.

    2001-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into TFTR supershots and high-l i plasmas. At neutral beam injection (NBI) powers P B ≤30MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both D and DT plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in ITER. The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms. (author)

  8. Highly Radiative Plasmas for Local Transport Studies and Power and Particle Handling in Reactor Regimes

    International Nuclear Information System (INIS)

    Bell, M.G.; Bell, R.E.; Budny, R.; Bush, C.E.; Hill, K.W.

    1998-01-01

    To study the applicability of artificially enhanced impurity radiation for mitigation of the plasma-limiter interaction in reactor regimes, krypton and xenon gases were injected into the Tokamak Fusion Test Reactor (TFTR) supershots and high-l(subscript) plasmas. At neutral beam injection (NBI) powers P(subscript B) greater than or equal to 30 MW, carbon influxes (blooms) were suppressed, leading to improved energy confinement and neutron production in both deuterium (D) and deuterium-tritium (DT) plasmas, and the highest DT fusion energy production (7.6 MJ) in a TFTR pulse. Comparisons of the measured radiated power profiles with predictions of the MIST impurity transport code have guided studies of highly-radiative plasmas in the International Thermonuclear Experimental Reactor (ITER). The response of the electron and ion temperatures to greatly increased radiative losses from the electrons was used to study thermal transport mechanisms

  9. DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

    2001-01-01

    The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions.

  10. DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report

    International Nuclear Information System (INIS)

    Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

    2001-01-01

    The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions

  11. SHF radiation of plasma and acceleration regime of a discharge in the Tokamak FT-1

    International Nuclear Information System (INIS)

    Larionov, M.M.; Levin, L.S.; Rozhdestvenskij, V.V.; Tokunov, A.I.

    1975-01-01

    It is studied the frequency spectrum of SHF radiation, hard X-radiation, diamagnetism, conductivity and density of plasma in high-temperature and accelerating regimes of the FT-1 tokamak. It is shown that the intensities of hard X-radiation and SHF radiation in an accelerating discharge are far more than in a high-temperature discharge. In the first case radiation temperature of the SHF range reaches 7 keV while in the second one it will be 7 eV. The difference in the radiations points to the diverse role of electron running-away. The total and transverse energies of run-away electrons are evaluated according to the X-ray energy and SHF radiation. The transverse energy of the run-away electrons is found to be 80 keV. This value permits interpretation of the observed plasma diamagnetism

  12. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    International Nuclear Information System (INIS)

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-01-01

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust 2 and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  13. Radiation transfer effects on the spectra of laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Kerr, F.M.; Wolfrum, E.; Hawreliak, J.; Chambers, D.; Rose, S. J.; Wark, J. S.; Scott, H.A.; Patel, P.

    2006-01-01

    Roč. 96, č. 18 (2006), 185002/1-185002/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * spectral line shapes * plasma modeling * radiative transfer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.072, year: 2006

  14. [Study of enhancement effect of laser-induced crater on plasma radiation].

    Science.gov (United States)

    Chen, Jin-Zhong; Zhang, Xiao-Ping; Guo, Qing-Lin; Su, Hong-Xin; Li, Guang

    2009-02-01

    Single pulses exported from high-energy neodymium glass laser were used to act on the same position of soil sample surface repeatedly, and the plasma emission spectra generated from sequential laser pulse action were collected by spectral recording system. The experimental results show that the laser-induced soil plasma radiation was enhanced continuously under the confinement effect of the crater walls, and the line intensities and signal-to-background ratios both had different improvements along with increasing the number of acting pulses. The photographs of the plasma image and crater appearance were taken to study the plasma shape, laser-induced crater appearance, and the mass of the ablated sample. The internal mechanism behind that laser-induced crater enhanced plasma radiation was researched. Under the sequential laser pulse action, the forming plasma as a result enlarges gradually first, leading to distortion at the trail of plasma plume, and then, its volume diminishes slowly. And also, the color of the plasma changes from buff to white gradually, which implies that the temperature increases constantly. The laser-induced crater had a regular shape, that is, the diameter increased from its bottom to top gradually, thus forming a taper. The mass of the laser-ablated substance descends along with increasing the amount of action pulse. Atomization degree of vaporized substance was improved in virtue of the crater confinement effect, Fresnel absorption produced from the crater walls reflection, and the inverse bremsstrahlung, and the plasma radiation intensity was enhanced as a result.

  15. Automatic system for processing the plasma radiation spectra

    International Nuclear Information System (INIS)

    Isakaev, Eh.Kh.; Markin, A.V.; Khajmin, V.A.; Chinnov, V.F.

    2001-01-01

    One is tackling a problem to ensure computer for processing of experimental data when studying plasma obtained due to the present day systems to acquire information. One elaborated rather simple and reliable programs for processing. The system is used in case of plasma quantitative spectroscopy representing the classical and most widely used method to analyze the parameters and the properties of low-temperature and high-temperature plasma [ru

  16. Relativistic and nonlinear radiation interaction between laser beams and plasmas

    International Nuclear Information System (INIS)

    Kane, E.L.; Hora, H.

    1981-01-01

    Starting from a combination of Maxwell's laws for the electromagnetic field and the conservation equations for a fully ionized plasma, the appropriate equations describing electrodynamic laser propagation and plasma dynamic particle motion are developed and solved. Calculations for multiply ionized transient conditions are carried out to yield electric field amplitudes, radial electron number density distributions and the progress of formation of a self-focused beam filament as a function of the target plasma density distribution and the laser pulse power-time history, among other parameters. Separate solutions emphasizing field-induced plasma motion on the one hand and significant beam contraction on the other are illustrated

  17. Diagnostic applications of transient synchrotron radiation in tokamak plasmas

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1990-02-01

    Transient radiation, resulting from a brief, deliberate perturbation of the velocity distribution of superthermal tokamak electrons, can be more informative than the steady background radiation that is present in the absence of the perturbation. It is possible to define a number of interesting inverse problems, which exploit the two-dimensional frequency-time data of the transient radiation signal. 17 refs

  18. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    Science.gov (United States)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  19. Radiation from a pulsed dipole source in a moving magnetized plasma

    International Nuclear Information System (INIS)

    Gavrilenko, V. G.; Petrov, E. Yu.; Pikulin, V. D.; Sutyagina, D. A.

    2006-01-01

    The problem of radiation from a pulsed dipole source in a moving magnetized plasma described by a diagonal permittivity tensor is considered. An exact solution describing the spatiotemporal behavior of the excited electromagnetic field is obtained. The shape of an electromagnetic pulse that is generated by the source and propagates at different angles to both the direction of the external magnetic field and the direction of plasma motion is investigated. It is found that even nonrelativistic motion of the plasma medium can substantially influence the parameters of radiation from prescribed unsteady sources

  20. X-ray radiation source based on a plasma filled diode

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar, A S [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation). Russian Federal Nuclear Center

    1997-12-31

    The results are given of studies on a plasma X-ray source providing 2.5 krad of radiation dose per pulse over an area of 100 cm{sup 2} in the quantum energy range between 20 and 500 keV. The pulse duration was 100 ns. The spectral radiation distribution was obtained under various operating conditions of plasma and diode. A Marx generator served as the starting power source of 120 kJ with a discharge time of T/4=10{sup -6} s. A short electromagnetic pulse (10{sup -7} s) was shaped using plasma erosion opening switches. (author). 5 figs., 4 refs.

  1. Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock

    Science.gov (United States)

    Cairns, Iver H.

    1994-01-01

    Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are

  2. Radiation in plasma target interaction events typical for ITER tokamak disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Bazylev, B.; Landman, I.; Safronov, V.

    1996-01-01

    Plasma wall interactions under conditions simulating ITER hard disruptions and ELMs are studied at the plasma gun facilities 2MK-200 CUSP and MK-200 UG at Troitsk. The experimental data for carbon plasma shields are used for validation of the theoretical modeling of the plasma wall interaction. The important features of the non-LTE plasma shield such as temperature and density distribution, its evolution and the conversion efficiency of the energy of the plasma stream into total and soft x-ray radiation from highly ionized evaporated target material and the energy balance are reproduced quite well. Thus a realistic modelling of ITER disruptive plasma wall interaction using the validated models is now possible. 8 refs., 6 figs

  3. Radiative transfer in a strongly magnetized plasma. I. Effects of Anisotropy

    International Nuclear Information System (INIS)

    Nagel, W.

    1981-01-01

    We present results of radiative transfer calculations for radiating slabs and columns of strongly magnetized plasma. The angular dependence of the escaping radiation was found numerically by Feautrier's method, using the differential scattering cross sections derived by Ventura. We also give an approximate analytical expression for the anisotropy of the outgoing radiation, based on a system of two coupled diffusion equations for ordinary and extraordinary photons. Giving the polarization dependence of the beaming pattern of radiating slabs as well as columns, we generalize previous results of Basko and Kanno. Some implications for models of the pulsating X-ray source Her X-1 are discussed

  4. Radiation sources based on laser-plasma interactions

    NARCIS (Netherlands)

    Jaroszynski, D.A.; Bingham, R.; Brunetti, E.; Ersfeld, B.; Gallacher, J.G.; Geer, van der S.B.; Issac, R.; Jamison, S.P.; Jones, D.; Loos, de M.J.; Lyachev, A.; Pavlov, V.M.; Reitsma, A.J.W.; Saveliev, Y.M.; Vieux, G.; Wiggins, S.M.

    2006-01-01

    Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged

  5. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    Directory of Open Access Journals (Sweden)

    Fanrong Kong

    2018-02-01

    Full Text Available The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  6. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    Science.gov (United States)

    Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao

    2018-02-01

    The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  7. ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES

    International Nuclear Information System (INIS)

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2012-01-01

    Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f p and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f p by LW eigenmodes. The EM wave power emitted near f p is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f p radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

  8. Effects of plasma radiation on wound healing compared with X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Azorin V, E.; Pena E, R. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin V, J. C., E-mail: erica.azorin@inin.gob.mx [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Blvd. Prol. Calz. de los Heroes No. 908, Col. La Martinica, Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: The radiation emitted by the plasma needle has shown high efficiency in the inactivation of microorganisms and the acceleration of the healing process; apparently such effects are related to the antioxidant activity, induction of cell damage and the generation of free radicals. To take advantage of plasma clinical applications it is essential to understand the cellular mechanisms activated by the exposure of human cells to radiation emitted by cold plasma. In this work we present the results of the characterization of the responses of human skin fibroblasts exposed to the radiation emitted by a plasma by varying the magnitude of flow, electrical power, time and composition of the cell culture medium comparing it with the response of these fibroblasts to low energy X-rays. (Author)

  9. Mini-magnetosphere plasma experiment for space radiation protection in manned spaceflight

    International Nuclear Information System (INIS)

    Jia Xianghong; Xu Feng; Jia Shaoxia; Wan Jun; Wang Shouguo

    2012-01-01

    With the development of Chinese manned spaceflight, the planetary missions will become true in the future. The protection of astronauts from cosmic radiation is an unavoidable problem that should be considered. There are many revolutionary ideas for shielding including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. The concept using cold plasma to expand a magnetic field was recommended for further assessment. Magnetic field inflation was produced by the injection of plasma onto the magnetic field. The method can be used to deflect charged ions and to reduce space radiation dose. It can supply the suitable radiation protection for astronauts and spacecraft. Principle experiments demonstrated that the magnetic field was inflated by the injection of the plasma in the vacuum chamber and the magnetic field intensity strengthened with the increasing of input RF power in this paper. The mechanism should be studied in following steps. (authors)

  10. Effects of plasma radiation on wound healing compared with X-ray

    International Nuclear Information System (INIS)

    Azorin V, E.; Pena E, R.; Azorin V, J. C.

    2015-10-01

    Full text: The radiation emitted by the plasma needle has shown high efficiency in the inactivation of microorganisms and the acceleration of the healing process; apparently such effects are related to the antioxidant activity, induction of cell damage and the generation of free radicals. To take advantage of plasma clinical applications it is essential to understand the cellular mechanisms activated by the exposure of human cells to radiation emitted by cold plasma. In this work we present the results of the characterization of the responses of human skin fibroblasts exposed to the radiation emitted by a plasma by varying the magnitude of flow, electrical power, time and composition of the cell culture medium comparing it with the response of these fibroblasts to low energy X-rays. (Author)

  11. Integral and Lagrangian simulations of particle and radiation transport in plasma

    International Nuclear Information System (INIS)

    Christlieb, A J; Hitchon, W N G; Lawler, J E; Lister, G G

    2009-01-01

    Accurate integral and Lagrangian models of transport in plasmas, in which the models reflect the actual physical behaviour as closely as possible, are presented. These methods are applied to the behaviour of particles and photons in plasmas. First, to show how these types of models arise in a wide range of plasma physics applications, an application to radiation transport in a lighting discharge is given. The radiation transport is solved self-consistently with a model of the discharge to provide what are believed to be very accurate 1D simulations of fluorescent lamps. To extend these integral methods to higher dimensions is computationally very costly. The wide utility of 'treecodes' in solving massive integral problems in plasma physics is discussed, and illustrated in modelling vortex formation in a Penning trap, where a remarkably detailed simulation of vortex formation in the trap is obtained. Extension of treecode methods to other integral problems such as radiation transport is under consideration.

  12. Diagnostic system for EUV radiation measurements from dense xenon plasma generated by MPC

    International Nuclear Information System (INIS)

    Petrov, Yu.V.; Garkusha, I.E.; Solyakov, D.G.; Marchenko, A.K.; Chebotarev, V.V.; Ladygina, M.S.; Staltsov, V.V.; Yelisyeyev, D.V.; Hassanein, A.

    2011-01-01

    Magnetoplasma compressor (MPC) of compact geometry has been designed and tested as a source of EUV radiation. In present paper diagnostic system for registration of EUV radiation is described. It was applied for radiation measurements in different operation modes of MPC. The registration system was designed on the base of combination of different types of AXUV photodiodes. Possibility to minimize the influence of electrons and ions flows from dense plasma stream on AXUV detector performance and results of the measurements has been discussed.

  13. Effects of plasma jet parameters, ionization, thermal conduction, and radiation on stagnation conditions of an imploding plasma liner

    Science.gov (United States)

    Stanic, Milos

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal expansion rates and leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ≈ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear

  14. Intestinal Microbiota-Derived Metabolomic Blood Plasma Markers for Prior Radiation Injury

    International Nuclear Information System (INIS)

    Ó Broin, Pilib; Vaitheesvaran, Bhavapriya; Saha, Subhrajit; Hartil, Kirsten; Chen, Emily I.; Goldman, Devorah; Fleming, William Harv; Kurland, Irwin J.; Guha, Chandan; Golden, Aaron

    2015-01-01

    Purpose: Assessing whole-body radiation injury and absorbed dose is essential for remediation efforts following accidental or deliberate exposure in medical, industrial, military, or terrorist incidents. We hypothesize that variations in specific metabolite concentrations extracted from blood plasma would correlate with whole-body radiation injury and dose. Methods and Materials: Groups of C57BL/6 mice (n=12 per group) were exposed to 0, 2, 4, 8, and 10.4 Gy of whole-body gamma radiation. At 24 hours after treatment, all animals were euthanized, and both plasma and liver biopsy samples were obtained, the latter being used to identify a distinct hepatic radiation injury response within plasma. A semiquantitative, untargeted metabolite/lipid profile was developed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, which identified 354 biochemical compounds. A second set of C57BL/6 mice (n=6 per group) were used to assess a subset of identified plasma markers beyond 24 hours. Results: We identified a cohort of 37 biochemical compounds in plasma that yielded the optimal separation of the irradiated sample groups, with the most correlated metabolites associated with pyrimidine (positively correlated) and tryptophan (negatively correlated) metabolism. The latter were predominantly associated with indole compounds, and there was evidence that these were also correlated between liver and plasma. No evidence of saturation as a function of dose was observed, as has been noted for studies involving metabolite analysis of urine. Conclusions: Plasma profiling of specific metabolites related to pyrimidine and tryptophan pathways can be used to differentiate whole-body radiation injury and dose response. As the tryptophan-associated indole compounds have their origin in the intestinal microbiome and subsequently the liver, these metabolites particularly represent an attractive marker for radiation injury within blood plasma

  15. Intestinal Microbiota-Derived Metabolomic Blood Plasma Markers for Prior Radiation Injury

    Energy Technology Data Exchange (ETDEWEB)

    Ó Broin, Pilib [Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States); Department of Mathematical Sciences, Yeshiva University, New York, New York (United States); Vaitheesvaran, Bhavapriya [Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States); Saha, Subhrajit [Department of Radiation Oncology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States); Hartil, Kirsten [Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States); Chen, Emily I. [Department of Pharmacology, Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York (United States); Goldman, Devorah; Fleming, William Harv [Department of Medicine, Oregon Health and Science University, Portland, Oregon (United States); Kurland, Irwin J. [Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States); Guha, Chandan, E-mail: cguha@montefiore.org [Department of Radiation Oncology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States); Golden, Aaron, E-mail: aaron.golden@einstein.yu.edu [Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States); Department of Mathematical Sciences, Yeshiva University, New York, New York (United States)

    2015-02-01

    Purpose: Assessing whole-body radiation injury and absorbed dose is essential for remediation efforts following accidental or deliberate exposure in medical, industrial, military, or terrorist incidents. We hypothesize that variations in specific metabolite concentrations extracted from blood plasma would correlate with whole-body radiation injury and dose. Methods and Materials: Groups of C57BL/6 mice (n=12 per group) were exposed to 0, 2, 4, 8, and 10.4 Gy of whole-body gamma radiation. At 24 hours after treatment, all animals were euthanized, and both plasma and liver biopsy samples were obtained, the latter being used to identify a distinct hepatic radiation injury response within plasma. A semiquantitative, untargeted metabolite/lipid profile was developed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, which identified 354 biochemical compounds. A second set of C57BL/6 mice (n=6 per group) were used to assess a subset of identified plasma markers beyond 24 hours. Results: We identified a cohort of 37 biochemical compounds in plasma that yielded the optimal separation of the irradiated sample groups, with the most correlated metabolites associated with pyrimidine (positively correlated) and tryptophan (negatively correlated) metabolism. The latter were predominantly associated with indole compounds, and there was evidence that these were also correlated between liver and plasma. No evidence of saturation as a function of dose was observed, as has been noted for studies involving metabolite analysis of urine. Conclusions: Plasma profiling of specific metabolites related to pyrimidine and tryptophan pathways can be used to differentiate whole-body radiation injury and dose response. As the tryptophan-associated indole compounds have their origin in the intestinal microbiome and subsequently the liver, these metabolites particularly represent an attractive marker for radiation injury within blood plasma.

  16. Intestinal microbiota-derived metabolomic blood plasma markers for prior radiation injury.

    Science.gov (United States)

    Ó Broin, Pilib; Vaitheesvaran, Bhavapriya; Saha, Subhrajit; Hartil, Kirsten; Chen, Emily I; Goldman, Devorah; Fleming, William Harv; Kurland, Irwin J; Guha, Chandan; Golden, Aaron

    2015-02-01

    Assessing whole-body radiation injury and absorbed dose is essential for remediation efforts following accidental or deliberate exposure in medical, industrial, military, or terrorist incidents. We hypothesize that variations in specific metabolite concentrations extracted from blood plasma would correlate with whole-body radiation injury and dose. Groups of C57BL/6 mice (n=12 per group) were exposed to 0, 2, 4, 8, and 10.4 Gy of whole-body gamma radiation. At 24 hours after treatment, all animals were euthanized, and both plasma and liver biopsy samples were obtained, the latter being used to identify a distinct hepatic radiation injury response within plasma. A semiquantitative, untargeted metabolite/lipid profile was developed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, which identified 354 biochemical compounds. A second set of C57BL/6 mice (n=6 per group) were used to assess a subset of identified plasma markers beyond 24 hours. We identified a cohort of 37 biochemical compounds in plasma that yielded the optimal separation of the irradiated sample groups, with the most correlated metabolites associated with pyrimidine (positively correlated) and tryptophan (negatively correlated) metabolism. The latter were predominantly associated with indole compounds, and there was evidence that these were also correlated between liver and plasma. No evidence of saturation as a function of dose was observed, as has been noted for studies involving metabolite analysis of urine. Plasma profiling of specific metabolites related to pyrimidine and tryptophan pathways can be used to differentiate whole-body radiation injury and dose response. As the tryptophan-associated indole compounds have their origin in the intestinal microbiome and subsequently the liver, these metabolites particularly represent an attractive marker for radiation injury within blood plasma. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    Science.gov (United States)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  18. Numerical Study of Radiation Emissions from the Plasma Focus

    International Nuclear Information System (INIS)

    Akel, M.; Salo, S.

    2013-12-01

    Ion populations of studied plasma have been calculated versus electron temperatures. The expected emission spectra (full, Bremsstrahlung, recombination, and line) of plasma focus operated with different gases (nitrogen, oxygen, neon, argon, krypton and xenon) have been studied for different conditions using POPULATE, SPECTRA, XRAYFIL and FLYCHK codes for non-local thermodynamic equilibrium model (NLTE). The suitable electron temperatures ranges for soft X-ray and extreme ultraviolet (EUV) emissions from plasma focus have been investigated. The Ratio- BPX65.F code has been written in FORTRAN 77 for studying the soft X-ray emission of plasma focus using BPX65 PIN Diode X-ray Spectrometer technique. The X-ray ratio curves for various electron temperatures with probable electron and ion densities of the studied plasma produced have been computed with the assumption of non-LTE model for the distribution of the ionic species. The calculated X-ray ratio curves have been compared with experimental results for the argon plasma focus. These ratio curves could be used for electron temperatures deduction of plasma focus (author).

  19. Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas

    Directory of Open Access Journals (Sweden)

    Malvina B. Trzhaskovskaya

    2015-05-01

    Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.

  20. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    A mechanical as well as metallurgical bonding is necessary. 3. Applications ... Here the feasibility of using metallic components that were plasma spray- ... To study the electrical insulation, integrity of ceramic coating etc, tests were carried out.

  1. Plasma Instability Based Compact Coherent Terahertz Radiation Sources

    National Research Council Canada - National Science Library

    Bakshi, P

    2004-01-01

    .... These are in good agreement with experiments carried out at TU Vienna. A sharp emission line was obtained in the most recent structure, suggesting that we are close to the onset of plasma instability...

  2. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Science.gov (United States)

    Rosato, J.; Capes, H.; Catoire, F.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.; Marandet, Y.; Rosmej, F. B.; Stamm, R.

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li+/Li++) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (Ne, Te,…). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  3. Synchrotron radiation based on laser-plasma interaction in the relativistic range

    International Nuclear Information System (INIS)

    Albert, F.

    2007-12-01

    This work illustrates the experimental characterization of a new compact X-ray source: the Betatron X-ray source. It is the first time that collimated hard X-ray source is produced by laser. Through the focusing of an ultra-intense laser radiation (30 TW, 30 fs) on a helium plasma, the ponderomotive force linked to the light intensity gradient expels the plasma electrons forming an accelerating cavity in the wake of the laser plasma. Some electrons trapped in the back of this structure, are accelerated and oscillate to produce X-radiation. This document is composed of 8 chapters. The first one is a presentation of the topic. The second chapter gives an account of the physics behind the laser-plasma interaction in the relativistic range and for ultra-short pulses. The third chapter presents the theoretical characteristics of the Betatron X-ray source. This chapter begins with an analogy with current synchrotron radiation and the radiation emitted by an electron undergoing Betatron oscillations is described in terms of power, spectral intensity and photon flux. The fourth chapter is dedicated to the numerical simulation of the Betatron radiation. The trajectories of the electrons are computed from the equation of motion, taking into account longitudinal and transverse forces. The radiation emission term is then computed from the radiation equation detailed in the previous chapter. The fifth chapter presents the experimental setting to produce Betatron X-rays. The sixth chapter gives the experimental characterization of the source (size, divergence and spectrum) on one hand, and on the other hand studies how source flux and spectra vary when laser and plasma parameters change. The seventh chapter presents experimental methods used to characterize the electrons trajectories in the plasma wiggler. The last chapter draws some perspectives on this source in terms of improvement and uses. (A.C.)

  4. Terahertz radiation generation by lasers with remarkable efficiency in electron–positron plasma

    International Nuclear Information System (INIS)

    Malik, Hitendra K.

    2015-01-01

    Photo-mixing of spatial-super-Gaussian lasers and electron–positron plasma are proposed for realizing a large amplitude nonlinear current in order to generate an efficient terahertz radiation. An external magnetic field together with a proper index of the lasers helps achieving controllable current and hence, the focused radiation of tunable frequency and power along with a remarkable efficiency of the scheme as ∼6%. - Highlights: • First proposal of photo-mixing of spatial-super-Gaussian (SSG) lasers in electron–positron (e–p) plasma. • Large amplitude nonlinear current due to the contribution of both the plasma species. • Magnetic field as an additional parameter for tunable THz radiation with a remarkable efficiency of ∼6%.

  5. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    International Nuclear Information System (INIS)

    Li, X. F.; Yu, Q.; Qu, J. F.; Kong, Q.; Gu, Y. J.; Ma, Y. Y.; Kawata, S.

    2016-01-01

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electrons is significant, especially to the peak photon energy.

  6. New photoionization lasers pumped by laser-induced plasma radiation

    International Nuclear Information System (INIS)

    Hube, M.; Dieckmann, M.; Beigang, R.; Welling, H.; Wellegehausen, B.

    1988-01-01

    Innershell photoionization of atomic gases and vapors by soft x rays from a laser-produced plasma is a potential method for making lasers at short wavelengths. Normally, in such experiments only a single plasma spot or plasma line is created for the excitation. This gives high excitation rates but only a short excitation length. At high excitation rates detrimental influences, such as amplified spontaneous emission, optical saturation, or quenching processes, may decrease or even destroy a possible inversion. Therefore, it seems to be more favorable to use a number of separated plasma spots with smaller excitation rates and larger excitation lengths. As a test, a three-plasma spot device was constructed and used in the well-known Cd-photoionization laser at 442 nm. With a 600-mJ Nd:YAH laser (pulse length, 8 ns) for plasma production, output energies up to 300 μJ have been measured, which is more than a doubling of so far obtained data. On innershell excitation, levels may be populated that allow direct lasers as in the case of Cd or that are metastable and cannot be directly coupled to lower levels. In this case modifications in the excitation process are necessary. Such modifications may be an optical pump process in the atom prior to the innershell photoionization or an optical pump process (population transfer process) after the innershell ionization, leading to Raman or anti-Stokes Raman-type laser emissions. With these techniques and the developed multiplasma spot excitation device a variety of new laser emissions in K and Cs ions have been achieved which are indicated in the level schemes

  7. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Biazar E

    2011-03-01

    Full Text Available Esmaeil Biazar1, Majid Heidari2, Azadeh Asefnezhad2, Naser Montazeri11Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IranBackground: Surface modification of medical polymers can improve biocompatibility. Pure polystyrene is hydrophobic and cannot provide a suitable environment for cell cultures. The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds.Methods and results: Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated clearly the presence of functional groups. Atomic force microscopic images of samples irradiated with inert and active gases indicated nanometric surface topography. Samples irradiated with oxygen plasma showed more roughness (31 nm compared with those irradiated with inert plasma (16 nm at 180 seconds. Surface roughness increased with increasing duration of exposure, which could be due to reduction of the contact angle of samples irradiated with oxygen plasma. Contact angle analysis showed reduction in samples irradiated with inert plasma. Samples irradiated with oxygen plasma showed a lower contact angle compared with those irradiated by argon plasma.Conclusion: Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation for samples radiated by oxygen plasma with increasing duration of exposure than those of normal samples.Keywords: surface topography, polystyrene, plasma treatment, argon, oxygen

  8. Self-limitation of impurity production by radiation cooling at the edge of a fusion plasma

    International Nuclear Information System (INIS)

    Neuhauser, J.; Lackner, K.; Wunderlich, R.

    1982-04-01

    The influence of radiation cooling at the edge of a fusion plasma on the plasma-wall interaction is numerically studied for parameters typical of the ZEPHYR ignition experiment. Various transport and impurity influx models and different external heating methods are studied using the 1D tokamak transport code BALDUR developed at Princeton. The results demonstrate the self-consistent formation of a radiating boundary layer (photosphere) for a wide range of parameters, limiting the impurity concentration in the plasma to a tolerable value. While the plasma behaviour is rather insensitive to model assumptions, the sputtering rate and the corresponding wall erosion depend on various parameters. Methods for external control of the photosphere and - more important - of the wall erosion are also discussed. (orig.)

  9. Ionization, recombination and radiation of impurities in plasmas

    International Nuclear Information System (INIS)

    Summers, H.P.; Wood, L.

    1988-04-01

    The paper describes the structure of an atomic database for application to impurity problems in fusion plasmas. It is designed for interactive computer use by both specialists in atomic physics and those concerned with plasma interpretation and diagnostics. Thus it contains data entry as well as data extraction and manipulation procedures. The detailed description of the methodology and its basis in atomic physics is described in sections 1 and 2. Section 3 and appendix C describes the practical implementation, and in particular its operation from the JET IBM SPF panel system. Section 4 is a technical discussion of data sources. (author)

  10. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    International Nuclear Information System (INIS)

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-01-01

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size

  11. Multi-Dimensional Radiation Transport in Dense Z-pinch Wire Array Plasmas

    Science.gov (United States)

    Jennings, C. A.; Chittenden, J. P.; Ciardi, A.; Sherlock, M.; Lebedev, S. V.

    2004-11-01

    Z-pinch wire arrays have proven to be an extremely efficient high yield, short pulse x-ray source with potential application to ICF. The characteristics of the x-ray pulse produced have been shown to be largely determined by non-uniform break up of the wires leading to a highly irregular distribution of mass which implodes towards the axis. Modelling the inherent 3D nature of these plasmas is already computationally very expensive, and so energy exchange through radiation is frequently neglected, assuming instead an optically thin radiation loss model. With a significant fraction of the total energy at late stages being radiated through a dense, optically thick plasma this approach is potentially inadequate in fully describing the implosion. We analyse the effects of radiative cooling and radiation transport on stagnation and precursor development in wire array z-pinch implosions. A three temperature multidimensional MHD code using a single group radiation diffusion model is used to study radiation trapping in the precursor, and the effects of preheating on the implosion dynamics. Energy exchange in the final stagnated plasma and its effects on the x-ray pulse shape is also discussed. This work was partially supported by the SSAA program of the NNSA through DoE cooperative agreement DE-F03-02NA00057.

  12. The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers

    Science.gov (United States)

    Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.

    2017-06-01

    Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.

  13. Parametric excitation electromagnetic radiation in a bounded non-equilibrium plasma

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Tolstoluzhskij, A.P.

    1981-01-01

    An excitation mechanism of electromagnetic radiation in a bounded plasma-beam system which is based on the process of induced scattering of electron beam-strengthened high-frequency wave (HF) of a plasma waveguide with an ion-sound wave, is investigated. It is shown that the process under investigation is an effective mechanism of electromagnetic radiation production. Up to 73 % of the beam power is trabsformed to the electromagnetic radiation under the conditions considered. As the frequency of the irradiated wave is close to the plasma frequency it can vary within wide limits by the change in plasma density. It is noted that the necessary condition of electromagnetic radiation production in the mechanism under consideration has the form of inequality ωsub(l)-ωsub(s)/(ksub(l)-ksub(s)>c (ωsub(l) - frequency of HF wave, ωsub(s)- frequency of ion-sound wave) and is less rigid as compared with the synchronism conditions for three-wave resonant interaction of proper oscillations. Therefore, the considered induced scattering process is less sensitive to a possible inhomogeneity of plasma density [ru

  14. X radiation diagnostics of high-temperature laser plasma

    International Nuclear Information System (INIS)

    Marsak, Z.; Bryknar, Z.; Legova, S.; Pina, L.

    1980-01-01

    Main aspects of X-ray emission from plasma heated by a pulsed laser and methods of its detection are presented, especially using a pinhole camera and a multichannel spectrometer with p-i-n diodes and Be-filters for measurement in the energy range 0.5 keV to 3 keV. (author)

  15. Electromagnetic Radiation in the Plasma Environment Around the Shuttle

    Science.gov (United States)

    Vayner, Boris V.; Ferguson, Dale C.

    1995-01-01

    As part of the SAMPIE (The Solar Array Module Plasma Interaction Experiment) program, the Langmuir probe (LP) was employed to measure plasma characteristics during the flight STS-62. The whole set of data could be divided into two parts: (1) low frequency sweeps to determine voltage-current characteristics and to find electron temperature and number density; (2) high frequency turbulence (HFT dwells) data caused by electromagnetic noise around the shuttle. The broadband noise was observed at frequencies 250-20,000 Hz. Measurements were performed in ram conditions; thus, it seems reasonable to believe that the influence of spacecraft operations on plasma parameters was minimized. The average spectrum of fluctuations is in agreement with theoretical predictions. According to purposes of SAMPIE, the samples of solar cells were placed in the cargo bay of the shuttle, and high negative bias voltages were applied to them to initiate arcing between these cells and surrounding plasma. The arcing onset was registered by special counters, and data were obtained that included the amplitudes of current, duration of each arc, and the number of arcs per one experiment. The LP data were analyzed for two different situations: with arcing and without arcing. Electrostatic noise spectra for both situations and theoretical explanation of the observed features are presented in this report.

  16. Main error sources in sorbtion technique and plasma electron component parameter definition by continuous X radiation

    International Nuclear Information System (INIS)

    Gavrilov, V.V.; Torokhova, N.V.; Fasakhov, I.K.

    1986-01-01

    Recombination radiation effect on the relation of signals behind the filters depending on the plasma temperature(sorption method for T determination) is demonstrated. This factor produces the main effect on the method accuracy (100-400%), the other factors analysed in combination make an error in temperature at the level of 50%. Method of plasma electron distribution function reconstruction by continuous x-radiation spectrum, based on the correctness (under certain limitations for the required function) of the equation, linking the electron distribution function with bremmsstrahlung spectral density is presented

  17. Anisotropy of ultraviolet radiation of high current discharge in a plasma of exploding wire

    International Nuclear Information System (INIS)

    Bogolyubskij, S.L.

    1987-01-01

    The experiments on exploding thin wires in a diode of a high current generator of relativistic electron beams ''Triton'' have demonstrated that the presence of a hot plasma corona and a colder and denser core is typical for appearing radiation coolled Z-pinch. It is found that for 5-10 ns ultraviolet radiation emmitted by plasma channel has a pronounced axial directivity conditioned by quanta with the energy in the 60-120 eV range. Control experiments have shown that this effect is not connected with various near-electrode phenomena

  18. Radiative cooling of a cilindrical Z-pinch in the stage of plasma shett motion

    International Nuclear Information System (INIS)

    Gerusov, A.V.; Imshennik, V.S.

    1982-01-01

    Dinamics of a cylindrically symmetric Z-pinch in deiterium-neon mixture on the motion stage with volume radiation losses of energy of neon ions is considered. A two-temperature MHD model of Z-pinch is numerically calculated with various percentage of gases in mixture. It is found that radiation losses are essential in the dynamics of the discharqe. They decrease distribution of magnetic field and curreqt density. The temoerature of anode surface heated by absorbtion of radiation from the plasma sheath which forms in the discharge is obtained. The value of anode surface temperature prior to the arrival of the shock front is insufficient for operating of previously proposed mechanism of X-ray plasma focus regime. Another mechanism leading to X-ray regime being due to radiative cooiang as aiso suggested

  19. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  20. Current-carrying capacity dependence of composite Bi2Sr2CaCu2O8 superconductors on the liquid coolant conditions

    International Nuclear Information System (INIS)

    Romanovskii, V R; Watanabe, K; Awaji, S; Nishijima, G

    2006-01-01

    The thermal runaway conditions of the composite Bi 2 Sr 2 CaCu 2 O 8 superconductor cooled by liquid helium or liquid hydrogen are compared. The study based on the static analysis of thermoelectric modes was made when the volume fraction of the superconductor in a composite was varied. Some specific trends underlying the onset of thermal runaway in superconducting composites cooled by liquid coolants are discussed. It is stated that the operating modes of superconducting composites may be characterized by stable states during which the current-carrying capacity of a superconductor is not effectively used even with a high amount of superconductor in the composite. These states are possible due to the corresponding temperature variation of the resistivities of the matrix and the superconductor in the high operating temperature range. They have to be considered in experiments when the critical current of a superconductor is determined or when the optimal stable operating modes of the current-carrying elements based on the Bi 2 Sr 2 CaCu 2 O 8 superconductor, which is cooled by liquid coolant, are defined

  1. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    Science.gov (United States)

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  2. Radiation of light impurities in a nonstationary plasma

    International Nuclear Information System (INIS)

    Abramov, V.A.; Krotova, G.I.

    1984-01-01

    In the framework of a nonstationary coronal model with account for latest data on elementary process cross sections calculations of oxygen radiation power are performed. It is shown that taking into account electron temperature nonstationarity characteristic of the initial stage in nowadays tokamaks, line emission power in the principal maximum region (Tsub(e) approximately 40 eV) changes but slightly, whereas the radiation power in the second maximum (Tsub(e) approximately 100 eV increases approximately 20 times as compared with stationary values

  3. Radiation effects on diamine oxidase activities in intestine and plasma of the rat

    International Nuclear Information System (INIS)

    Ely, M.J.; Speicher, J.M.; Snyder, S.L.; Catravas, G.N.

    1985-01-01

    Diamine oxidase (DAO; EC 1.4.3.6) activity was measured in plasma and ileal tissue homogenates prepared from male Sprague-Dawley rats sacrificed at 1-15 days after acute whole-body irradiation with 14.5-MeV electrons. Animals irradiated with 1 Gy showed no significant changes in plasma and ileal DAO activities through day 13 relative to nonirradiated controls. Animals irradiated with 5, 10 and 12 Gy displayed marked declines in ileal DAO, with levels reaching a nadir on day 3. This was paralleled by a decrease in plasma DAO activity in all three dose groups. Recovery of ileal and plasma DAO levels was later seen as early as day 4 in animals irradiated with 5 and 10 Gy doses, but animals receiving 12 Gy did not survive beyond day 3. A further study highlights the relationship between radiation dose and levels of plasma and mucosal DAO on day 3, the time of maximum decrease at all doses tested. Mucosal DAO activity decreased almost linearly with doses up to 6 Gy. Plasma DAO levels closely paralleled the dose dependency of the mucosal levels. These data suggest that plasma DAO activity might be useful as a readily measurable marker of intestinal epithelial injury and recovery after acute radiation exposure

  4. Parametric influence of powerful radiation on plasma surface

    International Nuclear Information System (INIS)

    Kuklin, V.M.; Panchenko, I.P.; Chernousenko, V.M.

    1989-01-01

    A self-consistent set of equations that describes one-dimensional dynamics to develop the instability of long-wave intensive Langmuir wave is obtained and solved. The parametric instability influence on the character of absorption of the incident radiation energy is elucidated primarily. 40 refs.; 8 figs

  5. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, H.; Hammer, M. U.; Reuter, S. [Center for Innovation Competence plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  6. Radiation pattern of open ended waveguide in air core surrounded by annular plasma column

    International Nuclear Information System (INIS)

    Sharma, D.R.; Verma, J.S.

    1977-01-01

    Radiation pattern of open ended waveguide excited in circular symmetric mode (TM 01 ) in an air core having central conductor and surrounded by an annular plasma column is studied. The field distribution at the open end of the waveguide is considered to be equivalent to the vector sum of magnetic current rings of various radii, ranging from the outer radius of the inner conductor to the inner radius of the outer conductor of the waveguide at the open end. The radiation field is obtained as a vector sum of field components due to individual rings of current. Such a configuration gives rise to multiple narrow radiation beams away from the critical angle. (author)

  7. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Kuang, Longyu; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com; Ding, Yongkun, E-mail: ding-yk@vip.sina.com [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China); Song, Tianming; Yang, Jiamin, E-mail: yjm70018@sina.cn; Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China); Hu, Guangyue; Zhao, Bin; Zheng, Jian [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-07-15

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  8. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  9. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas

    2016-01-01

    -tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  10. Application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-01-01

    In the limit of the first Born approximation for a partially coherent secondary source consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation conveys information on the three-dimensional intensity distribution of the secondary source

  11. Ionization equilibrium and radiation losses of molybdenum in a high temperature plasma

    International Nuclear Information System (INIS)

    1976-11-01

    The ionization equilibrium and the associated radiation losses of molybdenum have been calculated as a function of the electron temperature. In the 1-2keV range the computed fractional abundances are supported by experimental facts obtained in T.F.R. Tokamak plasmas

  12. Response of inorganic materials to laser - plasma EUV radiation focused with a lobster eye collector

    Science.gov (United States)

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Havlikova, Radka; Pína, Ladislav; Švéda, Libor; Inneman, Adolf

    2007-05-01

    A single photon of EUV radiation carries enough energy to break any chemical bond or excite electrons from inner atomic shells. It means that the radiation regardless of its intensity can modify chemical structure of molecules. It is the reason that the radiation even with low intensity can cause fragmentation of long chains of organic materials and desorption of small parts from their surface. In this work interaction of EUV radiation with inorganic materials was investigated. Different inorganic samples were irradiated with a 10 Hz laser - plasma EUV source based on a gas puff target. The radiation was focused on a sample surface using a lobster eye collector. Radiation fluence at the surface reached 30 mJ/cm2 within a wavelength range 7 - 20 nm. In most cases there was no surface damage even after several minutes of irradiation. In some cases there could be noticed discolouration of an irradiated surface or evidences of thermal effects. In most cases however luminescent and scattered radiation was observed. The luminescent radiation was emitted in different wavelength ranges. It was recorded in a visible range of radiation and also in a wide wavelength range including UV, VUV and EUV. The radiation was especially intense in a case of non-metallic chemical compounds.

  13. A case of severe radiation pneumonitis. A trial of plasma exchange

    International Nuclear Information System (INIS)

    Miyagawa, Tomoko; Mochizuki, Yoshirou; Nakahara, Yasuharu

    2009-01-01

    A 77-year-old man underwent radiotherapy for the squamous cell carcinoma of the right lung. Two months after the 60 Gy/30 fr irradiation was completed, he complained of dyspnea and his chest X-ray showed ground glass opacities and reticular shadows in both lung fields. Severe radiation pneumonitis was diagnosed. Two grams of methylprednisolone did not improve his symptoms and on the next day his hypoxemia worsened. We then tried plasma exchange because of his critical status. His respiratory status improved rapidly after plasma exchange and his chest X-ray showed remarkable improvement 10 days later. We think this case suggests the effectiveness of plasma exchange for severe radiation pneumonitis. (author)

  14. Empirical evaluation of the radiative cooling coefficient for krypton gas in the FTU plasma

    International Nuclear Information System (INIS)

    Fournier, K.B.; Pacella, D.; Mazzitelli, G.; Stutman, D.; Soukanovskii, V.; Goldstein, W.H.

    1997-01-01

    For future fusion reactors, a careful balance must be achieved between the cooling of the outer plasma via impurity radiation and the deleterious effects of inevitable core penetration by impurity ions. We have injected krypton gas into the Frascati Tokamak Upgrade (FTU) plasma. The measured visible bremsstrahlung and bolometric signals from krypton have been inverted and the resulting radial impurity density profile and power loss profile for krypton gas are extracted. Using the measured electron density and temperature profiles, the radiative cooling coefficient for krypton is derived. The level of intrinsic impurities (Mo, Cr, Mn and Fe) in the plasma during the krypton puffing is monitored with a VUV SPRED spectrometer. Models for krypton emissivity from the literature are compared to our measured results. 7 figs

  15. Interaction of cw CO2 laser radiation with plasma near-metallic substrate surface

    Science.gov (United States)

    Azharonok, V. V.; Astapchik, S. A.; Zabelin, Alexandre M.; Golubev, Vladimir S.; Golubev, V. S.; Grezev, A. N.; Filatov, Igor V.; Chubrik, N. I.; Shimanovich, V. D.

    2000-07-01

    Optical and spectroscopic methods were used in studying near-surface plasma that is formed under the effect CW CO2 laser of (2- 5)x106W/cm2 power density upon stainless steel in He and Ar shielding gases. The variation of plume spatial structure with time has been studied, the outflow of gas-vapor jets from the interaction area has been characterized. The spectra of plasma plume pulsations have been obtained for the frequency range Δf = 0-1 MHz. The temperature and electron concentration of plasma plume have been found under radiation effect upon the target of stainless steel. Consideration has been given to the most probable mechanisms of CW laser radiation-metal non-stationary interaction.

  16. Radiation cooling and gain calculation for C VI 182 A line in C/Se plasma

    International Nuclear Information System (INIS)

    Nam, C.H.; Valeo, E.; Suckewer, S.; Feldman, U.

    1986-04-01

    A model is developed which is capable of describing the evolution of gain resulting from both rapid radiative and expansion cooling of a recombining, freely expanding plasma. It is demonstrated for the particular case of a carbon/selenium plasma that the cooling rate which leads to optimal gain can be achieved by adjusting the admixture of an efficiently radiating material (selenium) in the gain medium (carbon). Comparison is made to a recent observation of gain in a recent NRL/Rochester experiment with carbon/selenium plasma for the n = 3 → 2 transition in C VI occurring at 182 A. The predicted maximum gain is approx.10 cm -1 , as compared to observation of 2 to 3 cm -1

  17. Concrete shielding of neutron radiations of plasma focus and dose examination by FLUKA

    Science.gov (United States)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2013-07-01

    Plasma Focus (PF) is among those devices which are used in plasma investigations, but this device produces some dangerous radiations after each shot, which generate a hazardous area for the operators of this device; therefore, it is better for the operators to stay away as much as possible from the area, where plasma focus has been placed. In this paper FLUKA Monte Carlo simulation has been used to calculate radiations produced by a 4 kJ Amirkabir plasma focus device through different concrete shielding concepts with various thicknesses (square, labyrinth and cave concepts). The neutron yield of Amirkabir plasma focus at varying deuterium pressure (3-9 torr) and two charging voltages (11.5 and 13.5 kV) is (2.25 ± 0.2) × 108 neutrons/shot and (2.88 ± 0.29) × 108 neutrons/shot of 2.45 MeV, respectively. The most influential shield for the plasma focus device among these geometries is the labyrinth concept on four sides and the top with 20 cm concrete.

  18. Theoretical analysis on radiation and reception characteristics of an oblate spheroidal antenna for electron plasma waves

    International Nuclear Information System (INIS)

    Ohnuki, S.; Adachi, S.; Ohnuma, T.

    1978-01-01

    The radiation and reception characteristics of the oblate spheroidal antenna for electron plasma waves are theoretically investigated. The analysis is carried out as a boundary-value problem. The formulas for the radiation and reception characteristics such as radiation impedance, electron charge distributions, radiated wave potential, directional properties, and receiving voltage of the oblate spheroidal antenna are analytically obtained. As a result, it is concluded that the radiation and reception characteristics of the antennas are not uniquely determined by k/sub p/a (k/sub p/ is the wave number of an electron plasma wave, and a is the radius of the circular-plate antenna), but are determined by two out of three factors, k/sub p/a, zeta (radius divided by Debye length), and ω/ω/sub p/ (angular signal frequency to angular plasma frequency). This conclusion is in marked contrast to the conventional theory in which the charge distribution on the antenna is assumed a priori as uniform and, thus, the antenna characteristics are uniquely determined by k/sub p/a. It is claimed that the experimental results obtained hitherto support the present new theory

  19. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  20. Comparison of the properties polyamide 6.6 surfaces treated by plasma and by ionizing radiation

    International Nuclear Information System (INIS)

    Irineu, Rosa Maria da Silva

    2010-01-01

    This study aims to compare the surface properties of polyamide 6.6 plasma treatment and ionizing radiation, as well as determine the best technique and condition of the surface activation, adhesion of the same order and polyacrylic rubber used in manufacturing of automotive retainers. Treatment of polyamide 6.6 plasma was performed using an equipment 'Electronic Diener - Plasma - Surface-Technology LFG40' with nitrogen gas at a pressure of 1.40 kg/cm 2 . Samples of polyamide 6.6 were also treated with ionizing radiation, atmospheric pressure and in vacuum, using an industrial electron accelerator, Dynamitron JOB 188 with radiation dose of 5, 10, 20, 40, 50, 100, 200, 300, 400 and 500kGy with a dose rate of 11.22 kGy/s for all doses and rate of 11.22 kGy/s and 22.38 kGy/s for a dose of 20kGy. After the processes of surface modification of polyamide 6.6, part of the untreated samples, treated by plasma and by ionizing radiation were incorporated into the polyacrylic rubber, and another part was designed to characterize the surface using the techniques of SEM / EDS, FT- IR, PIXE / RBS, AFM and contact angle. Untreated samples and the irradiated samples did not join the polyacrylic rubber. The samples treated by plasma joined the polyacrylic rubber efficiently and showed differences in roughness in SEM and AFM, and an increase in contact angle when compared with untreated samples. The irradiated samples showed no significant differences in the analysis of properties used in this study when compared with untreated samples. Ionizing radiation was not effective in surface modification of polyamide 6.6 for adherence with polyacrylic rubber. (author)

  1. Ground penetrating radar using a microwave radiated from laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H; Tanaka, K A [Graduate School of Engineering and Institute of Laser Engineering, Suita, Osaka University (Japan); Yamaura, M; Shimada, Y; Fujita, M [Institute for Laser Technology, Suita, Osaka (Japan)], E-mail: nakajima-h@ile.osaka-u.ac.jp

    2008-05-01

    A plasma column radiates a microwave to surroundings when generated with laser irradiation. Using such a microwave, we are able to survey underground objects and architectures from a remote place. In this paper, the microwave radiated from a plasma column induced by an intense laser ({approx} 10{sup 9} W/cm{sup 2}) were measured. Additionally, a proof test of this method was performed by searching an underground aluminum disk (26 cm in diameter, 1 cm in depth, and 1 m apart from a receiving antenna). As the result, the characteristics of the radiated microwave were clarified, and strong echoes corresponding to the edges of an aluminum disk were found. Based on these results, the feasibility of a ground penetrating radar was verified.

  2. Radiation losses from oxygen and iron impurities in a high temperature plasma

    International Nuclear Information System (INIS)

    Breton, C.; Michelis, C. de; Mattioli, M.

    1976-06-01

    Radiation and ionization losses due to impurities present in a high temperature plasma have been calculated for a light element (oxygen), which is completely stripped in the core of existing Tokamak discharges, and a heavy one (iron), which is only partially stripped. Two extreme cases have been treated: in the first one coronal equilibrium is reached; the radiated power is then equal to the product of the electron density, the impurity density, and a function of the electron temperature; in the second one impurities recycle with a constant radial velocity v 0 in a background plasma; radiation and ionization losses are proportional to the impurity flux and are a decreasing function of the diffusion velocity. The results presented can be used to evaluate losses in a practical case [fr

  3. The effect of ultraviolet radiation on wheat root vesicles enriched in plasma membrane

    International Nuclear Information System (INIS)

    Wright, L.A. Jr.; Murphy, T.M.; Travis, R.L.

    1981-01-01

    The irradiation of plant cells with UV radiation (254 nm) causes various solutes to leak from the cells. Vesicles enriched in plasma membranes were prepared from wheat roots. These were used to determine whether UV radiation alters membrane function by direct action on the membranes and to distinguish between the chemical effects produced by high and low fluences of UV. The plasma membrane-associated K + -stimulated ATPase was very sensitive to UV radiation (100% inhibition with 2 ). ATPase activity measured in the absence of K + and K + -stimulated ATPase activity measured in the presence of diethylstilbestrol were much less sensitive. Lipid breakdown, as measured by malondialdehyde production, occurred only at UV fluences greater than 1.8 kJ/m 2 . (author)

  4. Thermal radiation from an evolving viscous quark gluon plasma

    International Nuclear Information System (INIS)

    Mitra, Sukanya; Mohanty, Payal; Sarkar, Sourav; Alam, Jan-E

    2013-01-01

    The effects of viscosity on the space-time evolution of quark gluon plasma produced in nuclear collisions at relativistic heavy ion collider energies have been studied. The entropy generated due to the viscous motion of the fluid has been taken into account in constraining the initial temperature by the final multiplicity (measured at the freeze-out point). The viscous effects on the photon spectra has been introduced consistently through the evolution dynamics and phase space factors of all the participating partons/hadrons in the production process. In contrast to some of the recent calculations the present work includes the contribution from the hadronic phase. A small change in the transverse momentum (p T ) distribution of photons is observed due to viscous effects. (author)

  5. Study of plasma in MAGO chamber by own neutron radiation

    International Nuclear Information System (INIS)

    Burenkov, O.M.; Garanin, S.F.; Demin, A.N.; Dudin, I.F.; Korchagin, V.P.; Morozov, I.V.; Mokhov, V.N.; Pavlovskij, E.S.; Chernyshev, V.K.; Yakubov, V.B.

    1996-01-01

    The measured ratio of the DD and DT reaction rates is used for determining the ion temperature in the MAGO hot plasma chamber driven by explosive magnetic generator. The method exploits the differences in the temperature dependence of the DD and DT reaction rates. The reaction rates are estimated from the DD and DT neutron spectra measured by the time-of flight method. In the paper the MAGO experimental arrangement is described in detail, and the problems arising at interpretation of the somewhat contradictory results of neutron diagnostics are discussed. A reasonable value of the ion temperature (5.5 keV maximum) can be obtained when assuming a strong anisotropy of the ion distribution. In order to verify the reported results further more detailed neutron diagnostic experiments are planned. (J.U.). 7 figs., 6 refs

  6. Study of plasma in MAGO chamber by own neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Burenkov, O M; Garanin, S F; Demin, A N; Dudin, I F; Korchagin, V P; Morozov, I V; Mokhov, V N; Pavlovskij, E S; Chernyshev, V K; Yakubov, V B [All-Russian Scientific Research Institute of Experimental Physics, Arzamas (Russian Federation)

    1997-12-31

    The measured ratio of the DD and DT reaction rates is used for determining the ion temperature in the MAGO hot plasma chamber driven by explosive magnetic generator. The method exploits the differences in the temperature dependence of the DD and DT reaction rates. The reaction rates are estimated from the DD and DT neutron spectra measured by the time-of flight method. In the paper the MAGO experimental arrangement is described in detail, and the problems arising at interpretation of the somewhat contradictory results of neutron diagnostics are discussed. A reasonable value of the ion temperature (5.5 keV maximum) can be obtained when assuming a strong anisotropy of the ion distribution. In order to verify the reported results further more detailed neutron diagnostic experiments are planned. (J.U.). 7 figs., 6 refs.

  7. Local thermodynamic equilibrium in a laser-induced plasma evidenced by blackbody radiation

    Science.gov (United States)

    Hermann, Jörg; Grojo, David; Axente, Emanuel; Craciun, Valentin

    2018-06-01

    We show that the plasma produced by laser ablation of solid materials in specific conditions has an emission spectrum that is characterized by the saturation of the most intense spectral lines at the blackbody radiance. The blackbody temperature equals the excitation temperature of atoms and ions, proving directly and unambiguously a plasma in local thermodynamic equilibrium. The present investigations take benefit from the very rich and intense emission spectrum generated by ablation of a nickel-chromium-molybdenum alloy. This alternative and direct proof of the plasma equilibrium state re-opens the perspectives of quantitative material analyses via calibration-free laser-induced breakdown spectroscopy. Moreover, the unique properties of this laser-produced plasma promote its use as radiation standard for intensity calibration of spectroscopic instruments.

  8. Radiation accompanied by self absorption in nonequilibrium argon plasma flow in a circular tube

    International Nuclear Information System (INIS)

    Shirai, Hiroyuki; Tabei, Katsuine; Koaizawa, Hisashi.

    1983-01-01

    In high temperature, nonequilibrium plasma flow, generally strong radiation arises, but the radiation phenomena are complicated by the thermo-chemical nonequilibrium of gas and the self absorption in light path, accordingly it is important to correctly understand and estimate their effects. In this research, for the radiation from the argon afterglow plasma flow with large nonequilibrium property in a circular tube, the experimental and theoretical studies were carried out taking the self absorption in consideration. Experimentally, the absolute intensity distribution of the radiated spectrum lines was measured from outside of the tube, and converted to the true radial distribution of atom number density at excited level using the mathematical conversion theory for the radiation accompanied by absorption of Elder et al. Theoretically, the radial distributions of electron temperature, electron density and atom temperature measured in the tube were applied to the collision-radiation process model including self absorption, and the distribution of the atom number density at excited level was calculated. Fairly good agreement was obtained between both results, and it was found that the consideration of self absorption was important. The theory, the experiment, the numerical examination of a number of physical quantities and the simplification of the theory, and the results are reported. (Kako, I.)

  9. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    Directory of Open Access Journals (Sweden)

    Casali L.

    2014-01-01

    Full Text Available Future fusion reactors, foreseen in the “European road map” such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  10. Analysis of detached recombining plasmas by collisonal-radiative model with energetic electron component

    International Nuclear Information System (INIS)

    Ohno, N.; Motoyama, M.; Takamura, S.

    2001-01-01

    Investigation of plasma detachment is still one of the most important subjects in the edge plasma of magnetically confined fusion devices. It was found that volumetric plasma recombination plays an essential role on reduction of particle flux in detached plasmas. The volumetric plasma recombination process has been confirmed in several diverted tokamaks and linear simulators by observing line emission from highly excited states due to three-body recombination process and continuum emission due to radiative recombination process. Electron temperature and density in the detached plasma were also evaluated from analysis of the light emission. To determine the electron temperature, the line emission spectrum is analyzed to calculate the population densities of excited levels. The population distribution among the highly excited states follows the Saha-Boltzmann distribution very closely. This implies that those states are in local thermal equilibrium (LTE) condition with free electrons in plasma so that the electron temperature can be obtained by using method of Boltzmann plot. Another method to determine the electron temperature is to compare the observed continuum spectrum with the theoretically calculated one. In our experiments using the linear diverter simulator, however, there is a clear difference for two evaluated values. One of the possible reasons is thought to be that there is a small amount of energetic electrons existing in detached recombining region. In order to evaluate the electron temperature more preciously, we need to investigate the influence of the energetic electrons on the evaluation of bulk electron temperature in a detached plasma. Collisonal-radiative (GR) model has been utilized for analyzing the light emission intensities from plasma. However, Maxwellian electron distribution function is usually assumed in the CR model. In this paper, we report a quantitative analysis of the line emission spectrum in the detached recombining plasmas by

  11. A mechanism for large divertor plasma energy loss via lithium radiation in tokamaks

    Science.gov (United States)

    Rognlien, T. D.; Meier, E. T.; Soukhanovskii, V. A.

    2012-10-01

    Lithium has been used as a wall-conditioning element in a number of tokamaks over the years, including TFTR, FTU, and NSTX, where core plasma energy confinement and particle control are often found to improve following such conditioning. Here the possible role of Li in providing substantial energy loss for divertor plasmas via line radiation is reported. A multi-charge-state 2D UEDGE fluid model is used where the hydrogenic and Li ions and neutrals are each evolved as separate species and separate equations are solved for the electron and ion temperatures. It is shown that a sufficient level of Li neutrals evolving from the divertor surface via sputtering or evaporation can induce energy detachment of the divertor plasma, yielding a strongly radiating zone near the divertor where ionization and recombination from/to neutral Li can radiate most of the power flowing into the scrape-off layer while maintaining low core contamination. A local peaking of Li emissivity for electron temperatures near 1 eV appears to play an important role in the detachment of the mixed deuterium/Li plasma. Evidence of such behavior from NSTX discharges will be discussed.

  12. Alkaline and Acid Phosphatase Activity in Blood Plasma of Chickens Irradiated by Low dose Gamma Radiation

    International Nuclear Information System (INIS)

    Petar, K.; Marinko, V.; Saveta, M.; Miljenko, S.

    2004-01-01

    In our previous paper (Kraljevic et, al, 2000; Kraljevic et al 2002) we showed that the growth of the chickens hatched from eggs irradiated with 0.15 Gy gamma-rays before incubation was significantly higher than in controls during the fattening period (1-42 days). The concentration of total protein, glucose and cholesterol in the blood plasma of the same chickens was also significantly changed. In this paper an attempt was made to determine the effect of irradiation of eggs by low dose ionizing radiation before incubation upon activity of alkaline and acid phosphatase in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens were irradiated by dose of 0.15 Gy gamma radiation (60 Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. After hatching, blood samples were taken from the wing vein on days 1, 3, 5, 6, 10, 20, 30 and 42. The activity of both enzymes was determined spectrophotometrically by using Boehring Mannheim GmbH optimized kits. the activity of alkaline phosphatase in blood plasma was decreased on days 42, and the activity of acid phosphatase in the blood plasma of the same chickens was increased on day 42. Obtained results confirm our early obtained results that low dose of gamma radiation has effects upon metabolic processes in the chickens hatched from eggs irradiated before incubation. (Author)

  13. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, P., E-mail: vrbovmir@fbmi.cvut.cz [Institute of Plasma Physics, Academy of Sciences, Za Slovankou 3, Prague 8 (Czech Republic); Vrbova, M. [Faculty of Biomedical Engineering, CTU in Prague, Sitna 3105, Kladno 2 (Czech Republic); Zakharov, S.V. [EPPRA sas, Villebon/Yvette (France); Zakharov, V.S. [EPPRA sas, Villebon/Yvette (France); KIAM RAS, Moscow (Russian Federation); Jancarek, A.; Nevrkla, M. [Faculty of Nuclear Science and Physical Engineering, CTU in Prague, Brehova 7, Prague 1 (Czech Republic)

    2014-10-15

    Highlights: • Pinching capillary discharge is studied as a source of monochromatic SXR. • Modeling of the laboratory device was performed by RMHD Z* code. • Results of computer and laboratory experiments are presented. - Abstract: Capillary discharge plasma related to our laboratory device is modeled and the results are compared with experimental data. Time dependences of selected plasma quantities (e.g. plasma mass density, electron temperature and density and emission intensities) evaluated by 2D Radiation-Magneto-Hydro-Dynamic code Z* describe plasma evolution. The highest output pulse energy at 2.88 nm wavelength is achieved for nitrogen filling pressure ∼100 Pa. The estimated output energy of monochromatic radiation 5.5 mJ sr{sup −1} (∼10{sup 14} photons sr{sup −1}) corresponds properly to observe experimental value ∼3 × 10{sup 13} photons sr{sup −1}. Ray tracing inspection along the capillary axis proves an influence of radiation self-absorption for the investigated wavelength. The spectra, evaluated using the FLY code, agree to the measured ones.

  14. Diagnostics of helium plasma by collisional-radiative modeling and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Kwon, Duck-Hee [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Optical diagnostics for the electron temperature (T{sub e}) and the electron density (n{sub e}) of fusion plasma is important for understanding and controlling the edge and the divertor plasmas in tokamak. Since the line intensity ratio method using the collisional-radiative modeling and OES (optical emission spectroscopy) is simple and does not disturb the plasma, many fusion devices with TEXTOR, JET, JT-60U, LHD, and so on, have employed the line intensity ratio method as a basic diagnostic tool for neutral helium (He I). The accuracy of the line intensity ratio method depends on the reliability of the cross sections and rate coefficients. We performed state-of-the-art R-matrix calculations including couplings up to n=7 states and the distorted wave (DW) calculations for the electron-impact excitation (EIE) cross sections of He I using the flexible atomic code (FAC). The collisional-radiative model for He I was constructed using the calculated the cross sections. The helium collisional-radiative model for He I was constructed to diagnose the electron temperature and the electron density of the plasma. The electron temperature and density were determined by using the line intensity ratio method.

  15. Plasma radiation dynamics with the upgraded Absolute Extreme Ultraviolet tomographical system in the Tokamak à Configuration Variable

    Energy Technology Data Exchange (ETDEWEB)

    Tal, B.; Nagy, D.; Veres, G. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Association EURATOM, P. O. Box 49, H-1525 Budapest (Hungary); Labit, B.; Chavan, R.; Duval, B. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse, EPFL SB CRPP, Station 13, CH-1015 Lausanne (Switzerland)

    2013-12-15

    We introduce an upgraded version of a tomographical system which is built up from Absolute Extreme Ultraviolet-type (AXUV) detectors and has been installed on the Tokamak à Configuration Variable (TCV). The system is suitable for the investigation of fast radiative processes usually observed in magnetically confined high-temperature plasmas. The upgrade consists in the detector protection by movable shutters, some modifications to correct original design errors and the improvement in the data evaluation techniques. The short-term sensitivity degradation of the detectors, which is caused by the plasma radiation itself, has been monitored and found to be severe. The results provided by the system are consistent with the measurements obtained with the usual plasma radiation diagnostics installed on TCV. Additionally, the coupling between core plasma radiation and plasma-wall interaction is revealed. This was impossible with other available diagnostics on TCV.

  16. Experimental study of the efficiency of transformation of the dense plasma hypersonic flow kinetic energy into a radiation

    International Nuclear Information System (INIS)

    Kamrukov, A.S.; Kozlov, N.P.; Myshelov, E.P.; Protasov, Yu.S.

    1981-01-01

    Analysis of physical specific features of radiator where plasma heating is performed with tbermalization of directed kinetic energy of dense plasma flows accelerated electrodynamically up to hypersonic velocities during its shock deceleration, is given. It is shown that the plasma heating method considered has a number of principle advantages as compared with methods most disseminated now for generation of dense intensively radiating plasma (current heating exploding method) and suggests new possibilities for construction of selective high brightness radiat.ion sources of ultraviolet and far vacuum ultraviolet ranges of spectrum. Radiation gas dynamic processes of hypersonic plasma flow deceleration formed with magnetoplasma compressors have been experimentally investigated on their interaction with condenced matters in vacuum and basic thermodynamic parameters of shock compressed plasma have been determined. It is shown that the conversion process of kinetic energy of high-velocity plasma flows to radiation is accomplished at very high efficiency-integral luminescence of shock compressed plasma can reach approximately 90% of initial kinetic energy of flow [ru

  17. High energy radiation precursors to the collapse of black holes binaries based on resonating plasma modes

    Science.gov (United States)

    Coppi, B.

    2018-05-01

    The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.

  18. Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam

    Science.gov (United States)

    Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.

    2018-04-01

    We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.

  19. Tungsten Ions in Plasmas: Statistical Theory of Radiative-Collisional Processes

    Directory of Open Access Journals (Sweden)

    Alexander V. Demura

    2015-05-01

    Full Text Available The statistical model for calculations of the collisional-radiative processes in plasmas with tungsten impurity was developed. The electron structure of tungsten multielectron ions is considered in terms of both the Thomas-Fermi model and the Brandt-Lundquist model of collective oscillations of atomic electron density. The excitation or ionization of atomic electrons by plasma electron impacts are represented as photo-processes under the action of flux of equivalent photons introduced by E. Fermi. The total electron impact single ionization cross-sections of ions Wk+ with respective rates have been calculated and compared with the available experimental and modeling data (e.g., CADW. Plasma radiative losses on tungsten impurity were also calculated in a wide range of electron temperatures 1 eV–20 keV. The numerical code TFATOM was developed for calculations of radiative-collisional processes involving tungsten ions. The needed computational resources for TFATOM code are orders of magnitudes less than for the other conventional numerical codes. The transition from corona to Boltzmann limit was investigated in detail. The results of statistical approach have been tested by comparison with the vast experimental and conventional code data for a set of ions Wk+. It is shown that the universal statistical model accuracy for the ionization cross-sections and radiation losses is within the data scattering of significantly more complex quantum numerical codes, using different approximations for the calculation of atomic structure and the electronic cross-sections.

  20. Measurement of radiation power from the JIPP T-IIU tokamak plasma

    International Nuclear Information System (INIS)

    Ogawa, Isamu.

    1987-04-01

    Characteristics of a pyroelectric detector, a metal-film bolometer and a thermistor are investigated in order to attain high reliability of the bolometric measurement. The spurious signal which appears on a pyroelectric detector is efficiently eliminated by setting a mask close to the detector, which has a function of avoiding the direct incidence of photons on its electrode. This is verified with the consistency of integrated value of the signal. The detector is calibrated with a HeNe laser taking the reflection on the detector surface into account. No temporal change has been seen on the sensitivity of the detector calibrated by this method. We also developed a thin metal-film bolometer with high sensitivity (12.9 Ω/mJ), high time response (3 μs) and well defined thermal characteristics. The calibration of this detector was performed by supplying a bias current through its resistor. We constructed a bolometric system with high time response and high spatial resolution, which consisted of twelve pyroelectric detectors and a metal-film bolometer. The radiation power measured with the pyroelectric detector agrees with that measured with the calibrated metal-film bolometer within 10 %. Spectroscopic and bolometric measurements with spatial and temporal resolution show that large radiation loss brings about the decrease in electron and ion temperatures and plasma energy. Carbon limiters have an effect to suppress the radiation power for ohmic plasma, but are insufficient for ICRF heated plasma. The main contribution to radiation power may be attributed to Fe impurity released from the ICRF antennae, the Faraday shield and vacuum vessel. By making carbonization of the wall and in-vessel components, the Fe impurity is suppressed to a low level (n Fe /n e ∼ 0.04 %) and the radiation power is reduced to P rad /(P OH + P rf ) ∼ 20 % and emissivity throughout the plasma region is reduced. (author)

  1. Interaction of electromagnetic waves with plasma in the radiation-dominated regime

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Koga, J.; Tajima, T.

    2004-01-01

    A study is made of the main regimes of interaction of relativistically strong electromagnetic waves with plasma under conditions in which the radiation from particles plays a dominant role. The discussion is focused on such issues as the generation of short electromagnetic pulses in the interaction of laser light with clusters and highly efficient ion acceleration in a thin plasma slab under the action of the ponderomotive pressure of the wave. An approach is developed for generating superintense electromagnetic pulses by means of up-to-date laser devices

  2. Line photon transport in a non-homogeneous plasma using radiative coupling coefficients

    International Nuclear Information System (INIS)

    Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Florido, R.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Martel, P.; Minguez, E.

    2006-01-01

    We present a steady-state collisional-radiative model for the calculation of level populations in non-homogeneous plasmas with planar geometry. The line photon transport is taken into account following an angle- and frequency-averaged escape probability model. Several models where the same approach has been used can be found in the literature, but the main difference between our model and those ones is that the details of geometry are exactly treated in the definition of coupling coefficients and a local profile is taken into account in each plasma cell. (authors)

  3. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  4. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; Porter, G.D.; Rognlien, T.D.; Rensink, M.E.

    2005-01-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high β p H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operation regime is extended to high density above the Greenwald density (n GW ) with high confinement (HH y2 >1) and high radiation loss fraction (f rad >0.9) by tailoring the internal transport barriers (ITBs). High confinement of HH y2 =1.2 is sustained even with 80% radiation from the main plasma enhanced by accumulated metal impurity. The divertor radiation is enhanced by Ne seeding and the ratio of the divertor radiation to the total radiation is increased from 20% without seeding to 40% with Ne seeding. In the high β p H-mode plasmas, high confinement (HH y2 =0.96) is maintained at high density (n-bar e /n GW =0.92) with high radiation loss fraction (f rad ∼1) by utilizing high-field-side pellets and Ar injections. The high n-bar e /n GW is obtained due to a formation of clear density ITB. Strong core-edge parameter linkage is observed, as well as without Ar injection. In this linkage, the pedestal β p , defined as β p ped =p ped /(B p 2 /2μ 0 ) where p ped is the plasma pressure at the pedestal top, is enhanced with the total β p . The radiation profile in the main plasma is peaked due to Ar accumulation inside the ITB and the measured central radiation is ascribed to Ar. The impurity transport analyses indicate that Ar accumulation by a factor of 2 more than the electron, as observed in the high β p H-mode plasma, is acceptable even with peaked density profile in a fusion reactor for impurity seeding. (author)

  5. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    Science.gov (United States)

    Land, V.

    2007-12-01

    the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.

  6. Observation of a shift of multicharged silicon ion recombination radiation jumps in a laser plasma

    International Nuclear Information System (INIS)

    Basov, N.G.; Kalashnikov, M.P.; Mikhajlov, Yu.A.; Rode, A.V.; Sklizkov, G.V.; Fedotov, S.I.

    1984-01-01

    In experiments on heating and compression of shell targets for the case of three-fold magnification of the laser radiation flux density on a target a shift in the recombination Si +13 ion radiation jump of 46+-8 eV has been observed, which corresponds to ionic density (1.3+-1)x10 20 cm -3 . To explain the mechanism of the jump shift, a scheme of potential energy and energy levels of two hydrogen-like ions are presented. It is shown that recording of the recombination radiation intensity jump enables one to determine the electron temperature of a plasma Tsub(e)sub(e). T value determined from the ratio of the intensity of continuous radiation before and after the recombination jump is 0.95+-0.1 keV

  7. The relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Heidari S

    2011-04-01

    Full Text Available Saeed Heidari Keshel1, S Neda Kh Azhdadi2, Azadeh Asefnezhad2, Mohammad Sadraeian3, Mohamad Montazeri4, Esmaeil Biazar51Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch - Islamic Azad University; 3Young Researchers Club, Islamic Azad University, North Tehran Branch, Tehran; 4Faculty of Medical Sciences, Babol University of Medical Sciences, Babol; 5Department of Chemistry, Islamic Azad University, Tonekabon, IranAbstract: Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polyurethane was exposed to microwave plasma treatment with oxygen and argon gases for 30 seconds and 60 seconds. Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated the presence of functional groups. Atomic force microscope images of samples irradiated with inert and active gases indicated the nanometric topography of the sample surfaces. Samples irradiated by oxygen plasma indicated high roughness compared with those irradiated by inert plasma for the different lengths of time. In addition, surface roughness increased with time, which can be due to a reduction of contact angle of samples irradiated by oxygen plasma. Contact angle analysis indicated a reduction in samples irradiated with both types of plasma. However, samples irradiated with oxygen plasma indicated lower contact angle compared with those irradiated by argon plasma. Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation among samples radiated by oxygen plasma for longer than for normal samples.Keywords: surface topography, polyurethane, plasma treatment, cellular investigation

  8. Influence of the cooling rate on the main factors affecting current-carrying ability in pure and SiC-doped MgB2 superconductors

    International Nuclear Information System (INIS)

    Shcherbakova, O V; Pan, A V; Soltanian, S; Dou, S X; Wexler, D

    2007-01-01

    We have systematically studied and compared the effect of cooling rate on microstructure, critical current density, upper critical field and irreversibility field in pure and 10 wt% SiC-added MgB 2 superconductors. The sintering process was carried out on the samples at a temperature of 750 deg. C for 1 h followed by quenching or cooling to room temperature in 0.3 h (2433 deg. C h -1 ), 14 h (52 deg. C h -1 ) and 25 h (30 deg. C h -1 ). Changes in the microstructure due to variations in cooling rate have been studied with the help of scanning and transmission electron microscopy. Correlations between microstructure and superconducting properties have been observed, identified and explained for both pure and SiC-added MgB 2 samples. Modifications to the pinning environment and grain boundary transparency are considered to be responsible for variations in the current-carrying ability. The dominant pinning on grain boundaries in the pure MgB 2 samples and on nano-inclusions (inducing accompanying defects) in the SiC-doped samples is clearly distinguished. On the basis of our experimental results, we have concluded that the cooling rate can be an important parameter influencing the superconducting properties of MgB 2 samples

  9. Spatial buckling analysis of current-carrying nanowires in the presence of a longitudinal magnetic field accounting for both surface and nonlocal effects

    Science.gov (United States)

    Foroutan, Shahin; Haghshenas, Amin; Hashemian, Mohammad; Eftekhari, S. Ali; Toghraie, Davood

    2018-03-01

    In this paper, three-dimensional buckling behavior of nanowires was investigated based on Eringen's Nonlocal Elasticity Theory. The electric current-carrying nanowires were affected by a longitudinal magnetic field based upon the Lorentz force. The nanowires (NWs) were modeled based on Timoshenko beam theory and the Gurtin-Murdoch's surface elasticity theory. Generalized Differential Quadrature (GDQ) method was used to solve the governing equations of the NWs. Two sets of boundary conditions namely simple-simple and clamped-clamped were applied and the obtained results were discussed. Results demonstrated the effect of electric current, magnetic field, small-scale parameter, slenderness ratio, and nanowires diameter on the critical compressive buckling load of nanowires. As a key result, increasing the small-scale parameter decreased the critical load. By the same token, increasing the electric current, magnetic field, and slenderness ratio resulted in a decrease in the critical load. As the slenderness ratio increased, the effect of nonlocal theory decreased. In contrast, by expanding the NWs diameter, the nonlocal effect increased. Moreover, in the present article, the critical values of the magnetic field of strength and slenderness ratio were revealed, and the roles of the magnetic field, slenderness ratio, and NWs diameter on higher buckling loads were discussed.

  10. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-01-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called hollow atoms must be taken into account for adequate description of plasma radiation

  11. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J., E-mail: joel.rosato@univ-provence.fr [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Capes, H.; Catoire, F. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [ITP, Russian Research Center ' Kurchatov Institute' , Moscow (Russian Federation); Marandet, Y. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Rosmej, F.B. [LULI, UMR 7605, Universite Pierre et Marie Curie/CNRS, 4 Place Jussieu, Case 128, F-75252 Paris Cedex 05 (France); Stamm, R. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France)

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li{sup +}/Li{sup ++}) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (N{sub e}, T{sub e},...). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  12. Selection of daunorubicin-producing strain S. Coeruleorubidus by plasma radiation technology

    International Nuclear Information System (INIS)

    Jiang Shichun; Wu Jianping; Bai Hua

    2001-01-01

    The authors reported the results of mutagenesis by nitrogen plasma radiation with energy from 65 to 80 keV and dose from 9.6 x 10 9 to 1.5 x 10 11 /cm 2 in antineoplastic antibiotics daunorubicin-producing S. Coeruleorubidus. The relationship between death rate and radiation dose was formulated by computer and the formula. It was fit to a biological single-hit curve. The obtained high-producing mutagenic strain 137 was tested for its production property. The result showed that it could increase the daunorubicin potency by 25.8% in productive tanks of fermentation

  13. Experiments on the interaction of intense femtosecond radiation with dense plasmas. Final report

    International Nuclear Information System (INIS)

    Rhodes, C.K.

    1996-01-01

    An upgraded KrF * (248 nm) system producing a pulse energy of ∼ 400 mJ, a pulse width of ∼ 220 fs, and focal intensities above 10 19 W/cm 2 , has been constructed, tested, operated, and used in experimental studies. The spatial morphology of channeled radiation in plasmas has been measured with a spatial resolution of ∼ 30 μm and damage studies of fused silica indicate that femtosecond (200 - 300 fs) 248 nm radiation has a damage limit not exceeding ∼ 50 GW/cm 2 , an unfavorably low level. 2 figs

  14. Radiation reflection from a semi-infinite layer of magnetized plasma

    International Nuclear Information System (INIS)

    Silant'ev, N.A.

    1981-01-01

    From a transpot equation and the invariance principle, the expre-- ssion is derived for the density matrix of the reflected radiation from a semi-infinite layer of magnetized plasma. The albedo of the medium is expressed in terms of the tensor H-functions. The numerical solutions are given for the Stokes parameters of the radiation for the case when the magnetic field is perpendicular to the surface. It is shown that the presence of the magnetic field may significantly decrease the albedo [ru

  15. Radiative response on massive noble gas injection for Runaway suppression in disruptive plasmas

    International Nuclear Information System (INIS)

    Reiter, Bernhard

    2010-01-01

    The most direct way to avoid the formation of a relativistic electron beam under the influence of an electric field in a highly conducting plasma, is to increase the electron density to a value, where the retarding collisional force balances the accelerating one. In a disruptive tokamak plasma, rapid cooling induces a high electric field, which could easily violate the force balance and push electrons into the relativistic regime. Such relativistic electrons, the so-called runaways, accumulate many MeV's and can cause substantial damage when they hit the wall. This thesis is based on the principle of rapidly fueling the plasma for holding the force balance even under the influence of high electric fields typical for disruptions. The method of injecting high amounts of noble gas particles into the plasma from a close distance is put into practice in the ASDEX Upgrade fusion test facility. In the framework of this thesis, a multi-channel photometer system based on 144 AXUV detectors in a toroidal stereo measurement setup was built. It kept its promise to provide new insights into the transport mechanisms in a disruptive plasma under the influence of strong radiative interaction dynamics between injected matter and the hot plasma.

  16. On metal fracture induced by laser radiation and impact pinched plasma

    International Nuclear Information System (INIS)

    Sultanov, M.A.; Olejnikov, V.P.

    1980-01-01

    Dependences of erosion of metals (Mo, W, Fe, Ta, Cr, Cd and etc.) on thermal physical properties and the place of laser radiation focusing are investigated. The radiation output energy has reached 10G, the impulse durability - 10 -3 sec. It is shown that the lense focus shift causes the change in the form and dimensions of a crater fracture. It is noted that there are shock waves in the laser plasma structure of fracture products, which are indicative of supersonic velocities of outflow of plasma microjets. A greater fracture degree of refractory metals (W, Mo, Ta) under the investigated conditions is noted. The erosion parameters of a great number of the metals under investigation are given

  17. Concerning the electromagnetic radiation spectrum of a hot plasma with Langmuir turbulence in a magnetic field

    International Nuclear Information System (INIS)

    Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2001-01-01

    We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)

  18. A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Munafò, Alessandro [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 206A Talbot Lab., 104 S. Wright Street, Urbana, IL 61801 (United States); Mansour, Nagi N. [NASA Ames Research Center, Moffett Field, 94035 CA (United States); Panesi, Marco, E-mail: munafo@illinois.edu, E-mail: nagi.n.mansour@nasa.gov, E-mail: m.panesi@illinois.edu [Aerospace Engineering Department, University of Illinois at Urbana-Champaign, 306 Talbot Lab., 104 S. Wright Street, Urbana, IL 61801 (United States)

    2017-04-01

    The present work proposes a self-consistent reduced-order NLTE kinetic model for radiating plasmas found in the outer layers of stellar atmospheres. A detailed collisional-radiative kinetic mechanism is constructed by leveraging the most up-to-date set of ab initio and experimental data available in the literature. This constitutes the starting point for the derivation of a reduced-order model, obtained by lumping the bound energy states into groups. In order to determine the needed thermo-physical group properties, uniform and Maxwell–Boltzmann energy distributions are used to reconstruct the energy population of each group. Finally, the reduced set of governing equations for the material gas and the radiation field is obtained based on the moment method. Applications consider the steady flow across a shock wave in partially ionized hydrogen. The results clearly demonstrate that adopting a Maxwell–Boltzmann grouping allows, on the one hand, for a substantial reduction of the number of unknowns and, on the other, to maintain accuracy for both gas and radiation quantities. Also, it is observed that, when neglecting line radiation, the use of two groups already leads to a very accurate resolution of the photo-ionization precursor, internal relaxation, and radiative cooling regions. The inclusion of line radiation requires adopting just one additional group to account for optically thin losses in the α , β , and γ lines of the Balmer and Paschen series. This trend has been observed for a wide range of shock wave velocities.

  19. Experimental study of TJ-1 plasma using scattering and radiation emission techniques

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1987-01-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of Te and ne obtained in TJ-1 discharges are presented. This data make possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Zeff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Zeff without non experimental assumptions. (Author) 52 refs

  20. Radiation losses plasma with multicharged ions under non stationary conditions in the T-10 tokamak

    International Nuclear Information System (INIS)

    Abramov, V.A.; Vertiporokh, A.N.; Lisitsa, V.S.; Notkin, G.E.; Shcheglov, D.A.

    1984-01-01

    Results are presented of experimental investigations of changes in the radi iation power of impurities at the initial stage of the plasma ECR-heating at the t-10 plant. An increase in the radiation losses is observed which is not as ssociated with a further addition of impurities. The mechanism is proposed which enables to explain this effect and is based on assumption of a growing pla asma mixing rate in the central zone at a local heating of the electron componen

  1. Study of TJ-1 Tokamak plasmas with Thomson scattering and radiation diagnostics

    International Nuclear Information System (INIS)

    Pardo, C.; Zurro, B.

    1987-06-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of T e and n e obtained in TJ-1 discharges are presented. This data makes possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Z eff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Z eff without non experimental assumptions. (author) 56 figs., 52 refs

  2. Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas

    International Nuclear Information System (INIS)

    Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart

    2006-01-01

    A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses

  3. Laser radiation short pulse absorption in a high-density plasma

    International Nuclear Information System (INIS)

    Brantov, A.V.; Bychenkov, V.Yu.; Tikhonchuk, V.T.

    1998-01-01

    Dependences of the absorption coefficients for s and p polarized electromagnetic waves (laser radiation) in a semi-bound plasma on the temperature and incidence angle are found for an arbitrary ratio of the skin-layer depth to the electron free path length t. The dependences obtained describe transition from the normal skin effect to abnormal one and permit quantitatively to determine the absorption coefficients in the intermediate range of the parameter t, characteristic for the majority of modern experiments

  4. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    Science.gov (United States)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  5. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  6. Absorption of the laser radiation by the laser plasma with gas microjet targets

    Science.gov (United States)

    Borisevichus, D. A.; Zabrodskii, V. V.; Kalmykov, S. G.; Sasin, M. E.; Seisyan, R. P.

    2017-01-01

    An upper limit of absorption of the laser radiation in the plasma produced in a gas jet Xe target with the average density of (3-6) × 1018 cm-3 and the effective diameter of 0.7 mm is found. It is equal to ≈50% and remains constant under any variation in this range of densities. This result contradicts both theoretical assessments that have predicted virtually complete absorption and results of earlier experiments with the laser spark in an unlimited stationary Xe gas with the same density, where the upper limit of absorption was close to 100%. An analysis shows that nonlinearity of absorption and plasma nonequilibrium lead to the reduction of the absorption coefficient that, along with the limited size of plasma, can explain the experimental results.

  7. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  8. Use of spectra from foil-excited heavy-ion beams to interpret radiation from plasmas

    International Nuclear Information System (INIS)

    Johnson, B.M.

    1978-01-01

    Spectra from foil-excited heavy ion beams can be used to investigate the relative abundance and charge state composition of heavy metal contaminants which cause severe radiative energy losses in tokamak-produced plasmas. The degree of ionization of these metals in the tokamak plasma is not well known because of uncertainties in ionization and recombination rates and particle confinement times. Only a few stages of ionization are typically prominent in foil-excited spectra, however, and both the most probable charge state and distribution width are well known. Highly ionized heavy ions (e.g., Ti, Mo, W and Au) which span the range of charge states found in present tokamaks were produced by passing beams from the Brookhaven MP tandem Van de Graaff accelerator facility through 20 μg/cm 2 carbon stripping foils. EUV radiation was recorded with a grazing incidence spectrometer. Comparisons of the beam-foil spectra with radiation from plasmas, and recent direct determinations of atomic oscillator strengths for principal resonance lines of such highly ionized species as Li-like iron (Fe 23+ ), Na-like bromine (Br 24+ ), and Cu-like iodine (I 24+ ) are discussed

  9. Effect of Low Dose Gamma Radiation on Some Biochemical Indicators in the Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Simpraga, M.; Vilic, M.; Miljanic, S.

    2001-01-01

    Full text: An attempt was made to determine the effect of irradiation of eggs by low dose ionising radiation before incubation on concentration of total protein, glucose and cholesterol in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens were irradiated by dose of 0.15 Gy gamma radiation ( 60 Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was the control group of chickens hatched from nonirradiated eggs. All other conditions were the same for the both groups. After hatching, blood samples were taken from the wing vein on days 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of all three parameters was determined spectrophotometrically using Boehringer Mannheim GmbH optimized kits. The concentration of total protein was significantly decreased in the blood plasma of chickens hatched from irradiated eggs on days 3, 7 and 30 and increased only on day 5. The concentration of glucose in the blood plasma was increased in the same chickens on days 1 and 30. The concentration of the cholesterol was decreased in the same chickens on day 7, and increased on day 10. Obtained results indicate that low-dose of gamma radiation has effects on some metabolic processes in the chickens hatched from eggs irradiated before incubation. (author)

  10. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    Science.gov (United States)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  11. Start broadened profiles with self-consistent radiation transfer and atomic kinetics in plasmas produced by high intensity lasers

    International Nuclear Information System (INIS)

    Olson, G.L.; Comly, J.C.; La Gattuta, J.K.; Kilcrease, D.P.

    1993-01-01

    Spectral line shapes and line strengths have long been used to diagnose plasma temperatures and densities. In dense plasmas, the additional broadening due to Stark effects give additional information about the plasma density. We present calculations that are self-consistent in that the radiation fields of the line transitions and the atomic kinetics are iterated to convergence. Examples are given for simple plasmas with temperature gradients, density gradients, and velocity fields. Then a more complex example of a laser produced plasma is presented

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Spectroscopic investigation of thermodynamic parameters of a plasma plume formed by the action of cw CO2 laser radiation on a metal substrate

    Science.gov (United States)

    Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.

    1996-09-01

    Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.

  13. Comparison of Two Models for Radiative Heat Transfer in High Temperature Thermal Plasmas

    Directory of Open Access Journals (Sweden)

    Matthieu Melot

    2011-01-01

    Full Text Available Numerical simulation of the arc-flow interaction in high-voltage circuit breakers requires a radiation model capable of handling high-temperature participating thermal plasmas. The modeling of the radiative transfer plays a critical role in the overall accuracy of such CFD simulations. As a result of the increase of computational power, CPU intensive methods based on the radiative transfer equation, leading to more accurate results, are now becoming attractive alternatives to current approximate models. In this paper, the predictive capabilities of the finite volume method (RTE-FVM and the P1 model are investigated. A systematic comparison between these two models and analytical solutions are presented for a variety of relevant test cases. Two implementations of each approach are compared, and a critical evaluation is presented.

  14. A case of radiation hemorrhagic gastritis successfully treated by endoscopic argon plasma coagulation

    International Nuclear Information System (INIS)

    Furukawa, Koichi; Ho, Nichyau; Kuroda, Ken; Ikarashi, Kentarou; Hata, Koujirou; Tukioka, Satosi

    2003-01-01

    A 72-year-old woman underwent irradiation of 46 Grey in total dose, for lumbago of the advanced pancreatic cancer in August 2000. She was admitted to our hospital due to severe anemia in February 2001 with occasionally positive fecal occult blood. Endoscopy revealed erosive gastric mucosa diffuse in the lower body of the stomach, which resulted from radiation. We applied argon plasma coagulation (APC) in March 2001 and succeeded in hemostasis of the widely spreading radiation hemorrhagic gastritis. The progress of the severe anemia improved without cicatricial stenosis. As the coagulation of the APC is limited in the surface mucosa, APC is an easy and effective treatment for radiation hemorrhagic gastritis. (author)

  15. Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits

    International Nuclear Information System (INIS)

    Clement, J.J.

    1980-01-01

    The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 300 0 C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO 2 interface is not clear at this point

  16. Systems and methods for imaging using radiation from laser produced plasmas

    Science.gov (United States)

    Renard-Le Galloudec, Nathalie; Cowan, Thomas E.; Sentoku, Yasuhiko; Rassuchine, Jennifer

    2009-06-30

    In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

  17. Radiative properties of a plasma moving across a magnetic field. I: Theoretical analysis

    International Nuclear Information System (INIS)

    Roussel-Dupre, R.; Miller, R.H.

    1993-01-01

    The early-time evolution of plasmas moving across a background magnetic field is addressed with a two-dimensional model in which a plasma cloud is assumed to have formed instantaneously with a velocity across a uniform background magnetic field and with a Gaussian density profile in the two dimensions perpendicular to the direction of motion. This model treats both the dynamics associated with the formation of a polarization field and the generation and propagation of electromagnetic waves. In general, the results indicate that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the direction of the polarization field which oscillates at frequencies defined by the normal mode of the system. The magnitude of the radiation field and the amount of plasma momentum and energy carried away by and stored instantaneously in the fields are discussed only qualitatively in this paper, quantitative results for specific cloud parameters and scaling laws for the magnitude of the fields and the slowing down of the plasma cloud are presented in a companion manuscript

  18. Study of magnetic field expansion using a plasma generator for space radiation active protection

    International Nuclear Information System (INIS)

    Jia Xianghong; Jia Shaoxia; Wan Jun; Wang Shouguo; Xu Feng; Bai Yanqiang; Liu Hongtao; Jiang Rui; Ma Hongbo

    2013-01-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power. (authors)

  19. Mechanism of the immobilization of surfactants on polymeric surfaces by means of an argon plasma treatment: Influence of UV radiation

    NARCIS (Netherlands)

    Lens, J.P.; Spaay, B.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1999-01-01

    The mechanism of the immobilization of the surfactant sodium 10-undecenoate (C11(:)) on poly(ethylene) (PE) by means of an argon plasma treatment has been investigated. In particular, the influence of the vacuum ultraviolet (UV) radiation emitted by the argon plasma on the immobilization was

  20. Substrate decoration for improvement of current-carrying capabilities of YBa{sub 2}Cu{sub 3}O{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khoryushin, Alexey V., E-mail: khoryushin@ya.ru [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark); Mozhaev, Peter B.; Mozhaeva, Julia E. [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark); Bdikin, Igor K. [Department of Mechanical Engineering, Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Zhao, Yue [Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde (Denmark); Andersen, Niels H.; Jacobsen, Claus S.; Hansen, Jørn Bindslev [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark)

    2013-03-15

    Highlights: ► Effects of substrate decoration on properties of YBCO thin films were studied. ► Y{sub 2}O{sub 3} nanoparticles, ultra-thin Y{sub 2}O{sub 3} and Y:ZrO{sub 2} layers were used as decoration layer. ► Decoration improves j{sub C} (5 T and 50 K) up to 0.97 MA/cm{sup 2} vs. 0.76 MA/cm{sup 2} for a reference film. ► Ultra-thin layer of yttria and yttria nanoparticles have a similar effect on YBCO. ► Y{sub 2}O{sub 3} decoration results in power law coefficient α = 0.3 vs. α = 0.4 for a reference film. -- Abstract: The effects of substrate decoration with yttria and Y:ZrO{sub 2} on the structural and electrical properties of the YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films are studied. The films were deposited on (LaAlO{sub 3}){sub 3}–(Sr{sub 2}AlTaO{sub 8}){sub 7} substrates by pulsed laser deposition. Two different structures of decoration layer were applied, a template layer of nanoparticles and an uniform ultra-thin layer. Significant improvement of current-carrying capabilities was observed, especially at high external magnetic fields. Structural studies of these films reveal the presence of extended linear defects in the YBCO matrix. The formation of these structures is attributed to seeding of randomly oriented YBCO grains due to suppression of epitaxy in the very beginning of the deposition. The films of both kinds of decoration layers show nearly the same improvement of j{sub C} over the reference film at 77 and 50 K: j{sub C} (5T and 50 K) reaches 0.92 and 0.97 MA/cm{sup 2} for uniform and template decoration layers. At 5 and 20 K the effect of template decoration layers is more beneficial: j{sub C} (5T and 20 K) values are 3.5 and 4.1 MA/cm{sup 2}, j{sub C} (5T and 5 K) values are 6.4 and 7.9 MA/cm{sup 2}, for uniform and template decoration layers, respectively.

  1. Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source

    International Nuclear Information System (INIS)

    Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M.; Hori, T.; Hatae, T.

    2004-01-01

    Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE mn mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE 0n and TE 1n modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level (ΔP/P < 1 %, Δf< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)

  2. Radiation yield from SHIVA Star plasma flow switch driven fast liner implosions

    International Nuclear Information System (INIS)

    Degnan, J.H.; Baker, W.L.; Beason, J.D.

    1987-01-01

    A 2.5 Terawatt 0.5 MJ isotropic equivalent radiation yield was obtained in a SHIVA Star plasma flow switch driven fast liner implosion. The 1313 μF 80 kV discharge delivered 13 MA to a coaxial vacuum inductive store with a plasma armature. Over 9.4 MA current was plasma flow switched to the implosion load (>90% of the gun muzzle current at that time). The load wa a 5 cm radius, 2 cm tall, 200 μg/cm/sup 2/ aluminum plated Formvar cylindrical foil. The radiation pulse was measured with an array of seven X-ray diodes (XRDs). The XRDs all had aluminum photocathodes, a variety of filters and nickel mesh to reduce the incident X-ray photon flux to avoid Child-Langmuir saturation. The filters were chosen so that the authors had seven different diode response functions covering the energy range from 15 eV to about 3 keV. The filters were mounted remote (about 30 cm) from the XRDs. The anode mesh served as part of the mesh array. The distance between meshes was greater than 10 cm. Each XRD had a 5 cm diameter cathode with an aperture limited to a 2 cm diameter. The XRD anode-cathode gap was 1 cm and the bias was 5 kV. The theoretical Child-Langmuir saturation signal was 125 V with 50 Ω termination. The maximum observed signal was 75 V

  3. Calculation of radiative opacity of plasma mixtures using a relativistic screened hydrogenic model

    International Nuclear Information System (INIS)

    Mendoza, M.A.; Rubiano, J.G.; Gil, J.M.; Rodríguez, R.; Florido, R.; Espinosa, G.; Martel, P.; Mínguez, E.

    2014-01-01

    We present the code ATMED based on an average atom model and conceived for fast computing the population distribution and radiative properties of hot and dense single and multicomponent plasmas under LTE conditions. A relativistic screened hydrogenic model (RSHM), built on a new set of universal constants considering j-splitting, is used to calculate the required atomic data. The opacity model includes radiative bound–bound, bound–free, free–free, and scattering processes. Bound–bound line-shape function has contributions from natural, Doppler and electron-impact broadenings. An additional dielectronic broadening to account for fluctuations in the average level populations has been included, which improves substantially the Rosseland mean opacity results. To illustrate the main features of the code and its capabilities, calculations of several fundamental quantities of one-component plasmas and mixtures are presented, and a comparison with previously published data is performed. Results are satisfactorily compared with those predicted by more elaborate codes. - Highlights: • A new opacity code, ATMED, based on the average atom approximation is presented. • Atomic data are computed by means of a relativistic screened hydrogenic model. • An effective bound level degeneracy is included for accounting pressure ionization. • A new dielectronic line broadening is included to improve the mean opacities. • ATMED has the possibility to handle with single element and multicomponent plasmas

  4. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A [National Research Nuclear University ' MEPhI' (Russian Federation)

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  5. Experimental studies and modelling of high radiation and high density plasmas in the ASDEX upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Casali, Livia

    2015-11-24

    Fusion plasmas contain impurities, either intrinsic originating from the wall, or injected willfully with the aim of reducing power loads on machine components by converting heat flux into radiation. The understanding and the prediction of the effects of these impurities and their radiation on plasma performances is crucial in order to retain good confinement. In addition, it is important to understand the impact of pellet injection on plasma performance since this technique allows higher core densities which are required to maximise the fusion power. This thesis contributes to these efforts through both experimental investigations and modelling. Experiments were conducted at ASDEX Upgrade which has a full-W wall. Impurity seeding was applied to H-modes by injecting nitrogen and also medium-Z impurities such as Kr and Ar to assess the impact of both edge and central radiation on confinement. A database of about 25 discharges has been collected and analysed. A wide range of plasma parameters was achieved up to ITER relevant values such as high Greenwald and high radiation fractions. Transport analyses taking into account the radiation distribution reveal that edge localised radiation losses do not significantly impact confinement as long as the H-mode pedestal is sustained. N seeding induces higher pedestal pressure which is propagated to the core via profile stiffness. Central radiation must be limited and controlled to avoid confinement degradation. This requires reliable control of the impurity concentration but also possibilities to act on the ELM frequency which must be kept high enough to avoid an irreversible impurity accumulation in the centre and the consequent radiation collapse. The key role of the f{sub ELM} is confirmed also by the analysis of N+He discharges. Non-coronal effects affect the radiation of low-Z impurities at the plasma edge. Due to the radial transport, the steep temperature gradients and the ELM flush out, a local equilibrium cannot be

  6. Influence of the Doppler effect on radiative transfer in a spherical plasma under macroscopic motion of substance

    Science.gov (United States)

    Kosarev, N. I.

    2018-03-01

    The non-LTE radiative transfer in spherical plasma containing resonantly absorbing light ions has been studied numerically under conditions of macroscopic motion of substance. Two types of macroscopic motion were simulated: radial expansion and compression (pulsation) of spherical plasma; rotation of plasma relative to an axis of symmetry. The calculations of absorption line profile of transmitted broadband radiation and the emission line profile were performed for the optically dense plasma of calcium ions on the resonance transition with wavelength 397 nm. Numerical results predict frequency shifts in the emission line profile to red wing of the spectrum for radial expansion of the plasma and to blue wing of the spectrum for the plasma compression at an average velocity of ions along the ray of sight equal to zero. The width of the emission line profile of a rotating plasma considerably exceeds the width of the profile of the static plasma, and the shift of the central frequency of resonance transition from the resonance frequency of the static plasma gives a linear velocity of ion motion along a given ray trajectory in units of thermal velocity. Knowledge of the linear radial velocity of ions can be useful for diagnostic purposes in determining the frequency and period of rotation of optically dense plasmas.

  7. L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET

    Energy Technology Data Exchange (ETDEWEB)

    Aho-Mantila, L., E-mail: leena.aho-mantila@vtt.fi [VTT Technical Research Centre of Finland, FI-02044 VTT (Finland); Bernert, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Coenen, J.W. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany); Fischer, R. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Lehnen, M. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany); Lowry, C. [EFDA JET CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Marsen, S. [Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald (Germany); McCormick, K.; Müller, H.W.; Sieglin, B. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Stamp, M.F. [Culham Centre for Fusion Energy, EURATOM-CCFE Association, Abingdon (United Kingdom); Wischmeier, M. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Bonnin, X. [LSPM, CNRS, Université Paris 13, F-93430 Villetaneuse (France); Coster, D.P. [Max-Planck Institut für Plasmaphysik, D-85748 Garching (Germany); Reiter, D.; Brezinsek, S. [Energie- und Klimaforschung IEK-4, FZJ, EURATOM Association, TEC, 52425 Jülich (Germany)

    2013-07-15

    The presently favoured option for reactor power handling combines metallic plasma-facing components and impurity seeding to achieve highly radiative scrape-off layer and divertor plasmas. It is uncertain whether tolerable divertor power loads will be obtained in this scenario, necessitating the development of predictive modelling tools. L-mode experiments with N{sub 2} seeding have been conducted at both ASDEX Upgrade and JET for benchmarking the critically important impurity radiation models in edge fluid codes. In both machines, particle and power loads are observed to first reduce at the inner target, and only then at the outer target. The outer divertor cools down with increasing N seeding rate, evolving from low-recycling conditions to a regime with peak temperature of 8–10 eV in both devices. First SOLPS5.0 simulations of N{sub 2} seeding in ASDEX Upgrade geometry show a similar in–out asymmetry in the effect of impurity radiation when drifts are activated in the simulations.

  8. Radiation from an equilibrium CO2-N2 plasma in the [250-850 nm] spectral region: II. Spectral modelling

    International Nuclear Information System (INIS)

    Silva, M Lino da; Vacher, D; Andre, P; Faure, G; Dudeck, M

    2008-01-01

    In the first part of this work, described in a previous paper, the thermodynamic conditions in an atmospheric pressure inductively coupled CO 2 -N 2 plasma have been determined, and the radiation emission spectrum has been measured and calibrated in the [250-850 nm] spectral region. In the second part of this work, a synthetic radiation spectrum is obtained taking into account (a) the geometry of the plasma torch and (b) the local thermodynamic conditions of the plasma. This synthetic spectrum has then been compared against the measured spectrum. The good agreement between the two spectra allows validating the spectral database of the line-by-line code SPARTAN for the simulation of the radiative emission of CO 2 -N 2 plasmas from the near-UV to the near-IR spectral region.

  9. Pyroelectric detector study and realization measuring the plasma radiated power in a tokamak

    International Nuclear Information System (INIS)

    Simonet, F.

    1981-10-01

    The study of a additional heating method and the perfection of impurities rate control and reduction means are presently actively investigated. Petula experiment must demonstrate heating efficiency by high frequency oscillating electromagnetic fields. Impurities will probably dissipate an important part of the ohmic power and electromagnetic power left in plasma. In this report, experimental device is described, which has been realized, and introduced in the tokamak, to measure precisely the energy losses by radiation in the ionized medium. In a first part, tokomak Petula is presented and it is shown how different chemical species can introduce numerously in the discharge gas. In a second part, plasma cooling by photon and fast neutron strong emission is stressed on. In a third part, the measuring device is explained; the detector part is a pyroelectric crystal. In a fourth and last part, results are discussed, insisting on the signal temporal evolution and on the value of the following ratio: power lost by plasma towards the walls/ohmic power left in plasma [fr

  10. The theory of the long waveguide structures radiating the LH waves into a plasma

    International Nuclear Information System (INIS)

    Hurtak, O.; Preinhaelter, J.

    1991-09-01

    It has been shown that the radiation into a plasma from a structure composed of a number of waveguides is well described by the theory of infinite structures. The theory results in an efficient numerical code which is appropriate namely for the study of the non-linear response of the plasma in front of the grill. Both the infinite conventional grill and the structure built up from an infinite series of identical N-waveguide multijunction sections are investigated. It is proved that the spectrum of the last structure is the superposition of N spectra of infinite conventional grills with specially selected phase shifts. The theoretical results for three long structures (24-waveguide conventional grill on ASDEX and two multijunction arrays - 32-waveguide grill on JET and 30-waveguide grill proposed for T15) are compared with the predictions of the theory of the corresponding infinite structures and the agreement is good. (author) 12 figs., 11 refs

  11. Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors

    Czech Academy of Sciences Publication Activity Database

    Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Cutroneo, M.; Torrisi, L.; Margarone, Daniele; Velyhan, Andriy; Krása, Josef; Krouský, Eduard

    2013-01-01

    Roč. 272, May (2013), s. 104-108 ISSN 0169-4332 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087; GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OPVK 3 Laser Zdroj(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; 7FP LASERLAB-EUROPE(XE) 228334 Program:EE; FP7 Institutional support: RVO:68378271 Keywords : single crystal diamond * diamond detector * laser-generated plasma * ionizing radiation * time-of-fight spectrometer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  12. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    International Nuclear Information System (INIS)

    Laux, Christophe O.

    2007-01-01

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 μm). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed

  13. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-01-01

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  14. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India); Challapalli, Srinivas [Department of Radiotherapy, Kasturba Medical College, Mangalore (India); Chandraguthi, Shrinidhi Gururajarao [Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal (India); Jain, Navya; Krishnamurthy, Hanumanthappa [National Centre for Biological Sciences, Bangalore (India); Kumar, Pratap [Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal (India); Adiga, Satish Kumar, E-mail: satish.adiga@manipal.edu [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India)

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  15. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  16. Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field

    Science.gov (United States)

    Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan

    2018-02-01

    A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.

  17. Derangement of cellular plasma membranes due to non-lethal radiation doses

    International Nuclear Information System (INIS)

    Koeteles, G.J.; Kubasova, T.; Somosy, Z.; Horvath, L.

    1983-01-01

    Earlier observations in the laboratory on fibroblasts and various blood cells of animal and human origins pointed to alteration of concanavalin A binding sites of plasma membranes as well as to concomitant morphological changes and scanning electron microscopic appearance of cell surfaces following sub-lethal doses of X-, fission neutron and beta irradiations. The effects appeared early and existed temporarily; their intensities and the restitution of membrane function depended on radiation doses, types and conditions of cells. In the present paper further aspects of structural and functional derangements of plasma membranes are introduced which were provoked by X- and tritium beta irradiation in the dose range up to 2.5 Gy and in the concentration range from 3.7 kBq/mL, respectively. The state of membrane structure was followed by bindings of various ligands of different receptor requirements, concanavalin A, cationized ferritin and polio virus. In the case of X-irradiation the binding conditions suggest the shift of overall negative surface charges to less negative ones. It was also found that radiation-induced phenomena appear on the cell surface unevenly. Long- and short-term treatments of cells with 3 H-thymidine and 3 H-water also perturb the plasma membrane; beta irradiation affects it directly. Membrane structure and function are suggested to offer good biological models to study correlation of energy deposition and biological effects, both restricted to domains of nanometre range. The data give evidence for radiation-induced membrane alterations in the sub-lethal or non-lethal ranges which might have consequences in the development of stochastic and non-stochastic effects. (author)

  18. The measurements of plasma cytokines in radiation-induced pneumonitis in lung cancer patients

    International Nuclear Information System (INIS)

    Hur, Won Joo; Youn, Seon Min; Lee, Hyung Sik; Yang, Kwang Mo; Sin, Geun Ho; Son, Choon Hee; Han, Jin Yeong; Lee, Ki Nam; Jeong, Min Ho

    2000-01-01

    To investigate whether changes in plasma concentrations of transforming growth factor-β 1(TGF-β 1), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (lL -6) could be used to identify the development of radiation-induced pneumonitis in the lung cancer patients. Seventeen patients with lung cancer (11 NSCLC. 6 SCLC) were enrolled in a prospective study designed to evaluate clinical and molecular biologic correlation of radiation-induced pneumonitis. The study began in May 1998 and completed in July 1999. All patients were treated with radiotherapy with curative intent: 1.8 Gy per day, 5 fractions per week. Serial measurements of plasma TGF-β1, TNF--α and IL -6 were obtained in all patients before, weekly during radiotherapy and at each follow-up visits after completion of treatment. These measurements were quantified using enzyme linked immunosorbent assay (ELISA). All patients were evaluated for signs and symptoms of pneumonitis at each follow-up visits after completion of radiotherapy. High resolution CT (HRCT) scans were obtained when signs and symptoms of pneumonitis were developed after completion of radiotherapy. Thirteen patients eventually developed signs and symptoms of clinical pneumonitis while four patients did not. TGF- P 1 levels were elevated in - all 13 patients with pneumonitis, which showed characteristic pattern of elevation (38.45 ng/ml at pretreatment, 13.66 ng/ml during radiotherapy, then 60.63 ng/ml at 2-4 weeks after completion of radiotherapy). The levels of TNF--α and IL -6 were also elevated in the group of patients who developed pneumonitis but the pattern was not characteristic. Changes in plasma TGFβ-1 levels before, during and after radiotherapy appears to be a useful means by which to identify patients at risk for the development of symptomatic pneumonitis. Other cytokines like TNF--α and IL-6 shows no meaningful changes in association with radiation pneumonitis

  19. Supersonic Ionization Wave Driven by Radiation Transport in a Short-Pulse Laser-Produced Plasma

    International Nuclear Information System (INIS)

    Ditmire, T.; Gumbrell, E.T.; Smith, R.A.; Mountford, L.; Hutchinson, M.H.

    1996-01-01

    Through the use of an ultrashort (2ps) optical probe, we have time resolved the propagation of an ionization wave into solid fused silica. This ionization wave results when a plasma is created by the intense irradiation of a solid target with a 2ps laser pulse. We find that the velocity of the ionization wave is consistent with radiation driven thermal transport, exceeding the velocity expected from simple electron thermal conduction by nearly an order of magnitude. copyright 1996 The American Physical Society

  20. Characteristics of x-ray radiation from a gas-puff z-pinch plasma

    International Nuclear Information System (INIS)

    Akiyama, N.; Takasugi, K.

    2002-01-01

    Characteristics of x-ray radiation from Ar gas-puff z-pinch plasma have been investigated by changing delay time of discharge from gas puffing. Intense cloud structure of x-ray image was observed at small delay time region, but the total x-ray signal was not so intense. The x-ray signal increased with increasing the delay time, and hot spots of x-ray image also became intense. Electron temperature was evaluated from x-ray spectroscopic data, and no significant difference in temperature was observed. (author)

  1. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  2. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Uchaikin, V V; Sibatov, R T, E-mail: vuchaikin@gmail.com, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation)

    2011-04-08

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  3. Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

    International Nuclear Information System (INIS)

    Uchaikin, V V; Sibatov, R T

    2011-01-01

    The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.

  4. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    International Nuclear Information System (INIS)

    Vagin, K. Yu.; Uryupin, S. A.

    2013-01-01

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function

  5. Changes in plasma membrane state of thymocytes during spontaneous and radiation-induced leukemogenesis

    International Nuclear Information System (INIS)

    Gonta-Grabiec, K.

    1984-01-01

    Changes in plasma membrane properties characteristic for malignant cells were reviewed. Investigations of spontaneous (in AKR mice) and radiation-induced (in C57Bl) leukemogenesis were carried out; changes in properties of Na + , K + ATPase and alkaline phosphatase were characterized. On the basis of the results reported a pre-leukemic stage was distinguished, corresponding to the following features at the cellular level: increase in activity of alkaline phosphatase; decrease in relative activity of Na + , K + ATPase; decrease in efficiency of the Na + K + pump; decrease in cAMP content. 473 refs. (author)

  6. Plasma production during vaporization of materials by the radiation from a CO2 TEA laser

    International Nuclear Information System (INIS)

    Gaponov, S.V.; Strikovskii, M.D.

    1982-01-01

    The energy and space and time dependence are investigated for a laser flare. Two qualitatively different regimes are discovered for the ejection of the plasma, where the transition between them has a threshold character (in the radiation flux density). The measured dependence of the threshold on the atomic number of the target element has a form which is indicative of a connection between the dynamics of the flare formation and the electronic structure of the atom. A model is proposed for interpreting this effect

  7. ISEE observations of radiation at twice the solar wind plasma frequency

    International Nuclear Information System (INIS)

    Lacombe, C.; Harvey, C.C.; Hoang, S.

    1988-01-01

    Radiation produced in the vicinity of the Earth's bow shock at twice the solar wind electron plasma frequency f p is seen by both ISEE-1 and ISEE-3, respectively at about 20 and about 200 R E from the Earth. This electromagnetic radiation is due to the presence, in the electron foreshock, of electrons reflected and accelerated at the Earth's bow shock. We show that the source is near the upstream boundary of the foreshock, the surface where the magnetic field lines are tangent to the bow shock. A typical diameter of the source is 120-150 R E . Emissivity is given. The angular size of the source, seen by ISEE-3, is increased by scattering of the 2f p radio waves on the solar wind density fluctuations. We examine whether the bandwidth and directivity predicted by current source models are consistent with our observations

  8. A design procedure for a slotted waveguide with probe-fed slots radiating into plasma

    International Nuclear Information System (INIS)

    Colborn, J.A.

    1989-11-01

    A design procedure is developed for slotted-waveguide antennas with probe-fed slots. Radiation into a gyrotropic, plane-stratified medium is considered, nonzero waveguide wall thickness is assumed, and noncosinusoidal slot fields and arbitrary slot length up to about one free-space wavelength are allowed. External mutual coupling is taken into account by matching the tangential fields at the antenna surface. The particular case of longitudinal slots in the broad face of rectangular guide is analyzed. The motivation for this work is the design of such radiators for plasma heating and current-drive on thermonuclear fusion experiments, but some of the analysis is applicable to the probeless slotted waveguide used for avionics and communications. 20 refs., 5 figs

  9. The application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-07-01

    In the limit of the first Born approximation for a partially coherent secondary source, consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation as measured on an arbitrary plane beyond the scatterer conveys information on the three dimensional intensity distribution of the random source. By defining a new two point statistical measure of the random field, closely related to the cross spectral density, we show that the fluctuation amplitude of the random source along the direction of the incident plane wave may by recovered from the measurement of the scattered radiation. The application of cross spectral techniques to fluctuation studies on tokamaks is considered. 7 refs

  10. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  11. CONSTRAINING THE RADIATION AND PLASMA ENVIRONMENT OF THE KEPLER CIRCUMBINARY HABITABLE-ZONE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Zuluaga, Jorge I. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mason, Paul A. [New Mexico State University—DACC, Las Cruces, NM 88003 (United States); Cuartas-Restrepo, Pablo A. [FACom—Instituto de Física—FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellín (Colombia)

    2016-02-20

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  12. CONSTRAINING THE RADIATION AND PLASMA ENVIRONMENT OF THE KEPLER CIRCUMBINARY HABITABLE-ZONE PLANETS

    International Nuclear Information System (INIS)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-01-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net

  13. SiC detectors to monitor ionizing radiations emitted from nuclear events and plasmas

    Science.gov (United States)

    Torrisi, L.; Cannavò, A.

    2016-09-01

    Silicon Carbide (SiC) semiconductor detectors are increasingly employed in Nuclear Physics for their advantages with respect to traditional silicon (Si). Such detectors show an energy resolution, charge mobility, response velocity and detection efficiency similar to Si detectors. However, the higher band gap (3.26 eV), the lower leakage current (∼10 pA) maintained also at room temperature, the higher radiation hardness and the higher density with respect to Si represent some indisputable advantages characterizing such detectors. The devices can be employed at high temperatures, at high absorbed doses and in the case of high visible light intensities, for example, in plasma, for limited exposition times without damage. Generally SiC Schottky diodes are employed in reverse polarization with an active region depth of the order of 100 µm, purity below 1014 cm-3 and an active area lower than 1 cm2. Measurements in the regime of proportionality with the radiation energy released in the active region and measurements in time-of-flight configuration are employed for nuclear emission events produced at both low and high fluences. Alpha spectra demonstrated an energy resolution of about 1.3% at 5.8 MeV. Radiation emission from laser-generated plasma can be monitored in terms of detected photons, electrons and ions, using the laser pulse as a start signal and the radiation detection as a stop signal, enabling to measure the ion velocity by knowing the target-detector flight distance. SiC spectra acquired in the Messina University laboratories using radioactive ion sources and at the PALS laboratory facility in Prague (Czech Republic) are presented. A preliminary study of the use of SiC detectors, embedded in a water equivalent polymer, as a dosimeter is presented and discussed.

  14. Analyzing the Radiation Properties of High-Z Impurities in High-Temperature Plasmas

    International Nuclear Information System (INIS)

    Reinke, M. L.; Ince-Cushman, A.; Podpaly, Y.; Rice, J. E.; Bitter, M.; Hill, K. W.; Fournier, K. B.; Gu, M. F.

    2009-01-01

    Most tokamak-based reactor concepts require the use of noble gases to form either a radiative mantle or divertor to reduce conductive heat exhaust to tolerable levels for plasma facing components. Predicting the power loss necessary from impurity radiation is done using electron temperature-dependent 'cooling-curves' derived from ab initio atomic physics models. We present here a technique to verify such modeling using highly radiative, argon infused discharges on Alcator C-Mod. A novel x-ray crystal imaging spectrometer is used to measure spatially resolved profiles of line-emissivity, constraining impurity transport simulations. Experimental data from soft x-ray diodes, bare AXUV diodes and foil bolometers are used to determine the local emissivity in three overlapping spectral bands, which are quantitatively compared to models. Comparison of broadband measurements show agreement between experiment and modeling in the core, but not over the entire profile, with the differences likely due to errors in the assumed radial impurity transport outside of the core. Comparison of Ar 16+ x-ray line emission modeling to measurements suggests an additional problem with the collisional-radiative modeling of that charge state.

  15. Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries

    Science.gov (United States)

    Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.

    2013-01-01

    Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.

  16. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  17. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  18. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    International Nuclear Information System (INIS)

    Debus, Alexander

    2012-01-01

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  19. The investigation of electron-ion radiative and dielectronic recombination in high-temperature plasmas

    International Nuclear Information System (INIS)

    Jacobs, V.L.

    1991-01-01

    (1) The unified description of radiative and dielectronic recombination, which the authors have developed to provide corrections to the conventional independent-processes approximation, has been generalized to self-consistently incorporate the effects of charged-particle collisions and plasma electric fields. (2) The K α model for the dielectronic satellite spectra of highly-charged Fe ions, which the authors have developed based on the conventional theory of dielectronic satellite line intensities, has been incorporated into the multi-ion-species transport code MIST. Excellent agreement has been obtained between the simulated spectra and the observed Fe K α spectra from PLT and TFTR. (3) A detailed investigation has been completed on the dielectronic recombination satellite spectra in the presence of a distribution of plasma electric microfields. The calculations have been carried out for the lowest-lying n=2 satellites, which are affected by the electric fields only in high-density laser-produced plasma. For application to the lower-density conditions in tokamak plasmas, in which the electron density is about ten orders of magnitude smaller, a number of alternatives are under consideration for evaluating the recombination rates associated with the Rydberg autoionizing sates corresponding to large values of n. (3) A manuscript entitled ''Observation of Density-Enhanced Dielectronic Satellite Spectra Produced During Subpicosecond Laser-Matter Interactions'' has been submitted for publication in the Physical Review A. This work provides a convincing experimental verification of the theoretical predictions on the density sensitivity of diagnostically-important dielectronic satellite spectra in dense plasmas

  20. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    International Nuclear Information System (INIS)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A.R.; Zigler, A.

    2016-01-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  1. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  2. On the influence of electron heat transport on generation of the third harmonic of laser radiation in a dense plasma skin layer

    International Nuclear Information System (INIS)

    Isakov, Vladimir A; Kanavin, Andrey P; Uryupin, Sergey A

    2005-01-01

    The flux density is determined for radiation emitted by a plasma at the tripled frequency of an ultrashort laser pulse, which produces weak high-frequency modulations of the electron temperature in the plasma skin layer. It is shown that heat removal from the skin layer can reduce high-frequency temperature modulations and decrease the nonlinear plasma response. The optimum conditions for the third harmonic generation are found. (interaction of laser radiation with matter. laser plasma)

  3. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  4. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the evolution of a plasma formed by cw and pulse-periodic CO2 laser radiation in various gases

    Science.gov (United States)

    Kanevskiĭ, M. F.; Stepanova, M. A.

    1990-06-01

    An investigation was made of the interaction between high-power cw and pulse-periodic CO2 laser radiation and a low-threshold optical breakdown plasma near a metal surface. Characteristics of the breakdown plasma were studied as a function of the experimental conditions. A qualitative analysis was made of the results using a simple one-dimensional model for laser combustion waves.

  5. Properties of spectra of the reflected and transmitted radiation during propagation of relativistically strong laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Z.; Naumova, N.M.

    1996-01-01

    Particle-in-cell simulation has been performed to study the spatial-temporal evolution of the pulse propagating in an underdense plasma. The spectra both of the reflected and transmitted radiation are investigated. The spectrum structure of the reflected radiation is due to the backward stimulated Raman scattering meanwhile the transmitted radiation structure is mainly due to the nonlinear self-phase-modulation. The influence of the pulse shape on the transmitted radiation spectrum is revealed. The dependence of the main features of the spectrum and the self-consistent pulse distortion is found. The pulse distortion is accompanied by the relativistic electrons generation. copyright 1996 American Institute of Physics

  6. Elimination of electromagnetic radiation in plasma simulation: the Darwin or magnetoinductive approximation

    International Nuclear Information System (INIS)

    Hewett, D.W.

    1985-01-01

    For many astrophysical and most magnetic fusion applications, the purely electromagnetic modes generated by real as well as simulation ''plasma'' fluctuations are a source of high frequency radiation that is often irrelevant to the physics of interest. Unfortunately, a numerical CFL stability limit prevents either making c infinite or deltat large while using the usual explicit Maxwell's equations for the fields. A modification of Maxwell's equations, which provides implicitly the field components, circumvents this problem. The solution is to neglect retardation effects so that the electromagnetic propagation speed is effectively infinite. The purely electromagnetic modes in this limit evolve ''instantly'' to a time-asymptotic configuration about the macroscopic plasma configuration at each new time level. The Darwin or magnetoinductive approximation effectively provides infinite propagation speeds for purely electromagnetic modes by converting Maxwell's equations from hyperbolic to elliptic in character. In practice, this is accomplished by neglecting the solenoidal part of the displacement current. The elimination of the CFL time step constraint more than offsets the substantially more complicated field solution that is required. The details of a numerical implementation of this model will be presented. Numerical examples will be given and extentions of the Darwin field solution to other plasma models also will be considered. 9 refs., 3 figs

  7. Radiation damage and redeposited-layer formation on plasma facing materials in the TRIAM-1M

    International Nuclear Information System (INIS)

    Hirai, Takeshi; Tokunaga, Kazutoshi; Fujiwara, Tadashi; Yoshida, Naoaki; Itoh, Satoshi

    1997-01-01

    As an aim to obtain some informations of material damage at long time discharge and redeposited-layer formed by scrape off layer (SOL), two collector probe experiments were conducted by using Tokamak of Research Institute for Applied Mechanics (TRIAM-IM). As a result, radiation damage due to charge exchange neutral particles of more than 2 MeV high energy component flying from plasma was observed. And in either experiment, redeposited-layer formation due to deposite of impurity atoms in the plasma could be observed. In the first experiment, a redeposited-layer with fine crystalline particles was observed, which was formed to contain multi-component system of Fe, Cr and Ni and light elements O and C. And, in the second experiment, a redeposited-layer grain-grown in which main component was Mo was observed. Surface modification of plasma facing material such as above-mentioned damage induction, redeposited-layer formation, and so on, was thought to much affect deterioration of materials and recycling of hydrogen. (G.K.)

  8. Ultraviolet out-of-band radiation studies in laser tin plasma sources

    Science.gov (United States)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin

    2017-11-01

    Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.

  9. Ionization processes in the Fe 27 region of hot iron plasma in the field of hard gamma radiation

    International Nuclear Information System (INIS)

    Illarionov, A.F.

    1989-01-01

    A highly ionized hot plasma of an iron 26 56 Fe-type heavy element in the field of hard ionizing gamma-ray radiation is considered. The processes of ionization and recombination are discussed for a plasma consisting of the fully ionized Fe 27 and the hydrogen-like Fe 26 ions of iron in the case of large optical depth of the plasma with respect to the photoionization by gamma-ray quanta. The self-ionization process of a hot plasma with the temperature kT ≅ I (I being the ionization potential), due to the production of the own ionizing gamma-ray quanta, by the free-free (ff) and recombination (fb) radiation mechanisms, is investigated. It is noted that in the stationary situation the process of self-ionization of a hot plasma imposes the restriction upon the plasma temperature, kT<1.5 I. It is shown that the ionization of heavy-ion plasma by the impact of thermal electrons is dominating over the processes of ff- and fb-selfionization of plasma only by the large concentration of hydrogen-like iron at the periphery of the region of fully ionized iron Fe 27

  10. Sucralfate or placebo following argon plasma coagulation for chronic radiation proctitis: a randomized double blind trial.

    Science.gov (United States)

    Chruscielewska-Kiliszek, M R; Regula, J; Polkowski, M; Rupinski, M; Kraszewska, E; Pachlewski, J; Czaczkowska-Kurek, E; Butruk, E

    2013-01-01

    Chronic radiation proctitis is a long-term complication of radiation therapy for pelvic malignancy. The aim of this study was to compare the efficacy and safety of two treatment regimens, sucralfate or placebo, following argon plasma coagulation (APC) for chronic haemorrhagic radiation proctitis. A single-centre, randomized, placebo-controlled, double-blind study was performed on patients with haemorrhagic chronic radiation proctitis after irradiation for prostate, uterine, cervical, rectal or vaginal cancer. All patients received APC, and were then randomized to oral sucralfate (6 g twice a day) or placebo treatment for 4 weeks. APC was repeated every 8 weeks if necessary after the first session. Patients were graded clinically and endoscopically according to the Chutkan and Gilinski scales before and at 8 and 16 weeks after initial APC treatment (1.5-2 l/min, 25-40 W) and after 52 weeks (clinical only). Of 122 patients, 117 completed the entire protocol, with 57/60 in the sucralfate group and 60/62 in the placebo group. At baseline there were no significant differences between the sucralfate and placebo groups. At 1 year, a significant improvement in the clinical scale in both groups occurred compared with baseline. After 16 weeks, the median overall clinical severity scores fell from 4 to 2 points and the median bleeding score from 2 to 0 in both groups. APC is safe and effective for the management of chronic radiation proctitis. Additional sucralfate treatment did not influence the clinical or endoscopic outcome. © 2012 The Authors. Colorectal Disease © 2012 The Association of Coloproctology of Great Britain and Ireland.

  11. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel, P.; Minguez, E.

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range of plasma conditions considered in this work. -- Highlights: ► We compute the average ionization, cooling rates and emissivities of carbon plasmas. ► We compare LTE and NLTE calculations of these magnitudes. ► We perform a parametrization of these magnitudes in a wide range of plasma conditions. ► We provide information about where LTE regime assumption is accurate

  12. Disturbance of binding of corticosteroids with blood plasma proteins during acute radiation sickness of different experimental animals

    International Nuclear Information System (INIS)

    Moroz, B.B.; Omel'chuk, N.N.

    1979-01-01

    In experiments on different animals a study was made of the effect of total-body γ-irradiation on binding of corticosteroids with blood plasma proteins. It was demonstrated that the increase in the number of physiologically active corticosteroids at the peak of radiation sickness is due to diminution of linking ability of corticosteroid-binding globulin of blood plasma and independent ot the total concentration of hormones in blood which is, evidently, a general radiobiological law

  13. Thermodynamic and Radiative properties of Plasma Excited in EDM process Through N2 Taking Into Account Fe

    Czech Academy of Sciences Publication Activity Database

    Adineh, V.R.; Coufal, O.; Živný, Oldřich

    2012-01-01

    Roč. 40, č. 10 (2012), s. 2723-2735 ISSN 0093-3813 R&D Projects: GA ČR GAP205/11/2070 Institutional research plan: CEZ:AV0Z20430508 Keywords : Electrical discharge machining * net emission coefficient * nitrogen-iron reaction products * plasma modeling, radiative heat transfer * thermodynamic properties Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.868, year: 2012

  14. The hidden radiation chemistry in plasma modification and XPS analysis of polymer surfaces

    International Nuclear Information System (INIS)

    George, G.A.; Le, T.T.; Elms, F.M.; Wood, B.J.

    1996-01-01

    Full text: The surface modification of polymers using plasma treatments is being widely researched to achieve changes in the surface energetics and consequent wetting and reactivity for a range of applications. These include i) adhesion for polymer bonding and composite material fabrication and ii) biocompatibility of polymers when used as orthopedic implants, catheters and prosthetics. A low pressure rf plasma produces a variety of species from the introduced gas which may react with the surface of a hydrocarbon polymer, such as polyethylene. In the case of 0 2 and H 2 0, these species include oxygen atoms, singlet molecular oxygen and hydroxyl radicals, all of which may oxidise and, depending on their energy, ablate the polymer surface. In order to better understand the reactive species formed both in and downstream from a plasma and the relative contributions of oxidation and ablation, self-assembled monolayers of n-alkane thiols on gold are being used as well characterised substrates for quantitative X-ray photoelectron spectroscopy (XPS). The identification and quantification of oxidised carbon species on plasma treated polymers from broad, asymmetric XPS signals is difficult, so derivatisation is often used to enhance sensitivity and specificity. For example, trifluoroacetic anhydride (TFAA) selectively labels hydroxyl functionality. The surface analysis of a modified polymer surface may be confounded by high energy radiation chemistry which may occur during XPS analysis. Examples include scission of carbon-halogen bonds (as in TFM adducts), decarboxylation and main-chain polyene formation. The extent of free-radical chemistry occurring in polyethylene while undergoing XPS analysis may be seen by both ESR and FT-IR analysis

  15. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    International Nuclear Information System (INIS)

    Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.

    2016-01-01

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  16. Plasma focus as an x-ray source for tailoring of radiation in different energy windows

    International Nuclear Information System (INIS)

    Zakaullah, M.; Alamgir, K.; Shafiq, M.; Sharif, M.

    2001-01-01

    A low energy (2.3 kj) plasma focus energized by a single 32 micro f capacitor charged at 12 kv with filling gases hydrogen, neon and argon is investigated as an X-ray source. Experiments are conducted with a copper and an aluminum anode. Specifically, attention in given to tailoring the radiation in different windows, e. g. 1.2-1.3 keV, 1.3-1.5 keV, 2.5-5 keV and Cu-Ka line radiation. The highest X-ray emission is observed with neon filling and the copper anode in the 1.2-1.3 keV window, which speculated to be generated due to recombination of hydrogen like neon ions with a few eV to a few 10s of eV electrons. The wall-plug efficiency of the device is found to be 4%. The other significant emission occurs with Hydrogen filling, which exhibits wall plug efficiency of 1.7% for over all x-ray emission and 0.35% for Cu- Ka line radiation. The emission is dominated by the interaction of electrons in the current sheath with the anode tip. The emission with the aluminum anode and hydrogen filling is up to 10 j, which corresponds to wall-plug efficiency of 0.4%. The X-ray emission with argon filling is less significant. (author)

  17. Modeling radiative transport in ICF plasmas on an IBM SP2 supercomputer

    International Nuclear Information System (INIS)

    Johansen, J.A.; MacFarlane, J.J.; Moses, G.A.

    1995-01-01

    At the University of Wisconsin-Madison the authors have integrated a collisional-radiative-equilibrium model into their CONRAD radiation-hydrodynamics code. This integrated package allows them to accurately simulate the transport processes involved in ICF plasmas; including the important effects of self-absorption of line-radiation. However, as they increase the amount of atomic structure utilized in their transport models, the computational demands increase nonlinearly. In an attempt to meet this increased computational demand, they have recently embarked on a mission to parallelize the CONRAD program. The parallel CONRAD development is being performed on an IBM SP2 supercomputer. The parallelism is based on a message passing paradigm, and is being implemented using PVM. At the present time they have determined that approximately 70% of the sequential program can be executed in parallel. Accordingly, they expect that the parallel version will yield a speedup on the order of three times that of the sequential version. This translates into only 10 hours of execution time for the parallel version, whereas the sequential version required 30 hours

  18. Study on plasma visible radiation spatial distribution at the TO-1 tokamak

    International Nuclear Information System (INIS)

    Molotkov, L.I.; Shvindt, N.N.

    1977-01-01

    The results of spatial distribution measurements of radiation intensities of spectral lines of hydrogen and light plasma impurities in the visible-light spectrum TO-1 tokamak are described. The method of electrochemical scanning with the help of rotating disk with notches was used. The experiments were carried out in the stable regime of discharge and in the regime with breakdown instability. In the stable regime absolute intensities of the spectral lines were measured. The concentration of radiating atoms and ions were calculated using the measured absolute intensities. Besides in order to determine the region in which the discharge appears in the cross section of the TO-1 chamber the spatial distributions of Hsub(β) neutral hydrogen spectral line in the initial stage of the discharge (0 9 cm -3 for the C(3) ion and anti nsub(0)=1.1x10 10 cm -3 for hydrogen atoms. The investigation into spatial distributions of the Hsub(β) line radiation in the initial stage of the filament formation showed that in the overwhelming majority of cases the discharge appears near the internal wall of the tokamak chamber

  19. Influence of 60Co gamma radiation on fluorine plasma treated enhancement-mode high-electron-mobility transistor

    International Nuclear Information System (INIS)

    Quan Si; Hao Yue; Ma Xiao-Hua; Yu Hui-You

    2011-01-01

    AlGaN/GaN depletion-mode high-electron-mobility transistor (D-HEMT) and fluorine (F) plasma treated enhancement-mode high-electron-mobility transistor (E-HEMT) are exposed to 60 Co gamma radiation with a dose of 1.6 Mrad (Si). No degradation is observed in the performance of D-HEMT. However, the maximum transconductance of E-HEMT is increased after radiation. The 2DEG density and the mobility are calculated from the results of capacitance-voltage measurement. The electron mobility decreases after fluorine plasma treatment and recovers after radiation. Conductance measurements in a frequency range from 10 kHz to 1 MHz are used to characterize the trapping effects in the devices. A new type of trap is observed in the F plasma treated E-HEMT compared with the D-HEMT, but the density of the trap decreases by radiation. Fitting of G p /ω data yields the trap densities D T = (1 − 3) × 10 12 cm −2 · eV −1 and D T = (0.2 − 0.8) × 10 12 cm −2 · eV −1 before and after radiation, respectively. The time constant is 0.5 ms-6 ms. With F plasma treatment, the trap is introduced by etch damage and degrades the electronic mobility. After 60 Co gamma radiation, the etch damage decreases and the electron mobility is improved. The gamma radiation can recover the etch damage caused by F plasma treatment. (interdisciplinary physics and related areas of science and technology)

  20. Anisotropic instability of the photoelectrons generated by soft x-ray radiation of the laser-produced plasma focus

    International Nuclear Information System (INIS)

    Klumov, B.A.; Tarakanov, V.P.

    1994-01-01

    The electron field with the anisotropic distribution function is being formed when the gas is being affected with ionizing radiation. The anisotropy of the distribution function occurs due to the fact that photoelectrons fly mainly in the direction perpendicular to that of ionizing radiation quantum propagation. In order to emphasize the most typical features of the developed anisotropic instability, photoelectrons were believed to fly strictly across the photon propagation direction. Two-dimensional electromagnetic particle simulations have been carried out to study high-frequency disturbances in the plasma produced by ionizing radiation. Elastic processes were taken into account. It has been shown, in particular, that the energy of anisotropic electrons transforms mainly into that of magnetic pulsations (approximately 7% of the energy transforms into that of magnetic pulsations). Development of the anisotropic instability result in a space stratification into current filaments. The anisotropic instability study can be important for an interpretation of electromagnetic emission spectra for a plasma disturbed by radiation

  1. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  2. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  3. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  4. Radiation from a hot, thin plasma from 1 to 250 A

    International Nuclear Information System (INIS)

    Kato, T.

    1976-01-01

    A calculation of emission spectrum of a hot, low-density plasma in the region 1--250 A is presented. The mechanisms considered are electron collision-induced line emission, bremsstrahlung, and radiative recombination; and the temperature range studied is 10 5 --10 7 K. 795 lines are included. The elemental abundances of the ions of He, C, N, O, Ne, Mg, Si, S, Ca, Fe, and Ni were taken to be as in the solar corona. The line emission of Fe ions produces a maximum in the curve of an emission power between 1 and 250 A versus temperature around 10 6 K. The emission rate around 10 6 K is larger than the results calculated by Cox and Tucker and Tucker and Koren

  5. Theoretical studies of the heating of toroidal plasmas with radio frequency electromagnetic radiation. Final report

    International Nuclear Information System (INIS)

    Glasser, A.H.; Swanson, D.G.; Wersinger, J.M.

    1982-01-01

    The continuation of a program of theoretical studies of the heating of toroidal plasmas with radio frequency (RF) electromagnetic radiation is proposed. Funding for this project first began on September 3, 1981, and will expire on April 2, 1982. A summary of the principal accomplishments of the first five months of the project is presented. These include the acquisition of computer terminals and modems, the implementation of existing codes on the MFECC C Cray Computer, the extension of the LHTOR lower hybrid toroidal ray tracing code to the full electromagnetic dispersion relation, the implementation of graphic output from the code, the beginning of extensive parameter studies, the beginning of an analytical treatment of the mode conversion layer associated with singular harmonic absorption, and the introduction of a graduate student into the program

  6. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  7. Effect of rotation on Jeans instability of magnetized radiative quantum plasma

    Science.gov (United States)

    Joshi, H.; Pensia, R. K.

    2017-03-01

    The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.

  8. Electric dipole radiation at VLF in a uniform warm magneto-plasma.

    Science.gov (United States)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    Use of a linear full electromagnetic wave theory to calculate the input impedance of an electric antenna embedded in a uniform, lossless, unbounded warm magnetoplasma, which is assumed to consist of warm electrons and cold ions. In calculating the dipole radiation resistance for the thermal modes and the thermally modified whistler mode the analysis includes the finite temperature only for the electrons. In deriving the formal solution of the warm plasma dipole input impedance a full-wave analysis is used and two antenna orientations are considered, parallel and perpendicular to the static magnetic field. A general dispersion equation governing the modes of propagation is derived and a detailed analysis is made of the propagation characteristics of these modes.

  9. Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets

    International Nuclear Information System (INIS)

    Lebedev, S V; Ciardi, A; Ampleford, D J; Bland, S N; Bott, S C; Chittenden, J P; Hall, G N; Rapley, J; Jennings, C; Sherlock, M; Frank, A; Blackman, E G

    2005-01-01

    We present results of high energy density laboratory experiments on the production of supersonic radiatively cooled plasma jets with dimensionless parameters (Mach number ∼30, cooling parameter ∼1 and density contrast ρ j /ρ a ∼ 10) similar to those in young stellar objects jets. The jets are produced using two modifications of wire array Z-pinch driven by 1 MA, 250 ns current pulse of MAGPIE facility at Imperial College, London. In the first set of experiments the produced jets are purely hydrodynamic and are used to study deflection of the jets by the plasma cross-wind, including the structure of internal oblique shocks in the jets. In the second configuration the jets are driven by the pressure of the toroidal magnetic field and this configuration is relevant to the astrophysical models of jet launching mechanisms. Modifications of the experimental configuration allowing the addition of the poloidal magnetic field and angular momentum to the jets are also discussed. We also present three-dimensional resistive magneto-hydrodynamic simulations of the experiments and discuss the scaling of the experiments to the astrophysical systems

  10. Current delivery and radiation yield in plasma flow switch-driven implosions

    International Nuclear Information System (INIS)

    Baker, W.L.; Degnan, J.H.; Beason, J.D.

    1995-01-01

    Vacuum inductive-store, plasma flow switch-driven implosion experiments have been performed using the Shiva Star capacitor bank (1300 μf, 3 nH, 120 kV, 9.4 MJ). A coaxial plasma gun arrangement is employed to store magnetic energy in the vacuum volume upstream of a dynamic discharge during the 3- to 4-μs rise of current from the capacitor bank. Motion of the discharge off the end of the inner conductor of the gun releases this energy to implode a coaxial cylindrical foil. The implosion loads are 5-cm-radius, 2-cm-long, 200 to 400 μg/cm 2 cylinders of aluminum or aluminized Formvar. With 5 MJ stored initially in the capacitor bank, more than 9 MA are delivered to the implosion load with a rise time of nearly 200 ns. The subsequent implosion results in a radiation output of 0.95 MJ at a power exceeding 5 TW (assuming isotropic emission). Experimental results and related two-dimensional magnetohydrodynamic simulations are discussed. 10 refs., 12 figs

  11. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    Science.gov (United States)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  12. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  13. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-10-15

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  14. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    International Nuclear Information System (INIS)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian

    2011-01-01

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  15. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake

    2004-01-01

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  16. Experimental study of TJ-1 plasma using scattering and radiation emission techniques; Analisis experimental del plasma TJ-1 con tecnicas de scattering y emision de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, C; Zurro, B

    1987-07-01

    The Thomson scattering system of TJ-1 is described in detail. The radial profiles of Te and ne obtained in TJ-1 discharges are presented. This data make possible to deduce characteristic parameters of the plasma confinement in this machine, as energy confinement times, Zeff B. Using also radiation measurements (global and in the visible range) we obtained the particle confinement time and Zeff without non experimental assumptions. (Author) 52 refs.

  17. Method and means of reducing erosion of components of plasma devices exposed to helium and hydrogen isotope radiation

    International Nuclear Information System (INIS)

    Kaminsky, M.S.; Das, S.K.; Rossing, T.D.

    1977-01-01

    Surfaces of components of plasma devices exposed to radiation by atoms or ions of helium or isotopes of hydrogen can be protected from damage due to blistering by shielding the surfaces with a structure formed by sintering a powder of aluminum or beryllium and its oxide or by coating the surfaces with such a sintered metal powder. 7 claims

  18. 2D collisional-radiative model for non-uniform argon plasmas: with or without ‘escape factor’

    International Nuclear Information System (INIS)

    Zhu, Xi-Ming; Tsankov, Tsanko Vaskov; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2015-01-01

    Collisional-radiative models for excited rare-gas atoms in low-temperature plasmas are a widely investigated topic. When these plasmas are optically thick, an ‘escape factor’ is introduced into the models to account for the reabsorption of photons (so-called radiation trapping process). This factor is usually obtained assuming a uniform density profile of the excited species; however, such an assumption is often not satisfied in a bounded plasma. This article reports for the first time a self-consistent collisional-radiative model without using an ad hoc ‘escape factor’ for excited Ar atoms in the 2p states (in Paschen’s notation). Rather, the rate balance equations—i.e. the radiation transfer equations—of the 2p states are numerically solved to yield the actual density profiles. The predictions of this self-consistent model and a model based on the escape factor concept are compared with spatially-resolved emission measurements in a low-pressure inductive Ar plasma. The self-consistent model agrees well with the experiment but the ‘escape factor’ model shows considerable deviations. By the comparative analysis the limitations and shortcomings of the escape factor concept as adopted in a significant number of works are revealed. (paper)

  19. Measurement of continuous x-radiation and determination of the energy distribution function of high-energy electrons from an ECR plasma

    International Nuclear Information System (INIS)

    Bernhardi, K.

    1980-01-01

    Investigations were made on the x-radiation emitted by a plasma. The methods applied here represent a further development of experimental and numerical methods used hitherto for determining the bremsstrahlung emitted by a plasma, and makes possible a more precise determination of the high-energy electron component of a plasma

  20. Effect of radiation and non-Maxwellian electron distribution on relaxation processes in an atmospheric cesium seeded argon plasma

    International Nuclear Information System (INIS)

    Borghi, C.A.; Veefkind, A.; Wetzer, J.M.

    1982-03-01

    A model, describing the time dependent behaviour of a noble gas MHD generator plasma, has been set up. With this model it is possible to calculate the relaxation for ionization or recombination as a response to a stepwise temperature development, once the initial and final conditions are given. In model radiative transitions and a deviation from Maxwellian electron distribution are included. Radiation causes an enhancement of both the ionization relaxation time and the recombination relaxation time. A non-Maxwellian electron distribution results in an increase of the relaxation time for an ionizing plasma because of an underpopulation of the high energy electrons. A decrease of the relaxation time for a recombining plasma is caused by an overpopulation of high energy electrons. The relaxation time is strongly dependent on the seed ratio and the temperature step. (Auth.)

  1. Effect of radiation damping on the interaction of ultra-intense laser pulses with an overdense plasma

    International Nuclear Information System (INIS)

    Zhidkov, Alexei; Koga, James; Sasaki, Akira; Ueshima, Yutaka

    2001-01-01

    The effect of radiation damping on the interaction of an ultra-intense laser pulse with an overdense plasma is studied via relativistic particle-in-cell simulation. The calculation is performed for a Cu solid slab including ionization. We find a strong effect from radiation damping on the electron energy cut-off at about 150 MeV and on the absorption of a laser pulse with an intensity I=5x10 22 W/cm 2 and duration of 20 fs. Hot electrons reradiate more then 10% of the laser energy during the laser pulse. With the laser intensity, the energy loss due to the radiation damping increases as I 3 . In addition, we observe that the laser pulse may not propagate in the plasma even if ω pl 2 /ω 2 γ<1. The increase of skin depth with the laser intensity due to relativistic effects gives rise to the absorption efficiency. (author)

  2. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    International Nuclear Information System (INIS)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-01

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO 3 or LiNbO 3 as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm 2 10 kW/cm 2 and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor

  3. Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device

    Science.gov (United States)

    Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.

    2018-06-01

    Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides

  4. Finite element study of three dimensional radiative nano-plasma flow subject to Hall and ion slip currents

    Directory of Open Access Journals (Sweden)

    M. Nawaz

    Full Text Available In this article, we developed a computer code of Galerikan Finite Element method (GFEM for three dimensional flow equations of nano-plasma fluid (blood in the presence of uniform applied magnetic field when Hall and ion slip current are significant. Lorentz force is calculated through generalized Ohm’s law with Maxwell equations. A series of numerical simulations are carried out to search ηmax and algebraic equations are solved by Gauss-Seidel method with simulation tolerance 10-8. Simulated results for special case have an excellent agreement with the already published results. Velocity components and temperature of the nano-plasma (blood are influenced significantly by the inclusion of nano-particles of Copper (Cu and Silver (Ag. Heat enhancement is observed when copper and silver nonmagnetic nanoparticles are used instead of simple base fluid (conventional fluid. Radiative nature of nano-plasma in the presence of magnetic field causes a decrease in the temperature due to the transfer of heat by the electromagnetic waves. In contrast to this, due to heat dissipated by Joule heating and viscous dissipation phenomena, temperature of nano-plasmaincreases as thermal radiation parameter is increased. Thermal boundary layer thickness can be controlled by using radiative fluid instead of non-radiative fluid. Momentum boundary layer thickness can be reduced by increasing the intensity of the applied magnetic field. Temperature of plasma in the presence magnetic field is higher than the plasma in the absence of magnetic field. Keywords: Nanofluid, Grid independent study, Convergence, Error analysis, Skin friction, Joule heating, Viscous dissipation, Hall and ion currents

  5. Imaging of exploding wire plasmas by high-luminosity monochromatic X-ray backlighting using an X-pinch radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, S A; Shelkovenko, T A; Romanova, V M [Russian Academy of Sciences, Moscow (Russian Federation). P.N. Lebedev Physical Inst.; Hammer, D A [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies; Faenov, A Ya; Pikuz, T A [VNIIFTRI, Mendeleevo (Russian Federation). Multicharged Ions Spectral Data Center

    1997-12-31

    A new diagnostic method for dense plasmas, monochromatic x-ray backlighting, is described. In this method, shadow images of a bright, dense plasma can be obtained with high spatial resolution using monochromatic radiation from a separate plasma, permitting a major reduction in the required backlighting source power. The object plasma is imaged utilizing spherically bent mica crystals as the x-ray optical elements. Images of test objects obtained using x-ray radiation having different photon energies are presented. Shadow images of exploding Al wire plasmas in the ls{sup 2}-1s3p line radiation of He-like Al XII are also shown. Spatial resolution as fine as 4 {mu}m is demonstrated. The scheme described is useful for backlighting extended high density plasmas, and could be a less costly alternative to using X-ray lasers for such purposes. (author). 7 figs., 10 refs.

  6. Theory for the radiation at the third to fifth harmonics of the plasma frequency upstream from the Earth's bow shock

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1988-01-01

    A theory is presented for the radiation at the third to fifth harmonics of the plasma frequency observed upstream from the Earth's bow shock: the radiation is produced by the process L+T'→T in the foreshock, with the initial T' radiation being the frequently observed second harmonic radiation (generated by another process) and the L waves being products of the decay L'→L+S of L' waves generated by a streaming instability. (Here L, S, and T denote Langmuir, ion acoustic, and 'transverse electromagnetic waves, respectively.) The theory can account for the observed radiation when unusually large levels (electric fields in excess of 10 mV/m) of suitable L waves are present. Such levels of L waves are possible, in principle, but have not been reported before; the radiation is observed quite infrequently, thereby implying a requirement for unusual foreshock conditions. Predictions for the characteristics of the source regions (one to each wing of the foreshock) and the bandwidth of the radiation are given. Potential problems for the theory, relating to the large levels of L waves required to account for the radiation, are discussed. copyright American Geophysical Union 1988

  7. Radiation properties modeling for plasma-sprayed-alumina-coated rough surfaces for spacecrafts

    International Nuclear Information System (INIS)

    Li, R.M.; Joshi, Sunil C.; Ng, H.W.

    2006-01-01

    Spacecraft thermal control materials (TCMs) play a vital role in the entire service life of a spacecraft . Most of the conventional TCMs degrade in the harmful space environment . In the previous study, plasma sprayed alumina (PSA) coating was established as a new and better TCM for spacecrafts, in view of its stability and reliability compared to the traditional TCMs . During the investigation, the surface roughness of PSA was found important, because the roughness affects the radiative heat exchange between the surface and its surroundings. Parameters such as root-mean-square roughness cannot properly evaluate surface roughness effects on radiative properties of opaque surfaces . Some models have been developed earlier to predict the effects, such as Davies' model , Tang and Buckius's statistical geometric optics model . However, they are valid only in their own specific situations. In this paper, an energy absorption geometry model was developed and applied to investigate the roughness effects with the help of 2D surface profile of PSA coated substrate scanned at micron level. This model predicts effective normal solar absorptance (α ne ) and effective hemispherical infrared emittance (ε he ) of a rough PSA surface. These values, if used in the heat transfer analysis of an equivalent, smooth and optically flat surface, lead to the prediction of the same rate of heat exchange and temperature as that of for the rough PSA surface. The model was validated through comparison between a smooth and a rough PSA coated surfaces. Even though not tested for other types of materials, the model formulation is generic and can be used to incorporate the rough surface effects for other types of thermal coatings, provided the baseline values of normal solar absorptance (α n ) and hemispherical infrared emittance (ε h ) are available for a generic surface of the same material

  8. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  9. A collisional radiative model of hydrogen plasmas developed for diagnostic purposes of negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Iordanova, Snejana, E-mail: snejana@phys.uni-sofia.bg; Paunska, Tsvetelina [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2016-02-15

    A collisional radiative model of low-pressure hydrogen plasmas is elaborated and applied in optical emission spectroscopy diagnostics of a single element of a matrix source of negative hydrogen ions. The model accounts for the main processes determining both the population densities of the first ten states of the hydrogen atom and the densities of the positive hydrogen ions H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}. In the calculations, the electron density and electron temperature are varied whereas the atomic and molecular temperatures are included as experimentally obtained external parameters. The ratio of the H{sub α} to H{sub β} line intensities is calculated from the numerical results for the excited state population densities, obtained as a solution of the set of the steady-state rate balance equations. The comparison of measured and theoretically obtained ratios of line intensities yields the values of the electron density and temperature as well as of the degree of dissociation, i.e., of the parameters which have a crucial role for the volume production of the negative ions.

  10. Detailed-term-accounting approximation calculations of the radiative opacity of aluminum plasmas: A systematic study

    International Nuclear Information System (INIS)

    Zeng Jiaolong; Yuan Jianmin

    2002-01-01

    The spectrally resolved radiative opacity and the Rosseland and Planck mean opacities are calculated by using the detailed-term-accounting approximation for aluminum plasmas with varieties of density and temperature. The results are presented along a 40 eV isothermal sequence, a 0.01 g/cm 3 isodense sequence, and a sequence with average ionization degree Z*∼7.13. Particular attention is given to the influence of the detailed treatment of spectral lines on the Rosseland mean opacity under different thermodynamical conditions. The results show that at densities of 0.004 g/cm 3 and higher, the opacities are not very sensitive to the spectral linewidth within a reasonable range. As examples, the Rosseland mean opacity, which is most sensitive to the detailed linewidth, at 40 eV and 0.004 g/cm 3 changes no more than 15%, when we change the electron impact spectral linewidth artificially by reducing it by 50% or increasing it twice, and at 40 eV and 0.1 g/cm 3 it changes less than 5%. For comparison, we also carried out calculations by using an average atom model. For the Rosseland mean opacities, the two models show quite large differences, in particular at low densities, while for the Planck mean opacities the results of the two models are much closer

  11. Experimental evidence and theoretical analysis of photoionized plasma under x-ray radiation produced by an intense laser

    International Nuclear Information System (INIS)

    Wang Feilu; Fujioka, Shinsuke; Nishimura, Hiroaki; Takabe, Hideaki; Kato, Daiji; Li Yutong; Zhao Gang; Zhang Jie

    2008-01-01

    Photoionized plasma was studied experimentally under laboratory conditions by means of high intensity short pulse lasers. The experiment consists of a gold cavity filled with nitrogen gas. Six laser beams were focused on the inner surface of the gold cavity, thereby generating an almost black-body radiation having temperature of 80 eV inside the cavity. This radiation heats the nitrogen gas mainly by means of photoionization. L-shell emissions from N V to N VII have been observed in the wavelength range between 90 and 200 A. A time-dependent Detailed Configuration Accounting computer program has been developed to analyze the experimental spectra. In contrast to standard analysis of astrophysical observations, the evidence for photoionization is inferred from the spectral lines ratios. Comparison between the experimental and simulated line spectra indicates that the radiation heated nitrogen attains temperature of 20-30 eV, much lower than the source radiation temperature. Paradoxically, it is also shown that similar line emissions can be reproduced computationally also when the radiation and plasma temperatures both equal approximately 60 eV. This misleading result indicates that experimental simulation in laboratory is sometimes necessary to avoid misinterpretation of astrophysical spectra.

  12. Non-LTE modeling of the radiative properties of high-Z plasma using linear response methodology

    Science.gov (United States)

    Foord, Mark; Harte, Judy; Scott, Howard

    2017-10-01

    Non-local thermodynamic equilibrium (NLTE) atomic processes play a key role in the radiation flow and energetics in highly ionized high temperature plasma encountered in inertial confinement fusion (ICF) and astrophysical applications. Modeling complex high-Z atomic systems, such as gold used in ICF hohlraums, is particularly challenging given the complexity and intractable number of atomic states involved. Practical considerations, i.e. speed and memory, in large radiation-hydrodynamic simulations further limit model complexity. We present here a methodology for utilizing tabulated NLTE radiative and EOS properties for use in our radiation-hydrodynamic codes. This approach uses tabulated data, previously calculated with complex atomic models, modified to include a general non-Planckian radiation field using a linear response methodology. This approach extends near-LTE response method to conditions far from LTE. Comparisons of this tabular method with in-line NLTE simulations of a laser heated 1-D hohlraum will be presented, which show good agreement in the time-evolution of the plasma conditions. This work was performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Radiation effects on the parotid gland of mammals. Pt. 2. Modifications of plasma and parotid amylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Balzi, M; Cremonini, D; Tomassi, I; Becciolini, A; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia; Pelu, G [I.N.R.C.A., Florence (Italy). Inst. of Radiology

    1979-08-01

    The early modifications of the activity of plasma and parotid amylase have been evaluated in rats after whole-body irradiation in different experimental conditions. The modifications observed in the rat are less evident than in humans. The results have shown an initial decrease and a subsequent increase appearing significant 74 hours after irradiation. This could be due to a direct action of ionizing radiation on the parotid glands. However we cannot exclude that the increase of ..cap alpha..-amylase could be determined by the intestinal radiation syndrome. In fact, this syndrome leads to a reduced food uptake, and consequently ..cap alpha..-amylase could accumulate in parotids.

  14. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wattieaux, G., E-mail: gaetan.wattieaux@laplace.univ-tlse.fr; Yousfi, M.; Merbahi, N.

    2013-11-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10{sup 14} cm{sup −3}, the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the

  15. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Wattieaux, G.; Yousfi, M.; Merbahi, N.

    2013-01-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10 14 cm −3 , the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the case

  16. Effect of Low Dose Gamma Radiation Upon the Concentration of Calcium and Inorganic Phosphorus in the Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Vilic, M.; Miljanic, S.; Simpraga, M.

    2003-01-01

    In our previous paper it has been showed that the irradiation of chickens eggs before incubation by low dose gamma irradiation effects upon growth of the chickens hatched from irradiated eggs as well as upon activity of ALT and AST, and on the concentration of total proteins, glucose and cholesterol in the blood plasma of those chickens. Therefore in this paper an attempt was made to determine the effects of irradiation of eggs by low dose of ionizing radiation on the 19th day of incubation upon the concentration of calcium (Ca) and inorganic phosphorus (P) in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens (Gent, line COBB 500) were irradiated by a dose of 0.15 Gy gamma radiation (6 0C o source) on the 19th day of incubation. Along with the chickens, which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. After hatching, blood samples were taken on day 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of Ca was determined calorimetrically using Randox optimized kits, while the concentration of P was determined by Herbos dijagnostika Sisak (Croatia) optimized kits. The concentration of Ca in the blood plasma of chickens hatched from irradiated eggs was significantly increased on the first day, while it was decreased on the day 42. The concentration of P was decreased on the first day in blood plasma of chickens hatched from irradiated eggs. The fact that the concentration of both minerals in blood plasma of chickens hatched from irradiated eggs was significantly changed on the first day proves that the irradiation of eggs by low dose of ionizing radiation on the nineteenth day of incubation had an effect on metabolism of both minerals in those chickens. (author)

  17. On reliability of 3D reconstructions of thermal plasma jet radiation by inverse Radon transform

    Czech Academy of Sciences Publication Activity Database

    Sekerešová, Zuzana; Hlína, Jan

    2011-01-01

    Roč. 56, č. 2 (2011), s. 171-183 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermal plasma jet * tomography * image reconstruction Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Early Effect of High Dose of Ionizing Radiation Exposure on Plasma Lipids Profile and Liver Fatty Acids Composition in Rats

    International Nuclear Information System (INIS)

    Noaman, E.; Mansour, S.Z.; Ibrahim, N.K.

    2005-01-01

    The present study was conducted to analyze the effect of acute gamma-irradiation on rats at supralethal doses of 20 Gy to determine the synthesis and amounts of free fatty acids, neutral lipids and phospholipids of plasma and liver after 24 and 48 h of gamma-irradiation. Male Wistar rats weighing 120+- 20 g were exposed to 20 Gy of gamma radiation (dose rate of 0.59 Gy/min). Exposure of rats to ionizing radiation resulted in significant alterations in the assayed parameters indicating lipid metabolism disturbance. Plasma cholesterol and phospholipid levels increased up to 71.3 and 71.5 %, respectively, after 24 h from radiation exposure and then returned to 28 and 27 % change in-compare with control values after 48 h post-irradiation. Plasma triacylglycerol concentrations increased concomitantly with irradiation, but their values are less high than cholesterol and phospholipid levels recording significant changes at 19 and 9 % comparing with control rats. Lipid peroxidation measured as MDA recorded significant elevation after 24 and 48 h post irradiation. It was shown that the synthesis of free fatty acids, cholesterol, cholesterol ethers and phospholipids was activated 48 h after irradiation at 20 Gy. The amount of free fatty acids of the rat liver decreased at 20 Gy exposures. This is assumed to be a result of the radioresistance to some degree in the system of free fatty acid synthesis of the rat to the gamma-irradiation in the lethal doses

  19. Electromagnetic radiation emitted by a plasma produced in air by laser pulses with lambda = 10.6 μm

    International Nuclear Information System (INIS)

    Danilychev, V.A.; Zvorykin, V.D.; Kholin, I.V.; Chugunov, A.Y.

    1981-01-01

    The spectrum, brightness, and energy have been measured for the electromagnetic radiation emitted by a plasma produced in air near a solid surface by pulses from a high-power CO 2 laser. The air pressure was varied over the range p 0 = 0.1--760 torr, and the laser power density was varied over the range q = 5 x 10 6 --10 8 W/cm 2 . At p 0 > or approx. =2--5 torr the radiation properties of the plasma are determined by a laser-beam absorption wave which arises in the gas. The maximum brightness temperature, T/sub b/approx. =50 000 K (lambda = 400 +- 20 nm), is reached at p 0 = 25 torr. The emission spectrum is quite different from an equilibrium spectrum, consisting primarily of NII, OII, and NIII lines. The total energy radiation by the plasma in the wavelength interval 360--2600 nm into a solid angle of 4π sr reaches 2.3% of the laser pulse energy

  20. On Influence of Neutrals on Dust Particle Charging in Complex Plasmas in the Presence of Electromagnetic Radiation

    International Nuclear Information System (INIS)

    Kopnin, S. I.; Morzhakova, A. A.; Popel, S. I.; Shukla, P. K.

    2011-01-01

    Effects associated with neutral component of complex (dusty) ionospheric plasmas which affect dust particle charging are studied. Microscopic ion currents on dust particles with taking into account ion-neutral interaction are presented. Calculations are performed both for the case of negative charges of dust particles, when the influence of Solar radiation on dust particle charging processes is negligible, and for the case of positive charges which is realized in the presence of sufficiently intensive UV or X-ray radiation. We also carry out investigation of the electron heating due to the photoelectric effect. We show that the efficiency of electron heating depends on the density of neutral component of the plasma. As result, we determine altitudes where the influence of the neutral plasma component on dust particle charging processes as well as the electron heating effect are significant and should be taken into account under consideration of the ionospheric complex plasmas. In particular, we show that the effects considered could be important for the description of noctilucent clouds, polar mesosphere summer echoes, and some other physical phenomena associated with dust particles in the ionosphere.

  1. Modeling of the He-like magnesium spectral lines radiation from the plasma created by XeCl and Nd-glass lasers

    International Nuclear Information System (INIS)

    Stepanov, A. E.; Starostin, A. N.; Roerich, V. C.; Makhrov, V. A.; Faenov, A. Ya.; Magunov, A. I.; Pikuz, T. A.; Skobelev, I. Yu.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Lisi, N.; Letardi, T.; Palladino, L.; Reale, A.; Batani, D.; Bossi, S.; Bornadinelo, A.; Scafati, A.; Reale, L.

    1997-01-01

    Resonant and intercombination spectral lines formation of He-like magnesium is analyzed both experimentally and numerically. It is shown that in plasma created by XeCl laser at flux density 8·10 12 W/cm 2 the peak of electron temperature is placed downstream from the critical surface at density significantly smaller than critical, and radiation in both resonant and recombination lines is also produced by the plasma region with density below critical. Simulations also show significant line radiation at large distances (1-2 mm) from the target as it was observed in experiments. This secondary peak is produced by a compression wave forming near the plasma front. As opposite, radiation in these lines in plasma created by Nd-glass laser at flux density 5·10 13 W/cm 2 comes from the plasma region placed deeper than the critical surface and has no tail at large distances

  2. The influence of fractionated radiation therapy on plasma vascular endothelial growth factor (VEGF) concentration in dogs with spontaneous tumors and its impact on outcome

    International Nuclear Information System (INIS)

    Wergin, Melanie C.; Roos, Malgorzata; Inteeworn, Nathalie; Laluhova, Dagmar; Allemann, Katrin; Kaser-Hotz, Barbara

    2006-01-01

    Back ground and purpose: Vascular endothelial growth factor (VEGF), a specific pro-angiogenic factor is proposed to be involved in cancer progression and resistance to radiation therapy by promoting angiogenesis and by protecting endothelial cells from radiation induced apoptosis. The aim of this study, was first to assess the influence of ionizing radiation on plasma VEGF concentration in spontaneous canine tumors during fractionated radiation therapy with curative or palliative intent and second to analyze plasma VEGF concentration as predictor for treatment outcome. Patients and methods: For plasma VEGF analysis a human VEGF enzyme linked immunosorbent assay was used. Sixty dogs with various tumor types were included in this study. Dogs were irradiated with either low dose per fx (3-3.5 Gy per fraction, total dose: 42-49 Gy, group A: curative intent) or high dose per fx (6-8 Gy per fraction, total dose: 24-30 Gy, group B: palliative intent). Blood samples were taken before and after dose application at certain time points during therapy. Follow-up evaluation was performed for analysis of time to treatment failure and survival. Results: Repeated measures analysis showed no increase of plasma VEGF in dogs treated with fractionated radiation therapy (group A and B). Dichotomizing baseline plasma VEGF into two groups with high and low plasma VEGF, resulted in shorter time to treatment failure in dogs with high plasma VEGF levels (TTF, group A: P=0.038, group B: P=0.041). Conclusions: This study demonstrated that dogs with a plasma VEGF level higher than 5 pg/ml had a poorer outcome after radiation therapy. It is therefore, suggested, to use plasma VEGF as predictor for treatment outcome in radiation therapy

  3. The effect of heat radiation on the evolution of the Tsallis entropy in self-gravitating systems and plasmas

    Science.gov (United States)

    Zheng, Yahui; Hao, Binzheng; Wen, Yaxiang; Liu, Xiaojun

    2018-01-01

    The evolution of the Tsallis entropy in self-gravitating systems and plasmas is studied in this letter, which is determined by two factors. The first factor is the change of the microstate number of systems, whose spontaneous increase leads to the entropy's increase, consistent with the standard text book. The second is the evolution of the nonextensive parameter, whose evolution rate to time is opposite to the one of entropy. We find the correlation between heat radiation and time evolution of the nonextensive parameter in the self-gravitating systems and plasmas. In such systems, the emission of radiation heat leads to the increase of the parameter while the absorption of radiation heat results in the decrease of this parameter. This is consistent with the inference derived from the Clausius' definition of entropy. In order to evolve to the current state, the solar corona should absorb a large amount of radiation heat, which might be originated from the energy released by solar flare. The magnetic connection probably plays a role in the conversion of energy. A correct dynamics theory of magnetic connection should explain how the energy conversion is achieved.

  4. A refractory case of radiation proctitis. Effectiveness of argon plasma coagulation therapy and the rectal stenosis after therapy

    International Nuclear Information System (INIS)

    Oyama, Katsunobu; Morita, Akihiko; Terada, Itsuro

    2006-01-01

    A 75-years-old man received external radiation with a cumulative dose of 60 Gy for prostatic cancer. Severe hematochezia occurred approximately 16 months after irradiation. A extensive and circumferential telangiectatic lesion in the lower segment of the rectum was detected, then he was diagnosed as having radiation proctitis. Pharmacotherapy was employed at first, but the bleeding was uncontrollable. Colostomy was performed, but the bleeding could not be controlled. Argon plasma coagulation therapy (APC) was applied, and the bleeding ceased after first session of APC. But the severe rectal stricture appeared three months after APC. APC is effective treatment for refractory radiation proctitis, but the rectal stenosis was occurred three months after APC. (author)

  5. The Formation of a Power Multi-Pulse Extreme Ultraviolet Radiation in the Pulse Plasma Diode of Low Pressure

    Directory of Open Access Journals (Sweden)

    Ievgeniia V. Borgun

    2013-01-01

    Full Text Available In this paper results are presented on experimental studies of the temporal characteristics of spike extreme ultraviolet (EUV radiation in the spectral range of 12.2 ÷ 15.8 nm from the anode region of high-current (I = 40 kA pulsed discharges in tin vapor. It is observed that the intense multi-spike radiation in this range arises at an inductive stage of the discharge. It has been shown that the radiation spikes correlate with the sharp increase of active resistance and of pumped power, due to plasma heating by an electron beam, formed in the double layer of charged particles. It has been observed that for large number of spikes the conversion efficiency of pumped energy into radiationat double layer formation is essentially higher in comparison with collisional heating.

  6. Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition

    International Nuclear Information System (INIS)

    Kant, Niti; Gupta, Devki Nandan; Suk, Hyyong

    2011-01-01

    A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.

  7. Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2011-08-15

    A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.

  8. Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal objects, radiation biology and medicine, etc.)

    Science.gov (United States)

    Gribkov, V. A.; Miklaszewski, R.; Paduch, M.; Zielinska, E.; Chernyshova, M.; Pisarczyk, T.; Pimenov, V. N.; Demina, E. V.; Niemela, J.; Crespo, M.-L.; Cicuttin, A.; Tomaszewski, K.; Sadowski, M. J.; Skladnik-Sadowska, E.; Pytel, K.; Zawadka, A.; Giannini, G.; Longo, F.; Talab, A.; Ul'yanenko, S. E.

    2015-03-01

    The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project "Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses". The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics.

  9. Time- and radiation-dose dependent changes in the plasma proteome after total body irradiation of non-human primates: Implications for biomarker selection.

    Directory of Open Access Journals (Sweden)

    Stephanie D Byrum

    Full Text Available Acute radiation syndrome (ARS is a complex multi-organ disease resulting from total body exposure to high doses of radiation. Individuals can be exposed to total body irradiation (TBI in a number of ways, including terrorist radiological weapons or nuclear accidents. In order to determine whether an individual has been exposed to high doses of radiation and needs countermeasure treatment, robust biomarkers are needed to estimate radiation exposure from biospecimens such as blood or urine. In order to identity such candidate biomarkers of radiation exposure, high-resolution proteomics was used to analyze plasma from non-human primates following whole body irradiation (Co-60 at 6.7 Gy and 7.4 Gy with a twelve day observation period. A total of 663 proteins were evaluated from the plasma proteome analysis. A panel of plasma proteins with characteristic time- and dose-dependent changes was identified. In addition to the plasma proteomics study reported here, we recently identified candidate biomarkers using urine from these same non-human primates. From the proteomic analysis of both plasma and urine, we identified ten overlapping proteins that significantly differentiate both time and dose variables. These shared plasma and urine proteins represent optimal candidate biomarkers of radiation exposure.

  10. Measurements of the parametric decay of CO2 laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering

    International Nuclear Information System (INIS)

    Schuss, J.J.; Chu, T.K.; Johnson, L.C.

    1977-11-01

    We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO 2 laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied

  11. Characteristics of the evolution of a plasma generated by radiation from CW and repetitively pulsed CO2 lasers in different gases

    Science.gov (United States)

    Kanevskii, M. F.; Stepanova, M. A.

    1990-06-01

    The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.

  12. Concentration of total proteins in blood plasma of chickens hatched from irradiated eggs with low dose gamma radiation

    International Nuclear Information System (INIS)

    Vilic, M.; Kraljevic, P.; Miljanic, S.; Simpraga, M.

    2005-01-01

    It is known that low-dose ionising radiation may have stimulating effects on chickens. Low doses may also cause changes in the concentration of blood plasma total proteins, glucose and cholesterol in chickens. This study investigates the effects of low dose gamma-radiation on the concentration of total proteins in the blood plasma of chickens hatched from eggs irradiated with a dose of 0.15 Gy on incubation days 7 and 19. Results were compared with the control group (chickens hatched from non-irradiated eggs). After hatching, all other conditions were the same for both groups. Blood samples were drawn from the heart, and later from the wing vein on days 1, 3, 5, 7,10, 20, 30 and 42. The concentration of total proteins was determined spectrophotometrically using Boehringer Mannheim GmbH optimised kits. The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 7 showed a statistically significant decrease on the sampling day 3 (P less than 0.05) and 7 (P less than 0.01). The concentration of total proteins in blood plasma in chickens hatched from eggs irradiated with 0.15 Gy on incubation day 19 showed a statistically significant increase only on sampling day 1 (P less than 0.05). These results suggest that exposure of eggs to 0.15 Gy of gamma-radiation on the 7th and 19th day of incubation could produce different effects on the protein metabolism in chickens.(author)

  13. Collisional radiative model for Ar-O2 mixture plasma with fully relativistic fine structure cross sections

    Science.gov (United States)

    Priti, Gangwar, Reetesh Kumar; Srivastava, Rajesh

    2018-04-01

    A collisional radiative (C-R) model has been developed to diagnose the rf generated Ar-O2 (0%-5%) mixture plasma at low temperatures. Since in such plasmas the most dominant process is an electron impact excitation process, we considered several electron impact fine structure transitions in an argon atom from its ground as well as excited states. The cross-sections for these transitions have been obtained using the reliable fully relativistic distorted wave theory. Processes which account for the coupling of argon with the oxygen molecules have been further added to the model. We couple our model to the optical spectroscopic measurements reported by Jogi et al. [J. Phys. D: Appl. Phys. 47, 335206 (2014)]. The plasma parameters, viz. the electron density (ne) and the electron temperature (Te) as a function of O2 concentration have been obtained using thirteen intense emission lines out of 3p54p → 3p54s transitions observed in their spectroscopic measurements. It is found that as the content of O2 in Ar increases from 0%-5%, Te increases in the range 0.85-1.7 eV, while the electron density decreases from 2.76 × 1012-2.34 × 1011 cm-3. The Ar-3p54s (1si) fine-structure level populations at our extracted plasma parameters are found to be in very good agreement with those obtained from the measurements. Furthermore, we have estimated the individual contributions coming from the ground state, 1si manifolds and cascade contributions to the population of the radiating Ar-3p54p (2pi) states as a function of a trace amount of O2. Such information is very useful to understand the importance of various processes occurring in the plasma.

  14. Local thermodynamic equilibrium and related metrological issues involving collisional-radiative model in laser-induced aluminum plasmas

    International Nuclear Information System (INIS)

    Travaille, G.; Peyrusse, O.; Bousquet, B.; Canioni, L.; Pierres, K. Michel-Le; Roy, S.

    2009-01-01

    We present a collisional-radiative approach of the theoretical analysis of laser-induced breakdown spectroscopy (LIBS) plasmas. This model, which relies on an optimized effective potential atomic structure code, was used to simulate a pure aluminum plasma. The description of aluminum involved a set of 220 atomic levels representative of three different stages of ionization (Al 0 , Al + and Al ++ ). The calculations were carried for stationary plasmas, with input parameters (n e and T e ) ranging respectively between 10 13-18 cm -3 and 0.3-2 eV. A comparison of our atomic data with some existing databases is made. The code was mainly developed to address the validity of the local thermodynamic equilibrium (LTE) assumption. For usual LIBS plasma parameters, we did not reveal a sizeable discrepancy of the radiative equilibrium of the plasma towards LTE. For cases where LTE was firmly believed to stand, the Boltzmann plot outputs of this code were used to check the physical accuracy of the Boltzmann temperature, as it is currently exploited in several calibration-free laser-induced breakdown spectroscopy (CF-LIBS) studies. In this paper, a deviation ranging between 10 and 30% of the measured Boltzmann temperature to the real excitation temperature is reported. This may be due to the huge dispersion induced on the line emissivities, on which the Boltzmann plots are based to extract this parameter. Consequences of this fact on the CF-LIBS procedure are discussed and further insights to be considered for the future are introduced.

  15. Radiation and Heat Stress Impact on Plasma Levels of Thyroid Hormones, Lipid Fractions, Glucose and Liver Glycogen in rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.

    2003-01-01

    Since Egypt is classified as a hot country, the present work has been directed to study the combined effect of heat stress and gamma radiation exposure on blood thyroid hormonal levels and some other parameters. Four groups of rats were served as: control, whole-body gamma irradiated (6Gy), exposed to ambient heat stress (38 C-40 C) and a group exposed to heat stress and irradiation. Four time intervals 1, 3, 5 and 7 days were determined for heat stress or exposure to heat followed by irradiation. Blood samples and liver specimens were taken at the end of each time interval in the third group and after one hour of irradiation in the second and fourth groups. To detect the radiation effects after the different periods of heat stress, plasma levels of thyroid hormones (T3 and T4), lipid fractions (triglycerides, total cholesterol, HDL- and LDL-cholesterol), glucose and liver glycogen content were determined. The results revealed that exposure to heat and ionizing radiation leads to a decrease in the levels of thyroid hormones, which was mostly pronounced in the T3 levels. Plasma glucose levels showed significant elevations in both, the heat-stressed group and the heat-treated then irradiated group. While, liver glycogen content exhibited similar elevations only during the 1st, 3 rd and 5 th days of heating followed by irradiation treatment as compared to the heat stressed group. Yet, it showed significant declines in comparison with both control and irradiated groups. Enormous increments in all determined plasma lipid fractions were induced by heat stress and / or gamma radiation

  16. Propagation of microwave radiation through an inhomogeneous plasma layer in a magnetic field

    Science.gov (United States)

    Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Mashek, I. Ch; Pashchina, A. S.; Pervov, A. Yu; Petrovskiy, V. P.; Ryazanskiy, N. M.; Shkatov, O. Yu

    2018-01-01

    The problem of reliable microwave communication through a plasma sheath has its origin from the beginning of space flights. During reentry of spacecraft, the plasma layer can interrupt the communication. At sufficiently high plasma density, the plasma layer either reflects or attenuates radio wave communications to and from the vehicle. In this work, we present a simple analytical one-dimensional algorithm to study the propagation of electromagnetic (EM) waves through a nonuniform plasma layer in a static nonuniform magnetic field. The experimental study of the EM wave transmission and reflection through plasma layer was carried out on the (i) microwave set and (ii) on the unit using a high-voltage pulsed discharge.

  17. Simulation of MGI efficiency for plasma energy conversion into Ar radiation in JET and implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Serguei, E-mail: serguei.pestchanyi@kit.edu [Association EURATOM-KIT, Karlsruhe (Germany); Koslowski, Rudi; Reux, Cedric [JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lehnen, Michael [Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We simulated disruption mitigation using massive gas injection with the TOKES code. • Cross-reference analysis of JET experiments on MGI and their simulations have been done. • The analysis allows suggesting the mechanism for saturation of radiated energy fraction at 70–80%. • Rough extrapolation of the result on ITER conditions has been done. - Abstract: Effectiveness of massive gas injection (MGI) for mitigation of disruptive wall damage has been investigated. Cross-reference analysis of the available JET experiments on MGI and their simulations with the TOKES code allow suggesting that in JET conditions one can convert into radiation the electron thermal energy and the plasma current energy, but the ion thermal energy does not convert into radiation because of very ineffective excitation of injected noble gas (NG) ions by D ions and long equipartition time between D ions and electrons. The model assumes rather high electron temperature during current quench (CQ), which contradicts with its time duration. Rough extrapolation of the result on ITER conditions shows that one can expect irradiation of total plasma energy if CQ duration in ITER is not shorter as in JET.

  18. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    Science.gov (United States)

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  19. Composite plasma electrolytic oxidation to improve the thermal radiation performance and corrosion resistance on an Al substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Sung, Dahye [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of); Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Lee, Junghoon [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Kim, Yonghwan [Korea Institute of Industrial Technology (KITECH), Busan 46742 (Korea, Republic of); Chung, Wonsub, E-mail: wschung1@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, Busan 46241 (Korea, Republic of)

    2015-12-01

    Highlights: • Composite plasma electrolytic oxidation was performed using dispersed CuO particles in convectional PEO electrolyte. • Thermal radiation performance and corrosion resistance were examined by FT-IR spectroscopy and electrochemical methods, respectively. • Deposited copper oxide on the surface of the Al substrate was enhanced the corrosion resistance and the emissivity compared with the conventional PEO. - Abstract: A composite plasma electrolytic oxidation (PEO) was performed for enhancing the thermal radiation performance and corrosion resistance on an Al alloy by dispersing cupric oxide (CuO) particles in a conventional PEO electrolyte. Cu-based oxides (CuO and Cu{sub 2}O) formed by composite PEO increased the emissivity of the substrate to 0.892, and made the surface being dark color, similar to a black body, i.e., an ideal radiator. In addition, the corrosion resistance was analyzed using potentio-dynamic polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl aqueous solution. An optimum condition of 10 ampere per square decimeter (ASD) current density and 30 min processing time produced appropriate surface morphologies and coating thicknesses, as well as dense Cu- and Al-based oxides that constituted the coating layers.

  20. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    NARCIS (Netherlands)

    Land, V.

    2007-01-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell

  1. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  2. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  3. Studies of visible impurity radiation from JET plasmas during heating and fuelling experiments

    International Nuclear Information System (INIS)

    Morgan, P.D.; Hellermann, M. von; Mandl, W.; Stamp, M.F.; Summers, H.P.; Weisen, H.; Forrest, M.J.; Horton, L.; Zinoviev, A.

    1989-01-01

    At JET extensive use is made of visible spectroscopy in the study of plasma impurities. Measurements of absolute line intensities from such species as O II, C III and D I are used to deduce the influxes of light impurities as well as deuterium at the plasma periphery. The absolute continuum emission at 523.5 nm, measured using a 15-telescope poloidal array, is used to determine Z eff (r) and its temporal evolution. Charge-exchange recombination spectroscopy (CXRS) has proved to be a powerful technique during NBI to measure, amongst other parameters, the density of C and O at up to 15 separate points on the plasma minor radius. The combination of these diagnostic techniques permits the global impurity behaviour in the plasma to be followed. In this paper, results are reported pertaining to studies of plasmas heated by NBI and ICRF, and fuelled by the injection of D 2 pellets. (author) 5 refs., 4 figs

  4. Measurements of radiation near an atomic spectral line from the interaction of a 30 GeV electron beam and a long plasma

    International Nuclear Information System (INIS)

    Catravas, P.E.; Chattopadhyay, S.; Esarey, E.; Leemans, W.P.; Assmann, R.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; Siemann, R.H.; Walz, D.; Whittum, D.; Blue, B.; Clayton, C; Joshi, C.; Marsh, K.A.; Mori, W.B.; Wang, S.; Katsouleas, T.; Lee, S.; Muggli, P.

    2000-01-01

    Emissions produced or initiated by a 30 GeV electron beam propagating through a ∼ 1 m long heat pipe oven containing neutral and partially ionized vapor have been measured near atomic spectral lines in a beam-plasma wakefield experiment. The Cerenkov spatial profile has been studied as a function of oven temperature and pressure, observation wavelength, and ionizing laser intensity and delay. The Cerenkov peak angle is affected by the creating of plasma, and estimates of neutral and plasma density have been extracted. Increases in visible background radiation, consistent with increased plasma recombination emissions due to dissipation of wakefields, were simultaneously measured

  5. Rovibrationally Resolved Time-Dependent Collisional-Radiative Model of Molecular Hydrogen and Its Application to a Fusion Detached Plasma

    Directory of Open Access Journals (Sweden)

    Keiji Sawada

    2016-12-01

    Full Text Available A novel rovibrationally resolved collisional-radiative model of molecular hydrogen that includes 4,133 rovibrational levels for electronic states whose united atom principal quantum number is below six is developed. The rovibrational X 1 Σ g + population distribution in a SlimCS fusion demo detached divertor plasma is investigated by solving the model time dependently with an initial 300 K Boltzmann distribution. The effective reaction rate coefficients of molecular assisted recombination and of other processes in which atomic hydrogen is produced are calculated using the obtained time-dependent population distribution.

  6. Dense plasma focus PACO as a hard X-ray emitter: a study on the radiation source

    OpenAIRE

    Supán, L.; Guichón, S.; Milanese, Maria Magdalena; Niedbalski, Jorge Julio; Moroso, Roberto Luis; Acuña, H.; Malamud, Florencia

    2016-01-01

    The radiation in the X-ray range detected outside the vacuum chamber of the dense plasma focus (DPF) PACO, are produced on the anode zone. The zone of emission is studied in a shot-to-shot analysis, using pure deuterium as filling gas. We present a diagnostic method to determine the place and size of the hard X-ray source by image analysis of high density radiography plates. Fil: Supán, L.. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Insti...

  7. A modeling approach for heat conduction and radiation diffusion in plasma-photon mixture in temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-09

    We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.

  8. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.; Kachorovskiǐ, Valentin Yu; Stillman, William J.; Veksler, Dmitry B.; Salama, Khaled N.; Zhang, Xicheng; Shur, Michael S.

    2010-01-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  9. A modeling approach for heat conduction and radiation diffusion in plasma-photon mixture in temperature nonequilibrium

    International Nuclear Information System (INIS)

    Chang, Chong

    2016-01-01

    We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.

  10. Optically thick model for radiative and collisional effects in nonequilibrium argon plasma flows in a circular tube

    International Nuclear Information System (INIS)

    Shirai, Hiroyuki; Tabei, Katsuine; Koaizawa, Hisashi.

    1984-01-01

    Experimental and theoretical studies were made to gain a deeper understanding of the radiative properties of nonequilibrium argon plasma flows in a circular tube. The self-absorption effects were taken into account as rigorously as possible. Experimentally, the radial profiles of the population densities of argon atoms at the excited 4s, 4p, 5p, and 5d levels were obtained from the lateral distributions of the absolute intensities of ArI spectral lines originating from these levels. On the other hand, theoretical profiles of the population densities for the same levels were calculated based on the optically thick model for collisional and radiative processes proposed by Bates et al. and experimentally measured atom temperature, electron temperature, electron density and gas pressure. Comparison of the experimental and theoretical results showed a reasonably good agreement and the importance of the self-absorption effects. (author)

  11. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2010-02-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  12. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  13. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Energy Technology Data Exchange (ETDEWEB)

    Kaothekar, Sachin, E-mail: sackaothekar@gmail.com [Department of Physics, Mahakal Institute of Technology, Ujjain-456664, Madhya Pradesh (India)

    2016-08-15

    I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR) corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM). A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  14. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Directory of Open Access Journals (Sweden)

    Sachin Kaothekar

    2016-08-01

    Full Text Available I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  15. Modification of plasma membrane electron transport in cultured rose cells by UV-C radiation and fungal elicitor

    International Nuclear Information System (INIS)

    Murphy, T.M.; Auh, C.K.; Schorr, R.; Grobe, C.

    1991-01-01

    Previous experiments have shown that treatments of suspension-cultured cells of Rosa damascena Mill. with UV radiation or with fungal elicitors stimulates the synthesis of H 2 O 2 by the cells. To test the hypothesis that this synthesis involves reduction of O 2 at the plasma membrane and to identify the mechanism of the reduction, we have determined the effects of UV and elicitor on redox reactions associated with the plasma membrane. Elicitor prepared from cell walls of Phytophthora sp. (14 μg solids/ml) inhibited the reduction of ferricyanide by intact cells by 98%; UV-C (primarily 254 nm, up to 19,500 J/m 2 ) inhibited this reduction by 40%. Neither treatment inhibited the reduction of Fe(III)-EDTA by intact cells. Intact cells oxidized NADH in the absence of external oxidizing agent, and the rate of oxidation was increased by UV and elicitor. Cells that were poisoned with arsenite and CCCP catalyzed the reduction of Fe(III)-EDTA in the presence of external NADH, and this ability was slightly stimulated by UV and elicitor. UV irradiation (6,480 J/m 2 ) of cells resulted in a 27% inhibition of the specific activity of NADH-ferricyanide oxidoreductase in plasma membrane isolated from those cells. Elicitor treatment of cells for at least 90 min resulted in a 50% inhibition of the enzyme's specific activity in isolated plasma membrane; this inhibition was reversed by addition of Triton-X100 in the assay mixture. The results suggest that UV and elicitor alter the flow of electrons in the plasma membrane, reversibly inhibiting NADH-cytochrome b reductase, the putative key enzyme in the pathway of ferricyanide reduction, and stimulating (or at least not inhibiting) the pathway of Fe(III)-EDTA reduction

  16. Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Martel, P.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Minguez, E.

    2013-01-01

    In this work the spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated for a wide range of plasma conditions which cover situations where corona, local thermodynamic and non-local thermodynamic equilibrium regimes are found. An analysis of the influence of the thermodynamic regime on these magnitudes is also carried out by means of comparisons of the results obtained from collisional-radiative, corona or Saha–Boltzmann equations. All the calculations presented in this work were performed using ABAKO/RAPCAL code. -- Highlights: ► Spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated. ► Corona, local thermodynamic and non-local thermodynamic equilibrium regimes are analyzed. ► Simulations performed using the computational package ABAKO/RAPCAL. ► A criterion for the establishment of the thermodynamic regime is proposed.

  17. Experimental investigation of a hydrogen plasma railgun

    International Nuclear Information System (INIS)

    Harden, B.; Howell, J.R.

    1991-01-01

    This paper reports that the plasma velocity and temperature and composition distributions in a hydrogen plasma railgun were measured. Typical velocities near the muzzle were ∼95 km/s at an initial capacitor bank stored energy of 4.1 kJ. Temperatures ranged from a peak of ∼24000 K in the current-carrying plasma, to ∼85000 K in the tail. The current-carrying plasma was composed of roughly equal parts of hydrogen and copper. Also, computer modeling of armature B probe signals has yielded a simple interpretation of the signal

  18. Three-dimensional self-consistent radiation transport model for the fluid simulation of plasma display panel cell

    International Nuclear Information System (INIS)

    Kim, H.C.; Yang, S.S.; Lee, J.K.

    2003-01-01

    In plasma display panels (PDPs), the resonance radiation trapping is one of the important processes. In order to incorporate this effect in a PDP cell, a three-dimensional radiation transport model is self-consistently coupled with a fluid simulation. This model is compared with the conventional trapping factor method in gas mixtures of neon and xenon. It shows the differences in the time evolutions of spatial profile and the total number of resonant excited states, especially in the afterglow. The generation rates of UV light are also compared for the two methods. The visible photon flux reaching the output window from the phosphor layers as well as the total UV photon flux arriving at the phosphor layer from the plasma region are calculated for resonant and nonresonant excited species. From these calculations, the time-averaged spatial profiles of the UV flux on the phosphor layers and the visible photon flux through the output window are obtained. Finally, the diagram of the energy efficiency and the contribution of each UV light are shown

  19. Radiation induced changes in plasma total protein nitrogen and urinary total nitrogen in desert rodent and albino rats subjected to dietary protein deficiency

    International Nuclear Information System (INIS)

    Roushdy, H.; El-Husseini, M.; Saleh, F.

    1986-01-01

    The effect of gamma-irradiation on plasma total protein nitrogen and urinary total nitrogen was studied in the desert rodent, psammomy obesus obesus and albino rats subjected to dietary protein deficiency. In albino rats kept on high protein diet, the radiation syndrome resulted in urine retention, while in those kept on non-protein diet, such phenomenon was recorded only with the high radiation level of 1170r. Radiation exposure to 780 and 1170r caused remarkable diuresis in psammomys obesus obesus whereas they induced significant urine retention in albino rats. The levels of plasma total protein nitrogen and urinary total nitrogen were higher in albino rats maintained on high protein diet than in those kept on non-protein diet. Radiation exposure caused an initial drop in plasma total protein nitrogen concentration, concomitant with an initial rise in total urinary nitrogen, radiation exposure of psammomys obesus obesus caused significant increase in the levels of plasma protein nitrogen and urinary total nitrogen. Psammomys obesus obesus seemed to be more affected by radiation exposure than did the albino rats

  20. Theoretical and experimental investigation of the Z pinch plasma as a source of power pulse of soft X radiation for generation of shock waves in condensed targets

    International Nuclear Information System (INIS)

    Grabovskij, E.V.; Smirnov, V.P.; Zakharov, S.V.; Vorob'ev, O.Yu.; Dyabilin, K.S.; Lebedev, M.E.; Fortov, V.E.; Frolov, A.A.

    1996-01-01

    Paper presents the results of theoretical analysis of processes occurring in Z-pinch plasma under conditions initiating a powerful pulse of soft X-radiation. The main attention is focused on double liner circuit designs. Estimations of power of radiation and spectrum are studied. The results are used to simulate processes occurring at generation of shock waves under the effect of soft X-radiation on the target. Experiments to generate shock waves with up to 3 Mbar amplitude pressure in lead under the effect of soft X-radiation were conducted using Angara-5 plant. 24 refs., 9 figs

  1. Evolution of radiation losses and importance of charge exchange between plasma impurities and injection beam neutrals in the W VII-A stellarator

    International Nuclear Information System (INIS)

    Smeulders, P.

    1981-01-01

    In certain discharges during Neutral Injection (N.I.) (84 0 CO-injection) in the 1 = 2, m = 5 WENDELSTEIN VII-A Stellarator impurity accumulation in the plasma center seems to occur as seen by bolometric, spectroscopic and ultra soft X-ray (USX) measurement. The time evolution of the radiation losses is shown. Three possible sources of the impurities which are responsible for the high central radiation losses are: - Beam injected impurities. - Plasma wall interaction. - Molybdenum protection plates. Possible mechanisms that can be responsible for the central impurity accumulations are: - An inward flow of the plasma or beam impurities. - An increased peaking of the depostion of the beam impurities. Various factors influencing the behaviour of the central radiation are mentioned. (orig./AH)

  2. Radiation transport effects in divertor plasmas generated during a tokamak reactor disruption

    International Nuclear Information System (INIS)

    Peterson, R.R.; MacFarlane, J.J.; Wang, P.

    1994-01-01

    Vaporization of material from tokamak divertors during disruptions is a critical issue for tokamak reactors from ITER to commercial power plants. Radiation transport from the vaporized material onto the remaining divertor surface plays an important role in the total mass loss to the divertor. Radiation transport in such a vapor is very difficult to calculate in full detail, and this paper quantifies the sensitivity of the divertor mass loss to uncertainties in the radiation transport. Specifically, the paper presents the results of computer simulations of the vaporization of a graphite coated divertor during a tokamak disruption with ITER CDA parameters. The results show that a factor of 100 change in the radiation conductivity changes the mass loss by more than a factor of two

  3. Energy and particle transport in the radiative divertor plasmas of DIII-D

    International Nuclear Information System (INIS)

    Leonard, A.W.; Allen, S.L.; Brooks, N.H.

    1997-06-01

    It has been argued that divertor energy transport dominated by parallel electron thermal conduction, or q parallel = -kT 5/2 2 dT e /ds parallel, leads to severe localization of the intense radiating region and ultimately limits the fraction of energy flux that can be radiated before striking the divertor target. This is due to the strong T 5/2 e dependence of electron heat conduction which results in very short spatial scales of the T e gradient at high power densities and low temperatures where deuterium and impurities radiate most effectively. However, we have greatly exceeded this constraint on DIII-D with deuterium gas puffing which reduces the peak heat flux to the divertor plate a factor of 5 while distributing the divertor radiation over a long length

  4. Atomic and plasma-material interaction data for fusion. V. 7, part B. Particle induced erosion of Be, C and W in fusion plasmas. Part B: Physical sputtering and radiation-enhanced sublimation

    International Nuclear Information System (INIS)

    Eckstein, W.; Stephens, J.A.; Clark, R.E.H.; Davis, J.W.; Haasz, A.A.; Vietzke, E.; Hirooka, Y.

    2001-01-01

    The present volume of Atomic and Plasma-Material Interaction Data for Fusion is devoted to a critical review of the physical sputtering and radiation enhanced sublimation (RES) behaviour of fusion plasma-facing materials, in particular carbon, beryllium and tungsten. The present volume is intended to provide fusion reactor designers a detailed survey and parameterization of existing, critically assessed data for the chemical erosion of plasma-facing materials by particle impact. The survey and data compilation is presented for a variety of materials containing the elements C, Be and W (including dopants in carbon materials) and impacting plasma species. The dependencies of physical sputtering and RES yields on the material temperature, incident projectile energy, and incident flux are considered. The main data compilation is presented as separate data sheets indicating the material, impacting plasma species, experimental conditions, and parameterizations in terms of analytic functions

  5. Argon Plasma Coagulation Therapy Versus Topical Formalin for Intractable Rectal Bleeding and Anorectal Dysfunction After Radiation Therapy for Prostate Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yeoh, Eric, E-mail: eric.yeoh@health.sa.gov.au [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide (Australia); School of Medicine, University of Adelaide, Adelaide (Australia); Tam, William; Schoeman, Mark [School of Medicine, University of Adelaide, Adelaide (Australia); Department of Gastroenterology, Royal Adelaide Hospital, Adelaide (Australia); Moore, James; Thomas, Michelle [School of Medicine, University of Adelaide, Adelaide (Australia); Department of Colorectal Surgery, Royal Adelaide Hospital, Adelaide (Australia); Botten, Rochelle; Di Matteo, Addolorata [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide (Australia)

    2013-12-01

    Purpose: To evaluate and compare the effect of argon plasma coagulation (APC) and topical formalin for intractable rectal bleeding and anorectal dysfunction associated with chronic radiation proctitis. Methods and Materials: Thirty men (median age, 72 years; range, 49-87 years) with intractable rectal bleeding (defined as ≥1× per week and/or requiring blood transfusions) after radiation therapy for prostate carcinoma were randomized to treatment with APC (n=17) or topical formalin (n=13). Each patient underwent evaluations of (1) anorectal symptoms (validated questionnaires, including modified Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic and visual analogue scales for rectal bleeding); (2) anorectal motor and sensory function (manometry and graded rectal balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before and after the treatment endpoint (defined as reduction in rectal bleeding to 1× per month or better, reduction in visual analogue scales to ≤25 mm, and no longer needing blood transfusions). Results: The treatment endpoint was achieved in 94% of the APC group and 100% of the topical formalin group after a median (range) of 2 (1-5) sessions of either treatment. After a follow-up duration of 111 (29-170) months, only 1 patient in each group needed further treatment. Reductions in rectal compliance and volumes of sensory perception occurred after APC, but no effect on anorectal symptoms other than rectal bleeding was observed. There were no differences between APC and topical formalin for anorectal symptoms and function, nor for anal sphincteric morphology. Conclusions: Argon plasma coagulation and topical formalin had comparable efficacy in the durable control of rectal bleeding associated with chronic radiation proctitis but had no beneficial effect on anorectal dysfunction.

  6. Argon Plasma Coagulation Therapy Versus Topical Formalin for Intractable Rectal Bleeding and Anorectal Dysfunction After Radiation Therapy for Prostate Carcinoma

    International Nuclear Information System (INIS)

    Yeoh, Eric; Tam, William; Schoeman, Mark; Moore, James; Thomas, Michelle; Botten, Rochelle; Di Matteo, Addolorata

    2013-01-01

    Purpose: To evaluate and compare the effect of argon plasma coagulation (APC) and topical formalin for intractable rectal bleeding and anorectal dysfunction associated with chronic radiation proctitis. Methods and Materials: Thirty men (median age, 72 years; range, 49-87 years) with intractable rectal bleeding (defined as ≥1× per week and/or requiring blood transfusions) after radiation therapy for prostate carcinoma were randomized to treatment with APC (n=17) or topical formalin (n=13). Each patient underwent evaluations of (1) anorectal symptoms (validated questionnaires, including modified Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic and visual analogue scales for rectal bleeding); (2) anorectal motor and sensory function (manometry and graded rectal balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before and after the treatment endpoint (defined as reduction in rectal bleeding to 1× per month or better, reduction in visual analogue scales to ≤25 mm, and no longer needing blood transfusions). Results: The treatment endpoint was achieved in 94% of the APC group and 100% of the topical formalin group after a median (range) of 2 (1-5) sessions of either treatment. After a follow-up duration of 111 (29-170) months, only 1 patient in each group needed further treatment. Reductions in rectal compliance and volumes of sensory perception occurred after APC, but no effect on anorectal symptoms other than rectal bleeding was observed. There were no differences between APC and topical formalin for anorectal symptoms and function, nor for anal sphincteric morphology. Conclusions: Argon plasma coagulation and topical formalin had comparable efficacy in the durable control of rectal bleeding associated with chronic radiation proctitis but had no beneficial effect on anorectal dysfunction

  7. Experiments on the Scaling of Ionization Balance vs. Electron and Radiation Temperature in Non-LTE Gold Plasmas

    International Nuclear Information System (INIS)

    Heeter, R.F.; Hansen, S.B.; Beiersdorfer, P.; Foord, M.E.; Fournier, K.B.; Froula, D.H.; Mackinnon, A.J.; May, M.J.; Schneider, M.B.; Young, B.K.F.

    2004-01-01

    Understanding and predicting the behavior of high-Z non-LTE plasmas is important for developing indirect-drive inertial confinement fusion. Extending earlier work from the Nova laser, we present results from experiments using the Omega laser to study the ionization balance of gold as a function of electron and radiation temperature. In these experiments, gold samples embedded in Be disks expand under direct laser heating to ne ≅ 1021cm-3, with Te varying from 0.8 to 2.5 keV. An additional finite radiation field with effective temperature Tr up to 150 eV is provided by placing the gold Be disks inside truncated 1.2 mm diameter tungsten-coated cylindrical hohlraums with full laser entrance holes. Densities are measured by imaging of plasma expansion. Electron temperatures are diagnosed with either 2ω or 4ω Thomson scattering, and also K-shell spectroscopy of KCl tracers co-mixed with the gold. Hohlraum flux and effective radiation temperature are measured using an absolutely-calibrated multichannel filtered diode array. Spectroscopic measurements of the M-shell gold emission in the 2.9-4 keV spectral range provide ionization balance and charge state distribution information. The spectra show strong variation with Te, strong variation with the applied Tr, at Te below 1.6 keV, and relatively little variation with Tr at higher Te (upwards of 2 keV). We summarize our most recent spectral analyses and discuss emerging and outstanding issues

  8. Plasma wave instability and amplification of terahertz radiation in field-effect-transistor arrays

    International Nuclear Information System (INIS)

    Popov, V V; Tsymbalov, G M; Shur, M S

    2008-01-01

    We show that the strong amplification of terahertz radiation takes place in an array of field-effect transistors at small DC drain currents due to hydrodynamic plasmon instability of the collective plasmon mode. Planar designs compatible with standard integrated circuit fabrication processes and strong coupling of terahertz radiation to plasmon modes in FET arrays make such arrays very attractive for potential applications in solid-state terahertz amplifiers and emitters

  9. Cylindrical implosion to measure the radiative properties of high density and temperature plasmas

    International Nuclear Information System (INIS)

    Xu Yan; Rose, S.J.

    2000-01-01

    Cylindrical implosion is of great interest because of its excellent diagnostic access. The authors present one-dimensional numerical simulations to explore the plasma conditions that may be achieved. Combined with the numerical data, the development of Rayleigh-Taylor instabilities and Richtmyer-Meshkov instabilities in those targets are estimated. The authors found that it is possible to achieve a high density and temperature plasma with a relatively low temperature and density gradient using a cylindrical implosion directly-driven by a high-power laser

  10. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    Czech Academy of Sciences Publication Activity Database

    Li, X.F.; Yu, Q.; Gu, Yanjun; Qu, J.F.; Ma, Y.Y.; Kong, Q.; Kawata, S.

    2016-01-01

    Roč. 23, č. 3 (2016), s. 1-5, č. článku 033113. ISSN 1070-664X R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : wakefield accelerator * x-rays * beams * driven Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016

  11. Dynamics of three-dimensional radiative structures during RMP assisted detached plasmas on the large helical device and its comparison with EMC3-EIRENE modeling

    Science.gov (United States)

    Pandya, Shwetang N.; Peterson, Byron J.; Kobayashi, Masahiro; Ida, Katsumi; Mukai, Kiyofumi; Sano, Ryuichi; Miyazawa, Junichi; Tanaka, Hirohiko; Masuzaki, Suguru; Akiyama, Tsuyoshi; Motojima, Gen; Ohno, Noriyasu; LHD Experiment Group

    2016-04-01

    The resonant magnetic perturbation (RMP) island introduced in the stochastic edge of the large helical device (LHD) plasma plays an important role in the stabilization of the plasma detachment (Kobayashi et al 2013 Nucl. Fusion 53 093032). The plasma enters in the sustained detachment phase in the presence of an RMP once the line averaged density exceeds a critical value with a given input power. During detachment the enhanced radiation from the stochastic edge of the LHD undergoes several spatiotemporal changes which are studied quantitatively by an infrared imaging video bolometer (IRVB) diagnostic. The experimental results are compared qualitatively and quantitatively with the radiation predicted by the 3D transport simulation with fluid model, EMC3-EIRENE. A fair amount of qualitative agreement, before and after the detachment, is reported. The issue of overestimated radiation from the model is addressed by changing the free parameters in the EMC3-EIRENE code till the total radiation and the radiation profiles match closely, within a factor of two with the experimental observations. A better quantitative match between the model and the experiment is achieved at higher cross-field impurity diffusion coefficient and lower sputtering coefficient after the detachment. In this article a comparison, the first of its kind, is established between the quantified radiation from the experiments and the synthetic image obtained from the simulation code. This exercise is aimed towards validating the model assumptions against the experimentally measured radiation.

  12. Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal objects, radiation biology and medicine, etc.)

    International Nuclear Information System (INIS)

    Gribkov, V A; Miklaszewski, R; Paduch, M; Zielinska, E; Chernyshova, M; Pisarczyk, T; Sadowski, M J; Pimenov, V N; Demina, E V; Niemela, J; Crespo, M-L; Cicuttin, A; Tomaszewski, K; Skladnik-Sadowska, E; Pytel, K; Zawadka, A; Giannini, G; Longo, F; Talab, A; Ul'yanenko, S E

    2015-01-01

    The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project 'Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses'. The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics. (paper)

  13. TREATMENTS OF PLASMA CORONA RADIATION ON SEAWEED Gracilaria Verrucosa (HUDSON PAPENFUSS: Efforts to increase growth and biomass

    Directory of Open Access Journals (Sweden)

    Filemon Jalu N Putra

    2014-12-01

    Full Text Available Gracilaria verrucosa (Hudson Papenfuss has great potential to be farmed in the water resources in Indonesia. As natural resource, the weed has a major contribution in the field of industry both for human food and health. Efforts have been done intensively to increase the production capacity to meet the market demand especially gelatin, both national and international market. One of them is the application of plasma corona irradiation treatments on the weed to improve developmental pathways. The concept of plasma irradiation performed at atmospheric conditions may impact on nitrogen intrusion pathway that is important element in the growth of the weed. The aims of this study are to assess the potential impact of plasma irradiation in improving the growth of G. verrucosa and thus increase their biomass production. The treatments were done using five different duration of plasma irradiation, which were 2, 4, 6, 8, and 10 minutes at a 0,5mA stable source of voltage and 8kV of electrical current. Observations of growth rate include thallus length and biomass of G. verrucosa , that was observed every week for 28 days. The result showed that the growth of weed exhibited better than those without radiation. The best growth was reached in the group of treatment of 8 minutes irradiation, exhibited 65,91g of biomass and 9.5515% growth rate and length of thallus reached 22,33 cm and daily growth rate of 2.9759%. The lowest growth of the weed occurred in the treatment of 10 minutes irradiation, which was 44,82 g biomass, 8.123% growth rate, 17,13 cm thallus length with a daily growth rate of 1.9942%

  14. Radiation, impurity effects, instability characteristics and transport in Ohmically heated plasmas in the PLT tokamak

    International Nuclear Information System (INIS)

    Bol, K.; Arunasalam, V.; Bitter, M.

    1979-01-01

    Titanium-gettered deuterium plasmas, with graphite or steel limiters to define the plasma minor radius, have Zsub(eff) approximately 1 for 3x10 13 14 cm -3 . In ungettered discharges the density limit set by disruptions is about half the value in gettered discharges. The bolometrically measured energy flux from the whole plasma volume is 80-100% of the Ohmic input power for ungettered discharges and 50-70% for gettered ones. The strucutre of MHD modes continues to be intensively studied by means of soft X-ray detector arrays; however, the connection with the disruptive instability remains unclear. Microinstabilities, studied by means of a 2-mm homodyne scattering system, appear to be of sufficient magnitude to influence energy and particle transport. Ion energy confinement times in the central region of the plasma have been estimated to be 50-100ms. Gross electron energy confinement time increases linearly with density at constant temperature. The longest electron energy confinement times observed are approximately >40ms in dense gettered discharges, giving total energy confinement times approximately 80ms. (author)

  15. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, E. E., E-mail: emilp@unr.edu; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V. [University of Nevada, Reno, Nevada 89557 (United States); Rawat, R. S.; Tan, K. S. [National Institute of Education, Nanyang Technological University, Singapore 637616 (Singapore); Beiersdorfer, P.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2016-11-15

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

  16. A comparison of two atomic models for the radiative properties of dense hot low Z plasmas

    International Nuclear Information System (INIS)

    Minguez, E.; Sauvan, P.; Gil, J.M.; Rodriguez, R.; Rubiano, J.G.; Florido, R.; Martel, P.; Angelo, P.; Schott, R.; Philippe, F.; Leboucher-Dalimier, E.; Mancini, R.

    2003-01-01

    In this work, two different atomic models (ANALOP based on parametric potentials and IDEFIX based on the dicenter model) are used to calculate the opacities for bound-bound transitions in hot dense, low Z plasmas, and the results are compared to each other. In addition, the ANALOP code has been used to compute free-bound cross sections for hydrogen-like ions

  17. L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources.

    Science.gov (United States)

    Petkov, E E; Safronova, A S; Kantsyrev, V L; Shlyaptseva, V V; Rawat, R S; Tan, K S; Beiersdorfer, P; Hell, N; Brown, G V

    2016-11-01

    X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer.

  18. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  19. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma

    Science.gov (United States)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges

    2016-07-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  20. Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2015-06-15

    We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case.

  1. Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.; Suk, H.

    2015-01-01

    We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case

  2. Effect of ionized plasma medium on the radiation from a RITMA ...

    Indian Academy of Sciences (India)

    This paper presents theoretical investigations on the radiation properties of a right .... for two H0 values and are shown in figure 3 as a function of angle θ. ... bandwidth of this antenna for H0 = 0.39x105 Amp/m are given in table 1 for different.

  3. Observation and interpretation of topological structures in impurity ion radiation profiles from the hot plasma of a torsatron

    International Nuclear Information System (INIS)

    Zurro, B.; McCarthy, K.J.; Ascasibar, E.; Aragon, F.; Burgos, C.; Lopez, A.; Salas, A.

    1997-01-01

    Significant features have been observed in impurity ion ultraviolet line emission profiles measured on the TJ-I U torsatron using a fast-scanning detector system with good spatial resolution. These features, which consist of flats and humps, provide evidence for the existence of topological structure in the plasma interior. It is postulated that these structures arise as a result of perturbations in the electron temperature and ion density profiles caused by magnetic islands. We develop a model to show how these structures can give rise to such features in ultraviolet radiation profiles and we use theoretical iota profiles to correlate the positions of the more prominent features with rational iota values. (orig.)

  4. Neutron spectrometry for D-T plasmas in JET, using a tandem annular-radiator proton-recoil spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Kiptily, V.; Jarvis, O.N. E-mail: onj@jet.uk; Conroy, S.W

    2002-01-01

    A selection of the 14-MeV neutron spectra obtained at the JET Joint Undertaking tokamak during the deuterium-tritium operating campaign in 1997 are presented and analyzed. While several neutron spectrometers were operational during this campaign, the present paper is concerned solely with one: the tandem annular-radiator proton-recoil spectrometer (or proton recoil telescope, for brevity). During neutral beam heating with combined d- and t-beams, analysis of the spectra can define the core fuel composition (D:T) ratio. The spectra are sensitive to the population balance of the fast ions streaming in directions parallel and opposite to that of the injected beams. During ICRF heating of minority deuterium in bulk tritium plasmas, the spectra provide measurements of the effective temperature of the fast-deuteron energy tail and of its relative strength, which vary with the deuterium concentration. This information contributes to the overall understanding of the fusion performance of the various operating scenarios.

  5. Critique of atomic physics instability mechanisms: Ionization-driven and radiative microinstabilities in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Ross, D.W.

    1994-01-01

    The theory of atomic-process driven microinstabilities in the tokamak edge plasma is reexamined. It is found that these instabilities, as they are usually presented, do not exist. This assertion applies both to ionization-driven modes and to radiative condensation, or thermal-driven modes. The problem is that there exists no separation of time scales between the approach to equilibrium and the growth rate of the purported instabilities. Therefore, to describe the perturbation of an inhomogeneous plasma, it is essential either to establish an equilibrium that includes both perpendicular transport and the proposed source, or, alternatively, to follow the background evolution simultaneously with the growth of the modes. Neither has been done in theoretical or numerical studies of microinstabilities driven by atomic effects in tokamaks. Very near the density limit, macroscopic modes may be unstable, leading to marfes or disruptions, but perturbations of the equilibrium transport fluxes, when taken into account, are sufficient to stabilize the microscopic modes. If the equilibrium fluxes are not included a priori, the ordering breakdown persists into the nonlinear regime. Since the atomic driving terms are the same as in the linear limit, radial decorrelation lengths would have to approach background scale lengths to yield transport of significant magnitude. Under ordinary tokamak conditions, therefore, atomic processes are unlikely to provide an important driving mechanism for the microturbulence that is presumed to cause anomalous transport

  6. A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model

    Energy Technology Data Exchange (ETDEWEB)

    Vries, N de; Iordanova, E; Hartgers, A; Veldhuizen, E M van; Donker, M J van der; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2006-10-07

    A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the excited states, the ground state density is also taken into account. Because of this, the excitation temperature can be determined with high precision. A CR-model has been used to determine the degree of equilibrium departure and to obtain the relationship between the excitation temperature and the electron temperature. This method is applied to a microwave plasma which has been generated inside a quartz tube using a surfatron device. The densities of argon levels close to the continuum are used to get an estimated value of the electron density. These values are used as input data for the CR-model. For an argon pressure of 6 mbar, the 4p level densities vary between 8 x 10{sup 14} and 6 x 10{sup 15} m{sup -3}. Using the estimated values for the electron density, between 2 x 10{sup 19} and 3 x 10{sup 19} m{sup -3}, the electron temperature was found to range between 1.15 and 1.20 eV. An extensive error analysis showed that the relative error in the electron temperature is less than 6%.

  7. A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model

    International Nuclear Information System (INIS)

    Vries, N de; Iordanova, E; Hartgers, A; Veldhuizen, E M van; Donker, M J van der; Mullen, J J A M van der

    2006-01-01

    A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the excited states, the ground state density is also taken into account. Because of this, the excitation temperature can be determined with high precision. A CR-model has been used to determine the degree of equilibrium departure and to obtain the relationship between the excitation temperature and the electron temperature. This method is applied to a microwave plasma which has been generated inside a quartz tube using a surfatron device. The densities of argon levels close to the continuum are used to get an estimated value of the electron density. These values are used as input data for the CR-model. For an argon pressure of 6 mbar, the 4p level densities vary between 8 x 10 14 and 6 x 10 15 m -3 . Using the estimated values for the electron density, between 2 x 10 19 and 3 x 10 19 m -3 , the electron temperature was found to range between 1.15 and 1.20 eV. An extensive error analysis showed that the relative error in the electron temperature is less than 6%

  8. Development of a LiF-filter for measuring plasma fluctuations in the far ultraviolet radiation spectral range

    International Nuclear Information System (INIS)

    Schittenhelm, M.

    1991-06-01

    The investigations of fluctuations and anomalous transport lie at hart of the tokamak research program, especially in the shear zone close to and beyond the last closed flux surface. Until now fluctuation measurements using plasma radiation were only made on the edge of the plasma, since they rely on the H α emission. In order to measure electron density fluctuations with good spatial and temporal resolution in the shear zone, the OVI doublet (2s-2p) can be observed. These are very strong impurity emission lines in the VUV region (103.2 nm and 103.8 nm) emitted from a narrow layer close to the separatrix. To get an image of this layer and to achieve enough intensity for a good temporal resolution, it is necessary to develop a filter with high transmission. A possible candidate is lithium fluoride (LiF), which transmits light at shorter wavelength than other materials. By cooling LiF crystals from 300 K to 220 K the cutoff wavelength decreases from 105 nm to about 103 nm. This master thesis presents a detailed investigation of the transmission of LiF near the cutoff wavelength. Crystal sheets produced by different manufactures were tested and the temperature dependence of the cutoff edge was investigated. (orig./AH)

  9. Ground-state populations of atomic hydrogen and hydrogen-like ions in nonthermal plasmas, and collisional-radiative recombination and ionization coefficients

    International Nuclear Information System (INIS)

    Drawin, H.W.; Emard, F.

    1978-01-01

    The populations of atomic hydrogen and hydrogen-like ions have been calculated using a collisional-radiative model. The global collisional-radiative excitation coefficients rsub(j)sup((0)) and rsub(j)sup((1)) valid for homogeneous-stationary and/or quasi-homogeneous quasi-stationary plasmas were published recently. The present paper contains in tabulated form the ground state populations and Saha decrements for the homogeneous stationary state, and the collisional-radiative recombination and ionization coefficients. (Auth.)

  10. Study of mixed radiative thermal mass transfer in the case of spherical liquide particle evaporation in a high temperature thermal air plasma

    International Nuclear Information System (INIS)

    Garandeau, S.

    1984-01-01

    Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized [fr

  11. Influence of Some Micro nutrients Quenching the Effect of g-Radiation on Plasma Lipids and Vitamin E Contents in Rats

    International Nuclear Information System (INIS)

    Zahran, A.M.; Noaman, E.; Omran, M.F.

    2003-01-01

    The effects of ionizing radiation on some biological parameters in rats have been studied. Sublethal whole body g-irradiation dose on the plasma lipid fractions and susceptibility to oxidative stress were investigated. Male albino rats were intraperitoneally injected with a-tocopheryl acetate (200 mg/kg body weight), and/or sodium selenite (0.1 mg/kg body weight), daily for two weeks before exposure to 6.5 Gy of ionizing radiation. Exposed rats to ionizing radiation showed significant alterations in the assayed parameters indicating lipid metabolism disturbances. The combined administration of a-tocopherol and selenium greatly ameliorated the increase in total cholesterol, triacylglycerols, phospholipids, low-density lipoprotein- cholesterol concentration in plasma. Moreover, the data revealed an increased consumption of vitamin E concentration in plasma following g-rays exposure. Vitamin E/triacylglycerols ratio was greatly corrected by combined administration of vitamin E and Selenium. Cholesterol has a long scientific history being representing a major essential constituent for all animal cell membranes (Gurr and Harwood, 1992). Plasma lipid levels are affected by genetic and dietary factors, medication and certain primary disease states (Feldman and Kuske, 1989). Hyperlipemia may occur due to exposure to ionizing radiation resulting in accumulation of cholesterol,

  12. Plasma amylase activity as a biochemical indicator of radiation injury to salivary glands

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Giannardi, G; Cionini, L; Porciani, S; Fallai, C; Pirtoli, L [Florence Univ. (Italy). Ist. di Radiologia

    1984-01-01

    Irradiation of the salivary glands produces a rapid increase of salivary amylase in serum, released by the highly radiation sensitive serous cells of the glands. Serial assays of salivary amylase in serum were performed in patients treated by radiation to the upper neck region. The changes observed were compared with the amount of salivary gland mass irradiated and with the dose fractionation modality used. The irradiated volume included either the entire salivary gland mass or less than 50 per cent of the gland. Two fractionation modalities were used: a conventional fractionation of 2 Gy per day, 5 times a week, or a multiple daily fractionation of 2 Gy, 3 times a day in two series of 4 days with a 4-day interval. Both parameters (salivary gland mass irradiated and fractionation modality used) significantly influenced the shape of the amylase curve in the serum. Serum amylase may therefore be considered a reliable biologic indicator of early injury to the salivary glands.

  13. A High-Order Transport Scheme for Collisional-Radiative and Nonequilibrium Plasma

    Science.gov (United States)

    2009-02-06

    400–422, 1987. [18] M. P. F. Bristow and I. I. Glass. Polarizability of singly ionized argon . Physics of Fluids, 15(11):2066–2067, 1972. [19] A. Bultel...unsteady calculations. Numerical simulations of ionizing shocks in argon are conducted to gain insight to the shock structure and help determine the source...parameters used in previous research. . . . . . . . . 4 9.1 Rate coefficients for collisional-radiative model . . . . . . . . . . . . . . . . . 83 9.2 Argon

  14. Development of a plasma system as a source of radiation for X-ray microscopy

    International Nuclear Information System (INIS)

    Neff, W.; Lebert, R.; Holz, R.

    1992-01-01

    During the period of the report, an X-ray source was developed for a laboratory X-ray microscope based on a plasma focus. Nitrogen is used as the discharge gas. The Lyman α line (λ = 2.48 nm) of nitrogen ions N VII similar to hydrogen is used for the image in the microscope. This line is favourably situated at the start of the water window (2.33 - 4.37 nm), so that the microscope is particularly suitable for the examination of biological objects. (orig.) [de

  15. Chemically reacting flow of a compressible thermally radiating two-component plasma

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper studies the compressible flow of a hot two-component plasma in the presence of gravitation and chemical reaction in a vertical channel. For the optically thick gas approximation, closed form analytical solutions are possible. Asymptotic solutions are also obtained for the general differential approximation when the temperature of the two bounding walls are the same. In the general case the problem is reduced to the solution of standard nonlinear integral equations which can be tackled by iterative procedure. The results are discussed quantitatively. The problem may be applicable to the understanding of explosive hydrogen-burning model of solar flares. (author). 6 refs, 4 figs

  16. Plasma Wave Turbulence and Particle Heating Caused by Electron Beams, Radiation, and Pinches.

    Science.gov (United States)

    1983-01-01

    34Vlasov turbulence, this means that Poisson’s equation for F(k;t )m dr exp(- k-r)(g (r,t)-’(0,t)) the field fluctuations must be taken into account ...effect can work in principle for a narrow band cm -. , and therefore an electron plasma frequency off, = 35 width spectrum. In Sec. IV, we discuss some...sufficiently intense to saturate the beam-unstable modes. Such levels appear to produce either fundmental or harmonic emission." 1 Both have been

  17. Fast ion generation in femto- and picosecond laser plasma at low fluxes of heating radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.

    2006-01-01

    X-ray spectra from fluoroplastic targets irradiated by laser pulses with duration of 60 fs to 1 ps have been investigated experimentally. It is shown that, when the contrast of the laser pulse is sufficiently low, the effect of self-focusing of the main laser pulse in the plasma produced by the prepulse can significantly enhance the generation efficiency of fast particles. In this case, ions with energies as high as ∼1 MeV are observed at relatively low laser intensities [ru

  18. Role of radiation therapy in the management of plasma cell tumors. [Incidence of complications

    Energy Technology Data Exchange (ETDEWEB)

    Mill, W.B.; Griffith, R.

    1980-02-15

    A retrospective review is reported of 128 patients presenting with multiple myeloma and 16 patients presenting with solitary plasmacytoma. Ninety-one percent of 116 evaluable patients treated for palliation of painful bone disease received some degree of subjective pain relief. The radiation dose most frequently prescribed was between 1500 and 2000 rad. Of the 278 ports treated, only 17 (6.1%) were re-treated to the same area at a later date. There was no increase in incidence of re-treatment with lower radiation doses. Ten of the 13 patients treated for a solitary plasmacytoma with a minimum follow-up period of three years have local tumor control. The median survival in the solitary plasmacytomas is five and one-half years. Data from the literature on 27 additional solitary plasmacytomas combined with our data suggest an improved local control and a decrease in dissemination with doses greater than 5000 rad. It is concluded that low doses of radiation are usually adequate to treat painful bone lesions of multiple myeloma and doses of 5000 to 6500 rad in six to seven weeks are recommended for solitary plasmacytomas.

  19. Role of radiation therapy in the management of plasma cell tumors

    International Nuclear Information System (INIS)

    Mill, W.B.; Griffith, R.

    1980-01-01

    A retrospective review is reported of 128 patients presenting with multiple myeloma and 16 patients presenting with solitary plasmacytoma. Ninety-one percent of 116 evaluable patients treated for palliation of painful bone disease received some degree of subjective pain relief. The radiation dose most frequently prescribed was between 1500 and 2000 rad. Of the 278 ports treated, only 17 (6.1%) were re-treated to the same area at a later date. There was no increase in incidence of re-treatment with lower radiation doses. Ten of the 13 patients treated for a solitary plasmacytoma with a minimum follow-up period of three years have local tumor control. The median survival in the solitary plasmacytomas is five and one-half years. Data from the literature on 27 additional solitary plasmacytomas combined with our data suggest an improved local control and a decrease in dissemination with doses greater than 5000 rad. It is concluded that low doses of radiation are usually adequate to treat painful bone lesions of multiple myeloma and doses of 5000 to 6500 rad in six to seven weeks are recommended for solitary plasmacytomas

  20. Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation

    Science.gov (United States)

    Madureira, Joana; Ceriani, Elisa; Pinhão, Nuno; Marotta, Ester; Melo, Rita; Cabo Verde, Sandra; Paradisi, Cristina; Margaça, Fernanda M. A.

    2017-11-01

    In this work, we study degradation of clofibric acid (CFA) in aqueous solution using either ionizing radiation from a $^{60}$Co source or a non-thermal plasma produced by discharges in the air above the solution. The results obtained with the two technologies are compared in terms of effectiveness of CFA degradation and its by-products. In both cases the CFA degradation follows a quasi-exponential decay in time well modelled by a kinetic scheme which considers the competition between CFA and all reaction intermediates for the reactive species generated in solution as well as the amount of the end product formed. A new degradation law is deduced to explain the results. Although the end-product CO$_2$ was detected and the CFA conversion found to be very high under the studied conditions, HPLC analysis reveals several degradation intermediates still bearing the aromatic ring with the chlorine substituent. The extent of mineralization is rather limited. The energy yield is found to be higher in the gamma radiation experiments.

  1. Variable pattern of high-order harmonic spectra from a laser-produced plasma by using the chirped pulses of narrow-bandwidth radiation

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.; Redkin, P. V.

    2007-01-01

    Various plasmas prepared by laser ablation of the surfaces of solid targets were examined by the narrow-bandwidth radiation of different chirp and pulse durations. The high-order harmonics generated during laser-plasma interaction showed different brightness, wavelength shift, harmonic cutoff, and efficiency by using variable chirps of pump radiation. An analysis of harmonic optimization at these conditions is presented. The blueshifted and redshifted harmonics observed in this case were analyzed and attributed to the abundance of free electrons and self-phase modulation of the driving pulse. The resonance-induced enhancement of the 15th harmonic from GaN-nanoparticle-containing plasma caused by the tuning of harmonic wavelength close to the ionic transition was demonstrated

  2. Experimental, theoretical and computational study of frequency upshift of electromagnetic radiation using plasma techniques. Final technical report, January 14, 1991--January 14, 1995

    International Nuclear Information System (INIS)

    Joshi, C.

    1997-01-01

    The final report for the project is comprised of the PhD thesis of Richard L. Savage, Jr entitled: 'Frequency Upshifting of Electromagnetic Radiation via an Underdense Relativistic Ionization Front.' An underdense, relativistically propagating ionization front has been utilized to upshift the frequency of an impinging electromagnetic wave from 35 GHz to more than 173 GHz in a continuously tunable fashion. The source radiation interacted with the ionization front inside a metallic waveguide. The front, simply a moving boundary between ionized and neutral gas, was created as a short, intense pulse of ionizing laser radiation propagated through the gas-filled waveguide. In 1991, W.B. Mori showed theoretically that large upshifts are possible using underdense ionization fronts (underdense implies that the plasma density is lower than that required to reflect the source radiation), where the source wave is transmitted through the plasma/neutral boundary. The authors have extrapolated Mori's analysis to interactions within a waveguide. This is a new technique for generating high-power, short-pulse, tunable radiation, and has potential applications in areas such as time-resolved microwave spectroscopy, plasma diagnostics, and remote sensing

  3. TIP-1 translocation onto the cell plasma membrane is a molecular biomarker of tumor response to ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2010-08-01

    Full Text Available Tumor response to treatment has been generally assessed with anatomic and functional imaging. Recent development of in vivo molecular and cellular imaging showed promise in time-efficient assessment of the therapeutic efficacy of a prescribed regimen. Currently, the in vivo molecular imaging is limited with shortage of biomarkers and probes with sound biological relevance. We have previously shown in tumor-bearing mice that a hexapeptide (HVGGSSV demonstrated potentials as a molecular imaging probe to distinguish the tumors responding to ionizing radiation (IR and/or tyrosine kinase inhibitor treatment from those of non-responding tumors.In this study we have studied biological basis of the HVGGSSV peptide binding within the irradiated tumors by use of tumor-bearing mice and cultured cancer cells. The results indicated that Tax interacting protein 1 (TIP-1, also known as Tax1BP3 is a molecular target that enables the selective binding of the HVGGSSV peptide within irradiated xenograft tumors. Optical imaging and immunohistochemical staining indicated that a TIP-1 specific antibody demonstrated similar biodistribution as the peptide in tumor-bearing mice. The TIP-1 antibody blocked the peptide from binding within irradiated tumors. Studies on both of human and mouse lung cancer cells showed that the intracellular TIP-1 relocated to the plasma membrane surface within the first few hours after exposure to IR and before the onset of treatment associated apoptosis and cell death. TIP-1 relocation onto the cell surface is associated with the reduced proliferation and the enhanced susceptibility to the subsequent IR treatment.This study by use of tumor-bearing mice and cultured cancer cells suggested that imaging of the radiation-inducible TIP-1 translocation onto the cancer cell surface may predict the tumor responsiveness to radiation in a time-efficient manner and thus tailor radiotherapy of cancer.

  4. Plasma Wave Turbulence and Particle Heating Caused by Electron Beams, Radiation and Pinches.

    Science.gov (United States)

    1979-11-01

    current as dP K .2 Td - _c 2 . dt (K 2 (28a) where r 2 2 [ W (r)] , (28b) is the principal wave vector of the emitted radiation, and w p(r) is the...resulting from the angular average of coa 260, Tis research was supported In part by Hughes In the lowest bound state, which t an a state. TD . F. DuBois ad...Pbs.-JEW7, 21. 1127). and Sbsvchenko. V. 1. 1975, Fiz. Plasmy. 1, 10 (English Smith, D. F. 1977, J~ . (Leoaer). 214. L53 . tram!. in Soviet J. Plasim

  5. Spatial radiation profiles in the ASDEX Upgrade divertor for detached plasmas

    International Nuclear Information System (INIS)

    Wenzel, U.; Thoma, A.; Dux, R.; Fuchs, C.; Herrmann, A.; Hirsch, S.; Kallenbach, A.; Kastelewicz, H.; Laux, M.; Mast, F.; Napiontek, B.

    1997-01-01

    In this paper we describe impurity line emission measurements in the divertor of ASDEX Upgrade during high power neutral beam heated discharges. We focus on detached conditions where the dominating part of the radiation comes from the X-point region. Spatially resolved line emission in the VUV and visible spectral region of the intrinsic carbon and additionally puffed impurities (neon and nitrogen) is presented. A simple interpretation of the line emission profiles is given and they are also compared to the results of bolometry. (orig.)

  6. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Zakharov, S.V.; Zakharov, V.S.; Jančárek, A.; Nevrkla, M.

    2014-01-01

    Roč. 196, October (2014), s. 24-30 ISSN 0368-2048 R&D Projects: GA ČR GAP102/12/2043; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/20.0092 Institutional support: RVO:61389021 Keywords : Capillary Z-pinch * Water window radiation source * RHMD Code Z* Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.436, year: 2014 http://dx.doi.org/10.1016/j.elspec.2013.12.015

  7. Effect of Low Dose Gamma Radiation Upon Phosphatase Activity in Blood Plasma of Chicken Hatched from Eggs Irradiated on the Seventh Day of Incubation

    International Nuclear Information System (INIS)

    Kraljevic, P.; Vilic, M.; Miljanic, S.; Simpraga, M.

    2008-01-01

    In our earlier studies chickens hatched from eggs irradiated with 0.15 Gy gamma rays before incubation showed a significantly higher growth than controls during the fattening period (1-42 days). The activity of aspartate-aminotransferase (AST), alanine-aminotransferase (ALT), acid phosphatase (ACP) and plasma glucose in the same chickens were also significantly higher. These results suggested that low-dose gamma-radiation stimulated certain metabolic processes in chickens hatched from eggs irradiated before incubation. Investigating the effect of low dose gamma radiation upon transferases activity in blood plasma of chickens hatched from eggs irradiated on the 7th day of incubation, i.e. in the time when organogenesis is completely finished, we found that on day 10, AST and ALT activity was significantly higher in the blood plasma of those chickens, whereas it significantly dropped for both enzymes on day 20. This time the goal of study was to determine the effect of low-dose gamma radiation on ACP and alkaline phosphatase (ALP) activity in the blood plasma of chickens hatched from eggs irradiated on the 7th day of incubation. The eggs of heavy breeding chickens (Avian, line 34) were exposed to 0.15 Gy of gamma radiation (60Co) on the seventh day of incubation. The control group included chickens hatched from non-irradiated eggs. All other conditions were the same for both groups. After hatching, blood samples were taken from the wing vein on days 1, 3, 5, 7, 10, 20, 32 and 42. The activity of both enzymes was determined spectrophotometrically using Boehringer Mannheim GmbH optimised kits. ACP activity was significantly lower in the blood plasma of chickens hatched from irradiated eggs on day 3 (P<0,01), 5 (P<0,05) and 10 (P<0,05). Throughout the experimental period ALP activity did not statistically significantly change. Our results indicate that exposure of eggs to low-dose gamma radiation on the seventh day of incubation reduces ACP activity in the blood plasma

  8. Axial and radial preliminary results of the neutron radiation from miniature plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.; Silva, P.; Soto, L. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    2004-07-01

    As first step of a program to design a repetitive pulsed neutron generator for applications, two miniature plasma foci have been designed and constructed at the Chilean commission of nuclear energy. The devices operate at an energy level of the order of tens of joules (PF-50 J, 160 nF capacitor bank, 20-35 kV, 32-100 J, {approx} 150 ns time to peak current) and hundred of joules (PF-400 J, 880 nF, 20-35 kV, 176-539 J, {approx} 300 ns time to peak current). Neutron emission has been obtained in both devices operating in deuterium. A specific technique was necessary to develop in order to detect neutron pulsed of 10{sup 4} neutrons per shot. The maximum total neutron yield measured was of the order of 10{sup 6} and 10{sup 4} neutrons per shot in the PF-400 J and PF-50 J respectively. Axial and radial measurements of the neutron emission are presented and the anisotropy is evaluated in this work. The neutrons are measured by pairs of silver activation counters, {sup 3}He detectors and scintillator-photomultiplier detectors. (authors)

  9. Synchrotron radiation and absorption at electron cyclotron harmonics in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Hu, Jian-Long.

    1993-01-01

    In order to understand fully the absorption, emission and conversion phenomena for any electron cyclotron harmonic, one must include all relevant mode conversion processes and a finite parallel wave number k parallel . Relativistic plasma mode conversion and tunneling equations at the second and third electron cyclotron harmonics have been derived analytically. A finite k parallel has been introduced which keeps the coupling between the O-mode, the X-mode and the Bernstein wave in the mode conversion problems without absorption have been obtained, and the connection formulas between different wave branches have been established. The corresponding transmission, reflection and conversion coefficients have also been given. Mode conversion problem at any harmonic has been generalized to either a three branch or a five branch problem. A comparison between the coupled equation and the uncoupled equation has been made. The effort has been directed at the third harmonic since the adsorption at ω = 2ω ce is known to be very strong in virtually every fusion case. Both the low density limit and the high density limit cases have been studied separately. The relativistic effects on the mode conversion and absorption problem has been analyzed. The mode conversion equation with absorption has been solved by using the Green function method. The electron cyclotron emission experiments have already begun at 3ω ce , and the third harmonic is the first nontrivial case of importance

  10. Enhanced THz radiation generation by photo-mixing of tophat lasers in rippled density plasma with a planar magnetostatic wiggler and s-parameter

    Science.gov (United States)

    Abedi-Varaki, M.

    2018-02-01

    In this paper, the effects of planar magnetostatic wiggler and s-parameter on the terahertz (THz) radiation generation through rippled plasma have been investigated. Efficient THz radiation generation by photo-mixing of tophat lasers for rippled density plasma in the presence of the wiggler field has been presented. Fundamental equations for the analysis of the non-linear current density and THz radiation generation by wiggler magnetostatic field have been derived. It is shown that for the higher order of the tophat lasers, the values of THz amplitude are greater. In fact, the higher order of the tophat lasers has a sharp gradient in the intensity of lasers, which leads to a stronger nonlinear ponderomotive force and, consequently, a stronger current density. In addition, it is seen that by increasing s-parameter, the normalized transverse profile becomes more focused near the axis of y. Furthermore, it is observed that the normalized laser efficiency has a decreasing trend with increasing normalized THz frequency for different values of the wiggler field. Also, it is shown that by employing a greater order of the tophat lasers and a stronger wiggler field, the efficiency of order of 30% can be achieved. Moreover, it is found that we can control focus and intensity of THz radiation emitted in rippled plasma by choosing the appropriate order of the tophat lasers and tuning of the wiggler field.

  11. High Confinement and High Density with Stationary Plasma Energy and Strong Edge Radiation Cooling in Textor-94

    Science.gov (United States)

    Messiaen, A. M.

    1996-11-01

    A new discharge regime has been observed on the pumped limiter tokamak TEXTOR-94 in the presence of strong radiation cooling and for different scenarii of additional hearing. The radiated power fraction (up to 90%) is feedback controlled by the amount of Ne seeded in the edge. This regime meets many of the necessary conditions for a future fusion reactor. Energy confinement increases with increasing densities (reminiscent of the Z-mode obtained at ISX-B) and as good as ELM-free H-mode confinement (enhancement factor verus ITERH93-P up to 1.2) is obtained at high densities (up to 1.2 times the Greenwald limit) with peaked density profiles showing a peaking factor of about 2 and central density values around 10^14cm-3. In experiments where the energy content of the discharges is kept constant with an energy feedback loop acting on the amount of ICRH power, stable and stationary discharges are obtained for intervals of more than 5s, i.e. 100 times the energy confinement time or about equal to the skin resistive time, even with the cylindrical q_α as low as 2.8 β-values up to the β-limits of TEXTOR-94 are achieved (i.e. β n ≈ 2 of and β p ≈ 1.5) and the figure of merit for ignition margin f_Hqa in these discharges can be as high as 0.7. No detrimental effects of the seeded impurity on the reactivity of the plasma are observed. He removal in these discharges has also been investigated. [1] Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association "EURATOM-Belgian State", Ecole Royale Militaire-Koninklijke Militaire School, Brussels, Belgium [2] Institut für Plasmaphysik, Forschungszentrum Jülich, GmbH, Association "EURATOM-KFA", Jülich, Germany [3] Fusion Energy Research Program, Mechanical Engineering Division, University of California at San Diego, La Jolla, USA [4] FOM Institüt voor Plasmafysica Rijnhuizen, Associatie "FOM-EURATOM", Nieuwegein, The Netherlands [*] Researcher at NFSR, Belgium itemize

  12. General treatment of the interplay between fluid and radiative transport phenomena in symmetric plasmas: the sulphur lamp as a case study

    International Nuclear Information System (INIS)

    Heijden, Harm van der; Mullen, Joost van der

    2002-01-01

    A general ray-trace method for calculating the effects of radiative transfer in a control volume (CV) fluid code is presented. The method makes use of the structured CV grid of the fluid code, and is suited for geometries with a point or axis of symmetry. In particular, the specific equations for spherical and cylindrical (without z dependence) configurations are developed. The application of this method to local thermal equilibrium (LTE) and non-LTE plasma models is discussed. Various opportunities for sacrificing precision for calculation speed are pointed out. As a case study, the effects of radiative transfer in a sulphur lamp are calculated. Since an LTE description of the molecular radiation yields a computed spectrum that differs significantly from a measured one, the possibility of a non-LTE vibrational distribution of the radiating S 2 -B state is investigated. The results indicate that the vibrational populations may be inversed. (author)

  13. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A relativistic electron beam generator or accelerator produces a high-voltage electron beam which is modulated to initiate electron bunching within the beam which is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10 17 to 10 20 electrons per cubic centimeter. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target. The high-temperature plasma can be used to heat a high Z material to generate radiation. Alternatively, a tunable radiation source is produced by using a moderate Z gas or a mixture of high Z and low Z gas as the target plasma. (author)

  14. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  15. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  16. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    Science.gov (United States)

    Wise, John

    In the near future, next-generation telescopes, covering most of the electromagnetic spectrum, will provide a view into the very earliest stages of galaxy formation. To accurately interpret these future observations, accurate and high-resolution simulations of the first stars and galaxies are vital. This proposal is centered on the formation of the first galaxies in the Universe and their observational signatures in preparation for these future observatories. This proposal has two overall goals: 1. To simulate the formation and evolution of a statistically significant sample of galaxies during the first billion years of the Universe, including all relevant astrophysics while resolving individual molecular clouds, in various cosmological environments. These simulations will utilize a sophisticated physical model of star and black hole formation and feedback, including radiation transport and magnetic fields, which will lead to the most realistic and resolved predictions for the early universe; 2. To predict the observational features of the first galaxies throughout the electromagnetic spectrum, allowing for optimal extraction of galaxy and dark matter halo properties from their photometry, imaging, and spectra; The proposed research plan addresses a timely and relevant issue to theoretically prepare for the interpretation of future observations of the first galaxies in the Universe. A suite of adaptive mesh refinement simulations will be used to follow the formation and evolution of thousands of galaxies observable with the James Webb Space Telescope (JWST) that will be launched during the second year of this project. The simulations will have also tracked the formation and death of over 100,000 massive metal-free stars. Currently, there is a gap of two orders of magnitude in stellar mass between the smallest observed z > 6 galaxy and the largest simulated galaxy from "first principles", capturing its entire star formation history. This project will eliminate this

  17. Theoretical studies of the heating of toroidal plasmas with radio frequency electromagnetic radiation. Progress report, July 1, 1984-June 30, 1985

    International Nuclear Information System (INIS)

    Swanson, D.G.; Wersinger, J.M.

    1985-01-01

    The program of theoretical studies of the heating of toroidal plasmas with radio frequency electromagnetic radiation has continued in three directions. A summary of principal accomplishments of the first nine months of this year's contract is presented. These include: (1) The development of a numerical program for complex ray tracing with focusing. (2) Several developments in mode conversion theory. and (3) several developments in Nonlinear Wave Energy Absorption

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thresholds of surface plasma formation by the interaction of laser pulses with a metal

    Science.gov (United States)

    Borets-Pervak, I. Yu; Vorob'ev, V. S.

    1995-04-01

    An analysis is made of a model of the formation of a surface laser plasma which takes account of the heating and vaporisation of thermally insulated surface microdefects. This model is used in an interpretation of experiments in which such a plasma has been formed by irradiation of a titanium target with microsecond CO2 laser pulses. A comparison with the experimental breakdown intensities is used to calculate the average sizes of microdefects and their concentration: the results are in agreement with the published data. The dependence of the delay time of plasma formation on the total energy in a laser pulse is calculated.

  19. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  20. Transfer anisotropy effect in a turbulent plasma

    International Nuclear Information System (INIS)

    Bychenkov, V.Yu.; Gradov, O.M.; Silin, V.P.

    1982-01-01

    A theory is developed of transfer phenomena with pronounced ion-sound turbulence. A transfer anisotropy effect is observed which is due to the temperature gradient. The corresponding fluxes across the effective force vector generating the turbulence are found to be considerably greater than the longitudinal fluxes in a plasma with a comparatively low degree of nonisothermality. In a strongly nonisothermal plasma the suppression of transverse fluxes occurs, corresponding to the growth of thermal insulation of the current-carrying plasma filaments