WorldWideScience

Sample records for radial shift function

  1. Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics

    International Nuclear Information System (INIS)

    Zhang Yuru; Xu Xiang; Wang Younian; Bogaerts, Annemie

    2012-01-01

    A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56-200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (φ = 0), and the best radial uniformity is obtained at φ = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at φ = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (φ = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at φ = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition P z in the centre and the decreasing power density P r at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density

  2. Radial Basis Function Networks for Conversion of Sound Spectra

    Directory of Open Access Journals (Sweden)

    Carlo Drioli

    2001-03-01

    Full Text Available In many advanced signal processing tasks, such as pitch shifting, voice conversion or sound synthesis, accurate spectral processing is required. Here, the use of Radial Basis Function Networks (RBFN is proposed for the modeling of the spectral changes (or conversions related to the control of important sound parameters, such as pitch or intensity. The identification of such conversion functions is based on a procedure which learns the shape of the conversion from few couples of target spectra from a data set. The generalization properties of RBFNs provides for interpolation with respect to the pitch range. In the construction of the training set, mel-cepstral encoding of the spectrum is used to catch the perceptually most relevant spectral changes. Moreover, a singular value decomposition (SVD approach is used to reduce the dimension of conversion functions. The RBFN conversion functions introduced are characterized by a perceptually-based fast training procedure, desirable interpolation properties and computational efficiency.

  3. The Matlab Radial Basis Function Toolbox

    Directory of Open Access Journals (Sweden)

    Scott A. Sarra

    2017-03-01

    Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.

  4. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    Science.gov (United States)

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-04

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  5. Fast radial basis functions for engineering applications

    CERN Document Server

    Biancolini, Marco Evangelos

    2017-01-01

    This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has proven to be effective in many fields, as the mathematical framework can be adapted in several ways. A candidate application can be faced considering the features of RBF:  multidimensional space (including 2D and 3D), numerous radial functions available, global and compact support, interpolation/regression. This great flexibility makes RBF attractive – and their great potential has only been partially discovered. This is because of the difficulty in taking a first step toward RBF as they are not commonly part of engineers’ cultural background, but also due to the numerical complex...

  6. Dynamic radial distribution function from inelastic neutron scattering

    International Nuclear Information System (INIS)

    McQueeney, R.J.

    1998-01-01

    A real-space, local dynamic structure function g(r,ω) is defined from the dynamic structure function S(Q,ω), which can be measured using inelastic neutron scattering. At any particular frequency ω, S(Q,ω) contains Q-dependent intensity oscillations which reflect the spatial distribution and relative displacement directions for the atoms vibrating at that frequency. Information about local and dynamic atomic correlations is obtained from the Fourier transform of these oscillations g(r,ω) at the particular frequency. g(r,ω) can be formulated such that the elastic and frequency-summed limits correspond to the average and instantaneous radial distribution function, respectively, and is thus called the dynamic radial distribution function. As an example, the dynamic radial distribution function is calculated for fcc nickel in a model which considers only the harmonic atomic displacements due to phonons. The results of these calculations demonstrate that the magnitude of the atomic correlations can be quantified and g(r,ω) is a well-defined correlation function. This leads to a simple prescription for investigating local lattice dynamics. copyright 1998 The American Physical Society

  7. Surface interpolation with radial basis functions for medical imaging

    International Nuclear Information System (INIS)

    Carr, J.C.; Beatson, R.K.; Fright, W.R.

    1997-01-01

    Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull's surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill

  8. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Science.gov (United States)

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  9. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Directory of Open Access Journals (Sweden)

    Khang Jie Liew

    Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  10. Low-to-high confinement transition mediated by turbulence radial wave number spectral shift in a fusion plasma

    DEFF Research Database (Denmark)

    Xu, G. S.; Wan, B. N.; Wang, H. Q.

    2016-01-01

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett.110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wa...

  11. Dynamics and computation in functional shifts

    Science.gov (United States)

    Namikawa, Jun; Hashimoto, Takashi

    2004-07-01

    We introduce a new type of shift dynamics as an extended model of symbolic dynamics, and investigate the characteristics of shift spaces from the viewpoints of both dynamics and computation. This shift dynamics is called a functional shift, which is defined by a set of bi-infinite sequences of some functions on a set of symbols. To analyse the complexity of functional shifts, we measure them in terms of topological entropy, and locate their languages in the Chomsky hierarchy. Through this study, we argue that considering functional shifts from the viewpoints of both dynamics and computation gives us opposite results about the complexity of systems. We also describe a new class of shift spaces whose languages are not recursively enumerable.

  12. Bessel-like beams modulated by arbitrary radial functions

    Science.gov (United States)

    Herman; Wiggins

    2000-06-01

    An approximate method for determining the radial and axial intensity of a Bessel-like beam is presented for the general case in which a radial Bessel distribution of any order is modulated by an arbitrary function. For Bessel-Gauss, generalized Bessel-Gauss, and Bessel-super-Gauss beams, this simple approximation yields results that are very close to the exact values, while they are exact for Bessel beams. A practical beam that can be generated with a combination of simple lenses is also analyzed and illustrated.

  13. Satisfiability of logic programming based on radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-01-01

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems

  14. Satisfiability of logic programming based on radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  15. Spherical radial basis functions, theory and applications

    CERN Document Server

    Hubbert, Simon; Morton, Tanya M

    2015-01-01

    This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...

  16. Modeling multivariate time series on manifolds with skew radial basis functions.

    Science.gov (United States)

    Jamshidi, Arta A; Kirby, Michael J

    2011-01-01

    We present an approach for constructing nonlinear empirical mappings from high-dimensional domains to multivariate ranges. We employ radial basis functions and skew radial basis functions for constructing a model using data that are potentially scattered or sparse. The algorithm progresses iteratively, adding a new function at each step to refine the model. The placement of the functions is driven by a statistical hypothesis test that accounts for correlation in the multivariate range variables. The test is applied on training and validation data and reveals nonstatistical or geometric structure when it fails. At each step, the added function is fit to data contained in a spatiotemporally defined local region to determine the parameters--in particular, the scale of the local model. The scale of the function is determined by the zero crossings of the autocorrelation function of the residuals. The model parameters and the number of basis functions are determined automatically from the given data, and there is no need to initialize any ad hoc parameters save for the selection of the skew radial basis functions. Compactly supported skew radial basis functions are employed to improve model accuracy, order, and convergence properties. The extension of the algorithm to higher-dimensional ranges produces reduced-order models by exploiting the existence of correlation in the range variable data. Structure is tested not just in a single time series but between all pairs of time series. We illustrate the new methodologies using several illustrative problems, including modeling data on manifolds and the prediction of chaotic time series.

  17. Orthogonal bases of radial functions for charge density refinements

    International Nuclear Information System (INIS)

    Restori, R.

    1990-01-01

    Charge density determination from X-ray measurements necessitates the evaluation of the Fourier-Bessel transforms of the radial functions used to expand the charge density. Analytical expressions are given here for four sets of orthogonal functions which can substitute for the 'traditional exponential functions' set in least-squares refinements. (orig.)

  18. More accurate fitting of 125I and 103Pd radial dose functions

    International Nuclear Information System (INIS)

    Taylor, R. E. P.; Rogers, D. W. O.

    2008-01-01

    In this study an improved functional form for fitting the radial dose functions, g(r), of 125 I and 103 Pd brachytherapy seeds is presented. The new function is capable of accurately fitting radial dose functions over ranges as large as 0.05 cm≤r≤10 cm for 125 I seeds and 0.10 cm≤r≤10 cm for 103 Pd seeds. The average discrepancies between fit and calculated data are less than 0.5% over the full range of fit and maximum discrepancies are 2% or less. The fitting function is also capable of accounting for the sharp increase in g(r) (upturn) seen for some sources for r 125 I seeds and 9 103 Pd seeds using the EGSnrc Monte Carlo user-code BrachyDose. Fitting coefficients of the new function are tabulated for all 27 seeds. Extrapolation characteristics of the function are also investigated. The new functional form is an improvement over currently used fitting functions with its main strength being the ability to accurately fit the rapidly varying radial dose function at small distances. The new function is an excellent candidate for fitting the radial dose function of all 103 Pd and 125 I brachytherapy seeds and will increase the accuracy of dose distributions calculated around brachytherapy seeds using the TG-43 protocol over a wider range of data. More accurate values of g(r) for r<0.5 cm may be particularly important in the treatment of ocular melanoma

  19. Doubly stochastic radial basis function methods

    Science.gov (United States)

    Yang, Fenglian; Yan, Liang; Ling, Leevan

    2018-06-01

    We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).

  20. Determination of the radial distribution function with the tomographic atom probe

    International Nuclear Information System (INIS)

    Heinrich, A.; Al-Kassab, T.

    2004-01-01

    Full text: An algorithm for the determination of the radial distribution function (RDF) and the partial radial distribution function from tomographic atom probe data is introduced and some examples for its application are discussed. Homogeneous distribution of atoms can easily be determined from measured data. Using our algorithm, the lattice of simple cubic structures may be estimated solely from TAP data. The results for bcc and fcc alloys and metals will be presented. By evaluating the vicinity of each atom, information about order phenomena in multi component alloy can be retrieved including short range order. The advantage of determining the (partial) radial distribution functions for any sample with our algorithm is that all data can be derived by one single experiment whereas all other methods of determining a pRDF require one experiment for each pRDF. (author)

  1. Learning Methods for Radial Basis Functions Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Kudová, Petra

    2005-01-01

    Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005

  2. Radial Basis Function Based Quadrature over Smooth Surfaces

    Science.gov (United States)

    2016-03-24

    Radial Basis Functions φ(r) Piecewise Smooth (Conditionally Positive Definite) MN Monomial |r|2m+1 TPS thin plate spline |r|2mln|r| Infinitely Smooth...smooth surfaces using polynomial interpolants, while [27] couples Thin - Plate Spline interpolation (see table 1) with Green’s integral formula [29

  3. Calculation of parameters of radial-piston reducer based on the use of functional semantic networks

    Directory of Open Access Journals (Sweden)

    Pashkevich V.M.

    2016-12-01

    Full Text Available The questions of сalculation of parameters of radial-piston reducer are considered in this article. It is used the approach which is based technologies of functional semantic networks. It is considered possibility applications of functional se-mantic networks for calculation of parameters of radial-piston reducer. Semantic networks to calculate the mass of the radial piston reducer are given.

  4. Mejoramiento de imágenes usando funciones de base radial Images improvement using radial basis functions

    Directory of Open Access Journals (Sweden)

    Jaime Alberto Echeverri Arias

    2009-07-01

    Full Text Available La eliminación del ruido impulsivo es un problema clásico del procesado no lineal para el mejoramiento de imágenes y las funciones de base radial de soporte global son útiles para enfrentarlo. Este trabajo presenta una técnica de interpolación que disminuye eficientemente el ruido impulsivo en imágenes, mediante el uso de interpolante obtenido por funciones de base radial en el marco de la investigación enfocada en el desarrollo de un Sistema de recuperación de imágenes de recursos acuáticos amazónicos. Esta técnica primero etiqueta los píxeles de la imagen que son ruidosos y, mediante la interpolación, genera un valor de reconstrucción de dicho píxel usando sus vecinos. Los resultados obtenidos son comparables y muchas veces mejores que otras técnicas ya publicadas y reconocidas. Según el análisis de resultados, se puede aplicar a imágenes con altas tasas de ruido, manteniendo un bajo error de reconstrucción de los píxeles "ruidosos", así como la calidad visual.Global support radial base functions are effective in eliminating impulsive noise in non-linear processing. This paper introduces an interpolation technique which efficiently reduces image impulsive noise by means of an interpolant obtained through radial base functions. These functions have been used in a research project designed to develop a system for the recovery of images of Amazonian aquatic resources. This technique starts with the tagging by interpolation of noisy image pixels. Thus, a value of reconstruction for the noisy pixels is generated using neighboring pixels. The results obtained with this technique have proved comparable and often better than those obtained with previously known techniques. According to results analysis, this technique can be successfully applied on images with high noise levels. The results are low error in noisy pixel reconstruction and better visual quality.

  5. Improved WKB radial wave functions in several bases

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.; Department of Physics, University of Wisconsin, Madison, Wisconsin 53706)

    1986-01-01

    We develop approximate WKB-like solutions to the radial Schroedinger equation for problems with an angular momentum barrier using Riccati-Bessel, Coulomb, and harmonic-oscillator functions as basis functions. The solutions treat the angular momentum singularity near the origin more accurately in leading approximation than the standard WKB solutions based on sine waves. The solutions based on Riccati-Bessel and free Coulomb wave functions continue smoothly through the inner turning point and are appropriate for scattering problems. The solutions based on oscillator and bound Coulomb wave functions incorporate both turning points smoothly and are particularly appropriate for bound-state problems; no matching of piecewise solutions using Airy functions is necessary

  6. The high-level error bound for shifted surface spline interpolation

    OpenAIRE

    Luh, Lin-Tian

    2006-01-01

    Radial function interpolation of scattered data is a frequently used method for multivariate data fitting. One of the most frequently used radial functions is called shifted surface spline, introduced by Dyn, Levin and Rippa in \\cite{Dy1} for $R^{2}$. Then it's extended to $R^{n}$ for $n\\geq 1$. Many articles have studied its properties, as can be seen in \\cite{Bu,Du,Dy2,Po,Ri,Yo1,Yo2,Yo3,Yo4}. When dealing with this function, the most commonly used error bounds are the one raised by Wu and S...

  7. Lesions of reuniens and rhomboid thalamic nuclei impair radial maze win-shift performance.

    Science.gov (United States)

    Hembrook, Jacqueline R; Mair, Robert G

    2011-08-01

    The reuniens (Re) and rhomboid (Rh) nuclei are major sources of thalamic input to hippocampus and medial prefrontal cortex. We compared effects of lesions in ReRh and other parts of the midline-intralaminar complex on tasks affected by lesions in terminal fields innervated by these nuclei, including: visuospatial reaction time (VSRT), a measure of sensory guided responding; serial VSRT, a measure of action sequence learning; and win/shift radial arm maze (RAM) measures of spatial memory. ReRh lesions affected RAM, but not VSRT or serial VSRT performance. The effects of caudal intralaminar lesions were doubly dissociated from ReRh lesions, affecting VSRT, but not RAM or serial VSRT performance. Rostral intralaminar lesions did not produce significant impairments, other than a subgroup with larger lesions that were impaired performing a delayed RAM task. Combined lesions damaging all three sites produced RAM deficits comparable to ReRh lesions and VSRT deficits comparable to caudal intralaminar lesions. Thus there was no indication that deficits produced by lesions in one site were exacerbated significantly by the cumulative effect of damage in other parts of the midline-intralaminar complex. The effects of ReRh lesions provide evidence that these nuclei affect memory functions of hippocampus and medial prefrontal cortex. The double dissociation observed between the effects of ReRh and caudal intralaminar nuclei provides evidence that different nuclei within the midline-intralaminar complex affect distinct aspects of cognition consistent with the effects of lesions in the terminal fields they innervate. Copyright © 2010 Wiley-Liss, Inc.

  8. Lung function studies before and after a work shift

    Energy Technology Data Exchange (ETDEWEB)

    Love, R G

    1983-05-01

    The lung function of 23 underground coal workers and eight surface workers at a Scottish colliery was measured immediately before and after a work shift. Changes in lung function were assessed in relation to the measured respirable dust exposure and the time of day in which the shift was worked. Large, and statistically significant, decrements of lung function during the shift were found in night-shift workers compared with workers on other shifts. Measurements derived from the forced expiratory manoeuvre, particularly FEV1, Vmax50, and Vmax25, after three vital capacity breaths of an 80% He/20% O2 mixture, showed large reductions in night-shift men, smaller reductions in afternoon-shift men, and small increases or decreases in morning-shift underground and surface workers. Within-shift changes for other tests, such as closing volume, N2 index, and volume of isoflow, did not differ significantly between shifts. No significant relationship was found between dust exposure and functional changes during a shift for any test. Lung function changes in a control group of 25 female workers not exposed to dust (hospital nurses) did not show the same large variations between day and night shifts. Examination of a further control group of 16 office workers did not show any difference in diurnal changes between smokers and non-smokers. It is concluded that these coal miners, even on permanent shift patterns, had widely different changes in their lung function cycle depending on which shift they were working. These changes did not appear to be related to dust exposure or cigarette smoking and were not consistent with other biological adaptations known to result from regular night-shift working.

  9. Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions

    Directory of Open Access Journals (Sweden)

    Zakieh Avazzadeh

    2014-01-01

    Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.

  10. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  11. On-line learning in radial basis functions networks

    OpenAIRE

    Freeman, Jason; Saad, David

    1997-01-01

    An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives ...

  12. Radial basis function and its application in tourism management

    Science.gov (United States)

    Hu, Shan-Feng; Zhu, Hong-Bin; Zhao, Lei

    2018-05-01

    In this work, several applications and the performances of the radial basis function (RBF) are briefly reviewed at first. After that, the binomial function combined with three different RBFs including the multiquadric (MQ), inverse quadric (IQ) and inverse multiquadric (IMQ) distributions are adopted to model the tourism data of Huangshan in China. Simulation results showed that all the models match very well with the sample data. It is found that among the three models, the IMQ-RBF model is more suitable for forecasting the tourist flow.

  13. Complexity of Gaussian-Radial-Basis Networks Approximating Smooth Functions

    Czech Academy of Sciences Publication Activity Database

    Kainen, P.C.; Kůrková, Věra; Sanguineti, M.

    2009-01-01

    Roč. 25, č. 1 (2009), s. 63-74 ISSN 0885-064X R&D Projects: GA ČR GA201/08/1744 Institutional research plan: CEZ:AV0Z10300504 Keywords : Gaussian-radial-basis-function networks * rates of approximation * model complexity * variation norms * Bessel and Sobolev norms * tractability of approximation Subject RIV: IN - Informatics, Computer Science Impact factor: 1.227, year: 2009

  14. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship.

    Science.gov (United States)

    Tachibana, Yuta; Mae, Tatsuo; Fujie, Hiromichi; Shino, Konsei; Ohori, Tomoki; Yoshikawa, Hideki; Nakata, Ken

    2017-02-01

    To clarify the effect of the radial tear of the lateral meniscus on the in situ meniscus force and the tibiofemoral relationship under axial loads and valgus torques. Ten intact porcine knees were settled to a 6-degree of freedom robotic system, while the force and 3-dimensional path of the knees were recorded via Universal Force Sensor (UFS) during 3 cycles of 250-N axial load and 5-Nm valgus torque at 15°, 30°, 45°, and 60° of knee flexion. The same examination was performed on the following 3 meniscal states sequentially; 33, 66, and 100% width of radial tears at the middle segment of the lateral meniscus, while recording the force and path of the knees via UFS. Finally, all paths were reproduced after total lateral meniscectomy and the in situ force of the lateral meniscus were calculated with the principle of superposition. The radial tear of 100% width significantly decreased the in situ force of the lateral meniscus and caused tibial medial shift and valgus rotation at 30°-60° of knee flexion in both testing protocols. Under a 250-N axial load at 60° of knee flexion, the in situ force decreased to 36 ± 29 N with 100% width of radial tear, which was 122 ± 38 N in the intact state. Additionally, the tibia shifted medially by 2.1 ± 0.9 mm and valgusrotated by 2.5 ± 1.9° with the complete radial tear. However, the radial tear of 33 or 66% width had little effect on either the in situ force or the tibial position. A radial tear of 100% width involving the rim significantly decreased the in situ force of the lateral meniscus and caused medial shift and valgus rotation of the tibia, whereas a radial tear of up to 66% width produced only little change. The clinical relevance is that loss of meniscal functions due to complete radial tear can lead to abnormal stress concentration in a focal area of cartilage and can increase the risk of osteoarthritis in the future.

  15. Modeling Marine Electromagnetic Survey with Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Agus Arif

    2014-11-01

    Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.

  16. Recurrent formulas and some exact relations for radial integrals with Dirac and Schroedinger wave functions

    International Nuclear Information System (INIS)

    Shabaev, V.M.

    1984-01-01

    Some exact relations are derived for radial integrals with Dirac wave functions. These relations are used for calculating radial integrals in the case of the Coulomb field. The threedimensional harmonic oscillator is also considered and exact formulae for the dipole transition probabilities are obtained using general relations between matrix elements

  17. Application of function parametrization for radial plasma position calibration in Aditya-U

    International Nuclear Information System (INIS)

    Kumar, Sameer; Daniel, Raju

    2017-01-01

    Calibration experiments to simulate the movement of plasma channel in tokamak ADITYA-U in the horizontal direction (i.e., in-board and out-board movement), are carried out by setting up current carrying conductor inside the vacuum vessel. This conductor is energized with a known current (through a capacitor bank system) and the response at various magnetic pickup coils is recorded. For various radial position of this conductor and for known current, the pickup coil response database is generated. Function parameterization method (FP) is utilized to generate an input-output relation (regression function), in which the input is magnetic pickup coil's signal and the output is the location of conductor. In the real situation, conductor is replaced by the plasma channel and hence, the radial movement of this channel would be directly known from the regression function obtained from FP. Detailed analysis of FP along with the error estimates would be presented in this paper. (author)

  18. Influence of Immobilization Time on Functional Outcome in Radial Neck Fractures in Children.

    Science.gov (United States)

    Badoi, Adina; Frech-Dörfler, Martina; Häcker, Frank-Martin; Mayr, Johannes

    2016-12-01

    Background  Radial neck fractures represent 20 to 30% of elbow fractures in children. Incorrect treatment can lead to significant permanent functional impairment. Posttraumatic avascular necrosis may cause a deformity of the radial head and neck. Deformation of the radial head and neck can be more severe after open rather than closed reduction or orthopedic treatment without reduction. The aim of our study was to analyze the influence of immobilization time on functional outcome. Patients and Methods  Retrospective, descriptive study of all children who had been treated for a radial neck fracture between 1999 and 2013 at the University Children's Hospital Basel. Patients were allocated to two groups (group 1: patients treated between 1999 and 2008, group 2: patients treated between 2009 and 2013). The fractures were classified according to the classification of Metaizeau. The primary endpoint was the percentage of patients who reached the full range of elbow motion at the end of the treatment period or the last follow-up. Secondary endpoints were immobilization time and number of patients with persistent physical restrictions of the elbow range of motion as well as the type of restrictions and subjective complaints. Results  A total of 67 patients treated for radial neck fracture were included in the first group (1999-2008). A total of 47 patients were allocated to the second group (2009-2013). Overall, 59 patients in group 1 and 39 patients in group 2 were treated nonoperatively. Average immobilization time was 22.7 days (range, 6-60 days) in group 1 and 13.2 days (range, 0-27 days) in group 2. Full range of motion was observed in 50 to 72.7% of patients in group 1 and in 71.4 to 92% of patients in group 2, depending on the grade of fracture displacement. Overall, 21 patients (31%) of group 1 showed a persistent functional restriction. In group 2, only six patients (12%) suffered from a persistent functional restriction of the elbow range of motion

  19. Dominance of free wall radial motion in global right ventricular function of heart transplant recipients.

    Science.gov (United States)

    Lakatos, Bálint Károly; Tokodi, Márton; Assabiny, Alexandra; Tősér, Zoltán; Kosztin, Annamária; Doronina, Alexandra; Rácz, Kristóf; Koritsánszky, Kinga Bianka; Berzsenyi, Viktor; Németh, Endre; Sax, Balázs; Kovács, Attila; Merkely, Béla

    2018-03-01

    Assessment of right ventricular (RV) function using conventional echocardiography might be inadequate as the radial motion of the RV free wall is often neglected. Our aim was to quantify the longitudinal and the radial components of RV function using three-dimensional (3D) echocardiography in heart transplant (HTX) recipients. Fifty-one HTX patients in stable cardiovascular condition without history of relevant rejection episode or chronic allograft vasculopathy and 30 healthy volunteers were enrolled. RV end-diastolic (EDV) volume and total ejection fraction (TEF) were measured by 3D echocardiography. Furthermore, we quantified longitudinal (LEF) and radial ejection fraction (REF) by decomposing the motion of the RV using the ReVISION method. RV EDV did not differ between groups (HTX vs control; 96 ± 27 vs 97 ± 2 mL). In HTX patients, TEF was lower, however, tricuspid annular plane systolic excursion (TAPSE) decreased to a greater extent (TEF: 47 ± 7 vs 54 ± 4% [-13%], TAPSE: 11 ± 5 vs 21 ± 4 mm [-48%], P < .0001). In HTX patients, REF/TEF ratio was significantly higher compared to LEF/TEF (REF/TEF vs LEF/TEF: 0.58 ± 0.10 vs 0.27 ± 0.08, P < .0001), while in controls the REF/TEF and LEF/TEF ratio was similar (0.45 ± 0.07 vs 0.47 ± 0.07). Current results confirm the superiority of radial motion in determining RV function in HTX patients. Parameters incorporating the radial motion are recommended to assess RV function in HTX recipients. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. New Method for Mesh Moving Based on Radial Basis Function Interpolation

    NARCIS (Netherlands)

    De Boer, A.; Van der Schoot, M.S.; Bijl, H.

    2006-01-01

    A new point-by-point mesh movement algorithm is developed for the deformation of unstructured grids. The method is based on using radial basis function, RBFs, to interpolate the displacements of the boundary nodes to the whole flow mesh. A small system of equations has to be solved, only involving

  1. A radial distribution function-based open boundary force model for multi-centered molecules

    KAUST Repository

    Neumann, Philipp; Eckhardt, Wolfgang; Bungartz, Hans-Joachim

    2014-01-01

    We derive an expression for radial distribution function (RDF)-based open boundary forcing for molecules with multiple interaction sites. Due to the high-dimensionality of the molecule configuration space and missing rotational invariance, a

  2. Computing single step operators of logic programming in radial basis function neural networks

    Science.gov (United States)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  3. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  4. Computing single step operators of logic programming in radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-01-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks

  5. An enhanced radial basis function network for short-term electricity price forecasting

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Gow, Hong-Jey; Tsai, Ming-Tang

    2010-01-01

    This paper proposed a price forecasting system for electric market participants to reduce the risk of price volatility. Combining the Radial Basis Function Network (RBFN) and Orthogonal Experimental Design (OED), an Enhanced Radial Basis Function Network (ERBFN) has been proposed for the solving process. The Locational Marginal Price (LMP), system load, transmission flow and temperature of the PJM system were collected and the data clusters were embedded in the Excel Database according to the year, season, workday and weekend. With the OED applied to learning rates in the ERBFN, the forecasting error can be reduced during the training process to improve both accuracy and reliability. This would mean that even the ''spikes'' could be tracked closely. The Back-propagation Neural Network (BPN), Probability Neural Network (PNN), other algorithms, and the proposed ERBFN were all developed and compared to check the performance. Simulation results demonstrated the effectiveness of the proposed ERBFN to provide quality information in a price volatile environment. (author)

  6. Program for the calculation of the semiempirical radial wave functions by means of the variable Tomas-Fermi potential and for the determination of the radial integrals of the dipole transitions

    International Nuclear Information System (INIS)

    Kuzmitskite, L.L.

    1980-01-01

    The program is meant for the determination of the semiempirical radial wave functions of the positive ions and the calculation of the radial integrals of the dipole transition. The semiempirical wave functions are calculated using Tomas-Fermi potential with the variable parameter, which provides for the coincidence of the energy obtained with the ionization energy of the state under consideration. The program is written in the FORTRAN language for the BESM-6 computer

  7. Anomalous radial and angular strain relaxation around dilute p-, isoelectronic-, and n-type dopants in Si crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingshu [School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Dong, Juncai, E-mail: dongjc@ihep.ac.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Dongliang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-01

    Doping is widely applied in yielding desirable properties and functions in silicon technology; thus, fully understanding the relaxation mechanism for lattice-mismatch strain is of fundamental importance. Here we systematically study the local lattice distortion near dilute IIIA-, IVA-, and VA-group substitutional dopants in Si crystal using density functional theory, and anomalous radial and angular strain relaxation modes are first revealed. Both the nearest-neighbor (NN) bond-distances and the tetrahedral bond-angles are found to exhibit completely opposite dependence on the electronic configurations for the low Z (Z<26) and high Z (Z>26) dopants. More surprisingly, negative and positive angular shifts for the second NN twelve Si2 atoms are unveiled surrounding the p- and n-type dopants, respectively. While electron localization function shows that the doped hole and electron are highly localized near the dopants, hence being responsible for the abnormal angular shifts, a universal radial strain relaxation mechanism dominated by a competition of the Coulomb interactions among the ion-core, bond-charge, and the localized hole or electron is also proposed. These findings may prove to be instrumental in precise design of silicon-based solotronics.

  8. On the calculation of x-ray scattering signals from pairwise radial distribution functions

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Biasin, Elisa; Haldrup, Kristoffer

    2015-01-01

    We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any possi...

  9. Performance of Multi-chaotic PSO on a shifted benchmark functions set

    Energy Technology Data Exchange (ETDEWEB)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan [Tomas Bata University in Zlín, Faculty of Applied Informatics Department of Informatics and Artificial Intelligence nám. T.G. Masaryka 5555, 760 01 Zlín (Czech Republic)

    2015-03-10

    In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions.

  10. Performance of Multi-chaotic PSO on a shifted benchmark functions set

    International Nuclear Information System (INIS)

    Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan

    2015-01-01

    In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions

  11. Reconfiguration of face expressions based on the discrete capture data of radial basis function interpolation

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guangguo; ZHOU Dongsheng; WEI Xiaopeng; ZHANG Qiang

    2012-01-01

    Compactly supported radial basis function can enable the coefficient matrix of solving weigh linear system to have a sparse banded structure, thereby reducing the complexity of the algorithm. Firstly, based on the compactly supported radial basis function, the paper makes the complex quadratic function (Multiquadric, MQ for short) to be transformed and proposes a class of compactly supported MQ function. Secondly, the paper describes a method that interpolates discrete motion capture data to solve the motion vectors of the interpolation points and they are used in facial expression reconstruction. Finally, according to this characteris- tic of the uneven distribution of the face markers, the markers are numbered and grouped in accordance with the density level, and then be interpolated in line with each group. The approach not only ensures the accuracy of the deformation of face local area and smoothness, but also reduces the time complexity of computing.

  12. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    Science.gov (United States)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  13. Generalized second-order Coulomb phase shift functions

    International Nuclear Information System (INIS)

    Rosendorff, S.

    1982-01-01

    Some specific properties and the evaluation of the generalized second-order Coulomb phase shift functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The dependence on the three momenta k 1 ,k-bar,k 2 , corresponding to the final, intermediate, and initial states is illustrated

  14. Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm. (On-Line Harmonics Estimation Application

    Directory of Open Access Journals (Sweden)

    Eyad K Almaita

    2017-03-01

    Keywords: Energy efficiency, Power quality, Radial basis function, neural networks, adaptive, harmonic. Article History: Received Dec 15, 2016; Received in revised form Feb 2nd 2017; Accepted 13rd 2017; Available online How to Cite This Article: Almaita, E.K and Shawawreh J.Al (2017 Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm (On-Line Harmonics Estimation Application.  International Journal of Renewable Energy Develeopment, 6(1, 9-17. http://dx.doi.org/10.14710/ijred.6.1.9-17

  15. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  16. A metric for the Radial Basis Function Network - Application on Real Radar Data

    NARCIS (Netherlands)

    Heiden, R. van der; Groen, F.C.A.

    1996-01-01

    A Radial Basis Functions (RBF) network for pattern recognition is considered. Classification with such a network is based on distances between patterns, so a metric is always present. Using real radar data, the Euclidean metric is shown to perform poorly - a metric based on the so called Box-Cox

  17. Radial dose functions for 103Pd, 125I, 169Yb and 192Ir brachytherapy sources: an EGS4 Monte Carlo study

    International Nuclear Information System (INIS)

    Mainegra, E.

    2000-01-01

    Radial dose functions g(r) in water around 103 Pd, 125 I, 169 Yb and 192 Ir brachytherapy sources were estimated by means of the EGS4 simulation system and extensively compared with experimental as well as with theoretical results. The DLC-136/PHOTX cross section library, water molecular form factors, bound Compton scattering and Doppler broadening of the Compton-scattered photon energy were considered in the calculations. Use of the point source approach produces reasonably accurate values of the radial dose function only at distances beyond 0.5 cm for 103 Pd sources. It is shown that binding corrections for Compton scattering have a negligible effect on radial dose function for 169 Yb and 192 Ir seeds and for 103 Pd seeds under 5.0 cm from the source centre and for the 125 I seed model 6702 under 8.0 cm. Beyond those limits there is an increasing influence of binding corrections on radial dose function for 103 Pd and 125 I sources. Results in solid water medium underestimate radial dose function for low-energy sources by as much as 6% for 103 Pd and 2.5% for 125 I already at 2 cm from source centre resulting in a direct underestimation of absolute dose rate values. It was found necessary to consider medium boundaries when comparing results for the radial dose function of 169 Yb and 192 Ir sources to avoid discrepancies due to the backscattering contribution in the phantom medium. Values of g(r) for all source types studied are presented. Uncertainties lie under 1% within one standard deviation. (author)

  18. Precise determination of lattice phase shifts and mixing angles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bing-Nan, E-mail: b.lu@fz-juelich.de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lähde, Timo A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lee, Dean [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Meißner, Ulf-G. [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA – High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-09-10

    We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.

  19. A simple scaling law for the equation of state and the radial distribution functions calculated by density-functional theory molecular dynamics

    Science.gov (United States)

    Danel, J.-F.; Kazandjian, L.

    2018-06-01

    It is shown that the equation of state (EOS) and the radial distribution functions obtained by density-functional theory molecular dynamics (DFT-MD) obey a simple scaling law. At given temperature, the thermodynamic properties and the radial distribution functions given by a DFT-MD simulation remain unchanged if the mole fractions of nuclei of given charge and the average volume per atom remain unchanged. A practical interest of this scaling law is to obtain an EOS table for a fluid from that already obtained for another fluid if it has the right characteristics. Another practical interest of this result is that an asymmetric mixture made up of light and heavy atoms requiring very different time steps can be replaced by a mixture of atoms of equal mass, which facilitates the exploration of the configuration space in a DFT-MD simulation. The scaling law is illustrated by numerical results.

  20. RECONSTRUCCIÓN TRIDIMENSIONAL DE ROSTROS A PARTIR DE IMÁGENES DE RANGO POR MEDIO DE FUNCIONES DE BASE RADIAL DE SOPORTE COMPACTO TRI-DIMENSIONAL RECONSTRUCTION OF FACES FROM RANGE IMAGES THROUGH COMPACT SUPPORT RADIAL BASIS FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Jaime A. Echeverri A.

    2007-07-01

    Full Text Available En este trabajo se muestra la utilización de funciones de base radial de soporte compacto para la reconstrucción tridimensional de rostros. En trabajos anteriores se habían explorado diferentes técnicas y diferentes funciones de base radial para reconstrucción de superficies; ahora presentamos los algoritmos y los resultados de la utilización de funciones de base radial de soporte compacto las cuales presentan ventajas comparativas en términos del tiempo de construcción de un interpolante para la reconstrucción. Se presentan comparaciones con técnicas ampliamente utilizadas en este campo y se detalla el proceso global de reconstrucción de superficies.In previous works, we have explored several radial basis techniques and functions for the reconstruction of surfaces. We now present the use of compact support radial basis functions for the tri-dimensional reconstruction of human faces. Therefore, we present algorithms and results coming from the application of compact support radial basis functions which have revealed comparative advantages in terms of the amount of time needed for the construction of an interpolant to be used in the reconstruction. We are also presenting some comparisons with techniques widely used in this field and we explain in detail the global process for the surfaces reconstruction.

  1. SU-E-T-259: Particle Swarm Optimization in Radial Dose Function Fitting for a Novel Iodine-125 Seed

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [University of Alabama at Birmingham, Birmingham, Al (United States); Duan, J; Popple, R; Huang, M; Shen, S; Brezovich, I [University of Alabama Birmingham, Birmingham, AL (United States); Cardan, R [UAB University of Alabama, Birmingham, Birmingham, AL (United States); Benhabib, S [University of Alabama at Birmingham, Birmingham, AL (United States)

    2014-06-01

    Purpose: To determine the coefficients of bi- and tri-exponential functions for the best fit of radial dose functions of the new iodine brachytherapy source: Iodine-125 Seed AgX-100. Methods: The particle swarm optimization (PSO) method was used to search for the coefficients of the biand tri-exponential functions that yield the best fit to data published for a few selected radial distances from the source. The coefficients were encoded into particles, and these particles move through the search space by following their local and global best-known positions. In each generation, particles were evaluated through their fitness function and their positions were changed through their velocities. This procedure was repeated until the convergence criterion was met or the maximum generation was reached. All best particles were found in less than 1,500 generations. Results: For the I-125 seed AgX-100 considered as a point source, the maximum deviation from the published data is less than 2.9% for bi-exponential fitting function and 0.2% for tri-exponential fitting function. For its line source, the maximum deviation is less than 1.1% for bi-exponential fitting function and 0.08% for tri-exponential fitting function. Conclusion: PSO is a powerful method in searching coefficients for bi-exponential and tri-exponential fitting functions. The bi- and tri-exponential models of Iodine-125 seed AgX-100 point and line sources obtained with PSO optimization provide accurate analytical forms of the radial dose function. The tri-exponential fitting function is more accurate than the bi-exponential function.

  2. Effects of marital status and shift work on family function among registered nurses.

    Science.gov (United States)

    Tai, Shu-Yu; Lin, Pei-Chen; Chen, Yao-Mei; Hung, Hsin-Chia; Pan, Chih-Hong; Pan, Shung-Mei; Lee, Chung-Yin; Huang, Chia-Tsuan; Wu, Ming-Tsang

    2014-01-01

    This study aims to assess the interactive effect of marital status and shift work on family function. A population-based sample of 1,438 nurses between the ages of 20-45 yr was recruited from Taiwan during the period from July 2005 to April 2006 using a mailed questionnaire. The self-administered questionnaire contained information about demographic data, work status, shift work schedule, and the Family APGAR (Adaptation, Partnership, Growth, Affection, and Resolve) Scale, to evaluate family function. Compared to day shift nurses, non-night and rotation shift nurses had 1.53- and 1.38-fold (95% CI=1.09-2.14 and 1.01-1.88) risk to have poor family function after adjusting for other covariates. Married nurses, by contrast, had a 0.44-fold (95% CI=0.29-0.66) risk to have poor family function compared to single nurses. In addition, married nurses who worked non-night or rotation shifts had a significantly higher percent of poor family function than those married nurses working day shifts; however, similar results were not replicated in single nurses. We concluded that shift work and marital status could influence family function.

  3. Effects of Marital Status and Shift Work on Family Function among Registered Nurses

    Science.gov (United States)

    TAI, Shu-Yu; LIN, Pei-Chen; CHEN, Yao-Mei; HUNG, Hsin-Chia; PAN, Chih-Hong; PAN, Shung-Mei; LEE, Chung-Yin; HUANG, Chia-Tsuan; WU, Ming-Tsang

    2014-01-01

    This study aims to assess the interactive effect of marital status and shift work on family function. A population-based sample of 1,438 nurses between the ages of 20–45 yr was recruited from Taiwan during the period from July 2005 to April 2006 using a mailed questionnaire. The self-administered questionnaire contained information about demographic data, work status, shift work schedule, and the Family APGAR (Adaptation, Partnership, Growth, Affection, and Resolve) Scale, to evaluate family function. Compared to day shift nurses, non-night and rotation shift nurses had 1.53- and 1.38-fold (95% CI=1.09–2.14 and 1.01–1.88) risk to have poor family function after adjusting for other covariates. Married nurses, by contrast, had a 0.44-fold (95% CI=0.29–0.66) risk to have poor family function compared to single nurses. In addition, married nurses who worked non-night or rotation shifts had a significantly higher percent of poor family function than those married nurses working day shifts; however, similar results were not replicated in single nurses. We concluded that shift work and marital status could influence family function. PMID:24909112

  4. Functional Forms, Exogenous Shifts, and Economic Surplus Changes

    OpenAIRE

    Xueyan Zhao; John D. Mullen; Gary R. Griffith

    1997-01-01

    Conditions for exact welfare measures in equilibrium displacement modeling are examined. These relate to the functional form of supply and demand, the nature of the exogenous shift, and the definition of percentage changes. Approximation errors when these conditions are not met in empirical applications are investigated and analytical expressions for the errors derived. Significant errors are possible when a proportional shift is assumed. The assumptions underlying Alston and Wohlgenant's emp...

  5. Radial basis function neural network for power system load-flow

    International Nuclear Information System (INIS)

    Karami, A.; Mohammadi, M.S.

    2008-01-01

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  6. Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography

    Science.gov (United States)

    Shirzad, Taghi; Shomali, Z. Hossein

    2014-06-01

    We studied the shear wave velocity structure and radial anisotropy beneath the Tehran basin by analyzing the Rayleigh wave and Love wave empirical Green's functions obtained from cross-correlation of seismic ambient noise. Approximately 199 inter-station Rayleigh and Love wave empirical Green's functions with sufficient signal-to-noise ratios extracted from 30 stations with various sensor types were used for phase velocity dispersion analysis of periods ranging from 1 to 7 s using an image transformation analysis technique. Dispersion curves extracted from the phase velocity maps were inverted based on non-linear damped least squares inversion method to obtain a quasi-3D model of crustal shear wave velocities. The data used in this study provide an unprecedented opportunity to resolve the spatial distribution of radial anisotropy within the uppermost crust beneath the Tehran basin. The quasi-3D shear wave velocity model obtained in this analysis delineates several distinct low- and high-velocity zones that are generally separated by geological boundaries. High-shear-velocity zones are located primarily around the mountain ranges and extend to depths of 2.0 km, while the low-shear-velocity zone is located near regions with sedimentary layers. In the shallow subsurface, our results indicate strong radial anisotropy with negative magnitude (VSV > VSH) primarily associated with thick sedimentary deposits, reflecting vertical alignment of cracks. With increasing depth, the magnitude of the radial anisotropy shifts from predominantly negative (less than -10%) to predominantly positive (greater than 5%). Our results show a distinct change in radial anisotropy between the uppermost sedimentary layer and the bedrock.

  7. Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.

    Science.gov (United States)

    Bifari, Francesco; Decimo, Ilaria; Pino, Annachiara; Llorens-Bobadilla, Enric; Zhao, Sheng; Lange, Christian; Panuccio, Gabriella; Boeckx, Bram; Thienpont, Bernard; Vinckier, Stefan; Wyns, Sabine; Bouché, Ann; Lambrechts, Diether; Giugliano, Michele; Dewerchin, Mieke; Martin-Villalba, Ana; Carmeliet, Peter

    2017-03-02

    Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2 + neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. New type shift operators for circular well potential in two dimensions

    International Nuclear Information System (INIS)

    Sun Guohua; Dong Shihai

    2010-01-01

    New type shift operators for circular well potential in two dimensions are identified. These so-called shift operators connect those quantum systems with the different potentials but with same energy spectrum. It should be noted that these operators depend on both the radial circular and angular variables r and φ. We find that the operators P ± =P x ±P y play the role of the shift operators. The radial linear momentum P r =-ih(∂)/(∂r) , the angular momentum L z =-ih(∂)/(∂φ) and the Hamiltonian form a complete set of commuting operators with the SO(2) symmetry.

  9. Adaptive radial basis function mesh deformation using data reduction

    Science.gov (United States)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  10. Sensorimotor and executive function slowing in anesthesiology residents after overnight shifts.

    Science.gov (United States)

    Williams, George W; Shankar, Bairavi; Klier, Eliana M; Chuang, Alice Z; El Marjiya-Villarreal, Salma; Nwokolo, Omonele O; Sharma, Aanchal; Sereno, Anne B

    2017-08-01

    Medical residents working overnight call shifts experience sleep deprivation and circadian clock disruption. This leads to deficits in sensorimotor function and increases in workplace accidents. Using quick tablet-based tasks, we investigate whether measureable executive function differences exist following a single overnight call versus routine shift, and whether factors like stress, rest and caffeine affect these measures. A prospective, observational, longitudinal, comparison study was conducted. An academic tertiary hospital's main operating room suite staffed by attending anesthesiologists, anesthesiology residents, anesthesiologist assistants and nurse anesthetists. Subjects were 30 anesthesiology residents working daytime shifts and 30 peers working overnight call shifts from the University of Texas Health Science Center at Houston. Before and after their respective work shifts, residents completed the Stanford Sleepiness Scale (SSS) and the ProPoint and AntiPoint tablet-based tasks. These latter tasks are designed to measure sensorimotor and executive functions, respectively. The SSS is a self-reported measure of sleepiness. Response times (RTs) are measured in the pointing tasks. Call residents exhibited increased RTs across their shifts (post-pre) on both ProPoint (p=0.002) and AntiPoint (pRoutine residents. Increased stress was associated with decreases in AntiPoint RT for Routine (p=0.007), but with greater increases in sleepiness for Call residents (proutine daytime shift residents, (2) sensorimotor slowing is greater in overnight Call residents who drink caffeine habitually, and (3) increased stress during a shift reduces (improves) cognitive RTs during routine daytime but not overnight call shifts. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Shift Verification and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Tara M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Evans, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Gregory G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-07

    This documentation outlines the verification and validation of Shift for the Consortium for Advanced Simulation of Light Water Reactors (CASL). Five main types of problems were used for validation: small criticality benchmark problems; full-core reactor benchmarks for light water reactors; fixed-source coupled neutron-photon dosimetry benchmarks; depletion/burnup benchmarks; and full-core reactor performance benchmarks. We compared Shift results to measured data and other simulated Monte Carlo radiation transport code results, and found very good agreement in a variety of comparison measures. These include prediction of critical eigenvalue, radial and axial pin power distributions, rod worth, leakage spectra, and nuclide inventories over a burn cycle. Based on this validation of Shift, we are confident in Shift to provide reference results for CASL benchmarking.

  12. Endoscopic versus open radial artery harvest and mammario-radial versus aorto-radial grafting in patients undergoing coronary artery bypass surgery

    DEFF Research Database (Denmark)

    Carranza, Christian L; Ballegaard, Martin; Werner, Mads U

    2014-01-01

    the postoperative complications will be registered, and we will evaluate muscular function, scar appearance, vascular supply to the hand, and the graft patency including the patency of the central radial artery anastomosis. A patency evaluation by multi-slice computer tomography will be done at one year...... to aorto-radial revascularisation techniques but this objective is exploratory. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01848886.Danish Ethics committee number: H-3-2012-116.Danish Data Protection Agency: 2007-58-0015/jr.n:30-0838....

  13. Adaptive Linear and Normalized Combination of Radial Basis Function Networks for Function Approximation and Regression

    Directory of Open Access Journals (Sweden)

    Yunfeng Wu

    2014-01-01

    Full Text Available This paper presents a novel adaptive linear and normalized combination (ALNC method that can be used to combine the component radial basis function networks (RBFNs to implement better function approximation and regression tasks. The optimization of the fusion weights is obtained by solving a constrained quadratic programming problem. According to the instantaneous errors generated by the component RBFNs, the ALNC is able to perform the selective ensemble of multiple leaners by adaptively adjusting the fusion weights from one instance to another. The results of the experiments on eight synthetic function approximation and six benchmark regression data sets show that the ALNC method can effectively help the ensemble system achieve a higher accuracy (measured in terms of mean-squared error and the better fidelity (characterized by normalized correlation coefficient of approximation, in relation to the popular simple average, weighted average, and the Bagging methods.

  14. Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

    KAUST Repository

    Ryu, Duchwan; Liang, Faming; Mallick, Bani K.

    2013-01-01

    be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle

  15. Recent advances in radial basis function collocation methods

    CERN Document Server

    Chen, Wen; Chen, C S

    2014-01-01

    This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...

  16. Do the radial head prosthesis components fit with the anatomical structures of the proximal radioulnar joint?

    Science.gov (United States)

    Wegmann, Kilian; Hain, Moritz K; Ries, Christian; Neiss, Wolfram F; Müller, Lars P; Burkhart, Klaus J

    2015-09-01

    The fitting accuracy of radial head components has been investigated in the capitulo-radial joint, and reduced contact after prosthetic replacement of the radial head has been observed. The kinematics of the proximal radioulnar joint (PRUJ) are affected by radial head arthroplasty as well, but have not yet been investigated in this regard. The elbow joints of 60 upper extremities of formalin-fixed body donors were disarticulated to obtain a good view of the PRUJ. Each specimen was mounted on the examining table and radial head position in the native PRUJ was assessed in neutral position, full pronation, and full supination. Measurements were repeated after implantation of mono- and bi-polar prostheses. Analysis of the distribution of the joint contacts in the compartments showed significant differences after radial head replacement. In comparison to the native joint, after bipolar and monopolar radial head replacement, the physiological shift of the proximal radius was altered. The physiological shift of the joint contact of the radial head from anterior to posterior during forearm rotation that was found in the native joint in our cadaver model was not observed after prosthetic replacement. With higher conformity and physiological kinematic of radial head prostheses, possibly lower shear forces and lower contact pressures would be generated. The tested radial head prostheses do not replicate the physiological kinematics of the radial head. Further development in the prosthesis design has to be made. The meticulous reconstruction of the annular ligament seems to be of importance to increase joint contact.

  17. Measurement of the radial electric field in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Field, A.R.; Fussmann, G.; Hofmann, J.V.

    1990-12-01

    The radial electric field (E Τ ) at the plasma periphery is determined by measuring the drift velocities of low-Z impurities ions (BIV, CIII and HeII). The measurements are performed with a scannable mirror system which allows the determination of the poloidal, perpendicular (to B vector) and toroidal components of the drift velocities from the differential Doppler shift of visible line emission observed along opposing viewing directions. The principle of the measurement is investigated in detail. In particular, it is shown that for radially localised emission shells there exits a line of sight oriented perpendicular to B vector along which E Τ may be inferred directly from the observed Doppler shift of the line emission. Along such a line of sight the net contribution to the shift from the diamagnetic drift and the radial gradient of the excitation probability is negligible. During the Ohmic- and L-phases the perpendicular drift velocity of the BIV ions measured approximately 2 cm inside the separatrix is small (≤ 2 kms -1 ) and in the ion diamagnetic drift direction. However, at the L → H-Mode transition it changes sign and begins to increase on the time-scale of the edge pressure gradients reaching the highest values at the end of the H * -phase. From these high perpendicular drift velocities it is infered that, in the H-mode, there exists a strong negative radial electric field (vertical strokeE τ vertical stroke ≤ kVm -1 ) just inside the separatrix. The dependence of the drift velocity of the BIV ions and E Τ on the NBI-heating power and the magnitude and direction of the plasma current and the magnetic field is investigated. (orig.)

  18. Machine learning of radial basis function neural network based on Kalman filter: Introduction

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.

  19. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

    Directory of Open Access Journals (Sweden)

    Alisson C. D. de Souza

    2014-09-01

    Full Text Available This paper proposes a parallel fixed point radial basis function (RBF artificial neural network (ANN, implemented in a field programmable gate array (FPGA trained online with a least mean square (LMS algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx, with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.

  20. Working irregular shift patterns is associated with functional constipation among healthy trainee nurses

    Directory of Open Access Journals (Sweden)

    Ali Ebrahim

    2017-11-01

    Full Text Available The circadian system has a role in regulating gastrointestinal physiology. Perturbation of this system is associated with gastrointestinal tract dysfunction. Shiftwork and poor sleep quality are associated with functional gastrointestinal disorders among many professional groups. This study compared bowel habits between trainee nurses with regular and irregular patterns of shiftwork. Male and female nursing students, enrolled on the first year (regular shifts; n=49 and the fourth year (irregular shifts, n=48 of a nursing degree course were surveyed. Questionnaires were used to assess functional diarrhea and constipation over a three month period. The prevalence of functional constipation among regular shift workers was lower than that found among irregular shift workers; 31.3% and 61.2%, respectively. There was no difference between the two groups in relation to the prevalence of diarrhea. This suggests an association between shiftwork and functional constipation, but not with functional diarrhea.

  1. Radial basis function neural networks with sequential learning MRAN and its applications

    CERN Document Server

    Sundararajan, N; Wei Lu Ying

    1999-01-01

    This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t

  2. Nu shifts in betatron oscillations from uniform perturbations in the presence of non-linear magnetic guide fields

    International Nuclear Information System (INIS)

    Crebbin, K.C.

    1985-05-01

    Uniform magnetic field perturbations cause a closed orbit distortion in a circular accelerator. If the magnetic guide field is non-linear these perturbations can also cause a Nu shift in the betatron oscillations. Such a shift in radial Nu values has been observed in the Bevalac while studying the low energy resonant extraction system. In the Bevalac, the radial perturbation comes from the quadrants being magnetically about 0.8% longer than 90 0 . The normal effect of this type of perturbation is a radial closed orbit shift and orbit distortion. The Nu shift, associated with this type of perturbation in the presence of a non-linear guide field, is discussed in this paper. A method of handling the non-linear n values is discussed as well as the mechanism for the associated Nu shift. Computer calculations are compared to measurements. 2 refs., 4 figs

  3. Performance-oriented asymptotic tracking control of hydraulic systems with radial basis function network disturbance observer

    Directory of Open Access Journals (Sweden)

    Jian Hu

    2016-05-01

    Full Text Available Uncertainties, including parametric uncertainties and uncertain nonlinearities, always exist in positioning servo systems driven by a hydraulic actuator, which would degrade their tracking accuracy. In this article, an integrated control scheme, which combines adaptive robust control together with radial basis function neural network–based disturbance observer, is proposed for high-accuracy motion control of hydraulic systems. Not only parametric uncertainties but also uncertain nonlinearities (i.e. nonlinear friction, external disturbances, and/or unmodeled dynamics are taken into consideration in the proposed controller. The above uncertainties are compensated, respectively, by adaptive control and radial basis function neural network, which are ultimately integrated together by applying feedforward compensation technique, in which the global stabilization of the controller is ensured via a robust feedback path. A new kind of parameter and weight adaptation law is designed on the basis of Lyapunov stability theory. Furthermore, the proposed controller obtains an expected steady performance even if modeling uncertainties exist, and extensive simulation results in various working conditions have proven the high performance of the proposed control scheme.

  4. Correction of echo shift in reconstruction processing for ultra-short TE pulse sequence

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ootsuka, Takehiro; Abe, Takayuki; Takahashi, Tetsuhiko

    2010-01-01

    An ultra-short echo time (TE) pulse sequence is composed of a radial sampling that acquires echo signals radially in the K-space and a half-echo acquisition that acquires only half of the echo signal. The shift in the position of the echo signal (echo shift) caused by the timing errors in the gradient magnetic field pulses affects the image quality in the radial sampling with the half-echo acquisition. To improve image quality, we have developed a signal correction algorithm that detects and eliminates this echo shift during reconstruction by performing a pre-scan within 10 seconds. The results showed that image quality is improved under oblique and/or off-centering conditions that frequently cause image distortion due to hardware error. In conclusion, we have developed a robust ultra-short TE pulse sequence that allows wide latitude in the scan parameters, including oblique and off-centering conditions. (author)

  5. Function and Form: Shifts in Modernist Architects’ Design Thinking

    Directory of Open Access Journals (Sweden)

    Atli Magnus Seelow

    2017-01-01

    Full Text Available Since the so-called “type-debate” at the 1914 Werkbund Exhibition in Cologne—on individual versus standardized types—the discussion about turning Function into Form has been an important topic in Architectural Theory. The aim of this article is to trace the historic shifts in the relationship between Function and Form: First, how Functional Thinking was turned into an Art Form; this orginates in the Werkbund concept of artistic refinement of industrial production. Second, how Functional Analysis was applied to design and production processes, focused on certain aspects, such as economic management or floor plan design. Third, how Architectural Function was used as a social or political argument; this is of particular interest during the interwar years. A comparison of theses different aspects of the relationship between Function and Form reveals that it has undergone fundamental shifts—from Art to Science and Politics—that are tied to historic developments. It is interesting to note that this happens in a short period of time in the first half of the 20th Century. Looking at these historic shifts not only sheds new light on the creative process in Modern Architecture, this may also serve as a stepstone towards a new rethinking of Function and Form.

  6. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  7. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cé cile

    2012-01-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper

  8. Global sensitivity analysis using a Gaussian Radial Basis Function metamodel

    International Nuclear Information System (INIS)

    Wu, Zeping; Wang, Donghui; Okolo N, Patrick; Hu, Fan; Zhang, Weihua

    2016-01-01

    Sensitivity analysis plays an important role in exploring the actual impact of adjustable parameters on response variables. Amongst the wide range of documented studies on sensitivity measures and analysis, Sobol' indices have received greater portion of attention due to the fact that they can provide accurate information for most models. In this paper, a novel analytical expression to compute the Sobol' indices is derived by introducing a method which uses the Gaussian Radial Basis Function to build metamodels of computationally expensive computer codes. Performance of the proposed method is validated against various analytical functions and also a structural simulation scenario. Results demonstrate that the proposed method is an efficient approach, requiring a computational cost of one to two orders of magnitude less when compared to the traditional Quasi Monte Carlo-based evaluation of Sobol' indices. - Highlights: • RBF based sensitivity analysis method is proposed. • Sobol' decomposition of Gaussian RBF metamodel is obtained. • Sobol' indices of Gaussian RBF metamodel are derived based on the decomposition. • The efficiency of proposed method is validated by some numerical examples.

  9. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  10. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    Science.gov (United States)

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in

  11. Radial Field Piezoelectric Diaphragms

    Science.gov (United States)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  12. An accurate expression for radial distribution function of the Lennard-Jones fluid

    International Nuclear Information System (INIS)

    Morsali, Ali; Goharshadi, Elaheh K.; Ali Mansoori, G.; Abbaspour, Mohsen

    2005-01-01

    A simple and accurate expression for radial distribution function (RDF) of the Lennard-Jones fluid is presented. The expression explicitly states the RDF as a continuous function of reduced interparticle distance, temperature, and density. It satisfies the limiting conditions of zero density and infinite distance imposed by statistical thermodynamics. The distance dependence of this expression is expressed by an equation which contains 11 adjustable parameters. These parameters are fitted to 353 RDF data, obtained by molecular dynamics calculations, and then expressed as functions of reduced distance, temperature and density. This expression, having a total of 65 constants, reproduces the RDF data with an average root-mean-squared deviation of 0.0152 for the range of state variables of 0.5= * = * = * =ρσ 3 are reduced temperature and density, respectively). The expression predicts the pressure and the internal energy of the Lennard-Jones fluid with an uncertainty that is comparable to that obtained directly from the molecular dynamics simulations

  13. Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries

    Directory of Open Access Journals (Sweden)

    Erik eKristensen

    2014-09-01

    Full Text Available We identify how ecosystem functioning in shallow estuaries is affected by shifts in benthic fauna communities. We use the shallow estuary, Odense Fjord, Denmark, as a case study to test our hypotheses that (1 shifts in benthic fauna composition and species functional traits affect biogeochemical cycling with cascading effects on ecological functioning, which may (2 modulate pelagic primary productivity with feedbacks to the benthic system. Odense Fjord is suitable because it experienced dramatic shifts in benthic fauna community structure from 1998 to 2008. We focused on infaunal species with emphasis on three dominating burrow-dwelling polychaetes: the native Nereis (Hediste diversicolor and Arenicola marina, and the invasive Marenzelleria viridis. The impact of functional traits in the form of particle reworking and ventilation on biogeochemical cycles, i.e. sediment metabolism and nutrient dynamics, was determined from literature data. Historical records of summer nutrient levels in the water column of the inner Odense Fjord show elevated concentrations of NH4+ and NO3- (DIN during the years 2004-2006, exactly when the N. diversicolor population declined and A. marina and M. viridis populations expanded dramatically. In support of our first hypothesis, we show that excess NH4+ delivery from the benthic system during the A. marina and M. viridis expansion period enriched the overlying water in DIN and stimulated phytoplankton concentration. The altered benthic-pelagic coupling and stimulated pelagic production may, in support of our second hypothesis, have feedback to the benthic system by changing the deposition of organic material. We therefore advice to identify the exact functional traits of the species involved in a community shift before studying its impact on ecosystem functioning. We also suggest studying benthic community shifts in shallow environments to obtain knowledge about the drivers and controls before exploring deep

  14. Radial pattern of nuclear decay processes

    International Nuclear Information System (INIS)

    Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1994-05-01

    At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)

  15. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  16. The impact of night-shift work on platelet function in healthy medical staff.

    Science.gov (United States)

    Nakao, Tomoko; Yasumoto, Atsushi; Tokuoka, Suzumi; Kita, Yoshihiro; Kawahara, Takuya; Daimon, Masao; Yatomi, Yutaka

    2018-04-18

    Rotating shift work has been reported to increase the risk of cardiovascular diseases. Vascular endothelial dysfunction and platelet activation are among the leading causes of thrombus formation in patients with myocardial infarction or stroke. Endothelial function has been shown to be impaired immediately after night-shift work; however, it is not known whether platelets are also activated. The aim of this study was to investigate the acute impact of night-shift work on platelet function. This observational study included 11 healthy medical staff members (seven women, median age 32 years). We examined each subject's platelet aggregation rates and the serum concentrations of eicosanoid mediators after night-shift work and on day-shift work without preceding night-shift work (baseline). Platelet aggregation did not differ from baseline levels after night-shift work. However, serum cyclooxygenase (COX)-metabolized eicosanoid mediators, particularly thromboxane (Tx) B 2 (a stable metabolite of TxA 2 and the most important marker of platelet activation), were significantly higher after the night-shift than at baseline (median 65.3 vs 180.4 ng/ml). Although platelet aggregation did not increase, there was an increase in serum COX-metabolized eicosanoid mediators such as TxB 2 in healthy medical staff after night-shift work. This platelet hypersensitivity may be one of the mechanisms underlying the significant association between night-shift work and adverse cardiovascular outcomes.

  17. Radial transfer effects for poloidal rotation

    Science.gov (United States)

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  18. Mediating pathways and gender differences between shift work and subjective cognitive function.

    Science.gov (United States)

    Wong, Imelda S; Smith, Peter M; Ibrahim, Selahadin; Mustard, Cameron A; Gignac, Monique A M

    2016-11-01

    Increased injury risk among shift workers is often attributed to cognitive function deficits that come about as a result of sleep disruptions. However, little is known about the intermediate influences of other factors (eg, work stress, health) which may affect this relationship. In addition, gender differences in these the complex relationships have not been fully explored. The purpose of this study is to (1) identify the extent to which work and non-work factors mediate the relationship between shift work, sleep and subsequent subjective cognitive function; and (2) determine if the mediating pathways differ for men and women. Data from the 2010 National Population Health Survey was used to create a cross-sectional sample of 4255 employed Canadians. Using path modelling, we examined the direct and indirect relationships between shift work, sleep duration, sleep quality and subjective cognitive function. Multigroup analyses tested for significantly different pathways between men and women. Potential confounding effects of age and self-reported health and potential mediating effects of work stress were simultaneously examined. Work stress and sleep quality significantly mediated the effects of shift work on cognition. Age and health confounded the relationship between sleep quality and subjective cognition. No differences were found between men and women. Occupational health and safety programmes are needed to address stress and health factors, in addition to sleep hygiene, to effectively address cognitive function among shift workers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mehdi Shadaram

    2010-10-01

    Full Text Available In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  20. The radial velocity variations in IC 418

    International Nuclear Information System (INIS)

    Mendez, R.H.; Verga, A.D.

    1981-01-01

    The observations presented are part of a search for spectral and radial velocity variations among central stars of planetary nebulae and include the following new data: 1) Weak, previously undetected C III emissions are visible at 4056, 4186, 4516, 5270 and 5826 A. The famous unidentified emissions at 4485 and 4503 A were also found. 2) The He I absorptions at 4471 and 5875 A are blue-shifted relative to the nebular emissions. The same happens with Hsub(delta) and Hsub(γ), although in this case the shift can be at least partly attributed to blends with the strong He II absorptions, which are estimated to contribute about one half of the equivalent width at Hsub(delta) and Hsub(γ). 3) O III 5592 and C IV 5801, 5811 are also found in absorption. (Auth.)

  1. Bayesian Estimation Of Shift Point In Poisson Model Under Asymmetric Loss Functions

    Directory of Open Access Journals (Sweden)

    uma srivastava

    2012-01-01

    Full Text Available The paper deals with estimating  shift point which occurs in any sequence of independent observations  of Poisson model in statistical process control. This shift point occurs in the sequence when  i.e. m  life data are observed. The Bayes estimator on shift point 'm' and before and after shift process means are derived for symmetric and asymmetric loss functions under informative and non informative priors. The sensitivity analysis of Bayes estimators are carried out by simulation and numerical comparisons with  R-programming. The results shows the effectiveness of shift in sequence of Poisson disribution .

  2. Radial Fuzzy Systems

    Czech Academy of Sciences Publication Activity Database

    Coufal, David

    2017-01-01

    Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016

  3. The Gaussian radial basis function method for plasma kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-30

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.

  4. Applications exponential approximation by integer shifts of Gaussian functions

    Directory of Open Access Journals (Sweden)

    S. M. Sitnik

    2013-01-01

    Full Text Available In this paper we consider approximations of functions using integer shifts of Gaussians – quadratic exponentials. A method is proposed to find coefficients of node functions by solving linear systems of equations. The explicit formula for the determinant of the system is found, based on it solvability of linear system under consideration is proved and uniqueness of its solution. We compare results with known ones and briefly indicate applications to signal theory.

  5. Green Functions for the Radial Electric Component of the Monopole Wake Field in a Round Resistive Chamber

    International Nuclear Information System (INIS)

    Zimmermann, Frank

    1998-01-01

    We compare different approximations to the point-charge Green function for the radial electric monopole field excited by an ultrarelativistic particle propagating through a resistive pipe, and study the applicability of these approximations for calculating the field of a bunch with finite length. It has been speculated that the exact form of the electric field could be important for simulations of the electron-cloud instability. In this paper, we show, however, that the usual approximation of the Green function by a delta function is adequate, except for extremely short bunch lengths

  6. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  7. Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis

    International Nuclear Information System (INIS)

    Wang, H.; Zhou, P.; Zhou, D.Q.

    2013-01-01

    Improving energy efficiency and productivity is one of the most cost-effective ways for achieving the sustainable development target in China. This paper employs non-radial directional distance function approach to empirically investigate energy efficiency and energy productivity by including CO 2 emissions as an undesirable output. Three production scenarios, namely energy conservation (EC), energy conservation and emission reduction (ECER), and energy conservation, emission reduction and economic growth (ECEREG), are specified to assess China's energy efficiency and productivity growth during the period of Eleventh Five-Year Plan. Our empirical results show that there exist substantial differences in China's total-factor energy efficiency and productivity under different scenarios. Under the ECEREG scenario, the national average total-factor energy efficiency score was 0.6306 in 2005–2010, while the national average total-factor energy productivity increased by 0.27% annually during the period. The main driving force for energy productivity growth in China was energy technological change rather than energy efficiency change. - Highlights: • China's regional energy efficiency and productivity in 2005–2010 are evaluated. • Three production scenarios are considered. • Non-radial directional distance function with CO 2 emissions is employed. • Technological change is the main driver for China's energy productivity growth

  8. ROAM: A Radial-Basis-Function Optimization Approximation Method for Diagnosing the Three-Dimensional Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Dalmasse, Kevin; Nychka, Douglas W.; Gibson, Sarah E.; Fan, Yuhong; Flyer, Natasha

    2016-01-01

    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 and 10798 lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analog. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.

  9. Disturbance observer that uses radial basis function networks for the low speed control of a servo motor

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Bae, C.H.; Blaabjerg, Frede

    2005-01-01

    A scheme to estimate the moment of inertia in a servo motor drive system at very low speed is proposed. The typical speed estimation scheme used in most servo systems operated at low speed is highly sensitive to variations in the moment of inertia. An observer that uses a radial basis function...

  10. Radial velocity asymmetries from jets with variable velocity profiles

    International Nuclear Information System (INIS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  11. Exploring functionally related enzymes using radially distributed properties of active sites around the reacting points of bound ligands

    Directory of Open Access Journals (Sweden)

    Ueno Keisuke

    2012-04-01

    Full Text Available Abstract Background Structural genomics approaches, particularly those solving the 3D structures of many proteins with unknown functions, have increased the desire for structure-based function predictions. However, prediction of enzyme function is difficult because one member of a superfamily may catalyze a different reaction than other members, whereas members of different superfamilies can catalyze the same reaction. In addition, conformational changes, mutations or the absence of a particular catalytic residue can prevent inference of the mechanism by which catalytic residues stabilize and promote the elementary reaction. A major hurdle for alignment-based methods for prediction of function is the absence (despite its importance of a measure of similarity of the physicochemical properties of catalytic sites. To solve this problem, the physicochemical features radially distributed around catalytic sites should be considered in addition to structural and sequence similarities. Results We showed that radial distribution functions (RDFs, which are associated with the local structural and physicochemical properties of catalytic active sites, are capable of clustering oxidoreductases and transferases by function. The catalytic sites of these enzymes were also characterized using the RDFs. The RDFs provided a measure of the similarity among the catalytic sites, detecting conformational changes caused by mutation of catalytic residues. Furthermore, the RDFs reinforced the classification of enzyme functions based on conventional sequence and structural alignments. Conclusions Our results demonstrate that the application of RDFs provides advantages in the functional classification of enzymes by providing information about catalytic sites.

  12. Singular behavior of the Laplace operator in polar spherical coordinates and some of its consequences for the radial wave function at the origin of coordinates

    International Nuclear Information System (INIS)

    Khelashvili, A.A.; Nadareishvili, T.P.

    2015-01-01

    Singular behavior of the Laplace operator in spherical coordinates is investigated. It is shown that in course of transition to the reduced radial wave function in the Schreodinger equation there appears additional term including the Dirac delta function, which was unnoted during the full history of physics and mathematics. The possibility of avoiding this contribution from the reduced radial equation is discussed. It is demonstrated that for this aim the necessary and sufficient condition is the requirement of the fast enough falling of the wave function at the origin. The result does not depend on character of potential - whether it is regular or singular. The various manifestations and consequences of this observation are considered as well. The cornerstone in our approach is the natural requirement that the solution of the radial equation at the same time must obey the full equation. [ru

  13. A radial distribution function-based open boundary force model for multi-centered molecules

    KAUST Repository

    Neumann, Philipp

    2014-06-01

    We derive an expression for radial distribution function (RDF)-based open boundary forcing for molecules with multiple interaction sites. Due to the high-dimensionality of the molecule configuration space and missing rotational invariance, a computationally cheap, 1D approximation of the arising integral expressions as in the single-centered case is not possible anymore. We propose a simple, yet accurate model invoking standard molecule- and site-based RDFs to approximate the respective integral equation. The new open boundary force model is validated for ethane in different scenarios and shows very good agreement with data from periodic simulations. © World Scientific Publishing Company.

  14. Global and Regional Gravity Field Determination from GOCE Kinematic Orbit by Means of Spherical Radial Basis Functions

    Czech Academy of Sciences Publication Activity Database

    Bucha, B.; Bezděk, Aleš; Sebera, Josef; Janak, J.

    2015-01-01

    Roč. 36, č. 6 (2015), s. 773-801 ISSN 0169-3298 R&D Projects: GA ČR GA13-36843S Grant - others:SAV(SK) VEGA 1/0954/15 Institutional support: RVO:67985815 Keywords : spherical radial basis functions * spherical harmonics * geopotential Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.622, year: 2015

  15. The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.

    Science.gov (United States)

    Emamhadi, Mohammadreza; Andalib, Sasan

    2018-01-01

    Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options

    Directory of Open Access Journals (Sweden)

    Gisele Tessari Santos

    2009-08-01

    Full Text Available A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS equation require fast and accurate numerical solutions. This work introduces the radial basis function (RBF method as applied to the solution of the BS equation with non-linear boundary conditions, related to path-dependent barrier options. Furthermore, the diffusional method for solving advective-diffusive equations is explored as to its effectiveness to solve BS equations. Cubic and Thin-Plate Spline (TPS radial basis functions were employed and evaluated as to their effectiveness to solve barrier option problems. The numerical results, when compared against analytical solutions, allow affirming that the RBF method is very accurate and easy to be implemented. When the RBF method is applied, the diffusional method leads to the same results as those obtained from the classical formulation of Black-Scholes equation.Muitos problemas de engenharia financeira envolvem equações não-lineares com condições de contorno não-lineares ou dependentes do tempo. Apesar de soluções analíticas disponíveis, várias formas clássicas e modificadas da conhecida equação de Black-Scholes (BS requerem soluções numéricas rápidas e acuradas. Este trabalho introduz o método de função de base radial (RBF aplicado à solução da equação BS com condições de contorno não-lineares relacionadas a opções de barreira dependentes da trajetória. Além disso, explora-se o método difusional para solucionar equações advectivo-difusivas quanto à sua efetividade para solucionar equações BS. Utilizam-se funções de base radial Cúbica e Thin-Plate Spline (TPS, aplicadas à solução de problemas de opções de barreiras. Os resultados numéricos, quando comparados com as soluções analíticas, permitem afirmar

  17. Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    A radial basis function (RBF) artificial neural network model for a designed high efficiency radio frequency class-F power amplifier (PA) is presented in this paper. The presented amplifier is designed at 1.8 GHz operating frequency with 12 dB of gain and 36 dBm of 1dB output compression point. The obtained power added efficiency (PAE) for the presented PA is 76% under 26 dBm input power. The proposed RBF model uses input and DC power of the PA as inputs variables and considers output power a...

  18. Free radial forearm adiposo-fascial flap for inferior maxillectomy defect reconstruction

    Science.gov (United States)

    Thankappan, Krishnakumar; Trivedi, Nirav P.; Sharma, Mohit; Kuriakose, Moni A.; Iyer, Subramania

    2009-01-01

    A free radial forearm fascial flap has been described for intraoral reconstruction. Adiposo-fascial flap harvesting involves few technical modifications from the conventional radial forearm fascio-cutaneous free flap harvesting. We report a case of inferior maxillectomy defect reconstruction in a 42-year-old male with a free radial forearm adiposo-fascial flap with good aesthetic and functional outcome with minimal primary and donor site morbidity. The technique of raising the flap and closing the donor site needs to be meticulous in order to achieve good cosmetic and functional outcome. PMID:19881028

  19. Free radial forearm adiposo-fascial flap for inferior maxillectomy defect reconstruction

    Directory of Open Access Journals (Sweden)

    Thankappan Krishnakumar

    2009-01-01

    Full Text Available A free radial forearm fascial flap has been described for intraoral reconstruction. Adiposo-fascial flap harvesting involves few technical modifications from the conventional radial forearm fascio-cutaneous free flap harvesting. We report a case of inferior maxillectomy defect reconstruction in a 42-year-old male with a free radial forearm adiposo-fascial flap with good aesthetic and functional outcome with minimal primary and donor site morbidity. The technique of raising the flap and closing the donor site needs to be meticulous in order to achieve good cosmetic and functional outcome.

  20. The radial distribution of plutonium in high burnup UO2 fuels

    International Nuclear Information System (INIS)

    Lassmann, K.; O'Carroll, C.; Laar, J. van de; Walker, C.T.

    1994-01-01

    A new model (TUBRNP) is described which predicts the radial power density distribution as a function of burnup (and hence the radial burnup profile as a function of time) together with the radial profile of uranium and plutonium isotopes. Comparisons between measurements and the predictions of the TUBRNP model are made on fuels with enrichments in the range 2.9 to 8.25% and with burnups between 21 000 and 64 000 MWd/t. It is shown to be in excellent agreement with experimental measurements and is a marked improvement on earlier versions. (orig.)

  1. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  2. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.

    Science.gov (United States)

    Heinen, Klaartje; Feredoes, Eva; Ruff, Christian C; Driver, Jon

    2017-05-01

    It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Computer model analysis of the radial artery pressure waveform.

    Science.gov (United States)

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  4. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  5. Improved wave functions for large-N expansions

    International Nuclear Information System (INIS)

    Imbo, T.; Sukhatme, U.

    1985-01-01

    Existing large-N expansions of radial wave functions phi/sub n/,l(r) are only accurate near the minimum of the effective potential. Within the framework of the shifted 1/N expansion, we use known analytic results to motivate a simple modification so that the improved wave functions are accurate over a wide range of r and any choice of quantum numbers n and l. It is shown that these wave functions yield simple and accurate analytic expressions for certain quantities of interest in quarkonium physics

  6. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  7. The effect of the radial function on I-125 seeds used for permanent prostate implantation

    International Nuclear Information System (INIS)

    Pickett, Barby; Pouliot, Jean

    2004-01-01

    The purpose of this study was to evaluate the integrity of eight commercially-available low-activity Iodine-125 ( 125 I) seeds for their radial function g(r) and its effect on the dose delivered to the adjacent critical structures when used in permanent prostate implants (PPI). Ten previously treated patients were retrospectively used in this comparison. The Amersham Health Oncura seed was used to peripherally design an isodose distribution with urethral and anterior rectal wall sparing. Plan criteria included minimum coverage of 144 Gy to the planning target volume (PTV), ≤ 70% dose to 150% of the PTV volume (V150-PTV), and the quantity of needles ≤ 70% of the size of the PTV, in cc. Upon completion of the Oncura plan, the seed type was changed and the activity was adjusted until the V100-PTV for each of the other 7 seed types matched the V100-PTV defined by the Oncura seed. Computed tomography (CT)-based postimplant dosimetry was used to determine the dose to 40% (D40) of the bulb of the penis (in Gy). Dose-volume histograms (DVH) were used to evaluate the differences to V100 (in %) and D40 (in Gy) of the anterior rectal wall and bulb of the penis, and V100 (in %) of the urethra. The data was tabulated. Radioactive 125 I sources included in this study were 125 I Source 2301 (Best); I-Plant (MedTech), IoGold (Mentor), Oncura (Amersham Health), ProstaSeed (UroCor), SelectSeed (Nucletron), SourceTech (Bard), and Symmetra (UroMed). The sizes of the PTV for the 10 patients ranged from 18.82 cc to 48.99 cc. The Oncura seed was used as the reference seed and all other seed types were normalized to it for data comparison. It was determined that the dose rate constant (xwedge) and anisotropy factor (phi) contribute to the activity needed to achieve comparable V100-PTV doses, but a strong dependence on the radial function g(r) was found to effect the doses to the critical structures studied. Values of g(r) at 4 cm were calculated and the IoGold and SourceTech seeds

  8. A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles

    Science.gov (United States)

    Zheng, Z. M.; Wang, B.

    2018-06-01

    Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.

  9. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  10. Radial nerve palsy in mid/distal humeral fractures: is early exploration effective?

    Science.gov (United States)

    Keighley, Geffrey; Hermans, Deborah; Lawton, Vidya; Duckworth, David

    2018-03-01

    Radial nerve palsies are a common complication with displaced distal humeral fractures. This case series examines the outcomes of early operative exploration and decompression of the nerve with fracture fixation with the view that this provides a solid construct for optimisation of nerve recovery. A total of 10 consecutive patients with a displaced distal humeral fracture and an acute radial nerve palsy were treated by the senior author by open reduction and internal fixation of the distal humerus and exploration and decompression of the radial nerve. Motor function and sensation of the radial nerve was assessed in the post-operative period every 2 months or until full recovery of the radial nerve function had occurred. All patients (100%) had recovery of motor and sensation function of their upper limb in the radial nerve distribution over a 12-month period. Recovery times ranged between 4 and 32 weeks, with the median time to recovery occurring at 26 weeks and the average time to full recovery being 22.9 weeks. Wrist extension recovered by an average of 3 months (range 2-26 weeks) and then finger extension started to recover 2-6 weeks after this. Disability of the arm, shoulder and hand scores ranged from 0 to 11.8 at greater than 1 year post-operatively. Our study demonstrated that early operative exploration of the radial nerve when performing an open stabilization of displaced distal humeral fractures resulted in a 100% recovery of the radial nerve. © 2017 Royal Australasian College of Surgeons.

  11. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  12. Big geo data surface approximation using radial basis functions: A comparative study

    Science.gov (United States)

    Majdisova, Zuzana; Skala, Vaclav

    2017-12-01

    Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for big scattered datasets in n-dimensional space. It is a non-separable approximation, as it is based on the distance between two points. This method leads to the solution of an overdetermined linear system of equations. In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for synthetic and real datasets.

  13. Pseudarthrosis of radial shaft with dislocation of heads of radial and ulnar bones (case report

    Directory of Open Access Journals (Sweden)

    M. E. Puseva

    2013-01-01

    Full Text Available The authors presented a rare clinical case - the injury of forearm complicated by the formation of the pseudarthrosis of the radial shaft in combination with old dislocation of heads the radius and ulna. The differentiated approach to the choice of surgical tactics was proposed, which consists of several consistent stages: taking free autotransplant from the crest of iliac bone, resection of pseudarthrosis of radius with replacement of the bone defect by the graft for restoration of anatomic length, conducting combined strained osteosynthesis and elimination of dislocation of a head of radial and ulnar bones by transosseous osteosynthesis. The chosen treatment strategy allowed to restore the anatomy and function of the upper extremity.

  14. What is the impact of shift work on the psychological functioning and resilience of nurses? An integrative review.

    Science.gov (United States)

    Tahghighi, Mozhdeh; Rees, Clare S; Brown, Janie A; Breen, Lauren J; Hegney, Desley

    2017-09-01

    To synthesize existing research to determine if nurses who work shifts have poorer psychological functioning and resilience than nurses who do not work shifts. Research exploring the impact of shift work on the psychological functioning and resilience of nurses is limited compared with research investigating the impact of shifts on physical outcomes. Integrative literature review. Relevant databases were searched from January 1995-August 2016 using the combination of keywords: nurse, shift work; rotating roster; night shift; resilient; hardiness; coping; well-being; burnout; mental health; occupational stress; compassion fatigue; compassion satisfaction; stress; anxiety; depression. Two authors independently performed the integrative review processes proposed by Whittemore and Knafl and a quality assessment using the mixed-methods appraisal tool by Pluye et al. A total of 37 articles were included in the review (32 quantitative, 4 qualitative and 1 mixed-methods). Approximately half of the studies directly compared nurse shift workers with non-shift workers. Findings were grouped according to the following main outcomes: (1) general psychological well-being/quality of life; (2) Job satisfaction/burnout; (3) Depression, anxiety and stress; and (4) Resilience/coping. We did not find definitive evidence that shift work is associated with poorer psychological functioning in nurses. Overall, the findings suggest that the impact of shift work on nurse psychological functioning is dependent on several contextual and individual factors. More studies are required which directly compare the psychological outcomes and resilience of nurse shift workers with non-shift workers. © 2017 John Wiley & Sons Ltd.

  15. Sexual Function and Quality of Life Before and After Penile Prosthesis Implantation Following Radial Forearm Flap Phalloplasty.

    Science.gov (United States)

    Young, Ezekiel E; Friedlander, Daniel; Lue, Kathy; Anele, Uzoma A; Khurgin, Jacob L; Bivalacqua, Trinity J; Burnett, Arthur L; Redett, Richard J; Gearhart, John P

    2017-06-01

    To provide sexual function and quality of life outcomes in patients with severe penile deficiency who underwent radial forearm flap phalloplasty with and without penile prosthesis implantation. Patients with history of severe penile deficiency who underwent microsurgical radial forearm flap phalloplasty with and without penile prosthesis implantation between 2007 and 2014 were identified. They completed a set of web-based validated questionnaires including the International Index of Erectile Function, the Pediatric Penile Perception Score, the Sexual Quality of Life for Men, and several items addressing general quality of life. Outcomes were compared between groups. Nine of the 12 identified patients who had prosthesis after phalloplasty and 4 out of the 7 phalloplasty-only patients completed the survey, resulting in an overall response rate of 68%. Among the phalloplasty-prosthesis patients, 66% reported current sexual activity and 78% reported regular masturbation, whereas 1 of the 4 phalloplasty-only patients reported both. Prosthesis patients scored notably higher in all domains of the International Index of Erectile Function except for sexual desire. In contrast, they demonstrated similar scores of penile perception, as well as general and sexual quality of life. Among patients who have undergone flap phalloplasty, the subsequent placement of penile prosthesis appears to effectively allow for both intercourse and masturbation, resulting in measurable improvements in orgasmic function, intercourse satisfaction, and overall sexual satisfaction. Despite these important benefits, prosthesis placement does not appear to result in improvements in penile perception scores, or general or sexual quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Extension of the multiconfiguration Hartree-Fock program for continuum functions

    International Nuclear Information System (INIS)

    Fischer, C.F.; Saha, H.P.

    1984-01-01

    The wave function of an outer electron coupled to a core, possibly with correlation included in the core, is similar to a multiconfiguration Hartree-Fock (MCHF) wavefunction, except that the radial function of the electron is a continuum function, and different numerical procedures are required for determining it. Only a single continuum function is allowed, and the orbitals defining the wave function of the core and bound channels are assumed to be fixed. The coefficients in the expansion of the wave function of the core are also fixed and are the result of a bound state calculation for the core. Under these assumptions, the equation for the radial wave function of the electron is solved iteratively. The asymptotic phase shift is evaluated. In order to test the accuracy of the procedure, calculations were performed for the scattering of electrons by neutral hydrogen. Some results of a photo-ionization calculation are compared, and for an electron transition in nitrogen

  17. Results of investigation of the functional state of operators involved in 8- and 12-hour shift rotations

    International Nuclear Information System (INIS)

    Chernyuk, V.I.; Zakharenko, M.I.; Nosovskij, A.V.; Lastovchenko, V.B.; Petrichenko, A.A.; Panchenko, V.I.; Lipovoj, V.V.; Pugach, A.B.

    1996-01-01

    The functional state of operators of block and central control panels of the Chernobyl NPP involved in 8- and 12-hour shift rotations was studied. Basing of the results of changes in indices of the subjective state, activation of the central nervous system, arterial pressure, heart rate, body temperature it was established that day shifts were characterized by higher functional tension whereas night shifts by mote expressed fatigue. The work with the 8-hour rotation schedule in comparison with 12-hour one appeared to be less favourable for the functional state of operators because it resulted in over excitation of the central nervous system and was characterized by more expressed fatigue in night shifts

  18. Gyrocenter Shift of Low-Temperature Plasmas and the Retrograde Motion of Cathode Spots in Arc Discharges

    International Nuclear Information System (INIS)

    Lee, K. C.

    2007-01-01

    The gyrocenter shift phenomenon explained the mechanism of radial electric field formation at the high confinement mode transition in fusion devices. This Letter reports that the theory of gyrocenter shift is also applicable to low temperature high collisional plasmas such as arc discharges by the generalization of the theory resulting from a short mean free path compared with the gyroradius. The retrograde motion of cathode spots in the arc discharge is investigated through a model with the expanded formula of gyrocenter shift. It is found that a reversed electric field is formed in front of the cathode spots when they are under a magnetic field, and this reversed electric field generates a rotation of cathode spots opposite to the Amperian direction. The ion drift velocity profiles calculated from the model are in agreement with the experimental results as functions of magnetic flux density and gas pressure

  19. Radial basis functions in mathematical modelling of flow boiling in minichannels

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2017-01-01

    Full Text Available The paper addresses heat transfer processes in flow boiling in a vertical minichannel of 1.7 mm depth with a smooth heated surface contacting fluid. The heated element for FC-72 flowing in a minichannel was a 0.45 mm thick plate made of Haynes-230 alloy. An infrared camera positioned opposite the central, axially symmetric part of the channel measured the plate temperature. K-type thermocouples and pressure converters were installed at the inlet and outlet of the minichannel. In the study radial basis functions were used to solve a problem concerning heat transfer in a heated plate supplied with the controlled direct current. According to the model assumptions, the problem is treated as twodimensional and governed by the Poisson equation. The aim of the study lies in determining the temperature field and the heat transfer coefficient. The results were verified by comparing them with those obtained by the Trefftz method.

  20. Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.

  1. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  2. Bounds for phase-shifts and deductions in potential scattering

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    1979-01-01

    Starting from the radial Schroedinger equation and using the Cauchy-Schwarz inequality, expressions have been derived for bounds for phase-shifts in potential scattering and the deductions are verified in special cases such as the spherically symmetric square-well potential, where exact solutions are already known. (K.B.)

  3. Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions.

    Science.gov (United States)

    McLane, Sierra C; LeMay, Valerie M; Aitken, Sally N

    2011-04-01

    Forests strongly affect Earth's carbon cycles, making our ability to forecast forest-productivity changes associated with rising temperatures and changes in precipitation increasingly critical. In this study, we model the influence of climate on annual radial growth using lodgepole pine (Pinus contorta) trees grown for 34 years in a large provenance experiment in western Canada. We use a random-coefficient modeling approach to build universal growth-trend response functions that simultaneously incorporate the impacts of different provenance and site climates on radial growth trends under present and future annual (growth-year), summer, and winter climate regimes. This approach provides new depth to traditional quantitative genetics population response functions by illustrating potential changes in population dominance over time, as well as indicating the age and size at which annual growth begins declining for any population growing in any location under any present or future climate scenario within reason, given the ages and climatic conditions sampled. Our models indicate that lodgepole pine radial-growth levels maximize between 3.9 degrees and 5.1 degrees C mean growth-year temperature. This translates to productivity declining by the mid-21st century in southern and central British Columbia (BC), while increasing beyond the 2080s in northern BC and Yukon, as temperatures rise. Relative to summer climate indices, productivity is predicted to decline continuously through the 2080s in all locations, while relative to winter climate variables, the opposite trend occurs, with the growth increases caused by warmer winters potentially offsetting the summer losses. Trees from warmer provenances, i.e., from the center of the species range, perform best in nearly all of our present and future climate-scenario models. We recommend that similar models be used to analyze population growth trends relative to annual and intra-annual climate in other large-scale provenance

  4. Computer network defense through radial wave functions

    Science.gov (United States)

    Malloy, Ian J.

    The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.

  5. Radial Basis Function (RBF Interpolation and Investigating its Impact on Rainfall Duration Mapping

    Directory of Open Access Journals (Sweden)

    Hassan Derakhshan

    2012-01-01

    Full Text Available The missing data in database must be reproduced primarily by appropriate interpolation techniques. Radial basis function (RBF interpolators can play a significant role in data completion of precipitation mapping. Five RBF techniques were engaged to be employed in compensating the missing data in event-wised dataset of Upper Paramatta River Catchment in the western suburbs of Sydney, Australia. The related shape parameter, C, of RBFs was optimized for first event of database during a cross-validation process. The Normalized mean square error (NMSE, percent average estimation error (PAEE and coefficient of determination (R2 were the statistics used as validation tools. Results showed that the multiquadric RBF technique with the least error, best suits compensation of the related database.

  6. Asymptotic expansions of Mathieu functions in wave mechanics

    International Nuclear Information System (INIS)

    Hunter, G.; Kuriyan, M.

    1976-01-01

    Solutions of the radial Schroedinger equation containing a polarization potential r -4 are expanded in a form appropriate for large values of r. These expansions of the Mathieu functions are used in association with the numerical solution of the Schroedinger equation to impose the asymptotic boundary condition in the case of bound states, and to extract phase shifts in the case of scattering states

  7. Dose as a function of radial distance from a 930 MeV 4He ion beam

    International Nuclear Information System (INIS)

    Varma, M.N.; Paretzke, H.; Baum, J.W.; Lyman, J.T.; Howard, J.

    1975-01-01

    A unique mesh wall ionization chamber (approximating a wall-less ionization chamber) was used to measure dose as a function of radial distance from a 930 MeV 4 He ion beam in air. Measurements were made at distances from about 10 to 40 cm from the ion path. This represents simulated distances of approximately 102 to 404 μm in tissue having a density of 1 g/cm 3 . Experimental values are compared with theoretical calculations, and probable causes of differences found are discussed. (auth)

  8. Meshfree Local Radial Basis Function Collocation Method with Image Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Ki; Kim, Minjae [Pukyong National University, Busan (Korea, Republic of)

    2017-07-15

    We numerically solve two-dimensional heat diffusion problems by using a simple variant of the meshfree local radial-basis function (RBF) collocation method. The main idea is to include an additional set of sample nodes outside the problem domain, similarly to the method of images in electrostatics, to perform collocation on the domain boundaries. We can thereby take into account the temperature profile as well as its gradients specified by boundary conditions at the same time, which holds true even for a node where two or more boundaries meet with different boundary conditions. We argue that the image method is computationally efficient when combined with the local RBF collocation method, whereas the addition of image nodes becomes very costly in case of the global collocation. We apply our modified method to a benchmark test of a boundary value problem, and find that this simple modification reduces the maximum error from the analytic solution significantly. The reduction is small for an initial value problem with simpler boundary conditions. We observe increased numerical instability, which has to be compensated for by a sufficient number of sample nodes and/or more careful parameter choices for time integration.

  9. Rotary and radial forcing effects on center-of-mass locomotion dynamics.

    Science.gov (United States)

    Shen, Z H; Larson, P L; Seipel, J E

    2014-09-01

    Rotary and radial forcing are two common actuation methods for legged robots. However, these two orthogonal methods of center-of-mass (CoM) forcing have not been compared as potentially alternative strategies of actuation. In this paper, we compare the CoM stability and energetics of running with rotary and radial actuation through the simulation of two models: the rotary-forced spring-loaded inverted pendulum (rotary-forced-SLIP), and the radially-forced-SLIP. We model both radial and rotary actuation in the simplest way, applying them as a constant force during the stance portion of the gait. A simple application of constant rotary forcing throughout stance is capable of producing fully-asymptotically stable motion; however, a similarly constant application of radial forcing throughout the stance is not capable of producing stable solutions. We then allow both the applied rotary and radial forcing functions to turn on or off based on the occurrence of the mid-stance event, which breaks the symmetry of actuation during stance towards a net forward propulsion. We find that both a rotary force applied in the first half of stance and a radial force applied in the second half of stance, are capable of stabilizing running. Interestingly, these two forcing methods improve the motion stability in different ways. Rotary forcing first reduces then greatly increases the size of the stable parameter region when gradually increased. Radial forcing expands the stable parameter region, but only in a moderate way. Also, it is found that parameter region stabilized by rotary and radial forcing are largely complementary. Overall, rotary forcing can better stabilize running for both constant and event-based forcing functions that were attempted. This indicates that rotary forcing has an inherent capability of stabilizing running, even when minimal time-or-event-or-state feedback is present. Radial forcing, however, tends to be more energy efficient when compared to rotary forcing

  10. Solving one-dimensional phase change problems with moving grid method and mesh free radial basis functions

    International Nuclear Information System (INIS)

    Vrankar, L.; Turk, G.; Runovc, F.; Kansa, E.J.

    2006-01-01

    Many heat-transfer problems involve a change of phase of material due to solidification or melting. Applications include: the safety studies of nuclear reactors (molten core concrete interaction), the drilling of high ice-content soil, the storage of thermal energy, etc. These problems are often called Stefan's or moving boundary value problems. Mathematically, the interface motion is expressed implicitly in an equation for the conservation of thermal energy at the interface (Stefan's conditions). This introduces a non-linear character to the system which treats each problem somewhat uniquely. The exact solution of phase change problems is limited exclusively to the cases in which e.g. the heat transfer regions are infinite or semi-infinite one dimensional-space. Therefore, solution is obtained either by approximate analytical solution or by numerical methods. Finite-difference methods and finite-element techniques have been used extensively for numerical solution of moving boundary problems. Recently, the numerical methods have focused on the idea of using a mesh-free methodology for the numerical solution of partial differential equations based on radial basis functions. In our case we will study solid-solid transformation. The numerical solutions will be compared with analytical solutions. Actually, in our work we will examine usefulness of radial basis functions (especially multiquadric-MQ) for one-dimensional Stefan's problems. The position of the moving boundary will be simulated by moving grid method. The resultant system of RBF-PDE will be solved by affine space decomposition. (author)

  11. Organisms modeling: The question of radial basis function networks

    Directory of Open Access Journals (Sweden)

    Muzy Alexandre

    2014-01-01

    Full Text Available There exists usually a gap between bio-inspired computational techniques and what biologists can do with these techniques in their current researches. Although biology is the root of system-theory and artifical neural networks, computer scientists are tempted to build their own systems independently of biological issues. This publication is a first-step re-evalution of an usual machine learning technique (radial basis funtion(RBF networks in the context of systems and biological reactive organisms.

  12. Radial optimization of a BWR fuel cell using genetic algorithms

    International Nuclear Information System (INIS)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P.

    2006-01-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U 235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  13. Sample Data Synchronization and Harmonic Analysis Algorithm Based on Radial Basis Function Interpolation

    Directory of Open Access Journals (Sweden)

    Huaiqing Zhang

    2014-01-01

    Full Text Available The spectral leakage has a harmful effect on the accuracy of harmonic analysis for asynchronous sampling. This paper proposed a time quasi-synchronous sampling algorithm which is based on radial basis function (RBF interpolation. Firstly, a fundamental period is evaluated by a zero-crossing technique with fourth-order Newton’s interpolation, and then, the sampling sequence is reproduced by the RBF interpolation. Finally, the harmonic parameters can be calculated by FFT on the synchronization of sampling data. Simulation results showed that the proposed algorithm has high accuracy in measuring distorted and noisy signals. Compared to the local approximation schemes as linear, quadric, and fourth-order Newton interpolations, the RBF is a global approximation method which can acquire more accurate results while the time-consuming is about the same as Newton’s.

  14. Field Emission and Radial Distribution Function Studies of Fractal-like Amorphous Carbon Nanotips

    Directory of Open Access Journals (Sweden)

    Lebrón-Colón M

    2009-01-01

    Full Text Available Abstract The short-range order of individual fractal-like amorphous carbon nanotips was investigated by means of energy-filtered electron diffraction in a transmission electron microscope (TEM. The nanostructures were grown in porous silicon substrates in situ within the TEM by the electron beam-induced deposition method. The structure factorS(k and the reduced radial distribution functionG(r were calculated. From these calculations a bond angle of 124° was obtained which suggests a distorted graphitic structure. Field emission was obtained from individual nanostructures using two micromanipulators with sub-nanometer positioning resolution. A theoretical three-stage model that accounts for the geometry of the nanostructures provides a value for the field enhancement factor close to the one obtained experimentally from the Fowler-Nordheim law.

  15. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs

    International Nuclear Information System (INIS)

    Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon

    2012-01-01

    This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.

  16. Matrix transformation relation for the radial integrals of lepton scattering processes

    International Nuclear Information System (INIS)

    Sud, K.K.; Soto Vargas, C.W.; Sharma, D.K.

    1988-01-01

    The radial integrals of many physical problems involving products of initial- and final-state wave functions and the Coulomb interaction are expressible in terms of special cases of generalized hypergeometric functions. In the present work, the generalized hypergeometric functions become elements of a gamma vector which, by means of a partial differential equation and a matrix transformation relation, can be used in calculating the gamma vector in physical regions where the hypergeometric functions are nonconvergent or very slowly converging. Our matrix transformation relation contains the special cases of Gauss' hypergeometric functions 2 F 1 , Appell's hypergeometric functions F 2 , and Lauricella's functions L F transformation relations. The use of contiguous relations along with the transformation relations presented in this paper will facilitate the calculation of physical processes involving such radial integrals

  17. An Intelligent Approach to Educational Data: Performance Comparison of the Multilayer Perceptron and the Radial Basis Function Artificial Neural Networks

    Science.gov (United States)

    Kayri, Murat

    2015-01-01

    The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…

  18. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    Science.gov (United States)

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  19. Methodology based in the fuzzy logic for constructing the objective functions in optimization problems of nuclear fuel: application to the cells radial design

    International Nuclear Information System (INIS)

    Barragan M, A.M.; Martin del Campo M, C.; Palomera P, M.A.

    2005-01-01

    A methodology based on Fuzzy Logic for the construction of the objective function of the optimization problems of nuclear fuel is described. It was created an inference system that responds, in certain form, as a human expert when it has the task of qualifying different radial designs of fuel cells. Specifically it is detailed how an inference system based based on Fuzzy Logic that has five enter variables and one exit variable was built, which corresponds to the objective function for the radial design of a fuel cell for a BWR. The use of Fuzzy with Mat lab offered the visualization capacity of the exit variable in function of one or two enter variables at the same time. This allowed to build, in appropriate way, the combination of the inference rules and the membership functions of those diffuse sets used for each one of the enter variables. The obtained objective function was used in an optimization process based on Taboo search. The new methodology was proven for the design of a cell used in a fuel assemble of the Laguna Verde reactor obtaining excellent results. (Author)

  20. Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

    OpenAIRE

    Abdelkarim M. Ertiame; D. W. Yu; D. L. Yu; J. B. Gomm

    2015-01-01

    In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is emplo...

  1. MUSE observations of M87: radial gradients for the stellar initial-mass function and the abundance of Sodium

    Science.gov (United States)

    Sarzi, Marc; Spiniello, Chiara; Barbera, Francesco La; Krajnović, Davor; Bosch, Remco van den

    2018-05-01

    Based on MUSE integral-field data we present evidence for a radial variation at the low-mass end of the stellar initial-mass function (IMF) in the central regions of the giant early-type galaxy NGC 4486 (M87). We used state-of-the-art stellar population models and the observed strength of various IMF-sensitive absorption-line features to solve for the best low-mass tapered "bimodal" form of the IMF, while accounting also for variations in stellar metallicity, the overall α-elements abundance and the abundance of individual elements such as Ti, O, Na and Ca. Our analysis reveals a strong negative IMF gradient corresponding to an exceeding fraction of low-mass stars compared to the case of the Milky Way toward the center of M87, which drops to nearly Milky-way levels by 0.4 Re. Such IMF variations correspond to over a factor two increase in stellar mass-to-light M/L ratio compared to the case of a Milky-way IMF, consistent with independent constraints on M/L radial variations in M87 from dynamical models. We also looked into the abundance of Sodium in M87, which turned up to be super-Solar over the entire radial range of our MUSE observations and to exhibit a considerable negative gradient. These findings suggest an additional role of metallicity in boosting the Na-yields in the central, metal-rich regions of M87 during its early and brief star-formation history. Our work adds M87 to the few objects that presently have radial constraints on their IMF or [Na/Fe] abundance, while also illustrating the accuracy that MUSE could bring to this kind of investigations.

  2. Reconstruction of Daily Sea Surface Temperature Based on Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Zhihong Liao

    2017-11-01

    Full Text Available A radial basis function network (RBFN method is proposed to reconstruct daily Sea surface temperatures (SSTs with limited SST samples. For the purpose of evaluating the SSTs using this method, non-biased SST samples in the Pacific Ocean (10°N–30°N, 115°E–135°E are selected when the tropical storm Hagibis arrived in June 2014, and these SST samples are obtained from the Reynolds optimum interpolation (OI v2 daily 0.25° SST (OISST products according to the distribution of AVHRR L2p SST and in-situ SST data. Furthermore, an improved nearest neighbor cluster (INNC algorithm is designed to search for the optimal hidden knots for RBFNs from both the SST samples and the background fields. Then, the reconstructed SSTs from the RBFN method are compared with the results from the OI method. The statistical results show that the RBFN method has a better performance of reconstructing SST than the OI method in the study, and that the average RMSE is 0.48 °C for the RBFN method, which is quite smaller than the value of 0.69 °C for the OI method. Additionally, the RBFN methods with different basis functions and clustering algorithms are tested, and we discover that the INNC algorithm with multi-quadric function is quite suitable for the RBFN method to reconstruct SSTs when the SST samples are sparsely distributed.

  3. The Differential Effects of Regular Shift Work and Obstructive Sleep Apnea on Sleepiness, Mood and Neurocognitive Function.

    Science.gov (United States)

    Cori, Jennifer M; Jackson, Melinda L; Barnes, Maree; Westlake, Justine; Emerson, Paul; Lee, Jacen; Galante, Rosa; Hayley, Amie; Wilsmore, Nicholas; Kennedy, Gerard A; Howard, Mark

    2018-05-29

    To assess whether poor sleep quality experienced by regular shift workers and individuals with obstructive sleep apnea (OSA) affects neurobehavioral function similarly, or whether the different aetiologies have distinct patterns of impairment. 37 shift workers (> 24 hours after their last shift), 36 untreated patients with OSA and 39 healthy controls underwent assessment of sleepiness (Epworth Sleepiness Scale [ESS], Oxford Sleep Resistance Test), mood (Beck Depression Index, State Trait Anxiety Inventory [STAI], Profile of Mood States), vigilance (Psychomotor Vigilance Task [PVT], AusEd driving simulation), neurocognitive function (Logical Memory, Trails Making Task, Digit Span and Victoria Stroop Test) and polysomnography. There were no significant differences between the groups in respect to sleepiness (ESS score [median, IQR] = 10.5, 6.3-14 versus 7, 5-11.5 for OSA group and shift work group, respectively) or mood, with the exception of state anxiety which was elevated in the OSA group (STAI score [median, IQR] = 35, 29-43 versus 30, 24-33.5 for OSA group and shift work group, respectively). However, the OSA group performed significantly worse than the shift work group on the driving task (crash proportion = 46.9% versus 18.9% for OSA group and shift work group, respectively) and the PVT (lapses [median, IQR] = 3, 2-6 versus 2, 0-3.5 for OSA group and shift work group, respectively), as well as most of the neurocognitive measures. Participants with OSA had similar sleepiness and mood to the shift work group, but worse vigilance and neurocognitive function. These findings suggest that distinct causes of sleep disturbance likely result in different patterns of neurobehavioral dysfunction. Copyright © 2018 American Academy of Sleep Medicine. All rights reserved.

  4. Cement dust exposure and acute lung function: A cross shift study

    Directory of Open Access Journals (Sweden)

    Moen Bente E

    2010-04-01

    Full Text Available Abstract Background Few studies have been carried out on acute effects of cement dust exposure. This study is conducted to investigate the associations between current "total" dust exposure and acute respiratory symptoms and respiratory function among cement factory workers. Methods A combined cross-sectional and cross-shift study was conducted in Dire Dawa cement factory in Ethiopia. 40 exposed production workers from the crusher and packing sections and 20 controls from the guards were included. Personal "total" dust was measured in the workers' breathing zone and peak expiratory flow (PEF was measured for all selected workers before and after the shift. When the day shift ended, the acute respiratory symptoms experienced were scored and recorded on a five-point Likert scale using a modified respiratory symptom score questionnaire. Results The highest geometric mean dust exposure was found in the crusher section (38.6 mg/m3 followed by the packing section (18.5 mg/m3 and the guards (0.4 mg/m3. The highest prevalence of respiratory symptoms for the high exposed workers was stuffy nose (85% followed by shortness of breath (47% and "sneezing" (45%. PEF decreased significantly across the shift in the high exposed group. Multiple linear regression showed a significant negative association between the percentage cross-shift change in PEF and total dust exposure. The number of years of work in high-exposure sections and current smoking were also associated with cross-shift decrease in PEF. Conclusions Total cement dust exposure was related to acute respiratory symptoms and acute ventilatory effects. Implementing measures to control dust and providing adequate personal respiratory protective equipment for the production workers are highly recommended.

  5. THE ALGORITHM OF MESHFREE METHOD OF RADIAL BASIS FUNCTIONS IN TASKS OF UNDERGROUND HYDROMECHANICS

    Directory of Open Access Journals (Sweden)

    N. V. Medvid

    2016-01-01

    Full Text Available A Mathematical model of filtering consolidation in the body of soil dam with conduit andwashout zone in two-dimensional case is considered. The impact of such technogenic factors as temperature, salt concentration, subsidence of upper boundary and interior points of the dam with time is taken into account. The software to automate the calculation of numerical solution of the boundary problem by radial basis functions has been created, which enables to conduct numerical experiments by varying the input parameters and shape. The influence of the presence of conduit and washout zone on the pressure, temperature and concentration of salts in the dam body at different time intervals isinvestigated. A number of numerical experiments is conducted and the analysis of dam accidents is performed.

  6. Rotary and radial forcing effects on center-of-mass locomotion dynamics

    International Nuclear Information System (INIS)

    Shen, Z H; Larson, P L; Seipel, J E

    2014-01-01

    Rotary and radial forcing are two common actuation methods for legged robots. However, these two orthogonal methods of center-of-mass (CoM) forcing have not been compared as potentially alternative strategies of actuation. In this paper, we compare the CoM stability and energetics of running with rotary and radial actuation through the simulation of two models: the rotary-forced spring-loaded inverted pendulum (rotary-forced-SLIP), and the radially-forced-SLIP. We model both radial and rotary actuation in the simplest way, applying them as a constant force during the stance portion of the gait. A simple application of constant rotary forcing throughout stance is capable of producing fully-asymptotically stable motion; however, a similarly constant application of radial forcing throughout the stance is not capable of producing stable solutions. We then allow both the applied rotary and radial forcing functions to turn on or off based on the occurrence of the mid-stance event, which breaks the symmetry of actuation during stance towards a net forward propulsion. We find that both a rotary force applied in the first half of stance and a radial force applied in the second half of stance, are capable of stabilizing running. Interestingly, these two forcing methods improve the motion stability in different ways. Rotary forcing first reduces then greatly increases the size of the stable parameter region when gradually increased. Radial forcing expands the stable parameter region, but only in a moderate way. Also, it is found that parameter region stabilized by rotary and radial forcing are largely complementary. Overall, rotary forcing can better stabilize running for both constant and event-based forcing functions that were attempted. This indicates that rotary forcing has an inherent capability of stabilizing running, even when minimal time-or-event-or-state feedback is present. Radial forcing, however, tends to be more energy efficient when compared to rotary forcing

  7. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  8. Functional traits help to explain half-century long shifts in pollinator distributions

    NARCIS (Netherlands)

    Aguirre-Gutiérrez, J.; Kissling, W.D.; Carvalheiro, L.G.; WallisDeVries, M.F.; Franzén, M.; Biesmeijer, J.C.

    2016-01-01

    Changes in climate and land use can have important impacts on biodiversity. Species respond to such environmental modifications by adapting to new conditions or by shifting their geographic distributions towards more suitable areas. The latter might be constrained by species’ functional traits that

  9. Functional traits help to explain half-century long shifts in pollinator distributions

    NARCIS (Netherlands)

    Aguirre-Gutiérrez, Jesús; Kissling, W.D.; Carvalheiro, Luísa G.; WallisDevries, Michiel F.; Franzén, Markus; Biesmeijer, Jacobus C.

    2016-01-01

    Changes in climate and land use can have important impacts on biodiversity. Species respond to such environmental modifications by adapting to new conditions or by shifting their geographic distributions towards more suitable areas. The latter might be constrained by species' functional traits

  10. Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt

    International Nuclear Information System (INIS)

    Zhou Yong-Zhi; Li Mei; Geng Hao-Ran; Yang Zhong-Xi; Sun Chun-Jing

    2011-01-01

    Hurst's exponent of radial distribution functions (RDFs) within the short-range scope of In, Sn and In-40 wt % Sn melts are determined by the rescaled range analysis method. Hurst's exponents H are between 0.94 and 0.97, which display long-range dependence. Within short-range scope, the number of particles from a reference particle belongs to fractional Brownian motion. After RDF serials are randomly scrambled, Hurst's exponents all dramatically dropped, which proves long-range dependence. H irregularly varies as the temperature rises, but the change tendency is not consistent with the correlation radius r c . (general)

  11. Gas puff radiation performance as a function of radial mass distribution

    International Nuclear Information System (INIS)

    Coleman, Philip L.; Krishnan, Mahadevan; Prasad, Rahul; Qi, Niansheng; Waisman, Eduardo; Failor, B.H.; Levine, J.S.; Sze, H.

    2002-01-01

    The basic concept of a z-pinch, that JxB forces implode a shell of mass, creating a hot dense plasma on-axis, is coming under closer scrutiny. Wire arrays may start with an initial cold mass in a near 'ideal' shell, but in fact they appear to develop complex radial mass distributions well before the final x-ray output. We consider here the situation for gas puff z-pinches. While the ideal of a gas 'shell' has been the nominal objective for many years, detailed measurements of gas flow show that nozzles used for plasma radiation sources (PRS) also have complex radial distributions. In particular, there are significant data showing that the best x-ray yield comes from the least shell-like distributions. Recent experiments on the Double Eagle generator with argon have further enhanced this view. For those tests with a double 'shell' nozzle, there was a factor of almost 4 increase in yield when the relative mass (outer:inner) in the two shells was changed from 2:1 to less than 1:1. We suggest the following explanation. A configuration with most of its mass at large radii is subject to severe disruption by instabilities during the implosion. A more continuous radial mass distribution with dρ/dr < 0 may mitigate instability development (via the 'snowplow stabilization' mechanism) and thus enhance the thermalization of the kinetic energy of the imploding mass. In addition, the appropriate balance of outer to inner mass maximizes the formation of a strong shock in the core of the pinch that heats the plasma and leads to x-ray emission

  12. Radial profile of pressure in a storm ring current as a function of D st

    Science.gov (United States)

    Kovtyukh, A. S.

    2010-06-01

    Using satellite data obtained near the equatorial plane during 12 magnetic storms with amplitudes from -61 down to -422 nT, the dependences of maximum in L-profile of pressure ( L m) of the ring current (RC) on the current value of D st are constructed, and their analytical approximations are derived. It is established that function L m( D st ) is steeper on the phase of recovery than during the storm’s main phase. The form of the outer edge of experimental radial profiles of RC pressure is studied, and it is demonstrated to correspond to exponential growth of the total energy of RC particles on a given L shell with decreasing L. It is shown that during the storms’ main phase the ratio of plasma and magnetic field pressures at the RC maximum does not practically depend on the storm strength and L m value. This fact reflects resistance of the Earth’s magnetic field to RC expansion, and testifies that during storms the possibilities of injection to small L are limited for RC particles. During the storms’ recovery phase this ratio quickly increases with increasing L m, which reflects an increased fraction of plasma in the total pressure balance. It is demonstrated that function L m( D st ) is derived for the main phase of storms from the equations of drift motion of RC ions in electrical and magnetic fields, reflecting the dipole character of magnetic field and scale invariance of the pattern of particle convection near the RC maximum. For the recovery phase it is obtained from the Dessler-Parker-Sckopke relationship. The obtained regularities allow one to judge about the radial profile of RC pressure from ground-based magnetic measurements (data on the D st variation).

  13. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  14. Radial restricted solid-on-solid and etching interface-growth models

    Science.gov (United States)

    Alves, Sidiney G.

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  15. Analyzing radial acceleration with a smartphone acceleration sensor

    Science.gov (United States)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  16. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  17. Sleep and cognitive function of crewmembers and mission controllers working 24-h shifts during a simulated 105-day spaceflight mission

    Science.gov (United States)

    Barger, Laura K.; Wright, Kenneth P.; Burke, Tina M.; Chinoy, Evan D.; Ronda, Joseph M.; Lockley, Steven W.; Czeisler, Charles A.

    2014-01-01

    The success of long-duration space missions depends on the ability of crewmembers and mission support specialists to be alert and maintain high levels of cognitive function while operating complex, technical equipment. We examined sleep, nocturnal melatonin levels and cognitive function of crewmembers and the sleep and cognitive function of mission controllers who participated in a high-fidelity 105-day simulated spaceflight mission at the Institute of Biomedical Problems (Moscow). Crewmembers were required to perform daily mission duties and work one 24-h extended duration work shift every sixth day. Mission controllers nominally worked 24-h extended duration shifts. Supplemental lighting was provided to crewmembers and mission controllers. Participants' sleep was estimated by wrist-actigraphy recordings. Overall, results show that crewmembers and mission controllers obtained inadequate sleep and exhibited impaired cognitive function, despite countermeasure use, while working extended duration shifts. Crewmembers averaged 7.04±0.92 h (mean±SD) and 6.94±1.08 h (mean±SD) in the two workdays prior to the extended duration shifts, 1.88±0.40 h (mean±SD) during the 24-h work shift, and then slept 10.18±0.96 h (mean±SD) the day after the night shift. Although supplemental light was provided, crewmembers' average nocturnal melatonin levels remained elevated during extended 24-h work shifts. Naps and caffeine use were reported by crewmembers during ˜86% and 45% of extended night work shifts, respectively. Even with reported use of wake-promoting countermeasures, significant impairments in cognitive function were observed. Mission controllers slept 5.63±0.95 h (mean±SD) the night prior to their extended duration work shift. On an average, 89% of night shifts included naps with mission controllers sleeping an average of 3.4±1.0 h (mean±SD) during the 24-h extended duration work shift. Mission controllers also showed impaired cognitive function during extended

  18. Effect of radial electric field inhomogeneity on anomalous cross field plasma flux in Heliotron/Torsatron

    International Nuclear Information System (INIS)

    Yamagishi, Tomejiro; Sanuki, Heiji.

    1996-01-01

    Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)

  19. Clinical Presentation, Surgical Treatment, and Outcome in Radial Polydactyly.

    Science.gov (United States)

    Dijkman, R R; van Nieuwenhoven, C A; Hovius, S E R; Hülsemann, W

    2016-02-01

    Radial polydactyly or 'thumb duplication' is the most common congenital upper limb anomaly ('CULA') affecting the thumb. The clinical presentation is highly diverse, ranging from an extra thumb floating on a skin bridge to complicated thumb triplications with triphalangeal, deviating, and hypoplastic components. Radial polydactyly can be classified into one of 7 osseous presentations using the Wassel classification, with type IV (45%), type II (20%), and type VII (15%) occurring most frequently. When faced with a radial polydactyly case, hand surgeons specialised in congenital anomalies must weigh the preoperative functional potential and degree of hypoplasia of both thumbs in order to decide whether to resect one thumb and reconstruct the other ('resection and reconstruction'), excise a central part of both thumbs and unite the lateral tissues into one thumb ('the Bilhaut procedure'), transfer the better-developed distal tissues of one thumb onto the better-developed proximal tissues of the other ('on-top plasty'), or discard both severely hypoplastic thumbs and pollicise the index finger. Mere excision of the hypoplastic thumb is rarely indicated since it often requires subsequent revision surgery. Even after being treated by experienced surgeons, about 15% of patients with polydactyly will need additional procedures to correct residual and/or new problems such as deviation from the longitudinal axis and joint instability. Nevertheless, radial polydactyly patients usually achieve unimpaired everyday hand function postoperatively. © Georg Thieme Verlag KG Stuttgart · New York.

  20. THE OCCURRENCE OF THE RADIAL CLUB HAND IN CHILDREN WITH DIFFERENT SYNDROMES

    Directory of Open Access Journals (Sweden)

    Sergey Ivanovich Golyana

    2013-03-01

    Full Text Available Radial club hand is a developmental anomaly of the upper extremity, being characterized as a longitudinal underdevelopment of a forearm and a hand on the radial surface, consisting in a hypo-/ aplazy radial bone and the thumb of various degree of expressiveness. Characteristic symptoms of this developmental anomaly are: shortening and bow-shaped curvature of a forearm, palmar and radial deviation of a hand, underdevelopment of the thumb from its proximal departments and structures, anomaly of development of three-phalanx fingers of a hand (is more often than the 2-4th, violation of a cosmetic condition and functionality of the affected segment. From 2000 for 2012 in FSI SRICO n.a. H.Turner examination and treatment of 23 children with various syndromes at which the radial club hand was revealed are conducted. The main syndromes at which it is revealed radial club hand - Holt-Orama syndrome, TAR- syndrome and VACTERL syndrome. Tactics and techniques of surgical treatment of a radial club hand it various syndromes most often don’t differ from treatment of other types of a radial club hand though demand an individual approach depending on severity and a type of deformation of the upper extremity.

  1. Enormous periodic doppler shifts in SS 433

    International Nuclear Information System (INIS)

    Margon, B.; Ford, H.C.; Grandi, S.A.; Stone, R.P.S.

    1979-01-01

    We have previously reported prominent ''moving' emission lines in the visible spectrum of Stephenson-Sanduleak 433, the optical counterpart of a variable radio and X-ray source. Further observations show that despite the implausible velocities and changes in velocities implied if the moving features are interpreted as Doppler-shifted Balmer lines, this explanation is indeed correct. Spectroscopy of SS 433 on 51 mights in 1978--1979 reveals that the unidentified features are two sets of Balmer and He I lines, one with large and changing redshift, and the other with large and changing blueshift. Combining our data with published earlier observations, we obtain Doppler shifts on 80 nights in the period 1978 June to 1979 June. These data indicate that the velocity variations are cyclical, repeating in both the blueshift and redshift systems with a period of 164 +- 3 days. The two systems have thus far been observed to reach maximum positive and negative radial velocities of +50,000 and -35,000 km s -1 , respectively, are always symmetric about redshift z=0.04, and follow roughly sinusoidal velocity curves. We discuss in addition a variety of interesting short-term spectroscopic details, including minor but highly significant deviations of the radial velocity from the sinusoid, and nightly line profile changes, sometimes appearing as mirror-image events in the redshift and blueshift systems. The behavior of SS 433 is unprecedented

  2. Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition

    Directory of Open Access Journals (Sweden)

    Mahfoudh Cerdoun

    2016-01-01

    Full Text Available In automotive applications radial gas turbines are commonly fitted with a twin-entry volute connected to a divided exhaust manifold, ensuring a better scavenge process owing to less interference between engines’ cylinders. This paper is concerned with the study of the unsteady performances related to the pulsating flows of a twin-entry radial turbine in engine-like conditions and the hysteresis-like behaviour during the pulses period. The results show that the aerodynamic performances deviate noticeably from the steady state and depend mainly on the time shifting between the actual output power and the isentropic power, which is distantly related to the apparent length. The maximum of efficiency and output shaft power are accompanied by low entropy generation through the shroud entry side, and their instantaneous behaviours tend to follow mainly the inlet total pressure curve. As revealed a billow is created by the interaction between the main flow and the infiltrated flow, affecting the flow incidence at rotor entry and producing high losses.

  3. Conflict Detection Performance Analysis for Function Allocation Using Time-Shifted Recorded Traffic Data

    Science.gov (United States)

    Guerreiro, Nelson M.; Butler, Ricky W.; Maddalon, Jeffrey M.; Hagen, George E.; Lewis, Timothy A.

    2015-01-01

    The performance of the conflict detection function in a separation assurance system is dependent on the content and quality of the data available to perform that function. Specifically, data quality and data content available to the conflict detection function have a direct impact on the accuracy of the prediction of an aircraft's future state or trajectory, which, in turn, impacts the ability to successfully anticipate potential losses of separation (detect future conflicts). Consequently, other separation assurance functions that rely on the conflict detection function - namely, conflict resolution - are prone to negative performance impacts. The many possible allocations and implementations of the conflict detection function between centralized and distributed systems drive the need to understand the key relationships that impact conflict detection performance, with respect to differences in data available. This paper presents the preliminary results of an analysis technique developed to investigate the impacts of data quality and data content on conflict detection performance. Flight track data recorded from a day of the National Airspace System is time-shifted to create conflicts not present in the un-shifted data. A methodology is used to smooth and filter the recorded data to eliminate sensor fusion noise, data drop-outs and other anomalies in the data. The metrics used to characterize conflict detection performance are presented and a set of preliminary results is discussed.

  4. Generalized hypervirial and Blanchard's recurrence relations for radial matrix elements

    International Nuclear Information System (INIS)

    Dong Shihai; Chen Changyuan; Lozada-Cassou, M

    2005-01-01

    Based on the Hamiltonian identity, we propose a generalized expression of the second hypervirial for an arbitrary central potential wavefunction in arbitrary dimensions D. We demonstrate that the new proposed second hypervirial formula is very powerful in deriving the general Blanchard's and Kramers' recurrence relations among the radial matrix elements. As their useful and important applications, we derive all general Blanchard's and Kramers' recurrence relations and some identities for the Coulomb-like potential, harmonic oscillator and Kratzer oscillator. The recurrence relation and identity between the exponential functions and the powers of the radial function are established for the Morse potential. The corresponding general Blanchard's and Kramers' recurrence relations in 2D are also briefly studied

  5. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  6. 'Generalizability' of a radial-aortic transfer function for the derivation of central aortic waveform parameters.

    Science.gov (United States)

    Hope, Sarah A; Meredith, Ian T; Tay, David; Cameron, James D

    2007-09-01

    Arterial transfer functions (TFs) describe the relationship between the pressure waveform at different arterial sites. Generalized TFs are used to reconstruct central aortic waveforms from non-invasively obtained peripheral waveforms and have been promoted as potentially clinically useful. A limitation is the paucity of information on their 'generalizability' with no information existing on the number of subjects required to construct a satisfactory TF, nor is adequate prospective validation available. We therefore investigated the uniformity of radial-aortic TFs and prospectively estimated the capacity of a generalized TF to reconstruct individual central blood pressure parameters. Ninety-three subjects (64 male) were studied by simultaneous radial applanation and high-fidelity (Millar Mikro-tip catheter) direct measurement of central aortic BP during elective coronary procedures. Subjects were prospectively randomized to either a derivation or validation group. Increasing numbers of individual TFs from the derivation group were averaged to form a generalized TF. There was minimal change with greater than 20 TFs averaged. In the validation group, the error in most reconstructed parameters related to the absolute value of the directly measured parameter [systolic blood pressure (SBP) and pulse pressure, Pcentral aortic SBP and pulse pressure (negatively) and time to peak systole (positively) (all PInclusion of more than 20 individual TFs in the construction of a generalized TF does not improve 'generalizability'. There appear to be systematic errors in derived central pressure waveforms and derived aortic augmentation index is inaccurate compared to the directly measured value.

  7. Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    G. Trejo-Caballero

    2015-01-01

    Full Text Available Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.

  8. Multi nodal load forecasting in electric power systems using a radial basis neural network; Previsao de carga multinodal em sistemas eletricos de potencia usando uma rede neural de base radial

    Energy Technology Data Exchange (ETDEWEB)

    Altran, A.B.; Lotufo, A.D.P.; Minussi, C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], Emails: lealtran@yahoo.com.br, annadiva@dee.feis.unesp.br, minussi@dee.feis.unesp.br; Lopes, M.L.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Dept. de Matematica], E-mail: mara@mat.feis.unesp.br

    2009-07-01

    This paper presents a methodology for electrical load forecasting, using radial base functions as activation function in artificial neural networks with the training by backpropagation algorithm. This methodology is applied to short term electrical load forecasting (24 h ahead). Therefore, results are presented analyzing the use of radial base functions substituting the sigmoid function as activation function in multilayer perceptron neural networks. However, the main contribution of this paper is the proposal of a new formulation of load forecasting dedicated to the forecasting in several points of the electrical network, as well as considering several types of users (residential, commercial, industrial). It deals with the MLF (Multimodal Load Forecasting), with the same processing time as the GLF (Global Load Forecasting). (author)

  9. Effects of the radial electric field in a quasisymmetric stellarator

    International Nuclear Information System (INIS)

    Landreman, Matt; Catto, Peter J

    2011-01-01

    Recent calculations have shown that a radial electric field can significantly alter the neoclassical ion heat flux, ion flow, bootstrap current and residual zonal flow in a tokamak, even when the E x B drift is much smaller than the ion thermal speed. Here we show the novel analytical methods used in these calculations can be adapted to a quasisymmetric stellarator. The methods are based on using the conserved helical momentum ψ * instead of the poloidal or toroidal flux as a radial coordinate in the kinetic equation. The banana-regime calculations also employ a model collision operator that keeps only the velocity-space derivatives normal to the trapped-passing boundary, even as this boundary is shifted and deformed by the E x B drift. We prove the isomorphism between quasisymmetric stellarators and tokamaks extends to the finite-E x B generalizations of both banana-regime and plateau-regime neoclassical theory and the residual zonal flow. The plateau-regime results may be relevant to the HSX stellarator, and both the plateau- and banana-regime results can be used to validate stellarator transport codes.

  10. Axial and radial velocities in the creeping flow in a pipe

    Directory of Open Access Journals (Sweden)

    Zuykov Andrey L'vovich

    2014-05-01

    Full Text Available The article is devoted to analytical study of transformation fields of axial and radial velocities in uneven steady creeping flow of a Newtonian fluid in the initial portion of the cylindrical channel. It is shown that the velocity field of the flow is two-dimensional and determined by the stream function. The article is a continuation of a series of papers, where normalized analytic functions of radial axial distributions in uneven steady creeping flow in a cylindrical tube with azimuthal vorticity and stream function were obtained. There is Poiseuille profile for the axial velocity in the uniform motion of a fluid at an infinite distance from the entrance of the pipe (at x = ∞, here taken equal to zero radial velocity. There is uniform distribution of the axial velocity in the cross section at the tube inlet at x = 0, at which the axial velocity is constant along the current radius. Due to the axial symmetry of the flow on the axis of the pipe (at r = 0, the radial velocities and the partial derivative of the axial velocity along the radius, corresponding to the condition of the soft function extremum, are equal to zero. The authors stated vanishing of the velocity of the fluid on the walls of the pipe (at r = R , where R - radius of the tube due to its viscous sticking and tightness of the walls. The condition of conservation of volume flow along the tube was also accepted. All the solutions are obtained in the form of the Fourier - Bessel. It is shown that the hydraulic losses at uniform creeping flow of a Newtonian fluid correspond to Poiseuille - Hagen formula.

  11. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  12. Comparison of noninvasive assessments of central blood pressure using general transfer function and late systolic shoulder of the radial pressure wave.

    Science.gov (United States)

    Wohlfahrt, Peter; Krajcoviechová, Alena; Seidlerová, Jitka; Mayer, Otto; Filipovsky, Jan; Cífková, Renata

    2014-02-01

    Central systolic blood pressure (cSBP) can be derived by the general transfer function of the radial pressure wave, as used in the SphygmoCor device, or by regression equation from directly measured late systolic shoulder of the radial pressure wave (pSBP2), as used in the Omron HEM-9000AI device. The aim of this study was to compare the SphygmoCor estimates of cSBP with 2 estimates of cSBP provided by the Omron HEM-9000AI (cSBP, pSBP2) in a large cohort of the white population. In 391 patients aged 52.3±13.5 years (46% men) from the Czech post-MONICA Study, cSBP was measured using the SphygmoCor and Omron HEM-9000AI devices in random order. Omron cSBP and pSBP2 were perfectly correlated (r = 1.0; P wave provides a comparable accuracy with the validated general transfer function. When comparing Omron HEM-9000AI and SphygmoCor estimates of cSBP, Omron pSBP2 should be used. The difference between both devices in cSBP may be explained by differences in calibration.

  13. Elbow joint laxity after experimental radial head excision and lateral collateral ligament rupture

    DEFF Research Database (Denmark)

    Jensen, Steen Lund; Olsen, Bo Sanderhoff; Tyrdal, Stein

    2005-01-01

    The objectives of this experimental study were to investigate the effect of radial head excision and lateral collateral ligament (LCL) division on elbow joint laxity and to determine the efficacy of radial head prosthetic replacement and LCL repair. Valgus, varus, internal rotation, and external...... rotation of the ulna were measured during passive flexion-extension and application of a 0.75-Nm torque in 6 intact cadaveric elbows and after (1) either excision of the radial head or division of the LCL, (2) removal of both constraints, (3) isolated radial head prosthetic replacement, (4) isolated LCL...... normalized varus laxity but resulted in a 2.9 degrees increase in external rotatory laxity. The combined procedures restored laxity completely. The radial head is a constraint to varus and external rotation in the elbow joint, functioning by maintaining tension in the LCL. Still, removal of both constraints...

  14. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    Science.gov (United States)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  15. Comparison of shifting attention function in 7-13-years-old children with fluent speech and developmental stuttering

    Directory of Open Access Journals (Sweden)

    Kowsar Esfandeh

    2014-04-01

    Full Text Available Background and Aim: Attention has causal role in speech and language processing. Studies are limited about relation between attention and language development. As a result, the purpose of this study was to investigate the difference shifting attention function in children with developmental stuttering and fluent speech.Methods: Thirty children who stutter (21 boys and 9 girls and thirty children who did not stutter (21 boys and 9 girls were evaluated. Shifting attention function was investigated using Wisconsin card sorting test. The data were analyzed via Kolmogorov-Smirnov, independent t, and Mann-Whitney U-tests.Results: Between group analysis showed significant differences for all of the indexes in Wisconsin card sorting test . The number of categories completed in children who stutter was significantly less than that control group (p<0.05. But preservative errors, total errors, total tries, time of test performance and try for first pattern in children who stutter was more than in the control group and data differences were significant for all of the indexes (p<0.05.Conclusion: The findings of this study show that children with and without stuttering are different in shifting attention function and children who stutter have weaker function in shifting attention. The findings were linked to emerging theoretical frameworks of stuttering development and that were taken to suggest a possible role for attention processes in developmental stuttering.

  16. Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Mehlmann, F.; Naulin, Volker

    2012-01-01

    A reciprocating probe was used for localized measurements of the radial transport of poloidal momentum in the scrape-off layer (SOL) of ASDEX Upgrade (AUG). The probe measured poloidal and radial electric field components and density. We concentrate on three components of the momentum transport: ......: Reynolds stress, convective momentum flux and triple product of the fluctuating components of density, radial and poloidal electric field. For the evaluation we draw mainly on the probability density functions (PDFs)....

  17. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NARCIS (Netherlands)

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, van der J.J.A.M.; Pupat, N.B.M.

    2006-01-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved

  18. Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization

    International Nuclear Information System (INIS)

    Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen

    2014-01-01

    A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)

  19. Transport profiles induced by radially localized modes in tokamak

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Horton, W.

    1991-04-01

    We describe a new approach to the calculation of turbulent transport coefficients for radially localized modes. The theory takes into account the nonuniformity of the distribution of rational (resonant) magnetic surfaces in minor radius. This distribution function is proportional to the density of available states of excitation. The resulting density of state correction qualitatively changes the radial profile of the transport coefficients, as compared to the usual local diffusivity formulae. The correction factor calculated for the η i -mode transport allows a much better agreement of χ i with the experimental data than previously achieved. 8 refs., 3 figs

  20. Tire-rim interface pressure of a commercial vehicle wheel under radial loads: theory and experiment

    Science.gov (United States)

    Wan, Xiaofei; Shan, Yingchun; Liu, Xiandong; He, Tian; Wang, Jiegong

    2017-11-01

    The simulation of the radial fatigue test of a wheel has been a necessary tool to improve the design of the wheel and calculate its fatigue life. The simulation model, including the strong nonlinearity of the tire structure and material, may produce accurate results, but often leads to a divergence in calculation. Thus, a simplified simulation model in which the complicated tire model is replaced with a tire-wheel contact pressure model is used extensively in the industry. In this paper, a simplified tire-rim interface pressure model of a wheel under a radial load is established, and the pressure of the wheel under different radial loads is tested. The tire-rim contact behavior affected by the radial load is studied and analyzed according to the test result, and the tire-rim interface pressure extracted from the test result is used to evaluate the simplified pressure model and the traditional cosine function model. The results show that the proposed model may provide a more accurate prediction of the wheel radial fatigue life than the traditional cosine function model.

  1. Space-time transformations in radial path integrals

    International Nuclear Information System (INIS)

    Steiner, F.

    1984-09-01

    Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)

  2. [Comparison of chemical quality characteristics between radial striations and non-radial striations in tuberous root of Rehmannia glutinosa].

    Science.gov (United States)

    Xie, Cai-Xia; Zhang, Miao; Li, Ya-Jing; Geng, Xiao-Tong; Wang, Feng-Qing; Zhang, Zhong-Yi

    2017-11-01

    An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed that:① the content of main components of R. glutinosa varied in different growth stages ;② there was a great difference of the content of main components between theradial striations and the non-radial striations; ③ the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; ④the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; ⑤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  3. Radial excitations in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1986-01-01

    In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)

  4. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  5. Radial fractional Laplace operators and Hessian inequalities

    Science.gov (United States)

    Ferrari, Fausto; Verbitsky, Igor E.

    In this paper we deduce a formula for the fractional Laplace operator ( on radially symmetric functions useful for some applications. We give a criterion of subharmonicity associated with (, and apply it to a problem related to the Hessian inequality of Sobolev type: ∫Rn |(u| dx⩽C∫Rn -uFk[u] dx, where Fk is the k-Hessian operator on Rn, 1⩽kFerrari et al. [5] contains the extremal functions for the Hessian Sobolev inequality of X.-J. Wang (1994) [15]. This is proved using logarithmic convexity of the Gaussian ratio of hypergeometric functions which might be of independent interest.

  6. The structure of executive functions in children: a closer examination of inhibition, shifting, and updating.

    Science.gov (United States)

    van der Ven, Sanne H G; Kroesbergen, Evelyn H; Boom, Jan; Leseman, Paul P M

    2013-03-01

    An increasing number of studies has investigated the latent factor structure of executive functions. Some studies found a three-factor structure of inhibition, shifting, and updating, but others could not replicate this finding. We assumed that the task choices and scoring methods might be responsible for these contradictory findings. Therefore, we selected tasks in which input modality was varied, controlled for baseline speed, and used both speed and accuracy scores, in order to investigate whether a three factor model with inhibition, shifting, and updating could still be replicated. In a group of 211 children, who were tested at the beginning of grade 1, at approximately 6 years of age, and again after 18 months, the best fitting model was not the three-factor model, but instead consisted of an updating factor and a combined inhibition and shifting factor, besides two baseline speed factors (verbal and motor). We argue that these results might indicate that the structural organization of executive functions might be different in children than in adults, but that there might also be an alternative explanation: the distinction in executive functions might not accurately represent cognitive structures but instead be a methodological artefact. © 2012 The British Psychological Society.

  7. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  8. Accurate core-electron binding energy shifts from density functional theory

    International Nuclear Information System (INIS)

    Takahata, Yuji; Marques, Alberto Dos Santos

    2010-01-01

    Current review covers description of density functional methods of calculation of accurate core-electron binding energy (CEBE) of second and third row atoms; applications of calculated CEBEs and CEBE shifts (ΔCEBEs) in elucidation of topics such as: hydrogen-bonding, peptide bond, polymers, DNA bases, Hammett substituent (σ) constants, inductive and resonance effects, quantitative structure activity relationship (QSAR), and solid state effect (WD). This review limits itself to works of mainly Chong and his coworkers for the period post-2002. It is not a fully comprehensive account of the current state of the art.

  9. Cosmological constraints from radial baryon acoustic oscillation measurements and observational Hubble data

    International Nuclear Information System (INIS)

    Zhai Zhongxu; Wan Haoyi; Zhang Tongjie

    2010-01-01

    We use the Radial Baryon Acoustic Oscillation (RBAO) measurements, distant type Ia supernovae (SNe Ia), the observational H(z) data (OHD) and the Cosmic Microwave Background (CMB) shift parameter data to constrain cosmological parameters of ΛCDM and XCDM cosmologies and further examine the role of OHD and SNe Ia data in cosmological constraints. We marginalize the likelihood function over h by integrating the probability density P∝e -χ 2 /2 to obtain the best fitting results and the confidence regions in the Ω m -Ω Λ plane. With the combination analysis for both of the ΛCDM and XCDM models, we find that the confidence regions of 68.3%, 95.4% and 99.7% levels using OHD+RBAO+CMB data are in good agreement with that of SNe Ia+RBAO+CMB data which is consistent with the result of Lin et al.'s (2009) work. With more data of OHD, we can probably constrain the cosmological parameters using OHD data instead of SNe Ia data in the future.

  10. Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model.

    Science.gov (United States)

    Vavalle, Nicholas A; Schoell, Samantha L; Weaver, Ashley A; Stitzel, Joel D; Gayzik, F Scott

    2014-11-01

    Human body finite element models (FEMs) are a valuable tool in the study of injury biomechanics. However, the traditional model development process can be time-consuming. Scaling and morphing an existing FEM is an attractive alternative for generating morphologically distinct models for further study. The objective of this work is to use a radial basis function to morph the Global Human Body Models Consortium (GHBMC) average male model (M50) to the body habitus of a 95th percentile male (M95) and to perform validation tests on the resulting model. The GHBMC M50 model (v. 4.3) was created using anthropometric and imaging data from a living subject representing a 50th percentile male. A similar dataset was collected from a 95th percentile male (22,067 total images) and was used in the morphing process. Homologous landmarks on the reference (M50) and target (M95) geometries, with the existing FE node locations (M50 model), were inputs to the morphing algorithm. The radial basis function was applied to morph the FE model. The model represented a mass of 103.3 kg and contained 2.2 million elements with 1.3 million nodes. Simulations of the M95 in seven loading scenarios were presented ranging from a chest pendulum impact to a lateral sled test. The morphed model matched anthropometric data to within a rootmean square difference of 4.4% while maintaining element quality commensurate to the M50 model and matching other anatomical ranges and targets. The simulation validation data matched experimental data well in most cases.

  11. Influence of the Training Methods in the Diagnosis of Multiple Sclerosis Using Radial Basis Functions Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ángel Gutiérrez

    2015-04-01

    Full Text Available The data available in the average clinical study of a disease is very often small. This is one of the main obstacles in the application of neural networks to the classification of biological signals used for diagnosing diseases. A rule of thumb states that the number of parameters (weights that can be used for training a neural network should be around 15% of the available data, to avoid overlearning. This condition puts a limit on the dimension of the input space. Different authors have used different approaches to solve this problem, like eliminating redundancy in the data, preprocessing the data to find centers for the radial basis functions, or extracting a small number of features that were used as inputs. It is clear that the classification would be better the more features we could feed into the network. The approach utilized in this paper is incrementing the number of training elements with randomly expanding training sets. This way the number of original signals does not constraint the dimension of the input set in the radial basis network. Then we train the network using the method that minimizes the error function using the gradient descent algorithm and the method that uses the particle swarm optimization technique. A comparison between the two methods showed that for the same number of iterations on both methods, the particle swarm optimization was faster, it was learning to recognize only the sick people. On the other hand, the gradient method was not as good in general better at identifying those people.

  12. Radially localized measurements of superthermal electrons using oblique electron cyclotron emission

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1996-05-01

    It is shown that radial localization of optically tin Electron Cyclotron Emission from superthermal electrons can be imposed by observation of emission upshifted from the thermal cyclotron resonance in the horizontal midplane of a tokamak. A new and unique diagnostic has been proposed and operated to make radially localized measurements of superthermal electrons during Lower Hybrid Current Drive on the PBX-M tokamak. The superthermal electron density profile as well as moments of the electron energy distribution as a function of radius are measured during Lower Hybrid Current Drive. The time evolution of these measurements after the Lower Hybrid power is turned off are given and the observed behavior reflects the collisional isotropization of the energy distribution and radial diffusion of the spatial profile

  13. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  14. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  15. Radial head dislocation during proximal radial shaft osteotomy.

    Science.gov (United States)

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  16. Fault diagnosis and performance evaluation for high current LIA based on radial basis function neural network

    International Nuclear Information System (INIS)

    Yang Xinglin; Wang Huacen; Chen Nan; Dai Wenhua; Li Jin

    2006-01-01

    High current linear induction accelerator (LIA) is a complicated experimental physics device. It is difficult to evaluate and predict its performance. this paper presents a method which combines wavelet packet transform and radial basis function (RBF) neural network to build fault diagnosis and performance evaluation in order to improve reliability of high current LIA. The signal characteristics vectors which are extracted based on energy parameters of wavelet packet transform can well present the temporal and steady features of pulsed power signal, and reduce data dimensions effectively. The fault diagnosis system for accelerating cell and the trend classification system for the beam current based on RBF networks can perform fault diagnosis and evaluation, and provide predictive information for precise maintenance of high current LIA. (authors)

  17. Designing an artificial neural network using radial basis function to model exergetic efficiency of nanofluids in mini double pipe heat exchanger

    Science.gov (United States)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-06-01

    The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20-70 nm. The parameters of ANN model were adapted by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999, respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds number 2500, twisted ratio 2.5 and volume fraction( v/v%) 0.05.

  18. Gaussian Radial Basis Function for Efficient Computation of Forest Indirect Illumination

    Science.gov (United States)

    Abbas, Fayçal; Babahenini, Mohamed Chaouki

    2018-06-01

    Global illumination of natural scenes in real time like forests is one of the most complex problems to solve, because the multiple inter-reflections between the light and material of the objects composing the scene. The major problem that arises is the problem of visibility computation. In fact, the computing of visibility is carried out for all the set of leaves visible from the center of a given leaf, given the enormous number of leaves present in a tree, this computation performed for each leaf of the tree which also reduces performance. We describe a new approach that approximates visibility queries, which precede in two steps. The first step is to generate point cloud representing the foliage. We assume that the point cloud is composed of two classes (visible, not-visible) non-linearly separable. The second step is to perform a point cloud classification by applying the Gaussian radial basis function, which measures the similarity in term of distance between each leaf and a landmark leaf. It allows approximating the visibility requests to extract the leaves that will be used to calculate the amount of indirect illumination exchanged between neighbor leaves. Our approach allows efficiently treat the light exchanges in the scene of a forest, it allows a fast computation and produces images of good visual quality, all this takes advantage of the immense power of computation of the GPU.

  19. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets

    International Nuclear Information System (INIS)

    Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui

    2009-01-01

    Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.

  20. Manganese-Catalyzed C−H Functionalizations: Hydroarylations and Alkenylations Involving an Unexpected Heteroaryl Shift

    KAUST Repository

    Wang, Chengming

    2017-06-24

    A manganese-catalyzed regio- and stereoselective hydroarylation of allenes is reported. The C−H functionalization method provides access to various alkenylated indoles in excellent yields. Moreover, a hydroarylation/cyclization cascade involving an unexpected C−N bond cleavage and aryl shift has been developed, which provides a new synthetic approach to substituted pyrroloindolones.

  1. Manganese-Catalyzed C−H Functionalizations: Hydroarylations and Alkenylations Involving an Unexpected Heteroaryl Shift

    KAUST Repository

    Wang, Chengming; Wang, Ai; Rueping, Magnus

    2017-01-01

    A manganese-catalyzed regio- and stereoselective hydroarylation of allenes is reported. The C−H functionalization method provides access to various alkenylated indoles in excellent yields. Moreover, a hydroarylation/cyclization cascade involving an unexpected C−N bond cleavage and aryl shift has been developed, which provides a new synthetic approach to substituted pyrroloindolones.

  2. A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations

    KAUST Repository

    Wang, Zhiheng

    2014-12-10

    A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.

  3. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  4. Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-10-01

    Full Text Available The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM, integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs. As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths are coupled, leading to possible mutual magnetic-field interference and complex control. In this paper, a design method to ensure magnetic decoupling with minimum yoke thickness of the common rotor is investigated. A prototype machine is designed based on the proposed method, and the feasibility of magnetic decoupling and independent control is validated by experimental tests of mutual influence. The CS-PMSM is tested by a designed driving cycle, and functions to act as starter motor, generator and to help the internal combustion engine (ICE operate at optimum efficiency are validated.

  5. Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts

    Science.gov (United States)

    Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.

    2017-05-01

    In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.

  6. Bifurcated transition of radial transport in the HIEI tandem mirror

    International Nuclear Information System (INIS)

    Sakai, O.; Yasaka, Y.

    1995-01-01

    Transition to a high radial confinement mode in a mirror plasma is triggered by limiter biasing. Sheared plasma rotation is induced in the high confinement phase which is characterized by reduction of edge turbulence and a confinement enhancement factor of 2-4. Edge plasma parameters related to radial confinement show a hysteresis phenomenon as a function of bias voltage or bias current, leading to the fact that transition from low to high confinement mode occurs between the bifurcated states. A transition model based on azimuthal momentum balance is employed to clarify physics of the observed bifurcation. copyright 1995 American Institute of Physics

  7. Methodology based in the fuzzy logic for constructing the objective functions in optimization problems of nuclear fuel: application to the cells radial design; Metodologia basada en logica difusa para construir las funciones objetivo en problemas de optimizacion de combustible nuclear: aplicacion al diseno radial de celdas

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.M.; Martin del Campo M, C.; Palomera P, M.A. [FI-UNAM, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)]. E-mail: ale_bar_m@yahoo.com.mx

    2005-07-01

    A methodology based on Fuzzy Logic for the construction of the objective function of the optimization problems of nuclear fuel is described. It was created an inference system that responds, in certain form, as a human expert when it has the task of qualifying different radial designs of fuel cells. Specifically it is detailed how an inference system based based on Fuzzy Logic that has five enter variables and one exit variable was built, which corresponds to the objective function for the radial design of a fuel cell for a BWR. The use of Fuzzy with Mat lab offered the visualization capacity of the exit variable in function of one or two enter variables at the same time. This allowed to build, in appropriate way, the combination of the inference rules and the membership functions of those diffuse sets used for each one of the enter variables. The obtained objective function was used in an optimization process based on Taboo search. The new methodology was proven for the design of a cell used in a fuel assemble of the Laguna Verde reactor obtaining excellent results. (Author)

  8. The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change

    Directory of Open Access Journals (Sweden)

    B. Reu

    2011-05-01

    Full Text Available The global geographic distribution of biodiversity and biomes is determined by species-specific physiological tolerances to climatic constraints. Current vegetation models employ empirical bioclimatic relationships to predict present-day vegetation patterns and to forecast biodiversity changes and biome shifts under climatic change. In this paper, we consider trade-offs in plant functioning and their responses under climatic changes to forecast and explain changes in plant functional richness and shifts in biome geographic distributions.

    The Jena Diversity model (JeDi simulates plant survival according to essential plant functional trade-offs, including ecophysiological processes such as water uptake, photosynthesis, allocation, reproduction and phenology. We use JeDi to quantify changes in plant functional richness and biome shifts between present-day and a range of possible future climates from two SRES emission scenarios (A2 and B1 and seven global climate models using metrics of plant functional richness and functional identity.

    Our results show (i a significant loss of plant functional richness in the tropics, (ii an increase in plant functional richness at mid and high latitudes, and (iii a pole-ward shift of biomes. While these results are consistent with the findings of empirical approaches, we are able to explain them in terms of the plant functional trade-offs involved in the allocation, metabolic and reproduction strategies of plants. We conclude that general aspects of plant physiological tolerances can be derived from functional trade-offs, which may provide a useful process- and trait-based alternative to bioclimatic relationships. Such a mechanistic approach may be particularly relevant when addressing vegetation responses to climatic changes that encounter novel combinations of climate parameters that do not exist under contemporary climate.

  9. Investigation of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.

    2013-01-01

    The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed

  10. Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks

    Science.gov (United States)

    Meng, Qinggang; Lee, M. H.

    2007-03-01

    Advanced autonomous artificial systems will need incremental learning and adaptive abilities similar to those seen in humans. Knowledge from biology, psychology and neuroscience is now inspiring new approaches for systems that have sensory-motor capabilities and operate in complex environments. Eye/hand coordination is an important cross-modal cognitive function, and is also typical of many of the other coordinations that must be involved in the control and operation of embodied intelligent systems. This paper examines a biologically inspired approach for incrementally constructing compact mapping networks for eye/hand coordination. We present a simplified node-decoupled extended Kalman filter for radial basis function networks, and compare this with other learning algorithms. An experimental system consisting of a robot arm and a pan-and-tilt head with a colour camera is used to produce results and test the algorithms in this paper. We also present three approaches for adapting to structural changes during eye/hand coordination tasks, and the robustness of the algorithms under noise are investigated. The learning and adaptation approaches in this paper have similarities with current ideas about neural growth in the brains of humans and animals during tool-use, and infants during early cognitive development.

  11. A two-shift optimisation of the 'no action level' setup correction protocol

    International Nuclear Information System (INIS)

    Fox, C.; Fisher, R.

    2004-01-01

    Full text: As electronic portal imaging equipment becomes more common, many radiotherapy centres now have the ability to collect patient treatment position deviation values. One commonly used off-line set-up correction protocol for calculating patient setup corrections is the 'no action level' (NAL) protocol. This paper proposes a two-shift approach and calculates the number of images required for minimum systematic error. Patient data is used in a simulation to confirm this approach. Patient treatment position deviations were available for all treatment sessions for a large group of patients undergoing radiation therapy for prostate. Thirty of these patients were selected. The patient position at treatment and all isocentre shifts made were recorded in the treatment notes. These were used to simulate the effect of the NAL protocol using a range of image numbers as the basis of the set-up correction. As Bortfeld et al noted, there is an error minimum that can be observed beyond which the mean radial systematic set-up error increases slowly with an increase in the number of images used. An enhancement to the NAL was proposed in which the patient's position is corrected on two occasions; once early in the treatment schedule, and again after more images have been collected. The expectation value of the set-up error for this two-shift NAL was found and minimised. The optimum staging for the two-shift NAL for the prostate patients was to image for a total of 9 sessions and to shift the patient after 3 sessions and 9 sessions. The thirty patients showed an uncorrected mean radial setup error of 0.65cm. In this simulation this was corrected to 0.26cm by application of the NAL using 5 images and to 0.17 cm using the two shift NAL with shifts after three and nine images. In situations where staff can manage the workload of collecting and analysing portal images for nine sessions for each patient, the two-shift NAL will result in a high level of set-up accuracy. Copyright

  12. Implantation of a Multifocal Toric Intraocular Lens after Radial Keratotomy and Cross-Linking with Hyperopia and Astigmatism Residues: A Case Report

    Directory of Open Access Journals (Sweden)

    Raffaele Nuzzi

    2017-08-01

    Full Text Available Radial keratotomy is a refractive surgical technique, widely used in the 80s and early 90s to correct myopia and astigmatism, but now overcome by more recent laser techniques. Important consequences, often in patients with more than 45 years of age, are progressive hyperopic shift and/or an increase in corneal astigmatism, whose main cause seems to be an increase in the curvature radius of the central portion of the cornea. This seems to be due to radial keratotomy incisions – with the consequent need for cross-linking – intraocular pressure, and corneal biomechanical parameters. The authors propose phacoemulsification with a customized multifocal toric intraocular lens implantation to correct the induced shift and hyperopic astigmatism. A decent postoperative visual acuity was observed with good patient satisfaction. A specific protocol must be applied to optimize the correct diagnosis, presurgical evaluation and postsurgical outcomes that are to be maintained over time, without regressions.

  13. Pricing and simulation for real estate index options: Radial basis point interpolation

    Science.gov (United States)

    Gong, Pu; Zou, Dong; Wang, Jiayue

    2018-06-01

    This study employs the meshfree radial basis point interpolation (RBPI) for pricing real estate derivatives contingent on real estate index. This method combines radial and polynomial basis functions, which can guarantee the interpolation scheme with Kronecker property and effectively improve accuracy. An exponential change of variables, a mesh refinement algorithm and the Richardson extrapolation are employed in this study to implement the RBPI. Numerical results are presented to examine the computational efficiency and accuracy of our method.

  14. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.

    Science.gov (United States)

    Becklin, Katie M; Mullinix, George W R; Ward, Joy K

    2016-10-01

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO 2 ] gradient (180-1,000 µL L -1 ). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO 2 ] and arbuscular mycorrhizal fungi. To evaluate [CO 2 ] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (M Bio ) and nonmycorrhizal (NM Bio ) plants (R Bio = [M Bio - NM Bio ]/NM Bio ). We then assessed linkages between R Bio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, R Bio increased with rising [CO 2 ], shifting from negative to positive values at 700 µL L -1 [CO 2 ] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in R Bio in this species. For T. ceratophorum, R Bio increased from 180 to 390 µL L -1 and further increases in [CO 2 ] caused R Bio to shift from positive to negative values. [CO 2 ] and fungal effects on plant growth and carbon sink strength were correlated with shifts in R Bio in this species. Overall, we show that rising [CO 2 ] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO 2 ], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO 2 ]. The magnitude and mechanisms driving mycorrhizal-CO 2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  16. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction.

    Science.gov (United States)

    Kumudha, P; Venkatesan, R

    Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.

  17. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  18. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  19. Radial plasma drifts deduced from VLF whistler mode signals - A modelling study

    Science.gov (United States)

    Poulter, E. M.; Andrews, M. K.; Bailey, G. J.; Moffett, R. J.

    1984-05-01

    VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O(+) adn H(+) ions along dipole magnetic field lines, and including radial E x B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about + or - 20 m/s (approximately 10-15 percent), and the two hemisphere ionosphere-protonosphere coupling fluxes to about + or - 10 to the 12th/sq m-sec (approximately 40 percent).

  20. Common spatial pattern combined with kernel linear discriminate and generalized radial basis function for motor imagery-based brain computer interface applications

    Science.gov (United States)

    Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko

    2018-04-01

    Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.

  1. Executive functions in early childhood: interrelations and structural development of inhibition, set-shifting and working memory

    Directory of Open Access Journals (Sweden)

    Paolo Stievano

    2013-04-01

    Full Text Available The aim of the present study is to examine the interrelations of executive function (EF tasks with general cognitive ability and linguistic level in preschool children. The analyses of the correlation between EF sub-domains, particularly inhibition and set-shifting, have been studied to comprehend the ontogenesis of EFs. Task analysis has allowed us to identify which EF sub-domains are prevalent in each task, with particular attention to inhibition and set-shifting definitions. The sample was composed of 40 typically developing children from 48 to 69 months old (M=58 months, SD=5.02; 28 boys and 12 girls. The results give some insight into the development of executive functions, their utility in clinical assessment and indication.

  2. Radial basis function networks applied to DNBR calculation in digital core protection systems

    International Nuclear Information System (INIS)

    Lee, Gyu-Cheon; Heung Chang, Soon

    2003-01-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about ±10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety

  3. Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins.

    Science.gov (United States)

    Nguyen, Bao Linh; Pettitt, B Montgomery

    2015-04-14

    The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations.

  4. Radial pseudoaneurysm following diagnostic coronary angiography

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2015-06-01

    Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50

  5. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  6. Radial Domany-Kinzel models with mutation and selection

    Science.gov (United States)

    Lavrentovich, Maxim O.; Korolev, Kirill S.; Nelson, David R.

    2013-01-01

    We study the effect of spatial structure, genetic drift, mutation, and selective pressure on the evolutionary dynamics in a simplified model of asexual organisms colonizing a new territory. Under an appropriate coarse-graining, the evolutionary dynamics is related to the directed percolation processes that arise in voter models, the Domany-Kinzel (DK) model, contact process, and so on. We explore the differences between linear (flat front) expansions and the much less familiar radial (curved front) range expansions. For the radial expansion, we develop a generalized, off-lattice DK model that minimizes otherwise persistent lattice artifacts. With both simulations and analytical techniques, we study the survival probability of advantageous mutants, the spatial correlations between domains of neutral strains, and the dynamics of populations with deleterious mutations. “Inflation” at the frontier leads to striking differences between radial and linear expansions. For a colony with initial radius R0 expanding at velocity v, significant genetic demixing, caused by local genetic drift, occurs only up to a finite time t*=R0/v, after which portions of the colony become causally disconnected due to the inflating perimeter of the expanding front. As a result, the effect of a selective advantage is amplified relative to genetic drift, increasing the survival probability of advantageous mutants. Inflation also modifies the underlying directed percolation transition, introducing novel scaling functions and modifications similar to a finite-size effect. Finally, we consider radial range expansions with deflating perimeters, as might arise from colonization initiated along the shores of an island.

  7. Value Distribution and Uniqueness Results of Zero-Order Meromorphic Functions to Their q-Shift

    Directory of Open Access Journals (Sweden)

    Haiwa Guan

    2012-01-01

    Full Text Available We investigate value distribution and uniqueness problems of meromorphic functions with their q-shift. We obtain that if f is a transcendental meromorphic (or entire function of zero order, and Q(z is a polynomial, then afn(qz+f(z−Q(z has infinitely many zeros, where q∈ℂ∖{0}, a is nonzero constant, and n≥5 (or n≥3. We also obtain that zero-order meromorphic function share is three distinct values IM with its q-difference polynomial P(f, and if limsup r→∞(N(r,f/T(r,f<1, then f≡P(f.

  8. RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS

    Science.gov (United States)

    Glassman, A. J.

    1994-01-01

    The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.

  9. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  10. Formula for radial profiles of temperature in steam-liquid sodium reactive jets

    International Nuclear Information System (INIS)

    Hobbes, P.; Mora-Perez, J.L.; Carreau, J.L.; Gbahoue, L.; Roger, F.

    1987-01-01

    One of the important problems of the study of distribution of temperatures in the reactive steam-liquid sodium jet rests in the mathematical formulation of their radial effects. During the experiment, two forms have been brought to light: from a certain distance of the injector, the radial distribution of temperature can be represented, in a classical way, by an error function curve; close to the injector, the radial profile allows for a minimum located on the axis of the jet. An energy balance permits, by dividing the jet in three parts: a central nucleus composed of practically pure gas, a gas ring plus drops and a liquid peripheral area plus bubbles, to obtain a mathematical formulation of the profiles, close to the injection which accounts quite well for the experimental points and their form

  11. The highlighting of an internal combustion engine piston ring radial oscillations

    Directory of Open Access Journals (Sweden)

    Djallel ZEBBAR

    2016-06-01

    Full Text Available This paper deals with the definition of the lube-oil film thickness in the piston ring cylinder liner junction of an internal combustion engine. At first, a mathematical model for the estimation of the film thickness is established. It is used to point out the oscillating motion of the piston ring normal to the cylinder wall. For the first time, has been highlighted and analytically evaluated the oscillating behavior of the piston ring in its housing in the radial direction. Furthermore, it is demonstrated that the radial oscillations frequency is a function of piston ring stiffness, material and geometry.

  12. Dedicated radial ventriculography pigtail catheter

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu

    2013-05-15

    A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.

  13. Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm

    International Nuclear Information System (INIS)

    Bahadormanesh, Nikrouz; Rahat, Shayan; Yarali, Milad

    2017-01-01

    Highlights: • A multi-objective optimization for radial expander in Organic Rankine Cycles is implemented. • By using firefly algorithm, Pareto front based on the size of turbine and thermal efficiency is produced. • Tension and vibration constrains have a significant effect on optimum design points. - Abstract: Organic Rankine Cycles are viable energy conversion systems in sustainable energy systems due to their compatibility with low-temperature heat sources. In the present study, one dimensional model of radial expanders in conjunction with a thermodynamic model of organic Rankine cycles is prepared. After verification, by defining thermal efficiency of the cycle and size parameter of a radial turbine as the objective functions, a multi-objective optimization was conducted regarding tension and vibration constraints for 4 different organic working fluids (R22, R245fa, R236fa and N-Pentane). In addition to mass flow rate, evaporator temperature, maximum pressure of cycle and turbo-machinery design parameters are selected as the decision variables. Regarding Pareto fronts, by a little increase in size of radial expanders, it is feasible to reach high efficiency. Moreover, by assessing the distribution of decision variables, the variables that play a major role in trending between the objective functions are found. Effects of mechanical and vibration constrains on optimum decision variables are investigated. The results of optimization can be considered as an initial values for design of radial turbines for Organic Rankine Cycles.

  14. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    Science.gov (United States)

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  15. Density functional theory study on water-gas-shift reaction over molybdenum disulfide

    DEFF Research Database (Denmark)

    Shi, X. R.; Wang, Shengguang; Hu, J.

    2009-01-01

    . The pathway for water-gas-shift reaction on both terminations has been carefully studied where the most favorable reaction path precedes the redox mechanism, namely the reaction takes place as follows: CO + H2O --> CO + OH + H --> CO + O + 2H --> CO2 + H-2. The most likely reaction candidates for the formate......Density functional theory calculations have been carried out to investigate the adsorption of reaction intermediates appearing during water-gas-shift reaction at the sulfur covered MoS2 (1 0 0)surfaces, Mo-termination with 37.5% S coverage and S-termination with 50% S coverage using periodic slabs...... species HCOO formation is the surface CO2 reaction with H as a side reaction of CO2 desorption on S-termination with 50% S coverage. The formed HCOO species will react further with adsorbed hydrogen yielding H2COO followed by breaking its C-O bond to form the surface CH2O and O species....

  16. Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

    KAUST Repository

    Ryu, Duchwan

    2013-03-01

    The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  17. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  18. Analytic perturbation theory for screened Coulomb potential: full continuum wave function

    International Nuclear Information System (INIS)

    Bechler, A.; Ennan, Mc J.; Pratt, R.H.

    1979-01-01

    An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)

  19. [Thrombopenia and radial aplasia: 2 cases with platelet function and ultrastructural studies of megakaryocytes and platelets (author's transl)].

    Science.gov (United States)

    Juhan, I; Bayle, J; Mattei, J F; Thevenieau, D; Perrimond, H; Muratore, R

    1979-10-01

    The authors report on two cases of congenital thrombopenia with radial aplasia. Both children display several formative abnormalities and a mild thrombopenia; hemorragic manifestations occurred in the first case only. Megacryoblastic to platelets series, as studied with electronic microscopy, show small-sized, "microcytic" and hypogranular megacaryocytes, displaying a maturative disorder (dysmegacaryocytopoiesis). In functional studies, platelets of the first patient show an imperfect nucleotidic release and do not agregate normally with ristocetin. The second case exhibits mostly a PF3 reduction. The variety of expression of the megacaryocytic-platelets disorders appears likewise in the squelettal and visceral malformations. The whole disorder could be ascribed to a pleiotropic abnormal gene with a variable expressivity.

  20. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    International Nuclear Information System (INIS)

    Abu-Assy, M.K.; Soliman, M.S.

    2016-01-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  1. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Assy, M.K. [Physics Department, Faculty of Science, Suez-Canal University, Ismailia 41522 (Egypt); Soliman, M.S., E-mail: Mahmoud_einstien2@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, El-Arish (Egypt)

    2016-10-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  2. Aneurisma idiopático de artéria radial: relato de caso Idiopathic radial artery aneurysm: case report

    Directory of Open Access Journals (Sweden)

    Luiz Ernani Meira Jr.

    2011-12-01

    Full Text Available Os aneurismas da artéria radial são extremamente raros. Em sua maioria, consistem de pseudoaneurismas pós-traumáticos. Os aneurismas da artéria radial verdadeiros podem ser idiopáticos, congênitos, pós-estenóticos ou associados a patologias, tais como vasculites e doenças do tecido conjuntivo. Foi relatado um caso de aneurisma idiopático de artéria radial em uma criança de três anos, que, após completa investigação diagnóstica complementar, foi submetida à ressecção cirúrgica.Radial artery aneurysms are extremely rare. Post-traumatic pseudoaneurysms are the vast majority. True radial artery aneurysms can be idiopathic, congenital, poststenotic, or associated with some pathologies, such as vasculitis and conjunctive tissue diseases. We report a case of an idiopathic aneurysm of the radial artery in a three-year-old child who was submitted to surgical resection after a complete diagnostic approach.

  3. Ulnar nerve entrapment complicating radial head excision

    Directory of Open Access Journals (Sweden)

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  4. The structure of executive functions in children: A closer examination of inhibition, shifting, and updating

    NARCIS (Netherlands)

    van der Ven, S.H.G.; Kroesbergen, E.H.; Boom, J.; Leseman, P.P.M.

    2013-01-01

    An increasing number of studies has investigated the latent factor structure of executive functions. Some studies found a three-factor structure of inhibition, shifting, and updating, but others could not replicate this finding. We assumed that the task choices and scoring methods might be

  5. A hybrid radial basis function-pseudospectral method for thermal convection in a 3-D spherical shell

    KAUST Repository

    Wright, G. B.

    2010-07-01

    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral methods in a "2 + 1" approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3-D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface-based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be "scattered" over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth\\'s mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 × 103 and 105. Results from a Ra = 106 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method is very competitive with those currently used in the literature. Copyright 2010 by the American Geophysical Union.

  6. Blue and red shifted temperature dependence of implicit phonon shifts in graphene

    Science.gov (United States)

    Mann, Sarita; Jindal, V. K.

    2017-07-01

    We have calculated the implicit shift for various modes of frequency in a pure graphene sheet. Thermal expansion and Grüneisen parameter which are required for implicit shift calculation have already been studied and reported. For this calculation, phonon frequencies are obtained using force constants derived from dynamical matrix calculated using VASP code where the density functional perturbation theory (DFPT) is used in interface with phonopy software. The implicit phonon shift shows an unusual behavior as compared to the bulk materials. The frequency shift is large negative (red shift) for ZA and ZO modes and the value of negative shift increases with increase in temperature. On the other hand, blue shift arises for all other longitudinal and transverse modes with a similar trend of increase with increase in temperature. The q dependence of phonon shifts has also been studied. Such simultaneous red and blue shifts in transverse or out plane modes and surface modes, respectively leads to speculation of surface softening in out of plane direction in preference to surface melting.

  7. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    Science.gov (United States)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  8. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points

    Science.gov (United States)

    Regis, Rommel G.

    2014-02-01

    This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.

  9. Radial tunnel syndrome. Findings and treatment in 17 patients

    Directory of Open Access Journals (Sweden)

    Gustavo Alberto Breglia

    2015-05-01

    Full Text Available Backround Radial tunnel syndrome is a condition secondary to the intermittent entrapment of the posterior interosseous nerve between superficial and deep mass of short supinator adjacent structures, such as vessels and fascias. The purpose of this study was to identify the anatomical structures that produce the eventual compression, to establish and communicate the differences in the subjective pain perception before and after the release of the posterior interosseous nerve in the radial tunnel. Method Between 2009 and 2014, 17 patients underwent surgical treatment by posterior interosseous nerve release. We used the approach between the first external radial and brachioradialis. Patients were assessed by visual analogue scale for pain intensity before surgery and at week 6, and according to the Roles and Maudsley functional criteria. Results The causes of posterior interosseous nerve compression were fibrous band of short supinator (arcade of Frohse (7 cases, recurrent vessels (4 cases, compression by the mass of the superficial portion of the short supinator muscle (2 cases and secondary compression by extensor carpi radialis brevis tendon (4 cases. Results were excellent (4 patients, good (10 patients and fair (3 patients. Patients treated through the Labor Risk Insurance had worse outcomes than those who were not covered by this system. Conclusions Radial tunnel syndrome is a condition that must be taken into account when there is refractory lateral epicondylalgia. This disease has a marked effect in patients with labor conflict, which may bias the outcome of treatment.

  10. Numerical analysis for multi-group neutron-diffusion equation using Radial Point Interpolation Method (RPIM)

    International Nuclear Information System (INIS)

    Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong

    2017-01-01

    Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and

  11. Clinical Outcomes following median to radial nerve transfers

    Science.gov (United States)

    Ray, Wilson Z.; Mackinnon, Susan E.

    2010-01-01

    Purpose In this study the authors evaluate the clinical outcomes in patients with radial nerve palsy who underwent nerve transfers utilizing redundant fascicles of median nerve (innervating the flexor digitorum superficialis and flexor carpi radialis muscles) to the posterior interosseous nerve and the nerve to the extensor carpi radialis brevis. Methods A retrospective review of the clinical records of 19 patients with radial nerve injuries who underwent nerve transfer procedures using the median nerve as a donor nerve were included. All patients were evaluated using the Medical Research Council (MRC) grading system. Results The mean age of patients was 41 years (range 17 – 78 years). All patients received at least 12 months of follow-up (20.3 ± 5.8 months). Surgery was performed at a mean of 5.7 ± 1.9 months post-injury. Post-operative functional evaluation was graded according to the following scale: grades MRC 0/5 - MRC 2/5 were considered poor outcomes, while MRC of 3/5 was a fair result, MRC grade 4/5 was a good result, and grade 4+/5 was considered an excellent outcome. Seventeen patients (89%) had a complete radial nerve palsy while two patients (11%) had intact wrist extension but no finger or thumb extension. Post-operatively all patients except one had good to excellent recovery of wrist extension. Twelve patients recovered good to excellent finger and thumb extension, two patients had fair recovery, five patients had a poor recovery. Conclusions The radial nerve is a commonly injured nerve, causing significant morbidity in affected patients. The median nerve provides a reliable source of donor nerve fascicles for radial nerve reinnervation. This transfer was first performed in 1999 and evolved over the subsequent decade. The important nuances of both surgical technique and motor re-education critical for to the success of this transfer have been identified and are discussed. PMID:21168979

  12. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  13. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-01-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the

  14. Anomalies of radial and ulnar arteries

    Directory of Open Access Journals (Sweden)

    Rajani Singh

    Full Text Available Abstract During dissection conducted in an anatomy department of the right upper limb of the cadaver of a 70-year-old male, both origin and course of the radial and ulnar arteries were found to be anomalous. After descending 5.5 cm from the lower border of the teres major, the brachial artery anomalously bifurcated into a radial artery medially and an ulnar artery laterally. In the arm, the ulnar artery lay lateral to the median nerve. It followed a normal course in the forearm. The radial artery was medial to the median nerve in the arm and then, at the level of the medial epicondyle, it crossed from the medial to the lateral side of the forearm, superficial to the flexor muscles. The course of the radial artery was superficial and tortuous throughout the arm and forearm. The variations of radial and ulnar arteries described above were associated with anomalous formation and course of the median nerve in the arm. Knowledge of neurovascular anomalies are important for vascular surgeons and radiologists.

  15. Variations in the usage and composition of a radial cocktail during radial access coronary angiography procedures.

    LENUS (Irish Health Repository)

    Pate, G

    2011-10-01

    A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.

  16. Radial response of a 2-MHz MWD propagation resistivity sensor

    International Nuclear Information System (INIS)

    Barnett, W.C.; Meyer, W.H.

    1991-01-01

    This paper reports that electromagnetic propagation resistivity sensors have become common in MWD logging applications. These tools are unique among resistivity sensors in that the depth of investigation of the phase shift and attenuation resistivity measurements varies dramatically with the formation resistivity, measuring deeper into the formation in higher resistivity environments. The fact that the depth of investigation can vary be more than a factor of two across a normal range of formation resistivities requires the log analyst to have an understanding of this phenomenon when performing both qualitative and quantitative interpretations of these logs. Other measurement characteristics such as regions of negative or sharply-rising radial response can produce log responses which may seem peculiar when compared to traditional induction logs or laterlogs

  17. Methods for shifting the pattern of energy deposition with a MAPA

    International Nuclear Information System (INIS)

    Guerquin-Kern, J.L.; Hagmann, M.J.; Levin, R.L.

    1987-01-01

    In earlier work the authors observed local heating in bone when an amputated human leg was treated with a MAPA. For this reason we have experimentally compared several methods for controlling the pattern of energy deposition. These methods include radial displacement of the phantom relative to the MAPA, adjusting phase and magnitude of the currents in the dipole elements, and the use of dielectric spacers between the bolus and parts of the phantom. Cylindrical homogeneous muscle-phantoms have been used in these tests. Both theory and experiments show that greater displacement of the pattern can be obtained using phase-shifting than is possible with radial displacement of the phantom. Dielectric spacers act as a shield by decoupling the phantom from the MAPA. The dielectric spacers are simple to use and give results that are stable and easy to predict

  18. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cécile

    2012-05-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in . R3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time. © 2012 Elsevier Inc.

  19. Application of radial basis functions and sinc method for solving the forced vibration of fractional viscoelastic beam

    Energy Technology Data Exchange (ETDEWEB)

    Permoon, M. R.; Haddadpour, H. [Sharif University of Tech, Tehran (Iran, Islamic Republic of); Rashidinia, J.; Parsa, A.; Salehi, R. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2016-07-15

    In this paper, the forced vibrations of the fractional viscoelastic beam with the Kelvin-Voigt fractional order constitutive relationship is studied. The equation of motion is derived from Newton's second law and the Galerkin method is used to discretize the equation of motion in to a set of linear ordinary differential equations. For solving the discretized equations, the radial basis functions and Sinc quadrature rule are used. In order to show the effectiveness and accuracy of this method, some test problem are considered, and it is shown that the obtained results are in very good agreement with exact solution. In the following, the proposed numerical solution is applied to exploring the effects of fractional parameters on the response of the beam and finally some conclusions are outlined.

  20. Design of radial reinforcement for prestressed concrete containments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  1. Methods and apparatus for radially compliant component mounting

    Science.gov (United States)

    Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  2. Motion of a particle in a radial space-charge field and in an axial magnetic field; Le mouvement d'une particule dans un champ de charge d'espace radial et un champ magnetique axial

    Energy Technology Data Exchange (ETDEWEB)

    Canobbio, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Services de Physique Appliquee, Service d' Ionique Generale, Section d' Etudes des Interactions Ondes Plasmas; Finzi, U [Institut de Physique Theorique de Milan (Italy)

    1966-07-01

    The motion of a charged particle in an axial uniform steady magnetic field, under the action of a radial space charge is calculated. A cylindrical symmetric charge distribution similar to the one which is observed in HF plasma accelerators is assumed. The particle motion is discussed with the method of effective potentials. A radial acceleration of ions is shown to be possible if the space charge density is sufficiently high. The displacement of the turning points of the trajectories due to the electrostatic field is calculated in the low plasma density approximation. Finally a HF circularly polarized electric field is introduced, the shift in cyclotron resonance is calculated and a low frequency resonance is found to be possible. (authors) [French] On etudie le mouvement d'une particule dans un champ magnetique axial uniforme et constant en presence d'un champ de charge d'espace radial. On considere une distribution de charge a symetrie cylindrique, semblable a celle qu'on observe dans les accelerateurs de plasma a H.F. On se sert des potentiels effectifs pour discuter les caracteristiques du mouvement. Une acceleration radiale des ions est possible lorsque la densite de charge est assez elevee. On calcule aussi les deplacements des points de rebroussement des trajectoires produits par un champ electrostatique faible. On introduit enfin un champ electrique HF polarise circulairement et on calcule le deplacement de la resonance de cyclotron du au champ de charge d'espace. En meme temps on voit apparaitre dans l'energie cinetique de la particule une resonance a basse frequence. (auteurs)

  3. Paradigm Shifts in Ophthalmic Diagnostics.

    Science.gov (United States)

    Sebag, J; Sadun, Alfredo A; Pierce, Eric A

    2016-08-01

    Future advances in ophthalmology will see a paradigm shift in diagnostics from a focus on dysfunction and disease to better measures of psychophysical function and health. Practical methods to define genotypes will be increasingly important and non-invasive nanotechnologies are needed to detect molecular changes that predate histopathology. This is not a review nor meant to be comprehensive. Specific topics have been selected to illustrate the principles of important paradigm shifts that will influence the future of ophthalmic diagnostics. It is our impression that future evaluation of vision will go beyond visual acuity to assess ocular health in terms of psychophysical function. The definition of disease will incorporate genotype into what has historically been a phenotype-centric discipline. Non-invasive nanotechnologies will enable a paradigm shift from disease detection on a cellular level to a sub-cellular molecular level. Vision can be evaluated beyond visual acuity by measuring contrast sensitivity, color vision, and macular function, as these provide better insights into the impact of aging and disease. Distortions can be quantified and the psychophysical basis of vision can be better evaluated than in the past by designing tests that assess particular macular cell function(s). Advances in our understanding of the genetic basis of eye diseases will enable better characterization of ocular health and disease. Non-invasive nanotechnologies can assess molecular changes in the lens, vitreous, and macula that predate visible pathology. Oxygen metabolism and circulatory physiology are measurable indices of ocular health that can detect variations of physiology and early disease. This overview of paradigm shifts in ophthalmology suggests that the future will see significant improvements in ophthalmic diagnostics. The selected topics illustrate the principles of these paradigm shifts and should serve as a guide to further research and development. Indeed

  4. Experimental and theoretical investigation of the effect of SiO2 content in gate dielectrics on work function shift induced by nanoscale capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.; Wang, H.; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2012-01-01

    The impact of SiO2 content in ultrathin gate dielectrics on the magnitude of the effective work function (EWF) shift induced by nanoscale capping layers has been investigated experimentally and theoretically. The magnitude of the effective work function shift for four different capping layers (AlN, Al2O3, La2O3, and Gd2O3) is measured as a function of SiO2 content in the gate dielectric. A nearly linear increase of this shift with SiO2 content is observed for all capping layers. The origin of this dependence is explained using density functional theory simulations.

  5. Experimental and theoretical investigation of the effect of SiO2 content in gate dielectrics on work function shift induced by nanoscale capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.

    2012-09-10

    The impact of SiO2 content in ultrathin gate dielectrics on the magnitude of the effective work function (EWF) shift induced by nanoscale capping layers has been investigated experimentally and theoretically. The magnitude of the effective work function shift for four different capping layers (AlN, Al2O3, La2O3, and Gd2O3) is measured as a function of SiO2 content in the gate dielectric. A nearly linear increase of this shift with SiO2 content is observed for all capping layers. The origin of this dependence is explained using density functional theory simulations.

  6. Kinetic transport properties of a bumpy torus with finite radial ambipolar field

    International Nuclear Information System (INIS)

    Spong, D.A.; Harris, E.G.; Hedrick, C.L.

    1978-04-01

    Bumpy torus neoclassical transport coefficients have been calculted including finite values of the radial ambipolar field. These are obtained by solving a bounce-averaged drift kinetic equation in a local approximation for perturbations in the distribution function (away from a stationary Maxwellian) caused by toroidicity and radial gradients in plasma density, temperature, and potential. Particle and energy fluxes along with the associated transport coefficients are then calculated by taking appropriate moments of the distribution function. Particle orbits are treated by breaking them up into a vertical drift component (due to toroidicity) and a theta precessional drift (as a result of Vector E x Vector B and drifts due to the bumpy toroidal field). The kinetic equation has been solved using both a functional expansion method and finite difference techniques [Alternating-Direction-Implicit (ADI)]. The resulting transport coefficients exhibit a strong dependence on the ambipolar electric field and plasma collisionality. In the large electric field limit, our results are in close agreement with the earlier work of Kovrizhnykh

  7. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    Science.gov (United States)

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  8. On the specification of bus voltages and radial link transfer impedance modes

    Energy Technology Data Exchange (ETDEWEB)

    El-Sadik, F.M. [Khartoum Univ., Aljamaa, Khartoum (Sudan)

    2010-07-01

    No algebraic equation has been derived for the steady-state stability limit (SSSL) of radial power system components in terms of their resistive sectional impedance elements and associated scalar node voltage constraints. While many criterion have been developed in the literature for the steady state angle and voltage stability limits of systems with losses, speculation exists about certain advocated metrics for these systems in terms of stability reserve margins as a measure of the risk of blackout and the representation of reactance modes associated with Putman's model for synchronous machines. This paper presented the results of a generalized algebraic statement for the reactance modes under stability conditions in voltage-specified power system components cited in the single machine-infinite bus (SMIB) and the radial power link (RPL) systems. The direct analytical solution to the problem enabled the identification of 2 different constraint relations for the sending (E) and receiving-end voltage regulator (VR) voltages. The paper discussed the general SSSL function plan, conditions for SMIB system reactances, and index results for the voltage stability of radial lines. The results for the R2 influence and influence on radial compensation levels were also presented. Index results for non-operational reactance zones were provided. It was concluded that the algebraic solution in a full representation of system losses would enable identification of additional function discontinuities that might not reveal in a step-by-step numerical algorithm and that may account for the many unresolved transmission system phenomenon associated with SSSL predictions and capacitance compensation schemes. 11 refs., 1 tab., 5 figs., 3 appendices.

  9. Hunting down frame shifts: Ecological analysis of diverse functional gene sequences

    Directory of Open Access Journals (Sweden)

    Michal eStrejcek

    2015-11-01

    Full Text Available Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frame-shifts (FS. Genes encoding for alpha subunits of biphenyl (bphA and benzoate (benA dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 43.1% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of Maximum Expected Error (MEE filtering and single linkage pre-clustering (SLP proved the most efficient read procession. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study and the tool was implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/ and https://github.com/rdpstaff/Framebot.

  10. Multi-axial correction system in the treatment of radial club hand.

    Science.gov (United States)

    Bhat, Suneel B; Kamath, Atul F; Sehgal, Kriti; Horn, B David; Hosalkar, Harish S

    2009-12-01

    Radial club hand is a well-recognized congenital malformation characterized by hypoplasia of bone and soft tissue on the radial aspect of the forearm and hand. The modalities of treatment have traditionally varied from stretching casts with soft-tissue procedures to the use of multiple corrective osteotomies. These osteotomies can be stabilized by a variety of methods, including external fixators that allow the possibility of gradual distraction with neohistiogenesis. This current study outlines the usage of one such device (multi-axial correction system [MAC]) in the management of deformity associated with severe radial club hand. Three consecutive cases of unilateral or bilateral severe (Bayne type IV) congenital radial club hand were corrected using MAC fixation in the last 5 years. This is a retrospective review of all three cases. Data parameters included: patient demographics, presentation findings, degree of deformity, amount of correction/lengthening, length of procedure, length of treatment, and associated complications. The surgical technique is described in detail for the benefit of the readership. The three patients with severe congenital radial club hand had a total of four limb involvements that underwent correction using osteotomies and usage of the MAC device for external fixation. All three patients underwent successful correction of deformity with the restoration of alignment, lengthening of forearm for improvement of function, and stabilization of the wrist (mean duration, mean lengthening, mean time to consolidation). The MAC system was well tolerated in all patients and associated complications were limited. The MAC fixator seems to be a good alternative modality of stabilization and correction for severe congenital radial club hand deformities. Its usage is fairly simple and it provides the ease of application of a mono-lateral fixator with far superior three-dimensional control, like the circular external fixator. We recommend that

  11. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  12. Radial expansion for spinning conformal blocks

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  13. Application of radial basis neural network for state estimation of ...

    African Journals Online (AJOL)

    An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...

  14. MR accuracy and arthroscopic incidence of meniscal radial tears

    Energy Technology Data Exchange (ETDEWEB)

    Magee, Thomas; Shapiro, Marc; Williams, David [Department of Radiology, Neuroimaging Institute, 27 East Hibiscus Blvd., Melbourne, FL 32901 (United States)

    2002-12-01

    A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as

  15. MR accuracy and arthroscopic incidence of meniscal radial tears

    International Nuclear Information System (INIS)

    Magee, Thomas; Shapiro, Marc; Williams, David

    2002-01-01

    A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as

  16. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    Science.gov (United States)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  17. Radial velocities of RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  18. Mathematical model for solar drying of potato cylinders with thermal conductivity radially modulated

    Science.gov (United States)

    Trujillo Arredondo, Mariana

    2014-05-01

    A mathematical model for drying potato cylinders using solar radiation is proposed and solved analytically. The model incorporates the energy balance for the heat capacity of the potato, the radiation heat transfer from the potato toward the drying chamber and the solar radiation absorbed by the potato during the drying process. Potato cylinders are assumed to exhibit a thermal conductivity which is radially modulated. The method of the Laplace transform, with integral Bromwich and residue theorem will be applied and the analytic solutions for the temperature profiles in the potato cylinder will be derived in the form of an infinite series of Bessel functions, when the thermal conductivity is constant; and in the form of an infinite series of Heun functions, when the thermal conductivity has a linear radial modulation. All computations are performed using computer algebra, specifically Maple. It is expected that the analytical results obtained will be useful in food engineering and industry. Our results suggest some lines for future investigations such as the adoption of more general forms of radial modulation for the thermal conductivity of potato cylinders; and possible applications of other computer algebra software such as Maxima and Mathematica.

  19. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient1[OPEN

    Science.gov (United States)

    Mullinix, George W.R.; Ward, Joy K.

    2016-01-01

    Rising atmospheric carbon dioxide concentration ([CO2]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO2] gradient (180–1,000 µL L−1). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO2] and arbuscular mycorrhizal fungi. To evaluate [CO2] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (MBio) and nonmycorrhizal (NMBio) plants (RBio = [MBio − NMBio]/NMBio). We then assessed linkages between RBio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, RBio increased with rising [CO2], shifting from negative to positive values at 700 µL L−1. [CO2] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in RBio in this species. For T. ceratophorum, RBio increased from 180 to 390 µL L−1 and further increases in [CO2] caused RBio to shift from positive to negative values. [CO2] and fungal effects on plant growth and carbon sink strength were correlated with shifts in RBio in this species. Overall, we show that rising [CO2] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO2], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO2]. The magnitude and mechanisms driving mycorrhizal-CO2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. PMID:27573369

  20. Radial MR images of the knee

    International Nuclear Information System (INIS)

    Hewes, R.C.; Miller, T.R.

    1988-01-01

    To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging

  1. 21 CFR 866.4800 - Radial immunodiffusion plate.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...

  2. A practical optimization procedure for radial BWR fuel lattice design using tabu search with a multiobjective function

    International Nuclear Information System (INIS)

    Francois, J.L.; Martin-del-Campo, C.; Francois, R.; Morales, L.B.

    2003-01-01

    An optimization procedure based on the tabu search (TS) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The procedure was coded in a computing system in which the optimization code uses the tabu search method to select potential solutions and the HELIOS code to evaluate them. The goal of the procedure is to search for an optimal fuel utilization, looking for a lattice with minimum average enrichment, with minimum deviation of reactivity targets and with a local power peaking factor (PPF) lower than a limit value. Time-dependent-depletion (TDD) effects were considered in the optimization process. The additive utility function method was used to convert the multiobjective optimization problem into a single objective problem. A strategy to reduce the computing time employed by the optimization was developed and is explained in this paper. An example is presented for a 10x10 fuel lattice with 10 different fuel compositions. The main contribution of this study is the development of a practical TDD optimization procedure for BWR fuel lattice design, using TS with a multiobjective function, and a strategy to economize computing time

  3. ARTHROSCOPIC METHOD OF THE RADIAL HEAD FRACTURE OSTEOSYNTHESIS (СASE REPORT

    Directory of Open Access Journals (Sweden)

    I. A. Kuznetsov

    2016-01-01

    Full Text Available Radial head fractures constitute about 3% of all fractures and 30% within the group of elbow joint injuries. Conventional open surgical treatment is accompanied by an extensive soft tissue incision and sometimes by capsule release for adequate visualization. Arthroscopic methods feature relatively insignificant soft tissue trauma, allow to reduce pain syndrome in postoperative period and to accelerate rehabilitation. Besides, arthroscopy improves surgical view in cases of intraarticular fractures and facilitates a better anatomical reduction of articular surface. The authors demonstrate a clinical case of a patient with closed fractures of radial head and ulna coronoid process with displacement of left elbow joint fragments where arthroscopic surgery provided for good anatomical and functional results.

  4. Self-consistent Green’s-function technique for bulk and surface impurity calculations: Surface core-level shifts by complete screening

    DEFF Research Database (Denmark)

    Aldén, M.; Abrikosov, I. A.; Johansson, B.

    1994-01-01

    of the frozen-core and atomic-sphere approximation but, in addition, includes the dipole contribution to the intersphere potential. Within the concept of complete screening, we identify the surface core-level binding-energy shift with the surface segregation energy of a core-ionized atom and use the Green......'s-function impurity technique in a comprehensive study of the surface core-level shifts (SCLS) of the 4d and 5d transition metals. In those cases, where observed data refer to single crystals, we obtain good agreement with experiment, whereas the calculations typically underestimate the measured shift obtained from...

  5. The roles of electric field shear and Shafranov shift in sustaining high confinement in enhanced reversed shear plasmas on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Beer, M.A.

    1997-02-01

    The relaxation of core transport barriers in TFTR Enhanced Reversed Shear plasmas has been studied by varying the radial electric field using different applied torques from neutral beam injection. Transport rates and fluctuations remain low over a wide range of radial electric field shear, but increase when the local E x B shearing rates are driven below a threshold comparable to the fastest linear growth rates of the dominant instabilities. Shafranov-shift-induced stabilization alone is not able to sustain enhanced confinement

  6. Modified radial v/s biatrial maze for atrial fibrillation in rheumatic valvular heart surgery

    Directory of Open Access Journals (Sweden)

    Sajid A. Sayed

    2014-09-01

    Discussion: In patients with AF undergoing rheumatic valvular surgery, radiofrequency radial approach is as effective as modified Cox's maze III for conversion to NSR with better atrial transport function.

  7. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    International Nuclear Information System (INIS)

    Burke, Christopher J.; McCullough, P. R.

    2014-01-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ rv ∼ 0.6 m s –1 precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ phot ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ rv ∼ 2.0 m s –1 precision radial velocity survey has comparable efficiency to a transit survey with σ phot ∼ 2300 ppm.

  8. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    Science.gov (United States)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  9. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  10. AD Leonis: Radial Velocity Signal of Stellar Rotation or Spin–Orbit Resonance?

    Science.gov (United States)

    Tuomi, Mikko; Jones, Hugh R. A.; Barnes, John R.; Anglada-Escudé, Guillem; Butler, R. Paul; Kiraga, Marcin; Vogt, Steven S.

    2018-05-01

    AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin–orbit resonance. For such a scenario and no spin–orbit misalignment, the measured v\\sin i indicates an inclination angle of 15.°5 ± 2.°5 and a planetary companion mass of 0.237 ± 0.047 M Jup.

  11. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  12. Chemical shift homology in proteins

    International Nuclear Information System (INIS)

    Potts, Barbara C.M.; Chazin, Walter J.

    1998-01-01

    The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of C α protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed. Important insights are provided by examining the sequence identity of homologous proteins versus percentage of secondary chemical shifts that fall within 0.1 and 0.3 ppm thresholds. These results begin to establish practical guidelines for the extent of chemical shift similarity to expect among structurally homologous proteins

  13. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    Science.gov (United States)

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  14. Probability of primordial black hole formation and its dependence on the radial profile of initial configurations

    International Nuclear Information System (INIS)

    Hidalgo, J. C.; Polnarev, A. G.

    2009-01-01

    In this paper we derive the probability of the radial profiles of spherically symmetric inhomogeneities in order to provide an improved estimation of the number density of primordial black holes (PBHs). We demonstrate that the probability of PBH formation depends sensitively on the radial profile of the initial configuration. We do this by characterizing this profile with two parameters chosen heuristically: the amplitude of the inhomogeneity and the second radial derivative, both evaluated at the center of the configuration. We calculate the joint probability of initial cosmological inhomogeneities as a function of these two parameters and then find a correspondence between these parameters and those used in numerical computations of PBH formation. Finally, we extend our heuristic study to evaluate the probability of PBH formation taking into account for the first time the radial profile of curvature inhomogeneities.

  15. Least-square NUFFT methods applied to 2-D and 3-D radially encoded MR image reconstruction.

    Science.gov (United States)

    Song, Jiayu; Liu, Yanhui; Gewalt, Sally L; Cofer, Gary; Johnson, G Allan; Liu, Qing Huo

    2009-04-01

    Radially encoded MRI has gained increasing attention due to its motion insensitivity and reduced artifacts. However, because its samples are collected nonuniformly in the k-space, multidimensional (especially 3-D) radially sampled MRI image reconstruction is challenging. The objective of this paper is to develop a reconstruction technique in high dimensions with on-the-fly kernel calculation. It implements general multidimensional nonuniform fast Fourier transform (NUFFT) algorithms and incorporates them into a k-space image reconstruction framework. The method is then applied to reconstruct from the radially encoded k-space data, although the method is applicable to any non-Cartesian patterns. Performance comparisons are made against the conventional Kaiser-Bessel (KB) gridding method for 2-D and 3-D radially encoded computer-simulated phantoms and physically scanned phantoms. The results show that the NUFFT reconstruction method has better accuracy-efficiency tradeoff than the KB gridding method when the kernel weights are calculated on the fly. It is found that for a particular conventional kernel function, using its corresponding deapodization function as a scaling factor in the NUFFT framework has the potential to improve accuracy. In particular, when a cosine scaling factor is used, the NUFFT method is faster than KB gridding method since a closed-form solution is available and is less computationally expensive than the KB kernel (KB griding requires computation of Bessel functions). The NUFFT method has been successfully applied to 2-D and 3-D in vivo studies on small animals.

  16. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics

    Science.gov (United States)

    Fahrenfeld, N.L.; Reyes, Hannah Delos; Eramo, Alessia; Akob, Denise M.; Mumford, Adam; Cozzarelli, Isabelle M.

    2017-01-01

    Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18–86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.

  17. An Exact Formula for Calculating Inverse Radial Lens Distortions

    Directory of Open Access Journals (Sweden)

    Pierre Drap

    2016-06-01

    Full Text Available This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view.

  18. Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions.

    Science.gov (United States)

    Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L

    2008-01-01

    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.

  19. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Bakalyar, D; McKenney, S [Henry Ford Health System, Detroit, MI (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States)

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  20. Intraluminal milrinone for dilation of the radial artery graft.

    Science.gov (United States)

    García-Rinaldi, R; Soltero, E R; Carballido, J; Mojica, J

    1999-01-01

    There is renewed interest in the use of the radial artery as a conduit for coronary artery bypass surgery. The radial artery is, however, a very muscular artery, prone to vasospasm. Milrinone, a potent vasodilator, has demonstrated vasodilatory properties superior to those of papaverine. In this report, we describe our technique of radial artery harvesting and the adjunctive use of intraluminal milrinone as a vasodilator in the preparation of this conduit for coronary artery bypass grafting. We have used these techniques in 25 patients who have undergone coronary artery bypass grafting using the radial artery. No hand ischemic complications have been observed in this group. Intraluminal milrinone appears to dilate and relax the radial artery, rendering this large conduit spasm free and very easy to use. We recommend the skeletonization technique for radial artery harvesting and the use of intraluminal milrinone as a radial artery vasodilator in routine myocardial revascularization. PMID:10524740

  1. Nanoscale shift of the intensity distribution of dipole radiation.

    Science.gov (United States)

    Shu, Jie; Li, Xin; Arnoldus, Henk F

    2009-02-01

    The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case. Due to the spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radiation in the far field. This shift is shown to be independent of the distance to the source and, although of nanoscale dimension, should be experimentally observable.

  2. Channeling of protons through radial deformed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Borka Jovanović, V., E-mail: vborka@vinca.rs [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Borka, D. [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Galijaš, S.M.D. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade (Serbia)

    2017-05-18

    Highlights: • For the first time we presented theoretically obtained distributions of channeled protons with radially deformed SWNT. • Our findings indicate that influence of the radial deformation is very strong and it should not be omitted in simulations. • We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. • Our obtained results can be compared with measured distributions to reveal the presence of various types of defects in SWNT. - Abstract: In this paper we have presented a theoretical investigation of the channeling of 1 GeV protons with the radial deformed (10, 0) single-wall carbon nanotubes (SWNTs). We have calculated channeling potential within the deformed nanotubes. For the first time we presented theoretically obtained spatial and angular distributions of channeled protons with radially deformed SWNT. We used a Monte Carlo (MC) simulation technique. We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. These results may be useful for nanotube characterization and production and guiding of nanosized ion beams.

  3. To reduce the maximum stress and the stress shielding effect around a dental implant-bone interface using radial functionally graded biomaterials.

    Science.gov (United States)

    Asgharzadeh Shirazi, H; Ayatollahi, M R; Asnafi, A

    2017-05-01

    In a dental implant system, the value of stress and its distribution plays a pivotal role on the strength, durability and life of the implant-bone system. A typical implant consists of a Titanium core and a thin layer of biocompatible material such as the hydroxyapatite. This coating has a wide range of clinical applications in orthopedics and dentistry due to its biocompatibility and bioactivity characteristics. Low bonding strength and sudden variation of mechanical properties between the coating and the metallic layers are the main disadvantages of such common implants. To overcome these problems, a radial distributed functionally graded biomaterial (FGBM) was proposed in this paper and the effect of material property on the stress distribution around the dental implant-bone interface was studied. A three-dimensional finite element simulation was used to illustrate how the use of radial FGBM dental implant can reduce the maximum von Mises stress and, also the stress shielding effect in both the cortical and cancellous bones. The results, of course, give anybody an idea about optimized behaviors that can be achieved using such materials. The finite element solver was validated by familiar methods and the results were compared to previous works in the literature.

  4. Temporal and radial variation of the solar wind temperature-speed relationship

    Science.gov (United States)

    Elliott, H. A.; Henney, C. J.; McComas, D. J.; Smith, C. W.; Vasquez, B. J.

    2012-09-01

    The solar wind temperature (T) and speed (V) are generally well correlated at ˜1 AU, except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We perform a comprehensive analysis of both the temporal and radial variation in the temperature-speed (T-V) relationship of the non-transient wind, and our analysis provides insight into both the causes of the T-V relationship and the sources of the temperature variability. Often at 1 AU the speed-temperature relationship is well represented by a single linear fit over a speed range spanning both the slow and fast wind. However, at times the fast wind from coronal holes can have a different T-V relationship than the slow wind. A good example of this was in 2003 when there was a very large and long-lived outward magnetic polarity coronal hole at low latitudes that emitted wind with speeds as fast as a polar coronal hole. The long-lived nature of the hole made it possible to clearly distinguish that some holes can have a different T-V relationship. In an earlier ACE study, we found that both the compressions and rarefactions T-V curves are linear, but the compression curve is shifted to higher temperatures. By separating compressions and rarefactions prior to determining the radial profiles of the solar wind parameters, the importance of dynamic interactions on the radial evolution of the solar wind parameters is revealed. Although the T-V relationship at 1 AU is often well described by a single linear curve, we find that the T-V relationship continually evolves with distance. Beyond ˜2.5 AU the differences between the compressions and rarefactions are quite significant and affect the shape of the overall T-V distribution to the point that a simple linear fit no longer describes the distribution well. Since additional heating of the ambient solar wind outside of interaction regions can be associated with Alfvénic fluctuations and the turbulent energy cascade, we also estimate the heating rate

  5. Measurements of radial profiles of ion cyclotron resonance heating on the tandem mirror experiment

    International Nuclear Information System (INIS)

    Falabella, S.

    1988-01-01

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawrence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). This analyzer indicates an increase in ion temperature from ∼20 eV before ICRH to ∼150 eV during ICRH, with ∼60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial integral of n i T i as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma potential is seen to vary from axially peaked, to nearly flat, as the plasma conditions varied over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U

  6. AN AFFINE-INVARIANT SAMPLER FOR EXOPLANET FITTING AND DISCOVERY IN RADIAL VELOCITY DATA

    International Nuclear Information System (INIS)

    Hou Fengji; Hogg, David W.; Goodman, Jonathan; Weare, Jonathan; Schwab, Christian

    2012-01-01

    Markov chain Monte Carlo (MCMC) proves to be powerful for Bayesian inference and in particular for exoplanet radial velocity fitting because MCMC provides more statistical information and makes better use of data than common approaches like chi-square fitting. However, the nonlinear density functions encountered in these problems can make MCMC time-consuming. In this paper, we apply an ensemble sampler respecting affine invariance to orbital parameter extraction from radial velocity data. This new sampler has only one free parameter, and does not require much tuning for good performance, which is important for automatization. The autocorrelation time of this sampler is approximately the same for all parameters and far smaller than Metropolis-Hastings, which means it requires many fewer function calls to produce the same number of independent samples. The affine-invariant sampler speeds up MCMC by hundreds of times compared with Metropolis-Hastings in the same computing situation. This novel sampler would be ideal for projects involving large data sets such as statistical investigations of planet distribution. The biggest obstacle to ensemble samplers is the existence of multiple local optima; we present a clustering technique to deal with local optima by clustering based on the likelihood of the walkers in the ensemble. We demonstrate the effectiveness of the sampler on real radial velocity data.

  7. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  8. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  9. Robust and Stable Disturbance Observer of Servo System for Low Speed Operation Using the Radial Basis Function Network

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The speed estimation scheme in most servo drive systems for low speed operation is sensitive to the variation of machine parameter, especially the moment of inertia....... To estimate the motor inertia value, the observer using the Radial Basis Function Network (RBFN) is applied. A control law for stabilizing the system and adaptive laws for updating both of the weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable...... in the sense of Lyapunov. The effectiveness of the proposed inertia estimation is verified by simulations and experiments. It is concluded that the speed control performance in low speed region is improved with the proposed disturbance observer using RBFN....

  10. Anomalous Medial Branch of Radial Artery: A Rare Variant

    Directory of Open Access Journals (Sweden)

    Surbhi Wadhwa

    2016-10-01

    Full Text Available Radial artery is an important consistent vessel of the upper limb. It is a useful vascular access site for coronary procedures and its reliable anatomy has resulted in an elevation of radial forearm flaps for reconstructive surgeries of head and neck. Technical failures, in both the procedures, are mainly due to anatomical variations, such as radial loops, ectopic radial arteries or tortuosity in the vessel. We present a rare and a unique anomalous medial branch of the radial artery spiraling around the flexor carpi radialis muscle in the forearm with a high rising superficial palmar branch of radial artery. Developmentally it probably is a remanent of the normal pattern of capillary vessel maintenance and regression. Such a case is of importance for reconstructive surgeons and coronary interventionists, especially in view of its unique medial and deep course.

  11. Fuel radial design using Path Relinking; Diseno radial de combustible usando Path Relinking

    Energy Technology Data Exchange (ETDEWEB)

    Campos S, Y. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)

  12. Pressure Dependence of the Radial Breathing Mode of Carbon Nanotubes: The Effect of Fluid Adsorption

    Science.gov (United States)

    Longhurst, M. J.; Quirke, N.

    2007-04-01

    The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube surface. The adsorbate is treated as an elastic shell which couples with the radial breathing mode (RBM) of the nanotube via van der Waal interactions. Using analytical methods as well as molecular simulation, we observe a low frequency breathing mode for the adsorbed fluid at ˜50cm-1, as well as diameter dependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones.

  13. Visual attention shifting in autism spectrum disorders.

    Science.gov (United States)

    Richard, Annette E; Lajiness-O'Neill, Renee

    2015-01-01

    Abnormal visual attention has been frequently observed in autism spectrum disorders (ASD). Abnormal shifting of visual attention is related to abnormal development of social cognition and has been identified as a key neuropsychological finding in ASD. Better characterizing attention shifting in ASD and its relationship with social functioning may help to identify new targets for intervention and improving social communication in these disorders. Thus, the current study investigated deficits in attention shifting in ASD as well as relationships between attention shifting and social communication in ASD and neurotypicals (NT). To investigate deficits in visual attention shifting in ASD, 20 ASD and 20 age- and gender-matched NT completed visual search (VS) and Navon tasks with attention-shifting demands as well as a set-shifting task. VS was a feature search task with targets defined in one of two dimensions; Navon required identification of a target letter presented at the global or local level. Psychomotor and processing speed were entered as covariates. Relationships between visual attention shifting, set shifting, and social functioning were also examined. ASD and NT showed comparable costs of shifting attention. However, psychomotor and processing speed were slower in ASD than in NT, and psychomotor and processing speed were positively correlated with attention-shifting costs on Navon and VS, respectively, for both groups. Attention shifting on VS and Navon were correlated among NT, while attention shifting on Navon was correlated with set shifting among ASD. Attention-shifting costs on Navon were positively correlated with restricted and repetitive behaviors among ASD. Relationships between attention shifting and psychomotor and processing speed, as well as relationships between measures of different aspects of visual attention shifting, suggest inefficient top-down influences over preattentive visual processing in ASD. Inefficient attention shifting may be

  14. DATA CLASSIFICATION WITH NEURAL CLASSIFIER USING RADIAL BASIS FUNCTION WITH DATA REDUCTION USING HIERARCHICAL CLUSTERING

    Directory of Open Access Journals (Sweden)

    M. Safish Mary

    2012-04-01

    Full Text Available Classification of large amount of data is a time consuming process but crucial for analysis and decision making. Radial Basis Function networks are widely used for classification and regression analysis. In this paper, we have studied the performance of RBF neural networks to classify the sales of cars based on the demand, using kernel density estimation algorithm which produces classification accuracy comparable to data classification accuracy provided by support vector machines. In this paper, we have proposed a new instance based data selection method where redundant instances are removed with help of a threshold thus improving the time complexity with improved classification accuracy. The instance based selection of the data set will help reduce the number of clusters formed thereby reduces the number of centers considered for building the RBF network. Further the efficiency of the training is improved by applying a hierarchical clustering technique to reduce the number of clusters formed at every step. The paper explains the algorithm used for classification and for conditioning the data. It also explains the complexities involved in classification of sales data for analysis and decision-making.

  15. Ecosystem regime shifts disrupt trophic structure.

    Science.gov (United States)

    Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K

    2018-01-01

    Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological

  16. Clinical and Radiographic Outcomes of Unipolar and Bipolar Radial Head Prosthesis in Patients with Radial Head Fracture: A Systemic Review and Meta-Analysis.

    Science.gov (United States)

    Chen, Hongwei; Wang, Ziyang; Shang, Yongjun

    2018-06-01

    To compare clinical outcomes of unipolar and bipolar radial head prosthesis in the treatment of patients with radial head fracture. Medline, Cochrane, EMBASE, Google Scholar databases were searched until April 18, 2016 using the following search terms: radial head fracture, elbow fracture, radial head arthroplasty, implants, prosthesis, unipolar, bipolar, cemented, and press-fit. Randomized controlled trials, retrospective, and cohort studies were included. The Mayo elbow performance score (MEPS), disabilities of the arm, shoulder, and hand (DASH) score, radiologic assessment, ROM, and grip strength following elbow replacement were similar between prosthetic devices. The pooled mean excellent/good ranking of MEPS was 0.78 for unipolar and 0.73 for bipolar radial head arthroplasty, and the pooled mean MEPS was 86.9 and 79.9, respectively. DASH scores for unipolar and bipolar prosthesis were 19.0 and 16.3, respectively. Range of motion outcomes were similar between groups, with both groups have comparable risk of flexion arc, flexion, extension deficit, rotation arc, pronation, and supination (p values bipolar prosthesis). However, bipolar radial head prosthesis was associated with an increased chance of heterotopic ossification and lucency (p values ≤0.049) while unipolar prosthesis was not (p values ≥0.088). Both groups had risk for development of capitellar osteopenia or erosion/wear (p values ≤0.039). Unipolar and bipolar radial head prostheses were similar with respect to clinical outcomes. Additional comparative studies are necessary to further compare different radial head prostheses used to treat radial head fracture.

  17. Application of a proposed overcurrent relay in radial distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Conde, A.; Vazquez, E. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, A.P. 36-F, CU, CP 66450, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2011-02-15

    This paper contains the application criteria and coordination process for a proposed overcurrent relay in a radial power system with feed from one or multiple sources. This relay uses independent functions to detect faults and to calculate the operation time. Also this relay uses a time element function that allows it to reduce the time relay operation, enhancing the backup protection. Some of the proposed approaches improve the sensitivity of the relay. The selection of the best approach in the proposed relay is defined by the needs of the application. The proposed protection can be considered as an additional function protection to conventional overcurrent relays. (author)

  18. Theoretical implications of the galactic radial acceleration relation of McGaugh, Lelli, and Schombert

    Science.gov (United States)

    Nesbet, Robert K.

    2018-05-01

    Velocities in stable circular orbits about galaxies, a measure of centripetal gravitation, exceed the expected Kepler/Newton velocity as orbital radius increases. Standard Λ cold dark matter (ΛCDM) attributes this anomaly to galactic dark matter. McGaugh et al. have recently shown for 153 disc galaxies that observed radial acceleration is an apparently universal function of classical acceleration computed for observed galactic baryonic mass density. This is consistent with the empirical modified Newtonian dynamics (MOND) model, not requiring dark matter. It is shown here that suitably constrained ΛCDM and conformal gravity (CG) also produce such a universal correlation function. ΛCDM requires a very specific dark matter distribution, while the implied CG non-classical acceleration must be independent of galactic mass. All three constrained radial acceleration functions agree with the empirical baryonic v4 Tully-Fisher relation. Accurate rotation data in the nominally flat velocity range could distinguish between MOND, ΛCDM, and CG.

  19. Stress and sleep quality in doctors working on-call shifts are associated with functional gastrointestinal disorders.

    Science.gov (United States)

    Lim, Soo-Kyung; Yoo, Seung Jin; Koo, Dae Lim; Park, Chae A; Ryu, Han Jun; Jung, Yong Jin; Jeong, Ji Bong; Kim, Byeong Gwan; Lee, Kook Lae; Koh, Seong-Joon

    2017-05-14

    To investigate the role of sleep quality and psychosocial problems as predictors of functional gastrointestinal disorders (FGIDs) in doctors that work 24 hour-on-call shifts. In this cross-sectional observation study, using the Rome III Questionnaire and Pittsburgh Sleep Quality Index (PSQI), we analyzed 170 doctors with 24 hour-on-call shifts. Among the participants that had experienced a 24 hour-on-call shift within the last 6 mo, 48 (28.2%) had FGIDs. Overall prevalence of irritable bowel syndrome (IBS) and functional dyspepsia (FD) were 16.5% and 17.1%, respectively, with 5.3% exhibiting both. Sleep scores (PSQI) (8.79 ± 2.71 vs 7.30 ± 3.43, P = 0.008), the presence of serious psychosocial alarm (83.3% vs 56.6%, P = 0.004), and the proportion of doctors who experienced over two months of recent on-call work (81.2% vs 68.9%, P = 0.044) were significantly different between individuals with or without FGIDs. Multivariate analysis revealed that presenting serious psychosocial alarm was an independent risk factor for prevalence of FD (OR = 5.47, 95%CI: 1.06-28.15, P = 0.042) and poor sleep quality (PSQI ≥ 6) was a predictor of IBS (OR = 4.17, 95%CI: 1.92-19.02, P = 0.016). Physicians should recognize the role of sleep impairment and psychological stress in the development of FGIDs and a comprehensive approach should be considered to manage patients with FGIDs.

  20. Radial shock wave treatment alone is less efficient than radial shock wave treatment combined with tissue-specific plantar fascia-stretching in patients with chronic plantar heel pain.

    Science.gov (United States)

    Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola

    2015-12-01

    Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  1. Seismic modeling with radial basis function-generated finite differences (RBF-FD) – a simplified treatment of interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu

    2017-04-15

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.

  2. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    Science.gov (United States)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  3. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    Gonzalez C, J.; Martin del Campo M, C.

    2003-01-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  4. Vitreous veils and radial lattice in Marshall syndrome.

    Science.gov (United States)

    Brubaker, Jacob W; Mohney, Brian G; Pulido, Jose S; Babovic-Vuksanovic, Dusica

    2008-12-01

    To report the findings of membranous vitreous veils and radial lattice in a child with Marshall syndrome. Observational case report. Retrospective review of medical records and fundus photograph of a 6-year-old boy with Marshall syndrome. Vitreoretinal findings were significant for bilateral membranous vitreous veils and radial lattice degeneration. This case demonstrates the occurrence of vitreous veils and radial lattice degeneration in patients with Marshall syndrome.

  5. Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity.

    Science.gov (United States)

    Moussaoui, Ahmed; Bouziane, Touria

    2016-01-01

    The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).

  6. Long-Term Follow-up of Modular Metallic Radial Head Replacement: Commentary on an article by Jonathan P. Marsh, MD, FRCSC, et al.: "Radial Head Fractures Treated with Modular Metallic Radial Head Replacement: Outcomes at a Mean Follow-up of Eight Years".

    OpenAIRE

    Mansat, Pierre

    2016-01-01

    Radial head arthroplasty is used to stabilize the joint after a complex acute radial head fracture that is not amenable for fixation or to treat sequelae of radial head fractures. Most of the currently used radial head prostheses are metallic monoblock implants that are not consistently adaptable and raise technical challenges since their implantation requires lateral elbow subluxation. Metallic modular radial head arthroplasty implants available in various head and stem sizes have been devel...

  7. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  8. Radial head fracture associated with posterior interosseous nerve injury

    Directory of Open Access Journals (Sweden)

    Bernardo Barcellos Terra

    Full Text Available ABSTRACT Fractures of the radial head and radial neck correspond to 1.7-5.4% of all fractures and approximately 30% may present associated injuries. In the literature, there are few reports of radial head fracture with posterior interosseous nerve injury. This study aimed to report a case of radial head fracture associated with posterior interosseous nerve injury. CASE REPORT: A male patient, aged 42 years, sought medical care after falling from a skateboard. The patient related pain and limitation of movement in the right elbow and difficulty to extend the fingers of the right hand. During physical examination, thumb and fingers extension deficit was observed. The wrist extension showed a slight radial deviation. After imaging, it became evident that the patient had a fracture of the radial head that was classified as grade III in the Mason classification. The patient underwent fracture fixation; at the first postoperative day, thumb and fingers extension was observed. Although rare, posterior interosseous nerve branch injury may be associated with radial head fractures. In the present case, the authors believe that neuropraxia occurred as a result of the fracture hematoma and edema.

  9. Radial transport with perturbed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  10. Radial transport with perturbed magnetic field

    International Nuclear Information System (INIS)

    Hazeltine, R. D.

    2015-01-01

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order

  11. Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects

    Directory of Open Access Journals (Sweden)

    Anthony G. Dixon

    2017-10-01

    Full Text Available The effective medium approach to radial fixed bed dispersion models, in which radial dispersion of mass is superimposed on axial plug flow, is based on a constant effective dispersion coefficient, DT. For packed beds of a small tube-to-particle diameter ratio (N, the experimentally-observed decrease in this parameter near the tube wall is accounted for by a lumped resistance located at the tube wall, the wall mass transfer coefficient km. This work presents validated computational fluid dynamics (CFD simulations to obtain detailed radial velocity and concentration profiles for eight different computer-generated packed tubes of spheres in the range 5.04 ≤ N ≤ 9.3 and over a range of flow rates 87 ≤ Re ≤ 870 where Re is based on superficial velocity and the particle diameter dp. Initial runs with pure air gave axial velocity profiles vz(r averaged over the length of the packing. Then, simulations with the tube wall coated with methane yielded radial concentration profiles. A model with only DT could not describe the radial concentration profiles. The two-parameter model with DT and km agreed better with the bed-center concentration profiles, but not with the sharp decreases in concentration close to the tube wall. A three-parameter model based on classical two-layer mixing length theory, with a wall-function for the decrease in transverse radial convective transport in the near-wall region, showed greatly improved ability to reproduce the near-wall concentration profiles.

  12. Optimization of PWR fuel assembly radial enrichment and burnable poison location based on adaptive simulated annealing

    International Nuclear Information System (INIS)

    Rogers, Timothy; Ragusa, Jean; Schultz, Stephen; St Clair, Robert

    2009-01-01

    The focus of this paper is to present a concurrent optimization scheme for the radial pin enrichment and burnable poison location in PWR fuel assemblies. The methodology is based on the Adaptive Simulated Annealing (ASA) technique, coupled with a neutron lattice physics code to update the cost function values. In this work, the variations in the pin U-235 enrichment are variables to be optimized radially, i.e., pin by pin. We consider the optimization of two categories of fuel assemblies, with and without Gadolinium burnable poison pins. When burnable poisons are present, both the radial distribution of enrichment and the poison locations are variables in the optimization process. Results for 15 x 15 PWR fuel assembly designs are provided.

  13. Polysomnographic Sleep and Circadian Temperature Rhythms as a Function of Prior Shift Work Exposure in Retired Seniors.

    Science.gov (United States)

    Monk, Timothy H; Buysse, Daniel J; Billy, Bart D; Fletcher, Mary E; Kennedy, Kathy S

    2013-04-29

    In an earlier published telephone interview study (n > 1,000) we have shown that retired shift workers subjectively report worse sleep than retired day workers. This laboratory study sought to determine whether these findings held up when objective polysomnograhic (PSG) measures of sleep were taken and whether retirees' circadian temperature rhythms differed as a function of shift work exposure. All completers of the telephone interview were invited to attend a 36-hour laboratory study for which participants were paid. This involved continuous core body temperature measurement (using an ingestible pill-based system) and 2 nights of PSG. Shift work exposure (plus other measures) was collected by taking a detailed work history. The second laboratory night was scored into sleep stages. Post hoc, we divided participants into 4 shift work exposure groups: 0 years (ie, no exposure to shift work), 1 to 7 years, 7 to 20 years, and >20 years. Sample sizes were 11, 16, 15, and 15, respectively, with approximate equality in mean age (71.7 years of age, 69.1 years of age, 70.0 years of age, and 70.4 years of age, respectively) and percent male (63%, 50%, 67%, and 73%, respectively). Shift work exposure was associated with worse PSG sleep in a dose-related fashion. The percentages of participants with sleep efficiency, 80% for the 0 years, 1 to 7 years, 7 to 20 years, and >20 years groups were 36%, 63%, 67%, and 73%, respectively ( P work exposure appeared to result ( P = 0.06) in an increased spread of phase angles (difference between habitual bedtime and time of temperature trough). In conclusion, it appears likely that shift work may be related to a scarring of sleep and circadian rhythms. This may be associated with a change in the relationship between habitual sleep timing and the phase of the circadian pacemaker.

  14. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    Science.gov (United States)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  15. Phase gradient algorithm based on co-axis two-step phase-shifting interferometry and its application

    Science.gov (United States)

    Wang, Yawei; Zhu, Qiong; Xu, Yuanyuan; Xin, Zhiduo; Liu, Jingye

    2017-12-01

    A phase gradient method based on co-axis two-step phase-shifting interferometry, is used to reveal the detailed information of a specimen. In this method, the phase gradient distribution can only be obtained by calculating both the first-order derivative and the radial Hilbert transformation of the intensity difference between two phase-shifted interferograms. The feasibility and accuracy of this method were fully verified by the simulation results for a polystyrene sphere and a red blood cell. The empirical results demonstrated that phase gradient is sensitive to changes in the refractive index and morphology. Because phase retrieval and tedious phase unwrapping are not required, the calculation speed is faster. In addition, co-axis interferometry has high spatial resolution.

  16. Exosomes and Metabolic Function in Mice Exposed to Alternating Dark-Light Cycles Mimicking Night Shift Work Schedules

    Directory of Open Access Journals (Sweden)

    Abdelnaby Khalyfa

    2017-11-01

    Full Text Available Sleep is an important modulator of metabolic function. Disruptions of sleep in circadian rhythm are common in modern societies and are associated with increased risk of developing cardiometabolic disorders. Exosomes are ubiquitous extracellular vesicles that may play a mechanistic role in metabolic derangements. We hypothesized that alternating dark-light cycles mimicking shift work in mice would alter fecal microbiota and colonic epithelium permeability and alter plasma exosome cargo and metabolic function. C57BL/6 mice were randomly assigned to (i control day light (CL, or (ii inverted dark-light every 2 weeks for 8 weeks (IN. Body weight, fat mass and HOMA-IR were measured, along with Tregs, metabolic, and resident macrophages in visceral white adipose tissue (vWAT. Fecal water samples were incubated with confluent colonic epithelium cell cultures in electric cell-substrate impedance sensing (ECIS arrays, and plasma exosomes were added to differentiated adipocytes and insulin-induced pAKT/AKT expression changes were assessed by western blots. Mice exposed to IN showed elevated HOMA-IR, and their fecal samples showed altered microbiota which promote increased permeability of the colonic epithelial cell barrier. Plasma exosomes decreased pAKT/AKT responses to exogenous insulin compared to CL, and altered expression of circadian clock genes. Inflammatory macrophages (Ly-6chigh were increased in IN-exposed vWAT, while Tregs were decreased. Thus, gut microbiota and the cargo of plasma exosomes are altered by periodic shifts in environmental lighting, and effectively alter metabolic function, possibly via induction of systemic inflammation and altered clock expression in target tissues. Further exploration of exosomal miRNA signatures in shift workers and their putative metabolic organ cell targets appears warranted.

  17. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, Frank H.; Riepl, Hubert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Maurer, Till [Boehringer Ingelheim Pharma GmbH and Co. KG, Analytical Sciences Department (Germany); Gronwald, Wolfram [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany); Neidig, Klaus-Peter [Bruker BioSpin GmbH, Software Department (Germany); Kalbitzer, Hans Robert [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)], E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de

    2007-12-15

    Protein-protein interactions are often studied by chemical shift mapping using solution NMR spectroscopy. When heteronuclear data are available the interaction interface is usually predicted by combining the chemical shift changes of different nuclei to a single quantity, the combined chemical shift perturbation {delta}{delta}{sub comb}. In this paper different procedures (published and non-published) to calculate {delta}{delta}{sub comb} are examined that include a variety of different functional forms and weighting factors for each nucleus. The predictive power of all shift mapping methods depends on the magnitude of the overlap of the chemical shift distributions of interacting and non-interacting residues and the cut-off criterion used. In general, the quality of the prediction on the basis of chemical shift changes alone is rather unsatisfactory but the combination of chemical shift changes on the basis of the Hamming or the Euclidian distance can improve the result. The corrected standard deviation to zero of the combined chemical shift changes can provide a reasonable cut-off criterion. As we show combined chemical shifts can also be applied for a more reliable quantitative evaluation of titration data.

  18. The radial flow method: constraints from laboratory experiments on the evolution of hydraulic properties of fractures during frictional sliding experiments

    Science.gov (United States)

    Kewel, M.; Renner, J.

    2017-12-01

    The variation of hydraulic properties during sliding events is of importance for source mechanics and analyses of the evolution in effective stresses. We conducted laboratory experiments on samples of Padang granite to elucidate the interrelation between shear displacement on faults and their hydraulic properties. The cylindrical samples of 30 mm diameter and 75 mm length were prepared with a ground sawcut, inclined 35° to the cylindrical axis and accessed by a central bore of 3 mm diameter. The conventional triaxial compression experiments were conducted at effective pressures of 30, 50, and 70 MPa at slip rates of 2×10-4 and 8×10-4 mm s-1. The nominally constant fluid pressure of 30 MPa was modulated by oscillations with an amplitude of up to 0.5 MPa. Permeability and specific storage capacity of the fault were determined using the oscillatory radial-flow method that rests on an analysis of amplitude ratio and phase shift between the oscillatory fluid pressure and the oscillatory fluid flow from and into the fault plane. This method allowed us to continuously monitor the hydraulic evolution during elastic loading and frictional sliding. The chosen oscillation period of 60 s guaranteed a resolution of hydraulic properties for slip increments as small as 20 μm. The determined hydraulic properties show a fairly uniform dependence on normal stress at hydrostatic conditions and initial elastic loading. The samples exhibited stable frictional sliding with modest strengthening with increasing strain. Since not all phase-shift values fell inside the theoretical range for purely radial pressure diffusion during frictional sliding, the records of equivalent hydraulic properties exhibit some gaps. In the phases with evaluable phase-shift values, permeability fluctuates by almost one order of magnitude over slip intervals of as little as 100 μm. We suppose that the observed fluctuations are related to comminution and reconfiguration of asperities on the fault planes

  19. Asymptotic Solutions of Serial Radial Fuel Shuffling

    Directory of Open Access Journals (Sweden)

    Xue-Nong Chen

    2015-12-01

    Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.

  20. Distortion of magnetic field lines caused by radial displacements of ITER toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Amoskov, V.M., E-mail: sytch@niiefa.spb.su [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Gribov, Y.V. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lamzin, E.A.; Sytchevsky, S.E. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation)

    2017-05-15

    An assessment of distortions of ideal (circle) field lines caused by random radial displacements of the TF coils by |∆R| ≤ 5 mm has been performed from the statistical analysis assuming a uniform probability density function for displacements.

  1. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    Science.gov (United States)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  2. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.

    Science.gov (United States)

    Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman

    2017-02-01

    The soil sorption partition coefficient logK oc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logK oc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logK oc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The electrical characteristic and gain behavior as a function of the radial distance from the laser axis in a copper vapor laser

    International Nuclear Information System (INIS)

    Gal, G.

    1989-06-01

    The dependence of few parameters (related to the laser gain) on the radial distance from the laser axis, is observed very easily in a large-bore Copper Vapor Laser (CVL). An 80-mm-bore CVL which has reproducible parameters for research purposes has been constructed. The temporal development of the gain at different radial distances in this laser has been measured. A narrow probing beam from a small CVL operating as a oscillator has been used for the measurements, while the large-bore CVL has been operated as an amplifier and probed by this beam at different radial points. The electric response of the laser has also been checked and lead to the conclusion that raising the electrons energy in the laser plasma entails higher gain. As the laser tube wall was moved towards the laser axis, a temporal lag in the gain development and a reduction in its size has been found. The temporal lag is related to skin effect which delays the penetration of the electric field in the plasma towards the laser axis. The reduction in gain is related to the radial dependence of the population of the laser lower levels. It has also been found that under saturation the average power per unit area extracted from the laser is weakly dependent on the radial distance. (author)

  4. Radial frequency stimuli and sine-wave gratings seem to be processed by distinct contrast brain mechanisms

    Directory of Open Access Journals (Sweden)

    M.L.B. Simas

    2005-03-01

    Full Text Available An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions. Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd, as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency. Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition for sine-wave gratings and decreased thresholds (i.e., summation for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings and the other at high luminance and contrast levels (radial frequency stimuli. We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4.

  5. Pressure drop variation as a function of axial and radial power distribution in CANDU fuel channel with standard and CANFLEX 43 bundles

    International Nuclear Information System (INIS)

    Catana, Alexandru; Department of Energy Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    CANDU 600 nuclear reactors are usually fuelled with STANDARD (STD), 37 rods fuel bundles. Natural uranium (NU) dioxide (UO 2 ), is used as fuel composition. A new fuel bundle geometry called CANFLEX (CFX) with 43 rods is proposed and some new fuel composition are considered. Flexibility is the key word for the attempt to use some different fuel geometries and compositions for CANDU 600 nuclear reactors as well as for innovative ACR-700/1000 nuclear reactors. The fuel bundle considered in this paper is CFX-RU-0.90 that encodes the CANFLEX geometry, recycled dioxide uranium (RU) with 0.90% enrichment. The goal of this proposal is ambitious: a higher average discharge burn-up up to 14000 MWd/tU and, for the same amount of generated electric power, reduction in nuclear fuel fabrication, reduction of spent nuclear fuel radioactive waste and reduction of refueling operational work by using fewer bundles. An improved sub-channel approach for thermal-hydraulic analysis is used in this paper to compute some flow parameters, mainly the pressure drop along the CANDU 600 fuel channel when STD or CFX-RU-0.90 fuel bundles. Also an intermediate CFX-NU fuel bundle are used, for gradual comparison. For CFX-RU- 0.90 four fuel bundle shift refueling scheme is used instead of eight, that will determine different axial power distributions. At the same time radial power distribution is affected by the geometry and by the fuel composition of fuel bundle type used. Some other thermal-hydraulic flow parameters will be influenced, too. One of the most important parameter is pressure drop (PD) along the fuel channel because of its importance in drag force evaluation. We start with an axial power distribution, which is characteristic for a refueling scheme of eight or four fuel bundles on a shift. Comparative results are presented between STD37, CFX-NU CFX-RU-0.90 fuel bundles in a CANDU nuclear reactor operating conditions. Neutron flux distribution analysis shows that four bundle shift

  6. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients.

    Science.gov (United States)

    Tunali, Ilke; Stringfield, Olya; Guvenis, Albert; Wang, Hua; Liu, Ying; Balagurunathan, Yoganand; Lambin, Philippe; Gillies, Robert J; Schabath, Matthew B

    2017-11-10

    The goal of this study was to extract features from radial deviation and radial gradient maps which were derived from thoracic CT scans of patients diagnosed with lung adenocarcinoma and assess whether these features are associated with overall survival. We used two independent cohorts from different institutions for training (n= 61) and test (n= 47) and focused our analyses on features that were non-redundant and highly reproducible. To reduce the number of features and covariates into a single parsimonious model, a backward elimination approach was applied. Out of 48 features that were extracted, 31 were eliminated because they were not reproducible or were redundant. We considered 17 features for statistical analysis and identified a final model containing the two most highly informative features that were associated with lung cancer survival. One of the two features, radial deviation outside-border separation standard deviation, was replicated in a test cohort exhibiting a statistically significant association with lung cancer survival (multivariable hazard ratio = 0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological underpinnings of these features and found radial gradient and radial deviation image features were significantly associated with semantic radiological features.

  7. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  8. Modified echo peak correction for radial acquisition regime (RADAR).

    Science.gov (United States)

    Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta

    2009-01-01

    Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B(0), some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial aquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T(1)- and T(2)-weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences.

  9. Modified echo peak correction for radial acquisition regime (RADAR)

    International Nuclear Information System (INIS)

    Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta

    2009-01-01

    Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B 0 , some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial acquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T 1 -and T 2 -weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences. (author)

  10. Cognitive Shifting as a Predictor of Progress in Social Understanding in High-Functioning Adolescents with Autism: A Prospective Study.

    Science.gov (United States)

    Berger, Hans J. C.; And Others

    1993-01-01

    This prospective study of 17 high-functioning residentially treated adolescents with autism found that cognitive shifting, as measured by card sorting tests, was the only significant factor in predicting progress in social understanding. (Author/JDD)

  11. Tax Shift by Economic Functions and Its Effect on Economic Growth in the European Union

    Directory of Open Access Journals (Sweden)

    Irena Szarowská

    2015-01-01

    Full Text Available The aim of the paper is to examine effects of tax shift on economic growth and provide a direct empirical evidence in the European Union (EU. It is used the Eurostat’s definition to categorize tax burden by economic functions and implicit tax rates of consumption, labour and capital are investigated. First, paper summarizes main development of tax shift in a whole EU till 2014 and followed empirical analysis is based on annual panel data of 22 EU Member States in years 1995–2012 (time span is divided into a pre-crisis and a post-crisis period. Explanatory variables are not examined in individual regressions, but the study uses Generalized Method of Moments applied on dynamic panel data and estimations are based on Arellan-Bond estimator (1991. Results confirm positive and statistically significant impact of consumption taxes and weaker but negative effect of labour taxation on economic growth. In a post-crisis period, findings report raising labour taxes as the strongest and the only significant variable. It suggests that harmful effect of labour taxation is enlarging in a time of unfavorable economic conditions. A tax shift on capital taxation has negative but often statistically insignificant impact on economic growth.

  12. Anterior transposition of the radial nerve--a cadaveric study.

    Science.gov (United States)

    Yakkanti, Madhusudhan R; Roberts, Craig S; Murphy, Joshua; Acland, Robert D

    2008-01-01

    The radial nerve is at risk during the posterior plating of the humerus. The purpose of this anatomic study was to assess the extent of radial nerve dissection required for anterior transposition through the fracture site (transfracture anterior transposition). A cadaver study was conducted approaching the humerus by a posterior midline incision. The extent of dissection of the nerve necessary for plate fixation of the humerus fracture was measured. An osteotomy was created to model a humeral shaft fracture at the spiral groove (OTA classification 12-A2, 12-A3). The radial nerve was then transposed anterior to the humeral shaft through the fracture site. The additional dissection of the radial nerve and the extent of release of soft tissue from the humerus shaft to achieve the transposition were measured. Plating required a dissection of the radial nerve 1.78 cm proximal and 2.13 cm distal to the spiral groove. Transfracture anterior transposition of the radial nerve required an average dissection of 2.24 cm proximal and 2.68 cm distal to the spiral groove. The lateral intermuscular septum had to be released for 2.21 cm on the distal fragment to maintain laxity of the transposed nerve. Transfracture anterior transposition of the radial nerve before plating is feasible with dissection proximal and distal to the spiral groove and elevation of the lateral intermuscular septum. Potential clinical advantages of this technique include enhanced fracture site visualization, application of broader plates, and protection of the radial nerve during the internal fixation.

  13. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  14. Methodological aspects of shift-work research.

    Science.gov (United States)

    Knutsson, Anders

    2004-01-01

    A major issue in shift-work research is to understand the possible ways in which shift work can impact performance and health. Nearly all body functions, from those of the cellular level to those of the entire body, are circadian rhythmic. Disturbances of these rhythms as well as the social consequences of odd work hours are of importance for the health and well-being of shift workers. This article reviews a number of common methodological issues which are of relevance to epidemiological studies in this area of research. It discusses conceptual problems regarding the use of the term "shift work," and it underscores the need to develop models that explain the mechanisms of disease in shift workers.

  15. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  16. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  17. Radial Basis Functional Model of Multi-Point Dieless Forming Process for Springback Reduction and Compensation

    Directory of Open Access Journals (Sweden)

    Misganaw Abebe

    2017-11-01

    Full Text Available Springback in multi-point dieless forming (MDF is a common problem because of the small deformation and blank holder free boundary condition. Numerical simulations are widely used in sheet metal forming to predict the springback. However, the computational time in using the numerical tools is time costly to find the optimal process parameters value. This study proposes radial basis function (RBF to replace the numerical simulation model by using statistical analyses that are based on a design of experiment (DOE. Punch holding time, blank thickness, and curvature radius are chosen as effective process parameters for determining the springback. The Latin hypercube DOE method facilitates statistical analyses and the extraction of a prediction model in the experimental process parameter domain. Finite element (FE simulation model is conducted in the ABAQUS commercial software to generate the springback responses of the training and testing samples. The genetic algorithm is applied to find the optimal value for reducing and compensating the induced springback for the different blank thicknesses using the developed RBF prediction model. Finally, the RBF numerical result is verified by comparing with the FE simulation result of the optimal process parameters and both results show that the springback is almost negligible from the target shape.

  18. Glucose metabolism during rotational shift-work in healthcare workers.

    Science.gov (United States)

    Sharma, Anu; Laurenti, Marcello C; Dalla Man, Chiara; Varghese, Ron T; Cobelli, Claudio; Rizza, Robert A; Matveyenko, Aleksey; Vella, Adrian

    2017-08-01

    Shift-work is associated with circadian rhythm disruption and an increased risk of obesity and type 2 diabetes. We sought to determine the effect of rotational shift-work on glucose metabolism in humans. We studied 12 otherwise healthy nurses performing rotational shift-work using a randomised crossover study design. On each occasion, participants underwent an isotope-labelled mixed meal test during a simulated day shift and a simulated night shift, enabling simultaneous measurement of glucose flux and beta cell function using the oral minimal model. We sought to determine differences in fasting and postprandial glucose metabolism during the day shift vs the night shift. Postprandial glycaemic excursion was higher during the night shift (381±33 vs 580±48 mmol/l per 5 h, pshift. While insulin action did not differ between study days, the beta cell responsivity to glucose (59±5 vs 44±4 × 10 -9  min -1 ; pshift. Impaired beta cell function during the night shift may result from normal circadian variation, the effect of rotational shift-work or a combination of both. As a consequence, higher postprandial glucose concentrations are observed during the night shift.

  19. Machiavellianism, Discussion Time, and Group Shift

    Science.gov (United States)

    Lamm, Helmut; Myers, David G.

    1976-01-01

    Social-emotional and rational-cognitive explanations of group risky shift on choice dilemmas (hypothetical life situations) were evaluated by comparing shift in groups of low Mach (emotional) and high Mach (non-emotional) subjects. Effects of Machiavellian beliefs on social functioning are examined. Group composition was not observed to affect…

  20. Linear theory radial and nonradial pulsations of DA dwarf stars

    International Nuclear Information System (INIS)

    Starrfield, S.; Cox, A.N.; Hodson, S.; Pesnell, W.D.

    1982-01-01

    The Los Alamos stellar envelope and radial linear non-adiabatic computer code, along with a new Los Alamos non-radial code are used to investigate the total hydrogen mass necessary to produce the non-radial instability of DA dwarfs

  1. Uniqueness and zeros of q-shift difference polynomials

    Indian Academy of Sciences (India)

    In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift ...

  2. Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads

    International Nuclear Information System (INIS)

    Bayat, Mehdi; Saleem, M.; Sahari, B.B.; Hamouda, A.M.S.; Mahdi, E.

    2009-01-01

    Rotating disks have many applications in the aerospace industry such as gas turbines and gears. These disks normally work under thermo mechanical loads. Minimizing the weight of such components can help reduce the overall payload in aerospace industry. For this purpose, a rotating functionally graded (FG) disk with variable thickness under a steady temperature field is considered in this paper. Thermo elastic solutions and the weight of the disk are related to the material grading index and the geometry of the disk. It is found that a disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared to a uniform thickness disk. Maximum radial stress due to centrifugal load in the solid disk with parabolic thickness profile may not be at the center unlike uniform thickness disk. Functionally graded disk with variable thickness has smaller stresses due to thermal load compared to those with uniform thickness. It is seen that for a given value of grading index, the FG disk having concave thickness profile is the lightest in weight whereas the FG disk with uniform thickness profile is the heaviest. Also for any given thickness profile, the weight of the FG disk lies in between the weights of the all-metal and the all-ceramic disks.

  3. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  4. Nonlinear Buckling Analysis of Functionally Graded Graphene Reinforced Composite Shallow Arches with Elastic Rotational Constraints under Uniform Radial Load.

    Science.gov (United States)

    Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang

    2018-05-28

    The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.

  5. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  6. Functional cervicothoracic boundary modified by anatomical shifts in the neck of giraffes.

    Science.gov (United States)

    Gunji, Megu; Endo, Hideki

    2016-02-01

    Here we examined the kinematic function of the morpho- logically unique first thoracic vertebra in giraffes. The first thoracic vertebra of the giraffe displayed similar shape to the seventh cervical vertebra in general ruminants. The flexion experiment using giraffe carcasses demonstrated that the first thoracic vertebra exhibited a higher dorsoventral mobility than other thoracic vertebrae. Despite the presence of costovertebral joints, restriction in the intervertebral movement imposed by ribs is minimized around the first thoracic vertebra by subtle changes of the articular system between the vertebra and ribs. The attachment area of musculus longus colli, mainly responsible for ventral flexion of the neck, is partly shifted posteriorly in the giraffe so that the force generated by muscles is exerted on the cervical vertebrae and on the first thoracic vertebra. These anatomical modifications allow the first thoracic vertebra to adopt the kinematic function of a cervical vertebra in giraffes. The novel movable articulation in the thorax functions as a fulcrum of neck movement and results in a large displacement of reachable space in the cranial end of the neck. The unique first thoracic vertebra in giraffes provides higher flexibility to the neck and may provide advantages for high browsing and/or male competition behaviours specific to giraffes.

  7. Optimization of vehicle compartment low frequency noise based on Radial Basis Function Neuro-Network Approximation Model

    Directory of Open Access Journals (Sweden)

    HU Qi-guo

    2017-01-01

    Full Text Available For reducing the vehicle compartment low frequency noise, the Optimal Latin hypercube sampling method was applied to perform experimental design for sampling in the factorial design space. The thickness parameters of the panels with larger acoustic contribution was considered as factors, as well as the vehicle mass, seventh rank modal frequency of body, peak sound pressure of test point and sound pressure root-mean-square value as responses. By using the RBF(radial basis function neuro-network method, an approximation model of four responses about six factors was established. Further more, error analysis of established approximation model was performed in this paper. To optimize the panel’s thickness parameter, the adaptive simulated annealing algorithm was im-plemented. Optimization results show that the peak sound pressure of driver’s head was reduced by 4.45dB and 5.47dB at frequency 158HZ and 134Hz respec-tively. The test point pressure were significantly reduced at other frequency as well. The results indicate that through the optimization the vehicle interior cavity noise was reduced effectively, and the acoustical comfort of the vehicle was im-proved significantly.

  8. A CONSTRAINT ON BROWN DWARF FORMATION VIA EJECTION: RADIAL VARIATION OF THE STELLAR AND SUBSTELLAR MASS FUNCTION OF THE YOUNG OPEN CLUSTER IC 2391

    International Nuclear Information System (INIS)

    Boudreault, S.; Bailer-Jones, C. A. L.

    2009-01-01

    We present the stellar and substellar mass function (MF) of the open cluster IC 2391, plus its radial dependence, and use this to put constraints on the formation mechanism of brown dwarfs (BDs). Our multi-band optical and infrared photometric survey with spectroscopic follow-up covers 11 deg 2 , making it the largest survey of this cluster to date. We observe a radial variation in the MF over the range 0.072-0.3 M sun , but no significant variation in the MF below the substellar boundary at the three cluster radius intervals is analyzed. This lack of radial variation for low masses is what we would expect with the ejection scenario for BD formation, although considering that IC 2391 has an age about three times older than its crossing time, we expect that BDs with a velocity greater than the escape velocity have already escaped the cluster. Alternatively, the variation in the MF of the stellar objects could be an indication that they have undergone mass segregation via dynamical evolution. We also observe a significant variation across the cluster in the color of the (background) field star locus in color-magnitude diagrams and conclude that this is due to variable background extinction in the Galactic plane. From our preliminary spectroscopic follow-up, to confirm BD status and cluster membership, we find that all candidates are M dwarfs (in either the field or the cluster), demonstrating the efficiency of our photometric selection method in avoiding contaminants (e.g., red giants). About half of our photometric candidates for which we have spectra are spectroscopically confirmed as cluster members; two are new spectroscopically confirmed BD members of IC 2391.

  9. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    Science.gov (United States)

    Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira

    2018-03-01

    High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  10. Effect of the radial electric field on turbulence

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.

    1990-01-01

    For many years, the neoclassical transport theory for three- dimensional magnetic configurations, such as magnetic mirrors, ELMO Bumpy Tori (EBTs), and stellarators, has recognized the critical role of the radial electric field in the confinement. It was in these confinement devices that the first experimental measurements of the radial electric field were made and correlated with confinement losses. In tokamaks, the axisymmetry implies that the neoclassical fluxes are ambipolar and, as a consequence, independent of the radial electric field. However, axisymmetry is not strict in a tokamak with turbulent fluctuations, and near the limiter ambipolarity clearly breaks down. Therefore, the question of the effect of the radial electric field on tokamak confinement has been raised in recent years. In particular, the radial electric field has been proposed to explain the transition from L-mode to H-mode confinement. There is some initial experimental evidence supporting this type of explanation, although there is not yet a self-consistent theory explaining the generation of the electric field and its effect on the transport. Here, a brief review of recent results is presented. 27 refs., 4 figs

  11. A user's evaluation of radial flow HEPA filters

    International Nuclear Information System (INIS)

    Purcell, J.A.

    1992-07-01

    High efficiency particulate air (HEPA) filters of rectangular cross section have been used to remove particulates and the associated radioactivity from air ventilation streams since the advent of nuclear materials processing. Use of round axial flow HEPA filters is also longstanding. The advantages of radial flow filters in a circular configuration have been well demonstrated in UKAEA during the last 5--7 years. An evaluation of radial flow filters for fissile process gloveboxes reveals several substantial benefits in addition to the advantages claimed in UKAEA Facilities. The radial flow filter may be provided in a favorable geometry resulting in improved criticality safety. The filter configuration lends to in-place testing at the glovebox to exhaust duct interface. This will achieve compliance with DOE Order 6430.1A, Section 99.0.2. Preliminary testing at SRS for radial flow filters manufactured by Flanders Filters, Inc. revealed compliance in all the usual specifications for filtration efficiency, pressure differential and materials of construction. An evaluation, further detailed in this report, indicates that the radial flow HEPA filter should be considered for inclusion in new ventilation system designs

  12. Radial extension of drift waves in presence of velocity profiles

    International Nuclear Information System (INIS)

    Sen, S.; Weiland, J.

    1994-01-01

    The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability

  13. Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study

    International Nuclear Information System (INIS)

    Vaziri, Nima; Hojabri, Alireza; Erfani, Ali; Monsefi, Mehrdad; Nilforooshan, Behnam

    2007-01-01

    Critical heat flux (CHF) is an important parameter for the design of nuclear reactors. Although many experimental and theoretical researches have been performed, there is not a single correlation to predict CHF because it is influenced by many parameters. These parameters are based on fixed inlet, local and fixed outlet conditions. Artificial neural networks (ANNs) have been applied to a wide variety of different areas such as prediction, approximation, modeling and classification. In this study, two types of neural networks, radial basis function (RBF) and multilayer perceptron (MLP), are trained with the experimental CHF data and their performances are compared. RBF predicts CHF with root mean square (RMS) errors of 0.24%, 7.9%, 0.16% and MLP predicts CHF with RMS errors of 1.29%, 8.31% and 2.71%, in fixed inlet conditions, local conditions and fixed outlet conditions, respectively. The results show that neural networks with RBF structure have superior performance in CHF data prediction over MLP neural networks. The parametric trends of CHF obtained by the trained ANNs are also evaluated and results reported

  14. Combined Radial and Femoral Access Strategy and Radial-Femoral Rendezvous in Patients With Long and Complex Iliac Occlusions.

    Science.gov (United States)

    Hanna, Elias B; Mogabgab, Owen N; Baydoun, Hassan

    2018-01-01

    We present cases of complex, calcified iliac occlusive disease revascularized via a combined radial-femoral access strategy. Through a 6-French, 125-cm transradial guiding catheter, antegrade guidewires and catheters are advanced into the iliac occlusion, while retrograde devices are advanced transfemorally. The transradial and transfemoral channels communicate, allowing the devices to cross the occlusion into the true lumen (radial-femoral antegrade-retrograde rendezvous).

  15. Radial flow in 40Ar+45Sc reactions at E=35-115 MeV/nucleon

    Science.gov (United States)

    Pak, R.; Craig, D.; Gualtieri, E. E.; Hannuschke, S. A.; Lacey, R. A.; Lauret, J.; Llope, W. J.; Stone, N. T. B.; Vander Molen, A. M.; Westfall, G. D.; Yee, J.

    1996-10-01

    Collective radial flow of light fragments from 40Ar+45Sc reactions at beam energies between 35 and 115 MeV/nucleon has been investigated using the Michigan State University 4π Array. The mean transverse kinetic energy of the different fragment types increases with event centrality and increases as a function of the incident beam energy. Comparison of our measured values of shows agreement with predictions of Boltzmann-Uehling-Uhlenbeck model and WIX multifragmentation model calculations. The radial flow extracted from accounts for approximately half of the emitted particle's energy for the heavier fragments (Z>=4) at the highest beam energy studied.

  16. Reliability of Free Radial Forearm Flap for Tongue Reconstruction Following Oncosurgical Resection

    Directory of Open Access Journals (Sweden)

    Gaurab Ranjan Chaudhuri

    2015-08-01

    Full Text Available Introduction Primary closure following oncosurgical resection of carcinoma tongue has been found to compromise tongue function in regards to speech and swallowing very badly. In contrast, reconstruction of tongue with free radial forearm flap following oncosurgical resection has shown promising functional outcome. Materials and Methods Thirteen patients (ten male and three female with squamous cell carcinoma involving anterior 2/3rd of tongue had undergone either hemiglossectomy or subtotal glossectomy. Reconstruction was done with free radial forearm flap following oncosurgical resection and neck dissection. All of them received postoperative radiotherapy. Follow-up ranged from 2 months to 2 years. The age of the patients ranged between 32 and 65 years. Flap dimension ranged from 7x6 cm to 10x8 cm. Vascular anastomosis performed in an end-to-end manner with 8-0 Ethilon® under loupe magnifiacation. Results Venous congestion occurred in one patient after 48 hours postoperatively and the flap underwent complete necrosis on postoperative day 5. Postoperative hematoma was found in one patient within first 24 hours of reconstruction. Re-exploration was done immediately, blood clots were removed. No fresh bleeding point was seen and the flap survived. In this series, 12 out of 13 flaps survived completely (92%. Conclusion The free radial forearm flap has become a workhorse flap in head and reconstruction due to its lack of extra bulk, relative ease of dissection, long vascular pedicle, good calibre vessels, malleability and minimal donor site morbidity. Furthermore its low flap loss and complication rate offer the best choice for tongue reconstruction.

  17. The impact of the biasing radial electric field on the SOL in a divertor tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V.; Tendler, M.

    1993-01-01

    Strong radial electric field can be induced within the SOL in a divertor tokamak by applying a voltage to divertor plates with respect to the first wall. This biasing scheme results in the strong radial electric field which is much larger than the natural electric field, usually of the order T e /e. Experiments employing this biasing scheme were carried out on the tokamak TdeV. Many interesting effects such as - modifications of the density profile and radial transport of impurities as a function of the polarity and the magnitude of the biasing voltage, the generation of the flux surface average toroidal rotation proportional to the applied voltage, redistribution of the plasma outflow onto divertor plates and so on - were demonstrated to result from the biasing. Furthermore, in contrast to studies carried out employing a different biasing scheme which primarily results in a poloidal electric field, the strong radial electric field impacts more significantly within SOL than the poloidal electric field. Here, we aim to show that the main effects observed experimentally follow from the analysis, provided continuity and momentum balances are employed invoking anomalous viscosity and inertia. (author) 4 refs

  18. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    Science.gov (United States)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  19. Bacurd2 is a novel interacting partner to Rnd2 which controls radial migration within the developing mammalian cerebral cortex.

    Science.gov (United States)

    Gladwyn-Ng, Ivan Enghian; Li, Shan Shan; Qu, Zhengdong; Davis, John Michael; Ngo, Linh; Haas, Matilda; Singer, Jeffrey; Heng, Julian Ik-Tsen

    2015-03-31

    During fetal brain development in mammals, newborn neurons undergo cell migration to reach their appropriate positions and form functional circuits. We previously reported that the atypical RhoA GTPase Rnd2 promotes the radial migration of mouse cerebral cortical neurons (Nature 455(7209):114-8, 2008; Neuron 69(6):1069-84, 2011), but its downstream signalling pathway is not well understood. We have identified BTB-domain containing adaptor for Cul3-mediated RhoA degradation 2 (Bacurd2) as a novel interacting partner to Rnd2, which promotes radial migration within the developing cerebral cortex. We find that Bacurd2 binds Rnd2 at its C-terminus, and this interaction is critical to its cell migration function. We show that forced expression or knockdown of Bacurd2 impairs neuronal migration within the embryonic cortex and alters the morphology of immature neurons. Our in vivo cellular analysis reveals that Bacurd2 influences the multipolar-to-bipolar transition of radially migrating neurons in a cell autonomous fashion. When we addressed the potential signalling relationship between Bacurd2 and Rnd2 using a Bacurd2-Rnd2 chimeric construct, our results suggest that Bacurd2 and Rnd2 could interact to promote radial migration within the embryonic cortex. Our studies demonstrate that Bacurd2 is a novel player in neuronal development and influences radial migration within the embryonic cerebral cortex.

  20. Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice

    Science.gov (United States)

    Hu, Wei

    Background: The medial prefrontal cortex (mPFC) inhibits impulsive and compulsive behaviors that characterize drug abuse and dependence. Acamprosate is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Whether acamprosate can modulate executive functions that are impaired by chronic ethanol exposure is unknown. Here we explored the effects of acamprosate on an attentional set-shifting task, and tested whether these behavioral effects are correlated with modulation of glutamatergic synaptic transmission and intrinsic excitability of mPFC neurons. Methods: We induced alcohol dependence in mice via chronic intermittent ethanol (CIE) exposure in vapor chambers and measured changes in alcohol consumption in a limited access 2-bottle choice paradigm. Impairments of executive function were assessed in an attentional set-shifting task. Acamprosate was applied subchronically for 2 days during withdrawal before the final behavioral test. Alcohol-induced changes in cellular function of layer 5/6 pyramidal neurons, and the potential modulation of these changes by acamprosate, were measured using patch clamp recordings in brain slices. Results: Chronic ethanol exposure impaired cognitive flexibility in the attentional set-shifting task. Acamprosate improved overall performance and reduced perseveration. Recordings of mPFC neurons showed that chronic ethanol exposure increased use-dependent presynaptic transmitter release and enhanced postsynaptic N-methyl-D-aspartate receptor (NMDAR) function. Moreover, CIE-treatment lowered input resistance, and decreased the threshold and the afterhyperpolarization (AHP) of action potentials, suggesting chronic ethanol exposure also impacted membrane excitability of mPFC neurons. However, acamprosate treatment did not reverse these ethanol-induced changes cellular function. Conclusion: Acamprosate improved attentional control of ethanol exposed animals

  1. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    International Nuclear Information System (INIS)

    Sun Jinji; Fang Jiancheng

    2011-01-01

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  2. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)

    2011-01-15

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  3. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  4. Osteoradionecrosis of the olecranon: treatment by radial forearm flap

    International Nuclear Information System (INIS)

    Thornton, J.W.; Stevenson, T.R.; VanderKolk, C.A.

    1987-01-01

    Osteoradionecrosis of the olecranon is an unusual pathologic entity, treated best by debridement and wound closure using vascularized tissue. Local skin is often unavailable for flap design and transposition. The radial forearm flap can be isolated on a proximal vascular pedicle and transposed to cover the wound. In the case presented, healing was brisk and complete, allowing early elbow mobilization. Although the donor site is not easily concealed, no functional impairment results from flap elevation and all full-thickness wounds are confined to the involved extremity

  5. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  6. New constraints on Earth’s radial conductivity structure

    DEFF Research Database (Denmark)

    Püthe, C.; Kuvshinov, A.; Olsen, Nils

    2014-01-01

    We present a new model of Earth’s radial (1-D) conductivity structure at depths between 10 km and the core-mantle boundary. It is based on CM5, the latest version in the Comprehensive Model series that has been derived using 13 years (September 2000 to September 2013) of magnetic data collected...... method. The Hessian matrix of the misfit function, which is derived analytically, is used to estimate confidence limits for the conductivity of each layer. The resulting conductivity-depth profile is compared to 1-D conductivity models of Earth’s mantle recovered in previous studies....

  7. Heat stress, dehydration, and kidney function in sugarcane cutters in El Salvador--A cross-shift study of workers at risk of Mesoamerican nephropathy.

    Science.gov (United States)

    García-Trabanino, Ramón; Jarquín, Emmanuel; Wesseling, Catharina; Johnson, Richard J; González-Quiroz, Marvin; Weiss, Ilana; Glaser, Jason; José Vindell, Juan; Stockfelt, Leo; Roncal, Carlos; Harra, Tamara; Barregard, Lars

    2015-10-01

    An epidemic of progressive kidney failure afflicts sugarcane workers in Central America. Repeated high-intensity work in hot environments is a possible cause. To assess heat stress, dehydration, biomarkers of renal function and their possible associations. A secondary aim was to evaluate the prevalence of pre-shift renal damage and possible causal factors. Sugarcane cutters (N=189, aged 18-49 years, 168 of them male) from three regions in El Salvador were examined before and after shift. Cross-shift changes in markers of dehydration and renal function were examined and associations with temperature, work time, region, and fluid intake were assessed. Pre-shift glomerular filtration rate was estimated (eGFR) from serum creatinine. The mean work-time was 4 (1.4-11) hours. Mean workday temperature was 34-36 °C before noon, and 39-42 °C at noon. The mean liquid intake during work was 0.8L per hour. There were statistically significant changes across shift. The mean urine specific gravity, urine osmolality and creatinine increased, and urinary pH decreased. Serum creatinine, uric acid and urea nitrogen increased, while chloride and potassium decreased. Pre-shift serum uric acid levels were remarkably high and pre-shift eGFR was reduced (dehydration from strenuous work in a hot and humid environment as an important causal factor. The pathophysiology may include decreased renal blood flow, high demands on tubular reabsorption, and increased levels of uric acid. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  9. Monoaxial distraction of ulna to second metacarpal followed by single bone forearm in massive post infective radial bone loss

    Directory of Open Access Journals (Sweden)

    Jitendra N Pal

    2012-01-01

    Full Text Available Introduction: Radial bone loss associated with gross manus valgus deformity can be managed by open reduction internal fixation using intervening strut bone graft, callus distraction using ring or monoaxial fixator, and achieving union by distraction histogenesis. These methods are particularly suitable when bone loss is small. Single or staged procedure is described for congenital as well as in acquired extensive bone loss of radius. Distraction through radial proximal to distal segments, to achieve reduction of distal radio-ulnar joint (DRUJ, is also described in acquired cases. In the present series, functional results of distraction through ulna to 2 nd metacarpal is studied alongwith, functional status of hand, stability of wrist, level of patient′s satisfaction are also studied. Materials and Methods: 7 unilateral cases of radial loss (M = 5, F = 2 affecting 4 right hands of mean age 17 years (range 9 to 24 years were included in this study. They were treated by distracting through ulna to 2 nd metacarpal to achieve DRUJ alignment in first stage. Subsequently ulna was osteotomised and translated to distal stump of radius. It was then fixed to the distal radial remnant in 30° pronation in dominant and 30° supination non dominant hands. Results: Union was achieved in all cases associated with beneficial cross union of distal ulna. Hand functions improved near to normal, with fully corrected stable wrist joint, hypertrophied ulna and without recurrence. All of them had practically complete loss of forearm rotations, however patients were fully satisfied. Conclusion: This method is particularly suitable when associated with 6 cm or more radial bone loss. But when loss is small, sacrifice of one bone may not be justifiable.

  10. Radial-probe EBUS for the diagnosis of peripheral pulmonary lesions

    Directory of Open Access Journals (Sweden)

    Marcia Jacomelli

    Full Text Available ABSTRACT Objective: Conventional bronchoscopy has a low diagnostic yield for peripheral pulmonary lesions. Radial-probe EBUS employs a rotating ultrasound transducer at the end of a probe that is passed through the working channel of the bronchoscope. Radial-probe EBUS facilitates the localization of peripheral pulmonary nodules, thus increasing the diagnostic yield. The objective of this study was to present our initial experience using radial-probe EBUS in the diagnosis of peripheral pulmonary lesions at a tertiary hospital. Methods: We conducted a retrospective analysis of 54 patients who underwent radial-probe EBUS-guided bronchoscopy for the investigation of pulmonary nodules or masses between February of 2012 and September of 2013. Radial-probe EBUS was performed with a flexible 20-MHz probe, which was passed through the working channel of the bronchoscope and advanced through the bronchus to the target lesion. For localization of the lesion and for collection procedures (bronchial brushing, transbronchial needle aspiration, and transbronchial biopsy, we used fluoroscopy. Results: Radial-probe EBUS identified 39 nodules (mean diameter, 1.9 ± 0.7 cm and 19 masses (mean diameter, 4.1 ± 0.9 cm. The overall sensitivity of the method was 66.7% (79.5% and 25.0%, respectively, for lesions that were visible and not visible by radial-probe EBUS. Among the lesions that were visible by radial-probe EBUS, the sensitivity was 91.7% for masses and 74.1% for nodules. The complications were pneumothorax (in 3.7% and bronchial bleeding, which was controlled bronchoscopically (in 9.3%. Conclusions: Radial-probe EBUS shows a good safety profile, a low complication rate, and high sensitivity for the diagnosis of peripheral pulmonary lesions.

  11. Data reduction, radial velocities and stellar parameters from spectra in the very low signal-to-noise domain

    Science.gov (United States)

    Malavolta, Luca

    2013-10-01

    Large astronomical facilities usually provide data reduction pipeline designed to deliver ready-to-use scientific data, and too often as- tronomers are relying on this to avoid the most difficult part of an astronomer job Standard data reduction pipelines however are usu- ally designed and tested to have good performance on data with av- erage Signal to Noise Ratio (SNR) data, and the issues that are related with the reduction of data in the very low SNR domain are not taken int account properly. As a result, informations in data with low SNR are not optimally exploited. During the last decade our group has collected thousands of spec- tra using the GIRAFFE spectrograph at Very Large Telescope (Chile) of the European Southern Observatory (ESO) to determine the ge- ometrical distance and dynamical state of several Galactic Globular Clusters but ultimately the analysis has been hampered by system- atics in data reduction, calibration and radial velocity measurements. Moreover these data has never been exploited to get other informa- tions like temperature and metallicity of stars, because considered too noisy for these kind of analyses. In this thesis we focus our attention on data reduction and analysis of spectra with very low SNR. The dataset we analyze in this thesis comprises 7250 spectra for 2771 stars of the Globular Cluster M 4 (NGC 6121) in the wavelength region 5145-5360Å obtained with GIRAFFE. Stars from the upper Red Giant Branch down to the Main Sequence have been observed in very different conditions, including nights close to full moon, and reaching SNR - 10 for many spectra in the dataset. We will first review the basic steps of data reduction and spec- tral extraction, adapting techniques well tested in other field (like photometry) but still under-developed in spectroscopy. We improve the wavelength dispersion solution and the correction of radial veloc- ity shift between day-time calibrations and science observations by following a completely

  12. The SDSS-III APOGEE radial velocity survey of M dwarfs. I. Description of the survey and science goals

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, R.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Schneider, D. P.; Fleming, S. W. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Blake, C. H. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Carlberg, J. K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Zasowski, G.; Hearty, F. [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Crepp, J. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Rajpurohit, A. S.; Reylé, C. [Institut UTINAM, CNRS UMR 6213, Observatoire des Sciences de l' Univers THETA Franche-Comt é-Bourgogne, Université de Franche Comté, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Nidever, D. L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Prieto, C. Allende; Hernández, J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Bizyaev, D. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Ebelke, G. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Frinchaboy, P. M. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Ge, J. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); and others

    2013-12-01

    We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsin i precision of ∼2 km s{sup –1} and a measurement floor at vsin i = 4 km s{sup –1}. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ∼100-200 m s{sup –1}), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we

  13. Sharp Dissection versus Electrocautery for Radial Artery Harvesting

    Science.gov (United States)

    Marzban, Mehrab; Arya, Reza; Mandegar, Mohammad Hossein; Karimi, Abbas Ali; Abbasi, Kiomars; Movahed, Namvar; Abbasi, Seyed Hesameddin

    2006-01-01

    Radial arteries have been increasingly used during the last decade as conduits for coronary artery revascularization. Although various harvesting techniques have been described, there has been little comparative study of arterial damage and patency. A radial artery graft was used in 44 consecutive patients, who were randomly divided into 2 groups. In the 1st group, the radial artery was harvested by sharp dissection and in the 2nd, by electrocautery. These groups were compared with regard to radial artery free flow, harvest time, number of clips used, complications, and endothelial damage. Radial artery free flow before and after intraluminal administration of papaverine was significantly greater in the electrocautery group (84.3 ± 50.7 mL/min and 109.7 ± 68.5 mL/min) than in the sharp-dissection group (52.9 ± 18.3 mL/min and 69.6 ± 28.2 mL/ min) (P =0.003). Harvesting time by electrocautery was significantly shorter (25.4 ± 4.3 min vs 34.4 ± 5.9 min) (P =0.0001). Electrocautery consumed an average of 9.76 clips, versus 22.45 clips consumed by sharp dissection. The 2 groups were not different regarding postoperative complications, except for 3 cases of temporary paresthesia of the thumb in the electrocautery group; histopathologic examination found no endothelial damage. We conclude that radial artery harvesting by electrocautery is faster and more economical than harvesting by sharp dissection and is associated with better intraoperative flow and good preservation of endothelial integrity. PMID:16572861

  14. Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    International Nuclear Information System (INIS)

    Baye, Daniel; Sparenberg, Jean-Marc; Pupasov-Maksimov, Andrey M; Samsonov, Boris F

    2014-01-01

    The present status of the three-dimensional inverse-scattering method with supersymmetric transformations is reviewed for the coupled-channel case. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete, efficient and elegant solution to the inverse-scattering problem for the radial Schrödinger equation with short-range interactions. A special emphasis is put on the differences between conservative and non-conservative transformations, i.e. transformations that do or do not conserve the behaviour of solutions of the radial Schrödinger equation at the origin. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron–proton triplet eigenphase shifts for the S- and D-waves. We then summarize and extend our previous works on the coupled-channel case, i.e. on systems of coupled radial Schrödinger equations, and stress remaining difficulties and open questions of this problem by putting it in perspective with the single-channel case. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the important difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations in the two-channel case are studied and shown to lead to practical algorithms for inversion. A convenient particular technique where the mixing parameter can be fitted without modifying the eigenphases is developed with iterations of pairs of conjugate transformations. This technique is applied to the neutron–proton triplet S–D scattering matrix, for which exactly-solvable matrix potential models are constructed

  15. Radial oil injection applied to main engine bearings: evaluation of injection control rules

    DEFF Research Database (Denmark)

    Estupiñan, EA; Santos, Ilmar

    2012-01-01

    , the dynamic behaviour of the main bearing of a medium-size engine is theoretically analysed when the engine operates with controllable radial oil injection and four different injection control rules. The theoretical investigation is based on a single-cylinder combustion engine model. The performance......The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying...... controllable radial oil injection to main crankshaft journal bearings. In an actively lubricated bearing, conventional hydrodynamic lubrication is combined with controllable hydrostatic lubrication, where the oil injection pressures can be modified depending on the operational conditions. In this study...

  16. Calculations of recombination rates for cold 4He atoms from atom-dimer phase shifts and determination of universal scaling functions

    International Nuclear Information System (INIS)

    Shepard, J. R.

    2007-01-01

    Three-body recombination rates for cold 4 He are calculated with a method which exploits the simple relationship between the imaginary part of the atom-dimer elastic scattering phase shift and the S-matrix for recombination. The elastic phase shifts are computed above breakup threshold by solving a three-body Faddeev equation in momentum space with inputs based on a variety of modern atom-atom potentials. Recombination coefficients for the HFD-B3-FCII potential agree very well with the only previously published results. Since the elastic scattering and recombination processes for 4 He are governed by 'Efimov physics', they depend on universal functions of a scaling variable. The computed recombination coefficients for potentials other than HFD-B3-FCII make it possible to determine these universal functions

  17. Radial distribution of ions in pores with a surface charge

    NARCIS (Netherlands)

    Stegen, J.H.G. van der; Görtzen, J.; Kuipers, J.A.M.; Hogendoorn, J.A.; Versteeg, G.F.

    2001-01-01

    A sorption model applicable to calculate the radial equilibrium concentrations of ions in the pores of ion-selective membranes with a pore structure is developed. The model is called the radial uptake model. Because the model is applied to a Nafion sulfonic layer with very small pores and the radial

  18. Stellar Angular Momentum Distributions and Preferential Radial Migration

    Science.gov (United States)

    Wyse, Rosemary; Daniel, Kathryne J.

    2018-04-01

    I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.

  19. Research on Radial Vibration of a Circular Plate

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Radial vibration of the circular plate is presented using wave propagation approach and classical method containing Bessel solution and Hankel solution for calculating the natural frequency theoretically. In cylindrical coordinate system, in order to obtain natural frequency, propagation and reflection matrices are deduced at the boundaries of free-free, fixed-fixed, and fixed-free using wave propagation approach. Furthermore, radial phononic crystal is constructed by connecting two materials periodically for the analysis of band phenomenon. Also, Finite Element Simulation (FEM is adopted to verify the theoretical results. Finally, the radial and piezoelectric effects on the band are also discussed.

  20. Radial-probe EBUS for the diagnosis of peripheral pulmonary lesions.

    Science.gov (United States)

    Jacomelli, Marcia; Demarzo, Sergio Eduardo; Cardoso, Paulo Francisco Guerreiro; Palomino, Addy Lidvina Mejia; Figueiredo, Viviane Rossi

    2016-01-01

    Conventional bronchoscopy has a low diagnostic yield for peripheral pulmonary lesions. Radial-probe EBUS employs a rotating ultrasound transducer at the end of a probe that is passed through the working channel of the bronchoscope. Radial-probe EBUS facilitates the localization of peripheral pulmonary nodules, thus increasing the diagnostic yield. The objective of this study was to present our initial experience using radial-probe EBUS in the diagnosis of peripheral pulmonary lesions at a tertiary hospital. We conducted a retrospective analysis of 54 patients who underwent radial-probe EBUS-guided bronchoscopy for the investigation of pulmonary nodules or masses between February of 2012 and September of 2013. Radial-probe EBUS was performed with a flexible 20-MHz probe, which was passed through the working channel of the bronchoscope and advanced through the bronchus to the target lesion. For localization of the lesion and for collection procedures (bronchial brushing, transbronchial needle aspiration, and transbronchial biopsy), we used fluoroscopy. Radial-probe EBUS identified 39 nodules (mean diameter, 1.9 ± 0.7 cm) and 19 masses (mean diameter, 4.1 ± 0.9 cm). The overall sensitivity of the method was 66.7% (79.5% and 25.0%, respectively, for lesions that were visible and not visible by radial-probe EBUS). Among the lesions that were visible by radial-probe EBUS, the sensitivity was 91.7% for masses and 74.1% for nodules. The complications were pneumothorax (in 3.7%) and bronchial bleeding, which was controlled bronchoscopically (in 9.3%). Radial-probe EBUS shows a good safety profile, a low complication rate, and high sensitivity for the diagnosis of peripheral pulmonary lesions. A broncoscopia convencional possui baixo rendimento diagnóstico para lesões pulmonares periféricas. A ecobroncoscopia radial (EBUS radial) emprega um transdutor ultrassonográfico rotatório na extremidade de uma sonda que é inserida no canal de trabalho do broncoscópio. O EBUS

  1. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Radial propagation of microturbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Roubin, J.P.; Samain, A.

    1992-01-01

    Energy confinement time in tokamaks exhibits a clear dependence on global plasma parameters. This is not the case for transport coefficients; their dependence on local plasma parameters cannot be precisely established. The aim of the present paper is to give a possible explanation of this behaviour; turbulence propagates radially because of departure from cylindrical geometry. This implies that the turbulence level at a given point and hence transport coefficients are not only functions of local plasma parameters. A quantitative estimate of the propagation velocity is derived from a Lagrangian formalism. Two cases are considered: the effect of toroidicity and the effect of non linear mode-mode coupling. The consequences of this model are discussed. This process does not depend on the type of instability. For the sake of simplicity only electrostatic perturbations are considered

  3. Radial extracorporeal shock wave therapy improves cerebral blood flow and neurological function in a rat model of cerebral ischemia.

    Science.gov (United States)

    Kang, Nan; Zhang, Jing; Yu, Xiaotong; Ma, Yuewen

    2017-01-01

    We performed middle cerebral artery occlusion (MCAO) in rats to investigate the effect and some of the underlying mechanisms of radial extracorporeal shock wave therapy (rESWT) in cerebral ischemia rats. We measured neurological function and cerebral blood flow (CBF) using a full-field laser perfusion imager and brain infarct volume on days 3, 12, and 30. Immunofluorescence, western blot, and real-time polymerase chain reaction (PCR) techniques were used to detect the expression of vascular endothelial growth factor (VEGF), neuron-specific enolase (NSE), nestin, Wnt3a, and β-catenin in the ischemic hemisphere. The dose of rESWT used on the head revealed remarkable advantages over sham rESWT, as demonstrated by improved neurological function scores, increased CBF, and reduced brain infarct volume. Furthermore, applying rESWT to the head and limbs enhanced short-term neurological function. Our results confirmed that rESWT can induce VEGF expression over an extended period with a profound effect, which may be the primary reason for CBF recovery. High NSE and nestin expression levels suggest that rESWT enhanced the number of neurons and neural stem cells (NSCs). Wnt3a and β-catenin expression were up-regulated in the ischemic hemisphere, indicating that rESWT promoted NSC proliferation and differentiation via the Wnt/β-catenin pathway. Overall, our findings suggest that an appropriate rESWT dose delivered to the head of rats helps restore neurological function and CBF, and additional application of rESWT to the limbs is more effective than treating the head alone.

  4. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    Directory of Open Access Journals (Sweden)

    Hikaru Akahoshi

    2018-03-01

    Full Text Available High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  5. Intraneural Platelet-Rich Plasma Injections for the Treatment of Radial Nerve Section: A Case Report

    Directory of Open Access Journals (Sweden)

    Unai García de Cortázar

    2018-01-01

    Full Text Available The radial nerve is the most frequently injured nerve in the upper extremity. Numerous options in treatment have been described for radial nerve injury, such as neurolysis, nerve grafts, or tendon transfers. Currently, new treatment options are arising, such as platelet-rich plasma (PRP, an autologous product with proved therapeutic effect for various musculoskeletal disorders. We hypothesized that this treatment is a promising alternative for this type of nerve pathology. The patient was a healthy 27-year-old man who suffered a deep and long cut in the distal anterolateral region of the right arm. Forty-eight hours after injury, an end-to-end suture was performed without a microscope. Three months after the surgery, an electromyogram (EMG showed right radial nerve neurotmesis with no tendency to reinnervation. Four months after the trauma, serial intraneural infiltrations of PRP were conducted using ultrasound guidance. The therapeutic effect was assessed by manual muscle testing and by EMG. Fourteen months after the injury and 11 months after the first PRP injection, functional recovery was achieved. The EMG showed a complete reinnervation of the musculature of the radial nerve dependent. The patient remains satisfied with the result and he is able to practice his profession. Conclusions: PRP infiltrations have the potential to enhance the healing process of radial nerve palsy. This case report demonstrates the therapeutic potential of this technology for traumatic peripheral nerve palsy, as well as the apt utility of US-guided PRP injections.

  6. Acesso radial em intervenções coronarianas percutâneas: panorama atual brasileiro Acceso radial en intervenciones coronarias percutáneas: panorama actual brasileño Radial approach in percutaneous coronary interventions: current status in Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Beraldo de Andrade

    2011-04-01

    Full Text Available FUNDAMENTO: Embora a técnica radial exiba resultados incontestáveis na redução de complicações vasculares e ocorrência de sangramento grave quando comparada à técnica femoral, seu emprego permanece restrito a poucos centros que a elegeram como via de acesso preferencial. OBJETIVO: Avaliar o cenário atual das intervenções coronarianas percutâneas no Brasil quanto à utilização da via de acesso radial. MÉTODOS: Análise dos dados cadastrados de forma espontânea na Central Nacional de Intervenções Cardiovasculares (CENIC durante o quadriênio de 2005-2008, o que totaliza 83.376 procedimentos. RESULTADOS: A técnica radial foi utilizada em 12,6% dos procedimentos efetivados, e a técnica femoral, em 84,3%. Os 3,1% restantes foram representados pela dissecção ou punção braquial. Com uma taxa de sucesso de 97,5%, a opção pelo acesso radial associou-se à redução significativa de complicações vasculares quando comparado ao femoral (2,5% versus 3,6%, p FUNDAMENTO: Aunque la técnica radial exhiba resultados incontestables en la reducción de complicaciones vasculares y ocurrencia de sangrado grave cuando es comparada a la técnica femoral, su empleo permanece restringido a pocos centros que la eligieron como vía de acceso preferencial. OBJETIVO:Evaluar el escenario actual de las intervenciones coronarias percutáneas en el Brasil en cuanto a la utilización de la vía de acceso radial. MÉTODOS:Análisis de los datos registrados de forma espontánea en la Central Nacional de Intervenciones Cardiovasculares (CENIC durante el cuatrienio de 2005-2008, lo que totaliza 83.376 procedimientos. RESULTADOS:La técnica radial fue utilizada en 12,6% de los procedimientos efectuados, y la técnica femoral, en 84,3%. Los 3,1% restantes fueron representados por la disección o punción braquial. Con una tasa de éxito de 97,5%, la opción por el acceso radial se asoció a la reducción significativa de complicaciones vasculares cuando

  7. Applying a Dynamic Stomatal Optimization to Predict Shifts in the Functional Composition of Tropical Forests Under Increased Drought And CO2

    Science.gov (United States)

    Bartlett, M. K.; Detto, M.; Pacala, S. W.

    2017-12-01

    The accurate prediction of tropical forest carbon fluxes is key to forecasting global climate, but forest responses to projected increases in CO2 and drought are highly uncertain. Here we present a dynamic optimization that derives the trajectory of stomatal conductance (gs) during drought, a key source of model uncertainty, from plant and soil water relations and the carbon economy of the plant hydraulic system. This optimization scheme is novel in two ways. First, by accounting for the ability of capacitance (i.e., the release of water from plant storage tissue; C) to buffer evaporative water loss and maintain gs during drought, this optimization captures both drought tolerant and avoidant hydraulic strategies. Second, by determining the optimal trajectory of plant and soil water potentials, this optimization quantifies species' impacts on the water available to competing plants. These advances allowed us to apply this optimization across the range of physiology trait values observed in tropical species to evaluate shifts in the competitively optimal trait values, or evolutionarily stable hydraulic strategy (ESS), under increased drought and CO2. Increasing the length of the dry season shifted the ESS towards more drought tolerant, rather than avoidant, trait values, and these shifts were larger for longer individual drought periods (i.e., more consecutive days without rainfall), even if the total time spent in drought was the same. Concurrently doubling the CO2 level reduced the magnitude of these shifts and slightly favored drought avoidant strategies under wet conditions. Overall, these analyses predicted that short, frequent droughts would allow elevated CO2 to shift the functional composition in tropical forests towards more drought avoidant species, while infrequent but long drought periods would shift the ESS to more drought tolerant trait values, despite increased CO2. Overall, these analyses quantified the impact of physiology traits on plant performance

  8. MR defecography at 1.5 Tesla with radial real-time imaging at a reduced FOV

    International Nuclear Information System (INIS)

    Tacke, J.; Nolte-Ernsting, C.; Glowinski, A.; Adam, G.; Guenther, R.W.

    1999-01-01

    Purpose: To evaluate a new technique for MR defecography with real-time imaging using radial k-space profiles. Materials and Methods: A catheter-mounted condom was inserted into the rectum of 16 patients and filled in situ by a mixture of Nestargel trademark and Gadolinium. After multiplanar imaging of the pelvis by high resolution T 2 -weighted turbo-spin echo sequences, defecation was imaged by a gradient echo sequence with radial k-space filling using a reduced field of view (rFOV) in real-time. The documentation was performed on an S-VHS recorder. Results: At a constant background signal, radial k-space filling yields a real-time impression. An interactive software allowed the operator to modify the slice thickness, slice plane, flip angle and slice angulation during scanning, resulting in an optimum imaging quality of the defecation. Conclusions: This new imaging technique allows real-time MR defecography in a high-field scanner and provides all anatomical and functional information of the defecation. (orig.) [de

  9. Velocidades radiales en Collinder 121

    Science.gov (United States)

    Arnal, M.; Morrell, N.

    Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.

  10. Comparison of sleep disturbances in shift workers and people working with a fixed shift

    Directory of Open Access Journals (Sweden)

    Zohreh Yazdi

    2013-11-01

    Full Text Available Background: Different types of sleep disturbances can have a serious negative effect on a person’s ability, function and overall well-being. One of the most important issues that can result in sleep disturbances are occupational causes, the most important among them is shift work. The objective of this study was to compare the prevalence of sleep disturbances between shift work and non-shift workers. Material and Methods: This study was designed as a case-control study in 196 shift workers and 204 non-shift workers in a textile factory. The data were collected by using a comprehensive questionnaire including Pittsburg Sleep Quality Index questionnaire, Berlin Questionnaire, Epworth Sleepiness Scale, Insomnia Severity Index and Restless Leg Syndrome Questionnaire. Data analyses were carried out using the SPSS software version 13 by student's t-test, Chi square and multiple logistic regressions. Results: The duration of night sleep in shift workers was less than day workers (p<0.001. Prevalence of poor sleep quality and insomnia were higher in shift workers significantly than non shift workers (p<0.001, OR=2.3 95% CI: 1.7-2.9. The most prevalent type of insomnia was problems in initiating sleep (P=0.022, OR=2.2 95% CI: 1.5-3.2. There was no difference in the prevalence of excessive day-time sleepiness, restless leg syndrome, snoring, obstructive sleep apnea and different types of parasomnias between two groups. Conclusion: Reduced length of sleep and higher prevalence of poor sleep quality and insomnia in shift workers emphasizes the importance of serious attention to sleep disorders in shift workers.

  11. Semiclassical series solution of the generalized phase shift atom--diatom scattering equations

    International Nuclear Information System (INIS)

    Squire, K.R.; Curtiss, C.F.

    1980-01-01

    A semiclassical series solution of the previously developed operator form of the generalized phase shift equations describing atom--diatom scattering is presented. This development is based on earlier work which led to a double series in powers of Planck's constant and a scaling parameter of the anisotropic portion of the intermolecular potential. The present solution is similar in that it is a double power series in Planck's constant and in the difference between the spherical radial momentum and a first order approximation. The present series solution avoids difficulties of the previous series associated with the classical turning point

  12. Time Variations of the Radial Velocity of H2O Masers in the Semi-Regular Variable R Crt

    Science.gov (United States)

    Sudou, Hiroshi; Shiga, Motoki; Omodaka, Toshihiro; Nakai, Chihiro; Ueda, Kazuki; Takaba, Hiroshi

    2017-12-01

    H2O maser emission {at 22 GHz} in the circumstellar envelope is one of the good tracers of detailed physics and inematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an H2O maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the H2O maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a 0.1 km s^{-1} scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of H2O masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation.However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.

  13. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.

    Science.gov (United States)

    Mohamed Yacin, S; Srinivasa Chakravarthy, V; Manivannan, M

    2011-11-01

    Extraction of extra-cardiac information from photoplethysmography (PPG) signal is a challenging research problem with significant clinical applications. In this study, radial basis function neural network (RBFNN) is used to reconstruct the gastric myoelectric activity (GMA) slow wave from finger PPG signal. Finger PPG and GMA (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the sampling rate of 100 Hz from ten healthy subjects. Discrete wavelet transform (DWT) was used to extract slow wave (0-0.1953 Hz) component from the finger PPG signal; this slow wave PPG was used to reconstruct EGG. A RBFNN is trained on signals obtained from six subjects in both fasting and postprandial conditions. The trained network is tested on data obtained from the remaining four subjects. In the earlier study, we have shown the presence of GMA information in finger PPG signal using DWT and cross-correlation method. In this study, we explicitly reconstruct gastric slow wave from finger PPG signal by the proposed RBFNN-based method. It was found that the network-reconstructed slow wave provided significantly higher (P wave than the correlation obtained (≈0.7) between the PPG slow wave from DWT and the EEG slow wave. Our results showed that a simple finger PPG signal can be used to reconstruct gastric slow wave using RBFNN method.

  14. Radial supports of face motors with slack compensation

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, I I; Gelman, A B; Krekina, T V

    1982-01-01

    The design of a radial support of a face motor with slack compensation is described, and gives the results of field tests which confirm the performance capacity of the experimental support both from the viewpoint of durability, and in relation to preventing radial slack of the face motor shaft.

  15. A model for predicting the radial power profile in a fuel pin

    International Nuclear Information System (INIS)

    Palmer, I.D.; Hesketh, K.W.; Jackson, P.A.

    1983-01-01

    A simple, fast running computer program for calculating radial power profiles, throughout life, in both standard and duplex fuel pellets for all types of thermal reactor has been developed. The code sub-divides the pellet into a number of annuli for each of which it solves for the concentrations of uranium and plutonium and hence calculates a mean inverse diffusion length. The diffusion equation is solved in terms of Bessel functions and the resulting flux profile multiplied by the concentration profiles to give a radial rating profile which is normalised to unity. The model shows good agreement with the results of detailed physics calculations for different thermal reactors over a wide burn-up range. Its incorporation into the HOTROD-4C and SLEUTH-SEER-77 fuel performance codes has led to a negligible increase in running times. (author)

  16. Queratotomía radial versus miniqueratotomía radial: Experiencia en el Hospital "Ramón Pando Ferrer" Radial keratotomy versus radial minikeratotomy: Experience in "Ramón Pando Ferrer" Hospital

    Directory of Open Access Journals (Sweden)

    José Edilberto Pacheco Serrano

    2000-06-01

    Full Text Available La miniqueratotomía radial se viene realizando desde 1995. Se plantea que incisiones más cortas tienen el mismo efecto y producen menos debilidad corneal, ya que disminuye la susceptibilidad a sufrir complicaciones graves provenientes de traumas de la vida cotidiana. Esta idea nos motivó a realizar un estudio para observar el comportamiento de incisiones más cortas en nuestro centro y, en caso de resultados positivos, implementar la técnica de manera que nuestros pacientes puedan beneficiarse de ella. Se comparan resultados de la aplicación de dos técnicas quirúrgicas refractivas para corrección de miopía entre leve y moderada. Se seleccionaron 38 pacientes entre 20 y 40 años de edad, con miopías entre -2 y -6 dioptrías y astigmatismo no mayor a -0,75 dioptrías. Se realizó queratotomía radial convencional en el ojo derecho y miniqueratotomía radial en el ojo izquierdo del mismo paciente. Las variaciones obtenidas en promedio fueron, en el ojo derecho: la esfera (en dioptrías D de -3,38 a -0,32, cilindro de -0,48 a -0,45 D, la queratometría de 44,75 a 41,21 D. En el ojo izquierdo: la esfera de -3,38 D a -0,44 D, cilindro de -0,44 D a -0,38 D, la queratometría de 44,83 a 41,80 D. Hubo una mejoría de la agudeza visual sin cristales de 0,61 en el ojo derecho y 0,59 en el ojo izquierdo. Las dos técnicas no mostraron diferencias estadísticamente significativas, con el beneficio de que la nueva técnica disminuye el riesgo de ruptura postraumática, según la bibliografía revisada, a causa de la menor injuria corneal.In this hospital, radial keratotomy is performed sice 1995. We propose that shorter incisions have some effect and cause less corneal weakness, since dicreases susceptibility to severe complications from traumata of daily life. This notion encouraged us to carry out a study to observe behaviour of shorter incisions in our service, and in the event of positive results, implementation of the technique so that our

  17. Functional Determinants for Radially Separable Partial Differential Operators

    Directory of Open Access Journals (Sweden)

    G. V. Dunne

    2007-01-01

    Full Text Available Functional determinants of differential operators play a prominent role in many fields of theoretical and mathematical physics, ranging from condensed matter physics, to atomic, molecular and particle physics. They are, however, difficult to compute reliably in non-trivial cases. In one dimensional problems (i.e. functional determinants of ordinary differential operators, a classic result of Gel’fand and Yaglom greatly simplifies the computation of functional determinants. Here I report some recent progress in extending this approach to higher dimensions (i.e., functional determinants of partial differential operators, with applications in quantum field theory. 

  18. Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    Science.gov (United States)

    Saar, Steven; Lindstrom, David M. (Technical Monitor)

    2004-01-01

    We have made significant progress towards the proposal goals of understanding the causes and effects of magnetic activity-induced radial velocity (v_r) jitter and developing methods for correcting it. In the process, we have also made some significant discoveries in the fields of planet-induced stellar activity, planet detection methods, M dwarf convection, starspot properties, and magnetic dynamo cycles. We have obtained super high resolution (R approximately 200,000), high S / N (greater than 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 in particular was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., kappa Ceti; P_cyc = 5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and radial velocity (v-r) changes which we have uncovered. Preliminary analysis (Saar et al. 2003) of the data in hand, reveals correlations between median line bisector displacement and v_r. The correlation appears to be specific the the particular star being considered, probably since it is a function of both spectral type and rotation rate. Further analysis and interpretation will be in the context of evolving plage models and is in progress.

  19. Radial-rotation profile forming: A new processing technology of incremental sheet metal forming

    Science.gov (United States)

    Laue, Robert; Härtel, Sebastian; Awiszus, Birgit

    2018-05-01

    Incremental forming processes (i.e., spinning) of sheet metal blanks into cylindrical cups are suitable for lower lot sizes. The produced cups were frequently used as preforms to produce workpieces in further forming steps with additional functions like profiled hollow parts [1]. The incremental forming process radial-rotation profile forming has been developed to enable the production of profiled hollow parts with low sheet thinning and good geometrical accuracy. The two principal forming steps are the production of the preform by rotational swing-folding [2] and the subsequent radial profiling of the hollow part in one clamping position. The rotational swing-folding process is based on a combination of conventional spinning and swing-folding. Therefore, a round blank rotates on a profiled mandrel and due to the swinging of a cylindrical forming tool, the blank is formed to a cup with low sheet thinning. In addition, thickening results at the edge of the blank and wrinkling occurs. However, the wrinkles are formed into the indentation of the profiled mandrel and can be reshaped as an advantage in the second process step, the radial profiling. Due to the rotation and continuous radial feed of a profiled forming tool to the profiled mandrel, the axial profile is formed in the second process step. Because of the minor relative movement in axial direction between tool and blank, low sheet thinning occurs. This is an advantage of the principle of the process.

  20. Pole Inflation - Shift Symmetry and Universal Corrections

    NARCIS (Netherlands)

    Broy, Benedict J.; Galante, Mario; Roest, Diederik; Westphal, Alexander

    2015-01-01

    An appealing explanation for the Planck data is provided by inflationary models with a singular non-canonical kinetic term: a Laurent expansion of the kinetic function translates into a potential with a nearly shift-symmetric plateau in canonical fields. The shift symmetry can be broken at large

  1. Exact soliton-like solutions of the radial Gross–Pitaevskii equation

    International Nuclear Information System (INIS)

    Toikka, L A; Hietarinta, J; Suominen, K-A

    2012-01-01

    We construct exact ring soliton-like solutions of the cylindrically symmetric (i.e. radial) Gross–Pitaevskii equation with a potential, using the similarity transformation method. Depending on the choice of the allowed free functions, the solutions can take the form of stationary dark or bright rings whose time dependence is in the phase dynamics only, or oscillating and bouncing solutions, related to the second Painlevé transcendent. In each case the potential can be chosen to be time independent. (paper)

  2. Pre-bent elastic stable intramedullary nail fixation for distal radial shaft fractures in children.

    Science.gov (United States)

    Ge, Yi-hua; Wang, Zhi-gang; Cai, Hai-qing; Yang, Jie; Xu, Yun-lan; Li, Yu-chan; Zhang, Yu-chen; Chen, Bo-chang

    2010-08-01

    To investigate the functional and radiographic outcomes of pre-bent elastic stable intramedullary nail in treatment of distal radial shaft fractures in children. From January 2006 to December 2008, 18 children with distal radial shaft fracture were treated by close reduction and internal fixation with a pre-bent elastic stable intramedullary nail. The age range was from 5 years to 15 years, with an average of 9 years and 8 months. The minimum follow-up was 12 months. All fractures maintained good alignment postoperatively, and 94.4% (17/18) of the patients regained a full range of rotation of the forearm. One patient has limitation of rotation to less than 10°, this had improved by final follow-up. Complications included soft tissue irritation at the site of nail insertion in one patient and transient scar hypersensitivity in another. Fixation with a pre-bent elastic stable intramedullary nail is an effective, safe and convenient method for treating distal radial shaft fractures in children. © 2010 Tianjin Hospital and Blackwell Publishing Asia Pty Ltd.

  3. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  4. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    Science.gov (United States)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  5. Pulsed radiofrequency on radial nerve under ultrasound guidance for treatment of intractable lateral epicondylitis.

    Science.gov (United States)

    Oh, Dae Seok; Kang, Tae Hyung; Kim, Hyae Jin

    2016-06-01

    Lateral epicondylitis is a painful and functionally limiting disorder. Although lateral elbow pain is generally self-limiting, in a minority of people symptoms persist for a long time. When various conservative treatments fail, surgical approach is recommended. Surgical denervation of several nerves that innervate the lateral humeral epicondyle could be considered in patients with refractory pain because it denervates the region of pain. Pulsed radiofrequency is a minimally invasive procedure that improves chronic pain when applied to various neural tissues without causing any significant destruction and painful complication. This procedure is safe, minimally invasive, and has less risk of complications relatively compared to the surgical approach. The radial nerve can be identified as a target for pulsed radiofrequency lesioning in lateral epicondylitis. This innovative method of pulsed radiofrequency applied to the radial nerve has not been reported before. We reported on two patients with intractable lateral epicondylitis suffering from elbow pain who did not respond to nonoperative treatments, but in whom the ultrasound-guided pulsed radiofrequency neuromodulation of the radial nerve induced symptom improvement. After a successful diagnostic nerve block, radiofrequency probe adjustment around the radial nerve was performed on the lateral aspect of the distal upper arm under ultrasound guidance and multiple pulsed treatments were applied. A significant reduction in pain was reported over the follow-up period of 12 weeks.

  6. Radial diffusion in the Uranian radiatian belts - Inferences from satellite absorption loss models

    Science.gov (United States)

    Hood, L. L.

    1989-01-01

    Low-energy charged particle (LECP) phase space density profiles available from the Voyager/1986 Uranus encounter are analyzed, using solutions of the time-averaged radial diffusion equation for charged particle transport in a dipolar planetary magnetic field. Profiles for lower-energy protons and electrons are first analyzed to infer radial diffusion rate as a function of L, assuming that satellite absorption is the dominant loss process and local sources for these particles are negligible. Satellite macrosignatures present in the experimentally derived profiles are approximately reproduced in several cases, lending credence to the loss model and indicating that magnetospheric distributed losses are not as rapid as satellite absorption near the minimum satellite L shells for the particles. Diffusion rates and L dependences are found to be similar to those previously inferred in the inner Jovian magnetosphere (Thomsen et al., 1977) and for the inner Saturnian magnetosphere (Hood, 1985). Profiles for higher energy electrons and protons are also analyzed using solutions that allow for the existence of significant particle sources as well as sinks. Possible implications for radial diffusion mechanisms in the Uranian radiation belts are discussed.

  7. Revisiting AdS/CFT at a finite radial cut-off

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Gautam; Nayak, Pranjal [Department of Theoretical Physics,Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-12-22

    We revisit AdS/CFT at a finite radial cut-off, specifically in the context of double trace perturbations, O{sub n}= O(x)(∂{sup 2}){sup n}O(x), with arbitrary powers n. As well-known, the standard GKPW prescription, applied to a finite radial cut-off, leads to contact terms in correlators. de Haro et al. http://dx.doi.org/10.1007/s002200100381 introduced bulk counterterms to remove these. This prescription, however, yields additional terms in the correlator corresponding to spurious double trace deformations. Further, if we view the GKPW prescription coupled with the prescription in http://dx.doi.org/10.1007/s002200100381, in terms of a boundary wavefunction, we find that it is incompatible with radial Schrödinger evolution (in the spirit of holographic Wilsonian RG). We consider a more general wavefunction satisfying the Schrödinger equation, and find that generically such wavefunctions generate both (a) double trace deformations and (b) contact terms. However, we find that there exist special choices of these wavefunctions, amounting to a new AdS/CFT prescription at a finite cut-off, so that both (a) and (b) are removed and we obtain a pure power law behaviour for the correlator. We compare these special wavefunctions with a specific RG scheme in field theory. We give a geometric interpretation of these wavefunctions; these correspond to some specific smearing of boundary points in the Witten diagrams. We present a comprehensive calculation of exact double-trace beta-functions for all couplings O{sub n} and match with a holographic computation using the method described above. The matching works with a mapping between the field theory and bulk couplings; such a map is highly constrained because the beta-functions are quadratic and exact on both sides. Our discussions include a generalization of the standard double-trace Wilson-Fisher flow to the space of the infinite number of couplings.

  8. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Falabella, S.

    1988-01-01

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10 12 cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs

  9. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Falabella, S.

    1988-05-11

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

  10. A PBE hybrid functional study of blue-shifting and red-shifting hydrogen bonds in p hydrocarbons

    Directory of Open Access Journals (Sweden)

    Boaz Galdino de Oliveira

    2009-07-01

    Full Text Available This study examines a selected group of p hydrocarbon complexes, represented by C2H4•••HCF3, C2H2•••HCF3, C2H4•••HCF3 and C2H2•••HCF3, from a theoretical point of view. From BPBE/6-311++G(d,p calculations, the geometrical results of these complexes revealed an elongation and shortening of the H—C bond lengths of chloroform (HCCl3 and fluoroform (HCF3, respectively. In terms of the infrared spectrum, the analysis of stretch frequencies revealed that the variations in the H—C modes are essentially recognized as red and blue-shifting modes. For the purposes of understanding the two vibrational phenomena of the p hydrocarbon complexes studied here, PBE/6-311++G(d,p calculations were carried out and partitioning of atomic charges derived from the ChelpG algorithm were also used. A theoretical justification of red- and blue-shift effects was drawn up using charge-transfer analysis, which is manifested in the p bonds of acetylene and ethylene to chloroform (H—CCl3 and fluoroform (H—CF3, respectively. Finally, a further debate regarding the distinct polarizability power of chloroform and fluoroform is presented, concluding that, in comparison with fluoroform, chloroform possesses the requisite features for conventional proton donors and a red-shift is therefore observed in the C2H4•••HCCl3 and C2H2•••HCCl3 complexes.

  11. Prediction of water formation temperature in natural gas dehydrators using radial basis function (RBF neural networks

    Directory of Open Access Journals (Sweden)

    Tatar Afshin

    2016-03-01

    Full Text Available Raw natural gases usually contain water. It is very important to remove the water from these gases through dehydration processes due to economic reasons and safety considerations. One of the most important methods for water removal from these gases is using dehydration units which use Triethylene glycol (TEG. The TEG concentration at which all water is removed and dew point characteristics of mixture are two important parameters, which should be taken into account in TEG dehydration system. Hence, developing a reliable and accurate model to predict the performance of such a system seems to be very important in gas engineering operations. This study highlights the use of intelligent modeling techniques such as Multilayer perceptron (MLP and Radial Basis Function Neural Network (RBF-ANN to predict the equilibrium water dew point in a stream of natural gas based on the TEG concentration of stream and contractor temperature. Literature data set used in this study covers temperatures from 10 °C to 80 °C and TEG concentrations from 90.000% to 99.999%. Results showed that both models are accurate in prediction of experimental data and the MLP model gives more accurate predictions compared to RBF model.

  12. Manufacturing of Precision Forgings by Radial Forging

    International Nuclear Information System (INIS)

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  13. The androgen receptor malignancy shift in prostate cancer.

    Science.gov (United States)

    Copeland, Ben T; Pal, Sumanta K; Bolton, Eric C; Jones, Jeremy O

    2018-05-01

    Androgens and the androgen receptor (AR) are necessary for the development, function, and homeostatic growth regulation of the prostate gland. However, once prostate cells are transformed, the AR is necessary for the proliferation and survival of the malignant cells. This change in AR function appears to occur in nearly every prostate cancer. We have termed this the AR malignancy shift. In this review, we summarize the current knowledge of the AR malignancy shift, including the DNA-binding patterns that define the shift, the transcriptome changes associated with the shift, the putative drivers of the shift, and its clinical implications. In benign prostate epithelial cells, the AR primarily binds consensus AR binding sites. In carcinoma cells, the AR cistrome is dramatically altered, as the AR associates with FOXA1 and HOXB13 motifs, among others. This shift leads to the transcription of genes associated with a malignant phenotype. In model systems, some mutations commonly found in localized prostate cancer can alter the AR cistrome, consistent with the AR malignancy shift. Current evidence suggests that the AR malignancy shift is necessary but not sufficient for transformation of prostate epithelial cells. Reinterpretation of prostate cancer genomic classification systems in light of the AR malignancy shift may improve our ability to predict clinical outcomes and treat patients appropriately. Identifying and targeting the molecular factors that contribute to the AR malignancy shift is not trivial but by doing so, we may be able to develop new strategies for the treatment or prevention of prostate cancer. © 2018 Wiley Periodicals, Inc.

  14. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  15. Study of insomnia in rotating shift-workers

    Directory of Open Access Journals (Sweden)

    Kaushik Chatterjee

    2017-01-01

    Full Text Available Background: Shift-workers commonly suffer from insomnia. This study evaluates different domains of insomnia. Aim: This study was aimed to study sleep and insomnia in rotating shift-workers and compare with day-workers. Materials and Methods: This was case–control study. The sleep of rotating shift-workers is compared with day workers using Athens Insomnia Scale. Results: Rotating shift-workers had significantly higher scores on Athens insomnia scale on domains of initial, intermediate and terminal insomnia than day workers. Duration and quality of sleep and sense of well-being are lower in rotating shift-workers. Rotating shift-workers also experienced more day-time sleepiness than day workers. However, there was no difference in perceived physical and mental functioning between the two groups. Conclusion: Individuals working in rotating shifts for more than 15 days have significantly higher prevalence of insomnia than day-workers.

  16. Outcome of Tendon Transfers for Radial Nerve Palsy in a Malaysian Tertiary Centre

    Directory of Open Access Journals (Sweden)

    Richford J

    2018-03-01

    Full Text Available Tendon transfers for radial nerve palsy is a common operation with good results. We did a retrospective study on twenty patients with radial nerve palsy who underwent tendon transfer surgery and recovered between January 2008 and December 2012. Outcomes measured were motor power of wrist extension, finger extension, grip strength and DASH scores. There was significant improvement of motor power of wrist and finger extension between the preoperative period and three months post-operatively, between the pre operative period and six months post operatively and between three and six months postoperatively (p = 0.0005. Grip strength improved significantly as well between preoperative, three and six months postoperatively (p = 0.0005. DASH scores reflecting patient satisfaction at six months postoperatively showed only mild or moderate difficulty of function.

  17. Neural network of Gaussian radial basis functions applied to the problem of identification of nuclear accidents in a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Gomes, Carla Regina; Canedo Medeiros, Jose Antonio Carlos

    2015-01-01

    Highlights: • It is presented a new method based on Artificial Neural Network (ANN) developed to deal with accident identification in PWR nuclear power plants. • Obtained results have shown the efficiency of the referred technique. • Results obtained with this method are as good as or even better to similar optimization tools available in the literature. - Abstract: The task of monitoring a nuclear power plant consists on determining, continuously and in real time, the state of the plant’s systems in such a way to give indications of abnormalities to the operators and enable them to recognize anomalies in system behavior. The monitoring is based on readings of a large number of meters and alarm indicators which are located in the main control room of the facility. On the occurrence of a transient or of an accident on the nuclear power plant, even the most experienced operators can be confronted with conflicting indications due to the interactions between the various components of the plant systems; since a disturbance of a system can cause disturbances on another plant system, thus the operator may not be able to distinguish what is cause and what is the effect. This cognitive overload, to which operators are submitted, causes a difficulty in understanding clearly the indication of an abnormality in its initial phase of development and in taking the appropriate and immediate corrective actions to face the system failure. With this in mind, computerized monitoring systems based on artificial intelligence that could help the operators to detect and diagnose these failures have been devised and have been the subject of research. Among the techniques that can be used in such development, radial basis functions (RBFs) neural networks play an important role due to the fact that they are able to provide good approximations to functions of a finite number of real variables. This paper aims to present an application of a neural network of Gaussian radial basis

  18. The calculation of proton chemical shifts in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Raymond J [Liverpool Univ. (United Kingdom). Dept. of Chemistry

    1994-12-31

    Novel extension of the CHARGE3 semi-empirical calculation of the partial atomic charges in molecules are described which allow the accurate calculation of the proton chemical shifts of a variety of acyclic alkanes. This simple scheme predicts the proton chemical shifts of all the simple alkanes, cyclohexane and methyl cyclohexanes, norbornane, trans-decalin and trans perhydrophenanthrene, comprising a range of chemical shifts from 0.3 to 2.2 {delta} with the known substituent chemical shifts of other functional groups this could allow the general prediction of proton chemical shifts in a simple and useful format. (author) 13 refs., 2 figs.

  19. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry

    International Nuclear Information System (INIS)

    Calcina, Carmen S Guzman; Almeida, Adelaide de; Rocha, Jose R Oliveira; Abrego, Felipe Chen; Baffa, Oswaldo

    2005-01-01

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40)

  20. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    International Nuclear Information System (INIS)

    Levine, Benjamin G.; Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.

  1. SAT in shift manager training

    International Nuclear Information System (INIS)

    Lecuyer, F.

    1995-01-01

    EDF has improved the organization of the operation shift teams with the replacement of shift supervisor in shift manager function. The shift manager is not only responsible for tasks associated to plant operation (production), but he is also responsible for safety of these tasks and for management of shift team members. A job analysis of this new job position has been performed in order to design the training programme. It resulted in a 10-month training programme that includes 8 weeks in safety-related topics and 12 weeks in soft-skills related topics. The safety related training courses are mandatory, the other courses are optional courses depending on individual trainee needs. The training also includes the development of management competencies. During the 10 month period, each trainee develops an individual project that is evaluated by NPP manager. As well, as group project is undertaken by the trainees and overseen by a steering committee. The steering committee participates in the evaluation process and provides operational experience feedback to the trainee groups and to the overall programme

  2. Radial velocity observations of VB10

    Science.gov (United States)

    Deshpande, R.; Martin, E.; Zapatero Osorio, M. R.; Del Burgo, C.; Rodler, F.; Montgomery, M. M.

    2011-07-01

    VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band) radial velocity of VB 10 performed from high resolution (R~20,000) spectroscopy (NIRSPEC/KECK II). Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.

  3. Radial electron beam laser excitation: the REBLE report

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1978-10-01

    The results of an investigation of techniques to generate high-power radially converging electron beams and the application of these beams to gas lasers is discussed. The design and performance of the REBLE accelerator that was developed for this program is presented. Reliable operation of the radial diode has been obtained at levels up to 1 MV, 200 kA, and 20 ns. It has been demonstrated that the anode current density can be made uniform to better than 15% over 1000 cm 2 areas with 100 to 250 A/cm 2 intensities. The measured total and spatially resolved energy deposition of this radial electron beam in various gases is compared with Monte Carlo calculations. In most cases, these codes give an accurate description of the beam transport and energy deposition. With the electron beam pumping xenon gas, the amplitude of xenon excimer radiation (1720 A 0 ) was radially uniform to within the experimental uncertainty. The efficiency of converting deposited electron beam energy to xenon excimer radiation was 20%

  4. Radial scar/complex sclerosing lesion of the breast--value of ultrasound.

    Science.gov (United States)

    Grunwald, S; Heyer, H; Kühl, A; Schwesinger, G; Schimming, A; Köhler, G; Ohlinger, R

    2007-04-01

    Although benign, radial scar/complex sclerosing adenosis is a lesion which histopathologically resembles tubular carcinoma. On physical examination, it is difficult to distinguish radial scar from a malignant tumour. Mammography cannot differentiate radial scar from malignancy. This clinical study aims to delineate the role of preoperative ultrasonography with emphasis on the question whether ultrasonography could lower the number of false-positive readings and therefore the number of open biopsies required. In this examination, we present the clinical, mammographic, ultrasonographic, and histopathological features of 6 cases of radial scars. Although most authors describe radial scars as non-palpable, 2 of 6 lesions were indeed palpable. On mammograms, radial scars have a spiculated appearance, a feature observed in all of our cases. Numerous ultrasonographic characteristics are listed in the literature, but ultrasonography is not reported to have clear-cut advantages. Although this study did not elucidate any unique ultrasonographic features to characterise these lesions, the analysis of all ultrasonographic results made us recognise a set of "nearly specific ultrasonographic features" of radial scars. Current B-mode imaging does not appear to lead to the desirable reduction of the rate of unnecessary open biopsies.

  5. Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Mir Jalil Razavi

    2017-08-01

    Full Text Available Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood. In this work, inspired by prior studies, we propose and evaluate a plausible theory that radial convolution during the early development of the brain is sculptured by radial structures consisting of radial glial cells (RGCs and maturing axons. Specifically, the regionally heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the convex and concave convolution patterns (gyri and sulci in the radial direction, while the interplay of RGCs' effects on convolution and axons regulates the convex (gyral convolution patterns. This theory is assessed by observations and measurements in literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc., at multiple scales to date. Particularly, this theory is further validated by multimodal imaging data analysis and computational simulations in this study. We offer a versatile and descriptive study model that can provide reasonable explanations of observations, experiments, and simulations of the characteristic mammalian cortical folding.

  6. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    Science.gov (United States)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  7. Heuristic Approach for Balancing Shift Schedules

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Yun, Young Su; Lee, Yong Hee

    2005-01-01

    In this paper, a heuristic approach for balancing shift schedules is proposed. For the shift schedules, various constraints which have usually been considered in realworld industry are used, and the objective is to minimize the differences of the workloads in each workgroup. The constraints and objective function are implemented in the proposed heuristic approach. Using a simple instance, the efficiency of the proposed heuristic approach is proved

  8. Radial behavior of the average local ionization energies of atoms

    International Nuclear Information System (INIS)

    Politzer, P.; Murray, J.S.; Grice, M.E.; Brinck, T.; Ranganathan, S.

    1991-01-01

    The radial behavior of the average local ionization energy bar I(r) has been investigated for the atoms He--Kr, using ab initio Hartree--Fock atomic wave functions. bar I(r) is found to decrease in a stepwise manner with the inflection points serving effectively to define boundaries between electronic shells. There is a good inverse correlation between polarizability and the ionization energy in the outermost region of the atom, suggesting that bar I(r) may be a meaningful measure of local polarizabilities in atoms and molecules

  9. Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data

    International Nuclear Information System (INIS)

    Casa, L D C; Krueger, P S

    2013-01-01

    Unstructured three-dimensional fluid velocity data were interpolated using Gaussian radial basis function (RBF) interpolation. Data were generated to imitate the spatial resolution and experimental uncertainty of a typical implementation of defocusing digital particle image velocimetry. The velocity field associated with a steadily rotating infinite plate was simulated to provide a bounded, fully three-dimensional analytical solution of the Navier–Stokes equations, allowing for robust analysis of the interpolation accuracy. The spatial resolution of the data (i.e. particle density) and the number of RBFs were varied in order to assess the requirements for accurate interpolation. Interpolation constraints, including boundary conditions and continuity, were included in the error metric used for the least-squares minimization that determines the interpolation parameters to explore methods for improving RBF interpolation results. Even spacing and logarithmic spacing of RBF locations were also investigated. Interpolation accuracy was assessed using the velocity field, divergence of the velocity field, and viscous torque on the rotating boundary. The results suggest that for the present implementation, RBF spacing of 0.28 times the boundary layer thickness is sufficient for accurate interpolation, though theoretical error analysis suggests that improved RBF positioning may yield more accurate results. All RBF interpolation results were compared to standard Gaussian weighting and Taylor expansion interpolation methods. Results showed that RBF interpolation improves interpolation results compared to the Taylor expansion method by 60% to 90% based on the average squared velocity error and provides comparable velocity results to Gaussian weighted interpolation in terms of velocity error. RMS accuracy of the flow field divergence was one to two orders of magnitude better for the RBF interpolation compared to the other two methods. RBF interpolation that was applied to

  10. Doppler interpretation of quasar red shifts.

    Science.gov (United States)

    Zapolsky, H S

    1966-08-05

    The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.

  11. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques

    International Nuclear Information System (INIS)

    Yoon, Tai Hyun

    2007-01-01

    We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms

  12. Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry.

    Science.gov (United States)

    Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F

    2008-11-10

    Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.

  13. The Response Shift Bias in Self-Report Tests: A Function of an Expectation of Change or a Shift in Internal Scaling?

    Science.gov (United States)

    Riedel, Sharon; And Others

    Self-report, pre/post testing is a frequently employed measure of therapeutic change. To investigate whether expectation of change might be an alternative explanation to the scale shift explanation of response shift bias in a self-report measure, a two-session assertiveness training intervention for college women was evaluated under manipulated…

  14. [Automatic analysis of the interference EMG of the brachioradial muscle in neuropathy of the radial nerve].

    Science.gov (United States)

    Popelianskiĭ, Ia Iu; Bogdanov, E I; Khamidullina, V Z

    1988-01-01

    In 8 patients with radial neuropathy the authors studied histograms of distribution of potentials of motor units (PMU) by their duration, as well as of the number of intercrossings (T) and the mean amplitude of interference EMG of the musculus brachioradialis. The findings included a decrease in the T value and T/M ratio in the presence of an insignificant shift of the histograms and of the mean duration of PMU. With regard to the diagnosis of early neuropathies a reduction in the average value of T and T/M in the presence of ungraded voluntary tension of the muscle is diagnostically more important than changes in the duration of individual PMU.

  15. Behavior of positive radial solutions of a quasilinear equation with a weighted Laplacian

    OpenAIRE

    Marta Garcia-Huidobro

    2001-01-01

    We obtain a classification result for positive radially symmetric solutions of the semilinear equation $$ -mathop{m div}(ilde a(|x|)abla u)=ilde b(|x|)|u|^{delta-1}u, $$ on a punctured ball. The weight functions $ilde a$ and $ilde b$ are $C^1$ on the punctured ball, are positive and measurable almost everywhere, and satisfy certain growth conditions near zero.

  16. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  17. Solar cosmic ray events at large radial distances from the sun

    International Nuclear Information System (INIS)

    Zwickl, R.; Webber, W.R.; McDonald, F.B.; Teegarden, B.; Trainor, J.

    1975-01-01

    Using the GSFC-UNH cosmic ray telescope on Pioneer 10 and 11 we have examined solar cosmic ray events out to a distance approximately 5 AU from the sun. Here we consider two aspects of this work, both related to our anisotropy studies. First, a detailed error analysis of the cosine fit to the anisotropy is presented. Second, we look at the anisotropy and intensity time characteristics during solar events as a function of radial distance. (orig.) [de

  18. Supersymmetric approach for Killingbeck radial potential plus noncentral potential in Schrodinger equation

    International Nuclear Information System (INIS)

    Cari, C.; Suparmi, A.; Yunianto, M.; Pratiwi, B. N.

    2016-01-01

    Killingbeck radial potential, which consists of harmonic oscillator, linier and Coulomb potentials, is combined with non-central potential. The solution of three dimensional Schrodinger equation for Killingbeck potential is combined with Poschl-Teller potential and Symmetrical Top non-central potentials are investigated using supersymmetry (SUSY) operator. The non-relativistic energy is obtained which is infuenced by potentials and the wave functions are produced by using SUSY operator. (paper)

  19. Shifts in species interactions due to the evolution of functional differences between endemics and non-endemics: an endemic syndrome hypothesis.

    Directory of Open Access Journals (Sweden)

    Courtney E Gorman

    Full Text Available Species ranges have been shifting since the Pleistocene, whereby fragmentation, isolation, and the subsequent reduction in gene flow have resulted in local adaptation of novel genotypes and the repeated evolution of endemic species. While there is a wide body of literature focused on understanding endemic species, very few studies empirically test whether or not the evolution of endemics results in unique function or ecological differences relative to their widespread congeners; in particular while controlling for environmental variation. Using a common garden composed of 15 Eucalyptus species within the subgenus Symphyomyrtus (9 endemic to Tasmania, 6 non-endemic, here we hypothesize and show that endemic species are functionally and ecologically different from non-endemics. Compared to non-endemics, endemic Eucalyptus species have a unique suite of functional plant traits that have extended effects on herbivores. We found that while endemics occupy many diverse habitats, they share similar functional traits potentially resulting in an endemic syndrome of traits. This study provides one of the first empirical datasets analyzing the functional differences between endemics and non-endemics in a common garden setting, and establishes a foundation for additional studies of endemic/non-endemic dynamics that will be essential for understanding global biodiversity in the midst of rapid species extinctions and range shifts as a consequence of global change.

  20. Fuel radial design using Path Relinking

    International Nuclear Information System (INIS)

    Campos S, Y.

    2007-01-01

    The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)

  1. Radial collective flow in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Borderie, B.

    1996-11-01

    The production of radial collective flow is associated with collisions leading to sources which undergo multifragmentation/explosion processes. After a theoretical survey of possible causes of production of radial flow, methods used to derive experimental values are discussed. Finally, a large set of data is presented which can be used to study and disentangle the different effects leading to radial collective flow. The dominant role of compression in the lower energy domain is emphasized. (author)

  2. Focused and Radial Shock Wave Therapy in the Treatment of Tennis Elbow: A Pilot Randomised Controlled Study

    Directory of Open Access Journals (Sweden)

    Król Piotr

    2015-09-01

    Full Text Available The purpose of this article was to evaluate and compare the efficacy of radial and focused shock wave therapies applied to treat tennis elbow. Patients with tennis elbow were randomized into two comparative groups: focused shock wave therapy (FSWT; n=25 and radial shock wave therapy (RSWT; n=25. Subjects in the FSWT and RSWT groups were applied with a focused shock wave (3 sessions, 2000 shocks, 4 Hz, 0.2 mJ/mm2 and a radial shock wave (3 sessions, 2000 + 2000 shocks, 8 Hz, 2.5 bar, respectively. The primary study endpoints were pain relief and functional improvement (muscle strength one week after therapy. The secondary endpoint consisted of the results of the follow-up observation (3, 6 and 12 weeks after the study. Successive measurements showed that the amount of pain patients felt decreased in both groups. At the same time grip strength as well as strength of wrist extensors and flexors of the affected extremity improved significantly. Both focused and radial shock wave therapies can comparably and gradually reduce pain in subjects with tennis elbow. This process is accompanied by steadily improved strength of the affected extremity.

  3. On improved confinement in mirror plasmas by a radial electric field

    Science.gov (United States)

    Ågren, O.; Moiseenko, V. E.

    2017-11-01

    A weak radial electric field can suppress radial excursions of a guiding center from its mean magnetic surface. The physical origin of this effect is the smearing action by a poloidal E × B rotation, which tend to cancel out the inward and outward radial drifts. A use of this phenomenon may provide larger margins for magnetic field shaping with radial confinement of particles maintained in the collision free idealization. Mirror fields, stabilized by a quadrupolar field component, are of particular interest for their MHD stability and the possibility to control the quasi neutral radial electric field by biased potential plates outside the confinement region. Flux surface footprints on the end tank wall have to be traced to avoid short-circuiting between biased plates. Assuming a robust biasing procedure, moderate voltage demands for the biased plates seems adequate to cure even the radial excursions of Yushmanov ions which could be locally trapped near the mirrors. Analytical expressions are obtained for a magnetic quadrupolar mirror configuration which possesses minimal radial magnetic drifts in the central confinement region. By adding a weak controlled radial quasi-neutral electric field, the majority of gyro centers are predicted to be forced to move even closer to their respective mean magnetic surface. The gyro center radial coordinate is in such a case an accurate approximation for a constant of motion. By using this constant of motion, the analysis is in a Vlasov description extended to finite β. A correspondence between that Vlasov system and a fluid description with a scalar pressure and an electric potential is verified. The minimum B criterion is considered and implications for flute mode stability in the considered magnetic field is analyzed. By carrying out a long-thin expansion to a higher order, the validity of the calculations are extended to shorter and more compact device designs.

  4. Radial Transport and Meridional Circulation in Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A. [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States); Rafikov, Roman R., E-mail: sashaph@princeton.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-10

    Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflow higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.

  5. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  6. Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Czekala, Ian [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ghosh, Sujit K. [Department of Statistics, NC State University, 2311 Stinson Drive, Raleigh, NC 27695 (United States); Montet, Benjamin T. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Newton, Elisabeth R., E-mail: iczekala@stanford.edu [Massachusetts Institute of Technology, Cambridge, MA 02138 (United States)

    2017-05-01

    Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.

  7. Increasing Optimism Protects Against Pain-Induced Impairment in Task-Shifting Performance.

    Science.gov (United States)

    Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L

    2017-04-01

    Persistent pain can lead to difficulties in executive task performance. Three core executive functions that are often postulated are inhibition, updating, and shifting. Optimism, the tendency to expect that good things happen in the future, has been shown to protect against pain-induced performance deterioration in executive function updating. This study tested whether this protective effect of a temporary optimistic state by means of a writing and visualization exercise extended to executive function shifting. A 2 (optimism: optimism vs no optimism) × 2 (pain: pain vs no pain) mixed factorial design was conducted. Participants (N = 61) completed a shifting task once with and once without concurrent painful heat stimulation after an optimism or neutral manipulation. Results showed that shifting performance was impaired when experimental heat pain was applied during task execution, and that optimism counteracted pain-induced deterioration in task-shifting performance. Experimentally-induced heat pain impairs shifting task performance and manipulated optimism or induced optimism counteracted this pain-induced performance deterioration. Identifying psychological factors that may diminish the negative effect of persistent pain on the ability to function in daily life is imperative. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. The effect of radial migration on galactic disks

    International Nuclear Information System (INIS)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-01-01

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  9. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  10. A Novel Integrated Structure with a Radial Displacement Sensor and a Permanent Magnet Biased Radial Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2014-01-01

    Full Text Available In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.

  11. Heterotopic ossification of the elbow after closed reduction and retrograde intramedullary nailing for radial neck fracture treated by anconeus interposition.

    Science.gov (United States)

    Sreenivas, T; Menon, Jagdish; Nataraj, A R

    2013-12-01

    Heterotopic ossification around the elbow can lead to considerable functional disability. We describe a case of a 42-year-old man who developed heterotopic ossification of his elbow after closed reduction of the elbow dislocation and radial neck fracture and retrograde intramedullary nailing for radial neck fracture. During the follow-up after initial surgery, movements of the elbow were gradually deteriorated and diagnosed as heterotopic ossification of the elbow. Implant removal, radial head excision along with heterotopic mass, and also interposition of the anconeus muscle resulted in improvement of his elbow mobility. At 18 months of follow-up, patient had elbow flexion arc of 15°-110°, 70° of supination, and 50° of pronation without recurrence of heterotopic ossification. The uniqueness of this case lies in the treatment of heterotopic ossification of the elbow to prevent its recurrence, which was developed after retrograde intramedullary nailing for radial neck fracture following closed reduction.

  12. Radial-piston pump for drive of test machines

    Science.gov (United States)

    Nizhegorodov, A. I.; Gavrilin, A. N.; Moyzes, B. B.; Cherkasov, A. I.; Zharkevich, O. M.; Zhetessova, G. S.; Savelyeva, N. A.

    2018-01-01

    The article reviews the development of radial-piston pump with phase control and alternating-flow mode for seismic-testing platforms and other test machines. The prospects for use of the developed device are proved. It is noted that the method of frequency modulation with the detection of the natural frequencies is easily realized by using the radial-piston pump. The prospects of further research are given proof.

  13. SpicyNodes Radial Map Engine

    Science.gov (United States)

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  14. The impact of shift work on the psychological and physical health of nurses in a general hospital: a comparison between rotating night shifts and day shifts.

    Science.gov (United States)

    Ferri, Paola; Guadi, Matteo; Marcheselli, Luigi; Balduzzi, Sara; Magnani, Daniela; Di Lorenzo, Rosaria

    2016-01-01

    Shift work is considered necessary to ensure continuity of care in hospitals and residential facilities. In particular, the night shift is one of the most frequent reasons for the disruption of circadian rhythms, causing significant alterations of sleep and biological functions that can affect physical and psychological well-being and negatively impact work performance. The aim of this study was to highlight if shift work with nights, as compared with day work only, is associated with risk factors predisposing nurses to poorer health conditions and lower job satisfaction. This cross-sectional study was conducted from June 1, 2015 to July 31, 2015 in 17 wards of a general hospital and a residential facility of a northern Italian city. This study involved 213 nurses working in rotating night shifts and 65 in day shifts. The instrument used for data collection was the "Standard Shift Work Index," validated in Italian. Data were statistically analyzed. The response rate was 86%. The nurses engaged in rotating night shifts were statistically significantly younger, more frequently single, and had Bachelors and Masters degrees in nursing. They reported the lowest mean score in the items of job satisfaction, quality and quantity of sleep, with more frequent chronic fatigue, psychological, and cardiovascular symptoms in comparison with the day shift workers, in a statistically significant way. Our results suggest that nurses with rotating night schedule need special attention due to the higher risk for both job dissatisfaction and undesirable health effects.

  15. Novel method for solution of coupled radial Schrödinger equations

    International Nuclear Information System (INIS)

    Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.

    2011-01-01

    One of the major problems in numerical solution of coupled differential equations is the maintenance of linear independence for different sets of solution vectors. A novel method for solution of radial Schrödinger equations is suggested. It consists of rearrangement of coupled equations in a way that is appropriate to avoid usual numerical instabilities associated with components of the wave function in their classically forbidden regions. Applications of the new method for nuclear structure calculations within the hyperspherical harmonics approach are given.

  16. Trapped particle confinement studies in L = 2 torsatrons for additional helical coils, radial electric field and finite beta effect

    International Nuclear Information System (INIS)

    Kato, A.; Nakamura, Y.; Wakatani, M.

    1990-07-01

    L = 2 torsatrons are studied to improve the high energy trapped particle confinement with additional l = 1 and/or l = 3 helical coils. The winding laws are selected in two ways. One is to realize 'σ - optimization' by the additional helical coils, but this approach loses magnetic well region. The other selection is to produce or deepen the magnetic well by the additional helical coils. L=3 helical coils are usable to this end. In this case the improvement of the trapped particle confinement depends on magnetic axis position. Radial electric field producing sheared rotational motion is also considered to improve the trapped particle confinement in a standard l = 2 torsatron. By excluding cancellation between E x B and ΔB drift motion occurred for the parabolic potential profiles, all deeply trapped particles can be confined in the central region. Degradation of the trapped particle confinement by the Shafranov shift is mitigated by shifting the magnetic axis inside in the vacuum configuration. (author)

  17. Behavior of positive radial solutions of a quasilinear equation with a weighted Laplacian

    Directory of Open Access Journals (Sweden)

    Marta Garcia-Huidobro

    2001-01-01

    Full Text Available We obtain a classification result for positive radially symmetric solutions of the semilinear equation $$ -mathop{m div}(ilde a(|x|abla u=ilde b(|x||u|^{delta-1}u, $$ on a punctured ball. The weight functions $ilde a$ and $ilde b$ are $C^1$ on the punctured ball, are positive and measurable almost everywhere, and satisfy certain growth conditions near zero.

  18. Statistical Downscaling of Gusts During Extreme European Winter Storms Using Radial-Basis-Function Networks

    Science.gov (United States)

    Voigt, M.; Lorenz, P.; Kruschke, T.; Osinski, R.; Ulbrich, U.; Leckebusch, G. C.

    2012-04-01

    Winterstorms and related gusts can cause extensive socio-economic damages. Knowledge about the occurrence and the small scale structure of such events may help to make regional estimations of storm losses. For a high spatial and temporal representation, the use of dynamical downscaling methods (RCM) is a cost-intensive and time-consuming option and therefore only applicable for a limited number of events. The current study explores a methodology to provide a statistical downscaling, which offers small scale structured gust fields from an extended large scale structured eventset. Radial-basis-function (RBF) networks in combination with bidirectional Kohonen (BDK) maps are used to generate the gustfields on a spatial resolution of 7 km from the 6-hourly mean sea level pressure field from ECMWF reanalysis data. BDK maps are a kind of neural network which handles supervised classification problems. In this study they are used to provide prototypes for the RBF network and give a first order approximation for the output data. A further interpolation is done by the RBF network. For the training process the 50 most extreme storm events over the North Atlantic area from 1957 to 2011 are used, which have been selected from ECMWF reanalysis datasets ERA40 and ERA-Interim by an objective wind based tracking algorithm. These events were downscaled dynamically by application of the DWD model chain GME → COSMO-EU. Different model parameters and their influence on the quality of the generated high-resolution gustfields are studied. It is shown that the statistical RBF network approach delivers reasonable results in modeling the regional gust fields for untrained events.

  19. Application of radial basis function in densitometry of stratified regime of liquid-gas two phase flows

    International Nuclear Information System (INIS)

    Roshani, G.H.; Nazemi, E.; Roshani, M.M.

    2017-01-01

    In this paper, a novel method is proposed for predicting the density of liquid phase in stratified regime of liquid-gas two phase flows by utilizing dual modality densitometry technique and artificial neural network (ANN) model of radial basis function (RBF). The detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors for registering transmitted and scattered photons. At the first step, a Monte Carlo simulation model was utilized to obtain the optimum position for the scattering detector in dual modality densitometry configuration. At the next step, an experimental setup was designed based on obtained optimum position for detectors from simulation in order to generate the required data for training and testing the ANN. The results show that the proposed approach could be successfully applied for predicting the density of liquid phase in stratified regime of gas-liquid two phase flows with mean relative error (MRE) of less than 0.701. - Highlights: • Density of liquid phase in stratified regime of two phase flows was predicted. • Combination of dual modality densitometry technique and ANN was utilized. • Detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors. • MCNP simulation was done to obtain the optimum position for the scattering detector. • An experimental setup was designed to generate the required data for training the ANN.

  20. Shifts in tree functional composition amplify the response of forest biomass to climate.

    Science.gov (United States)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W

    2018-04-05

    Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.