Calculations for axial compressor blading with uniform inlet enthalpy and radial enthalpy gradient
Schlachter, W
1981-01-01
A computer program was used to calculate the radial distribution of flow parameters in an axial compressor stage designed to have a symmetrical velocity diagram at the mean radius and particular variations of reaction from hub to tip. Uniform energy addition was assumed to occur in the rotor. Both cases of uniform enthalpy and uniform radial enthalpy gradient at the entrance to the stage were considered. Advantages were found in the selection of fully symmetric blading and in the use of the i...
Zhao, Kai; Liu, Yong-Xin; Gao, Fei; Liu, Gang-Hu; Han, Dao-Man; Wang, You-Nian
2016-12-01
In the current work, the radial plasma density has been measured by utilizing a floating double probe in single and dual frequency capacitively coupled argon discharges operated in a cylindrical reactor, aiming at a better understanding of electromagnetic effects and exploring a method of improving the radial uniformity. The experimental results indicate that for single-frequency plasma sustained at low pressure, the plasma density radial profile exhibits a parabolic distribution at 90 MHz, whereas at 180 MHz, the profile evolves into a bimodal distribution, and both cases indicate poor uniformities. With increasing the pressure, the plasma radial uniformity becomes better for both driving frequency cases. By contrast, when discharges are excited by two frequencies (i.e., 90 + 180 MHz), the plasma radial profile is simultaneously influenced by both sources. It is found that by adjusting the low-frequency to high-frequency voltage amplitude ratio β, the radial profile of plasma density could be controlled and optimized for a wide pressure range. To gain a better plasma uniformity, it is necessary to consider the balance between the standing wave effect, which leads to a maximum plasma density at the reactor center, and the edge field effect, which is responsible for a maximum density near the radial electrode edge. This balance can be controlled either by selecting a proper gas pressure or by adjusting the ratio β.
Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi
2012-01-01
The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chang, Lei; Li, Qingchong; Zhang, Huijie; Li, Yinghong; Wu, Yun; Zhang, Bailing; Zhuang, Zhong
2016-08-01
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution. supported by National Natural Science Foundation of China (No. 11405271)
Kiselev, A D; Reshetnyak, V Yu; Sluckin, T J
2002-05-01
We extend the T-matrix approach to light scattering by spherical particles to some simple cases in which the scatterers are optically anisotropic. Specifically, we consider cases in which the spherical particles include radially and uniformly anisotropic layers. We find that in both cases the T-matrix theory can be formulated using a modified T-matrix ansatz with suitably defined modes. In a uniformly anisotropic medium we derive these modes by relating the wave packet representation and expansions of electromagnetic field over spherical harmonics. The resulting wave functions are deformed spherical harmonics that represent solutions of the Maxwell equations. We present preliminary results of numerical calculations of the scattering by spherical droplets. We concentrate on cases in which the scattering is due only to the local optical anisotropy within the scatterer. For radial anisotropy we find that nonmonotonic dependence of the scattering cross section on the degree of anisotropy can occur in a regime to which both the Rayleigh and semiclassical theories are inapplicable. For uniform anisotropy the cross section is strongly dependent on the angle between the incident light and the optical axis, and for larger droplets this dependence is nonmonotonic.
Wickramasooriya, Thiwanka; Vaidyanathan, Raj; Kar, Aravinda
2016-06-01
An analytic solution is obtained for three-dimensional quasi-steady state temperature distribution during laser heating of moving thin wires. The wire moves at a constant speed through a vacuum chamber, which is back-filled with an inert gas such as argon, and a laser beam of rectangular cross-section is incident on the wire. The ambient gas provides a convection heat transfer mechanism, which yields a Biot number, Bi, for the heating process to determine whether the temperature distribution would be uniform or nonuniform in the cross-section of the wire. Generally, the criterion of Bi less than 0.1 is applied to assume spatially uniform temperature distribution in a solid. The temperature distribution is determined for different Bi numbers and the variation of the temperature in the azimuthal direction is analyzed. The method of solution involves the Fourier transform in the azimuthal direction and the Hankel transform in the radial direction for a three-dimensional quasi-steady state heat conduction equation containing an advection term that accounts for the motion of the wire. The thermal and optical properties of the material is assumed to be constant in the temperature range of this study. The heat loss due to radiation heat transfer between the wire surface and the surrounding environment is neglected due to the small laser-heated surface area. Using this model, the temperature profile is studied for different process parameters such as the incident laser power, laser beam profile, Biot number, and wire speed.
Principle of uniformity of temperature difference field in heat exchanger
过增元; 李志信; 周森泉; 熊大曦
1996-01-01
A principle of uniformity of temperature difference field (TDF) in heat exchangers is advanced.It states that the more uniform the temperature difference field,the higher the effectiveness of heat exchanger for a given NTU and C,.Analytical and numerical results on the uniformity of TDF and effectiveness of thirteen types of heat exchangers show the validity of the uniformity principle.Its further verification is given by the asymptotical solution of TDF in terms of a recurrence formula of heat transfer area distribution.The analyses of entropy generation caused by heat transfer indicate that the uniformity principle is based on the second law of thermodynamics.Two ways,redistributing heat transfer areas and varying the connection between tubes,are presented for the improvement of the uniformity of TDF and the consequent increase of effectiveness for crossflow heat exchangers.
Siegel, R.; Sparrow, E. M.
1960-01-01
The purpose of this note is to examine in a more precise way how the Nusselt numbers for turbulent heat transfer in both the fully developed and thermal entrance regions of a circular tube are affected by two different wall boundary conditions. The comparisons are made for: (a) Uniform wall temperature (UWT); and (b) uniform wall heat flux (UHF). Several papers which have been concerned with the turbulent thermal entrance region problem are given. 1 Although these analyses have all utilized an eigenvalue formulation for the thermal entrance region there were differences in the choices of eddy diffusivity expressions, velocity distributions, and methods for carrying out the numerical solutions. These differences were also found in the fully developed analyses. Hence when making a comparison of the analytical results for uniform wall temperature and uniform wall heat flux, it was not known if differences in the Nusselt numbers could be wholly attributed to the difference in wall boundary conditions, since all the analytical results were not obtained in a consistent way. To have results which could be directly compared, computations were carried out for the uniform wall temperature case, using the same eddy diffusivity, velocity distribution, and digital computer program employed for uniform wall heat flux. In addition, the previous work was extended to a lower Reynolds number range so that comparisons could be made over a wide range of both Reynolds and Prandtl numbers.
High-Temperature, High-Load-Capacity Radial Magnetic Bearing
Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben
2005-01-01
A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).
Romero, Javier A.; Domínguez, Gabriela A.; Anoardo, Esteban
2017-03-01
An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency.
Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.
2011-01-01
Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be optim
Temperature Uniformity of Heated Mold Plate by Oscillating Heat Pipe
Kamonpet Patrapon
2015-01-01
Full Text Available Uniformity of the temperature in the mold plate is of paramount important since it will affect the dimensional stability of the part produced. To provide uniform temperature to the metal plate, many factors need to be considered such as choice of heating technology, uniformity of a heat source, a type of control, etc. This paper aims to study the temperature uniformity of metal plate using closed-loop oscillating heat pipe (CLOHP as a heat transfer device. The metal plates which were P-20 with the size of 306 x 130 mm2 were used. Metal plate was gouged to a depth of 3 mm for installing the CLOHP. Distances from the heating device to the metal plate surface were 5 and 10 mm. The surface temperatures of the metal plate were controlled at 80, 90, 100, 110, 120, and 130°C. Sixteen pointa of temperature were recorded. The results were then compared to those using the heat source as the cartridge heater arranged in the similar way with the same heating capacity. Once the system entered the steady state, it was found that the temperature distribution of metal plate using the CLOHP has a deviation in the range of ± 1.00°C and ± 0.94°C at the CLOHP depth of 5 mm. and 10 mm., respectively. While those of using cartridge heater deviated in the range of ± 1.35°C and ± 1.16°C. Compare to the recommended value from the ASTM Standard that the mold surface temperature need to be in the range of ± 2.0°C, the CLOHP shows the very promising results.
Uniform temperature profile for a dense array CPV receiver under non uniform illumination profile
Riera, Sara; Barrau, Jérôme; Perona, Arnaud; Dollet, Alain; Rosell, Joan I.; Fréchette, Luc
2014-09-01
Previous experimental and numerical studies of hybrid cooling devices for CPV receivers were developed under uniform illumination profile conditions; but literature review shows that this uniformity assumption is difficult to satisfy in real conditions. This investigation presents the design and the validation of a hybrid cooling device able to tailor its local heat extraction capacity to 2D illumination profiles in order to provide a uniform temperature profile of the PV receiver as well as a low global thermal resistance coefficient. The inputs of the design procedure are the solar concentration, the coolant flow rate and its inlet temperature. As the illumination profile is 2D dependent, a matrix of pin fins is implemented and a hybrid Jet Impingement /Matrix of Pin Fins cooling device is experimentally tested and compared to a hybrid Jet Impingement / Microchannels cooling device developed previously. The results demonstrate similar performances for both designs. Furthermore, in contrast to the cooling scheme using longitudinal fins, the distribution of the pin fins can be tailored, in two dimensions, to the local need of heat extraction capacity.
M. M. Potsane
2014-01-01
Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.
Christos F. Markides
2017-04-01
Full Text Available A recently introduced solution for the stress- and displacement-fields, developed in a multi-layered circular ring, composed of a finite number of linearly elastic concentric layers, subjected to a parabolic distribution of ra-dial stresses, is here extended to encompass a more general loading scheme, closer to actual conditions. The loading scheme includes, besides the para¬-bolic radial stresses, a combination of uniform pressures acting along the outer- and inner- most boundaries of the layered ring. The analytic solution of the problem is achieved by adopting Savin’s pioneering approach for an infinite plate with a hole strengthened by rings. Taking advantage of the results provided by the ana¬lytic solution, a numerical model, simulating the configuration of a three-layered ring (quite commonly encountered in practic¬al applications is validated. The numerical model is then used for a parametric analysis enlightening some crucial aspects of the overall response of the ring.
Temperature uniformity control in RTP using multivariable adaptive control
Morales, S.; Dahhou, B.; Dilhac, J.M. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Morales, S.
1995-12-31
In Rapid Thermal Processing (RTP) control of the wafer temperature during all processing to get good trajectory following, together with spatial temperature uniformity, is essential. It is well know as RTP process is nonlinear, classical control laws are not very efficient. In this work, the authors aim at studying the applicability of MIMO (Multiple Inputs Multiple Outputs) adaptive techniques to solve the temperature control problems in RTP. A multivariable linear discrete time CARIMA (Controlled Auto Regressive Integrating Moving Average) model of the highly non-linear process is identified on-line using a robust identification technique. The identified model is used to compute an infinite time LQ (Linear Quadratic) based control law, with a partial state reference model. This reference model smooths the original setpoint sequence, and at the same time gives a tracking capability to the LQ control law. After an experimental open-loop investigation, the results of the application of the adaptive control law are presented. Finally, some comments on the future difficulties and developments of the application of adaptive control in RTP are given. (author) 13 refs.
Kamiya, Kensaku; Itoh, Kimitaka; Itoh, Sanae-I.; JT-60 Team
2016-10-01
Non-uniformity effects of the edge radial electric field (Er) on the edge transport barriers (ETBs) formation have been identified with high-spatiotemporal resolution spectroscopic measurement. We found the decisive importance of Er-curvature (2nd derivative of Er) on ETB formation during ELM-free H-mode phase, but there is only a low correlation with the Er-shear (1st derivative of Er) value at the peak of normalized ion temperature gradient in the pedestal region. Observation of a uniform toroidal MHD oscillation (i.e. Geodesic Acoustic Mode having toroidal mode number n = 0) during the ETBs formation can also support the hypothesis of turbulence suppression in association with Zonal-flow (and/or Er-curvature). Furthermore, in the ELMing phase, the effect of curvature is also quantified in terms of the relationship between pedestal width and thickness of the layer of inhomogeneous Er. This is the fundamental basis to understand the structure of transport barriers in fusion plasmas. Authors acknowledge the partial support by Grant-in-Aid for Scientific Research (15K06657, 15H02155, 16H02442) and collaboration programmes between QST and universities and of the RIAM of Kyushu University, and by Asada Science Foundation.
Vašina, P; Hytková, T; Eliáš, M
2009-05-01
The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.
El-Amin, Mohamed
2010-12-01
In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.
Analytical and Numerical Study on the Uniformity of Temperature Difference Field in Heat Exchangers
Zhi－XinLi; Da－XiXiong; 等
1995-01-01
The relations of the uniformity factor of temperature difference field with the effctiveness of heat exchangers were studied analytically and numerically.The results for eleven kinds of heat exchangers show that the more uniform the temperature difference field,the higher the effctiveness of heat exchanger for a given Ntu and Cr.
Temperature-monitored optical treatment for radial tissue expansion.
Bak, Jinoh; Kang, Hyun Wook
2017-07-01
Esophageal stricture occurs in 7-23% of patients with gastroesophageal reflux disease. However, the current treatments including stent therapy, balloon dilation, and bougienage involve limitations such as stent migration, formation of the new strictures, and snowplow effect. The purpose of the current study was to investigate the feasibility of structural expansion in tubular tissue ex vivo during temperature-monitored photothermal treatment with a diffusing applicator for esophageal stricture. Porcine liver was used as an ex vivo tissue sample for the current study. A glass tube was used to maintain a constant distance between the diffuser and tissue surface and to evaluate any variations in the luminal area after 10-W 1470-nm laser irradiation for potential stricture treatment. The 3D goniometer measurements confirmed roughly isotropic distribution with less than 10% deviation from the average angular intensity over 2π (i.e., 0.86 ± 0.09 in arbitrary unit) from the diffusing applicator. The 30-s irradiation increased the tissue temperature up to 72.5 °C, but due to temperature feedback, the interstitial tissue temperature became saturated at 70 °C (i.e., steady-state error = ±0.4 °C). The irradiation times longer than 5 s presented area expansion index of 1.00 ± 0.04, signifying that irreversible tissue denaturation permanently deformed the lumen in a circular shape and secured the equivalent luminal area to that of the glass tube. Application of a temperature feedback controller for photothermal treatment with the diffusing applicator can regulate the degree of thermal denaturation to feasibly treat esophageal stricture in a tubular tissue.
Fitzpatrick, Richard
2016-12-01
The simple analysis of Rutherford [Phys. Fluids 16, 1903 (1973)] is generalized in order to incorporate radial magnetic island asymmetry into the nonlinear theory of tearing mode stability in a low-β, large aspect-ratio, quasi-cylindrical, tokamak plasma. The calculation is restricted to cases in which the radial shifts of the island X- and O-points are (almost) equal and opposite. For the sake of simplicity, the calculation concentrates on a particular (but fairly general) class of radially asymmetric island magnetic flux-surfaces that can all be mapped to the same symmetric flux-surfaces by means of a suitable coordinate transform. The combination of island asymmetry (in which the radial shifts of the X- and O-points are almost equal and opposite) and temperature-induced changes in the inductive current profile in the immediate vicinity of the island is found to have no effect on tearing mode stability.
Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species.
Steven G Kuntz
2014-04-01
Full Text Available Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5 °C and 32.5 °C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes [Formula: see text]33 hours at 17.5 °C, and accelerates with increasing temperature to a low of 16 hours at 27.5 °C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5 °C and have drastically slowed development by 30 °C. Despite ranging from 13 hours for D. erecta at 30 °C to 46 hours for D. virilis at 17.5 °C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer
Radial convection of finite ion temperature, high amplitude plasma blobs
Wiesenberger, M.; Madsen, Jens; Kendl, Alexander
2014-01-01
We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line...... with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very...
Effects of operation temperature on thermal expansion and main parameters of radial ball bearings
Mitrović Radivoje M.
2015-01-01
Full Text Available The research of influence of operation temperature on the thermal expansion and main parameters of radial ball bearings is presented in this paper. The main bearing parameters are identified in accordance with the increasing requests concerning stability and load capacity. A series of Finite Element Analyses is performed for quasi-static analysis of all identified bearing parameters during contact period in referent temperature. Then, the dependence of bearing material characteristics on the operation temperature is discussed. Few series of Finite Element Analyses are performed for a particular radial ball bearing type, with characteristics in accordance with manufacturer specifications, for several operation temperatures. These two problems analyses include consideration of relation between the initial radial clearance, thermal expansion strains and contact deformations of the parts of the bearing assembly. The results for radial ball bearing parameters are monitored during a ball contact period for different temperatures and the appropriate discussion and conclusions are given. The conclusions about the contribution of developed procedure in defining the optimum operation temperature range are shown. [Projekat Ministarstva nauke Republike Srbije, br. TR 35029 i br. OI 174001
Radial convection of finite ion temperature, high amplitude plasma blobs
Wiesenberger, M; Kendl, A
2014-01-01
We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in ...
The design of an air-cooled metallic high temperature radial turbine
Snyder, Philip H.; Roelke, Richard J.
1988-01-01
Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.
V K Gupta; Asha Gupta; S Singh; J D Anand
2003-10-01
We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modiﬁcation, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We ﬁnd that the effect of magnetic ﬁeld, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.
Runaway Criterion in Fixed Bed Catalytic Reactors with Radial Temperature Profile
吴鹏; 樊勇; 李绍芬
1999-01-01
The discrepancy between pseudo-homogeneous one-dimensional model and peeudo-homogeneous two-dimensional model is studied. It is found that there are great differences between two models. This paper compares the maximum and minimum values of the radial temperature in the hot spot in came that a single exothermic reaction is carried out, a correlation is obtlioed with peeudo-homogeneous one-dimensional model to describe the entire reactor behavier. A new runaway criterion, based on the occurrence of inflection in the hot spot locus, is developed for the case of pseudo-homogeneous two-dimensional model. This criterion predicts the maximum allowable temperature for safe operation and the regions of runaway, respectively. The calculated results show that, compared with the results based on pseudo-homogeneous one-dimensional model, runaway will easily occur when the radial temperature gradient has to be considered.
The Mechanism of Radial Separation of Cement Sheath and Casing during Temperature Cycling
Gao Baokui; Gao Deli
2006-01-01
An axisymmetrical-plane-strain model, simulating a perfect casing-cement-formation wellbore section, was developed to study its structural integrity during temperature cycling. Constitutive equations of elastoplasticity and the finite element method were used in the model study. Thermal stresses and deformation were calculated in order to reveal the mechanism of the cement sheath separating from the casing by radial residual stress. It was found that when the temperature increased high enough, the casing deformed plastically, the casing inner surface contracted while outer surface expanded. When the temperature decreased, radial residual stress in the casing-cement sheath interface was tensile which would separate cement sheath from the casing. The wellbore structural integrity was destroyed by the interface separation, providing the chance for inflow of the fluids outside the casing. The impact of the separation on casing collapse was discussed and the probability of the separation extending in the axial direction was predicted.
Deepika Rai; S Pattnaik; P V Rajesh
2016-06-01
Sea Surface Temperature (SST) is crucial for the development and maintenance of a tropical cyclone(TC) particularly below the storm core region. However, storm data below the core region is the mostdifficult to obtain, hence it is not clear yet that how sensitive the radial distribution of the SST impactthe storm characteristic features such as its inner-core structures, translational speed, track, rainfalland intensity particularly over the Bay of Bengal. To explore the effects of radial SST distributionon the TC characteristics, a series of numerical experiments were carried out by modifying the SSTat different radial extents using two-way interactive, triply-nested, nonhydrostatic Advanced WeatherResearch and Forecast (WRF-ARW) model. It is found that not only the SST under the eyewall (coreregion) contribute significantly to modulate storm track, translational speed and intensity, but also thoseoutside the eyewall region (i.e., 2–2.5 times the radius of maximum wind (RMW)) play a vital role indefining the storm’s characteristics and structure. Out of all the simulated experiments, storm wherethe positive radial change of SST inducted within the 75 km of the storm core (i.e., P75) produced thestrongest storm. In addition, N300 (negative radial changes at 300 km) produced the weakest storm.Further, it is found that SST, stronger within 2–2.5 times of the RMW for P75 experiment, plays adominant role in maintaining 10 m wind speed (WS10), surface entropy flux (SEF) and upward verticalvelocity (w) within the eyewall with warmer air temperature (T) and equivalent potential temperature(θe) within the storm’s eye compared to other experiments.
Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor
LI Zhi-Ming; JIANG Hai-Ying; HAN Yan-Bin; LI Jin-Ping; YIN Jian-Qin; ZHANG Jin-Cheng
2012-01-01
The effect of coil location on wafer temperature is analyzed in a vertical MOCVD reactor by induction heating.It is observed that the temperature distribution in the wafer with the coils under the graphite susceptor is more uniform than that with the coils around the outside wall of the reactor.For the case of coils under the susceptor,we find that the thickness of the susceptor,the distance from the coils to the susceptor bottom and the coil turns significantly affect the temperature uniformity of the wafer. An optimization process is executed for a 3-inch susceptor with this kind of structure,resulting in a large improvement in the temperature uniformity.A further optimization demonstrates that the new susceptor structure is also suitable for either multiple wafers or large-sized wafers approaching 6 and 8 inches.
Fox, Charles D.; Perram, Glen P.
2012-03-01
Heat loads in Diode Pumped Alkali Lasers (DPAL) have been investigated using a diode laser to probe the radial dependence of the absorbance. A TiS pump laser heats the medium in a T=50-100°C cesium heat pipe with 5 Torr nitrogen used for quenching. A tunable diode laser probes the spectral absorbance of the cesium cell. Local alkali concentration, temperature, and saturation broadening modify Voigt lineshapes in the wing of the hyperfine split lines. The temperature within the pumped volume exceeds the wall temperature by almost 200 C.
Banerjee, Ayan Kumar; Bhattacharya, Amitabh; Balasubramanian, Sridhar
2016-11-01
Laboratory experiments, with a rotating cylindrical annulus and thermal gradient in both radial and vertical directions (so that radial temperature difference decreases with the elevation), were conducted to study the convection dynamics and heat transport. Temperature data captured using thermocouples, combined with ANSYS Fluent simulation hinted at the co-existence of thermal plume and baroclinicity (inclined isotherms). Presence of columnar plume structure parallel to the rotation axis was found, which had a phase velocity and aided in vertical heat transport. Nusselt number (Nu) plotted as a function of Taylor number (Ta) showed the effect of rotation on heat transport in such systems, where the interplay of plumes and baroclinic waves control the scalar transport. Laser based PIV imaging at a single vertical plane also showed evidence of such flow structures.
Composite casting/bonding construction of an air-cooled, high temperature radial turbine wheel
Hammer, A. N.; Aigret, G.; Rodgers, C.; Metcalfe, A. G.
1983-01-01
A composite casting/bonding technique has been developed for the fabrication of a unique air-cooled, high temperature radial inflow turbine wheel design applicable to auxilliary power units with small rotor diameters and blade entry heights. The 'split blade' manufacturing procedure employed is an alternative to complex internal ceramic coring. Attention is given to both aerothermodynamic and structural design, of which the latter made advantageous use of the exploration of alternative cooling passage configurations through CAD/CAM system software modification.
Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering
2016-03-15
Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.
Influence of Non-uniform Temperature Field on Spectra of Fibre Bragg Grating
ZHOU Yan; HE Xing-Fang; YUAN Jie; YIN Li-Qun; FANG Xiao-Yong; CAO Mao-Sheng
2009-01-01
We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating.
Temperature gradients drive radial fluid flow in Petri dishes and multiwell plates.
Lindsay, Stephen M; Yin, John
2016-06-01
Liquid in a Petri dish spontaneously circulates in a radial pattern, even when the dish is at rest. These fluid flows have been observed and utilized for biological research, but their origins have not been well-studied. Here we used particle-tracking to measure velocities of radial fluid flows, which are shown to be linked to evaporation. Infrared thermal imaging was used to identify thermal gradients at the air-liquid interface and at the bottom of the dish. Two-color ratiometric fluorescence confocal imaging was used to measure thermal gradients in the vertical direction within the fluid. A finite-element model of the fluid, incorporating the measured temperature profiles, shows that buoyancy forces are sufficient to produce flows consistent with the measured particle velocity results. Such flows may arise in other dish or plate formats, and may impact biological research in positive or negative ways.
Gradient distribution of radial structure of PAN-based carbon fiber treated by high temperature
Haitao Wang; Yu Wang; Ting Li; Shuai Wu; Lianghua Xu
2014-01-01
High-performance graphite fibers were prepared and analyzed. The gradient distribution of radial structure of PAN-based carbon fibers was characterized by two different Raman test methods (incident laser beam perpendicular to and parallel to the fiber axis) and studied by the distribution of graphitization degree. Meanwhile difference between the two Raman test methods was used to describe the orientation of the graphite crystallite along the fiber axis. The results showed that the radial structure of PAN-based carbon fiber presented different gradient distribution states at different heat treatment temperatures, and the graphitization degree in the skin region changed more rapidly compared with the core region since the skin region was more affected by temperature which resulted in the obvious difference between skin and core structures. The difference of graphitization degree (Δg) characterized by two different Raman test methods increased with heat treatment temperature, indicating that the high temperature treatment (HTT) promoted further stacking of graphite crystallite, and the orientation degree of the graphite crystallite along the fiber axis was continuously increased.
Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations
Chang, S.C.
1979-08-15
The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.
D. DUNEA
2013-12-01
Full Text Available The aim of this study was to assess the temperature effect on growth and development parameters in uniform (pure culture and heterogeneous (grass-clover mixture red clover canopies with or without foliar fertilization in the most productive year of red clover. The relationships between biological efficiency (εb, Leaf Area Index (LAI, canopy height growth (Hts, light environment (PAR and temperature in uniform and mixed canopies for both clover ploidy groups are presented. The temperature effect on red clover LAI corresponded to a non-linear sigmoid function. The second foliar fertilizer application had a major effect on leaf area development in uniform canopies. Both ploidy groups had a similar LAI growth trend and favorable responses to foliar fertilization. The correlation between leaf area growth and temperature was statistically significant (p<0.05 for red clover cultivars in the unfertilized grass-clover mixtures. The hybrid ryegrass showed higher regression coefficients in tetraploid clover mixtures (p<0.01. Foliar fertilization determined the smoothing of species behaviors to the temperature regime meaning that the differences between diploids and tetraploids, and between hybrid ryegrass from both variants were less visible.
Haleh Kangarlou
2011-01-01
Full Text Available Problem statement: Ti films of the same thickness, deposition angle (near normal and deposition rate were deposited on glass substrates at room temperature under UHV conditions. Approach: Different annealing temperatures 423 K, 523 K and 623 K with uniform 7 cm3 sec-1, oxygen flow, were used to produce titanium oxide layers. Results: Thin film structures were studied using AFM, XRD and spectrophotometer methods. Roughness of the films changed due to annealing process. Conclusion/Recommendations: The getting property of Ti and annealing temperature can play an important role on the structure of the films.
Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras.
Wolf, Alejandro; Pezoa, Jorge E; Figueroa, Miguel
2016-07-19
Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array's temperature varies by approximately 15 ∘ C.
Petronis, Sarunas; Stangegaard, Michael; Christensen, C.
2006-01-01
Modern microfabrication and microfluidic technologies offer new opportunities in the design and fabrication of miniaturized cell culture systems for online monitoring of living cells. We used laser micromachining and thermal bonding to fabricate an optically transparent, low-cost polymeric chip...... for long-term online cell culture observation under controlled conditions. The chip incorporated a microfluidic flow equalization system, assuring uniform perfusion of the cell culture media throughout the cell culture chamber. The integrated indium-tin-oxide heater and miniature temperature probe linked...... to an electronic feedback system created steady and spatially uniform thermal conditions with minimal interference to the optical transparency of the chip. The fluidic and thermal performance of the chip was verified by finite element modeling and by operation tests under fluctuating ambient temperature conditions...
The numerical simulation of Taylor-Couette flow with radial temperature gradient
Tuliszka-Sznitko, E.; Kiełczewski, K.
2016-10-01
The Taylor-Couette flow with radial temperature gradient is a canonical problem for the study of heat transfer in engineering issues. However, gaining insight into the transitional Taylor-Couette flow with temperature gradient still requires detailed experimental and numerical investigations. In the present paper we have performed computations for the cavity of aspect ratio Γ= 3.76 and radii ratios η= 0.82 and 0.375 with the heated rotating bottom disk and stationary outer cylinder. We analyse the influence of the end-wall boundary conditions and the thermal conditions on the flow structure, and on the distributions of the Nusselt number and torque along the inner and outer cylinders. The averaged values along the inner cylinder of the Nusselt number and torque obtained for different Re are analysed in the light of the results published in [2, 16, 17].
New observations of the halo radial temperature structure in NGC7662
Sandin, C; Roth, M M; Steffen, M; Monreal-Ibero, A; Böhm, P; Tripphahn, U
2006-01-01
We report on our studies of the physical structure of the planetary nebula (PN) NGC7662. Using (3D) Integral Field Spectroscopy we have been able to measure the electron temperature more accurately and at a larger number of radial locations than before. Here we briefly present our method by which we find a strong positive temperature gradient with increasing radius. According to hydrodynamic models a hot halo, when compared to the central star, can be the product of the passage of an ionization front (e.g. Marten 1993). Such a gradient is not found in equilibrium models, and this finding - when confirmed for other objects - strongly advocates the use of hydrodynamic models when modeling PN halos.
New observations of the halo radial temperature structure in NGC 7662
Sandin, C.; Schönberner, D.; Roth, M. M.; Steffen, M.; Monreal-Ibero, A.; Böhm, P.; Tripphahn, U.
We report on our studies of the physical structure of the planetary nebula (PN) NGC 7662. Using (3D) Integral Field Spectroscopy we have been able to measure the electron temperature more accurately and at a larger number of radial locations than before. Here we briefly present our method by which we find a strong positive temperature gradient with increasing radius. According to hydrodynamic models a hot halo, when compared to the central star, can be the product of the passage of an ionization front (e.g. Marten 1993). Such a gradient is not found in equilibrium models, and this finding - when confirmed for other objects - strongly advocates the use of hydrodynamic models when modeling PN halos.
Liu Yan; Li Bin; Zheng Kai; Tan Zhong-Wei; Chen Yong; Wang Yan Hua; Ren Wen-Hua; Jian Shui-Sheng
2007-01-01
Temperature and strain characteristics of uniform fibre grating with tapered metal coatings have been analysed theoretically, by which adjustable chirp characteristics of such gratings are shown. Electroplating is adopted to fabricate such gratings, and the tapered metal coating is obtained by gradually drawing the fibre grating out of the solution during the process of electroplating. The gradually changing cross-sectional area of the metal coating is calculated by a newly suggested numerical method. By combining the theoretical and numerical simulation analyses, the gratings' characteristics are given at various temperatures and strains. The results obtained using such a method are also testified by experiments.
Lao, Hai-Ling; Lacey, Roy A
2016-01-01
We analyze the transverse momentum ($p_T$) spectra of identified particles ($\\pi^{\\pm}$, $K^{\\pm}$, $p$, and $\\bar p$) produced in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions over a $\\sqrt{s_{NN}}$ (center-of-mass energy per nucleon pair) range from 14.5 GeV [one of the Relativistic Heavy Ion Collider (RHIC) energies] to 2.76 TeV [one of the Large Hadron Collider (LHC) energies]. For the spectra with a narrow $p_T$ range, an improved Tsallis distribution which is in fact the Tsallis distribution with radial flow is used. For the spectra with a wide $p_T$ range, a superposition of the improved Tsallis distribution and an inverse power-law is used. Both the extracted kinetic freeze-out temperature ($T_0$) and radial flow velocity ($\\beta_T$) increase with the increase of $\\sqrt{s_{NN}}$, which indicate a higher excitation and larger expansion of the interesting system at the LHC. Both the values of $T_0$ and $\\beta_T$ in central collisions are slightly larger than those in peripheral collisions, and they...
无
2006-01-01
Dynamical formation and growth of cavity in a sphere composed of two incompressible thermal-hyperelastic Gent-Thomas materials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs suddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.
Temperature model for process impact non-uniformity in genipin recovery by high pressure processing.
Ramos-de-la-Peña, Ana Mayela; Montañez, Julio C; Reyes-Vega, María de la Luz; Contreras-Esquivel, Juan Carlos
2015-11-15
A model for the process impact temperature non-uniformity during high pressure processing (HPP) of genipap fruit purees was found during genipin recovery. Purees were subjected to HPP (130-530 MPa) under quasi-isobaric non-isothermal conditions (15 min; 0, 4.6 and 9.3mg pectinases/g fruit). Genipin and protein concentration was determined, and pH was measured. Polygalacturonase activity was quantified indirectly by protein content (mg/g fruit). First order kinetics described temperature changes (0-4 min). Polygalacturonase was activated at 130 MPa, inactivated reversibly at 330 MPa and activated again at 530 MPa. Enzyme reaction rate constant (k) was placed in the 0-4 min model and temperature from 2 to 15 min was described. Protein content and pH characterization in terms of decimal reduction time improved highly the 2-15 min model. Since temperature changes were modeled, more insight of its behavior in an HPP reactor was obtained, avoiding uniformity assumptions, making easier the industrial scale HPP implementation.
Kinetic model of force-free current sheets with non-uniform temperature
Kolotkov, D. Y.; Vasko, I. Y.; Nakariakov, V. M.
2015-11-01
The kinetic model of a one-dimensional force-free current sheet (CS) developed recently by Harrison and Neukirch [Phys. Rev. Lett. 102(13), 135003 (2009)] predicts uniform distributions of the plasma temperature and density across the CS. However, in realistic physical systems, inhomogeneities of these plasma parameters may arise quite naturally due to the boundary conditions or local plasma heating. Moreover, as the CS spatial scale becomes larger than the characteristic kinetic scales (the regime often referred to as the MHD limit), it should be possible to set arbitrary density and temperature profiles. Thus, an advanced model has to allow for inhomogeneities of the macroscopic plasma parameters across the CS, to be consistent with the MHD limit. In this paper, we generalise the kinetic model of a force-free current sheet, taking into account the inhomogeneity of the density and temperature across the CS. In the developed model, the density may either be enhanced or depleted in the CS central region. The temperature profile is prescribed by the density profile, keeping the plasma pressure uniform across the CS. All macroscopic parameters, as well as the distribution functions for the protons and electrons, are determined analytically. Applications of the developed model to current sheets observed in space plasmas are discussed.
Investigation of Furnace Uniformity and its Effect on High-Temperature Fixed-Point Performance
Khlevnoy, B.; Sakharov, M.; Ogarev, S.; Sapritsky, V.; Yamada, Y.; Anhalt, K.
2008-02-01
A large-area furnace BB3500YY was designed and built at the VNIIOFI as a furnace for high-temperature metal (carbide)-carbon (M(C)-C) eutectic fixed points and was then investigated at the NMIJ. The dependence of the temperature uniformity of the furnace on various heater and cell holder arrangements was investigated. After making some improvements, the temperature of the central part of the furnace was uniform to within 2K over a length of 40 mm—the length of the fixed-point cell—at a temperature of 2,500°C. With this furnace, the melting plateaux of Re-C and TiC-C were shown to be better than those observed in other furnaces. For instance, a Re-C cell showed melting plateaux with a 0.1K melting range and a duration of about 40 min. Furthermore, to verify the capability of the furnace to fill cells, one Re-C and one TiC-C cell were made using the BB3500YY. The cells were then compared to a Re-C cell made in a Nagano furnace and a TiC-C cell filled in a BB3200pg furnace. The agreement in plateau shapes demonstrates the capability of the BB3500YY furnace to also function as a filling furnace.
Ryu, Duchwan
2013-03-01
The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Kamiya, K.; Itoh, K.; Itoh, S.-I.
2016-08-01
The turbulent structure formation, where strongly-inhomogeneous turbulence and global electromagnetic fields are self-organized, is a fundamental mechanism that governs the evolution of high-temperature plasmas in the universe and laboratory (e.g., the generation of edge transport barrier (ETB) of the H-mode in the toroidal plasmas). The roles of inhomogeneities of radial electric field (Er) are known inevitable. In this mechanism, whether the first derivative of Er (shear) or the second derivative of Er (curvature) works most is decisive in determining the class of nontrivial solutions (which describe the barrier structure). Here we report the experimental identification of the essential role of the Er-curvature on the ETB formation, for the first time, based on the high-spatiotemporal resolution spectroscopic measurement. We found the decisive importance of Er-curvature on ETB formation during ELM-free phase, but there is only a low correlation with the Er-shear value at the peak of normalized ion temperature gradient. Furthermore, in the ELMing phase, the effect of curvature is also quantified in terms of the relationship between pedestal width and thickness of the layer of inhomogeneous Er. This is the fundamental basis to understand the structure of transport barriers in fusion plasmas.
Tatar Afshin
2016-03-01
Full Text Available Raw natural gases usually contain water. It is very important to remove the water from these gases through dehydration processes due to economic reasons and safety considerations. One of the most important methods for water removal from these gases is using dehydration units which use Triethylene glycol (TEG. The TEG concentration at which all water is removed and dew point characteristics of mixture are two important parameters, which should be taken into account in TEG dehydration system. Hence, developing a reliable and accurate model to predict the performance of such a system seems to be very important in gas engineering operations. This study highlights the use of intelligent modeling techniques such as Multilayer perceptron (MLP and Radial Basis Function Neural Network (RBF-ANN to predict the equilibrium water dew point in a stream of natural gas based on the TEG concentration of stream and contractor temperature. Literature data set used in this study covers temperatures from 10 °C to 80 °C and TEG concentrations from 90.000% to 99.999%. Results showed that both models are accurate in prediction of experimental data and the MLP model gives more accurate predictions compared to RBF model.
Mohsen Torabi
2013-01-01
Full Text Available Radiative radial fin with temperature-dependent thermal conductivity is analyzed. The calculations are carried out by using differential transformation method (DTM, which is a seminumerical-analytical solution technique that can be applied to various types of differential equations, as well as the Boubaker polynomials expansion scheme (BPES. By using DTM, the nonlinear constrained governing equations are reduced to recurrence relations and related boundary conditions are transformed into a set of algebraic equations. The principle of differential transformation is briefly introduced and then applied to the aforementioned equations. Solutions are subsequently obtained by a process of inverse transformation. The current results are then compared with previously obtained results using variational iteration method (VIM, Adomian decomposition method (ADM, homotopy analysis method (HAM, and numerical solution (NS in order to verify the accuracy of the proposed method. The findings reveal that both BPES and DTM can achieve suitable results in predicting the solution of such problems. After these verifications, we analyze fin efficiency and the effects of some physically applicable parameters in this problem such as radiation-conduction fin parameter, radiation sink temperature, heat generation, and thermal conductivity parameters.
Banerjee, Ayan Kumar; Bhattacharya, Amitabh; Balasubramanian, Sridhar
2016-01-01
Laboratory experiments were conducted to study heat transport characteristics in a nonhomogeneously heated fluid annulus subjected to rotation along the vertical axis (z). The nonhomogeneous heating was obtained by imposing radial and vertical temperature gradient ({\\Delta}T). The parameter range for this study was Rayleigh number, Ra=2.43x10^8-3.66x10^8, and Taylor number, Ta=6.45x10^8-27x10^8. The working fluid was water with a Prandtl number, Pr=7. Heat transport was measured for varying rotation rates ({\\Omega}) for fixed values of {\\Delta}T. The Nusselt number, Nu, plotted as a function of Ta distinctly showed the effect of rotation on heat transport. In general, Nu was found to have a larger value for non-rotating convection. This could mean an interplay of columnar plumes and baroclinic wave in our system as also evident from temperature measurements. Laser based imaging at a single vertical plane also showed evidence of such flow structure.
Force-free collisionless current sheet models with non-uniform temperature and density profiles
Wilson, F.; Neukirch, T.; Allanson, O.
2017-09-01
We present a class of one-dimensional, strictly neutral, Vlasov-Maxwell equilibrium distribution functions for force-free current sheets, with magnetic fields defined in terms of Jacobian elliptic functions, extending the results of Abraham-Shrauner [Phys. Plasmas 20, 102117 (2013)] to allow for non-uniform density and temperature profiles. To achieve this, we use an approach previously applied to the force-free Harris sheet by Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)]. In one limit of the parameters, we recover the model of Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)], while another limit gives a linear force-free field. We discuss conditions on the parameters such that the distribution functions are always positive and give expressions for the pressure, density, temperature, and bulk-flow velocities of the equilibrium, discussing the differences from previous models. We also present some illustrative plots of the distribution function in velocity space.
Liu, Yichao; He, Sailing; Ma, Yungui
2014-01-01
Extended from its electromagnetic counterpart, transformation thermodynamics applied to thermal conduction equations can map a virtual geometry into a physical thermal medium, realizing the manipulation of heat flux with almost arbitrarily desired diffusion paths, which provides unprecedented opportunities to create thermal devices unconceivable or deemed impossible before. In this work we employ this technique to design an efficient plate heater that can transiently achieve a large surface of uniform temperature powered by a small thermal source. As opposed to the traditional approach of relying on the deployment of a resistor network, our approach fully takes advantage of an advanced functional material system to guide the heat flux to achieve the desired temperature heating profile. A different set of material parameters for the transformed device has been developed, offering the parametric freedom for practical applications. As a proof of concept, the proposed devices are implemented with engineered therm...
Non-uniform interhemispheric temperature trends over the past 550 years
Duncan, Richard P. [Landcare Research, PO Box 40, Lincoln (New Zealand); Lincoln University, Bio-Protection Research Centre, PO Box 84, Lincoln (New Zealand); Fenwick, Pavla; Palmer, Jonathan G. [Gondwana Tree-ring Laboratory, PO Box 14, Canterbury (New Zealand); McGlone, Matt S. [Landcare Research, PO Box 40, Lincoln (New Zealand); Turney, Chris S.M. [University of Exeter, School of Geography, Exeter (United Kingdom)
2010-12-15
The warming trend over the last century in the northern hemisphere (NH) was interrupted by cooling from ad 1940 to 1975, a period during which the southern hemisphere experienced pronounced warming. The cause of these departures from steady warming at multidecadal timescales are unclear; the prevailing explanation is that they are driven by non-uniformity in external forcings but recent models suggest internal climate drivers may play a key role. Paleoclimate datasets can help provide a long-term perspective. Here we use tree-rings to reconstruct New Zealand mean annual temperature over the last 550 years and demonstrate that this has frequently cycled out-of-phase with NH mean annual temperature at a periodicity of around 30-60 years. Hence, observed multidecadal fluctuations around the recent warming trend have precedents in the past, strongly implicating natural climate variation as their cause. We consider the implications of these changes in understanding and modelling future climate change. (orig.)
Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure
Liu, Yan
2016-09-01
In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.
Cadek, O.; Berg, A.P. van den
1998-01-01
In the framework of dynamical modelling of the geoid, we have estimated basic features of the radial profile of temperature in the mantle. The applied parameterization of the geotherm directly characterizes thermal boundary layers and values of the thermal gradient in the upper and lower mantle.
Zhang, Guangle; Liu, Jianguo; Xu, Zhenyu; He, Yabai; Kan, Ruifeng
2016-01-01
A novel technique for characterizing temperature non-uniformity has been investigated based on measurements of line-of-sight tunable diode laser absorption spectroscopy. It utilized two fiber-coupled distributed feedback diode lasers at wavelengths around 1339 and 1392 nm as light sources to probe the field at multiple absorptions lines of water vapor and applied a temperature binning strategy combined with Gauss-Seidel iteration method to explore the temperature non-uniformity of the field in one dimension. The technique has been applied to a McKenna burner, which produced a flat premixed laminar CH4-air flame. The flame and its adjacent area formed an atmospheric field with significant non-uniformity of temperature and water vapor concentration. The effect of the number of temperature bins on column-density and temperature results has also been explored.
Non-Uniformity of the Combustor Exit Flow Temperature in Front of the Gas Turbine
Błachnio Józef
2014-12-01
Full Text Available Various types of damages to gas-turbine components, in particular to turbine blades, may occur in the course of gas turbine operation. The paper has been intended to discuss different forms of damages to the blades due to non-uniformity of the exit flow temperature. It has been shown that the overheating of blade material and thermal fatigue are the most common reasons for these damages. The paper presents results from numerical experiments with use of the computer model of the aero jet engine designed for simulations. The model has been purposefully modified to take account of the assumed non-homogeneity of the temperature field within the working agent at the turbine intake. It turned out that such non-homogeneity substantially affects dynamic and static properties of the engine considered as an object of control since it leads to a lag of the acceleration time and to increase in fuel consumption. The summarized simulation results demonstrate that the foregoing properties of a jet engine are subject to considerable deterioration in pace with gradual increase of the assumed non-homogeneity of the temperature field. The simulations made it possible to find out that variations of the temperature field nonhomogeneity within the working agent at the turbine intake lead to huge fluctuation of the turbine rpm for the idle run.
无
2010-01-01
Using the process parameter description,we analyzed the difference between the characteristics of laminar convections through parallel plain planes with uniform temperature and heat flux.The results show the following.(1)On the wall surface of the developing region,under uniform heat flux boundary condition,the heat flux normal to the wall surface is transported through a convection process although the velocity is zero;the velocity gradient contributes to this transport,but under uniform temperature boundary condition,the heat flux normal to the wall surface is transported through a difussion process.(2)Inside the flow of the developing region,whether under uniform temperature or heat flux boundary condition,the heat flux along the main flow direction and the heat flux normal to the wall surface are transported through a convection process,and the contributions of velocity and velocity gradient are dependent on the thermal boundary condition.(3)On the wall surface of the fully developed region,under uniform heat flux boundary condition,the heat flux normal to the wall surface is transported through a convection process;the velocity gradient contributes to this transport,but under uniform temperature boundary condition,the heat flux normal to the wall surface is transported through a diffusion process.(4)Inside the flow of the fully developed region,under uniform temperature boundary condition,the heat flux along the main flow direction and the heat flux normal to the wall surface are transported through a convection process,and the velocity and velocity gradient contribute to these transports;under uniform heat flux boundary condition,the heat flux along the main flow direction and the heat flux normal to the wall surface are transported through a convection process.Furthermore,the transport of the heat flux along the main flow direction is a no-net convection process;the velocity gradient contributes to the transport of the heat flux only in the normal direction
Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient
Teng, Hao; Liu, Nansheng, E-mail: lns@ustc.edu.cn; Lu, Xiyun [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Khomami, Bamin, E-mail: bkhomami@utk.edu [Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996 (United States)
2015-12-15
Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states that emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation
Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar
2015-04-01
When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.
Moon, Chanho; Kaneko, Toshiro; Itoh, Kimitaka; Ida, Katsumi; Kobayashi, Tatsuya; Inagaki, Shigeru; Itoh, Sanae-I.; Hatakeyama, Rikizo
2016-11-01
Turbulence in fluids and plasmas is ubiquitous in Nature and in the laboratory. Contrary to the importance of the ‘scale-free’ nature of cascade in neutral fluid turbulence, the turbulence in plasma is characterised by dynamics of distinct length scales. The cross-scale interactions can be highly non-symmetric so as to generate the plasma turbulence structures. Here we report that the system of hyper-fine electron-temperature-gradient (ETG) fluctuations and microscopic drift-wave (DW) fluctuations is strongly influenced by the sign of the gradient of the radial electric field through multiscale nonlinear interactions. The selective suppression effects by radial electric field inhomogeneity on DW mode induce a new route to modify ETG mode. This suppression mechanism shows disparity with respect to the sign of the radial electric field inhomogeneity, which can be driven by turbulence, so that it could be a new source for symmetry breaking in the turbulence structure formation in plasmas.
Theodoropoulou, Artemis-Georgia
The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems
Spectral non-uniform temperature and non-local heat transfer in the spin Seebeck effect.
Tikhonov, Konstantin S; Sinova, Jairo; Finkel'stein, Alexander M
2013-01-01
Recently discovered spin-dependent thermoelectric effects have merged spin, charge, and thermal physics, known as spin caloritronics, of which the spin Seebeck effect is its most puzzling. Here we present a theory of this effect driven by subthermal non-local phonon heat transfer and spectral non-uniform temperature. The theory explains its non-local behaviour from the fact that phonons that store the energy (thermal) and the phonons that transfer it (subthermal) are located in different parts of the spectrum and have different kinetics. This gives rise to a spectral phonon distribution that deviates from local equilibrium along the substrate and is sensitive to boundary conditions. The theory also predicts a non-magnon origin of the effect in ferromagnetic metals in agreement with observations in recent experiments. Equilibration of the heat flow from the substrate to the Pt probe and backwards leads to a vertical spin current produced by the spin-polarized electrons dragged by the thermal phonons.
Koza, J.; Kucera, A.; Rybák, J.; Wöhl, H.
2006-01-01
We aim to determine average radial stratifications of various physical parameters throughout the solar photosphere at high angular resolution for non-magnetic and magnetic areas and to compare these with standard semiempirical 1D modeling and with 3D hydrodynamics (HD) and magnetohydrodynamics (MHD)
Shen, Xuehua; Xiong, Qingyu; Shi, Xin; Wang, Kai; Liang, Shan; Gao, Min
2015-09-01
Temperature distribution reconstruction is of critical importance for circular area, and an ultrasonic technique is investigated to meet this demand in this paper. Considering the particularity of circular area, algorithm based on Markov radial basis approximation and singular value decomposition is proposed, while ultrasonic transducers layout and division of measured area are properly designed. The reconstruction performance is validated via numerical experiments using different temperature distribution models, and is compared with algorithm based on least square method. To study the anti-interference, various noises are adding to the theoretical value of time-of-flight. Experiment results indicate that the proposed algorithm can reconstruct temperature distribution with higher accuracy and stronger anti-interference, while without the problem of algorithm based on least square method that its reconstructions will lose much temperature information near the edge of measured area. Copyright © 2015 Elsevier B.V. All rights reserved.
Solano, Rafael Familiar; Vaz, Murilo Augusto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Oceanica]. E-mail: solano@peno.coppe.ufrj.br; murilo@peno.coppe.ufrj.br
2003-07-01
This paper presents formulation and analytical solution for the post-buckling behaviour of slender rods subjected to uniform temperature variations and constrained by double-hinged non-movable boundary conditions. The material is assumed linear elastic and its thermal strain-temperature relationship is non-linear. The governing equations are derived from geometrical compatibility, equilibrium of forces and moments, constitutive equations and strain-displacement relation, yielding a set of six first-order non-linear ordinary differential equations with boundary conditions specified at both ends, which constitutes a complex boundary value problem. A closed-form analytical solution found via complete elliptic integral is derived from the governing equations defining the shape of the post-buckled rod (elastic). The results are presented in non-dimensional graphs for a range of temperature gradients and different values of slenderness ratios. The consideration of slender rods allows extending the formulation for pipelines. The phenomenon of thermal buckling in pipelines, through analytic and numeric models, including geometric non-linearity is then studied. (author)
Koay, Cheng Guan
2012-01-01
Purpose: The purpose of this work is to investigate the hypothesis that uniform sampling measurements that are endowed with antipodal symmetry play an important role when the raw data and image data are related through the Fourier relationship as in q-space diffusion MRI and 3D radial MRI. Currently, it is extremely challenging to generate large uniform antipodally symmetric point sets suitable for 3D radial MRI. A novel approach is proposed to solve this important and long-standing problem. Methods: The proposed method is based upon constrained centroidal Voronoi tessellations of the upper hemisphere with a novel pseudometric. Geometrically intuitive approach to tessellating the upper hemisphere is also proposed. Results: The average time complexity of the proposed centroidal tessellations was shown to be effectively on the order of the product of the number of iterations and the number of generators. For small sample size, the proposed method was comparable to the state-of-the-art iterative method in terms ...
Ma, Liu Hao; Lau, Lok Yin; Ren, Wei
2017-03-01
We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.
Dinwiddie, Ralph Barton [ORNL; Parris, Larkin S. [Wichita State University; Lindal, John M. [Oak Ridge National Laboratory (ORNL); Kunc, Vlastimil [ORNL
2016-01-01
This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image. An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.
Effective temperature and radial velocity of the small-amplitude Cepheid Polaris (alpha UMi) in 2015
Usenko, I A; Miroshnichenko, A S; Danford, S
2016-01-01
We present the results of an analysis of 21 spectra of alpha UMi (Polaris) obtained in September - December 2015. Frequency analysis shows an increase of the pulsation period up to 8.6 min in comparison to the 2007 observational set. The radial velocity amplitude comes to 4.16 km s^-1, and it approximately twice the one found in 2007. The average Teff = 6017 K, and it is close to the value determined for the 2001-2004 set. Therefore Polaris moves to the red edge of the Cepheid instability strip (CIS)
暖体假人表面温度的均匀性%Surface temperature uniformity of thermal manikin
王毅; 王铭; 邹钺; 李书政; 刘赟
2012-01-01
Thermal manikin is equipped with heating wire which serves as internal heat source to simulate the human body heat dissipating, and mainly used for testing the thermal resistance of garments, whose surface temperature uniformity is critical. The aim of this study is to find out the main factors influencing the uniformity of the temperature on the surface of thermal manikin and how to meet the requirement of uniform distribution of the temperature. The arrangement of the heating wire and test method of the temperature are presented. Comparative experiments are conducted and temperature distribution rule on the surface of the thermal manikin is observed. The test results indicate that the laying interval of heating wire, thickness of thermal manikin's skin cover, and the side boundary conditions on the surface all have influence on the temperature uniformity to different extents.%暖体假人是以电热丝作为内热源来模拟人体散热的一种设备,主要用于测试服装热阻,对表面温度均匀性要求极高.为找出影响假人表面温度均匀性的主要因素,达到假人表面温度分布均匀的要求,提出假人表面电热丝的敷设方案和温度测试方案.通过对比实验,观察假人皮肤表面的温度分布规律.结果表明:电热丝的敷设间隔、假人皮肤的覆盖厚度以及侧面边界条件对假人表面温度均匀性都有不同程度的影响.
Jingwei Guo; Hui Huang; Xiaomin Ren; Xin Yan; Shiwei Cai; Wei Wang; Yongqing Huang; Qi Wang; Xia Zhang
2011-01-01
Vertical zinc blende GaAs/AlGaAs heterostructure nanowires were grown at different temperatures by metalorganic chemical vapor deposition via Au-assisted vapor-liquid-solid mechanism. It was found that radial growth can be enhanced by increasing the growth temperature. The growth of radial heterostructure can be realized at temperature higher than 500℃, while the growth temperature of axial heterostructure is lower than 440℃. The room temperature photoluminescence properties of the nanowires were investigated and the relevant growth mechanism was discussed.
Luo, Shiyuan; Zhu, Dahu; Hua, Lin; Qian, Dongsheng; Yan, Sijie; Yu, Fengping
2016-11-01
This work is motivated by the frequent occurrence of macro- and microdefects within forged Ti-6Al-4V turbine blades due to the severely nonuniform strain and temperature distributions. To overcome the problem of nonuniformity during the blade forging operation, firstly, a 2D coupled thermo-mechanical finite element approach using the strain-compensated Arrhenius-type constitutive model is employed to simulate the real movements and processing conditions, and its reliability is verified experimentally. Secondly, two evaluation indexes, standard deviation of equivalent plastic strain and standard deviation of temperature, are proposed to evaluate the uniformity characteristics within the forged blade, and the effects of four process parameters including the forging velocity, friction factor, initial workpiece temperature and dwell time on the uniformity of strain and temperature distributions are carefully studied. Finally, the numerically optimized combination of process parameters is validated by the application in a practical process. The parametric study reveals that a reasonable combination of process parameters considering the flow resistance, flow localization and the effects of deformation and friction heating is crucial for the titanium alloy blade forging with uniformity. This work can provide a significant guidance for the design and optimization of blade forging processes.
Yanfang Dong
2015-12-01
Full Text Available Bearing temperature rise amplitude is related to the running state of bearing and spindle thermal error, so the measurement of bearing temperature field is helpful to ascertain the bearing running characteristic and analysis of the spindle thermal error. On the basis of thoroughly understood several reasons of bearing heat generation, this article analyzes bearing temperature field simulation based on ANSYS and bearing temperature field measurement based on fiber Bragg grating sensors. The results showed that using fiber Bragg grating is able to complete the bearing temperature field distribution measurement perfectly.
Wang, Yiping; Wu, Cheng; Tang, Zebo; Yang, Xue; Deng, Yadong; Su, Chuqi
2015-06-01
Thermoelectric generators (TEGs) are currently a topic of interest for energy recovery in vehicles. By applying TEGs to the outside surface of the exhaust tailpipe, a small amount of electrical power can be generated because of the temperature difference between the hot exhaust gases and the automobile coolant. The amount of power is anticipated to be a few hundred watts based on the expected temperature difference and the properties of the thermoelectric materials used in TEGs. It is well know that, for thermoelectric exhaust energy recovery, the temperature uniformity of the heat exchangers has a strong influence on the electric power generation. In the current research, the temperature uniformity of a heat exchanger was improved by optimizing the fin distribution to maximize the electric power generated for a given vehicle TEG. A computational fluid dynamics (CFD) model of the heat exchanger was constructed to assess the influence of different fin distributions on the temperature uniformity and the pressure drop in the exhaust system. For the fin distributions, four factors were considered: the length of, spacing between, angle of, and thickness of the fins. Based on these four factors, a design of experiments study using the orthogonal experimental method was conducted to analyze the sensitivity to the design variables and build a database to set up a surrogate model using the Kriging response surface method. A multi-island genetic algorithm was used to optimize the fin distribution based on this surrogate model. To validate the accuracy of the CFD model, a generic heat exchanger module was manufactured and a related testbed constructed, then the temperature distribution on the surface of the exchanger was measured to compare with the results obtained by CFD.
Kurz-Besson, Cathy B; Lousada, José L; Gaspar, Maria J; Correia, Isabel E; David, Teresa S; Soares, Pedro M M; Cardoso, Rita M; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M; Gouveia, Célia M
2016-01-01
Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster's vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster's production capacity and quality in response to more arid conditions in the near future in the region.
Kurz-Besson, Cathy B.; Lousada, José L.; Gaspar, Maria J.; Correia, Isabel E.; David, Teresa S.; Soares, Pedro M. M.; Cardoso, Rita M.; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M.; Gouveia, Célia M.
2016-01-01
Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region. PMID:27570527
Shivakumara I S,
2011-05-01
Full Text Available The linear stability analysis of Marangoni convection in a fluid layer with a boundary slab of finite conductivity is considered. The effects of various non uniform temperature gradients are investigated. The lower boundary is a considered to be a thin slab of finite conductivity instead of a regular rigid surface. At the contact surface between the thin slab and the fluid layer the thermalboundary conditions are used and the upper surface is considered to be free and insulating to temperature perturbation and also surface tension effects are allowed. The resulting eigen value problem is solved exactly. The critical values of the Marangoni numbers for the onset of Marangoni convection are calculated for different temperature profile and the latter is found to be critically dependent on the depth ratio and conductivity ratio. The effects of the thermal conductivity and the thickness of the solid plate on the onset of convective instability with different temperature profile arestudied in detail.
Inverse analysis of non-uniform temperature distributions using multispectral pyrometry
Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling
2016-05-01
Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a "one pixel" measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the "one pixel" verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.
Wu, Bulong; Luo, Xiaobing; Zheng, Huai; Liu, Sheng
2011-11-21
Gold wire bonding is an important packaging process of lighting emitting diode (LED). In this work, we studied the effect of gold wire bonding on the angular uniformity of correlated color temperature (CCT) in white LEDs whose phosphor layers were coated by freely dispersed coating process. Experimental study indicated that different gold wire bonding impacts the geometry of phosphor layer, and it results in different fluctuation trends of angular CCT at different spatial planes in one LED sample. It also results in various fluctuating amplitudes of angular CCT distributions at the same spatial plane for samples with different wire bonding angles. The gold wire bonding process has important impact on angular uniformity of CCT in LED package.
Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G
2014-10-21
We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.
A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures
Pristavu, G.; Brezeanu, G.; Badila, M. [Electronics, Telecommunications and Information Technology, University Politehnica Bucharest, Bucharest 061071 (Romania); Pascu, R. [Electronics, Telecommunications and Information Technology, University Politehnica Bucharest, Bucharest 061071 (Romania); National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Street 126A, 077190 Bucharest (Romania); Danila, M. [National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Street 126A, 077190 Bucharest (Romania); Godignon, P. [Centro Nacional de Microelectronica, C/del Tillers, Campus Universitat Autònoma de Barcelona, 08193 Barcelona (Spain)
2015-06-29
Ni Schottky contacts on SiC have a nonideal behavior, with strong temperature dependence of the electrical parameters, caused by a mixed barrier on the contact area and interface states. A simple analytical model that establishes a quantitative correlation between Schottky contact parameter variation with temperature and barrier height non-uniformity is proposed. A Schottky contact surface with double Schottky barrier is considered. The main model parameters are the lower barrier (Φ{sub Bn,l}) and a p factor which quantitatively evaluates the barrier non-uniformity on the Schottky contact area. The model is validated on Ni/4H-SiC Schottky contacts, post metallization sintered at high temperatures. The measured I{sub F}–V{sub F}–T characteristics, selected so as not to be affected by interface states, were used for model correlation. An inhomogeneous double Schottky barrier (with both nickel silicide and Ni droplets at the interface) is formed by a rapid thermal annealing (RTA) at 750 °C. High values of the p parameter are obtained from samples annealed at this temperature, using the proposed model. A significant improvement in the electrical properties occurs following RTA at 800 °C. The expansion of the Ni{sub 2}Si phase on the whole contact area is evinced by an X-Ray diffraction investigation. In this case, the p factor is much lower, attesting the uniformity of the contact. The model makes it possible to evaluate the real Schottky barrier, for a homogenous Schottky contact. Using data measured on samples annealed at 800 °C, a true barrier height of around 1.73 V has been obtained for Ni{sub 2}Si/4H-SiC Schottky contacts.
A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures
Pristavu, G.; Brezeanu, G.; Badila, M.; Pascu, R.; Danila, M.; Godignon, P.
2015-06-01
Ni Schottky contacts on SiC have a nonideal behavior, with strong temperature dependence of the electrical parameters, caused by a mixed barrier on the contact area and interface states. A simple analytical model that establishes a quantitative correlation between Schottky contact parameter variation with temperature and barrier height non-uniformity is proposed. A Schottky contact surface with double Schottky barrier is considered. The main model parameters are the lower barrier (ΦBn,l) and a p factor which quantitatively evaluates the barrier non-uniformity on the Schottky contact area. The model is validated on Ni/4H-SiC Schottky contacts, post metallization sintered at high temperatures. The measured IF-VF-T characteristics, selected so as not to be affected by interface states, were used for model correlation. An inhomogeneous double Schottky barrier (with both nickel silicide and Ni droplets at the interface) is formed by a rapid thermal annealing (RTA) at 750 °C. High values of the p parameter are obtained from samples annealed at this temperature, using the proposed model. A significant improvement in the electrical properties occurs following RTA at 800 °C. The expansion of the Ni2Si phase on the whole contact area is evinced by an X-Ray diffraction investigation. In this case, the p factor is much lower, attesting the uniformity of the contact. The model makes it possible to evaluate the real Schottky barrier, for a homogenous Schottky contact. Using data measured on samples annealed at 800 °C, a true barrier height of around 1.73 V has been obtained for Ni2Si/4H-SiC Schottky contacts.
Cao, Yanpeng; Tisse, Christel-Loic
2013-06-01
In uncooled LWIR microbolometer imaging systems, temperature fluctuations of FPA (Focal Plane Array) as well as lens and mechanical components placed along the optical path result in thermal drift and spatial non-uniformity. These non-idealities generate undesirable FPN (Fixed-Pattern-Noise) that is difficult to remove using traditional, individual shutterless and TEC-less (Thermo-Electric Cooling) techniques. In this paper we introduce a novel single-image based processing approach that marries the benefits of both statistical scene-based and calibration-based NUC algorithms, without relying neither on extra temperature reference nor accurate motion estimation, to compensate the resulting temperature-dependent non-uniformities. Our method includes two subsequent image processing steps. Firstly, an empirical behavioral model is derived by calibrations to characterize the spatio-temporal response of the microbolometric FPA to environmental and scene temperature fluctuations. Secondly, we experimentally establish that the FPN component caused by the optics creates a spatio-temporally continuous, low frequency, low-magnitude variation of the image intensity. We propose to make use of this property and learn a prior on the spatial distribution of natural image gradients to infer the correction function for the entire image. The performance and robustness of the proposed temperature-adaptive NUC method are demonstrated by showing results obtained from a 640×512 pixels uncooled LWIR microbolometer imaging system operating over a broad range of temperature and with rapid environmental temperature changes (i.e. from -5°C to 65°C within 10 minutes).
LI YouRong; GONG ZhenXing; WU ChunMei; WU ShuangYing
2012-01-01
Using asymptotical analysis,we investigate the characteristics of the coupled thermal and solutal capillary convection with the radial temperature and solute concentration gradients in a shallow annular pool with the free surface.The pool is heated from the outer cylinder with high solutal concentration and cooled at the inner cylinder with low solutal concentration.The asymptotic solution is obtained in the core region in the limit as the aspect ratio,which is defined as the ratio of the depth to the width of the pool,goes to zero.The comparison with the previous work certifies that the asymptotic solution is right and believable.The influences of the solutal capillary force,the buoyant force,the Soret effect and the geometric parameters on the fluid flow are analyzed.
D. Sujan
2010-01-01
Full Text Available Problem statement: The thermal mismatch induced interfacial stresses are one of the major reliability issues in electronic packaging and composite materials. Consequently an understanding of the nature of the interfacial stresses under different temperature conditions is essential in order to eliminate or reduce the risk of structural and functional failure. Approach: In this analysis, a model was proposed for the shearing and peeling stresses occurring at the interface of two bonded dissimilar materials with the effect of different uniform temperatures in the layers. The model was then upgraded by accounting thickness wise linear temperature gradients in the layers using two temperature drop ratios. The upgraded models were then compared with the existing uniform temperature model. The proposed model can be seen as a more generalized form to predict interfacial stresses at different temperature conditions that may occur in the layers. Results: The results were presented for an electronic bi-material package consisting of die and die-attach. Conclusion: The numerical simulation is in a good matching agreement with analytical results.
A Chandra Study of Radial Temperature Profiles of the Intra-Cluster Medium in 50 Galaxy Clusters
Zhu, Zhenghao; Wang, Jingying; Gu, Junhua; Li, Weitian; Hu, Dan; Zhang, Chenhao; Gu, Liyi; An, Tao; Liu, Chengze; Zhang, Zhongli; Zhu, Jie; Wu, Xiang-Ping
2015-01-01
In order to investigate the spatial distribution of the ICM temperature in galaxy clusters in a quantitative way and probe the physics behind, we analyze the X-ray spectra of a sample of 50 galaxy clusters, which were observed with the Chandra ACIS instrument in the past 15 years, and measure the radial temperature profiles out to $0.45r_{500}$. We construct a physical model that takes into account the effects of gravitational heating, thermal history (such as radiative cooling, AGN feedback, and thermal conduction) and work done via gas compression, and use it to fit the observed temperature profiles by running Bayesian regressions. The results show that in all cases our model provides an acceptable fit at the 68% confidence level. To further validate this model we select nine clusters that have been observed with both Chandra (out to $\\gtrsim 0.3r_{500}$) and Suzaku (out to $\\gtrsim 1.5r_{500}$), fit their Chandra spectra with our model, and compare the extrapolation of the best-fits with the Suzaku measure...
Choubey, R.; Puls, M.P. (AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.)
1994-05-01
Crack initiation at hydrides in smooth tensile specimens of Zr-2.5Nb pressure tube material was investigated at elevated temperatures up to 300 C using an acoustic emission (AE) technique. The test specimens contained long, radial hydride platelets. These hydrides have their plate normals oriented in the applied stress direction. Below [approximately]100 C, widespread hydride cracking was initiated at stresses close to the yield stress. An estimate of the hydride's fracture strength from this data yielded a value of [approximately]520 MPa at 100 C. Metallography showed that up to this temperature, cracking occurred along the length of the hydrides. However, at higher temperatures, there was no clear evidence of lengthwise cracking of hydrides, and fewer of the total hydride population fractured during deformation, as indicated by the AE record and the metallography. Moreover, the hydrides showed significant plasticity by-being able to flow along with the matrix material and align themselves parallel to the applied stress direction without fracturing. Near the fracture surface of the specimen, transverse cracking of the flow-reoriented hydrides had occurred at various points along the lengths of the hydrides. These fractures appear to be the result of stresses produced by large plastic strains imposed by the surrounding matrix on the less ductile hydrides.
THERMAL POST-BUCKLING OF AN ELASTIC BEAMS SUBJECTED TO A TRANSVERSELY NON-UNIFORM TEMPERATURE RISING
李世荣; 程昌钧; 周又和
2003-01-01
Based on the nonlinear geometric theory of axially extensible beams and by usingthe shooting method, the thermal post-buckling responses of an elastic beams, withimmovably simply supported ends and subjected to a transversely non-uniformly distributedtemperature rising, were investigated. Especially, the influences of the transversetemperature change on the thermal post-buckling deformations were examined and thecorresponding characteristic curves were plotted. The numerical results show that theequilibrium paths of the beam are similar to what of an initially deformed beam because ofthe thermal bending moment produced in the beam by the transverse temperature change.
Pal, Debashis; Chakraborty, Suman
2012-07-01
We discover that thermoviscous expansion along a traveling wave in a microfluidic channel may be capable of generating a spatially uniform flow profile in a time-averaged sense. We further delineate that the resultant complex flow characteristics, realized by virtue of an intricate interplay between thermal compression-expansion waves and temperature-dependent viscosity variations and controlled by an external heating, may be remarkably characterized by a unique thermal penetration depth scale (analogous to Debye length in electro-osmosis) and a velocity scale (analogous to the Helmholtz Smulochowski velocity in electro-osmosis) that in turn depends on the considerations of “thin” and “thick” microchannel limits, as dictated by the thermal penetration depth as compared to the lateral extent of the microfluidic channel. We show that, when the thermal penetration depth is small as compared to the channel height, a uniform velocity profile is generated in the channel in a time-averaged sense. The velocity scale characterizing this uniform flow may be represented by a function of the thermal diffusivity, volumetric expansion coefficient and thermal viscosity coefficient of the fluid, characteristic amplitude and speed of the thermal wave, as well as the channel height. Results from the present study are expected to provide valuable insights towards arresting hydrodynamic dispersion in microchannels by nonelectrochemical means, following a pH-independent route.
Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure
Yan Liu
2016-09-01
In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worst case climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The nonuniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable real time data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.
Shen, Bin; Chen, Sulin; Cheng, Lei; Sun, Fanghong
2014-09-01
In the present study, a double-deck filament setup is proposed for the hot filament chemical vapor deposition (HFCVD) method and an optimization method is presented to determine its optimal geometry that is able to produce a highly uniform temperature field on the whole flute surface of long-flute cutting tools. The optimization method is based on the finite volume method (FVM) simulation and the Taguchi method. The simulation results show that this double-deck filament setup always produce a highly uniform temperature distribution along the filament direction. Comparatively, for the temperature uniformity along the drill axis, the heights of the two filament decks present virtually significant influence, while the separations between the two filaments in either deck exhibit a relative weak effect. An optimized setup is obtained that can produce a highly uniform temperature field with an average temperature of 834°C, a standard deviation (σ) of 2.59°C and a temperature range (R) of 11.75°C. Finally, the precision of the proposed simulation method is verified by an additional temperature measurement. The measured temperature results show that a highly uniform temperature fields with σ/R = 9.6/35.2°C can be generated by the optimized setup and the deviation of the simulated results from the measured actual temperatures are within 0.5-3.5%, which justifies the correctness of the simulation method proposed in present study.
Reginald, Nelson L.; Davilla, Joseph M.; St. Cyr, O. C.; Rastaetter, Lutz
2014-01-01
We examine the uncertainties in two plasma parameters from their true values in a simulated asymmetric corona. We use the Corona Heliosphere (CORHEL) and Magnetohydrodynamics Around the Sphere (MAS) models in the Community Coordinated Modeling Center (CCMC) to investigate the differences between an assumed symmetric corona and a more realistic, asymmetric one. We were able to predict the electron temperatures and electron bulk flow speeds to within +/-0.5 MK and +/-100 km s(exp-1), respectively, over coronal heights up to 5.0 R from Sun center.We believe that this technique could be incorporated in next-generation white-light coronagraphs to determine these electron plasma parameters in the low solar corona. We have conducted experiments in the past during total solar eclipses to measure the thermal electron temperature and the electron bulk flow speed in the radial direction in the low solar corona. These measurements were made at different altitudes and latitudes in the low solar corona by measuring the shape of the K-coronal spectra between 350 nm and 450 nm and two brightness ratios through filters centered at 385.0 nm/410.0 nm and 398.7 nm/423.3 nm with a bandwidth of is approximately equal to 4 nm. Based on symmetric coronal models used for these measurements, the two measured plasma parameters were expected to represent those values at the points where the lines of sight intersected the plane of the solar limb.
Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan
2017-07-14
Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm(2) , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm(2) . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer
S. F Mousavi
2015-09-01
Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9
Basiulis, A.; Buzzard, R. J.
1971-01-01
Unit moves heat radially from small diameter shell to larger diameter shell, or vice versa, with negligible temperature drop, making device useful wherever heating or cooling of concentrically arranged materials, substances, and structures is desired.
Dynamic and buckling analysis of a thin elastic-plastic square plate in a uniform temperature field
Shifu Xiao; Bin Chen
2005-01-01
The nonlinear models of the elastic and elasticlinear strain-hardening square plates with four immovably simply-supported edges are established by employing Hamilton's Variational Principle in a uniform temperature field. The unilateral equilibrium equations satisfied by the plastically buckled equilibria are also established. Dynamics and stability of the elastic and plastic plates are investigated analytically and the buckled equilibria are investigated by employing Galerkin-Ritz's method. The vibration frequencies, the first critical temperature differences of instability or buckling, the elastically buckled equilibria and the extremes depending on the final loading temperature difference of the plastically buckled equillibria of the plate are obtained. The results indicate that the critical buckling value of the plastic plate is lower than its critical instability value and the critical value of its buckled equilibria turning back to the trivial equilibrium are higher than the value. However, three critical values of the elastic plate are equal. The unidirectional snap-through may occur both at the stress-strain boundary of elasticity and plasticity and at the initial stage of unloading of the plastic plate.
无
2000-01-01
Three-dimensional structure of baroclinic wavy jet was experimentally studied in rotating annulus subject to a negative radial temperature gradient.General features of wavy surface jet in the system were obtained.Based on the precise measurements of velocity distribution of the jet with LDV and the three-dimensional temperature field in the convective system, three-dimensional thermodynamic structures of jet were gained, and by using a correlation of three-dimensional disturbed temperature, the unstable mechanism of disturbed temperature of baroclinic fluid in a rotating system was further discussed.
Smith, Karl H.
2002-01-01
A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.
Safa Bozkurt Coşkun
2007-01-01
Full Text Available In order to enhance heat transfer between primary surface and the environment, radiating extended surfaces are commonly utilized. Especially in the case of large temperature differences, variable thermal conductivity has a strong effect on performance of such a surface. In this paper, variational iteration method is used to analyze convective straight and radial fins with temperature-dependent thermal conductivity. In order to show the efficiency of variational iteration method (VIM, the results obtained from VIM analysis are compared with previously obtained results using Adomian decomposition method (ADM and the results from finite element analysis. VIM produces analytical expressions for the solution of nonlinear differential equations. However, these expressions obtained from VIM must be tested with respect to the results obtained from a reliable numerical method or analytical solution. This work assures that VIM is a promising method for the analysis of convective straight and radial fin problems.
2015-01-01
Small-scale (10 kWe) organic Rankine cycles for low temperature applications such as heat recovery and solar power present a significant development opportunity but limited prototypes have been developed. This paper aims to address this by describing a system modelling tool which is used to select a working fluid, optimise cycle conditions, and preliminarily size a radial inflow rotor for an experimental test rig. The program is a steady-state sizing and optimisation tool which advances on cu...
Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)
2001-01-01
It has been known for more than a decade that an aqua-planet model with globally uniform sea surface temperature and solar insolation angle can generate ITCZ (intertropical convergence zone). Previous studies have shown that the ITCZ under such model settings can be changed between a single ITCZ over the equator and a double ITCZ straddling the equator through one of several measures. These measures include switching to a different cumulus parameterization scheme, changes within the cumulus parameterization scheme, and changes in other aspects of the model design such as horizontal resolution. In this paper an interpretation for these findings is offered. The latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. The first type is equator-ward and is directly related to the earth's rotation and thus not sensitive to model design changes. The second type is poleward and is related to the convective circulation and thus is sensitive to model design changes. Due to the shape of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.
GAO Zhiqiu; BIAN Lingen; CHEN Zhigang; Michael SPARROW; ZHANG Jiahua
2006-01-01
This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument,followed the Monin-Obukhov similarity theory. The similarity constants for heat (CT) and water vapor (Cq) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations.
Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E
2016-05-01
The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.
V. I. Ryazhskikh
2012-01-01
Full Text Available Based on the of the integral Fourier transforms the problem of stationary temperature fields distribution of heat-generating fluid in a square area is analytically solved under non-uniform first kind boundary conditions for the conductive heat transfer mode.
Mahmoud S. Dawood
2015-11-01
Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.
Marangoni effects on a thin liquid film coating a sphere with axial or radial thermal gradients
Kang, Di; Nadim, Ali; Chugunova, Marina
2016-11-01
We study the time evolution of a thin liquid film coating the outer surface of a sphere in the presence of gravity, surface tension and thermal gradients. We derive the fourth-order nonlinear partial differential equation that models the thin film dynamics, including Marangoni terms arising from the dependence of surface tension on temperature. We consider two different heating regimes with axial or radial thermal gradients. We analyze the stability of a uniform coating under small perturbations and carry out numerical simulations in COMSOL for a range of parameter values. In the case of an axial temperature gradient, we find steady states with either uniform film thickness, or with drops forming at the top or bottom of the sphere, depending on the total volume of liquid in the film, dictating whether gravity or Marangoni effects dominate. In the case of a radial temperature gradient, a stability analysis reveals the most unstable non-axisymmetric modes on an initially uniform coating film.
Uniform magnesium oxide adsorbents
Dash, J. G.; Ecke, R.; Stoltenberg, J.; Vilches, O. E.; Whittemore, O. J., Jr.
1978-01-01
Kr adsorption on MgO is used to characterize the surface uniformity of MgO smoke and thermally decomposed Mg(OH)2. It is found that initially heterogeneous samples develop progressively sharper stepwise isotherms with increasingly-high-temperature heat treatment, apparently due to the removal of imperfections and high-energy facets, leaving surfaces of highly uniform (100) planes.
Sobhan; Mosayebidorcheh; Mohammad; Rahimi-Gorji; D.D; Ganji; Taha; Moayebidorcheh; O; Pourmehran; M.Biglarian
2017-01-01
This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications.
Sobhan Mosayebidorcheh; Mohammad Rahimi-Gorji; D. D Ganji; Taha Moayebidorcheh; O Pourmehran; M. Biglarian
2017-01-01
This work focuses on transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties. A hybrid numerical algorithm which combines differential transformation (DTM) and finite difference (FDM) methods is utilized to theoretically study the present problem. DTM and FDM are applied to the time and space domains of the problem, respectively. The accuracy of this method solution is checked against the numerical solution. Then, the effects of some applicable parameters were studied comparatively. Since a broad range of governing parameters are investigated, the results could be useful in a number of industrial and engineering applications.
燃料棒径向温度场稳态计算分析%Calculation and Analysis of the Radial Temperature Field of the Fuel Rods
齐航; 周蓝宇; 张雍良; 曾文杰
2016-01-01
燃料棒是反应堆的核心部件，其内部温度场分布大都通过数值计算获得。以燃料棒为研究对象，以燃料棒中心为起点，在径向上划分足够多的环形区域，建立几何模型，依据几何模型建立堆芯稳态物理模型，通过编程进行数值计算来获得燃料元件的径向稳态温度场。以次临界堆MYRRHA的燃料棒为研究对象，研究结果表明该方法能较准确的表征燃料元件径向稳态温度场的情况，是一种简单有效的建模分析方法。可见，该模型可以为燃料元件径向稳态温度场计算提供合理的依据。%Fuel rods is the core component of the reactor, often, its inner temperature field distribution is obtained through numerical calculation method. Taking the fuel rod as the research object, the center of the fuel rod as the starting point, division enough annular region in the radial, and the geometric model is set up, according to the geometric model building reactor core steady-state physical model, apply numerical calculation and programming to obtain fuel element radial steady-state temperature field. Sub-critical reactor MYRRHA fuel element as the research object. The results show that the method can accurately characterize the radial temperature field of the cylindrical fuel element, and it is a simple and effective modeling and analysis method. It can be seen that the model can provide a reasonable basis for calculating the radial temperature field of the cylindrical fuel element.
Formulas for Radial Transport in Protoplanetary Disks
Desch, Steven J.; Estrada, Paul R.; Kalyaan, Anusha; Cuzzi, Jeffrey N.
2017-05-01
The quantification of the radial transport of gaseous species and solid particles is important to many applications in protoplanetary disk evolution. An especially important example is determining the location of the water snow lines in a disk, which requires computing the rates of outward radial diffusion of water vapor and the inward radial drift of icy particles; however, the application is generalized to evaporation fronts of all volatiles. We review the relevant formulas using a uniform formalism. This uniform treatment is necessary because the literature currently contains at least six mutually exclusive treatments of radial diffusion of gas, only one of which is correct. We derive the radial diffusion equations from first principles using Fick's law. For completeness, we also present the equations for radial transport of particles. These equations may be applied to studies of diffusion of gases and particles in protoplanetary and other accretion disks.
Hollow Cathode With Multiple Radial Orifices
Brophy, John R.
1992-01-01
Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.
Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng
2013-08-01
Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.
Savage, M.G.
1984-07-01
A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.
Cathy Béatrice Kurz Besson
2016-08-01
Full Text Available Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events.To address this question, tree-ring width and density chronologies were built for a P. pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011.We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region.
Melikhov, Sergey A
2011-01-01
Although topological and uniform approaches to foundations of what was then known as Analysis Situs originated in the same works by M. Frechet and F. Riesz, uniform spaces hopelessly lagged behind in development, and were never taken seriously in algebraic and geometric topology, due in part to the lack of a coherent theory of quotient spaces, and of a reasonable notion of a polyhedron in the uniform category. Yet there are painful side effects of the usual topological foundations: for instance, the non-metrizability of the cone over the real line, and the non-metrizability of RP^\\infty (as a CW-complex or as the geometric realization of a simplicial set). We show that (the topology of) quotient uniformity is, after all, far nicer than quotient topology in the context of metrizable spaces, and that (metrizable, possibly locally infinite-dimensional) uniform polyhedra do exist - and behave nicely - which appears to provide a satisfactory solution to an old open-ended problem by Isbell.
LIN Shang-jing; WEI Gang; LIU Li-long; LIU Yu-di
2005-01-01
Beta effects on surface flows in a rotating annulus with a radial temperature gradient and a sloping bottom were studied experimentally. An azimuthal jet was produced by the action of the Coriolis force in the convective region between the two side walls of the annulus. Propagating velocity and patterns of the baroclinic wave on the surface were obtained by using a frequency-meter and a streak photograph respectively. It is shown that there exists the nonlinear interaction between the baroclinic and beta effects. The beta effect exerts little influence on the stratification flows and constrains the baroclinic instability, and it prompts the instability of the weak stratification flows and results in the surface pattern of waves with higher frequency. It is also indicated that the beta effect can reduce the propagating speed of the surface waves in the jet, and increase the thermal Rossby number for those same surface patterns under a given Taylor number.
Zhang Yongzhe; Wang Qijie [School of Electrical and Electronic Engineering and School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Liu Yanxia; Li Xiaodong; Xie Erqing, E-mail: QJWANG@ntu.edu.sg [School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 (China)
2011-10-14
Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu{sup 3+} doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu{sup 3+} is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu{sup 3+} doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu{sup 3+} doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.
Zhang, Yongzhe; Liu, Yanxia; Li, Xiaodong; Jie Wang, Qi; Xie, Erqing
2011-10-01
Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu3 + doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu3 + is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu3 + doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu3 + doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.
Sygut P.
2016-06-01
Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.
Miyagi, Lowell; Kanitpanyacharoen, Waruntorn; Raju, Selva Vennila; Kaercher, Pamela; Knight, Jason; MacDowell, Alastair; Wenk, Hans-Rudolf; Williams, Quentin; Alarcon, Eloisa Zepeda
2013-02-01
To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run#1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run#2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg0.9Fe0.1)O in Run#3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.
Miyagi, Lowell [Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Earth Sciences, Montana State University, Bozeman, Montana 59717 (United States); Kanitpanyacharoen, Waruntorn; Kaercher, Pamela; Wenk, Hans-Rudolf; Alarcon, Eloisa Zepeda [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Raju, Selva Vennila [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); HiPSEC, Department of Physics, University of Nevada, Las Vegas, Nevada 89154 (United States); Knight, Jason; MacDowell, Alastair [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Williams, Quentin [Department of Earth and Planetary Science, University of California, Santa Cruz, California 95064 (United States)
2013-02-15
To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source. The rDAC, equipped with graphite heating arrays, allows simultaneous resistive and laser heating while the material is subjected to high pressure. The goals are both to extend the temperature range of external (resistive) heating and to produce environments with lower temperature gradients in a simultaneously resistive- and laser-heated rDAC. Three different geomaterials were used as pilot samples to calibrate and optimize conditions for combined resistive and laser heating. For example, in Run1, FeO was loaded in a boron-mica gasket and compressed to 11 GPa then gradually resistively heated to 1007 K (1073 K at the diamond side). The laser heating was further applied to FeO to raise temperature to 2273 K. In Run2, Fe-Ni alloy was compressed to 18 GPa and resistively heated to 1785 K (1973 K at the diamond side). The combined resistive and laser heating was successfully performed again on (Mg{sub 0.9}Fe{sub 0.1})O in Run3. In this instance, the sample was loaded in a boron-kapton gasket, compressed to 29 GPa, resistive-heated up to 1007 K (1073 K at the diamond side), and further simultaneously laser-heated to achieve a temperature in excess of 2273 K at the sample position. Diffraction patterns obtained from the experiments were deconvoluted using the Rietveld method and quantified for lattice preferred orientation of each material under extreme conditions and during phase transformation.
Raheimpour Angeneh, Saeid; Aktas, Murat Kadri
2016-11-01
Effects of the acoustic streaming motion on convective heat transfer in a rectangular shallow enclosure with sinusoidal spatial bottom wall temperature distribution are investigated numerically. Acoustic excitation is generated by the periodic vibration of left wall. The top wall of the enclosure is isothermal while the side walls are adiabatic. A FORTRAN code is developed to predict the oscillatory and mean flow fields by considering the compressible form of the Navier -Stokes equation and solved by flux-corrected transport algorithm. In order to validate the results of the simulations, a case with an unheated bottom wall is considered and compared with the existing literature. Applying the sinusoidal temperature profile to the bottom wall provides axial and transverse temperature gradients. In return these gradients strongly affect the flow pattern in the enclosure. Heat transfer depends on the flow structure considerably. This is the first time that the effect of nonzero mean vibrational flow on thermal convection from a surface with sinusoidal temperature profile investigated. Results of this study may lead up to design of new heat removal applications.
Lee, Yung Jong; Kim, Na Rae; Lee, Changsoo; Lee, Hyuck Mo
2017-02-01
Lowering the sintering temperature of nanoparticles in the electrode deposition process holds both academic and industrial interest because of the potential applications of such electrodes in polymer devices and flexible electronics. In addition, achieving uniform electrode formation after ligand exchange is equally important as lowering the sintering temperature. Here, we report a simple chemical treatment by the addition of ligand-exchanging interfaces to lower the sintering temperature; we also determine the optimum extent of ligand exchange for crack-free electrode formation. First, we investigated the structural change of Ag thin films with respect to the concentration of acrylic acid (AA) solutions. Second, we used thermal analysis to evaluate the effects of changes in the sintering temperature. We observed that the resulting conductivity of the Ag patterns was only one order of magnitude lower than that of bulk Ag when the patterns were sintered at 150 °C. The simple chemical treatment developed in this work for solution-processed Ag electrode formation can be adopted for flexible electronics, which would eliminate the need for vacuum and high-temperature processes.
Kunio, M; Shimazaki, N; Arai, T; Sakurada, M
2011-01-01
We investigate the relation between the influences on smooth muscle cells and the chronic performances of our novel short-duration heating balloon dilatation to reveal the heating conditions which can suppress the neo-intimal hyperplasia after our heating dilatations. The temperature of prototype balloon catheter surface was measured during short-duration heating balloon dilatation ex vivo. There existed 2 °C temperature variations in the long direction of prototype balloon catheter at a maximum. The neo-intimal hyperplasia occupancy rate after our short-duration heating dilatations were measured in vivo porcine study. The neo-intimal hyperplasia was suppressed most at 75 °C in balloon peak temperature in vivo. The estimated dead rate of smooth muscle cells at this condition was about 13% by the Arrhenius equation. We think that the suppression of neo-intimal hyperplasia was obtained after our short-duration heating dilatation due to the proper decrease of smooth muscle cells by heating and no thermal damages to the adventitia and surrounding tissues.
Samapundo, S; Devlieghere, F; De Meulenaer, B; Geeraerd, A H; Van Impe, J F; Debevere, J M
2005-11-15
The major objective of this study was to develop validated models to describe the effect of a(w) and temperature on the radial growth on corn of the two major fumonisin producing Fusaria, namely Fusarium verticilliodes and F. proliferatum. The growth of these two isolates on corn was therefore studied at water activities between 0.810-0.985 and temperatures between 15 and 30 degrees C. Minimum a(w) for growth was 0.869 and 0.854 for F. verticilliodes and F. proliferatum, respectively. No growth took place at a(w) values equal to 0.831 and 0.838 for F. verticilliodes and F. proliferatum, respectively. The colony growth rates, g (mm d(-1)) were determined by fitting a flexible growth model describing the change in colony diameter (mm) with respect to time (days). Secondary models, relating the colony growth rate with a(w) or a(w) and temperature were developed. A third order polynomial equation and the linear Arrhenius-Davey model were used to describe the combined effect of temperature and a(w) on g. The combined modelling approaches, predicting g (mm d(-1)) at any a(w) and/or temperature were validated on independently collected data. All models proved to be good predictors of the growth rates of both isolates on maize within the experimental conditions. The third order polynomial equation had bias factors of 1.042 and 1.054 and accuracy factors of 1.128 and 1.380 for F. verticilliodes and F. proliferatum, respectively. The linear Arrhenius-Davey model had bias factors of 0.978 and 1.002 and accuracy factors of 1.098 and 1.122 for F. verticilliodes and F. proliferatum, respectively. The results confirm the general finding that a(w) has a greater influence on fungal growth than temperature. The developed models can be applied for the prevention of Fusarium growth on maize and the development of models that incorporate other factors important to mould growth on maize.
Gas dynamics of a supersonic radial jet. Part II
Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.
2016-05-01
The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.
Martin-Sanchez, J., E-mail: javier.martin.nano@gmail.com; Marques, L.; Vieira, E. M. F. [University of Minho, Department of Physics and Centre of Physics (Portugal); Doan, Q. T.; Marchand, A.; El Hdiy, A. [LMEN, Universite de Reims Champagne-Ardenne (France); Rolo, A. G.; Pinto, S. R. C.; Ramos, M. M. D.; Chahboun, A.; Gomes, M. J. M. [University of Minho, Department of Physics and Centre of Physics (Portugal)
2012-05-15
In this work, we report on the synthesis of Ge nanocrystals (NCs) by pulsed laser deposition (PLD) at room temperature (RT) in an argon atmosphere without any further annealing process. Our results show that functional thin films of crystalline Ge nanoparticles with spherical shapes can be obtained by PLD directly on alumina layers deposited on n-doped Si (100) substrates. In addition, we also demonstrate that a uniform size distribution of NCs with an average diameter of about 3 nm and a density of 2.3 Multiplication-Sign 10{sup 11} cm{sup -2} can be obtained by optimizing a shadow mask set-up, where a solid disk is introduced between the target and the substrate. Charge/discharge effects in Ge NCs deposited on a high-k amorphous alumina layer are also evidenced by conductive atomic force microscopy, which makes them suitable for memory applications.
Akhmadeev, Yu. H.; Denisov, V. V.; Koval, N. N.; Kovalsky, S. S.; Lopatin, I. V.; Schanin, P. M.; Yakovlev, V. V.
2017-01-01
Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m2 at gas pressures of 0.4-1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 1012 cm-3 and an electron temperature of 1 eV in a volume of >0.2 m3 was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm2.
Molodenskii, S. M.
2017-03-01
The question of ambiguity in the solution of the inverse problem for determining the Brünt-Väisäla frequency in the Earth's mantle from the entire set of the up-to-date data on seismicity, free oscillations, and forced nutations of the Earth, as well as the data on the Earth's total mass and total moment of inertia, is considered. Based on the results of a series of numerical experiments, the band of admissible distributions of the Brünt-Väisäla frequency and mantle density with depth is calculated. This estimate is used for investigating the convective and gravitational stability of the different regions of the mantle against relatively small adiabatic and nonadiabatic perturbations. The generalization of the known Rayleigh criterion of convective stability of homogeneous and a nonself-gravitating incompressible viscous fluid for the case of a compressible self-gravitating fluid is given. A system of the ordinary eight-order differential equations with complex coefficients and homogeneous boundary conditions, whose eigenvalues determine the transition from the stable state to instability, is obtained. Examples of the numerical determination of these eignevalues are presented. For interpreting the data about the band of the admissible distributions of the Brünt-Väisäla frequency with depth, the notion of the effective bulk modulus of the medium at different depths is introduced. This quantity governs the depth changes in temperature in a convecting mantle and allows us to make a conclusion about the role of heat conduction and the radial heterogeneity of the mantle composition without imposing any constraints on the convection mechanism. It is shown that within the present-day observation errors in the frequencies of the Earth's free oscillations, the simplest reasonable model is that in which the ratio of the effective bulk modulus to its adiabatic value in the lower and middle mantle is 1.043 ± 0.05. The closeness of this value to unity indicates that
In Kim, Jong; Jeong, Chan-Yong; Kwon, Hyuck-In; Jung, Keum Dong; Park, Mun Soo; Kim, Ki Hwan; Seo, Mi Seon; Lee, Jong-Ho
2017-03-01
We propose a new local degradation model based on a non-uniform increase in donor-like traps (DLTs) determined by distributions of an electric field and measured device temperature in amorphous In–Ga–Zn–O (a-IGZO) thin film transistors (TFTs). A systematic investigation of the degradation model reveals that vertical field-dependent DLTs are essential for modeling of measured asymmetric electrical characteristics between the source and drain after positive gate and drain bias stressing. An increased temperature due to self-heating is found to play a role in intensifying the asymmetric degradation. From the individual simulation of measured transfer curves at different stress times, the model parameters and an asymmetry index as a function of stress time are extracted. It is expected that this novel methodology will provide new insight into asymmetric degradation and be utilized to predict the influence of electric field and heat on degradation under various bias-stress conditions in a-IGZO TFTs.
Improving the uniformity of RF-plasma density by a humped variable-gap spiral antenna
Xu Xu; Li Lin-Sen; Liu Feng; Zhou Qian-Hong; Liang Rong-Qing
2008-01-01
This paper develops a humped spiral antenna of top inductively coupled plasma with variable gap.Comparing with planar spiral antennas,it investigates the performance of humped spiral antennae in the calculated electromagnetic configurations and experimental results.It finds that the humped antenna has the improved uniformity of plasma density in the radial direction and the decreased electron temperature in the top inductively coupled plasma.By experimental and theoretical analyses,the plasma performance in the case of humped antennae is considered to be the combined results of the uniform electromagnetic configurations and the depressed capacitively coupling effect.
Stirling Engine With Radial Flow Heat Exchangers
Vitale, N.; Yarr, George
1993-01-01
Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.
Hüseyin Yapici; Gülşah Özişik; M Serdar Genç
2010-04-01
This work presents numerical analyses of transient temperature and thermally-induced stress distributions in a hollow steel sphere heated by a moving uniform heat source applied on a certain zenithal segment (the heated zenithal segment, $\\Theta_H$) of its outer surface (the processed surface) under stagnant ambient conditions. Along the process, the moving heat source (MHS) moves angularly from the ﬁrst zenithal segment to the last zenithal segment on the processed surface with a constant angular speed,, and then returns backward to the ﬁrst zenithal segment with the same speed. It is assumed that the inner surface is heat-isolated and that the outer surface except the heated segment is under stagnant ambient conditions. The numerical calculations are performed individually for a wide range of thermal conductivity, , of steel and for the different $\\Theta_Hs$. The maximum effective thermal stress ratio calculated as per the heat ﬂux intensity $(q0)$ can be reduced in considerable amounts. By increasing (∼ 75%) and (∼ 63%) the maximum effective thermal stress ratio calculated can be signiﬁcantly reduced.
Radial furnace shows promise for growing straight boron carbide whiskers
Feingold, E.
1967-01-01
Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.
Uniform excitations in magnetic nanoparticles
Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt
2010-01-01
We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....
Uniform excitations in magnetic nanoparticles
Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt
2010-01-01
We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....
Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.
2010-01-01
The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.
The radial velocity experiment (RAVE) : Fourth data release
Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Boeche, C.; Seabroke, G. M.; Siebert, A.; Zwitter, T.; Binney, J.; de Laverny, P.; Recio-Blanco, A.; Williams, M. E. K.; Piffl, T.; Enke, H.; Roeser, S.; Bijaoui, A.; Wyse, R. F. G.; Freeman, K.; Munari, U.; Carrillo, I.; Anguiano, B.; Burton, D.; Campbell, R.; Cass, C. J. P.; Fiegert, K.; Hartley, M.; Parker, Q. A.; Reid, W.; Ritter, A.; Russell, K. S.; Stupar, M.; Watson, F. G.; Bienayme, O.; Bland-Hawthorn, J.; Gerhard, O.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Conrad, C.; Famaey, B.; Faure, C.; Just, A.; Kos, J.; Matijevic, G.; McMillan, P. J.; Minchev, I.; Scholz, R.; Sharma, S.; Siviero, A.; de Boer, E. Wylie; Zerjal, M.
2013-01-01
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atm
The Radial Velocity Experiment (RAVE): Fourth Data Release
Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Boeche, C.; Seabroke, G. M.; Siebert, A.; Zwitter, T.; Binney, J.; de Laverny, P.; Recio-Blanco, A.; Williams, M. E. K.; Piffl, T.; Enke, H.; Roeser, S.; Bijaoui, A.; Wyse, R. F. G.; Freeman, K.; Munari, U.; Carrillo, I.; Anguiano, B.; Burton, D.; Campbell, R.; Cass, C. J. P.; Fiegert, K.; Hartley, M.; Parker, Q. A.; Reid, W.; Ritter, A.; Russell, K. S.; Stupar, M.; Watson, F. G.; Bienaymé, O.; Bland-Hawthorn, J.; Gerhard, O.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Conrad, C.; Famaey, B.; Faure, C.; Just, A.; Kos, J.; Matijevič, G.; McMillan, P. J.; Minchev, I.; Scholz, R.; Sharma, S.; Siviero, A.; de Boer, E. Wylie; Žerjal, M.
2013-01-01
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atm
MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR
Balent, R.
1963-03-12
This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)
Radial and temporal variations in surface heat transfer during cryogen spray cooling
Franco, Walfre [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Liu Jie [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States); Wang Guoxiang [Department of Mechanical Engineering, University of Akron, Akron, OH 44325 (United States); Nelson, J Stuart [Beckman Laser Institute, University of California, Irvine, CA 92617 (United States); Aguilar, Guillermo [Department of Mechanical Engineering, University of California, Riverside, CA 92521 (United States)
2005-01-21
Cryogen spray cooling (CSC) is a heat extraction process that protects the epidermis from thermal damage during dermatologic laser surgery. The objective of the present work is to investigate radial and temporal variations in the heat transferred through the surface of a skin phantom during CSC. A fast-response thermal sensor is used to measure surface temperatures every 1 mm across a 16 mm diameter of the sprayed surface of the phantom. An analytical expression based on Fourier's law and Duhamel's theorem is used to compute surface heat fluxes from temperature measurements. Results show that radial and temporal variations of the boundary conditions have a strong influence on the homogeneity of heat extraction from the skin phantom. However, there is a subregion of uniform cooling whose size is time dependent. It is also observed that the surface heat flux undergoes a marked dynamic variation, with a maximum heat flux occurring at the centre of the sprayed surface early in the spurt followed by a quick decrease. The study shows that radial and temporal variations of boundary conditions must be taken into account and ideally controlled to guarantee uniform protection during CSC of human skin.
Rodiet, Christophe; Remy, Benjamin; Degiovanni, Alain
2016-05-01
In this paper, it is shown how to select the optimal wavelengths minimizing the relative error and the standard deviation of the temperature. Furthermore, it is shown that the optimal wavelengths in mono-spectral and bi-spectral methods (for a Planck's law) can be determined by laws analogous to the displacement Wien's law. The simplicity of these laws can thus allow real-time selection of optimal wavelengths for a control/optimization of industrial processes, for example. A more general methodology to obtain the optimal wavelengths selection in a multi-spectral method (taking into account the spectral variations of the global transfer function including the emissivity variations) for temperature measurement of surfaces exhibiting non-uniform emissivity, is also presented. This latter can then find an interest in glass furnaces temperature measurement with spatiotemporal non-uniformities of emissivity, the control of biomass pyrolysis, the surface temperature measurement of buildings or heating devices, for example. The goal consists of minimizing the standard deviation of the estimated temperature (optimal design experiment). For the multi-spectral method, two cases will be treated: optimal global and optimal constrained wavelengths selection (to the spectral range of the detector, for example). The estimated temperature results obtained by different models and for different number of parameters and wavelengths are compared. These different points are treated from theoretical, numerical and experimental points of view.
赵建军; 吴锐
2015-01-01
Residue hydrotreating is an important process to upgrade heavy oil and a major measure to optimize feedstock of RFCC units. Fixed-bed residue hydrotreating technology is the most widely used one in many residue hydrotreating technologies. Industryapplicationresults show that radial temperature difference in residue hydrotreating reactor is one of the major factors that constrainthe unit capacity and long term stable operation.Inthispaper,causes of radial temperature differencewereanalyzedbytaking theresidue hydrotreating unit at Q refineryasexample,and countermeasuresto inhibittheradialtemperature differencewere put forward.%渣油加氢技术是重油改质的重要手段，是优化重油催化裂化装置进料的主要措施，其中以固定床渣油加氢技术应用最广。工业运转表明，反应器径向温差问题是制约渣油加氢装置满负荷生产和长周期运转的重要因素之一。以Q炼厂渣油加氢装置为例分析了径向温差产生的原因，提出了合理的应对措施来解决径向温差问题。
Krausche, S.; Ohlsson, Johan
1998-04-01
The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs
Dynamic balancing with rotating radial electromagnetic force
李勇; 陆永平
2004-01-01
A method of producing rotating radial electromagnetic force with a separable structure is proposed,and an experimental model was designed on which open loop vibration control experiments were carried out. Experimental results prove that the electromagnetic force designed has a constant magnitude and an uniform speed,and the idea of using an electromagnetic force as an active control in automatic balancing is correct in principle,and practicable in engineering.
Uniform quantized electron gas
Høye, Johan S.; Lomba, Enrique
2016-10-01
In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T = 0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.
Non radial motions in a CDM model
Gambera, M
1998-01-01
We show how non-radial motions, originating in the outskirts of clusters of galaxies, may reduce the discrepancy between the Cold Dark Matter (CDM) predicted X-ray temperature distribution function of clusters of galaxies and the observed one and also the discrepancy between the CDM predicted two-point correlation function of clusters of galaxies and that observed. We compare Edge et al. (1990) and Henry & Arnaud (1991) data with the distribution function of X-ray temperature, calculated using Press- Schechter's (1974 - hereafter PS) theory and Evrard's (1990) prescriptions for the mass-temperature relation and taking account of the non-radial motions originating from the gravitational interaction of the quadrupole moment of the protocluster with the tidal field of the matter of the neighboring protostructures. We find that the model produces a reasonable clusters temperature distribution. We compare the two-point cluster correlation function which takes account of the non-radial motions both with that ob...
Huanxiong Xia
2014-12-01
Full Text Available Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance.
张哲; 李立民; 田津津; 郭永刚; 李曼
2014-01-01
Social development promotes the growth of food production, thus increasing the requirement for food cold-chain circulation. The cold chain of fruits & vegetables occurs among picking, storage, and transportation and the entire process prior to consumption. It is what keeps fruits&vegetables at the appropriate temperature environment in order to maximize their storage quality assurance. Refrigerated transport has higher requirements on vehicles such as good refrigeration insulation properties free from large temperature fluctuations. Using refrigerated trucks is an advanced means of meeting the refrigerated transport development trends. Refrigerated trucks are able to meet the diverse market and the small quantities of frozen or fresh goods. Recently, the quantity of refrigerated trucks has been increasing rapidly. It is very important for refrigerated trucks to improve their uniform temperature field. The temperature field distribution of refrigerated trucks is one of the key factors that ensures a uniform distribution of the cooling capacity and it is what achieves energy reservation and weight loss reduction. Therefore, ensuring a uniform flow in the distribution of cargo area is a critical issue in improving the quality of transported fruits&vegetables. Air supply is one of the key factors that ensures a uniform temperature field distribution to keep fruits and vegetables at good quality, prolong the shelf-life of products, and reduce loss in the refrigerated transport. Therefore, the experimental system for a refrigerated truck and data acquisition system has been developed. The experimental system consists of the refrigeration system, carriage of the refrigerated truck, and the fan. The data acquisition system includes the acquisition board, acquisition program, personal computer, anemometer, and thermocouples. The temperature in the refrigerated truck can be adjusted by the thermostat based on the different temperature requirements. To assess the temperature
Coghetto Roland
2016-09-01
Full Text Available In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.
Liermann, H; Merkel, S; Miyagi, L; Wenk, H; Shen, G; Cynn, H; Evans, W J
2009-07-15
We introduce the design and capabilities of a new resistive heated diamond anvil cell that can be used for side diffraction at simultaneous high-pressure and -temperature. The device can be used to study lattice-preferred orientations in polycrystalline samples up to temperatures of 1100 K and pressures of 36 GPa. Capabilities of the instrument are demonstrated with preliminary results on the development of textures in the BCC, FCC and HCP polymorphs of iron during a non-hydrostatic compression experiment at simultaneous high-pressure and -temperature.
White, Kerry A.
2000-01-01
In 1994, Long Beach (California) Unified School District began requiring uniforms in all elementary and middle schools. Now, half of all urban school systems and many suburban schools have uniform policies. Research on uniforms' effectiveness is mixed. Tightened dress codes may be just as effective and less litigious. (MLH)
Dowling-Sendor, Benjamin
2002-01-01
Reviews a recent decision in "Littlefield" by the 5th Circuit upholding a school uniform policy. Advises board member who wish to adopt a school uniform policy to solicit input from parents and students, research the experiences of other school districts with uniform policies, and articulate the interests they wish to promote through uniform…
Lange, K H W; Jansen, T; Asghar, S
2011-01-01
Sympathetic block causes vasodilatation and increases in skin temperature (T(s)). However, the T(s) response after specific nerve blocking is unknown. In this study, we hypothesized that T(s) would increase after specific blocking of the nerve innervating that area....
Lange, K H W; Jansen, T; Asghar, S
2011-01-01
Sympathetic block causes vasodilatation and increases in skin temperature (T(s)). However, the T(s) response after specific nerve blocking is unknown. In this study, we hypothesized that T(s) would increase after specific blocking of the nerve innervating that area....
Bartoníček, J; Naňka, O; Tuček, M
2015-10-01
In the clinical practice, radial shaft may be exposed via two approaches, namely the posterolateral Thompson and volar (anterior) Henry approaches. A feared complication of both of them is the injury to the deep branch of the radial nerve. No consensus has been reached, yet, as to which of the two approaches is more beneficial for the proximal half of radius. According to our anatomical studies and clinical experience, Thompson approach is safe only in fractures of the middle and distal thirds of the radial shaft, but highly risky in fractures of its proximal third. Henry approach may be used in any fracture of the radial shaft and provides a safe exposure of the entire lateral and anterior surfaces of the radius.The Henry approach has three phases. In the first phase, incision is made along the line connecting the biceps brachii tendon and the styloid process of radius. Care must be taken not to damage the lateral cutaneous nerve of forearm.In the second phase, fascia is incised and the brachioradialis identified by the typical transition from the muscle belly to tendon and the shape of the tendon. On the lateral side, the brachioradialis lines the space with the radial artery and veins and the superficial branch of the radial nerve running at its bottom. On the medial side, the space is defined by the pronator teres in the proximal part and the flexor carpi radialis in the distal part. The superficial branch of the radial nerve is retracted together with the brachioradialis laterally, and the radial artery medially.In the third phase, the attachment of the pronator teres is identified by its typical tendon in the middle of convexity of the lateral surface of the radial shaft. The proximal half of the radius must be exposed very carefully in order not to damage the deep branch of the radial nerve. Dissection starts at the insertion of the pronator teres and proceeds proximally along its lateral border in interval between this muscle and insertion of the supinator
Chao, Winston C.; Chen, Baode; Lau, William K. M. (Technical Monitor)
2002-01-01
Previous studies (Chao 2000, Chao and Chen 2001, Kirtman and Schneider 2000, Sumi 1992) have shown that, by means of one of several model design changes, the structure of the ITCZ in an aqua-planet model with globally uniform SST and solar angle (U-SST-SA) can change between a single ITCZ at the equator and a double ITCZ straddling the equator. These model design changes include switching to a different cumulus parameterization scheme (e.g., from relaxed Arakawa Schubert scheme (RAS) to moist convective adjustment scheme (MCA)), changes within the cumulus parameterization scheme, and changes in other aspects of the model, such as horizontal resolution. Sometimes only one component of the double ITCZ shows up; but still this is an ITCZ away from the equator, quite distinct from a single ITCZ over the equator. Since these model results were obtained by different investigators using different models which have yielded reasonable general circulation, they are considered as reliable. Chao and Chen (2001; hereafter CC01) have made an initial attempt to interpret these findings based on the concept of rotational ITCZ attractors that they introduced. The purpose of this paper is to offer a more complete interpretation.
Uniform magnetic excitations in nanoparticles
Mørup, Steen; Hansen, Britt Rosendahl
2005-01-01
We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...... materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation...
李愿杰; 郑家贵; 冯良桓; 黎兵; 曾广根
2009-01-01
The transformation of preparation temperature field of large area CdTe films was simulated, and the effect of temperature field' s uniformity on CdS/CdTe solar cells was investigated by the characteration of I -V,C -V and Deep Level Transient Spectroscopy(DLTS). The result showed that the uniformity of temperature field has effect on Isc and FF, but lacks impact on Voc. Least dark saturated current density,more higher carrier concentration and better photovoltaie performance were observed in the sample prepared at 580℃ ; The response of deep-level impuri-ties in CdTe films is consistent with temperature and frequency, but the sample(580 ℃) has less deep-level impu-rities' recombination because of lower hole trap concentration. 8.2% efficiency of the CdS/CdTe solar cells was reached by improved the uniformity of temperature field.%采用近空间升华法(CSS)制备CdTe多晶薄膜,模拟制备过程中的温场变化,结合,I-V、C-V特性及深能级瞬态谱研究温场均匀性对CdS/CdTe太阳电池性能的影响.结果表明,温场分布和薄膜厚度分布基本一致,温场均匀性对电池组件的开路电压影响不大,对短路电流和填充因子有影响,CdTe薄膜的深中心对温度和频率的响应基本一致.580℃制备的样品暗饱和电流密度最小,载流子浓度较高,光电特性较好,而且空穴陷阱浓度较低,深中心复合作用较小.通过改进温场的均匀性能够制备出组件转换效率为8.2%的CdS/CdTe太阳电池.
魏文礼; 白朝伟; 刘玉玲
2016-01-01
在冬季或夏季,沉淀池内进水与池内水的温差将导致异重流现象,从而影响池内流态及流速.本文选取Realizable k-ε湍流模型,通过设置池内水与进水的不同温度,对进口处两种不同挡板形式的辐流式沉淀池冬季与夏季工况下异重流的演变规律进行三维数值模拟.结果表明:夏季低温水进入池内产生下异重流,而冬季高温水进入池内产生上异重流;夏季高流速水流在沉淀池底部,产生逆时针旋流,冬季高流速水流在沉淀池上部,产生较大的顺时针旋流.长挡板形式下的辐流式沉淀池对冬季产生的上异重流的影响更为明显,使得池内速度场更加均匀.%In summer or winter,temperature differences between the inflow water and the water in a pool will cause density flow phenomenon,whereby affecting flow pattern and flow speed in a Radial Sedimentation Tank.The Realizable k-εmodel is used to carry out 3D numerical simula-tion of density current evolution regulation under the operational conditions by setting different temperatures between the inflow water and the water in the tank with two different forms of feed baffles near the inlet in summer or winter.The results show that:low-temperature inflow water can produce gravity flow in bottom region in summer while high-temperature inflow water pro-duces the gravity flow in top region in winter;the higher velocity water is in bottom region of sedimentation pond,and counterclockwise vortex is obviously formed in summer,while higher ve-locity water is in top region of sedimentation pond ,clockwise vortex is obviously formed in win-ter.The impact of the longer baffle on the density currents in winter is more obvious,and make velocity field more uniform in the tank.
School Uniforms. Research Brief
Walker, Karen
2007-01-01
Does clothing make the person or does the person make the clothing? How does what attire a student wears to school affect their academic achievement? In 1996, President Clinton cited examples of school violence and discipline issues that might have been avoided had the students been wearing uniforms ("School uniforms: Prevention or suppression?").…
Linda
2008-01-01
The uniforms for Beijing Olympics’ workers, technical staff and volunteers have been unveiled to mark the 200-day countdown to the Games. The uniforms feature the key element of the clouds of promise and will be in three colors:red for Beijing Olympic Games Committee staff, blue
Radial-Gap Motor for Ship Propulsion
Yanamoto, Toshiyuki; Yokoyama, Minoru
The KHI team has developed radial gap high-temperature superconducting (HTS) motors of three sizes, 1 MW-class, 3 MW, and 20 MW, to be used for electric propulsion systems for ships. The volumetric torque density of the assembled 3 MW HTS motor was recorded at 40 kNm/m3 in the load test; the world's highest in the class.
Continuous Time Random Walks for Non-Local Radial Solute Transport
Dentz, Marco; Borgne, Tanguy le
2016-01-01
This paper derives and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneou...
Radial Halbach Magnetic Bearings
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2009-01-01
Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while
Improved Lattice Radial Quantization
Brower, Richard C; Fleming, George T
2014-01-01
Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.
The Radial Velocity Experiment (RAVE) : Second data release
Zwitter, T.; Siebert, A.; Munari, U.; Freeman, K. C.; Siviero, A.; Watson, F. G.; Fulbright, J. P.; Wyse, R. F. G.; Campbell, R.; Seabroke, G. M.; Williams, M.; Steinmetz, M.; Bienayme, O.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Anguiano, B.; Boeche, C.; Burton, D.; Cass, P.; Dawe, J.; Fiegert, K.; Hartley, M.; Russell, K.; Veltz, L.; Bailin, J.; Binney, J.; Bland-Hawthorn, J.; Brown, A.; Dehnen, W.; Evans, N. W.; Fiorentin, P. Re; Fiorucci, M.; Gerhard, O.; Gibson, B.; Kelz, A.; Kuijken, K.; Matijevic, G.; Minchev, I.; Parker, Q. A.; Penarrubia, J.; Quillen, A.; Read, M. A.; Reid, W.; Roeser, S.; Ruchti, G.; Scholz, R. -D.; Smith, M. C.; Sordo, R.; Tolstoi, E.; Tomasella, L.; Vidrih, S.; De Boer, E. Wylie
We present the second data release of the Radial Velocity Experiment ( RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters ( temperature, metallicity, surface gravity, and rotational velocity) of up to one million stars using the 6 dF multi-object
Robinson, James B.; Darr, Jawwad A.; Eastwood, David S.; Hinds, Gareth; Lee, Peter D.; Shearing, Paul R.; Taiwo, Oluwadamilola O.; Brett, Dan J. L.
2014-04-01
Thermal runaway is a major cause of failure in Li-ion batteries (LIBs), and of particular concern for high energy density transport applications, where safety concerns have hampered commercialisation. A clear understanding of electro-thermal properties and how these relate to structure and operation is vital to improving thermal management of LIBs. Here a combined thermal imaging, X-ray tomography and electrochemical impedance spectroscopy (EIS) approach was applied to commercially available 18650 cells to study their thermal characteristics. Thermal imaging was used to characterise heterogeneous temperature distributions during discharge above 0.75C; the complementary information provided by 3D X-ray tomography was utilised to evaluate the internal structure of the battery and identify the regions causing heating, specifically the components of the battery cap.
Stone M.B.; Niedziela J.L.; Overbay M.A.; Abernathy D.L.
2015-01-01
We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. W...
Perceived radial translation during centrifugation
Bos, J.E.; Correia Grácio, B.J.
2015-01-01
BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation percepti
Antiproton compression and radial measurements
Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.
2008-08-01
Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.
Porcine radial artery decellularization by high hydrostatic pressure.
Negishi, Jun; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangoo; Higami, Tetsuya; Kishida, Akio
2015-11-01
Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells.
Fuhr, M J; Schubert, M; Schwarze, F W M R; Herrmann, H J
2011-01-01
The present work investigates environmental effects on the growth of fungal colonies of P. vitreus by using a lattice-free discrete modelling approach called FGM (Fuhr et al. (2010), arXiv:1101.1747), in which hyphae and nutrients are considered as discrete structures. A discrete modelling approach allows studying the underlying mechanistic rule concerning the basic architecture and dynamic of fungal networks on the scale of a single colony. By comparing simulations of the FGM with laboratory experiments of growing fungal colonies on malt extract agar we show that combined effect of temperature, pH and water activity on the radial growth rate of a fungal colony on a macroscopic scale may be explained by a power law for the growth costs of hyphal expansion on a microscopic scale. The information about the response of the fungal mycelium on a microscopic scale to environmental conditions is essential to simulate its behavior in complex structure substrates such as wood, where the impact of the fungus to the woo...
Radial Forcing and Edgar Allan Poe's Lengthening Pendulum
McMillan, Matthew; Whitney, Heather M
2013-01-01
Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner radial driving may easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum, and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergra...
Huang, Yong-Zhen; Lv, Xiao-Meng; Zou, Ling-Xiu; Long, Heng; Xiao, Jin-Long; Yang, Yue-De; Du, Yun
2014-04-01
High-speed modulation characteristics are investigated for microdisk lasers theoretically and experimentally. In rate equation analysis, the microdisk resonator is radially divided into two regions under uniform carrier density approximation in each region. The injection current profile, carrier spatial hole burning, and diffusion are accounted for in the evaluation of small-signal modulation curves and the simulation of large-signal responses. The numerical results indicate that a wide mode field pattern in radial direction has merit for high-speed modulation, which is expected for coupled modes in the microdisk lasers connected with an output waveguide. For a 15-μm-radius microdisk laser connected with a 2-μm-wide output waveguide, the measured small-signal response curves with a low-frequency roll-off are well in agreement with the simulated result at a 2-μm radial width for the mode intensity distribution. The resonant frequencies of 7.2, 5.9, and 3.9 GHz are obtained at the temperatures of 287, 298, and 312 K from the small-signal response curves, and clear eye diagrams at 12.5 Gb/s with an extinction ratio of 6.1 dB are observed for the microdisk laser at the biasing current of 38 mA and 287 K.
High-Temperature Radial Turbine Demonstration.
1980-04-01
172 Parent Metal PA101 Test Results .. ...... ........ 174 Cast-to-Size Mar - M247 Test Results. .. ...... ..... 177 Final Design Rotor Spin Testing...Parameters of Mar - M247 Test Bars .. 200 C - Chemistry, Tip Response, and Mechanical Properties for Test Rings .. ...... ............ ...... 201 D - Wall Metal...108 78 Fine microshrinkage associated with low ductility--1400 0 F Mar - M247 stress rupture bar
Dropwise Condensation on a Radial Gradient Surface
Macner, Ashley; Daniel, Susan; Steen, Paul
2013-11-01
In transient dropwise condensation from steam onto a cool surface, distributions of drops evolve by nucleation, growth, and coalescence. This study examines how surface functionalization affects drop growth and coalescence. Surfaces are treated by silanization to deliver either a spatially uniform contact-angle (hydrophilic, neutral, and hydrophobic) or a radial gradient of contact-angles. The time evolution of number-density and associated drop-size distributions are reported. For a typical condensation experiment on a uniform angle surface, the number-density curves show two regimes: an initial increase in number-density as a result of nucleation and a subsequent decrease in number-density as a result of larger scale coalescence events. Without a removal mechanism, the fractional coverage, regardless of treatment, approaches unity. For the same angle-surface, the associated drop-size distributions progress through four different shapes along the growth curve. In contrast, for a radial gradient surface where removal by sweeping occurs, the number-density increases and then levels off to a value close to the maximum number-density that is well below unity coverage and only two shapes of distributions are observed. Implications for heat transfer will be discussed. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.
Stone M.B.
2015-01-01
Full Text Available We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.
Stone, M. B.; Niedziela, J. L.; Overbay, M. A.; Abernathy, D. L.
2015-01-01
We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.
Radial reflection diffraction tomography
Lehman, Sean K.
2012-12-18
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Radial Reflection diffraction tomorgraphy
Lehman, Sean K
2013-11-19
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Hurt, E E; Adams, M C; Barbano, D M
2015-02-01
Increasing the temperature of microfiltration (MF) to >50°C may allow for operation at higher fluxes and reduce the bacterial growth during MF. However, there is a concern that operating at higher temperatures could cause calcium phosphate precipitation that would lead to membrane fouling. Our objective was to determine the effect of operating a 0.1-µm ceramic uniform transmembrane pressure MF unit at temperatures of 50, 55, 60, and 65°C on membrane fouling and serum protein (SP) removal from skim milk with and without removal of low-molecular-weight soluble milk components by ultrafiltration (UF) before MF at a flux of 54kg/m(2) per hour. For each replicate, 1,000kg of pasteurized skim milk was split into 2 batches. One batch was ultrafiltered (with diafiltration) to remove an average of 89±2% of the lactose and a percentage of the soluble calcium and phosphorus. The retentate from UF was diluted back to the protein concentration of skim milk, creating the diluted UF retentate (DUR). On subsequent days, both the DUR and skim milk were run on the MF unit with the flux maintained at 54kg/m(2) per hour and a concentration factor of 3× and the system run in recycle mode. The temperature of MF was increased in 5°C steps from 50 to 65°C, with a 1-h stabilization period after each increase. During the run, transmembrane pressure was monitored and permeate and retentate samples were taken and analyzed to determine if any changes in SP, calcium, or phosphorus passage through the membrane occurred. Increasing temperature of MF from 50 to 65°C at a flux of 54kg/m(2) per hour did not produce a large increase in membrane fouling when using either skim milk or a DUR as the MF feed type as measured by changes in transmembrane pressure. Increasing the temperature to 65°C only caused a slight reduction in calcium concentration in the permeate (11±3%) that was similar between the 2MF feed types. Increasing processing temperature reduced the percentage of SP removal by the
Uniformly Convex Metric Spaces
Kell Martin
2014-01-01
In this paper the theory of uniformly convex metric spaces is developed. These spaces exhibit a generalized convexity of the metric from a fixed point. Using a (nearly) uniform convexity property a simple proof of reflexivity is presented and a weak topology of such spaces is analyzed. This topology called co-convex topology agrees with the usualy weak topology in Banach spaces. An example of a $CAT(0)$-spaces with weak topology which is not Hausdorff is given. This answers questions raised b...
刘玉玲; 张振; 魏文礼
2015-01-01
The paper employed computational fluid dynamics ( CFD) method to simulate the density cur-rent on the hydraulic characteristics in radial flow sedimentation tank .It used Realizable k -εmodel and set up full water in a sedimentation tank at initial time to simulate the property of density current by set -ting the different temperature between inflow water and water in tank in summer and winter .The results show that the density current with counterclockwise vortexes is generated on bottom in summer ,low-tem-perature water flows from bottom to surface ,and the maximum velocity appears near bottom of tank;the density current with clockwise vortexes is generated near top in winter;high-temperature water flows from surface to bottom and the maximum velocity appears near top of the tank .The temperature difference re-sult in density current and produced larger recirculation region in sedimentation tank and affected the wa -ter flow property and the efficiency of wastewater treatment in sedimentation tank .%用计算流体力学的方法对某辐流式沉淀池异重流现象进行数值模拟。选用Realizable k －ε湍流模型，设初始时刻沉淀池内充满水，通过设置池内水与进水的不同温度，对沉淀池冬夏季不同时刻各工况下异重流的演变规律进行二维数值模拟。结果表明：夏季产生逆时针的下异重流，低温水自底部向表面蔓延，池内最大流速在沉淀池底部附近；冬季产生顺时针的上异重流，高温水自表面向下部蔓延，池内最大流速在沉淀池表面附近。温差导致的异重流，使沉淀池内产生较大的回流区，影响了沉淀池的流态及污水处理效率。
Uniform random number generators
Farr, W. R.
1971-01-01
Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.
Waves in Radial Gravity Using Magnetic Fluid
Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.
1999-01-01
Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to
1983-01-01
There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water
Radial Reflection Diffraction Tomography
Lehman, S K; Norton, S J
2003-10-10
We develop a wave-based tomographic imaging algorithm based upon a single rotating radially outward oriented transducer. At successive angular locations at a fixed radius, the transducer launches a primary field and collects the backscattered field in a ''pitch/catch'' operation. The hardware configuration, operating mode, and data collection method is identical to that of most medical intravascular ultrasound (IVUS) systems. IVUS systems form images of the medium surrounding the probe based upon ultrasonic B-scans, using a straight-ray model of sound propagation. Our goal is to develop a wave-based imaging algorithm using diffraction tomography techniques. Given the hardware configuration and the imaging method, we refer to this system as ''radial reflection diffraction tomography.'' We consider two hardware configurations: a multimonostatic mode using a single transducer as described above, and a multistatic mode consisting of a single transmitter and an aperture formed by multiple receivers. In this latter case, the entire source/receiver aperture rotates about the fixed radius. Practically, such a probe is mounted at the end of a catheter or snaking tube that can be inserted into a part or medium with the goal of forming images of the plane perpendicular to the axis of rotation. We derive an analytic expression for the multimonostatic inverse but ultimately use the new Hilbert space inverse wave (HSIW) algorithm to construct images using both operating modes. Applications include improved IVUS imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts with existing access holes.
Consequences of spectrograph illumination for the accuracy of radial-velocimetry
Boisse, I; Chazelas, B; Perruchot, S; Pepe, F; Lovis, C; Hebrard, G
2010-01-01
For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial v...
Antiproton compression and radial measurements
Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y
2008-01-01
Control of the radial proﬁle of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial proﬁle, and its relation to that of the electron plasma. We also measure the outer radial proﬁle by ejecting antiprotons to the trap wall using an octupole magnet.
Improvement of Uniformity of Inductively Coupled Plasma with a Cone Spiral Antenna
LI Lin-Sen; XU Xu; LIU Feng; ZHOU Qian-Hong; NIE Zong-Fu; LIANG Yi-Zi; LIANG Rong-Qing
2008-01-01
Uniformity of inductively coupled plasma (ICP) is improved with a cone spiral antenna in our experiment. Performance of the ICP with a new type of antenna is experimentally investigated, The results indicate that the uniformity of plasma density in the radial direction is obviously improved as compared to the ICP with a planar spiral antenna. Performance of ICP is analysed with the experimental results.
Uniform Requirements for Manuscripts
2011-01-01
@@ Introduction The Uniform requirements are instructions to authors on how to prepare manuscripts.If authors prepare their manuscripts in the style specified in these requirements, editors of the participating journals will not return the manuscripts for changes in style before considering them for publication.In the publishing process, however, the journals may alter accepted manuscripts to conform with details of their publication styles.
Analytical examination of a spiral beam scanning method for uniform irradiation
Fukuda, Mitsuhiro; Okumura, Susumu; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment
1997-03-01
A new circular beam scanning method for uniform irradiation of high-energy, intense ion beams over a large area has been developed. A sweeping speed and a trajectory density in a radial direction are kept constant to obtain uniform fluence distribution. A radial position of a beam spot on a target and an angular frequency of the circular motion are expressed by an irrational function of time. The beam is swept continuously, and a beam trajectory becomes spiral. More than 90 % uniformity of the fluence distribution can been achieved over a large area. (author)
Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography.
Munshi, A M; Dheeraj, D L; Fauske, V T; Kim, D C; Huh, J; Reinertsen, J F; Ahtapodov, L; Lee, K D; Heidari, B; van Helvoort, A T J; Fimland, B O; Weman, H
2014-02-12
We report on the epitaxial growth of large-area position-controlled self-catalyzed GaAs nanowires (NWs) directly on Si by molecular beam epitaxy (MBE). Nanohole patterns are defined in a SiO2 mask on 2 in. Si wafers using nanoimprint lithography (NIL) for the growth of positioned GaAs NWs. To optimize the yield of vertical NWs the MBE growth parameter space is tuned, including Ga predeposition time, Ga and As fluxes, growth temperature, and annealing treatment prior to NW growth. In addition, a non-negligible radial growth is observed with increasing growth time and is found to be independent of the As species (i.e., As2 or As4) and the growth temperatures studied. Cross-sectional transmission electron microscopy analysis of the GaAs NW/Si substrate heterointerface reveals an epitaxial growth where NW base fills the oxide hole opening and eventually extends over the oxide mask. These findings have important implications for NW-based device designs with axial and radial p-n junctions. Finally, NIL positioned GaAs/AlGaAs core-shell heterostructured NWs are grown on Si to study the optical properties of the NWs. Room-temperature photoluminescence spectroscopy of ensembles of as-grown core-shell NWs reveals uniform and high optical quality, as required for the subsequent device applications. The combination of NIL and MBE thereby demonstrates the successful heterogeneous integration of highly uniform GaAs NWs on Si, important for fabricating high throughput, large-area position-controlled NW arrays for various optoelectronic device applications.
Radial molecular abundances and gas cooling in starless cores
Sipilä, O
2012-01-01
Aims: We aim to simulate radial profiles of molecular abundances and the gas temperature in cold and heavily shielded starless cores by combining chemical and radiative transfer models. Methods: A determination of the dust temperature in a modified Bonnor-Ebert sphere is used to calculate initial radial molecular abundance profiles. The abundances of selected cooling molecules corresponding to two different core ages are then extracted to determine the gas temperature at two time steps. The calculation is repeated in an iterative process yielding molecular abundances consistent with the gas temperature. Line emission profiles for selected substances are calculated using simulated abundance profiles. Results: The gas temperature is a function of time; the gas heats up as the core gets older because the cooling molecules are depleted onto grain surfaces. The contributions of the various cooling molecules to the total cooling power change with time. Radial chemical abundance profiles are non-trivial: different s...
Turbine with radial acting seal
Eng, Darryl S; Ebert, Todd A
2016-11-22
A floating brush seal in a rim cavity of a turbine in a gas turbine engine, where the floating brush seal includes a seal holder in which the floating brush seal floats, and a expandable seal that fits within two radial extending seal slots that maintains a seal with radial displacement of the floating brush seal and the seal holder.
赵惠麟; 周林
2014-01-01
The low-temperature food drying equipment was running at 0-10℃ to simulate the win-ter climate. The chilled meat with little salt and without food additives was dried. Through single factor ex-periment and uniform design method, the optimal processing technology was optimized. The quality differ-ences of product processed by low-temperature drying, natural drying and hot air drying was compared and analyzed. The result showed that the optimal low-temperature drying technology of chilled meat was 60% humidity, dried 72h at 5℃. The quality of product reached the best state with neat appearance, fresh color, cured flavor, smooth taste and modest hardness and the moisture content was 60. 2%. The product processed by low-temperature drying technology had significant advantages compared with natural drying and hot air drying.%利用低温食品干燥机在0～10℃运行，全年模拟冬季气候，用于低盐化无添加风干冷鲜肉，采用单因素实验法和均匀设计法优化了冷鲜肉低温干燥的最佳工艺，并对比分析了低温干燥与自然晾晒及热风干燥两种干燥方式的产品品质差异。结果表明：冷鲜肉的最佳低温干燥工艺为：5℃、60％湿度、干燥72h；产品外观整齐、色泽鲜嫩、腊味浓郁，含水率为60．2％，口感爽滑软硬适中，产品品质达到最佳状态；低温干燥与自然晾晒及热风干燥两种干燥方式相比，低温干燥产品品质优势明显。
Fukumoto, H.; Kurokawa, Y.; Sakiyuama, K.; Adachi, S. [Kobe Steel Ltd., Kobe (Japan)
1999-07-25
The authors are doing research to develop a rapid curing device by using inductive heating for the production of a laminated rubber bearing. In the previous paper, it was shown that three problems exist; i.e. (i) the slit mold necessary, (1) lower uniform temperature in the radial direction, and (3) necessary temperature control by the internal location temperature, when the e frequency (60 Hz) induction heating was used to vulcanize a laminated rubber. This paper demonstrates that ultra low frequency heating is adequate to cope with the above problems. It will be shown that (i) the mold is not necessary a slit, (2) the radial temperature difference is within {+-}5 degree C, and (3) the internal temperature can be controlled by the side mold temperature, as the result of ultra low frequency induction heating test. (author)
Amore, Paolo; Saenz, Ricardo A; Salvo, Koen [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal DIaz del Castillo 340 Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-Conicet), Diag. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: paolo.amore@gmail.com, E-mail: fernande@quimica.unlp.edu.ar, E-mail: rasaenz@ucol.mx, E-mail: koen.salvo@gmail.com
2009-03-20
In this paper we derive four sets of sinc-like functions, defined on a finite interval and obeying different boundary conditions. The functions in each set are orthogonal and their nodes are uniformly distributed on the interval. We have applied each set to solve a large class of eigenvalue equations, with different boundary conditions, both on finite intervals and on the real line, showing that precise numerical results can be obtained efficiently and rapidly. A comparison with results available in the literature is also performed.
Hanna Karaszewska
2012-12-01
Full Text Available The article discusses the problems of women who work in the uniformed services with the particular emphasis on the performing of the occupation of the prison service. It presents the legal issues relating to equal treatment of men and women in the workplace, formal factors influencing their employment, the status of women in prison, and the problems of their conducting in the professional role. The article also presents the results of research conducted in Poland and all over the world, on the functioning of women in prison and their relations with officers of the Prison Service, as well as with inmates.
Loos, Pierre-François
2016-01-01
The uniform electron gas or UEG (also known as jellium) is one of the most fundamental models in condensed-matter physics and the cornerstone of the most popular approximation --- the local-density approximation --- within density-functional theory. In this article, we provide a detailed review on the energetics of the UEG at high, intermediate and low densities, and in one, two and three dimensions. We also report the best quantum Monte Carlo and symmetry-broken Hartree-Fock calculations available in the literature for the UEG and discuss the phase diagrams of jellium.
Massimo Giovannini
2015-06-01
Full Text Available Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
Uniform distribution of sequences
Kuipers, L
2006-01-01
The theory of uniform distribution began with Hermann Weyl's celebrated paper of 1916. In later decades, the theory moved beyond its roots in diophantine approximations to provide common ground for topics as diverse as number theory, probability theory, functional analysis, and topological algebra. This book summarizes the theory's development from its beginnings to the mid-1970s, with comprehensive coverage of both methods and their underlying principles.A practical introduction for students of number theory and analysis as well as a reference for researchers in the field, this book covers un
Giovannini, Massimo, E-mail: massimo.giovannini@cern.ch [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland); INFN, Section of Milan-Bicocca, 20126 Milan (Italy)
2015-06-30
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
杨谋; 孟英峰; 李皋; 邓建民; 张林; 唐思洪
2013-01-01
Therefore, in this study, based on energy balance principle between wellbore and formation, a temperature model of drilling fluid layers was established under different grid units of wellbore condition. Meanwhile, the axial thermal conductivity temperature model of drilling fluid was established by introducing axial conduction items of drilling fluid, followed by using discrete and solving of implicit finite difference method to these mathematical models. The calculation results indicated that the error temperature of the radial and axial of drilling fluid wellbore temperature which was caused of radial temperature gradient were 0.15 and 0.2 ◦C respectively, whereas axis thermal conductivity of drilling fluid has little effect on wellbore temperature distribution. Therefore, the above results confirmed that it can ignore both of them to influence wellbore temperature distribution by established the wellbore-formation coupled transient heat transfer model. Moreover, it is the first proved the correctness of model assumptions from previous scholars based on the mathematical modeling methods, and then further provides the reliable theoretical basis for down-hole temperature distribution of oil and gas well and geothermal well.% 本文基于井筒与地层间能量平衡原理，将井筒钻井液划分成不同径向单元网格，建立了考虑径向温度梯度条件下钻井液层间温度模型；同时引入钻井液轴向导热项，建立了钻井液轴向导热温度模型，将数学模型应用隐式有限差分法离散与求解.计算结果表明：钻井液径向温度梯度对井筒径向与轴向温度产生的误差分别为0.15◦C和0.2◦C左右；而钻井液轴向导热对井筒温度分布几乎不产生影响.因此，通过建立的数学模型进行系统分析表明，在建立井筒-地层耦合瞬态传热模型时可忽略两者对井筒温度分布的影响.基于数学建模方法验证了以前学者模型
Uniform Exponential Growth in Algebras /
Briggs, Christopher Alan
2013-01-01
We consider uniform exponential growth in algebras. We give conditions for the uniform exponential growth of descending-filtered algebras and prove that an N-graded algebra has uniform exponential growth if it has exponential growth. We use this to prove that Golod- Shafarevich algebras and group algebras of Golod- Shafarevich groups have uniform exponential growth. We prove that the twisted Laurent extension of a free commutative polynomial algebra with respect to an endomorphism with some e...
Lattice radial quantization by cubature
Neuberger, Herbert
2014-01-01
Basic aspects of a program to put field theories quantized in radial coordinates on the lattice are presented. Only scalar fields are discussed. Simple examples are solved to illustrate the strategy when applied to the 3D Ising model.
Dedicated radial ventriculography pigtail catheter
Vidovich, Mladen I., E-mail: miv@uic.edu
2013-05-15
A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.
Should School Nurses Wear Uniforms?
Journal of School Health, 2001
2001-01-01
This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…
Bonnivard, Matthieu; Bucur, Dorin
2012-06-01
Relying on the effect of microscopic asperities, one can mathematically justify that viscous fluids adhere completely on the boundary of an impermeable domain. The rugosity effect accounts asymptotically for the transformation of complete slip boundary conditions on a rough surface in total adherence boundary conditions, as the amplitude of the rugosities vanishes. The decreasing rate (average velocity divided by the amplitude of the rugosities) computed on close flat layers is definitely influenced by the geometry. Recent results prove that this ratio has a uniform upper bound for certain geometries, like periodical and "almost Lipschitz" boundaries. The purpose of this paper is to prove that such a result holds for arbitrary (non-periodical) crystalline boundaries and general (non-smooth) periodical boundaries.
Uniformly rotating neutron stars
Boshkayev, Kuantay
2016-01-01
In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...
Radial particle-size segregation during packing of particulates into cylindrical containers
Ripple, C.D.; James, R.V.; Rubin, J.
1973-01-01
In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.
Radial velocity signatures of Zeeman broadening
Reiners, Ansgar; Anglada-Escude, Guillem; Jeffers, Sandra V; Morin, Julien; Zechmeister, Mathias; Kochukhov, Oleg; Piskunov, Nikolai
2013-01-01
Stellar activity signatures such as spots and plage can significantly limit the search for extrasolar planets. Current models of activity-induced radial velocity (RV) signals focused on the impact of temperature contrast in spots predicting the signal to diminish toward longer wavelengths. On the other hand, the relative importance of the Zeeman effect on RV measurements should grow with wavelength, because the Zeeman displacement itself grows with \\lambda, and because a magnetic and cool spot contributes more to the total flux at longer wavelengths. We model the impact of active regions on stellar RV measurements including both temperature contrast in spots and Zeeman line broadening. We calculate stellar line profiles using polarized radiative transfer models including atomic and molecular Zeeman splitting from 0.5 to 2.3\\mum. Our results show that the amplitude of the RV signal caused by the Zeeman effect alone can be comparable to that caused by temperature contrast. Furthermore, the RV signal caused by c...
Effect of Stent Radial Force on Stress Pattern After Deployment: A Finite Element Study
Borghi, Alessandro; Murphy, Olive; Bahmanyar, Reza; McLeod, Chris
2014-07-01
The present article presents a method for assessing the radial stiffness of nitinol stents. An idealized stent model was created, and its radial stiffness was calculated by means of finite element modeling. The calculations were validated against experimental measurements. The variation of radial stiffness with geometrical dimensions was calculated, and the effect of increasing radial stiffness on endovascular deployment was analyzed. Peak tensile and compressive stresses as well as stent penetration were calculated in the case of an idealized pulmonary artery model having realistic dimensions as well as stiffness. The results of stress calculations were compared with a second set of simulations, where an idealized behavior of the stent (uniform expansion to a theoretical contact diameter) was modeled. The results show how in reality nitinol stents behave in a non-ideal way, having a non-uniform expansion and exerting non-uniform pressure on the contact areas with the artery. Such non-ideality decreases though with the increase in radial stiffness. The radial force alone may be insufficient in describing the stent-artery interaction, and numerical modeling proves to be necessary for capturing such complexity.
High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge
Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.
2015-11-01
In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.
RADIAL PROFILE OF THE SOLID FRACTION IN A LIQUID-SOLID CIRCULATING FLUIDIZED BED
Tiefeng Wang; Jinfu Wang; Jing Lin; Yong Jin
2003-01-01
@@ Liquid-solid circulating fluidized beds have a number of attractive features suitable for processes where liquid-solid contact is important (Liang et al., 1996; Zhang et al., 2002).Liang et al. (1996) and Zheng et al. (2002) studied the radial profile of the solid fraction in the liquid-solid circulating fluidization regime and found that it is not uniform, unlike the conventional liquid-solid fluidized bed. This non-uniformity can affect reactant concentration distribution, mass transfer and ultimately reactant conversion.Therefore, information on the radial flow structure is crucial to reactor design and process optimization.
Assessment indices for uniform and non-uniform thermal environments
2008-01-01
Different assessment indices for thermal environments were compared and selected for proper assessment of indoor thermal environments.30 subjects reported their overall thermal sensation,thermal comfort,and thermal acceptability in uniform and non-uniform conditions.The results show that these three assessment indices provide equivalent evaluations in uniform environments.However,overall thermal sensation differs from the other two indices and cannot be used as a proper index for the evaluation of non-uniform environments.The relationship between the percentage and the mean vote for each index is established.
Radial head dislocation during proximal radial shaft osteotomy.
Hazel, Antony; Bindra, Randy R
2014-03-01
The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future.
Radial lean direct injection burner
Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier
2012-09-04
A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.
Reunanen, Arttu; Larjola, Jaakko
2005-03-01
The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estimated using the static pressure distribution measured at the impeller outlet. The impeller force was found to be the highest at choke, the lowest at the design flow and moderate at stall. The radial force determined from the pressure measurements was only slightly different from the force obtained from the bearing measurements. The rotational speed was seen to affect the force to some extent.
Arttu REUNANEN; Jaakko LARJOLA
2005-01-01
The volute of a centrifugal compressor causes a non-uniform pressure distribution which leads to a radial force on the impeller. This force was measured using magnetic bearings. In addition, the radial force was estimated using the static pressure distribution measured at the impeller outlet. The impeller force was found to be the highest at choke, the lowest at the design flow and moderate at stall. The radial force determined from the pressure measurements was only slightly different from the force obtained from the bearing measurements. The rotational speed was seen to affect the force to some extent.
孟庆栋; 张坚; 张海龙; 徐克西; 张钢
2014-01-01
通过对杨氏模型和 Hull John R 模型进行改进，使其既适用于径向超导磁悬浮又适用于轴向超导磁悬浮，改进模型既考虑了磁滞特性，又引入了超导体与永磁体之间有倾角的情况。利用改进的磁通冻结镜像模型对径向超导磁悬浮轴承的悬浮力及刚度进行了理论计算，结果表明：磁悬浮力随着初始径向间隙、径向偏移和轴向位移的变化而变化，且与这三者并不成单调的正比或反比关系；在所研究的位移范围内，刚度为正值且随位移变化而变化；由于磁滞效应的影响，永磁转子作往复运动时在同一点受到的力会衰减。%A new model is built by improving Young′s model and John R.Hull model,which is suitable for both radial and axial superconducting magnetic suspension.The hysteresis characteristic and the inclination angel between super-conductor and permanent magnet are considered.The theoretical calculations of suspension forces and stiffness of radial superconducting magnetic bearings are done by using improved magnetic -flux frozen -image model.The results show that the magnetically suspension forces change with the initial radial clearance,radial displacement and axial displace-ment.The relation between magnetically suspension forces and three parameters mentioned above is neither inverse nor proportional.The stiffness of bearings is positive and proportional to displacements.Due to the affection of hysteresis, the magnetically suspension forces will attenuate when the permanent magnet is reciprocating.
Radial propagators and Wilson loops
Leupold, S; Leupold, Stefan; Weigert, Heribert
1996-01-01
We present a relation which connects the propagator in the radial (Fock-Schwinger) gauge with a gauge invariant Wilson loop. It is closely related to the well-known field strength formula and can be used to calculate the radial gauge propagator. The result is shown to diverge in four-dimensional space even for free fields, its singular nature is however naturally explained using the renormalization properties of Wilson loops with cusps and self-intersections. Using this observation we provide a consistent regularization scheme to facilitate loop calculations. Finally we compare our results with previous approaches to derive a propagator in Fock-Schwinger gauge.
Detonation in supersonic radial outflow
Kasimov, Aslan R.
2014-11-07
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.
CONGENITAL RADIAL DYSPLASIA: A CASE REPORT
Venkatram Reddy
2015-08-01
Full Text Available Congenital radial dysplasia, also referred to as radial club hand , means deficiency along the preaxial or radial side of the extremity. It ranges from hypoplasia of the thumb to variou s degrees of radial hypoplasia. We present one such rare case of type 4 congenital unilateral isolated radial dysplasia with carpel anomaly , reported to our department in SVS medical C ollege, Mahabubanagar, Telangana state
ULF Waves and Diffusive Radial Transport of Charged Particles
Ali, Ashar Fawad
The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic
Production of a Uniform ECR Plasma Using Large Diameter Multi Slot Antennas
上田, 洋子; 寺西, 秀明; 田中, 雅慶; 篠原, 俊二郎; 河合, 良信
1994-01-01
A uniform ECR plasma is produced with a multi slot antenna of 280mm in diameter. The radial profile of the ion saturation current density is examined as a function of microwave power and pressure. The radial uniformity of the ion saturation current density is within pm3% over 8 inches in diameter for the input microwave power lkW at pressure of 2mTorr. Furthermore, the deposition of a-Si：H films is attempted on glass substrates using mixture SiH4/He. When the microwave power is increased, the...
Uniform large-area thermionic cathode for SCALPEL
Katsap, Victor; Sewell, Peter B.; Waskiewicz, Warren K.; Zhu, Wei
1999-11-01
An electron beam lithography tool, which employs the SCALPEL technique, requires an extremely uniform beam to illuminate the scattering Mask, with the cathode operating in the temperature limited mode. It has been previously shown that LaB6 cathodes are not stable in this mode of operation. We have explored the possibility of implementing refined Tantalum-based emitters in the SCALPEL source cathode, and have developed large-area flat cathodes featuring suitably high emission uniformity under temperature limited operation.
Ice formation around isothermal radial finned tubes
Ismail, K.A.R.; Henriquez, J.R.; Moura, L.F.M.; Ganzarolli, M.M. [UNICAMP-FEM-DETF, Campinas (Brazil)
2000-04-01
The present study presents a thermal numerical model for the solidification of Phase Change Material around a radially finned tube with a constant wall temperature. The model is based upon a pure conduction formulation and the enthalpy method. The finite difference approach and the alternating direction implicit scheme are used to discretize the system of equations and the associated boundary, initial and final conditions. Numerical experiments were realized to optimise the numerical code. Numerical simulations were performed to investigate the effects, of the number of fins, fin thickness, fin material, aspect ratio of the tube arrangement and the tube wall temperature. Graphical results were presented, discussed and equations relating the effect of each of the variables on the time for complete solidification are also presented. (author)
Radial forcing and Edgar Allan Poe's lengthening pendulum
McMillan, Matthew; Blasing, David; Whitney, Heather M.
2013-09-01
Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.
Tachoastrometry: astrometry with radial velocities
Pasquini, L; Lombardi, M; Monaco, L; Leão, I C; Delabre, B
2014-01-01
Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 \\ms, which corresponds to a separation between the two components at the time of the observations of 18 $\\pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record p...
School Uniforms: Esprit de Corps.
Ryan, Rosemary P.; Ryan, Thomas E.
1998-01-01
The benefits of school uniforms far outweigh their short-term costs. School uniforms not only keep students safe, but they increase their self-esteem, promote a more positive attitude toward school, lead to improved student behavior, and help blur social-class distinctions. Students are allowed to wear their own political or religious messages,…
Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions
Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Tanveer, Anum, E-mail: qau14@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaadi, Fuad [Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Mousa, Ghassan [Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2016-04-01
This paper addresses the peristaltic flow in curved channel with combined heat/mass transfer and convective effects. The channel walls are flexible. An imposed magnetic field is applied in radial direction to increase the wave amplitude (used in ECG for synchronization purposes). The pseudoplastic fluid comprising shear-thinning/shear thickening effects has been used in mathematical modeling. Small Reynolds number assumption is employed to neglect inertial effects. Half channel-width to wavelength ratio is small enough for the pressure to be considered uniform over the cross-section. The graphical results obtained are compared with planar channel. Results show the non-symmetric behavior of sundry parameters in contrary to the planar case. Additionally more clear results are seen when the curved channel is approached. - Highlights: • The behavior of curvature parameter k on velocity is not symmetric. • Temperature is decreasing function of Biot number Bi. • Hartman number has similar qualitative effects on both velocity and temperature. • Behavior of concentration is opposite to that of temperature in a qualitative sense. • Bolus size via curvature parameter has opposite effect near the upper and lower channel walls.
Statistical Test for Bivariate Uniformity
Zhenmin Chen
2014-01-01
Full Text Available The purpose of the multidimension uniformity test is to check whether the underlying probability distribution of a multidimensional population differs from the multidimensional uniform distribution. The multidimensional uniformity test has applications in various fields such as biology, astronomy, and computer science. Such a test, however, has received less attention in the literature compared with the univariate case. A new test statistic for checking multidimensional uniformity is proposed in this paper. Some important properties of the proposed test statistic are discussed. As a special case, the bivariate statistic test is discussed in detail in this paper. The Monte Carlo simulation is used to compare the power of the newly proposed test with the distance-to-boundary test, which is a recently published statistical test for multidimensional uniformity. It has been shown that the test proposed in this paper is more powerful than the distance-to-boundary test in some cases.
The Electron Temperature Gradient in the Galactic Disk
Quireza, C; Bania, T M; Balser, D S; Maciel, W J
2006-01-01
We derive the electron temperature gradient in the Galactic disk using a sample of HII regions that spans Galactocentric distances 0--17 kpc. The electron temperature was calculated using high precision radio recombination line and continuum observations for more than 100 HII regions. Nebular Galactocentric distances were calculated in a consistent manner using the radial velocities measured by our radio recombination line survey. The large number of nebulae widely distributed over the Galactic disk together with the uniformity of our data provide a secure estimate of the present electron temperature gradient in the Milky Way. Because metals are the main coolants in the photoionized gas, the electron temperature along the Galactic disk should be directly related to the distribution of heavy elements in the Milky Way. Our best estimate of the electron temperature gradient is derived from a sample of 76 sources for which we have the highest quality data. The present gradient in electron temperature has a minimu...
Anderson, Steven C.; Narciso, Hugh L., Jr.; Mai, David; Doiron, Daniel R.
1994-07-01
Cardiovascular Photodynamic Therapy requires the uniform application of laser energy over the length of an atherosclerotic lesion, thus ensuring equal treatment to all parts of the lesion. The total amount of laser energy delivered to the lesion also affects the results of the treatment. Uniform light distribution both radially and axially of a cylindrical diffuser during Photodynamic Therapy prevents miscalculated dosimetry and uneven treatment. Maximizing the amount of laser power delivered to the cylindrical diffuser tip (without inducing temperature elevation) minimizes the exposure time thus reducing the overall treatment time. Power output uniformity and power output capabilities are thus crucial factors in the design of a cardiovascular cylindrical diffuser. This paper will discuss the output characteristics and performance of six guidewire compatible cylindrical diffusers. Each diffuser consists of an array of fiber optics surrounding an inner guidewire lumen. This assembly is covered by an outer sheath. The fibers launch into an elastomer which contains a scattering medium. In this way a light diffusing tip is created. The total length of the fiber system is 3.0 meters. The total length of the difffuser tip is 2.0 cm.
Analysis of radial basis function interpolation approach
Zou You-Long; Hu Fa-Long; Zhou Can-Can; Li Chao-Liu; Dunn Keh-Jim
2013-01-01
The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied when the data clusters are far apart.
Uniform Acceleration in General Relativity
Friedman, Yaakov
2016-01-01
We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.
Severity grading in radial dysplasia.
Vilkki, S K
2014-11-01
A functional scoring method to grade the usefulness and quality of the upper limbs in congenital radial dysplasia is presented. It is based on the author's examinations of 44 arms with congenital deficiency of the radius. The hand (H), wrist (W) and proximal parts (P) of the extremity are each scored from 0 to 10 points for severity. The scoring is expressed similarly to the TNM (tumour, nodes, metastasis) tumour classification, for example as H5W4P2. The maximum severity index is 30 points. A severity grade of mild is between 1 and 8 points, moderate between 9 and 16 points and severe 17 points and over. In the author's series, the grades were mild in eight, moderate in 21 and severe in 15 cases. The functional severity grading should allow better comparison of radially deficient limbs and the results of treatment between groups of patients. © The Author(s) 2014.
Velocidades radiales en Collinder 121
Arnal, M.; Morrell, N.
Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.
Sckool Dress Rule, Uniform Policies
潘志强
2005-01-01
Our schools believe that a uniform policy will provide a better environment, promote positive selfesteem, encourage an atmosphere for greater discipline, and increase learning opportunities for students by removing many of the distractions associated with various types of clothing.
Uniform polyhedra: old and new
Melikhov, Sergey A
2011-01-01
We develop a theory of metric polyhedra, including locally infinite dimensional ones. Motivated by algebraic topology, we focus on their uniform properties (i.e., those preserved by homeomorphisms that are uniformly continuous in both directions) but in doing so we also study their metric and Lipschitz properties. On the combinatorial side, (the face posets of) simplicial or cubical complexes do not suffice for this, and we have to rework some basic PL topology into a purely combinatorial machinery (with all homeomorphisms eliminated in favor of combinatorial isomorphisms) based on posets and their canonical subdivision (which is just the poset of all order intervals of the given poset, ordered by inclusion). Antecedents of this approach to PL topology are found in van Kampen's 1929 dissertation and in modern Topological Combinatorics. Our main results establish, in particular, close but troubled relations between uniform polyhedra and uniform ANRs, and appear to provide a satisfactory solution to an open-end...
Landing the uniformly accelerating observers
Rothenstein, Bernhard; Popescu, Stefan; Gruber, Ronald P.
2006-01-01
Observers of the uniformly accelerating observers or the observers who make up the system of uniformly accelerating observers reach the same velocity V at different times ti which depends on V and on theirs acceleration gi. Considering a platform that moves with constant velocity V, the observers can land smoothly on it. Their ages and locations in the inertial reference frame attached to the platform are reckoned and compared.
Jinji Sun
2014-01-01
Full Text Available In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.
Sun, Jinji; Zhang, Yin
2014-01-24
In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM) to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.
Thorseth, Anders; Corell, Dennis Dan; Poulsen, Peter Behrensdorff
2012-01-01
at the Royal Danish Collection at Rosenborg Castle. Color mixing of red, cyan, and white LEDs was employed to achieve the spectral power distribution needed for the required CCT and a CRI above 90. Color uniformity is achieved by the use of a highly diffusing reflector. The system has shown energy saving above......Museum lighting presents challenges mainly due to the demand for precise color rendering and the damaging effects of radiation. Golden objects must normally be illuminated by the non-standard CCT of 2200 K. An LED system that conforms to these requirements has been developed and implemented...
Possible role of external radial electric field on ion heating in an FRC
Gupta, Deepak; Trask, E.; Korepanov, S.; Granstedt, E.; Osin, D.; Roche, T.; Deng, B.; Beall, M.; Zhai, K.; TAE Team
2016-10-01
In C-2/C-2U FRCs, a radial electric field is applied by either plasma guns or biased electrodes inside the divertors, at both ends of the machine. The electric field plays an important role in stabilizing the FRC; thus, providing a favorable target condition to a neutral beam injection. In addition, it is also observed that the application of radial electric field may lead to a heating of ions. Radial profile of impurity ion emission, azimuthal velocity and temperature are measured under different configurations. The conditions and evidences of ion heating due to the electric field biasing will be presented and discussed. Radial momentum balance equation of oxygen impurity ions is used with these measurements to estimate the radial electric field profile. Parameters affecting the ion heating due to biasing will also be discussed with some correlations. The external radial electric field is planned to be applied by biased electrodes and plasma guns in C-2W inner/outer divertors.
Dynamic thermoelectricity in uniform bipolar semiconductor
Volovichev, I.N., E-mail: vin@ire.kharkov.ua
2016-07-01
The theory of the dynamic thermoelectric effect has been developed. The effect lies in an electric current flowing in a closed circuit that consists of a uniform bipolar semiconductor, in which a non-uniform temperature distribution in the form of the traveling wave is created. The calculations are performed for the one-dimensional model in the quasi-neutrality approximation. It was shown that the direct thermoelectric current prevails, despite the periodicity of the thermal excitation, the circuit homogeneity and the lack of rectifier properties of the semiconductor system. Several physical reasons underlining the dynamic thermoelectric effect are found. One of them is similar to the Dember photoelectric effect, its contribution to the current flowing is determined by the difference in the electron and hole mobilities, and is completely independent of the carrier Seebeck coefficients. The dependence of the thermoelectric short circuit current magnitude on the semiconductor parameters, as well as on the temperature wave amplitude, length and velocity is studied. It is shown that the magnitude of the thermoelectric current is proportional to the square of the temperature wave amplitude. The dependence of the thermoelectric short circuit current on the temperature wave length and velocity is the nonmonotonic function. The optimum values for the temperature wave length and velocity, at which the dynamic thermoelectric effect is the greatest, have been deduced. It is found that the thermoelectric short circuit current changes its direction with decreasing the temperature wave length under certain conditions. The prospects for the possible applications of the dynamic thermoelectric effect are also discussed.
Monolithic F-16 Uniform Thickness Stretched Acrylic Canopy Transparency Program
1984-01-01
Thermoforming Finite Strain Analysis Finite Element Modeling Mooney Formulation Tensile Testing Acrylic Material Properties F-16 Transparency Thinning Uniform...OF ACRYLIC TENSILE SPECIMEN ...... 8 MARC ANALYSIS OF ACRYLIC HEMISPHERE ............ 12 IV ACRYLIC MATERIAL PROPERTIES AT THERMOFORMING TEMPERATURES...properties (necessary for finite element stress analysis work) were generated at temperatures in the range of thermoforming . A finite element code
Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi
2016-09-01
To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.
Radial vibrations of BPS skyrmions
Adam, C; Romanczukiewicz, T; Wereszczynski, A
2016-01-01
We study radial vibrations of spherically symmetric skyrmions in the BPS Skyrme model. Concretely, we numerically solve the linearised field equations for small fluctuations in a skyrmion background, both for linearly stable oscillations and for (unstable) resonances. This is complemented by numerical solutions of the full nonlinear system, which confirm all the results of the linear analysis. In all cases, the resulting fundamental excitation provides a rather accurate value for the Roper resonance, supporting the hypothesis that the BPS Skyrme model already gives a reasonable approximate description of this resonance.
Countercurrent aortography via radial artery
Sohn, Hyung Kuk; Lee, Young Chun; Lee, Seung Chul; Jeon, Seok Chol; Joo, Kyung Bin; Lee, Seung Ro; Kim, Soon Yong [College of Medicine, Hanyang University, Seoul (Korea, Republic of)
1987-06-15
Countercurrent aortography via radial artery was performed for detection of aortic arch anomalies in 4 infants with congenital heart disease. Author's cases of aortic arch anomalies were 3 cases of PDA, 1 case of coarctation of aorta, and 1 case of occlusion of anastomosis site on subclavian artery B-T shunt. And aberrant origin of the right SCA, interrupted aortic arch, hypoplastic aorta, anomalous origin of the right pulmonary artery from the ascending aorta can be demonstrated by this method. Countercurrent aortography affords an safe and simple method for detection of aortic arch anomalies without retrograde arterial catheterization, especially in small infants or premature babies.
Radiative processes of uniformly accelerated entangled atoms
Menezes, G
2015-01-01
We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms travelling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that the maximally entangled antisymmetric Bell state is a decoherence-free state.
Moubayidin, Laila; Ostergaard, Lars
2014-11-17
Symmetry formation is a remarkable feature of biological life forms associated with evolutionary advantages and often with great beauty. Several examples exist in which organisms undergo a transition in symmetry during development. Such transitions are almost exclusively in the direction from radial to bilateral symmetry. Here, we describe the dynamics of symmetry establishment during development of the Arabidopsis gynoecium. We show that the apical style region undergoes an unusual transition from a bilaterally symmetric stage ingrained in the gynoecium due to its evolutionary origin to a radially symmetric structure. We also identify two transcription factors, INDEHISCENT and SPATULA, that are both necessary and sufficient for the radialization process. Our work furthermore shows that these two transcription factors control style symmetry by directly regulating auxin distribution. Establishment of specific auxin-signaling foci and the subsequent development of a radially symmetric auxin ring at the style are required for the transition to radial symmetry, because genetic manipulations of auxin transport can either cause loss of radialization in a wild-type background or rescue mutants with radialization defects. Whereas many examples have described how auxin provides polarity and specific identity to cells in a range of developmental contexts, our data presented here demonstrate that auxin can also be recruited to impose uniform identity to a group of cells that are otherwise differentially programmed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Investigation of multiple spindle characteristics under non-uniform bearing preload
Yanfei Zhang
2016-02-01
Full Text Available The non-uniform distribution load during machining and assembly process is crucial for spindle system, especially in complex working conditions. The conception of non-uniform preload adjustment approach was proposed and experimentally investigated in this article. Based on the mechanical equivalent principle, the non-uniform preload was theoretically transformed to the combination of uniform preload and an extra moment. Then, the non-uniform preload of rolling bearing was experimentally measured and analyzed via a spacer with 15-µm wear loss on the end face. The spindle performance factors, such as rotation accuracy, temperature rising, acceleration, and vibration, were all monitored. The rotation center of spindle was deviated in different non-uniform preload conditions. Meanwhile, the temperature and vibration performance of non-uniform preload are superior to those of uniform bearing preload.
On topological spaces possessing uniformly distributed sequences
Bogachev, V I
2007-01-01
Two classes of topological spaces are introduced on which every probability Radon measure possesses a uniformly distributed sequence or a uniformly tight uniformly distributed sequence. It is shown that these classes are stable under multiplication by completely regular Souslin spaces
邵帅; 冯洪庆; 杨肖曦; 汪欣; 朱炳
2013-01-01
阐述了热管进行锅炉烟气余热回收时,管壁温度的控制对于防止低温腐蚀的必要性,文章计算分析了管径、翅片长度、翅片厚度、翅片间距、冷流体入口温度等因素对于管壁温度的影响规律.分析认为增加热管管径、减小翅片间距,可以适当提高壁温.%This paper stresses on the necessity of pipe wall temperature control to prevent low temperature corrosion. It calculates and analyzes the influence of the factors such as tube diameter, fin length,fin thickness,fin space and inlet temperature of cold fluid on pipe wall. The tube diameter of the heat pipe is increased, the fin space is reduced and the wall temperature is increased properly. It provides reference for the field application.
Sublogarithmic uniform Boolean proof nets
Aubert, Clément
2012-01-01
Using a proofs-as-programs correspondence, Terui was able to compare two models of parallel computation: Boolean circuits and proof nets for multiplicative linear logic. Mogbil et. al. gave a logspace translation allowing us to compare their computational power as uniform complexity classes. This paper presents a novel translation in AC0 and focuses on a simpler restricted notion of uniform Boolean proof nets. We can then encode constant-depth circuits and compare complexity classes below logspace, which were out of reach with the previous translations.
A fully relativistic radial fall
Spallicci, Alessandro D A M
2014-01-01
Radial fall has historically played a momentous role. It is one of the most classical problems, the solutions of which represent the level of understanding of gravitation in a given epoch. A {\\it gedankenexperiment} in a modern frame is given by a small body, like a compact star or a solar mass black hole, captured by a supermassive black hole. The mass of the small body itself and the emission of gravitational radiation cause the departure from the geodesic path due to the back-action, that is the self-force. For radial fall, as any other non-adiabatic motion, the instantaneous identity of the radiated energy and the loss of orbital energy cannot be imposed and provide the perturbed trajectory. In the first part of this letter, we present the effects due to the self-force computed on the geodesic trajectory in the background field. Compared to the latter trajectory, in the Regge-Wheeler, harmonic and all others smoothly related gauges, a far observer concludes that the self-force pushes inward (not outward) ...
School Uniforms: Guidelines for Principals.
Essex, Nathan L.
2001-01-01
Principals desiring to develop a school-uniform policy should involve parents, teachers, community leaders, and student representatives; beware restrictions on religious and political expression; provide flexibility and assistance for low-income families; implement a pilot program; align the policy with school-safety issues; and consider legal…
Leilund, Helle
Afhandlingen , Uniformer på arbejde - nutidige praksisser omkring ensartet arbejdstøj , har afsæt i det kulturhistoriske museums arbejde med ’ dragt ’ . På trods af at ensart et eller uniformt arbejdstøj er et velkendt dagligdags fænomen, som bruges af medarbejdere på mange nutidige arbejdspladser...
Uniform approximation by (quantum) polynomials
Drucker, A.; de Wolf, R.
2011-01-01
We show that quantum algorithms can be used to re-prove a classical theorem in approximation theory, Jackson's Theorem, which gives a nearly-optimal quantitative version of Weierstrass's Theorem on uniform approximation of continuous functions by polynomials. We provide two proofs, based respectivel
Uniform Slavic Transliteration Alphabet (USTA).
Dekleva, Borut
The Uniform Slavic Transliteration Alphabet (USTA) was designed primarily with the following objectives: to aid librarians (catalogers and bibliographers), information scientists, transliterators, and editors of bibliographic works of the many Slavic tongues; and to serve as original research for the further development of a machine-readable…
Uniformly accelerated observer in a thermal bath
Kolekar, Sanved
2013-01-01
We investigate the quantum field aspects in flat spacetime for an uniformly accelerated observer moving in a thermal bath. In particular, we obtain an exact closed expression of the reduced density matrix for an uniformly accelerated observer with acceleration $a = 2\\pi T$ when the state of the quantum field is a thermal bath at temperature $T^\\prime$. We find that the density matrix has a simple form with an effective partition function $Z$ being a product, $Z = Z_T Z_{T^\\prime}$, of two thermal partition functions corresponding to temperatures $T$ and $T^\\prime$ and hence is not thermal, even when $T = T^\\prime$. We show that, even though the partition function has a product structure, the two thermal baths are, in fact, interacting systems; although in the high frequency limit $\\omega_k \\gg T$ and $\\omega_k \\gg T^\\prime$, the interactions are found to become sub-dominant. We further demonstrate that the resulting spectrum of the Rindler particles can be interpreted in terms of spontaneous and stimulated em...
Lempe, B.; Maschke, R.; Rudek, F.; Baselt, T.; Hartmann, P.
2016-03-01
Online process control systems often only detecting temperatures at a local area of the machining point and determining an integrated value. In order to determine the proper welding quality and the absence of defects, such as temperature induced stress cracks, it is necessary to do time and space resolved measurements before, during and after the production process. The system under development consists of a beam splitting unit which divides the electromagnetic radiation of the heated component on two different sensor types. For high temperatures, a sensor is used which is sensitive in the visible spectrum and has a dynamic range of 120dB.1 Thus, very high intensity differences can be displayed and a direct analysis of the temperature profile of the weld spots is possible.2 A second sensor is operating in the wavelength range from 1 micron to 5 microns and allows the determination of temperatures from approximately 200°C.3 At the beginning of a welding process, the heat-up phase of the metal is critical to the resultant weld quality. If a defined temperature range exceeded too fast, the risk of cracking is significantly increased.4 During the welding process the thermal supervision of the central processing location is decisive for a high secure weld. In the border areas as well as in connection of the welding process especially cooling processes are crucial for the homogeneity of the results. In order to obtain sufficiently accurate resolution of the dynamic heating- and cooling-processes, the system can carry out up to 500 frames per second.
Néstor Durango
2005-01-01
Full Text Available En este artículo se presentan los resultados obtenidos en la investigación realizada para establecer la influencia e importancia de las variables cantidad de yuca, relación superficie a volumen del material de los pedazos de yuca, velocidad del ventilador y temperatura del aire de recirculación, en el proceso de secado de yuca en un modelo de secador de flujo radial. La metodología experimental utilizada fue el diseño de experimentos factoriales, la cual, mediante una serie de análisis estadísticos, posibilitó la caracterización del proceso para un tiempo de secado de tres horas y la obtención de un modelo matemático que describe su comportamiento.
Radial keratotomy associated endothelial degeneration
Moshirfar M
2012-02-01
Full Text Available Majid Moshirfar, Andrew Ollerton, Rodmehr T Semnani, Maylon HsuJohn A Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USAPurpose: To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK and varying degrees of endothelial degeneration.Methods: Retrospective case series were used.Results: Thirteen eyes (seven patients were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38–72 years, averaging 18.7 years (range: 11–33 years after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch’s Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet’s stripping automated endothelial keratoplasty (DSAEK in the other eye.Conclusions: RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch’s dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration.Keywords: radial keratotomy, RK, Descemet’s stripping automated endothelial keratoplasty, DSAEK, guttata, endothelial degeneration, Fuch’s dystrophy
A CONSERVATIVE VIEW OF RADIAL KERATOTOMY
Steven; Olkowski; Walter; J.; Stark; John; D.; Gottsch; Gerri; Goodman; Daniel; Goodman; A.E.; Maumenee; Ivan; Esente
1991-01-01
It has been known for almost a century that radial keratotomy (RK) will flatten the cornea and reduce myopia. Since the introduction of radial keratotomy (RK) in the United States by Bores in 1978, there have been many published studies documenting the effects of this procedure. The questions. about radial keratotomy today are not only quantitative but also qualitative in nature. We know this technique can flatten the cornea, but how reliably can the results be predicted? Does the patient benefit suffic...
On radial geodesic forcing of zonal modes
Kendl, Alexander
2011-01-01
The elementary local and global influence of geodesic field line curvature on radial dispersion of zonal modes in magnetised plasmas is analysed with a primitive drift wave turbulence model. A net radial geodesic forcing of zonal flows and geodesic acoustic modes can not be expected in any closed toroidal magnetic confinement configuration, since the flux surface average of geodesic curvature identically vanishes. Radial motion of poloidally elongated zonal jets may occur in the presence of g...
On radial geodesic forcing of zonal modes
Kendl, Alexander
2011-01-01
The elementary local and global influence of geodesic field line curvature on radial dispersion of zonal modes in magnetised plasmas is analysed with a primitive drift wave turbulence model. A net radial geodesic forcing of zonal flows and geodesic acoustic modes can not be expected in any closed toroidal magnetic confinement configuration, since the flux surface average of geodesic curvature identically vanishes. Radial motion of poloidally elongated zonal jets may occur in the presence of geodesic acoustic mode activity. Phenomenologically a radial propagation of zonal modes shows some characteristics of a classical analogon to second sound in quantum condensates.
Toeplitz Operators with Essentially Radial Symbols
Roberto C. Raimondo
2012-01-01
Full Text Available For Topelitz operators with radial symbols on the disk, there are important results that characterize boundedness, compactness, and its relation to the Berezin transform. The notion of essentially radial symbol is a natural extension, in the context of multiply-connected domains, of the notion of radial symbol on the disk. In this paper we analyze the relationship between the boundary behavior of the Berezin transform and the compactness of when ∈2(Ω is essentially radial and Ω is multiply-connected domains.
Relativistic neoclassical radial fluxes in the 1/nu regime
Marushchenko, I; Marushchenko, N B
2013-01-01
The radial neoclassical fluxes of electrons in the 1/nu-regime are calculated with relativistic effects taken into account and compared with those in the non-relativistic approach. The treatment is based on the relativistic drift-kinetic equation with the thermodynamic equilibrium given by the relativistic J\\"uttner-Maxwellian distribution function. It is found that for the range of fusion temperatures, T_e < 100 keV, the relativistic effects produce a reduction of the radial fluxes which does not exceed 10%. This rather small effect is a consequence of the non-monotonic temperature dependence of the relativistic correction caused by two counteracting factors: a reduction of the contribution from the bulk and a significant broadening with the temperature growth of the energy range of electrons contributing to transport. The relativistic formulation for the radial fluxes given in this paper is expressed in terms a set of relativistic thermodynamic forces which is not identical to the canonical set since it ...
Uniformity Analysis for Index of Retail Price
潘竞红; 曾庆洪; 刘梅英
2002-01-01
Using the Hodges-Ajne testing method, the uniformity of China retail price index was tested. The result, that population is submitting to uniform dist ribution, was obtained. The uniformity of CRPI indicates that the general price level is stable in the Ninth Five-Year Plan. Finally, the reasons causing the uniformity was analyzed.
46 CFR 310.11 - Cadet uniforms.
2010-10-01
... for State, Territorial or Regional Maritime Academies and Colleges § 310.11 Cadet uniforms. Cadet uniforms shall be supplied at the school in accordance with the uniform regulations of the School. Those... 46 Shipping 8 2010-10-01 2010-10-01 false Cadet uniforms. 310.11 Section 310.11 Shipping...
李舟航; 唐国力; 吴玉新; 张海; 吕俊复
2015-01-01
Flow of supercritical water(SCW) is circumferentially non-uniform in the water wall of SCW boilers where heat is input on one side. To study the effect of inner flow non-uniformity(fluid temperature, heat transfer coefficient) on the temperature distribution of water wall, the SST k-ω turbulence model was employed to solve conjugate heat transfer between tube wall and SCW. After validating the model against experimental data, computational tests were performed in a membrane tube. Results show that circumferential non-uniformity has significant effect on wall temperature distribution in the region away from pseudocritical point, while this impact can be neglected within the pseudocritical region. Heat transfer coefficient at the midpoint of hot-side inner wall,αcp, is recommended to be adopted when one uses circumferential uniform assumption (T=Tb, α=αcp). Under this assumption, the position and value of maximum wall temperature can be accurately predicted in regions near and away from pseudocritical point. Besides, it is found that together with JB/Z201-83, Nusselt correlations based on uniformly-heated data can be used to predict the maximum wall temperature of membrane tube, with a deviation less than ±10K.%对于半周受热的超临界锅炉膜式水冷壁，管内工质温度和对流换热系数的周向分布具有较强的不均匀性。文中选取SST k-ω 湍流模型，在使用实验数据校验了模型后，对半周受热的鳍片管内超临界水的换热和通过管壁的导热进行耦合计算。计算结果表明在拟临界区外，工质温度和换热系数的周向不均匀性对壁温分布的影响很明显；在拟临界区内，周向不均匀性的影响则可忽略。采用周向均匀假设进行简化计算时，换热系数应该选取向火侧中点处的值，这样能保证在拟临界区内、外都能准确地预测向火侧的温度场以及危险点的位置和温度。此外，结果还表明可以使用基于全周
Radial Transport and Meridional Circulation in Accretion Disks
Philippov, Alexander A.; Rafikov, Roman R.
2017-03-01
Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflow higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.
Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model.
Shen, Hui-Shen
2010-05-21
This paper presents an investigation on the buckling and postbuckling of microtubules (MTs) subjected to a uniform external radial pressure in thermal environments. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include the extension-twist and flexural-twist couplings. The thermal effects are also included and the material properties are assumed to be temperature-dependent. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The small scale parameter e(0)a is estimated by matching the buckling pressure of MTs measured from the experiments with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling pressure and postbuckling behavior of MTs are very sensitive to the small scale parameter e(0)a. The results reveal that the 13_3 microtubule has a stable postbuckling path, whereas the 13_2 microtubule has an unstable postbuckling behavior due to the presence of skew angles.
Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)
1997-04-01
The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.
Radial head button holing: a cause of irreducible anterior radial head dislocation
Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)
2016-10-15
''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)
Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons
Urrutia, J. M.; Stenzel, R. L.
2016-05-01
Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers are shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon "eigenmodes" with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.
BASIS WEIGHT UNIFORMITY OF LIGHTLY NEEDLED HYDROENTANGLED COTTON AND COTTON BLEND WEBS
D.V. Parikh
2006-08-01
Full Text Available New nonwoven products containing cotton and Lyocell (Trademarked name Tencel, low temperature thermal-bondable bicomponent olefin/polyester, or comber noils were developed using needlepunching and spunlacing (hydroentanglement. Webs containing five different blends were prepared by either light needlepunching, or light needlepunching followed by hydroentangling. We acquired detailed basis weight uniformity measurements to learn about processing and the influence of fiber blend composition on web uniformity. Basis weight uniformity was evaluated without regard to web direction ("Total" uniformity, along the machine direction (MD uniformity and across the cross direction (CD uniformity at numerous size resolutions. We observed that blending manufactured fibers (either Tencel or olefin/polyester with bleached cotton and comber noils substantially improved basis weight uniformity of both types of nonwovens. We also observed that subjecting needled webs to hydroentangling significantly improved Total and MD uniformities.
封晓辉; 程瑞梅; 肖文发; 王瑞丽; 王晓荣; 高宝庆
2011-01-01
Longer growth season has been confirmed due to the elevated temperature in recent decades. Though the changes in the duration of growth season could affect tree productivity, it ’s unclear how the growth season with different initiating temperature affects the radial growth of tree. In order to investigate the effects of growth season’ s variability in temperature to the radial growth of Masson pine (Pinus massoniana) and search for the sensitive temperature to the growth, old Masson pine stands in Hanzhong, the northwest margin of north subtropical region, were chosen as test objects, with their tree ring width index chronology from 1945 to 2009 measured by dendrochronology method. The air temperatures on the first day, last day, and in the whole growth season as well as the active accumulative temperature during growth season were determined based on the daily mean temperature of Hanzhong, and the relationships between the temperatures and chronology were analyzed. The results showed that the growth season with initiating temperature 6. 0 ℃ -7. 5 ℃ had negative effects on the tree ring width index chronology, with 6. 0 ℃ being most significant. 10. 5 ℃ on the last day had significant positive effects on tree ring growth. 10. 0 ℃ and 10. 5 ℃ in growth season were significantly positively correlated with the tree ring growth, and the active accumulative temperature during growth season was also significantly positively correlated with the growth. These sensitive temperatures were respectively corresponding to the onset of photosynthesis, needle emergence in spring, and shutting down of cambium activity in autumn. Our study suggested that elevated temperature led to the changes in phenophase, and thereby, affected the radial growth of P. massoniana in Hanzhong.%近几十年由于温度升高导致的植物生长期的延长已经得到了证实,虽然生长期的长短变化会引起树木生产力变化,但不同起始温度的生长期对树木径
Pathak, Naveen; Zhidkov, Alexei; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke
2016-03-01
Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) is demonstrated, via 3D particle-in-cell simulations, to be unstable in uniform underdense plasma. Strong breaking of the pulse symmetry occurs for RPP with power exceeding the critical one for self-focusing in transversely uniform plasma with an increment, Γ, close to the well-known Rayleigh-Taylor-like instability depending on the acceleration, α, and the modulated density gradient length, L, as Γ≈(α/L) 1 /2 . In deeper plasma channels, the instability vanishes. Electron self-injection in the pulse wake and resulting acceleration is explored.
Rainbow refractometry on particles with radial refractive index gradients
Saengkaew, Sawitree [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France); Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Charinpanitkul, Tawatchai; Vanisri, Hathaichanok; Tanthapanichakoon, Wiwut [Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Biscos, Yves; Garcia, Nicolas; Lavergne, Gerard [ONERA/DMAE, Toulouse (France); Mees, Loic; Gouesbet, Gerard; Grehan, Gerard [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France)
2007-10-15
The rainbow refractrometry, under its different configurations (classical and global), is an attractive technique to extract information from droplets in evaporation such as diameter and temperature. Recently a new processing strategy has been developed which increases dramatically the size and refractive index measurements accuracy for homogeneous droplets. Nevertheless, for mono component as well as for multicomponent droplets, the presence of temperature and/or of concentration gradients induce the presence of a gradient of refractive index which affects the interpretation of the recorded signals. In this publication, the effect of radial gradient on rainbow measurements with a high accuracy never reached previously is quantified. (orig.)
Radial keratotomy associated endothelial degeneration.
Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon
2012-01-01
To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Retrospective case series were used. Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38-72 years), averaging 18.7 years (range: 11-33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch's Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet's stripping automated endothelial keratoplasty (DSAEK) in the other eye. RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch's dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration.
Computer Simulation of Radial Immunodiffusion
Trautman, Rodes
1972-01-01
Theories of diffusion with chemical reaction are reviewed as to their contributions toward developing an algorithm needed for computer simulation of immunodiffusion. The Spiers-Augustin moving sink and the Engelberg stationary sink theories show how the antibody-antigen reaction can be incorporated into boundary conditions of the free diffusion differential equations. For this, a stoichiometric precipitate was assumed and the location of precipitin lines could be predicted. The Hill simultaneous linear adsorption theory provides a mathematical device for including another special type of antibody-antigen reaction in antigen excess regions of the gel. It permits an explanation for the lowered antigen diffusion coefficient, observed in the Oudin arrangement of single linear diffusion, but does not enable prediction of the location of precipitin lines. The most promising mathematical approach for a general solution is implied in the Augustin alternating cycle theory. This assumes the immunodiffusion process can be evaluated by alternating computation cycles: free diffusion without chemical reaction and chemical reaction without diffusion. The algorithm for the free diffusion update cycle, extended to both linear and radial geometries, is given in detail since it was based on gross flow rather than more conventional expressions in terms of net flow. Limitations on the numerical integration process using this algorithm are illustrated for free diffusion from a cylindrical well. PMID:4629869
Combination radial and thrust magnetic bearing
Blumenstock, Kenneth A. (Inventor)
2002-01-01
A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half.
An unusual cause of radial nerve palsy
Agrawal Hemendra Kumar
2014-06-01
Full Text Available Neurapraxia frequently occurs following traction injury to the nerve intraoperatively, leading to radial nerve palsy which usually recovers in 5-30 weeks. In our case, we had operated a distal one-third of humeral shaft fracture and fixed it with 4.5 mm limited contact dynamic compression plate. The distal neurovascular status of the limb was assessed postoperatively in the recovery room and was found to be intact and all the sensory-motor functions of the radial nerve were normal. On the second postoperative day, following the suction drain removal and dressing, patient developed immediate radial nerve palsy along with wrist drop. We reviewed theliterature and found no obvious cause for the nerve palsy and concluded that it was due to traction injury to the radial nerve while removing the suction drain in negative pressure. Key words: Radial nerve; Humeral fractures; Paralysis; Diaphyses
Radial velocity moments of dark matter haloes
Wojtak, R; Gottlöber, S; Mamon, G A; Wojtak, Radoslaw; Lokas, Ewa L.; Gottloeber, Stefan; Mamon, Gary A.
2005-01-01
Using cosmological N-body simulations we study the radial velocity distribution in dark matter haloes focusing on the lowest-order even moments, dispersion and kurtosis. We determine the properties of ten massive haloes in the simulation box approximating their density distribution by the NFW formula characterized by the virial mass and concentration. We also calculate the velocity anisotropy parameter of the haloes and find it mildly radial and increasing with distance from the halo centre. The radial velocity dispersion of the haloes shows a characteristic profile with a maximum, while the radial kurtosis profile decreases with distance starting from a value close to Gaussian near the centre. We therefore confirm that dark matter haloes possess intrinsically non-Gaussian, flat-topped velocity distributions. We find that the radial velocity moments of the simulated haloes are very well reproduced by the solutions of the Jeans equations obtained for the halo parameters with the anisotropy measured in the simu...
Non-uniform shrinkage of multiple-walled carbon nanotubes under in situ electron beam irradiation
Li, Lunxiong [South China Normal University, Brain Science Institute, Guangzhou (China); Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Su, Jiangbin [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Chang Zhou University, School of Mathematics and Physics, Changzhou (China); Zhu, Xianfang [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China)
2016-10-15
Instability of multiple-walled carbon nanotubes (MWCNTs) was investigated by in situ transmission electron microscopy at room temperature. Specially, the non-uniform shrinkage of tubes was found: The pristine MWCNT shrank preferentially in its axial direction from the most curved free cap end of the tube, but the shrinkage of the tube diameter was offset by the axial shrinkage: For the complex MWCNT, the two inner MWCNTs also preferentially axially shrank from their most curved cap ends and separated from each other. However, for the effect of the radial pressure from the out walls which enveloped the two inner tubes and the tube amorphization, the two inner tubes were extruded to come close to each other and finally touched again. The new ''evaporation'' and ''diffusion'' mechanisms of carbon atoms as driven by the nano-curvature of CNT and the electron beam-induced athermal activation were suggested to explain the above phenomena. (orig.)
Fountaine, Katherine T; Kendall, Christian G; Atwater, Harry A
2014-05-05
We report design methods for achieving near-unity broadband light absorption in sparse nanowire arrays, illustrated by results for visible absorption in GaAs nanowires on Si substrates. Sparse (unity absorption at wire resonant wavelengths due to coupling into 'leaky' radial waveguide modes of individual wires and wire-wire scattering processes. From a detailed conceptual development of radial mode resonant absorption, we demonstrate two specific geometric design approaches to achieve near unity broadband light absorption in sparse nanowire arrays: (i) introducing multiple wire radii within a small unit cell array to increase the number of resonant wavelengths, yielding a 15% absorption enhancement relative to a uniform nanowire array and (ii) tapering of nanowires to introduce a continuum of diameters and thus resonant wavelengths excited within a single wire, yielding an 18% absorption enhancement over a uniform nanowire array.
The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals
MAJUMDAR, APALA
2011-09-06
We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.
The ITER Radial Neutron Camera Detection System
Marocco, D.; Belli, F.; Bonheure, G.; Esposito, B.; Kaschuck, Y.; Petrizzi, L.; Riva, M.
2008-03-01
A multichannel neutron detection system (Radial Neutron Camera, RNC) will be installed on the ITER equatorial port plug 1 for total neutron source strength, neutron emissivity/ion temperature profiles and nt/nd ratio measurements [1]. The system is composed by two fan shaped collimating structures: an ex-vessel structure, looking at the plasma core, containing tree sets of 12 collimators (each set lying on a different toroidal plane), and an in-vessel structure, containing 9 collimators, for plasma edge coverage. The RNC detecting system will work in a harsh environment (neutron fiux up to 108-109 n/cm2 s, magnetic field >0.5 T or in-vessel detectors), should provide both counting and spectrometric information and should be flexible enough to cover the high neutron flux dynamic range expected during the different ITER operation phases. ENEA has been involved in several activities related to RNC design and optimization [2,3]. In the present paper the up-to-date design and the neutron emissivity reconstruction capabilities of the RNC will be described. Different options for detectors suitable for spectrometry and counting (e.g. scintillators and diamonds) focusing on the implications in terms of overall RNC performance will be discussed. The increase of the RNC capabilities offered by the use of new digital data acquisition systems will be also addressed.
Priede, J
2005-01-01
A theoretical study is presented of the effect of a radially converging melt flow, which is directed away from the solidification front, on the radial solute segregation in simple solidification models. We show that the classical Burton-Prim-Slichter (BPS) solution describing the effect of a diverging flow on the solute incorporation into the solidifying material breaks down for the flows converging along the solidification front. The breakdown is caused by a divergence of the integral defining the effective boundary layer thickness which is the basic concept of the BPS theory. Although such a divergence can formally be avoided by restricting the axial extension of the melt to a layer of finite height, radially uniform solute distributions are possible only for weak melt flows with an axial velocity away from the solidification front comparable to the growth rate. There is a critical melt velocity for each growth rate at which the solution passes through a singularity and becomes physically inconsistent for s...
Fine structure of defects in radial nematic droplets
Mkaddem; Gartland
2000-11-01
We investigate the structure of defects in nematic liquid crystals confined in spherical droplets and subject to radial strong anchoring. Equilibrium configurations of the order-parameter tensor field in a Landau-de Gennes free energy are numerically modeled using a finite-element package. Within the class of axially symmetric fields, we find three distinct solutions: the familiar radial hedgehog, the small ring (or loop) disclination predicted by Penzenstadler and Trebin, and a solution that consists of a short disclination line segment along the rotational symmetry axis terminating in isotropic end points. Phase and bifurcation diagrams are constructed to illustrate how the three competing configurations are related. They confirm that the transition from the hedgehog to the ring structure is first order. The third configuration is metastable (in our symmetry class) and forms an alternate solution branch bifurcating off the radial hedgehog branch at the temperature below which the hedgehog ceases to be metastable. Dependence on temperature, droplet size, and elastic constants is investigated, and comparisons with other studies are made.
Thomas Precession by Uniform Acceleration
Pardy, Miroslav
2015-01-01
We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.
Ex vivo laser lipolysis assisted with radially diffusing optical applicator
Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook
2016-05-01
Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min ptissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.
Computer Simulations and Measurements of Radial Solid Flow Distribution in a Riser
LuHuilin; ZhaoGangbo; 等
1998-01-01
Comparisons between the numerical predictions from a two-phase model and the experimental hydrodynamic data have been performed in fully developed gas-solid flows for Fcc catalysts,The results suggested the existence of self-similar solid flux profiles at low solid fluxes.Non-uniformity in the radial solids fluxes was found with a high solid flowing aminly downward near the wall.The model predictions were reasonably caught up the experimental trends.
Persian Sign Language Recognition Using Radial Distance and Fourier Transform
Bahare Jalilian
2013-11-01
Full Text Available This paper provides a novel hand gesture recognition method to recognize 32 static signs of the Persian Sign Language (PSL alphabets. Accurate hand segmentation is the first and important step in sign language recognition systems. Here, we propose a method for hand segmentation that helps to build a better vision based sign language recognition system. The proposed method is based on YCbCr color space, single Gaussian model and Bayes rule. It detects region of hand in complex background and non-uniform illumination. Hand gesture features are extracted by radial distance and Fourier transform. Finally, the Euclidean distanceis used to compute the similarity between the input signs and all training feature vectors in the database. The system is tested on 480 posture images of the PSL, 15 images for each 32 signs. Experimental results show that our approach is capable to recognize all 32 PSL alphabets with 95.62% recognition rate.
Response of long shallow cylindrical panels to radial line loads
Johnson, E. R.; Hyer, M. W.; Carper, D. M.
1984-01-01
The large displacement static response of shallow orthotropic panels subjected to lateral loading is examined both theoretically and experimentally. The panels are circular cylindrical open shells which are also thin and long. The straight edges are simply supported at a fixed distance apart, and the curved edges are free. The lateral load is a spatially uniform line load acting along the generator direction of the cylinder, and is directed radially inward toward the center of curvature. The load induces a circumferential thrust, and the panel can, and does, snap-through to an inverted configuration at the buckling load. The effect of load position on the response is also examined. The test panels discussed in the paper are /(90/0)3/S graphite-epoxy laminates. Nominal dimensions are a radius of 60 in., a thickness of 0.060 in., and an arc length of 12 in. Very good agreement between theory and experiment is achieved.
Non-uniform sediment incipient velocity
Haitao XU; Jinyou LU; Xiaobin LIU
2008-01-01
Based on the mechanism of non-uniform sediment incipient motion,the dragging force and uplift force coefficient expressions are put forward for the non-uniform bed material exposure and close alignment state.The incipient veiocity formula of the non-uniform sediment is then established.It is shown that the formula structure is reasonable,and fine particles of the non-uniform sediment are more difficult to set into motion than the same sized uniform particles,whereas coarser particles are easier to set into motion than their uniform equivalents.The validity of the formula is verified by field and experiment data.
Liquid jets injected into non-uniform crossflow
Tambe, Samir
An experimental study has been conducted with liquid jets injected transversely into a crossflow to study the effect of non-uniformities in the crossflow velocity distribution to the jet behavior. Two different non-uniform crossflows were created during this work, a shear-laden crossflow and a swirling crossflow. The shear-laden crossflow was generated by merging two independent, co-directional, parallel airstreams creating a shear mixing layer at the interface between them. The crossflow exhibited a quasi-linear velocity gradient across the height of the test chamber. By varying the velocities of the two airstreams, the sense and the slope of the crossflow velocity gradient could be changed. Particle Image Velocimetry (PIV) studies were conducted to characterize the crossflow. The parameter, UR, is defined as the ratio of the velocities of the two streams and governs the velocity gradient. A positive velocity gradient was observed for UR > 1 and a negative velocity gradient for UR 1), jet penetration increased and the Sauter Mean Diameter (SMD) distribution became more uniform. For low UR (designed axial swirlers. Three swirlers were used, with vane exit angles of 30°, 45° and 60°. Laser Doppler Velocimetry (LDV) was used to study the crossflow velocities. The axial (Ux) and the tangential (Utheta) components of the crossflow velocity were observed to decrease with increasing radial distance away from the centerbody. The flow angle of the crossflow was smaller than the vane exit angle, with the difference increasing with the vane exit angle. Water jets were injected from a 0.5 mm diameter orifice located on a cylindrical centerbody. Multi-plane PIV measurements were conducted to study the penetration and droplet velocity distribution of the jets. The jets were observed to follow a path close to the helical trajectory of the crossflow with a flow angle slightly less than the crossflow. This deficit in flow angle is attributed to the centrifugal acceleration
Transition of radial electric field in helical systems
Itoh, Kimitaka; Sanuki, Heiji; Toda, Shinichiro; Yokoyama, Masayuki [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Kyoto Univ. (Japan). Dept. of Nuclear Engineering
2001-06-01
Transition of radial electric field is investigated in helical plasmas for the given plasma fluxes. The density and temperature gradients are simultaneously determined together with radial electric field. The electric field shows a nature of bifurcation, if an anomalous particle transport exist in addition to the neoclassical particle flux. Based on the Maxwell's construction with respect to the work-done, the critical condition for the bifurcation is obtained. The existence of bifurcation is not affected by the anomalous energy flux. The gradients are found to be subject to bifurcation at high plasma fluxes regime. The transition to a better confinement is predicted. The presence of hard transition of the gradient and electric field indicates the existence of the electric domain interface, across which the discontinuous change of gradient takes place. (author)
A radial age gradient in the geometrically thick disk of the Milky Way
Martig, Marie; Ness, Melissa; Fouesneau, Morgan; Rix, Hans-Walter
2016-01-01
In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age; or geometrically, as stars high above the mid-plane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to have large radial scale-lengths, and their red colors suggest that they are uniformly old. The Milky Way's geometrically thick disk is also radially extended, but it is far from chemically uniform: alpha-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks' outer regions, bringing those stars high above the mid-plane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We f...
Uniform generation of combinatorial structures
Zito, M.; Pu, I.; Amos, M.; Gibbons, A. [Univ. of Warwick, Coventry (United Kingdom)
1996-12-31
We describe several RNC algorithms for generating graphs and subgraphs uniformly at random. For example, unlabelled undirected graphs are generated in O(log{sup 3} n lg lg n) time using O({epsilon}n{sup 1.5}/lg{sup 3} n lg lg n) processors if their number is n lg lg n known in advance and in O(lg n) time using O ({epsilon}n{sup 2}/lg n) processors otherwise. In both cases the error probability is the inverse of a polynomial in {epsilon}. Thus {epsilon} may be chosen to trade-off processors for error probability. Also, for an arbitrary graph, we describe RNC algorithms for the uniform generation of its subgraphs that are either non-simple paths or spanning trees. The work measure for the subgraph algorithms is essentially determined by the transitive closure bottleneck. As for sequential algorithms, the general notion of constructing generators from counters also applies to parallel algorithms although this approach is not employed by all the algorithms of this paper.
Mulcahey, Thomas I; Coad, James E; Fan, Wei Li; Grasso, Daniel J; Hanley, Brian M; Hawkes, Heather V; McDermott, Sean A; O’Connor, John P; Sheets, Ellen E; Vadala, Charles J
2017-01-01
In this article, a novel cryotherapy approach using a uniform, controlled, and consistent in vivo application of liquid nitrogen (LN2) spray as a Metered Cryospray™ (MCS) process is described. Although MCS may be used for many potential clinical applications, this paper focuses on the development that led to the controlled and consistent delivery of radial LN2 cryogen spray in order to generate a uniform circumferential effect and how the amount of MCS can be adapted to specifically ablate targeted diseases within a patient’s lumen such as an airway or esophagus. PMID:28255257
Breast mass classification on mammograms using radial local ternary patterns.
Muramatsu, Chisako; Hara, Takeshi; Endo, Tokiko; Fujita, Hiroshi
2016-05-01
Textural features can be useful in differentiating between benign and malignant breast lesions on mammograms. Unlike previous computerized schemes, which relied largely on shape and margin features based on manual contours of masses, textural features can be determined from regions of interest (ROIs) without precise lesion segmentation. In this study, therefore, we investigated an ROI-based feature, namely, radial local ternary patterns (RLTP), which takes into account the direction of edge patterns with respect to the center of masses for classification of ROIs for benign and malignant masses. Using an artificial neural network (ANN), support vector machine (SVM) and random forest (RF) classifiers, the classification abilities of RLTP were compared with those of the regular local ternary patterns (LTP), rotation invariant uniform (RIU2) LTP, texture features based on the gray level co-occurrence matrix (GLCM), and wavelet features. The performance was evaluated with 376 ROIs including 181 malignant and 195 benign masses. The highest areas under the receiver operating characteristic curves among three classifiers were 0.90, 0.77, 0.78, 0.86, and 0.83 for RLTP, LTP, RIU2-LTP, GLCM, and wavelet features, respectively. The results indicate the usefulness of the proposed texture features for distinguishing between benign and malignant lesions and the superiority of the radial patterns compared with the conventional rotation invariant patterns.
Novel Integration Radial and Axial Magnetic Bearing
Blumenstock, Kenneth; Brown, Gary
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.
Novel Integrated Radial and Axial Magnetic Bearing
Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)
2000-01-01
Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.
Roughening dynamics of spontaneous radial imbibition
Chen, Yong-Jun
2015-01-01
We performed an experimental observation on the spontaneous imbibition of water in a porous media in a radial Hele-Shaw cell and confirmed Washburn's law, where r is distance and t is time. Spontaneous imbibition with a radial interface window followed scaling dynamics when the front invaded into the porous media. We found a growth exponent (\\b{eta}=0.6) that was independent of the pressure applied at the liquid inlet. The roughness exponent decreased with an increase in pressure. The roughening dynamics of two dimensional spontaneous radial imbibition obey Family-Vicsek scaling, which is different from that with a one-dimensional planar interface window.
Spectral Distortion in a Radially Inhomogeneous Cosmology
Caldwell, R R
2013-01-01
The spectral distortion of the cosmic microwave background blackbody spectrum in a radially inhomogeneous spacetime, designed to exactly reproduce a LambdaCDM expansion history along the past light cone, is shown to exceed the upper bound established by COBE-FIRAS by a factor of approximately 3000. This simple observational test helps uncover a slew of pathological features that lie hidden inside the past light cone, including a radially contracting phase at decoupling and, if followed to its logical extreme, a naked singularity at the radially inhomogeneous Big Bang.
Spectral distortion in a radially inhomogeneous cosmology
Caldwell, R. R.; Maksimova, N. A.
2013-11-01
The spectral distortion of the cosmic microwave background blackbody spectrum in a radially inhomogeneous space-time, designed to exactly reproduce a ΛCDM expansion history along the past light cone, is shown to exceed the upper bound established by COBE-FIRAS by a factor of approximately 3700. This simple observational test helps uncover a slew of pathological features that lie hidden inside the past light cone, including a radially contracting phase at decoupling and, if followed to its logical extreme, a naked singularity at the radially inhomogeneous big bang.
Discontinuity effects on radial cavity transmission lines
Seidel, D.B.
1979-04-01
Pulse propagation in radial cavity transmission lines such as those found on a radial line accelerator is considered. Specifically, the effects of discontinuities along the line are examined in detail. It is found that previous analyses of such effects have been incorrect, and here two alternate solution techniques are presented. Depending upon the parameters of such a radial line, the discontinuity effects considered here may or may not be significant; however, if they are significant, it is recommended that the alternate solution techniques presented here be used.
Theoretical Investigation of Uniform and Non-uniform Penetrable Sphere Fluid
ZHOU Shi-Qi
2006-01-01
A bridge function approximation is proposed for a single-component fluid consisting of penetrable sphere interacting via a potential that remains finite and constant for center-center distance smaller than the particle diameter and is zero otherwise. The radial distribution function from the Ornstein-Zernike integral equation combined with the present bridge function approximation is in satisfactory agreement with the corresponding simulation data for all of the investigated state points. The presently calculated excess Helmholtz free energy respectively based on virial route and compressibility route is highly self-consistent, and is in very good agreement with simulational results for the case of low temperatures. The present bridge function approximation, combined with the bridge density functional approximation,can reproduce very accurately density profiles of the penetrable sphere fluid confined in a hard spherical cavity for all the cases where simulational results are available.
Calculation of Uniform of Beam Scanning
无
2011-01-01
For the electron beam application, it is always scanned by a dipole magnet. The uniform of the scanning has great influence for some application, such as the irradiation of the thyristor. There are two methods for improving the scanning uniform:
赵铮; 刘慧娟; 张千
2011-01-01
利用有限元分析软件,对径向叠片磁阻转子的新型无刷双馈电机进行电磁场分析,计算了电机在额定功率下同步运行状态的铁心损耗和绕组损耗,并以此为依据分析了该电机的温度场.为这种新型无刷双馈电机的工程应用奠定了基础,为该电机的设计优化提供了理论指导.%This paper afforded a brushless doubly fed machine (BDFM) with radial reluctance rotor structure.Using finite element calculation software, set up the 2D model and analyzed the electromagnetic field.The coreloss and winding loss was calculated at rated power and synchronization operation.Based on the loss data, the temperature field was plot.All the result are investigated to prove its good significance of application and provide the guide for its future optimal design.
Radial Heat Transfer Dynamics in Multiwall Carbon Nanotubes
Osman, Mohamed; Kim, Taejin
2006-05-01
The dynamics of radial heat transfer in zigzag and armchair double wall carbon nanotubes (DWCNT) have been examined using molecular dynamic (MD) simulations with the goal of understanding the role of radial phonon modes in heat transfer. The MD model uses Tersof-Brenner potential for bonded C-C interactions within each shell and non-bended van der Wall interaction between inner and outer shells. The simulation procedure involves, (1) quenching the DWNT to 0 K, (2) minimization of the potential energy and (3) raising the temperature of the outer shell to the desired steady state temperature while maintaining the inner tube at 0.1 K. The heat baths are removed from the outer and inner shell and their energies are examined. The energies of inner and outer exhibit an out of phase oscillatory behavior due the exchange of the energies between the two shells. The energy of the inner tube shows a weak gradual increase due to the temperature gradient. The beat frequencies determined from the Fourier transform of the energy oscillations of the inner and outer nanotubes were found to be in the tera Herz range. We will also discuss the temperature and length dependence of oscillatory energy exchange between the nanotube shells.
Extending maps between pre-uniform spaces
Adalberto García-Máynez; Rubén Mancio-Toledo
2012-01-01
We give sufficient conditions on a uniformly continuous map f: (X,U) → (Y, V ) between completable T1-pre-uniform spaces (X,U), (Y, V ) to have a continuous or a uniformly continuous extension f:X → Y between the corresponding completions.
Attitudes of Parents about School Uniforms.
West, Charles K.; Tidwell, Diane K.; Bomba, Anne K.; Elmore, Patsy Alexander
1999-01-01
Responses from 144 parents of fourth graders showed that 56% favored uniforms in public schools; most agreed that uniforms contributed to a conducive learning environment, promoted school spirit, and discouraged violence; and most disagreed that uniforms cost more than other types of clothing. (SK)
Radial Velocity Fluctuations of RZ Psc
Potravnov, I. S.; Gorynya, N. A.; Grinin, V. P.; Minikulov, N. Kh.
2014-12-01
The behavior of the radial velocity of the UX Ori type star RZ Psc is studied. The existence of an inner cavity with a radius of about 0.7 a.u. in the circumstellar disk of this star allows to suggest the presence of a companion. A study of the radial velocity of RZ Psc based on our own measurements and published data yields no periodic component in its variability. The two most accurate measurements of V r , based on high resolution spectra obtained over a period of three months, show that the radial velocity is constant over this time interval to within 0.5 km/s. This imposes a limit of M p ≤10 M Jup on the mass of the hypothetical companion. Possible reasons for the observed strong fluctuations in the radial velocity of this star are discussed.
An unusual cause of radial nerve palsy
Hemendra Kumar Agrawal; Vipin Khatkar; Mohit Garg; Balvinder Singh; Ashish Jaiman; Vinod Kumar Sharma
2014-01-01
Neurapraxia frequently occurs following traction injury to the nerve intraoperatively,leading to radial nerve palsy which usually recovers in 5-30 weeks.In our case,we had operated a distal one-third of humeral shaft fracture and fixed it with 4.5 mm limited contact dynamic compression plate.The distal neurovascular status of the limb was assessed postoperatively in the recovery room and was found to be intact and all the sensory-motor functions of the radial nerve were normal.On the second postoperative day,following the suction drain removal and dressing,patient developed immediate radial nerve palsy along with wrist drop.We reviewed the literature and found no obvious cause for the nerve palsy and concluded that it was due to traction injury to the radial nerve while removing the suction drain in negative pressure.
How to distinguish Hybrids from Radial Quarkonia
Close, Francis Edwin; Close, Frank E; Page, Philip R.
1997-01-01
We present arguments that reinforce the hybrid interpretation of pi(1800) and we establish that the rho(1450) and the omega(1420) can be interpreted as radial-hybrid mixtures. Some questions for future experiments are raised.
Radial pseudoaneurysm following diagnostic coronary angiography
Shankar Laudari
2015-06-01
Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50
Solutions of relativistic radial quasipotential equations
Minh, V.X.; Kadyshevskii, V.G.; Zhidkov, E.P.
1985-11-01
A systematic approach to the investigation of relativistic radial quasipotential equations is developed. The quasipotential equations can be interpreted either as linear equations in finite differences of fourth and second orders, respectively, or as differential equations of infinite order.
Two-dimensional radial acquisition technique with density adaption in sodium MRI.
Konstandin, Simon; Nagel, Armin M; Heiler, Patrick M; Schad, Lothar R
2011-04-01
Conventional 2D radial projections suffer from losses in signal-to-noise ratio efficiency because of the nonuniform k-space sampling. In this study, a 2D projection reconstruction method with variable gradient amplitudes is presented to cover the k-space uniformly. The gradient is designed to keep the average sampling density constant. By this, signal-to-noise ratio is increased, and the linear form of the radial trajectory is kept. The simple gradient design and low hardware requirements in respect of slew rate allow an easy implementation at MR scanners. Measurements with the density-adapted 2D radial trajectory were compared with the conventional projection reconstruction method. It is demonstrated that the density-adapted 2D radial trajectory technique provides higher signal-to-noise ratio (up to 28% in brain tissue), less blurring, and fewer artifacts in the presence of magnetic field inhomogeneities than imaging with the conventional 2D radial trajectory scheme. The presented sequence is well-suited for electrocardiographically gated sodium heart MRI and other applications with short relaxation times. Copyright © 2010 Wiley-Liss, Inc.
Guidance cue for cortical radial migration discovered
无
2008-01-01
@@ The regulatory mechanism for neuronal migration in the developing cortex is a major unsolved problem in developmental neurobiology. It is generally accepted that the migration of newborn pyramidal neurons from the ventricular zone toward upper cortical layers is guided by radial glial fibers in the developing cortex, and that the laminar structure of the cortex is formed through regulated attachment and detachment of migrating neurons with radial glial fibers.
Electromechanical properties of radial active magnetic bearings
Antila, Matti
1998-01-01
Nonideal properties of the electromagnetic actuators in radial active magnetic bearings are studied. The two dimensional nonlinear stationary finite element method is used to determine the linearised parameters of a radial active magnetic bearing. The method is verified on two test machines. The accuracy is 10-15 % in the magnetic saturation region. The effect of magnetic saturation on the bearing dynamics is studied based on the root locus diagrams of the closed loop system. These diagrams s...
Trivelpiece-Gould modes in a uniform unbounded plasma
Stenzel, R. L.; Urrutia, J. M.
2016-09-01
Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonance arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.
Spherical Accretion in a Uniformly Expanding Universe
Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira
1996-10-01
We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the
The Radial Velocity Experiment (RAVE): first data release
Steinmetz, M; Siebert, A; Watson, F G; Freeman, K C; Munari, U; Campbell, R; Williams, M; Seabroke, G M; Wyse, R F G; Parker, Q A; Bienaymé, O; Röser, S; Gibson, B K; Gilmore, G; Grebel, E K; Helmi, A; Navarro, J F; Burton, D; Cass, C J P; Dawe, J A; Fiegert, K; Hartley, M; Russell, K S; Saunders, W; Enke, H; Bailin, J; Binney, J; Bland-Hawthorn, J; Boeche, C; Dehnen, W; Eisenstein, D J; Evans, N W; Fiorucci, M; Fulbright, J P; Gerhard, O; Jauregi, U; Kelz, A; Mijovic, L; Minchev, I; Parmentier, G; Penarrubia, J; Quillen, A C; Read, M A; Ruchti, G; Scholz, R D; Siviero, A; Smith, M C; Sordo, R; Veltz, L; Vidrih, S; Von Berlepsch, R; Boyle, B J; Schilbach, E
2006-01-01
We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, surface gravity) of up to one million stars using the 6dF multi-object spectrograph on the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE program started in 2003, obtaining medium resolution spectra (median R=7,500) in the Ca-triplet region ($\\lambda\\lambda$ 8,410--8,795 \\AA) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogs, in the magnitude range 9radial velocities for 24,748 individual stars (25,274 measurements when including re-observations). Those data were obtained on 67 nights between 11 April 2003 to 03 April 2004. The total sky coverage within this data release is $\\sim$4,760 square degrees. The average signal to noise ratio of the observed spectra is 29.5, and 80% of t...
Scaling thermal effects in radial flow
Hudspeth, R. T.; Guenther, R. B.; Roley, K. L.; McDougal, W. G.
To adequately evaluate the environmental impact of siting nuclear waste repositories in basalt aquicludes, it is essential to know the effects on parameter identification algorithms of thermal gradients that exist in these basaltic aquicludes. Temperatures of approximately 60°C and pressures of approximately 150 atm can be expected at potential repository sites located at depths of approximately 1000 m. The phenomenon of over-recovery has been observed in some pumping tests conducted at the Hanford Nuclear Reservation located in the Pasco Basin adjacent to the Columbia River in the state of Washington, USA. This over-recovery phenomenon may possibly be due to variations in the fluid density caused by thermal gradients. To assess the potential effects of these thermal gradients on indirect parameter identification algorithms, a systematic scaling of the governing field equations is required in order to obtain dimensionless equations based on the principle of similarity. The constitutive relationships for the specific weight of the fluid and for the porosity of the aquiclude are shown to be exponentially dependent on the pressure gradient. The dynamic pressure is converted to the piezometric head and the flow equation for the piezometric head is then scaled in radial coordinates. Order-of-magnitude estimates are made for all variables in unsteady flow for a typical well test in a basaltic aquiclude. Retaining all nonlinear terms, the parametric dependency of the flow equation on the classical dimensionless thermal and hydraulic parameters is demonstrated. These classical parameters include the Batchelor, Fourier, Froude, Grashof, and Reynolds Numbers associated with thermal flows. The flow equation is linearized from order-of-magnitude estimates based on these classical parameters for application in parameter identification algorithms.
Falabella, S.
1988-05-11
A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.
Uniform sampling table method and its applications: establishment of a uniform sampling method.
Chen, Yibin; Chen, Jiaxi; Wang, Wei
2013-01-01
A novel uniform sampling method is proposed in this paper. According to the requirements of uniform sampling, we propose the properties that must be met by analyzing the distribution of samples. Based on this, the proposed uniform sampling method is demonstrated and evaluated strictly by mathematical means such as inference. The uniform sampling tables with respect to Cn(t2) and Cn(t3) are established. Furthermore, a one-dimension uniform sampling method and a multidimension method are proposed. The proposed novel uniform sampling method, which is guided by uniform design theory, enjoys the advantages of simplified use and good representativeness of the whole sample.
Radial transmission line analysis of multi-layer structures
Hahn, H.; Hammons, L.
2011-03-28
The analysis of multi-layer beam tubes is a standard problem and involves axially propagating waves. This treatment is ill suited to a short multi-layer structure such as the present example of a ferrite covered ceramic break in the beam tube at the ERL photo-cathode electron gun. This paper demonstrates that such structure can better be treated by radial wave propagation. The theoretical method is presented and numerical results are compared with measured network analyser data and Microwave Studio generated simulations. The results confirm the concept of radial transmission lines as a valid analytical method. An Energy Recovery Linac (ERL) is being constructed at this laboratory for the purpose of research towards an envisioned Electron Ion Collider. One of the pertinent topics is damping of Higher Order Modes (HOM). In this ERL, the damping is provided by ferrite absorbers in the beam tube. A modified version thereof, a ceramic break surrounded by ferrite, is planed for the superconducting electron gun. The damper here is located at room temperature just outside of the gun. If used in a cavity chain, the ceramic break is in the vacuum tube at helium temperature whereas the ferrite is moved into the cryostat insulating vacuum allowing higher temperatures. The general properties of the ferrite HOM dampers have been published but are more detailed in this paper.
Experimental study of formation heating during radial flow of steam
Malofeev, G.E.; Kennavi, F.A.; Sheinman, A.B.
1969-06-01
Hot water or steam was injected into a laboratory model of an oil formation, and the distribution of temperature within the model was determined at different times. The zone of interest in the model was 50 mm thick, thickness of overlying and underlying rock was 140 mm. Model diameter was 600 mm, porosity was 37%, and permeability 4 darcies. Well diameter was 6.5 mm. Dimensionless parameters were determined, so that thermal behavior of the model represented thermal behavior of a reservoir. Both vertical and radial temperature distributions in the model are shown graphically, as well as the relationship between the heat injected into the system and the heat accumulated by the system. It was found that there is formed in the sand a steam zone (zone of constant temperature) whose radius increases with time; and the coefficient of heat utilization does not depend on the quantity of injected steam.
Axial and radial velocities in the creeping flow in a pipe
Zuykov Andrey L'vovich
2014-05-01
Full Text Available The article is devoted to analytical study of transformation fields of axial and radial velocities in uneven steady creeping flow of a Newtonian fluid in the initial portion of the cylindrical channel. It is shown that the velocity field of the flow is two-dimensional and determined by the stream function. The article is a continuation of a series of papers, where normalized analytic functions of radial axial distributions in uneven steady creeping flow in a cylindrical tube with azimuthal vorticity and stream function were obtained. There is Poiseuille profile for the axial velocity in the uniform motion of a fluid at an infinite distance from the entrance of the pipe (at x = ∞, here taken equal to zero radial velocity. There is uniform distribution of the axial velocity in the cross section at the tube inlet at x = 0, at which the axial velocity is constant along the current radius. Due to the axial symmetry of the flow on the axis of the pipe (at r = 0, the radial velocities and the partial derivative of the axial velocity along the radius, corresponding to the condition of the soft function extremum, are equal to zero. The authors stated vanishing of the velocity of the fluid on the walls of the pipe (at r = R , where R - radius of the tube due to its viscous sticking and tightness of the walls. The condition of conservation of volume flow along the tube was also accepted. All the solutions are obtained in the form of the Fourier - Bessel. It is shown that the hydraulic losses at uniform creeping flow of a Newtonian fluid correspond to Poiseuille - Hagen formula.
Uniform guidelines improve client care.
Barnett, B
1994-12-01
Uniform national guidelines on the delivery of family planning methods and services improve client care, assuming these guidelines are based on current scientific information. Compliance with these guidelines yields safe and efficient delivery of family planning services. Service providers need information, training, supplies, and guidelines to deliver quality services. Guidelines contribute to consistency among family planning programs in different settings. Even though clinics may not provide the same services, the guidelines allow them to provide the same standards of care. Specifically, eligibility criteria, contraindications, and follow-up schedules are the same regardless of the service delivery point. Various international health organizations (such as World Health Organization, USAID, Program for International Training in Health, International Planned Parenthood Federation, and Association for Voluntary Surgical Contraception) have developed guidelines for family planning service delivery. Governments can use these documents to develop national family planning guidelines and policies. They should adapt the guidelines to local needs and consider program resources. After development of the national guidelines, training, workshops, and dissemination of written materials should be provided for policymakers, physicians, nurses, and other health providers. Countries that have either developed or are working to draft their own national guidelines are Cameroon, Ghana, Mexico, and Nepal.
Discovery of Uniformly Expanding Universe
Cahill R. T.
2012-01-01
Full Text Available Saul Perlmutter and the Brian Schmidt – Adam Riess teams reported that their Friedmann-model GR-based analysis of their supernovae magnitude-redshift data re- vealed a new phenomenon of “dark energy” which, it is claimed, forms 73% of the energy / matter density of the present-epoch universe, and which is linked to the further claim of an accelerating expansion of the universe. In 2011 Perlmutter, Schmidt and Riess received the Nobel Prize in Physics “for the discovery of the accelerating ex- pansion of the Universe through observations of distant supernovae”. Here it is shown that (i a generic model-independent analysis of this data reveals a uniformly expanding universe, (ii their analysis actually used Newtonian gravity, and finally (iii the data, as well as the CMB fluctuation data, does not require “dark energy” nor “dark matter”, but instead reveals the phenomenon of a dynamical space, which is absent from the Friedmann model.
Yonggang Huang; D. Ngo; A.J. Rosakis
2005-01-01
Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. By considering a circular thin film/substrate system subject to non-uniform, but axisymmetric misfit strain distributions in the thin film, we derived relations between the film stresses and the misfit strain, and between the plate system's curvatures and the misfit strain. These relations feature a "local"part which involves a direct dependence of the stress or curvature components on the misfit strain at the same point, and a "non-local" part which reflects the effect of misfit strain of other points on the location of scrutiny. Most notably, we also derived relations between the polar components of the film stress and those of system curvatures which allow for the experimental inference of such stresses from full-field curvature measurements in the presence of arbitrary radial non-uniformities. These relations also feature a "non-local"dependence on curvatures making a full-field measurement a necessity. Finally, it is shown that the interfacial shear tractions between the film and the substrate are proportional to the radial gradients of the first curvature invariant and can also be inferred experimentally.
Radial spoke proteins of Chlamydomonas flagella
Yang, Pinfen; Diener, Dennis R.; Yang, Chun; Kohno, Takahiro; Pazour, Gregory J.; Dienes, Jennifer M.; Agrin, Nathan S.; King, Stephen M.; Sale, Winfield S.; Kamiya, Ritsu; Rosenbaum, Joel L.; Witman, George B.
2007-01-01
Summary The radial spoke is a ubiquitous component of ‘9+2’ cilia and flagella, and plays an essential role in the control of dynein arm activity by relaying signals from the central pair of microtubules to the arms. The Chlamydomonas reinhardtii radial spoke contains at least 23 proteins, only 8 of which have been characterized at the molecular level. Here, we use mass spectrometry to identify 10 additional radial spoke proteins. Many of the newly identified proteins in the spoke stalk are predicted to contain domains associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains. This suggests that the spoke stalk is both a scaffold for signaling molecules and itself a transducer of signals. Moreover, in addition to the recently described HSP40 family member, a second spoke stalk protein is predicted to be a molecular chaperone, implying that there is a sophisticated mechanism for the assembly of this large complex. Among the 18 spoke proteins identified to date, at least 12 have apparent homologs in humans, indicating that the radial spoke has been conserved throughout evolution. The human genes encoding these proteins are candidates for causing primary ciliary dyskinesia, a severe inherited disease involving missing or defective axonemal structures, including the radial spokes. PMID:16507594
The symbolism and myth surrounding nurses' uniform.
Richardson, M
This article addresses nurses' uniform from the perspective of the symbolic, myth, legend and competing discourse. The analysis touches upon why nurses working with people who have learning disabilities discarded the nurses' uniform and why other nurses may consider doing so, particularly if suitable alternatives exist. The analysis draws from various areas of nursing practice, including the nursing of disabled people, elderly people and people with learning disabilities. Nurses' uniform is revealed as a totem of considerable potency such that to wear a uniform in just any setting or context has to be cautioned. The practicalities of protective clothing are addressed. A differentiation is drawn between uniform and protective clothing such that much of the undesirable symbolism associated with uniform may be discarded with a consequent enhancement of the image of the nurse.
RBFNN Model for Predicting Nonlinear Response of Uniformly Loaded Paddle Cantilever
Abdullah H. Abdullah
2009-01-01
Full Text Available The Radial basis Function neural network (RBFNN model has been developed for the prediction of nonlinear response for paddle Cantilever with built-in edges and different sizes, thickness and uniform loads. Learning data was performed by using a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The neural network model has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, eight nodes at hidden layer and one output node representing the max. deflection response (1500×1 represent the deflection response of load. Regression analysis between finite element results and values predicted by the neural network model shows the least error.
Late radial head dislocation with radial head fracture and ulnar plastic deformation
Heinrich, Stephen D.; Butler, R. Allen
Type 11 Monteggia lesion equivalents produced by plastic deformation of the ulna are rare. Radial head fractures in skeletally immature patients are also uncommon. We report a late presentation of a Type 11 Monteggia equivalent injury with a fracture of the radial head and neck and plastic
School uniforms: tradition, benefit or predicament?
Van Aardt, Annette Marie; Wilken, Ilani
2012-01-01
This article focuses on the controversies surrounding school uniforms. Roleplayers in this debate in South Africa are parents, learners and educators, and arguments centre on aspects such as identity, economy and the equalising effect of school uniforms, which are considered in the literature to be benefits. Opposing viewpoints highlight the fact that compulsory uniforms infringe on learners’ constitutional rights to self-expression. The aim of this research was to determine the perspectives ...
Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae [and others
1994-10-01
Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs.
A Thermal Field Theory with Non-uniform Chemical Potential
Arai, Masato; Sasaki, Shin
2013-01-01
We investigate thermal one-loop effective potentials in multi-flavor models with chemical potentials. We study four-dimensional models in which each flavor have different global U(1) charges. Accordingly they have different chemical potentials. We call these "non-uniform chemical potentials," which are organized into a diagonal matrix \\mu. The mass matrix at a vacuum does not commute with \\mu. We find that the effective potential is divided into three parts. The first part is the Coleman-Weinberg potential. The UV divergence resides only in this part. The second is the correction to the Coleman-Weinberg potential that is independent of temperature, and the third depends on both temperature and \\mu. Our result is a generalization of the thermal potentials in previous studies for models with single and multi-flavors with (uniform) chemical potentials and reproduces all the known results correctly.
On the Compactly Locally Uniformly Rotund Points of Orlicz Spaces
Lili Chen; Yunan Cui
2007-11-01
In this paper, locally uniformly rotund points and compactly locally uniformly rotund points are introduced. Moreover, criteria for compactly locally uniformly rotund points in Orlicz spaces are given.
Extending maps between pre-uniform spaces
Adalberto García-Máynez; Rubén Mancio-Toledo
2012-01-01
[EN] We give sufficient conditions on a uniformly continuous map f: (X,U) → (Y, V ) between completable T1-pre-uniform spaces (X,U), (Y, V ) to have a continuous or a uniformly continuous extension f:X → Y between the corresponding completions. García-Máynez, A.; Mancio-Toledo, R. (2012). Extending maps between pre-uniform spaces. Applied General Topology. 13(1):21-25. doi:10.4995/agt.2012.1634. 21 25 13 1
Manufacturing of Precision Forgings by Radial Forging
Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.
2011-01-01
Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.
Dispersion-free radial transmission lines
Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA
2011-04-12
A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.
Cloaking and Magnifying Using Radial Anisotropy
Kettunen, Henrik; Sihvola, Ari
2013-01-01
This paper studies the electrostatic responses of a polarly radially anisotropic cylinder and a spherically radially anisotropic sphere. For both geometries, the permittivity components differ from each other in the radial and tangential directions. We show that choosing the ratio between these components in a certain way, these rather simple structures can be used in cloaking dielectric inclusions with arbitrary permittivity and shape in the quasi-static limit. For an ideal cloak, the contrast between the permittivity components has to tend to infinity. However, only positive permittivity values are required and a notable cloaking effect can already be observed with relatively moderate permittivity contrasts. Furthermore, we show that the polarly anisotropic cylindrical shell has a complementary capability of magnifying the response of an inner cylinder.
Image scanning microscopy with radially polarized light
Xiao, Yun; Zhang, Yunhai; Wei, Tongda; Huang, Wei; Shi, Yaqin
2017-03-01
In order to improve the resolution of image scanning microscopy, we present a method based on image scanning microscopy and radially polarized light. According to the theory of image scanning microscopy, we get the effective point spread function of image scanning microscopy with the longitudinal component of radially polarized light and a 1 AU detection area, and obtain imaging results of the analyzed samples using this method. Results show that the resolution can be enhanced by 7% compared with that in image scanning microscopy with circularly polarized light, and is 1.54-fold higher than that in confocal microscopy with a pinhole of 1 AU. Additionally, the peak intensity of ISM is 1.54-fold higher than that of a confocal microscopy with a pinhole of 1 AU. In conclusion, the combination of the image scanning microscopy and the radially polarized light could improve the resolution, and it could realize high-resolution and high SNR imaging at the same time.
Radial anisotropy ambient noise tomography of volcanoes
Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph
2016-04-01
The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.
Edge radial electric field formation after the L-H transition on JT-60U
Kamiya, K.; Matsunaga, G.; Honda, M.; Miyato, N.; Urano, H.; Kamada, Y.; Itoh, K. [Japan Atomic Energy Agency (JAEA), Naka (Japan); Ida, K. [National Institute for Fusion Science (NIFS), Toki (Japan); Collaboration: The JT-60 team
2014-06-15
Spatio-temporal measurements of the impurity ion temperature, density, and rotation profiles around the plasma edge region have been made in the JT-60U tokamak, allowing the determination of radial electric field, E{sub r}, with the key dimensionless parameter (poloidal Mach number, U{sub pm)} at the L-H transition in a number of operational regimes. We found that there is variation in the L-H transition in terms of its time-scale; not only ''hard'' type transition with a faster time-scale than that seen in the plasma transport (as represented by an energy confinement time, τ{sub E}) as seen in the many conventional tokamaks, but also ''soft'' one with a slow time-scale (∼τ{sub E}) is possible solution, including a complex multi-stage E{sub r} transition in the later H-phase. The most important point is that the critical condition for the L-H transition predicted by ion-orbit loss model could be applicable only for ''hard'' transition (occurred at U{sub pm} ≥ 1), and not necessary for ''slow'' one (occurred even at U{sub pm} < 1). Characteristics of the turbulent density fluctuation with the frequency range of 100 kHz at the plasma edge region, in addition to a uniform toroidal MHD oscillation (i.e., n = 0), during ELM-free H-phase are also reported. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Concepts of radial and angular kinetic energies
Dahl, Jens Peder; Schleich, W.P.
2002-01-01
We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantiti...... in the two pictures, containing different physical information, but the relation between them is well defined. We discuss this relation and illustrate its nature by examples referring to a free particle and to a ground-state hydrogen atom....
Precise Near-Infrared Radial Velocities
Plavchan, Peter; Gagne, Jonathan; Furlan, Elise; Brinkworth, Carolyn; Bottom, Michael; Tanner, Angelle; Anglada-Escude, Guillem; White, Russel; Davison, Cassy; Mills, Sean; Beichman, Chas; Johnson, John Asher; Ciardi, David; Wallace, Kent; Mennesson, Bertrand; Vasisht, Gautam; Prato, Lisa; Kane, Stephen; Crawford, Sam; Crawford, Tim; Sung, Keeyoon; Drouin, Brian; Lin, Sean; Leifer, Stephanie; Catanzarite, Joe; Henry, Todd; von Braun, Kaspar; Walp, Bernie; Geneser, Claire; Ogden, Nick; Stufflebeam, Andrew; Pohl, Garrett; Regan, Joe
2016-01-01
We present the results of two 2.3 micron near-infrared radial velocity surveys to detect exoplanets around 36 nearby and young M dwarfs. We use the CSHELL spectrograph (R ~46,000) at the NASA InfraRed Telescope Facility, combined with an isotopic methane absorption gas cell for common optical path relative wavelength calibration. We have developed a sophisticated RV forward modeling code that accounts for fringing and other instrumental artifacts present in the spectra. With a spectral grasp of only 5 nm, we are able to reach long-term radial velocity dispersions of ~20-30 m/s on our survey targets.
Radial excitations of current-carrying vortices
Hartmann, Betti; Michel, Florent; Peter, Patrick
2017-04-01
We report on the existence of a new type of cosmic string solutions in the Witten model with U (1) × U (1) symmetry. These solutions are superconducting with radially excited condensates that exist for both gauged and ungauged currents. Our results suggest that these new configurations can be macroscopically stable, but microscopically unstable to radial perturbations. Nevertheless, they might have important consequences for the network evolution and particle emission. We discuss these effects and their possible signatures. We also comment on analogies with non-relativistic condensed matter systems where these solutions may be observable.
Radial Acceleration Relation in Rotationally Supported Galaxies
McGaugh, Stacy S.; Lelli, Federico; Schombert, James M.
2016-11-01
We report a correlation between the radial acceleration traced by rotation curves and that predicted by the observed distribution of baryons. The same relation is followed by 2693 points in 153 galaxies with very different morphologies, masses, sizes, and gas fractions. The correlation persists even when dark matter dominates. Consequently, the dark matter contribution is fully specified by that of the baryons. The observed scatter is small and largely dominated by observational uncertainties. This radial acceleration relation is tantamount to a natural law for rotating galaxies.
Five Lectures on Radial Basis Functions
Powell, Mike J.D.
2005-01-01
Professor Mike J. D. Powell spent three weeks at IMM in November - December 2004. During the visit he gave five lectures on radial basis functions. These notes are a TeXified version of his hand-outs, made by Hans Bruun Nielsen, IMM.......Professor Mike J. D. Powell spent three weeks at IMM in November - December 2004. During the visit he gave five lectures on radial basis functions. These notes are a TeXified version of his hand-outs, made by Hans Bruun Nielsen, IMM....
The Radial Velocity Experiment (RAVE): Fifth Data Release
Kunder, Andrea; Steinmetz, Matthias; Zwitter, Tomaz; McMillan, Paul; Casagrande, Luca; Enke, Harry; Wojno, Jennifer; Valentini, Marica; Chiappini, Cristina; Matijevic, Gal; Siviero, Alessandro; de Laverny, Patrick; Recio-Blanco, Alejandra; Bijaoui, Albert; Wyse, Rosemary F G; Binney, James; Grebel, E K; Helmi, Amina; Jofre, Paula; Gilmore, Gerard; Siebert, Arnaud; Famaey, Benoit; Bienayme, Olivier; Gibson, Brad K; Freeman, Kenneth C; Navarro, Julio F; Munari, Ulisse; Seabroke, George; Jimenez, Borja Anguiano; Reid, Warren; Bland-Hawthorn, Joss; Watson, Fred; Gerhard, Ortwin; Davies, G R; Elsworth, Y P; Lund, M; Miglio, A; Chaplin, W J; Mosser, B
2016-01-01
Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9< I < 12) survey of stars randomly selected in the southern hemisphere. The RAVE medium-resolution spectra (R~7500) covering the Ca-triplet region (8410-8795 A) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which more than 200,000 are expected to have parallaxes and proper motions from the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalogue of red giant stars in the deredde...
Fiora, Alessandro; Cescatti, Alessandro
2006-09-01
Daily and seasonal patterns in radial distribution of sap flux density were monitored in six trees differing in social position in a mixed coniferous stand dominated by silver fir (Abies alba Miller) and Norway spruce (Picea abies (L.) Karst) in the Alps of northeastern Italy. Radial distribution of sap flux was measured with arrays of 1-cm-long Granier probes. The radial profiles were either Gaussian or decreased monotonically toward the tree center, and seemed to be related to social position and crown distribution of the trees. The ratio between sap flux estimated with the most external sensor and the mean flux, weighted with the corresponding annulus areas, was used as a correction factor (CF) to express diurnal and seasonal radial variation in sap flow. During sunny days, the diurnal radial profile of sap flux changed with time and accumulated photosynthetic active radiation (PAR), with an increasing contribution of sap flux in the inner sapwood during the day. Seasonally, the contribution of sap flux in the inner xylem increased with daily cumulative PAR and the variation of CF was proportional to the tree diameter, ranging from 29% for suppressed trees up to 300% for dominant trees. Two models were developed, relating CF with PAR and tree diameter at breast height (DBH), to correct daily and seasonal estimates of whole-tree and stand sap flow obtained by assuming uniform sap flux density over the sapwood. If the variability in the radial profile of sap flux density was not accounted for, total stand transpiration would be overestimated by 32% during sunny days and 40% for the entire season.
Zhang, Xing-Liang; He, Xing-Yuan; Chen, Zhen-Ju; Cui, Ming-Xing; Li, Na
2011-12-01
Based on the theory and methodology of dendrochronology, the tree ring width chronology of Pinus sylvestris var. mongolica in Mangui of Great Xing' an Mountains was developed, and the relationships between the standardized tree ring width chronology and local climate factors (temperature and precipitation) as well as the effects of climate factors on the P. sylvestris var. mongolica radial growth were analyzed. In this region, the mean monthly temperature in April-August of current year was the main factor limiting the radial growth, and the increasing mean monthly temperature from April to August had negative effects to the radial growth. The simulation of the variations of the radial growth by the mean monthly temperature change in April-August showed that the radial growth of P. sylvestris var. mongolica would present a declining trend accompanied with the warmer and drier regional climate condition.
Analysis of structure and transition of radial electric field in helical systems
Toda, S.; Itoh, K.
2001-03-01
A set of transport equations is analyzed, including the bifurcation of the radial electric field in toroidal helical systems. Calculations are made simulating CHS experiments. Both hard and soft transitions are found in the profile of the radial electric field. Whether the electric domain interface exists or not is examined. The electric domain interface is found to exist, depending on the ratio of the electron temperature to the ion temperature. The structure of the electric domain interface is also studied. The steep gradient of the radial electric field is obtained and the width of the electric domain interface is determined by the anomalous diffusivity of the electric field. The region where the electron root and ion root co-exist is obtained when changing the density or the heating power of electrons. The various types of the electrostatic potential structures are found. The condition for the turbulence suppression is examined in the parameter regime studied here. (author)
A Uniform Syntax and Discourse Structure
Hardt, Daniel
2013-01-01
I present arguments in favor of the Uniformity Hypothesis: the hypothesis that discourse can extend syntax dependencies without conflicting with them. I consider arguments that Uniformity is violated in certain cases involving quotation, and I argue that the cases presented in the literature...
School Uniform Policies in Public Schools
Brunsma, David L.
2006-01-01
The movement for school uniforms in public schools continues to grow despite the author's research indicating little if any impact on student behavior, achievement, and self-esteem. The author examines the distribution of uniform policies by region and demographics, the impact of these policies on perceptions of school climate and safety, and…
Student Dress Codes and Uniforms. Research Brief
Johnston, Howard
2009-01-01
According to an Education Commission of the States "Policy Report", research on the effects of dress code and school uniform policies is inconclusive and mixed. Some researchers find positive effects; others claim no effects or only perceived effects. While no state has legislatively mandated the wearing of school uniforms, 28 states and…
School Uniforms and Discourses on Childhood.
Bodine, Ann
2003-01-01
This ethnographic study examined the introduction of school uniforms in the public schools of one California city. Findings indicated that the uniform issue intersected with issues such as student safety and violence, family stress, egalitarianism, competitive dressing, and a power struggle over shaping the childhood environment. It was concluded…
School Uniform Policies: Students' Views of Effectiveness.
McCarthy, Teresa M.; Moreno, Josephine
2001-01-01
Focus-group interviews of New York City middle-school students about their perceptions of the effectiveness of the school-uniform policy. Finds that students' perceptions of the effects of school-uniform policy on school culture varied considerably with those intended by the principal. (Contains 40 references.) (PKP)
A School Uniform Program That Works.
Loesch, Paul C.
1995-01-01
According to advocates, school uniforms reduce gang influence, decrease families' clothing expenditures, and help mitigate potentially divisive cultural and economic differences. Aiming to improve school climate, a California elementary school adopted uniforms as a source of pride and affiliation. This article describes the development of the…
On Uniform Convexity of Banach Spaces
Qing Jin CHENG; Bo WANG; Cui Ling WANG
2011-01-01
This paper gives some relations and properties of several kinds of generalized convexity in Banach spaces. As a result, it proves that every kind of uniform convexity implies the Banach-Sakes property, and several notions of uniform convexity in literature are actually equivalent.
Uniformly convex-transitive function spaces
Rambla-Barreno, Fernando; Talponen, Jarno
2009-01-01
We introduce a property of Banach spaces called uniform convex-transitivity, which falls between almost transitivity and convex-transitivity. We will provide examples of uniformly convex-transitive spaces. This property behaves nicely in connection with some Banach-valued function spaces. As a consequence, we obtain new examples of convex-transitive Banach spaces.
School Dress Codes and Uniform Policies.
Anderson, Wendell
2002-01-01
Opinions abound on what students should wear to class. Some see student dress as a safety issue; others see it as a student-rights issue. The issue of dress codes and uniform policies has been tackled in the classroom, the boardroom, and the courtroom. This Policy Report examines the whole fabric of the debate on dress codes and uniform policies…
Deposition uniformity inspection in IC wafer surface
Li, W. C.; Lin, Y. T.; Jeng, J. J.; Chang, C. L.
2014-03-01
This paper focuses on the task of automatic visual inspection of color uniformity on the surface of integrated circuits (IC) wafers arising from the layering process. The oxide thickness uniformity within a given wafer with a desired target thickness is of great importance for modern semiconductor circuits with small oxide thickness. The non-uniform chemical vapor deposition (CVD) on a wafer surface will proceed to fail testing in Wafer Acceptance Test (WAT). Early detection of non-uniform deposition in a wafer surface can reduce material waste and improve production yields. The fastest and most low-priced inspection method is a machine vision-based inspection system. In this paper, the proposed visual inspection system is based on the color representations which were reflected from wafer surface. The regions of non-uniform deposition present different colors from the uniform background in a wafer surface. The proposed inspection technique first learns the color data via color space transformation from uniform deposition of normal wafer surfaces. The individual small region statistical comparison scheme then proceeds to the testing wafers. Experimental results show that the proposed method can effectively detect the non-uniform deposition regions on the wafer surface. The inspection time of the deposited wafers is quite compatible with the atmospheric pressure CVD time.
One-year results of cemented bipolar radial head prostheses for comminuted radial head fractures
Laun, Reinhold
2015-12-01
Full Text Available Introduction: Comminuted radial head fractures (Mason type III continue to pose a challenge to orthopedic surgeons. When internal fixation is not possible, radial head arthroplasty has been advocated as the treatment of choice. The purpose of this retrospective study was to evaluate clinical and radiological short-term results of patients with Mason type III radial head fractures treated with a cemented bipolar radial prosthesis. Methods: Twelve patients received cemented bipolar radial head hemiarthroplasty for comminuted radial head fractures. In all patients a CT scan was obtained prior to surgical treatment to assess all associated injuries. Postoperatively an early motion protocol was applied. All patients were evaluated clinically and radiologically at an average of 12.7 months.Results: According to the Mayo Modified Wrist Score, the Mayo Elbow Performance Score, the functional rating index of Broberg and Morrey, and the DASH Score good to excellent results were obtained. Grip strength and range of motion were almost at the level of the unaffected contralateral side. Patient satisfaction was high, no instability or signs of loosening of the implant, and only mild signs of osteoarthritis were seen.Conclusion: Overall good to excellent short-term results for primary arthroplasty for comminuted radial head fractures were observed. These encouraging results warrant the conduction of further studies with long-term follow-up and more cases to see if these short-term results can be maintained over time.
ZHAO Jijun; YANG Shuhua; HU Yong
2007-01-01
The study assessed the early functional outcomes with cemented titanium implants of ra- dius in the treatment of comminuted fractures of radial heads. The functional outcomes of arthro- plasty with cemented titanium implants of radius in the treatment of radial head fractures (Mason Type Ⅲ: 6; Mason Type Ⅳ: 4) in l0 consecutive patients (mean age, 38 years) were evaluated over a mean time of 23.7 months (18-31 months). The patients were assessed on the basis of physical ex- amination, functional rating (Mayo) and radiographic findings. The parameters evaluated included motion, stability, pain, and grip strength. Five patients were considered to have excellent results, 4 patients had good results and 1 patient had fairly good results. There were no cases of infection, prosthetic failure, heterotopic ossification or dislocation. When medial collateral ligament was injured, radial head became the main stabilizing structure of the elbow. Titanium radial head implant may provide the stability similar to that of native radial head. We believe that titanium radial head im- plants may be indicated for the Mason Type Ⅲ and Mason Type Ⅳ radial head fractures.
Uniform Approximation of a Maxwellian Thermostat by Finite Reservoirs
Bonetto, F.; Loss, M.; Tossounian, H.; Vaidyanathan, R.
2017-04-01
We study a system of M particles in contact with a large but finite reservoir of {N ≫ M} particles within the framework of the Kac master equation modeling random collisions. The reservoir is initially in equilibrium at temperature {T=β^{-1}}. We show that for large N, this evolution can be approximated by an effective equation in which the reservoir is described by a Maxwellian thermostat at temperature T. This approximation is proven for a suitable {L^2} norm as well as for the Gabetta-Toscani-Wennberg (GTW) distance and is uniform in time.
Uniformity of Electrical Parameters on MCT Epitaxy Film
NIE Lin-ru; MENG Qing-lan; LI Nan
2004-01-01
For Hall measurement under different magnetic fields at LN2 temperature,Hg1-xCdxTe (MCT) film (radius 1cm) grown on CdTe substrate by LPE is photoengraved into many small Van Der Pauw squares,then their Hall coefficients and mobilities are measured and analyzed,respectively.Two films were Hall-tested during the temperature range from LHe 4.2K to about 200K.An actual impression on the uniformity of electrical parameters for MCT film can obtained by means of the methods presented in this paper.
Ma, Yue Wen; Jiang, Dong Lei; Zhang, Dai; Wang, Xiao Bei; Yu, Xiao Tong
2016-09-01
This case report describes the first patient with avascular necrosis of the femoral head of Association Research Circulation Osseous stage IV, treated with radial extracorporeal shock wave therapy. By contrast, previous studies demonstrated the efficacy of a single treatment of focused extracorporeal shock wave therapy in improving pain and Harris Hip Scale in patients with avascular necrosis of the femoral head of Association Research Circulation Osseous stage I to III. The affected hip was treated with 6000 impulses of radial extracorporeal shock wave therapy at 10 Hz and an intensity ranging from 2.5 to 4.0 bar at 7-day intervals for 24 mos. The Harris Hip Scale values were 33, 43, 56, 77, 81, 88, and 92 at baseline and 1, 3, 6, 12, 18, and 24 mos, respectively. The radiographs showed that the subluxation of the right hip was slightly aggravated. Joint effusion was reduced, bone marrow edema disappeared, the density became more uniform, and the gluteal muscles were more developed based on magnetic resonance imaging. Increased tracer uptake was evident along the joint margin and superolateral aspect of the head both before and after radial extracorporeal shock wave therapy. This case report demonstrates the feasibility of long-term radial extracorporeal shock wave therapy in Association Research Circulation Osseous stage IV patients.
Agudelo-Giraldo, J. D.; Morales-Rojas, S.; Hurtado-Marín, V. A.; Restrepo-Parra, E.
2017-01-01
Magnetic behaviour of nanotubes with square cell has been studied by the Monte Carlo Method, under the Metropolis algorithm and Heisenberg model. The Hamiltonian used includes nearest neighbour exchange interaction and radial and tangential direction for uniaxial anisotropy. Periodic boundary conditions were implemented at the sample's edges. Simulations were carried out varying the nanotube's diameter by changing the number of magnetic moments per ring and anisotropy values. Two transition temperatures were identified corresponding to states where moments were aligned as either ferromagnetic type or anisotropy direction. At low temperatures and low anisotropy values, the system exhibited a ferromagnetic alignment; as the anisotropy was increased, and continued in the low temperature range, spins were aligned in the anisotropy (radial or tangential) direction. As the temperature was increased, spins were reoriented in the ferromagnetic direction, generating a radial (tangential) anisotropy to ferromagnetic transition temperature. When the temperature continued increasing, the system transited toward the paramagnetic phase, appearing a ferromagnetic to paramagnetic transition phase temperature. In several cases studied here, between these two transition temperatures (anisotropy to ferromagnetic and ferromagnetic to paramagnetic transition phases), the magnetization of the system exhibited instabilities. These instabilities are caused because of the influence of the anisotropy values and the diameter of the nanotubes on the magnetic domains formation. As a consequence, there exist anisotropy values and diameters where metastable states were formed.
Testing for uniformity in multidimensional data.
Smith, S P; Jain, A K
1984-01-01
Testing for uniformity in multidimensional data is important in exploratory pattern analysis, statistical pattern recognition, and image processing. The goal of this paper is to determine whether the data follow the uniform distribution over some compact convex set in K-dimensional space, called the sampling window. We first provide a simple, computationally efficient method for generating a uniformly distributed sample over a set which approximates the convex hul of the data. We then test for uniformity by comparing this generated sample to the data by using Friedman-Rafsky's minimal spanning tree (MST) based test. Experiments with both simulated and real data indicate that this MST-based test is useful in deciding if data are uniform.
Some results on uniform arithmetic circuit complexity
Frandsen, Gudmund Skovbjerg; Valence, Mark; Barrington, David A. Mix
1994-01-01
We introduce a natural set of arithmetic expressions and define the complexity class AE to consist of all those arithmetic functions (over the fieldsF 2n) that are described by these expressions. We show that AE coincides with the class of functions that are computable with constant depth...... that if some such representation is X-uniform (where X is P or DLOGTIME), then the arithmetic complexity of a function (measured with X-uniform unbounded fan-in arithmetic circuits) is identical to the Boolean complexity of this function (measured with X-uniform threshold circuits). We show the existence...... and polynomial-size unbounded fan-in arithmetic circuits satisfying a natural uniformity constraint (DLOGTIME-uniformity). A 1-input and 1-output arithmetic function over the fieldsF2n may be identified with ann-input andn-output Boolean function when field elements are represented as bit strings. We prove...
RBF networks with mixed radial basis functions
Ciftcioglu, O.; Sariyildiz, I.S.
2000-01-01
After the introduction to neural network technology as multivariable function approximation, radial basis function (RBF) networks have been studied in many different aspects in recent years. From the theoretical viewpoint, approximation and uniqueness of the interpolation is studied and it has been
Determining Enzyme Activity by Radial Diffusion
Davis, Bill D.
1977-01-01
Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…
Dual-radial cell thermionic fuel element
Terrell, Charles W.
A dual-radial cell thermionic fuel element (TFE) has been proposed and partially evaluated. The cell has the capacity to produce considerably more power per gram of fuel than does a single-cell TFE, with a total electrical power in a fast reactor system of several hundred kWs, conservatively operated.
Explaining Adaptive Radial-Based Direction Sampling
L. Bauwens (Luc); C.S. Bos (Charles); H.K. van Dijk (Herman); R.D. van Oest (Rutger)
2003-01-01
textabstractIn this short paper we summarize the computational steps of Adaptive Radial-Based Direction Sampling (ARDS), which can be used for Bayesian analysis of ill behaved target densities. We consider one simulation experiment in order to illustrate the good performance of ARDS relative to the
Determining Enzyme Activity by Radial Diffusion
Davis, Bill D.
1977-01-01
Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…
Radial Distance Estimation with Tapered Whisker Sensors.
Ahn, Sejoon; Kim, DaeEun
2017-07-19
Rats use their whiskers as tactile sensors to sense their environment. Active whisking, moving whiskers back and forth continuously, is one of prominent features observed in rodents. They can discriminate different textures or extract features of a nearby object such as size, shape and distance through active whisking. There have been studies to localize objects with artificial whiskers inspired by rat whiskers. The linear whisker model based on beam theory has been used to estimate the radial distance, that is, the distance between the base of the whisker and a target object. In this paper, we investigate deflection angle measurements instead of forces or moments, based on a linear tapered whisker model to see the role of tapered whiskers found in real animals. We analyze how accurately this model estimates the radial distance, and quantify the estimation errors and noise sensitivity. We also compare the linear model simulation and nonlinear numerical solutions. It is shown that the radial distance can be estimated using deflection angles at two different positions on the tapered whisker. We argue that the tapered whisker has an advantage of estimating the radial distance better, as compared to an untapered whisker, and active sensing allows that estimation without the whisker's material property and thickness or the moment at base. In addition, we investigate the potential of passive sensing for tactile localization.
Radial interchange motions of plasma filaments
Garcia, O.E.; Bian, N.H.; Fundamenski, W.
2006-01-01
reduces the radial velocity of isolated filaments. The results are discussed in the context of convective transport in scrape-off layer plasmas, comprising both blob-like structures in low confinement modes and edge localized mode filaments in unstable high confinement regimes. (c) 2006 American Institute...
Torrent, Daniel; Sánchez-Dehesa, José
2009-08-07
We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.
Pate, G
2011-10-01
A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.
Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics
Nagata T
2009-01-01
Full Text Available Abstract Highly uniform and c-axis-aligned ZnO nanorod arrays were fabricated in predefined patterns by a low temperature homoepitaxial aqueous chemical method. The nucleation seed patterns were realized in polymer and in metal thin films, resulting in, all-ZnO and bottom-contacted structures, respectively. Both of them show excellent geometrical uniformity: the cross-sectional uniformity according to the scanning electron micrographs across the array is lower than 2%. The diameter of the hexagonal prism-shaped nanorods can be set in the range of 90–170 nm while their typical length achievable is 0.5–2.3 μm. The effect of the surface polarity was also examined, however, no significant difference was found between the arrays grown on Zn-terminated and on O-terminated face of the ZnO single crystal. The transmission electron microscopy observation revealed the single crystalline nature of the nanorods. The current–voltage characteristics taken on an individual nanorod contacted by a Au-coated atomic force microscope tip reflected Schottky-type behavior. The geometrical uniformity, the designable pattern, and the electrical properties make the presented nanorod arrays ideal candidates to be used in ZnO-based DC nanogenerator and in next-generation integrated piezoelectric nano-electromechanical systems (NEMS.
Assessment of heating rate and non-uniform heating in domestic microwave ovens.
Pitchai, Krishnamoorthy; Birla, Sohan L; Jones, David; Subbiah, Jeyamkondan
2012-01-01
Due to the inherent nature of standing wave patterns of microwaves inside a domestic microwave oven cavity and varying dielectric properties of different food components, microwave heating produces non-uniform distribution of energy inside the food. Non-uniform heating is a major food safety concern in not-ready-to-eat (NRTE) microwaveable foods. In this study, we present a method for assessing heating rate and non-uniform heating in domestic microwave ovens. In this study a custom designed container was used to assess heating rate and non-uniform heating of a range of microwave ovens using a hedgehog of 30 T-type thermocouples. The mean and standard deviation of heating rate along the radial distance and sector of the container were measured and analyzed. The effect of the location of rings and sectors was analyzed using ANOVA to identify the best location for placing food on the turntable. The study suggested that the best location to place food in a microwave oven is not at the center but near the edge of the turntable assuming uniform heating is desired. The effect of rated power and cavity size on heating rate and non-uniform heating was also studied for a range of microwave ovens. As the rated power and cavity size increases, heating rate increases while non-uniform heating decreases. Sectors in the container also influenced heating rate (p heating rate. In general, sectors close to the magnetron tend to heat slightly faster than sectors away from the magnetron. However, the variation in heating rate among sectors was only 2 degrees C/min and considered not practically important. Overall heating performance such as mean heating rate and non-uniform heating did not significantly vary between the two replications that were performed 4 h apart. However, microwave ovens were inconsistent in producing the same heating patterns between the two replications that were performed 4 h apart.
Radial keratotomy enhancements for residual myopia.
Gayton, J L; Van der Karr, M; Sanders, V
1997-01-01
A systematic method of performing radial keratotomy enhancements in undercorrected eyes may increase accuracy and predictability and decrease the number of procedures required. A consecutive series of 372 radial keratotomy procedures, including 110 eyes that received enhancements under a systematic protocol, was evaluated. Radial keratotomy was performed using the Reliable Keratotomy software, which uses the Thornton nomogram for primary radial keratotomy and provides a systematic method of performing enhancements. Ninety eyes (24%) received one enhancement, 16 eyes (4%) received two enhancements, and four eyes (1%) received three enhancements. Mean final spherical equivalent refraction was -0.44 D (-4.00 to +1.875 D, SD 0.86) for eyes that did not receive enhancements and -0.44 D (-2.50 to +1.00 D, SD 0.61) for eyes that had enhancements. Mean final residual myopia for the entire cohort was -0.44 D (-4.00 to +1.875 D, SD 0.79). At final examination, 242 (65%) eyes had a refraction within +/- 0.5 D and 298 (80%) within +/- 1.00. Among eyes that received enhancements, 75 (68%) had a refraction within +/- 0.50 D, and 89 (81%) within +/- 1.00 D; 40 eyes (36%) had uncorrected visual acuity of 20/20 or better, 99 eyes (90%) 20/40 or better, and all but one eye (99%) 20/80 or better at the final postoperative examination. Among the entire cohort, 130 eyes (35%) had uncorrected visual acuity of 20/20 or better, 312 (84%) had 20/40 or better, and 350 (94%) had 20/80 or better. No eye lost more than one line of spectacle-corrected visual acuity. A systematic approach to enhancement of undercorrected eyes after radial keratotomy, combined with accurate surgery, may reduce the need for multiple enhancements as well as the overcorrection rate, and provide improved uncorrected visual acuity.
Chen, J; Prada, F; Sheldon, E S; Klypin, A A; Blanton, M R; Brinkmann, J; Chen, Jacqueline; Kravtsov, Andrey V.; Prada, Francisco; Sheldon, Erin S.; Klypin, Anatoly A.; Blanton, Michael R.; Brinkmann, Jonathan
2005-01-01
We use the Sloan Digital Sky Survey (SDSS) spectroscopic sample to constrain the projected radial distribution of satellites around isolated ~ L* galaxies. We employ mock galaxy catalogs derived from high-resolution cosmological simulations to investigate the effects of interloper contamination and show that interlopers significantly bias the estimated slope of the projected radial distribution of satellites. We also show that the distribution of interlopers around galaxies is expected to be non-uniform in velocity space because galaxies are clustered and reside in crowded environments. Successful methods of interloper contamination correction should therefore take into account environments of the host galaxies. Two such new methods are presented and the most reliable of them is used to correct for interloper contamination in analyses of the SDSS galaxy sample. The best fit power-law slope of the interloper-corrected surface density distribution of satellites, Sigma(R) ~ R^alpha, in the volume-limited SDSS sa...
Radial growth of Qilian juniper on the Northeast Tibetan Plateau and potential climate associations.
Chun Qin
Full Text Available There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110-2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes.
Radial growth of Qilian juniper on the Northeast Tibetan Plateau and potential climate associations.
Qin, Chun; Yang, Bao; Melvin, Thomas M; Fan, Zexin; Zhao, Yan; Briffa, Keith R
2013-01-01
There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110-2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes.
Li, L.; Zhou, J.; Duszczyk, J.
2003-05-01
In this paper, computer simulations were performed on the extrusion of 7075 aluminium billets with non-uniform temperature distributions in order to inhibit excessive temperature rise that tends to occur during the conventional extrusion of a uniformly preheated billet. The simulations showed that when a linear temperature distribution was imposed on a billet with its rear end 150°C colder than its front end, the maximum temperature of the workpiece would still increase from 450°C to over 520°C at the end of an extrusion cycle, giving rise to hot shortness. Assigning a non-linear temperature distribution during preheating the billet could however significantly lessen this undesirable temperature increase, leading to isothermal extrusion. Such a non-linear temperature distribution was determined on the basis of the results obtained from the simulation of the extrusion of a billet with a linear temperature distribution. With this predetermined non-linear temperature distribution, the maximum temperature of the workpiece remained stable near the die entrance. The radial temperature variation on the cross-section of the extrudate became less significant as the material flowed through the die. In addition, the simulations showed another advantage of isothermal extrusion, i.e. an invariable die face pressure throughout an extrusion cycle. The maximum positive (tensile) principle stress was revealed at the corner of the die orifice, indicating that tearing tended to occur there.
Multiple Carbon monoxide Snow-lines in Disks Sculpted by Radial Drift
Cleeves, L Ilsedore
2015-01-01
Observations of protoplanetary disks suggest that the gas and dust follow significantly different radial distributions. This finding can be theoretically explained by a combination of radial drift and gas drag of intermediate-sized dust grains. Using a simple parametric model to approximate the different distributions of the gas and dust components, we calculate and examine the impact of radial drift on the global dust temperature structure. We find that the removal of large grains beyond the "truncation radius" allows this region to become significantly warmer from reprocessed stellar radiation shining down from the disk upper layers, increasing the outer disk temperature by $\\sim10-30\\%$. This change is sufficient to raise the local temperature to a value exceeding the CO desorption temperature. These findings imply that the disk density structures induced by radial drift are able to create multiple CO snow-lines. The inner disk CO is in the gas phase, freezing out near the classical snow-line at $R\\sim20-4...
Radial profile and q dependence of electron heat diffusion measured with ech modulation in RTP
Mantica, P.; Peters, M.; De Luca, F.; DeLauri, A.; Gorini, G.; Hogeweij, G. M. D.; Jacchia, A.; Cardozo, N. J. L.
1996-01-01
Perturbative measurements of the electron thermal diffusivity (chi(pert)) in the RTP tokamak are presented. Electron temperature perturbations are induced by on- and off-axis modulated electron cyclotron heating (MECH) and the sawtooth instability. The radial profile of chi(pert) is deduced from the
Radial velocities of population II binary stars. II
Bartkevicius, A
2006-01-01
Here we publish the second list of radial velocities for 91 Hipparcos stars, mostly high transverse velocity binaries without previous radial velocity measurements. The measurements of radial velocities are done with a CORAVEL-type radial velocity spectrometer with an accuracy better than 1 km/s. We also present the information on eight new radial velocity variables - HD 29696, HD 117466AB, BD +28 4035AB, BD +30 2129A, BD +39 1828AB, BD +69 230A, BD +82 565A and TYC 2267-1300-1 - found from our measurements. Two stars (HD 27961AB and HD 75632AB) are suspected as possible radial velocity variables.
Andrew Ertel; Jeffrey Nadelson; Adhir R. Shroff; Ranya Sweis; Dean Ferrera; Vidovich, Mladen I.
2012-01-01
Objectives. Radiation scatter protection shield drapes have been designed with the goal of decreasing radiation dose to the operators during transfemoral catheterization. We sought to investigate the impact on operator radiation exposure of various shielding drapes specifically designed for the radial approach. Background. Radial access for cardiac catheterization has increased due to improved patient comfort and decreased bleeding complications. There are concerns for increased radiation exp...
Uniform supersaturated design and its construction
方开泰; 葛根年; 刘民千
2002-01-01
Supersaturated designs are factorial designs in which the number of main effects is greater than the number of experimental runs. In this paper, a discrete discrepancy is proposed as a measure of uniformity for supersaturated designs, and a lower bound of this discrepancy is obtained asa benchmark of design uniformity. A construction method for uniform supersaturated designs via resolvable balanced incomplete block designs is also presented along with the investigation of properties of the resulting designs. The construction method shows a strong link between these two different kinds of designs.
Whiteness formula in CIELAB uniform color space
Guoxin He; Mingxun Zhou
2007-01-01
@@ Many attempts have been made to standardize the calculation of whiteness. Whiteness formulas currently in use satisfactorily characterize the appearance of commercial whiteness. However, they have poor correlations with the observers' evaluations, and are often unsuccessful in assessing tinted white samples.A whiteness formula in the CIELAB uniform color space is developed in this paper. Several whiteness formulas are analyzed and compared. The experimental results show that the whiteness formula in the CIELAB uniform color space agrees well with the visual ranking, and it is superior to the CIE whiteness formula and the others in visual correlativity, uniformity and applicability.
Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique.
Lee, Jong Hyuk; Choi, Young Hun; Cheon, Jung Eun; Lee, So Mi; Cho, Hyun Hae; Shin, Su Mi; Kim, Woo Sun; Kim, In One
2015-06-01
Radial k-space sampling techniques have been shown to reduce motion artifacts in adult abdominal MRI. To compare a T2-weighted radial k-space sampling MRI pulse sequence (BLADE) with standard respiratory-triggered T2-weighted turbo spin echo (TSE) in pediatric abdominal imaging. Axial BLADE and respiratory-triggered turbo spin echo sequences were performed without fat suppression in 32 abdominal MR examinations in children. We retrospectively assessed overall image quality, the presence of respiratory, peristaltic and radial artifact, and lesion conspicuity. We evaluated signal uniformity of each sequence. BLADE showed improved overall image quality (3.35 ± 0.85 vs. 2.59 ± 0.59, P sampling technique improved the quality and reduced respiratory motion artifacts in young children compared with conventional respiratory-triggered turbo spin-echo sequences.
Fujie, Kentarou; Senba, Takasi
2016-08-01
This paper deals with positive radially symmetric solutions of the Neumann boundary value problem for the fully parabolic chemotaxis system, {ut=Δu-∇ṡ(u∇χ(v))in Ω×(0,∞),τvt=Δv-v+uin Ω×(0,∞), in a ball Ω \\subset {{{R}}2} with general sensitivity function χ (v) satisfying {χ\\prime}>0 and decaying property {χ\\prime}(s)\\to 0 (s\\to ∞ ), parameter τ \\in ≤ft(0,1\\right] and nonnegative radially symmetric initial data. It is shown that if τ \\in ≤ft(0,1\\right] is sufficiently small, then the problem has a unique classical radially symmetric solution, which exists globally and remains uniformly bounded in time. Especially, this result establishes global existence of solutions in the case χ (v)={χ0}log v for all {χ0}>0 , which has been left as an open problem.
Entropy generation of radial rotation convective channels
Alić, Fikret
2012-03-01
The exchange of heat between two fluids is established by radial rotating pipe or a channel. The hotter fluid flows through the pipe, while the cold fluid is ambient air. Total length of pipe is made up of multiple sections of different shape and position in relation to the common axis of rotation. In such heat exchanger the hydraulic and thermal irreversibility of the hotter and colder fluid occur. Therefore, the total entropy generated within the radial rotating pipe consists of the total entropy of hotter and colder fluid, taking into account all the hydraulic and thermal irreversibility of both fluids. Finding a mathematical model of the total generated entropy is based on coupled mathematical expressions that combine hydraulic and thermal effects of both fluids with the complex geometry of the radial rotating pipe. Mathematical model follows the each section of the pipe and establishes the function between the sections, so the total generated entropy is different from section to section of the pipe. In one section of the pipe thermal irreversibility may dominate over the hydraulic irreversibility, while in another section of the pipe the situation may be reverse. In this paper, continuous analytic functions that connect sections of pipe in geometric meaning are associated with functions that describe the thermo-hydraulic effects of hotter and colder fluid. In this way, the total generated entropy of the radial rotating pipe is a continuous analytic function of any complex geometry of the rotating pipe. The above method of establishing a relationship between the continuous function of entropy with the complex geometry of the rotating pipe enables indirect monitoring of unnecessary hydraulic and thermal losses of both fluids. Therefore, continuous analytic functions of generated entropy enable analysis of hydraulic and thermal irreversibility of individual sections of pipe, as well as the possibility of improving the thermal-hydraulic performance of the rotating
Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)
2002-10-01
The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.
Transitionless Enhanced Confinement and the Role of Radial Electric Field Shear
B. Coppi; D.R. Ernst; M.G. Bell; R.E. Bell; R.V. Budny; et al
1999-10-01
Evidence for the role of radial electric field shear in enhanced confinement regimes attained without sharp bifurcations or transitions is presented. Temperature scans at constant density, created in the reheat phase following deuterium pellet injection into supershot plasmas in the Tokamak Fusion Test Reactor [J.D. Strachan, et al., Phys. Rev. Lett. 58 (1987) 1004] are simulated using a first-principles transport model. The slow reheat of the ion temperature profile, during which the temperature nearly doubles, is not explained by relatively comprehensive models of transport due to Ion Temperature Gradient Driven Turbulence (ITGDT), which depends primarily on the (unchanging) electron density gradient. An extended model, including the suppression of toroidal ITGDT by self-consistent radial electric field shear, does reproduce the reheat phase.
Richardson, Robert R.; Zhao, Shi; Howey, David A.
2016-09-01
Impedance-based temperature detection (ITD) is a promising approach for rapid estimation of internal cell temperature based on the correlation between temperature and electrochemical impedance. Previously, ITD was used as part of an Extended Kalman Filter (EKF) state-estimator in conjunction with a thermal model to enable estimation of the 1-D temperature distribution of a cylindrical lithium-ion battery. Here, we extend this method to enable estimation of the 2-D temperature field of a battery with temperature gradients in both the radial and axial directions. An EKF using a parameterised 2-D spectral-Galerkin model with ITD measurement input (the imaginary part of the impedance at 215 Hz) is shown to accurately predict the core temperature and multiple surface temperatures of a 32,113 LiFePO4 cell, using current excitation profiles based on an Artemis HEV drive cycle. The method is validated experimentally on a cell fitted with a heat sink and asymmetrically cooled via forced air convection. A novel approach to impedance-temperature calibration is also presented, which uses data from a single drive cycle, rather than measurements at multiple uniform cell temperatures as in previous studies. This greatly reduces the time required for calibration, since it overcomes the need for repeated cell thermal equalization.
Pathak, Naveen; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, R
2015-01-01
Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) in underdense plasmas is demonstrated to be unstable, via 3D particle-in-cell simulation and disregarding the Kerr non-linearity. Strong pulse filamentation occurs for RPP in transversely uniform plasma with an increment, $\\Gamma$, close to the well-known one depending on acceleration, $\\alpha$, and modulated density gradient length, $L$, as $\\Gamma \\approx (\\alpha/L)^{1/2}$. In deep plasma channels the instability vanishes. Electron self-injection and acceleration by the resulting laser pulse wake is explored.
Side effects of normalising radial basis function networks.
Shorten, R; Murray-Smith, R
1996-05-01
Normalisation of the basis function activations in a Radial Basis Function (RBF) network is a common way of achieving the partition of unity often desired for modelling applications. It results in the basis functions covering the whole of the input space to the same degree. However, normalisation of the basis functions can lead to other effects which are sometimes less desirable for modelling applications. This paper describes some side effects of normalisation which fundamentally alter properties of the basis functions, e.g. the shape is no longer uniform, maxima of basis functions can be shifted from their centres, and the basis functions are no longer guaranteed to decrease monotonically as distance from their centre increases--in many cases basis functions can 'reactivate', i.e. re-appear far from the basis function centre. This paper examines how these phenomena occur, discusses their relevance for non-linear function approximation and examines the effect of normalisation on the network condition number and weights.
Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows
Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay
2014-06-01
We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.
Design of a polymer thermoelectric generator using radial architecture
Menon, Akanksha K.; Yee, Shannon K.
2016-02-01
Thermoelectric generators (TEGs) are solid-state heat engines consisting of p-type and n-type semiconductors that convert heat into electricity via the Seebeck effect. Conducting polymers are a viable alternative with intrinsic advantages over their inorganic counterparts, since they are abundant, flexible as thick-films, and have reduced manufacturing costs due to solution processing. Furthermore, polymers have an inherently low thermal conductivity, thus affording them the option of forgoing some heat exchanger costs. Current examples of polymer TE devices have been limited to traditional flat-plate geometries with power densities on the μW/cm2 scale, where their potential is not fully realized. Herein, we report a novel radial device architecture and model the improved performance of polymer-based TEG based on this architecture. Our radial architecture accommodates a fluid as the heat source and can operate under natural convection alone due to heat spreading. Analytical heat transfer and electrical models are presented that optimize the device for maximum power density, and for the first time we obtain the geometry matching condition that maximizes the efficiency. We predict high power densities of ˜1 mW/cm2 using state-of-the-art polymer TEs subjected to a temperature difference of 100 K, which is nearly 1000× higher than polymer flat-plate architectures reported in literature.
Topological features of vector vortex beams perturbed with uniformly polarized light
D'Errico, Alessio; Piccirillo, Bruno; de Lisio, Corrado; Cardano, Filippo; Marrucci, Lorenzo
2016-01-01
Optical singularities manifesting at the center of vector vortex beams are unstable, since their topological charge is higher than the lowest value permitted by Maxwell's equations. Inspired by conceptually similar phenomena occurring in the polarization pattern characterizing the skylight, we show how perturbations that break the symmetry of radially symmetric vector beams lead to the formation of a pair of fundamental and stable singularities, i.e. points of circular polarization. We prepare a superposition of a radial (or azimuthal) vector beam and a uniformly linearly polarized Gaussian beam; by varying the amplitudes of the two fields, we control the formation of pairs of these singular points and their spatial separation. We complete this study by applying the same analysis to vector vortex beams with higher topological charges, and by investigating the features that arise when increasing the intensity of the Gaussian term. Our results can find application in the context of singularimetry, where weak fi...
Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction
CHENG Ze
2011-01-01
@@ We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen-Cooper-Schrieffer(BCS)condensation below a critical temperature.In the BCS condensation state,bare atoms with opposite wave vectors are bound into pairs,and unpaired bare atoms are transformed into a new kind of quasi-particles,i.e.the dressed atoms.The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid.The critical temperature and the effective mass of dressed atoms are derived analytically.The transition from the BCS condensation state to the normal state is a first-order phase transition.%We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen-Cooper-Schrieffer (BCS)condensation below a critical temperature. In the BCS condensation state, bare atoms with opposite wave vectors are bound into pairs, and unpaired bare atoms are transformed into a new kind of quasi-particles, i.e. the dressed atoms. The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid. The critical temperature and the effective mass of dressed atoms are derived analytically. The transition from the BCS condensation state to the normal state is a first-order phase transition.
Beckmann, T; Steigerwald, H; Sturman, B; Haertle, D; Buse, K; Breunig, I
2010-01-01
Tunability of optical parametric oscillation in a radially structured whispering gallery resonator made of lithium niobate is investigated experimentally and theoretically. With a 1.04-\\mu m pump wave, the signal and idler waves are tuned from 1.78 to 2.5 \\mu m -- including the point of degeneracy -- by varying the temperature between 20 and 62{\\deg}C. A weak off-centering of the radial domain structure extends considerably the tuning capabilities. The oscillation threshold lies in the mW-power range.
Effects of radial electric fields on linear ITG instabilities in W7-X and LHD
Riemann, J.; Kleiber, R.; Borchardt, M.
2016-07-01
The impact of radial electric fields on the properties of linear ion-temperature-gradient (ITG) modes in stellarators is studied. Numerical simulations have been carried out with the global particle-in-cell (PIC) code EUTERPE, modelling the behaviour of ITG modes in Wendelstein 7-X and an LHD-like configuration. In general, radial electric fields seem to lead to a reduction of ITG instability growth, which can be related to the action of an induced E× B -drift. Focus is set on the modification of mode properties (frequencies, power spectrum, spatial structure and localization) to understand the observed growth rates as the result of competing stabilizing mechanisms.
The Effects of Radial Compression on Thermal Conductivity of Carbon and Boron Nitride Nanotubes
Haijun Shen
2012-01-01
By using molecular dynamics method, thermal conductivity of (10, 10) carbon and boron nitride (BN) nanotubes under radial compression was investigated, and the - (thermal conductivity versus temperature) curves of the two nanotubes were obtained. It is found that with the increase of temperature the thermal conductivity of two nanotubes decreases; the nanotubes, under both the local compression and whole compression, have lower thermal conductivity, and the larger the compressive deformat...
Lattice radial quantization: 3D Ising
Brower, R.C., E-mail: brower@bu.edu [Department of Physics, Boston University, Boston, MA 02215 (United States); Fleming, G.T., E-mail: george.fleming@yale.edu [Department of Physics, Yale University, New Haven, CT 06520 (United States); Neuberger, H., E-mail: neuberg@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 (United States)
2013-04-25
Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using the integer spacing of the anomalous dimensions of the first two descendants (l=1,2), we obtain an estimate for η=0.034(10). We also observed small deviations from integer spacing for the 3rd descendant, which suggests that a further improvement of our radial lattice action will be required to guarantee conformal symmetry at the Wilson–Fisher fixed point in the continuum limit.
Intelligent System for Radial Distribution Load Flow
Vaishali Holkar
2012-10-01
Full Text Available This paper shows an application of Artificial Neural Networks (ANNs to determine the bus voltages and phase angles of a radial distribution system, without executing the complicated load flow algorithm, for any given load. The performance of the conventional load flow methods such as Newtoh-Raphson load flow, Fast decoupled load flow is found to be very poor under critical conditions such as high R/X ratio, heavily loading condition etc.To overcome the limitations of these regularly used methods a simple and reliable ladder iterative technique is used for solving the power balance equations of radial distribution system (RDS. The proposed method make use of a multi-layer feed forward ANN with error back propagation learning algorithm for calculation of bus voltages and its angles. A sample IEEE 33-bus is extensively tested with the proposed ANN based approach indicating its viability for RDS load flow assessment and results are presented.
Singularities in gravitational collapse with radial pressure
Gonçalves, S M C V; Goncalves, Sergio M. C. V.; Jhingan, Sanjay
2001-01-01
We analyze spherical dust collapse with non-vanishing radial pressure, $\\Pi$, and vanishing tangential stresses. Considering a barotropic equation of state, $\\Pi=\\gamma\\rho$, we obtain an analytical solution in closed form---which is exact for $\\gamma=-1,0$, and approximate otherwise---near the center of symmetry (where the curvature singularity forms). We study the formation, visibility, and curvature strength of singularities in the resulting spacetime. We find that visible, Tipler strong singularities can develop from generic initial data. Radial pressure alters the spectrum of possible endstates for collapse, increasing the parameter space region that contains no visible singularities, but cannot by itself prevent the formation of visible singularities for sufficiently low values of the energy density. Known results from pressureless dust are recovered in the $\\gamma=0$ limit.
Radial localization of odors by human newborns.
Rieser, J; Yonas, A; Wikner, K
1976-09-01
To study sensitivity to radial location of an odor source, 20 human newborns, ranging from 16 to 130 hours of age, were presented with a small amount of ammonium hydroxide. The odor source was placed near the nose slightly to the left or right of midline, with its position randomized over repeated trails. Direction of headturn with respect to the odor location and diffuse motor activity were scored from the videotape recordings of the newborns' behavior. It was found that as a group, the newborns turned away from the odor source more frequently than they turned toward it. The tendency to turn away from the odor was stronger in infants who displayed less motor activity after the response. Newborns also exhibited a right bias in the direction of the head movements. It is concluded that a spatially appropriate avoidance response is present in the neonate and that the newborn is innately sensitive to the radial location of an odor.
Radial interchange motions of plasma filaments
Garcia, O.E.; Bian, N.H.; Fundamenski, W.
2006-01-01
Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion of vorticity generation, ballooning, and the role of sheaths, a two-field interchange model is studied by means of numerical simulations...... on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...... as the acoustic speed times the square root of the structure size relative to the length scale of the magnetic field. The plasma filament eventually decelerates due to mixing and collisional dissipation. Finally, the role of sheath dissipation is investigated. When included in the simulations, it significantly...
Radial velocity eclipse mapping of exoplanets
Nikolov, Nikolay
2015-01-01
Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLauglin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blue-shifted) or receding (red-shifted) parts of the planet causes a temporal distortion in the planet's spectral line profiles resulting in an anomaly in the planet's radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt and impact factor (i.e. sky-projected planet spin-orbital alignment). In addition, line asymmetrie...
Radial plasma transport in Saturn's magnetosphere (Invited)
Hill, T. W.
2010-12-01
Radial plasma transport in the magnetosphere of Saturn, like that of Jupiter, is driven by the centrifugal force of (partial) corotation acting on internally generated plasma. A significant difference is that the internal plasma source is evidently broadly distributed throughout the inner magnetosphere of Saturn (4 CAPS and MAG), and reproduced in numerical simulations (RCM) that contain a distributed plasma source, although it has not, to my knowledge, been explained by an analytical theory containing an active plasma source. Both planets exhibit strong magnetospheric modulations near the planetary spin period, probably indicating a persistent longitudinal asymmetry of the radial plasma transport process. At Jupiter such an asymmetry is readily understood as a consequence of the dramatic asymmetry of the intrinsic planetary magnetic field. This is not so at Saturn, where any such field asymmetry is known to be very modest at best. In neither case has the precise nature of the asymmetry been identified either observationally or theoretically.
Uniform Facility Data Set US (UFDS-1997)
U.S. Department of Health & Human Services — The Uniform Facility Data Set (UFDS), formerly the National Drug and Alcohol Treatment Unit Survey or NDATUS, was designed to measure the scope and use of drug abuse...
Uniform Facility Data Set US (UFDS-1998)
U.S. Department of Health & Human Services — The Uniform Facility Data Set (UFDS) was designed to measure the scope and use of drug abuse treatment services in the United States. The survey collects information...
2010-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign... tobacco as it is prepared for market. Uniformity is expressed in grade specifications as a percentage....
On uniform exponential growth for solvable groups
Breuillard, Emmanuel
2006-01-01
Using a theorem of J. Groves we give a ping-pong proof of Osin's uniform exponential growth for solvable groups. We discuss slow exponential growth and show that this phenomenon disappears as one passes to a finite index subgroup.
Orbifoldization, covering surfaces and uniformization theory
Bántay, P
1998-01-01
The connection between the theory of permutation orbifolds, covering surfaces and uniformization is investigated, and the higher genus partition functions of an arbitrary permutation orbifold are expressed in terms of those of the original theory.
Lattice Radial Quantization: 3D Ising
Brower, Richard; Neuberger, Herbert
2012-01-01
Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using this method, we obtain the preliminary estimate eta=0.034(10).
Neurons with radial basis like rate functions.
Kovács, Zsolt László
2005-01-01
Artificial neural networks constructed with "locally tuned processing units" and more generally referred to as "radial basis function networks" have been proposed by a number of workers. In this communication, I submit a conjecture, based on indirect experimental and direct computational evidence of the Hodgkin-Huxley model, that there may be biological neurons in nervous systems for which the rate function is locally tuned. If proved to be valid, this conjecture may simplify neurodynamic models of some functions of nervous systems.
Completions of pre–uniform spaces
Adalberto García-Máynez; Rubén Mancio-Toledo
2007-01-01
[EN] In this paper we prove the existence of a completion of a T0–pre-uniform space (X,U), with the property that each Cauchy filter in (X,U) contains a weakly round filter. García-Máynez, A.; Mancio-Toledo, R. (2007). Completions of pre–uniform spaces. Applied General Topology. 8(2):213-221. doi:10.4995/agt.2007.1882. 213 221 8 2
Nonrelativistic limit of solution of radial quasipotential equations
Minh, Vu.X.; Kadyshevskii, V.G.; Zhidkov, E.P.
1986-10-01
For the S-wave case, solutions of relativistic radial quasipotential equations that degenerate in the limit c ..-->.. infinity into the Jost solutions of the corresponding nonrelativistic radial Schrodinger equations are found.
Helicon modes in uniform plasmas. III. Angular momentum
Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)
2015-09-15
Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B{sub 0}. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excited in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B{sub 0}. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B{sub 0} are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field
Development of a Radial Deconsolidation Method
Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-12-01
A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radially symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.
Radial transport of dust in spiral galaxies
Vorobyov, E I; Shchekinov, Yu. A.
2006-01-01
Motivated by recent observations which detect dust at large galactocentric distances in the disks of spiral galaxies, we propose a mechanism of outward radial transport of dust by spiral stellar density waves. We consider spiral galaxies in which most of dust formation is localized inside the corotation radius. We show that in the disks of such spiral galaxies, the dust grains can travel over radial distances that exceed the corotation radius by roughly 25%. A fraction of the dust grains can be trapped on kidney-shaped stable orbits between the stellar spiral arms and thus can escape the destructive effect of supernova explosions. These grains form diffuse dusty spiral arms, which stretch 4-5 kpc from the sites of active star formation. About 10% of dust by mass injected inside corotation, can be transported over radial distances 3-4 kpc during approximately 1.0 Gyr. This is roughly an order of magnitude more efficient than can be provided by the turbulent motions.
Fast Radial Flows in Transition Disk Holes
Rosenfeld, Katherine A; Andrews, Sean M
2013-01-01
Protoplanetary "transition" disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival ALMA data on the transition disk HD 142527, and uncover evidence for free-fal...
Radial forearm free flap pharyngoesophageal reconstruction.
Azizzadeh, B; Yafai, S; Rawnsley, J D; Abemayor, E; Sercarz, J A; Calcaterra, T C; Berke, G S; Blackwell, K E
2001-05-01
This study evaluates the outcome of pharyngoesophageal reconstruction using radial forearm free flaps with regard to primary wound healing, speech, and swallowing in patients requiring laryngopharyngectomy. Retrospective review in the setting of a tertiary, referral, and academic center. Twenty patients underwent reconstruction of the pharyngoesophageal segment using fasciocutaneous radial forearm free flaps. All free flap transfers were successful. An oral diet was resumed in 85% of the patients after surgery. Postoperative pharyngocutaneous fistulas occurred in 4 patients (20%) with 3 resolving spontaneously. Distal strictures also occurred in 20% of the patients. Five patients who underwent tracheoesophageal puncture achieved useful speech. Advantages of radial forearm free flaps for microvascular pharyngoesophageal function include high flap reliability, limited donor site morbidity, larger vascular pedicle caliber, and the ability to achieve good quality tracheoesophageal speech. The swallowing outcome is similar to that achieved after jejunal flap pharyngoesophageal reconstruction. The main disadvantage of this technique relates to a moderately high incidence of pharyngocutaneous fistulas, which contributes to delayed oral intake in affected patients.
NEW RADIAL SYSTEMS OF DARK GLOBULES
A. L. Gyulbudaghian
2015-01-01
Full Text Available Presentamos los resultados de una inspecci ́on sistem ́atic a de las placas ESO/SRC del hemisferio sur realizada con el prop ́osito de de scubrir nuevos sistemas radiales de gl ́obulos oscuros. Durante esta inspecci ́on en contramos 16 sistemas ra- diales de tipo 1 y 6 sistemas de tipo 2. Con esto, se duplica el n ́umero de sistemas radiales conocidos. En la zona central de los sistemas de tip o 1 se encuentran es- trellas de tipo espectral O − B2, mientras que los sistemas de tipo 2 no exhiben estrellas de tipo temprano en sus centros. Proponemos una in terpretaci ́on tentativa de los grupos de cuerpos condensados submilim ́etricos que n o poseen una contra- parte estelar como sistemas radiales de gl ́obulos oscuros s ituados detr ́as de nubes oscuras gruesas, lo que explicar ́ıa por qu ́e estos gl ́obulo s se observan solamente en longitudes de onda submilim ́etricas.
Impact of climate change on radial growth of Siberian spruce and Scots pine in North-western Russia
Lopatin E
2008-02-01
Full Text Available When adapting forest management practices to a changing environment, it is very important to understand the response of an unmanaged natural forest to climate change. The method used to identify major climatic factors influencing radial growth of Siberian spruce and Scots pine along a latitudinal gradient in north-western Russia is dendroclimatic analysis. A clear increasing long-term trend was identified in air temperature and precipitation. During the last 20 years, all meteorological stations experienced temperature increases, and 40 years ago precipitation began to increase. This is shown by the radial increment of Siberian spruce and Scots pine. Therefore, climate change could partly explain the increased forest productivity. The total variance explained by temperature varied from 22% to 41% and precipitation from 19% to 38%. The significant climatic parameters for radial increment in Komi Republic were identified, and the relation between temperature and precipitation in explained variance changes over time for Siberian spruce.
Impact of climate change on radial growth of Siberian spruce and Scots pine in North-western Russia
Lopatin E
2007-01-01
Full Text Available When adapting forest management practices to a changing environment, it is very important to understand the response of an unmanaged natural forest to climate change. The method used to identify major climatic factors influencing radial growth of Siberian spruce and Scots pine along a latitudinal gradient in north-western Russia is dendroclimatic analysis. A clear increasing long-term trend was identified in air temperature and precipitation. During the last 20 years, all meteorological stations experienced temperature increases, and 40 years ago precipitation began to increase. This is shown by the radial increment of Siberian spruce and Scots pine. Therefore, climate change could partly explain the increased forest productivity. The total variance explained by temperature varied from 22% to 41% and precipitation from 19% to 38%. The significant climatic parameters for radial increment in Komi Republic were identified, and the relation between temperature and precipitation in explained variance changes over time for Siberian spruce.
Numerical Simulation of Modified Radial Electric Field by LHCD
Wei Wei; Ding Bojiang; Kuang Guangli
2005-01-01
Based on the electron's radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and its profile and different current ratio, Irf/Ip, are given. The connections between the improvement of plasma confinement and the modified radial electric field by LHCD are discussed by comparing the calculated results with the experimental results.
21 CFR 866.4800 - Radial immunodiffusion plate.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radial immunodiffusion plate. 866.4800 Section 866....4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use is a device that consists of a plastic plate to which agar gel containing antiserum is added. In...
Theoretical investigation of boundary contours of ground-state atoms in uniform electric fields
Shi, Hua; Zhao, Dong-Xia; Yang, Zhong-Zhi
2015-12-01
The boundary contours were investigated for first 54 ground-state atoms of the periodic table when they are in uniform electric fields of strengths 106, 107 and 108 V/m. The atomic characteristic boundary model in combination with an ab-initio method was employed. Some regularities of the deformation of atoms, ΔR, in above electric fields are revealed. Furthermore, atomic polarisabilities of the first 54 elements of the periodic table are shown to correlate strongly with the mean variation rate of atomic radial size divided by the strength of the electric field F, ?, which provides a predictive method of calculating atomic polarisabilities of 54 atoms.
Structure and radial equilibrium of filamentary molecular clouds
Contreras, Yanett; Garay, Guido
2013-01-01
Recent dust continuum surveys have shown that filamentary structures are ubiquitous along the Galactic plane. While the study of their global properties has gained momentum recently, we are still far from fully understanding their origin and stability. Theories invoking magnetic field have been formulated to help explain the stability of filaments; however, observations are needed to test their predictions. In this paper, we investigate the structure and radial equilibrium of five filamentary molecular clouds with the aim of determining the role that magnetic field may play. To do this, we use continuum and molecular line observations to obtain their physical properties (e.g. mass, temperature and pressure). We find that the filaments have lower lineal masses compared to their lineal virial masses. Their virial parameters and shape of their dust continuum emission suggests that these filaments may be confined by a toroidal dominated magnetic field.
The phenomenological mechanochemistry of damage and radial cracking
Grinfeld, Michael
2017-01-01
Traditional damage theory deals with distributed microcracks rather than with individual cracks. In its simplest form, this theory adds just one additional parameter to the set of classical thermodynamic parameters of deformable solids like strain and temperature. Basically, the traditional damage theory reflects only one experimental observation: The elastic moduli become smaller with growing damage. Contrary to the traditional damage theory, the Phenomenological Mechanochemistry of Damage (PMD) uses an energetic approach; it includes, in addition to the bulk elastic energy, the energy associated with braking/recovery of chemical bonds. Therefore, in addition to the elasticity equations, it includes the equation describing evolution/dynamics of chemical bonds. With the minimum amount of physically transparent assumptions, it allows the reproduction of radial cracking patterns that are often observed in experiments and nature. In this paper, we review some earlier results and present the novel ones with emphasis on the electro- or magnetostatics ponderomotive forces.
Investigation of radial wire arrays for inertial confinement fusion and radiation effects science.
Serrano, Jason Dimitri; Bland, Simon Nicholas (Imperial College, London); McBride, Ryan D.; Chittenden, Jeremy Paul (Imperial College, London); Suzuki-Vidal, Francisco Andres (Imperial College, London); Jennings, Christopher A.; Hall, Gareth Neville (Imperial College, London); Ampleford, David J.; Peyton, Bradley Philip; Lebedev, Sergey V. (Imperial College, London); Cleveland, Monica; Rogers, Thomas John; Cuneo, Michael Edward; Coverdale, Christine Anne; Jones, Brent Manley; Jones, Michael C.
2010-02-01
Radial wire arrays provide an alternative x-ray source for Z-pinch driven Inertial Confinement Fusion. These arrays, where wires are positioned radially outwards from a central cathode to a concentric anode, have the potential to drive a more compact ICF hohlraum. A number of experiments were performed on the 7MA Saturn Generator. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1MA level, where they have been shown to provide similar x-ray outputs to larger diameter cylindrical arrays, to the higher current levels required for ICF. Data indicates that at 7MA radial arrays can obtain higher power densities than cylindrical wire arrays, so may be of use for x-ray driven ICF on future facilities. Even at the 7MA level, data using Saturn's short pulse mode indicates that a radial array should be able to drive a compact hohlraum to temperatures {approx}92eV, which may be of interest for opacity experiments. These arrays are also shown to have applications to jet production for laboratory astrophysics. MHD simulations require additional physics to match the observed behavior.
Uniform distribution of TiCp in TiCp/Zn-Al composites prepared by XDTM
王香; 马旭梁; 李庆芬; 曾松岩
2002-01-01
The prefabricated Al/TiC alloy with high TiC particle content was prepared by XDTM process. The uniform distribution process of TiC particles in the stationary zinc melt was studied and analyzed using self-made experimental equipment, and the model of the uniform distribution process was built. The results show that zinc diffuses into the prepared Al/TiC alloy after it is placed in the zinc melt at temperatures below the melting point of aluminum, which leads to the decrease of the liquidus temperature of Al-Zn alloy in the surface layer of Al/TiC alloy. When the liquidus temperature of Al-Zn alloy is equal to or below the temperature of zinc melt, Al-Zn alloy melts and TiC particles drop with it from the Al/TiC alloy and then transfer into the zinc melt and finally distribute uniformly in it.
Radial Distribution of SiC Particles in Mechanical Stirring of A356-SiCp Liquid
Yunhui Du; Peng Zhang; Jun Zhang; Shasha Yao
2012-01-01
The mechanical stirring of A356-2.5 vol.% SiCp liquid was conducted in a cylindrical crucible by a straight-blade stirrer. The radial distribution of SiC particles in A356 liquid was studied under the conditions of 25 deg. for gradient angle α of blade and 10 mm/s for speed of moving up and down of stirrer, The results show that there exists a nonlinear relationship between rotating speed of stirrer and radial relative deviation of SiCp content in A356 liquid between the center and the periphery of crucible. The greater the rotating speed of stirrer is, the bigger the radial relative deviation of SiCp content in A356 liquid becomes and the more nonhomogeneous the radial distribution of SiC particles in A356 liquid turns. In addition, when the rotating speed of stirrer is about 200 r/min, the vertical distribution of SiC particles in A356 liquid is relative uniform. It can be seen that the nonhomogeneous distribution of SiC particles in A356 liquid results from the nonhomogeneous radial distribution of SiC particles in A356 liquid in straight-blade mechanical stirring ultimately.
TRUNK WITH BRANCHES PUBLIC TRANSPORT LINE SCHEDULLING UNDER CONDITION OF UNIFORM HEADWAY OPERATION
Nikola Krstanoski
2015-12-01
Full Text Available Planning of public transport network for good spatial coverage may lead to an operation of radial or diametrical public transport lines that branch at one or both ends of the line. This trunk with branches operation means that all vehicles on the line serve the main - trunk section, usually covering the central area of the city, and then split in two or more branches in the peripheral areas, in order to offer better spatial service. The scheduling of this type of operation is not an easy task since only certain patterns of headways and therefore passenger demands can be met, if efficient operation under the condition of uniform headways on all sections on the line is required. In this article the author analyzes the key variables that define the uniform headway operation and establishes their relationships, thus providing answer to the question what headway patterns are feasible and if they could be acceptable for real life operation.
A rotating universe outside a Schwarzschild black hole where spacetime itself non-uniformly rotates
Saw, Vee-Liem
2014-01-01
We study a non-uniformly rotating universe outside a Schwarzschild black hole by generating a time-dependent manifold of revolution around a straight line. In this simple model where layers of spherical shells of the universe non-uniformly rotate, the Einstein field equations require this phenomenon to be caused by a static mass-energy distribution with time-dependent $T^{\\phi\\phi}$ (quadratic with time) and $T^{r\\phi}=T^{\\phi r}$ (linear with time). This indicates that a time-dependent stress along a certain direction results in a spacetime shift in that direction. For this model however, such material violates the null energy condition. Incidentally, the various coordinate systems describing the Schwarzschild solution can be viewed as arising from the freedom in parametrising the straight line and the radial function in the general method of constructing spacetime by generating manifolds of revolution around a given curve.
Toothbrush probe for instantaneous measurement of radial profile in tokamak boundary plasma
Uehara, Kazuya; Sengoku, Seio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Amemiya, Hiroshi
1997-04-01
A new probe for the instantaneous measurement of radial profiles of the boundary scrape-off layer (SOL) plasma has been developed in a tokamak. Five asymmetric double-probe chips are aligned in parallel to a strong magnetic field in the boundary plasma in a tokamak. This probe is named the `toothbrush probe` and can measure the ion temperature as well as the electron temperature and the plasma density in the SOL plasma within only one tokamak plasma shot. First, only one asymmetric probe is mounted on the divertor plate and it is tried to determine the ion temperature. Then, a manufactured toothbrush probe is mounted in the SOL plasma and the radial plasma profiles are simultaneously obtained. Data on the e-folding length of the plasma profile obtained by the toothbrush probe can determine the information on the transport properties such as the diffusion coefficient and the thermal conductivity of electrons and ions. (author)
Non-uniform sampled scalar diffraction calculation using non-uniform fast Fourier transform
Shimobaba, Tomoyoshi; Oikawa, Minoru; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Ito, Tomoyoshi
2013-01-01
Scalar diffraction calculations such as the angular spectrum method (ASM) and Fresnel diffraction, are widely used in the research fields of optics, X-rays, electron beams, and ultrasonics. It is possible to accelerate the calculation using fast Fourier transform (FFT); unfortunately, acceleration of the calculation of non-uniform sampled planes is limited due to the property of the FFT that imposes uniform sampling. In addition, it gives rise to wasteful sampling data if we calculate a plane having locally low and high spatial frequencies. In this paper, we developed non-uniform sampled ASM and Fresnel diffraction to improve the problem using the non-uniform FFT.
Nurses' uniform: an investigation of mobility.
Stubbs, D A; Buckle, P W; Hudson, M P; Butler, P E; Rivers, P M
1985-01-01
An investigation of the mobility of nurses under three clothing conditions is reported. The need for such a study has arisen as a result of the concern over a possible mismatch between mobility and patient handling requirements. Thirty-seven nurses participated under two of the clothing conditions ('National' dress uniform, Trouser/tunic combination). In addition, ten of these nurses volunteered to provide control data by being measured in a leotard or a swimming costume. Eleven static and sixteen dynamic anthropometric measures were considered. Each nurse was asked to complete a short questionnaire, relating to her subjective attitudes to the uniform and to her own physical state at the time of measurement. Whilst both uniforms imposed restrictions on the shoulder girdle and trunk of up to 10%, the area of greatest concern was the mobility of the hip joint. Hip flexion was reduced by 26% in the dress uniform. The implications of these findings for patient handling procedures are discussed, as are those of the relationship between the environment and the material. Uniform and the nursing image is also considered.
A uniform parameterization of moment tensors
Tape, C.; Tape, W.
2015-12-01
A moment tensor is a 3 x 3 symmetric matrix that expresses an earthquake source. We construct a parameterization of the five-dimensional space of all moment tensors of unit norm. The coordinates associated with the parameterization are closely related to moment tensor orientations and source types. The parameterization is uniform, in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favor double couples. An appropriate choice of a priori moment tensor probability is a prerequisite for parameter estimation. As a seemingly sensible choice, we consider the homogeneous probability, in which equal volumes of moment tensors are equally likely. We believe that it will lead to improved characterization of source processes.
The magnetostriction in a superconductor-magnet system under non-uniform magnetic field
Li, Xueyi; Jiang, Lang; Wu, Hao; Gao, Zhiwen
2017-03-01
This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.
The demagnetizing field of a non-uniform rectangular prism
Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis
2010-01-01
is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non......The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...
José Pacheco Serrano
1999-06-01
Full Text Available Damos a conocer los primeros resultados de la implementación de un nuevo procedimiento quirúrgico para la corrección de la miopía, la mini-queratotomía radial, y su evaluación frente a la queratotomía radial convencional en 25 pacientes en quienes se realizó la técnica convencional en el ojo derecho y la nueva técnica en el izquierdo. Se midieron cuatro variables pre y posoperatorias, a saber, los componentes esférico y cilíndrico de la refracción, la agudeza visual sin corrección y la queratometría central. El método estadístico que se ajusta al estudio muestra que no existen diferencias significativas en los resultados obtenidos por ambos métodos. La nueva técnica constituye una alternativa quirúrgica para pacientes con miopías leves y moderadas. El riesgo de complicaciones postrauma disminuye sustancialmente a causa de que las incisiones tienen menor longitudThe firts results of the implementation of a new surgical procedure for correcting myopia, the mini-racial keratotomy, and its evaluation against conventional radial keratotomy are shown by using the conventional technique in the right eye and the new technique in the left eye of 25 patients. 4 pre-and postoperative variables were measured, mainly, the spherical and cylindrical components of refraction, the acuity and the central keratometry,. The statistical method adjusted to the study proves that there are ni significant differences between the results obtained with both methods. The new technique is a surgical alternative for patients with mild and moderate myopias. The risk for postrauma complications decreases considerably because the incisions have a lower lenght
Bilateral high radial nerve compressions: a case report.
Chuangsuwanich, A; Muangsombut, S; Sangruchi, T
2000-06-01
A 40-year-old woman with bilateral high radial nerve compressions by non-traumatic cause was reported. It occurred first at the right radial nerve which was explored after a period of investigation and conservative treatment. Two constricted sites 2.0 cm apart of the right radial nerve crossed by branches of the radial collateral artery beneath the lateral head of the triceps were found. The constricted sites including tissue in between was resected and replaced with a sural nerve graft. One year later the patient had the same episode on the left side. The operative finding was the same as the previous one. Sural nerve graft was performed after neurolysis had failed. The patient's normal radial nerve function returned in one year. This is the first reported case in the literature of bilateral high radial nerve compressions by branches of the radial collateral artery.
Analytical fit of radial velocity data
Delisle, J -B; Buchschacher, N; Alesina, F
2015-01-01
We describe an analytical method for computing the orbital parameters of planets from the periodogram of a radial velocity signal. The method is very efficient and provides a good approximation of the orbital parameters. The accuracy is mainly limited by the accuracy of the computation of the Fourier decomposition of the signal which is sensible to sampling and noise. Our method is complementary with more accurate (and more computer time expensive) numerical algorithms (e.g. Levenberg-Marquardt, MCMC, genetic algorithms). Indeed, the analytical approximation can be used as initial condition to accelerate the convergence of these numerical methods.
Eleven-year Experience with Radial Keratotomy
Akira; Momose
1994-01-01
1 900 consecutive eyes that underwent radial keratotomy by the senior author were evaluated retrospectively. 3 months after surgery, minimum reduction in mean spherical equivalent of 0. 67D was achieved with 1 incision and maximum 7. 250 with 24 incisions. Unconnected visual acuity of 20/40 or better was obtained in 99. 4% of eyes with low myopia, 64. 2% with moderate myopia and 32. 4% with high myopia. For anisometropia, bilateral RK reduced refractive error from -12. 12D to -5. 22D in more myopic eyes...
Radial Keratotomy:Eleven-year Experiences
无
1992-01-01
During the period from 1980 to 1991,Radial Keratotomy(RK)hadbeen done by the author under topical anesthesia in more than 10000 cases,mostly on both eyes at the same time.Those patients had myopia with apreoperative refractive error between 1.5 and 20.0 diopters(D).The surgicaltechnique consisted of 4,8,16 incisions using a diamond knife with micrometerand the diameter of the central clear zone was mostly 3.0mm and determinedby preoperative refractive error.Many different procedures were tried to im-pro...
Convex and Radially Concave Contoured Distributions
Wolf-Dieter Richter
2015-01-01
Full Text Available Integral representations of the locally defined star-generalized surface content measures on star spheres are derived for boundary spheres of balls being convex or radially concave with respect to a fan in Rn. As a result, the general geometric measure representation of star-shaped probability distributions and the general stochastic representation of the corresponding random vectors allow additional specific interpretations in the two mentioned cases. Applications to estimating and testing hypotheses on scaling parameters are presented, and two-dimensional sample clouds are simulated.
The Complexity of Synthesizing Uniform Strategies
Bastien Maubert
2013-03-01
Full Text Available We investigate uniformity properties of strategies. These properties involve sets of plays in order to express useful constraints on strategies that are not μ-calculus definable. Typically, we can state that a strategy is observation-based. We propose a formal language to specify uniformity properties, interpreted over two-player turn-based arenas equipped with a binary relation between plays. This way, we capture e.g. games with winning conditions expressible in epistemic temporal logic, whose underlying equivalence relation between plays reflects the observational capabilities of agents (for example, synchronous perfect recall. Our framework naturally generalizes many other situations from the literature. We establish that the problem of synthesizing strategies under uniformity constraints based on regular binary relations between plays is non-elementary complete.
Functional uniform priors for nonlinear modeling.
Bornkamp, Björn
2012-09-01
This article considers the topic of finding prior distributions when a major component of the statistical model depends on a nonlinear function. Using results on how to construct uniform distributions in general metric spaces, we propose a prior distribution that is uniform in the space of functional shapes of the underlying nonlinear function and then back-transform to obtain a prior distribution for the original model parameters. The primary application considered in this article is nonlinear regression, but the idea might be of interest beyond this case. For nonlinear regression the so constructed priors have the advantage that they are parametrization invariant and do not violate the likelihood principle, as opposed to uniform distributions on the parameters or the Jeffrey's prior, respectively. The utility of the proposed priors is demonstrated in the context of design and analysis of nonlinear regression modeling in clinical dose-finding trials, through a real data example and simulation.
Uniform dimension results for Gaussian random fields
2009-01-01
Let X = {X(t),t ∈ RN} be a Gaussian random field with values in Rd defined by X(t) =(X1(t),...,Xd(t)), t ∈ RN.(1) The properties of space and time anisotropy of X and their connections to uniform Hausdorff dimension results are discussed.It is shown that in general the uniform Hausdorff dimension result does not hold for the image sets of a space-anisotropic Gaussian random field X.When X is an(N,d)-Gaussian random field as in(1),where X1,...,Xd are independent copies of a real valued,centered Gaussian random field X0 which is anisotropic in the time variable.We establish uniform Hausdorff dimension results for the image sets of X.These results extend the corresponding results on one-dimensional Brownian motion,fractional Brownian motion and the Brownian sheet.
Tsakadze, Erekle; Ostrikov, K.N.; Tsakadze, Z.L.
2004-01-01
and equidistant copper litz wires in quartz enclosures and generates three magnetic (H-z, H-r, and H-phi) and two electric (E-phi and E-r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic (E) and electromagnetic (H......) discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral ("pancake") antennas. Relatively deeper rf power deposition...... in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental...
Zhao, Zhi-Jiang; Tan, Liu-Yi; Kang, Dong-Wei; Liu, Qi-Jing; Li, Jun-Qing
2012-03-01
Picea likiangensis (Franch. ) Pritz. primary forest is one of the dominant forest types in the Small Zhongdian area in Shangri-La County of Yunnan Province. In this paper, the responses of P. likiangensis tree-ring width to climate change were analyzed by dendrochronological methods, and the dendrochronology was built by using relatively conservative detrending negative exponential curves or linear regression. Correlation analysis and response function analysis were applied to explore the relationships between the residual chronology series (RES) and climatic factors at different time scales, and pointer year analysis was used to explain the reasons of producing narrow and wide rings. In the study area, the radial growth of P. likiangensis and the increasing air temperature from 1990 to 2008 had definite 'abruption'. The temperature and precipitation in previous year growth season were the main factors limiting the present year radial growth, and especially, the temperature in previous July played a negative feedback role in the radial growth, while the sufficient precipitation in previous July promoted the radial growth. The differences in the temperature variation and precipitation variation in previous year were the main reasons for the formation of narrow and wide rings. P. likiangensis radial growth was not sensitive to the variation of PDSI.
Krupiński, Michał; Bareła, Jaroslaw; Firmanty, Krzysztof; Kastek, Mariusz
2013-10-01
Uneven response of particular detectors (pixels) to the same incident power of infrared radiation is an inherent feature of microbolometer focal plane arrays. As a result an image degradation occurs, known as Fixed Pattern Noise (FPN), which distorts the thermal representation of an observed scene and impairs the parameters of a thermal camera. In order to compensate such non-uniformity, several NUC correction methods are applied in digital data processing modules implemented in thermal cameras. Coefficients required to perform the non-uniformity correction procedure (NUC coefficients) are determined by calibrating the camera against uniform radiation sources (blackbodies). Non-uniformity correction is performed in a digital processing unit in order to remove FPN pattern in the registered thermal images. Relevant correction coefficients are calculated on the basis of recorded detector responses to several values of radiant flux emitted from reference IR radiation sources (blackbodies). The measurement of correction coefficients requires specialized setup, in which uniform, extended radiation sources with high temperature stability are one of key elements. Measurement stand for NUC correction developed in Institute of Optoelectronics, MUT, comprises two integrated extended blackbodies with the following specifications: area 200×200 mm, stabilized absolute temperature range +15 °C÷100 °C, and uniformity of temperature distribution across entire surface +/-0.014 °C. Test stand, method used for the measurement of NUC coefficients and the results obtained during the measurements conducted on a prototype thermal camera will be presented in the paper.
Elastic stability of non-uniform columns
Lee, S. Y.; Kuo, Y. H.
1991-07-01
A simple and efficient method is proposed to investigate the elastic stability of three different tapered columns subjected to uniformly distributed follower forces. The influences of the boundary conditions and taper ratio on critical buckling loads are investigated. The critical buckling loads of columns of rectangular cross section with constant depth and linearly varied width ( T1), constant width and linearly varied depth ( T2) and double taper ( T3) are investigated. Among the three different non-uniform columns considered, taper ratio has the greatest influence on the critical buckling load of column T3 and the lowest influence on that of column T1. The types of instability mechanisms for hinged-hinged and cantilever non-uniform columns are divergence and flutter respectively. However, for clamped-hinged and clamped-clamped non-uniform columns, the type of instability mechanism for column T1 is divergence, while that for columns T2 and T3 is divergence only when the taper ratio of the columns is greater than certain critical values and flutter for the rest value of taper ratio. When the type of instability mechanism changes from divergence to flutter, there is a finite jump for the critical buckling load. The influence of taper ratio on the elastic stability of cantilever column T3 is very sensitive for small values of the taper ratio and there also exist some discontinieties in the critical buckling loads of flutter instability. For a hinged-hinged non-uniform column ( T2 or T3) with a rotational spring at the left end of the column, when the taper ratio is less than the critical value the instability mechanism changes from divergence to flutter as the rotational spring constant is increased. For a clamped-elastically supported non-uniform column, when the taper ratio is greater than the critical value the instability mechanism changes from flutter to divergence as the translational spring constant is increased.
Influence of SPS casing treatment on axial flow compressor subjected to radial pressure distortion
Fanyu Li
2017-04-01
Full Text Available The present work is about the stall margin enhancement ability of a kind of stall precursor-suppressed (SPS casing treatment when fan/compressor suffers from a radial total pressure inlet distortion. Experimental researches are conducted on a low-speed compressor with and without SPS casing treatment under radial distorted inlet flow of different levels as well as uniform inlet flow. The distorted flow fields of different levels are generated by annular distortion flow generators of different heights. The characteristic curves under these conditions are measured and analyzed. The results show that the radial inlet distortion could cause a stall margin loss from 2% to 30% under different distorted levels. The SPS casing treatment could remedy this stall margin loss under small distortion level and only partly make up the stall margin loss caused by distortion in large level without leading to perceptible additional efficiency loss and obvious change of characteristic curves. The pre-stall behavior of the compressor is investigated to reveal the mechanism of this stall margin improvement ability of the SPS casing treatment. The results do show that this casing treatment delays the occurrence of rotating stall by weakening the pressure perturbations and suppressing the nonlinear amplification of the stall precursor waves in the compression system.
Structural changes of radial forging die surface during service under thermo-mechanical fatigue
Nematzadeh, Fardin [Materials and Energy Research Center, Tehran (Iran, Islamic Republic of); Akbarpour, Mohammad Reza, E-mail: mreza.akbarpour@gmail.com [Materials and Energy Research Center, Tehran (Iran, Islamic Republic of); Kokabi, Amir Hosein; Sadrnezhaad, Seyed Khatiboleslam [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2009-12-15
Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the {gamma} matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.
Wenbin Wang
2016-09-01
Full Text Available Picea crassifolia Komarov (Qinghai spruce is an endemic tree species in China and is widespread in the Qilian Mountains, in northwestern China. High temporal resolution changes of Qinghai spruce tree stem growth remain poorly investigated and the relationships between the species growth and climate are still not completely understood. In this study, we assessed the daily and seasonal stem radial variations, and analyzed the relationships between stem radial increment of Qinghai spruce and environmental factors during the main growing period (June–August. We have found that the stem radial variations of Qinghai spruce can be divided into three phases according to the air temperature and that Qinghai spruce has two diurnal cycle patterns. The main growing period of Qinghai spruce is 30 May–31 August according to micro-core measurements, in conformity with the daily mean air temperature keeping above 5 °C. Precipitation and relative humidity have positive effects on the growth of Qinghai spruce, and we develop a multiple linear regression model that can explain 63% of the stem radial increment over the main growing period.
Uniform wire segmentation algorithm of distributed interconnects
Yin Guoli; Lin Zhenghui
2007-01-01
A uniform wire segmentation algorithm for performance optimization of distributed RLC interconnects was proposed in this paper. The optimal wire length for identical segments and buffer size for buffer insertion are obtained through computation and derivation, based on a 2-pole approximation model of distributed RLC interconnect. For typical inductance value and long wires under 180nm technology, experiments show that the uniform wire segmentation technique proposed in the paper can reduce delay by about 27% ～ 56% , while requires 34%～69% less total buffer usage and thus 29% to 58% less power consumption. It is suitable for long RLC interconnect performance optimization.
Uniform topology on EQ-algebras
Yang Jiang
2017-04-01
Full Text Available In this paper, we use filters of an EQ-algebra E to induce a uniform structure (E, , and then the part induce a uniform topology in E. We prove that the pair (E, is a topological EQ-algebra, and some properties of (E, are investigated. In particular, we show that (E, is a first-countable, zero-dimensional, disconnected and completely regular space. Finally, by using convergence of nets, the convergence of topological EQ-algebras is obtained.
Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas
Pablant, Novimir
2016-10-01
Results from the investigation of core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Neoclassical particle fluxes are not intrinsically ambipolar, which leads to the formation of a radial electric field that enforces ambipolarity. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity from the x-ray imaging crystal spectrometer (XICS) and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥ 5km /s (ΔEr 12kV / m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW . These experiments are examined in detail to explore the relationship between, heating power, response of the temperature and density profiles and the response of the radial electric field. Estimations of the core transport are based on power balance and utilize electron temperature (Te) profiles from the ECE and Thomson scattering, electron density profiles (ne) from interferometry and Thomson scattering, ion temperature (Ti) profiles from XICS, along with measurements of the total stored energy and radiated power. Also described are a set core impurity confinement experiments and results. Impurity confinement has been investigated through the injection of trace amount of argon impurity gas at the plasma edge in conjunction with measurements of the density of various ionization states of argon from the XICS and High Efficiency eXtreme-UV Overview Spectrometer (HEXOS) diagnostics. Finally the inferred Er and heat flux profiles are compared to initial neoclassical calculations using measured
Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid
Zhou Shi-Qi
2008-01-01
In this work,a bridge density functional approximation(BDFA)(J.Chem.Phys.112,8079(2000))for a non-uniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa(HCRY)fluid.It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid.A new bridge functional approximation is proposed,which can accurately predict the radial distribution function of the bulk HCRY fluid.With the new bridge functional approximation and its associated bulk second order direct correlation function as input,the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields,and the theoretical predictions are in good agreement with the corresponding simulation data.The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase,and the adsorption properties of the HCRY fluid,which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail.
Radially Magnetized Protoplanetary Disk: Vertical Profile
Russo, Matthew
2015-01-01
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, is wound up by the disk shear, and is pushed downward by a combination of turbulent mixing and ambipolar and Ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field $B_r \\sim (10^{-4}$-$10^{-2})(r/{\\rm AU})^{-2}$ G. Careful attention is giv...
The Interpolation Theory of Radial Basis Functions
Baxter, Brad
2010-01-01
In this dissertation, it is first shown that, when the radial basis function is a $p$-norm and $1 2$. Specifically, for every $p > 2$, we construct a set of different points in some $\\Rd$ for which the interpolation matrix is singular. The greater part of this work investigates the sensitivity of radial basis function interpolants to changes in the function values at the interpolation points. Our early results show that it is possible to recast the work of Ball, Narcowich and Ward in the language of distributional Fourier transforms in an elegant way. We then use this language to study the interpolation matrices generated by subsets of regular grids. In particular, we are able to extend the classical theory of Toeplitz operators to calculate sharp bounds on the spectra of such matrices. Applying our understanding of these spectra, we construct preconditioners for the conjugate gradient solution of the interpolation equations. Our main result is that the number of steps required to achieve solution of the lin...
Weighted Radial Variation for Node Feature Classification
Andris, C
2011-01-01
Connections created from a node-edge matrix have been traditionally difficult to visualize and analyze because of the number of flows to be rendered in a limited feature or cartographic space. Because analyzing connectivity patterns is useful for understanding the complex dynamics of human and information flow that connect non-adjacent space, techniques that allow for visual data mining or static representations of system dynamics are a growing field of research. Here, we create a Weighted Radial Variation (WRV) technique to classify a set of nodes based on the configuration of their radially-emanating vector flows. Each entity's vector is syncopated in terms of cardinality, direction, length, and flow magnitude. The WRV process unravels each star-like entity's individual flow vectors on a 0-360{\\deg} spectrum, to form a unique signal whose distribution depends on the flow presence at each step around the entity, and is further characterized by flow distance and magnitude. The signals are processed with an un...
Spherical radial basis functions, theory and applications
Hubbert, Simon; Morton, Tanya M
2015-01-01
This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...
Radial Velocity Variability of Field Brown Dwarfs
Prato, L; Rice, E L; McLean, I S; Kirkpatrick, J D; Burgasser, A J; Kim, S S
2015-01-01
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant ...
A radial transmission line material measurement apparatus
Warne, L.K.; Moyer, R.D.; Koontz, T.E.; Morris, M.E.
1993-05-01
A radial transmission line material measurement sample apparatus (sample holder, offset short standards, measurement software, and instrumentation) is described which has been proposed, analyzed, designed, constructed, and tested. The purpose of the apparatus is to obtain accurate surface impedance measurements of lossy, possibly anisotropic, samples at low and intermediate frequencies (vhf and low uhf). The samples typically take the form of sections of the material coatings on conducting objects. Such measurements thus provide the key input data for predictive numerical scattering codes. Prediction of the sample surface impedance from the coaxial input impedance measurement is carried out by two techniques. The first is an analytical model for the coaxial-to-radial transmission line junction. The second is an empirical determination of the bilinear transformation model of the junction by the measurement of three full standards. The standards take the form of three offset shorts (and an additional lossy Salisbury load), which have also been constructed. The accuracy achievable with the device appears to be near one percent.
RADIAL VELOCITY ECLIPSE MAPPING OF EXOPLANETS
Nikolov, Nikolay; Sainsbury-Martinez, Felix, E-mail: nikolay@astro.ex.ac.uk [Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)
2015-07-20
Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter–McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resulting in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin–orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.
A Minimal Solution to Radial Distortion Autocalibration.
Kukelova, Zuzana; Pajdla, Tomas
2011-12-01
Simultaneous estimation of radial distortion, epipolar geometry, and relative camera pose can be formulated as a minimal problem and solved from a minimal number of image points. Finding the solution to this problem leads to solving a system of algebraic equations. In this paper, we provide two different solutions to the problem of estimating radial distortion and epipolar geometry from eight point correspondences in two images. Unlike previous algorithms which were able to solve the problem from nine correspondences only, we enforce the determinant of the fundamental matrix be zero. This leads to a system of eight quadratic and one cubic equation in nine variables. We first simplify this system by eliminating six of these variables and then solve the system by two alternative techniques. The first one is based on the Gröbner basis method and the second one on the polynomial eigenvalue computation. We demonstrate that our solutions are efficient, robust, and practical by experiments on synthetic and real data.
Radial stability of anisotropic strange quark stars
Arbañil, José D. V.; Malheiro, M.
2016-11-01
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = pt-pr are considered, where pt and pr are respectively the tangential and the radial pressure: one that is null at the star's surface defined by pr(R) = 0, and one that is nonnull at the surface, namely, σs = 0 and σs ≠ 0. In the case σs = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σs ≠ 0, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σs. Thus, the stability star regions are determined always by the condition dM/dρc > 0 only when the tangential pressure is maintained fixed at the star surface's pt(R). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.
Asymptotic Solutions of Serial Radial Fuel Shuffling
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Freezers 1... temperature, then these test results shall be used to determine energy consumption. If the compartment...
2009-01-01
International audience; Radial and height growth chronologies from 150-year-old and 50-year old Scots pine stands, both located near to the northern timberline in Laanila, Finland (68° 30′ N, 27° 28′ E), were cross-correlated with each other and with mean temperatures of various temperature periods defined as months, days or growing-degree-days.* The height-growth chronology correlates significantly with radial growth at lags 1 and 2, and radial growth with height growth at lag 2 when the eff...