WorldWideScience

Sample records for radball technology testing

  1. Radball Technology Testing For Hot Cell Characterization

    Farfan, E.; Jannik, T.

    2010-01-01

    Operations at various U.S. Department of Energy sites have resulted in substantial radiological contamination of tools, equipment, and facilities. It is essential to use remote technologies for characterization and decommissioning to keep worker exposures as low as reasonably achievable in these highly contaminated environments. A significant initial step in planning and implementing D and D of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside of the facilities. Collected information describing facility conditions using remote technologies could reduce the conservatism associated with planning initial worker entry (and associated cost).

  2. RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.

    Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J

    2010-01-01

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.

  3. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  4. Technology and testing.

    Quellmalz, Edys S; Pellegrino, James W

    2009-01-02

    Large-scale testing of educational outcomes benefits already from technological applications that address logistics such as development, administration, and scoring of tests, as well as reporting of results. Innovative applications of technology also provide rich, authentic tasks that challenge the sorts of integrated knowledge, critical thinking, and problem solving seldom well addressed in paper-based tests. Such tasks can be used on both large-scale and classroom-based assessments. Balanced assessment systems can be developed that integrate curriculum-embedded, benchmark, and summative assessments across classroom, district, state, national, and international levels. We discuss here the potential of technology to launch a new era of integrated, learning-centered assessment systems.

  5. Some Recent Technology Developments From The Uk's National Nuclear Laboratory To Enable Hazard Characterisation For Nuclear Decommissioning Applications

    Farfan, E.; Foley, T.

    2010-01-01

    Under its programme of self investment Internal Research and Development (IR and D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  6. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  7. Testing and analysis SDN technology

    Taher Abdullah

    2014-10-01

    Full Text Available The Software Defined Networking (SDN is currently one of the most promising technologies in mobile backhaul networks based on the OpenFlow protocol. OpenFlow provides a specification to migrate the control logic from a switch into the controller. In this paper we apply Mininet software to verify the OpenFlow protocol messages.

  8. Language Testing and Technology: Past and Future.

    Chalhoub-Deville, Micheline

    2001-01-01

    Reflects on what has transpired in the second language (L2) testing field in relation to technology and situates developments within the larger language testing, general measurement, and educational contexts. (Author/VWL)

  9. SRS environmental technology development field test platform

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  10. Microelectronic test structures for CMOS technology

    Ketchen, Mark B

    2011-01-01

    Microelectronic Test Structures for CMOS Technology and Products addresses the basic concepts of the design of test structures for incorporation within test-vehicles, scribe-lines, and CMOS products. The role of test structures in the development and monitoring of CMOS technologies and products has become ever more important with the increased cost and complexity of development and manufacturing. In this timely volume, IBM scientists Manjul Bhushan and Mark Ketchen emphasize high speed characterization techniques for digital CMOS circuit applications and bridging between circuit performance an

  11. Transport Network Technologies – Study and Testing

    Bozorgebrahimi, K.; Channegowda, M.; Colmenero, A.

    Following on from the theoretical research into Carrier Class Transport Network Technologies (CCTNTs) documented in DJ1.1.1, this report describes the extensive testing performed by JRA1 Task 1. The tests covered EoMPLS, Ethernet OAM, Synchronous Ethernet, PBB-TE, MPLS-TP, OTN and GMPLS...

  12. Reliability test for reactor internals rejuvenation technology

    Uchiyama, Junichi

    1998-01-01

    41 transparencies were presented on the subject of 'Reliability test for reactor internals rejuvenation technology'. The items presented give an introduction on the management of plant life in Japan and introduce the Nuclear Power Engineering Corporation (NUPEC). The question of what reliability tests for rejuvenation of reactor internals are is discussed in some detail and an outline of each test is given. Altogether six methods to rejuvenate reactor internals are presented, two of which have already been applied to actual plants. The presentation was supported by many detailed drawings and images

  13. Historical hydronuclear testing: Characterization and remediation technologies

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer trademark, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made

  14. Historical hydronuclear testing: Characterization and remediation technologies

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  15. Industrial Arts Test Development, Book III. Resource Items for Graphics Technology, Power Technology, Production Technology.

    New York State Education Dept., Albany.

    This booklet is designed to assist teachers in developing examinations for classroom use. It is a collection of 955 objective test questions, mostly multiple choice, for industrial arts students in the three areas of graphics technology, power technology, and production technology. Scoring keys are provided. There are no copyright restrictions,…

  16. Reliability tests for reactor internals replacement technology

    Fujimaki, K.; Uchiyama, J.; Ohtsubo, T.

    2000-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for replacing reactor internals, which was directed at preventive maintenance before damage and repair after damage for the aging degradation. The project has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995, and it follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the whole test plans and the test results for the BWR reactor internals replacement methods; core shroud, ICM housing, and CRD Housing and stub tube. The test results have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  17. Reliability tests for reactor internals rejuvenation technology

    Fujimaki, Katsumi; Hitoki, Yoichi; Otsubo, Toru; Uchiyama, Junichi

    1998-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for rejuvenating reactor internals which has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995. The project follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the test plans and results which are directed at preventive maintenance before damage and repair after damage for reactor internals aging degradation. The test results for the replacement methods of ICM housing and BWR core shroud have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  18. Eddy current testing using digital technology

    Houseman, H.E.; Lamb, L.T.; Kitson, B.

    1985-01-01

    Eddy current inspection techniques have been used extensively in industry as an accepted method of non-destructive testing. The application of this technology has proven invaluable for both the control of product quality during the manufacturing process as well as the verification of material integrity throughout the life of a given component. One of the major areas in the power industry where eddy current techniques have been used is for the inspection of installed tubing in various heat exchangers including the steam generators of pressurized water reactor (PWR) nuclear steam supply systems. As increased emphasis is placed upon the operability and safety of these components, test instrumentation has been advanced to improve the efficiency and reliability of inservice inspections. At the same time, plant owners along with manufacturers and inspection service vendors are developing analytical tools for assessing the inspection results. One of the techniques that offers significant potential has been made possible by recent advances in digital technology. The application of digital techniques to the eddy current method offers not only a means to improve the test instrumentation but also an environment whereby other facets of the inservice inspection effort can be enchanced

  19. Off reactor testings. Technological engineering applicative research

    Doca, Cezar

    2001-01-01

    By the end of year 2000 over 400 nuclear electro-power units were operating world wide, summing up a 350,000 MW total capacity, with a total production of 2,300 TWh, representing 16% of the world's electricity production. Other 36 units, totalizing 28,000 MW, were in construction, while a manifest orientation towards nuclear power development was observed in principal Asian countries like China, India, Japan and Korea. In the same world's trend one find also Romania, the Cernavoda NPP Unit 1 generating electrical energy into the national system beginning with 2 December 1996. Recently, the commercial contract was completed for finishing the Cernavoda NPP Unit 2 and launching it into operation by the end of year 2004. An important role in developing the activity of research and technological engineering, as technical support for manufacturing the CANDU type nuclear fuel and supplying with equipment the Cernavoda units, was played by the Division 7 TAR of the INR Pitesti. Qualification testings were conducted for: - off-reactor CANDU type nuclear fuel; - FARE tools, pressure regulators, explosion proof panels; channel shutting, as well as functional testing for spare pushing facility as a first step in the frame of the qualification tests for the charging/discharging machine (MID) 4 and 5 endings. Testing facilities are described, as well as high pressure hot/cool loops, measuring chains, all of them fulfilling the requirements of quality assurance. The nuclear fuel off-reactor tests were carried out to determine: strength; endurance; impact, pressure fall and wear resistance. For Cernavoda NPP equipment testings were carried out for: the explosion proof panels, pressure regulators, behaviour to vibration and wear of the steam generation tubings, effects of vibration upon different electronic component, channel shutting (for Cernavoda Unit 2), MID operating at 300 and 500 cycles. A number of R and D programs were conducted in the frame of division 7 TAR of INR

  20. Environmental assessment report: Nuclear Test Technology Complex

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  1. Validation of the Information/Communications Technology Literacy Test

    2016-10-01

    Technical Report 1360 Validation of the Information /Communications Technology Literacy Test D. Matthew Trippe Human Resources Research...TITLE AND SUBTITLE Validation of the Information /Communications Technology Literacy Test 5a. CONTRACT OR GRANT NUMBER W91WAS-09-D-0013 5b...validate a measure of cyber aptitude, the Information /Communications Technology Literacy Test (ICTL), in predicting trainee performance in Information

  2. Science and Technology Test Mining: Disruptive Technology Roadmaps

    Kostoff, Ronald

    2003-01-01

    Disruptive technologies create growth in the industries they penetrate or create entirely new industries through the introduction of products and services that are dramatically cheaper, better, and more convenient...

  3. CALIBRATION AND TESTING OF SONIC STIMULATION TECHNOLOGIES

    Roger Turpening; Wayne Pennington; Christopher Schmidt; Sean Trisch

    2005-03-01

    In conjunction with Baker Atlas Inc. Michigan Technological University devised a system capable of recording the earth motion and pressure due to downhole and surface seismic sources. The essential elements of the system are (1) a borehole test site that will remain constant and is available all the time and for any length of time, (2) a downhole sonde that will itself remain constant and, because of its downhole digitization feature, does not require the wireline or surface recording components to remain constant, and (3) a set of procedures that ensures that the amplitude and frequency parameters of a wide range of sources can be compared with confidence. This system was used to record four seismic sources, three downhole sources and one surface source. A single activation of each of the downhole sources was not seen on time traces above the ambient noise, however, one sweep of the surface source, a small vertical vibrator, was easily seen in a time trace. One of the downhole sources was seen by means of a spike in its spectrum and a second downhole source was clearly seen after correlation and stacking. The surface vibrator produced a peak to peak particle motion signal of approximately 4.5 x 10{sup -5} cm/sec and a peak to peak pressure of approx. 2.5 x 10{sup -7} microPascals at a depth of 1,485 ft. Theoretical advances were made with our partner, Dr. Igor Beresnev at Iowa State University. A theory has been developed to account for the behavior of oil ganglia trapped in pore throats, and their ultimate release through the additional incremental pressure associated with sonic stimulation.

  4. Calibration and Testing of Sonic Stimulation Technologies

    Roger M. Turpening; Wayne D.Pennington

    2005-03-31

    In conjunction with Baker Atlas Inc. Michigan Technological University devised a system capable of recording the earth motion and pressure due to downhole and surface seismic sources. The essential elements of the system are 1) a borehole test site that will remain constant and is available all the time and for any length of time, 2) a downhole sonde that will itself remain constant and, because of its downhole digitization feature, does not require the wireline or surface recording components to remain constant, and 3) a set of procedures that ensures that the amplitude and frequency parameters of a wide range of sources can be compared with confidence. This system was used to record four seismic sources, three downhole sources and one surface source. A single activation of each of the downhole sources was not seen on time traces above the ambient noise, however, one sweep of the surface source, a small vertical vibrator, was easily seen in a time trace. One of the downhole sources was seen by means of a spike in its spectrum and a second downhole source was clearly seen after correlation and stacking. The surface vibrator produced a peak to peak particle motion signal of approximately 4.5 X 10-5 cm/sec and a peak to peak pressure of approx. 2.5 X 10-7 microPascals at a depth of 1,485 ft. Theoretical advances were made with our partner, Dr. I. Beresnev at Iowa State University. A theory has been developed to account for the behavior of oil ganglia trapped in pore throats, and their ultimate release through the additional incremental pressure associated with sonic stimulation.

  5. The Savannah River environmental technology field test platform

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  6. Hypervelocity technology carbon/carbon testing

    Anselmo, John V.; Kretz, Lawrence O.

    The paper describes the procedures used at the Structures Test Laboratory of the Wright Laboratory's Flight Dynamics Directorate to test a carbon/carbon hot structure representing a typical hypersonic gliding body, and presents the results of tests. The forebody was heated to 1371 C over 13 test runs, using radiant quartz lamps; a vertical shear force of 5.34 kN was introduced to the nose at a stabilized temperature of 816 C. Test data were collected using prototype high-temperature strain gages, in-house-designed high-temperature extensometers, conventional strain gages, and thermocouples. Video footage was taken of all test runs. Test runs were successfully completed up to 1371 C with flight typical thermal gradients at heating rates up to 5.56 C/sec. Results showed that, overall, the termal test control systems performed as predicted and that test temperatures and thermal gradients were achieved to within about 5 percent in most cases.

  7. Development of an Autonomous Navigation Technology Test Vehicle

    Tobler, Chad K

    2004-01-01

    .... In order to continue these research activities at CIMAR, a new Kawasaki Mule All-Terrain Vehicle was chosen to be automated as a test-bed for the purpose of developing and testing autonomous vehicle technologies...

  8. Enraf Series 854 advanced technology gauge (ATG) acceptance test procedure

    Huber, J.H.

    1996-01-01

    This Acceptance Test Procedure was written to test the Enraf Series 854 Advanced Technology Gauge (ATG) prior to installation in the Tank Farms. The procedure sets various parameters and verifies that the gauge is functional

  9. ITER: a technology test bed for a fusion reactor

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  10. Field test plan: Buried waste technologies, Fiscal Year 1995

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management

  11. Pile Model Tests Using Strain Gauge Technology

    Krasiński, Adam; Kusio, Tomasz

    2015-09-01

    Ordinary pile bearing capacity tests are usually carried out to determine the relationship between load and displacement of pile head. The measurement system required in such tests consists of force transducer and three or four displacement gauges. The whole system is installed at the pile head above the ground level. This approach, however, does not give us complete information about the pile-soil interaction. We can only determine the total bearing capacity of the pile, without the knowledge of its distribution into the shaft and base resistances. Much more information can be obtained by carrying out a test of instrumented pile equipped with a system for measuring the distribution of axial force along its core. In the case of pile model tests the use of such measurement is difficult due to small scale of the model. To find a suitable solution for axial force measurement, which could be applied to small scale model piles, we had to take into account the following requirements: - a linear and stable relationship between measured and physical values, - the force measurement accuracy of about 0.1 kN, - the range of measured forces up to 30 kN, - resistance of measuring gauges against aggressive counteraction of concrete mortar and against moisture, - insensitivity to pile bending, - economical factor. These requirements can be fulfilled by strain gauge sensors if an appropriate methodology is used for test preparation (Hoffmann [1]). In this paper, we focus on some aspects of the application of strain gauge sensors for model pile tests. The efficiency of the method is proved on the examples of static load tests carried out on SDP model piles acting as single piles and in a group.

  12. Technology diffusion and diagnostic testing for prostate cancer

    Schroeck, Florian R.; Kaufman, Samuel R.; Jacobs, Bruce L.; Skolarus, Ted A.; Miller, David C.; Weizer, Alon Z.; Montgomery, Jeffrey S.; Wei, John T.; Shahinian, Vahakn B.; Hollenbeck, Brent K.

    2013-01-01

    Purpose While the dissemination of robotic prostatectomy and intensity-modulated radiotherapy (IMRT) may fuel increased use of prostatectomy and radiotherapy, these new technologies may also have spillover effects related to diagnostic testing for prostate cancer. Therefore, we examined the association of regional technology penetration with receipt of prostate specific antigen (PSA) testing and prostate biopsy. Methods In this retrospective cohort study, we included 117,857 men age 66 and older from the 5% sample of Medicare beneficiaries living in the Surveillance Epidemiology and End Results (SEER) areas from 2003 – 2007. Regional technology penetration was measured as the number of providers performing robotic prostatectomy or IMRT per population in a healthcare market (i.e., hospital referral region). We assessed the association of technology penetration with rates of PSA testing and prostate biopsy with generalized estimating equations. Results High technology penetration was associated with increased rates of PSA testing (442 versus 425 per 1,000 person-years, pimpact of technology penetration on PSA testing and prostate biopsy was much smaller than the effect of age, race, and comorbidity (e.g., PSA testing rate per 1,000 person-years: 485 versus 373 for men with only one versus 3+ co-morbid conditions, ppenetration was associated with slightly higher rates of PSA testing and no change in prostate biopsy rates. Collectively, our findings temper concerns that adoption of new technology accelerates diagnostic testing for prostate cancer. PMID:23669564

  13. Demonstration and Field Test of airjacket technology

    Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

    1998-06-01

    There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

  14. The Savannah River environmental technology field test platform: Phase II

    Rossabi, J.; Riha, B.D.; May, C.P.; Pemberton, B.E.; Jarosch, T.R.; Eddy-Dilek, C.A.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs), and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. The Savannah River Technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program (i.e., wells, available power, conventional baseline characterization and monitoring equipment, shelter structures) allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies can be tested for long periods of time to determine their appropriate applications in environmental characterization and monitoring activities. Situation specific evaluations of the technology following stringent test plans can be made in comparison with simultaneous baseline methods and historical data. This program is designed to help expedite regulatory approval and technology transfer to manufacturers and the user community

  15. Performance Testing of Homeland Security Technologies in U.S. EPA's Environmental Technology Verification (ETV) Program

    Kelly, Thomas J; Hofacre, Kent C; Derringer, Tricia L; Riggs, Karen B; Koglin, Eric N

    2004-01-01

    ... (reports and test plans available at www.epa.gov/etv). In the aftermath of the terrorist attacks of September 11, 2001, the ETV approach has also been employed in performance tests of technologies relevant to homeland security (HS...

  16. New and emerging technologies for genetic toxicity testing.

    Lynch, Anthony M; Sasaki, Jennifer C; Elespuru, Rosalie; Jacobson-Kram, David; Thybaud, Véronique; De Boeck, Marlies; Aardema, Marilyn J; Aubrecht, Jiri; Benz, R Daniel; Dertinger, Stephen D; Douglas, George R; White, Paul A; Escobar, Patricia A; Fornace, Albert; Honma, Masamitsu; Naven, Russell T; Rusling, James F; Schiestl, Robert H; Walmsley, Richard M; Yamamura, Eiji; van Benthem, Jan; Kim, James H

    2011-04-01

    The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow-up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans. Copyright © 2010 Wiley-Liss, Inc.

  17. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities

    National Aeronautics and Space Administration — Key steps to ensure identification of relevant effluent treatment technologies for Nuclear Thermal Propulsion (NTP) testing include the following. 1. Review of...

  18. Understanding Student Teachers' Behavioural Intention to Use Technology: Technology Acceptance Model (TAM) Validation and Testing

    Wong, Kung-Teck; Osman, Rosma bt; Goh, Pauline Swee Choo; Rahmat, Mohd Khairezan

    2013-01-01

    This study sets out to validate and test the Technology Acceptance Model (TAM) in the context of Malaysian student teachers' integration of their technology in teaching and learning. To establish factorial validity, data collected from 302 respondents were tested against the TAM using confirmatory factor analysis (CFA), and structural equation…

  19. Sharing Year 2000 Testing Information on DOD Information Technology Systems

    1998-01-01

    The audit objective was to determine whether planning for year 2000 testing is adequate to ensure that mission critical DoD information technology systems will continue to operate properly after the year 2000...

  20. PTC test bed upgrades to provide ACSES testing support capabilities at transportation technology center.

    2015-06-01

    FRA Task Order 314 upgraded the Positive Train Control (PTC) Test Bed at the Transportation Technology Center to support : testing of PTC systems, components, and related equipment associated with the Advanced Civil Speed Enforcement System : (ACSES)...

  1. Technology diffusion and diagnostic testing for prostate cancer.

    Schroeck, Florian R; Kaufman, Samuel R; Jacobs, Bruce L; Skolarus, Ted A; Miller, David C; Weizer, Alon Z; Montgomery, Jeffrey S; Wei, John T; Shahinian, Vahakn B; Hollenbeck, Brent K

    2013-11-01

    While the dissemination of robotic prostatectomy and intensity modulated radiotherapy may fuel the increased use of prostatectomy and radiotherapy, these new technologies may also have spillover effects related to diagnostic testing for prostate cancer. Therefore, we examined the association of regional technology penetration with the receipt of prostate specific antigen testing and prostate biopsy. In this retrospective cohort study we included 117,857 men 66 years old or older from the 5% sample of Medicare beneficiaries living in Surveillance, Epidemiology and End Results (SEER) areas from 2003 to 2007. Regional technology penetration was measured as the number of providers performing robotic prostatectomy or intensity modulated radiotherapy per population in a health care market, ie hospital referral region. We assessed the association of technology penetration with the prostate specific antigen testing rate and prostate biopsy using generalized estimating equations. High technology penetration was associated with an increased rate of prostate specific antigen testing (442 vs 425/1,000 person-years, pimpact of technology penetration on prostate specific antigen testing and prostate biopsy was much less than the effect of age, race and comorbidity, eg the prostate specific antigen testing rate per 1,000 person-years was 485 vs 373 for men with only 1 vs 3+ comorbid conditions (ppenetration is associated with a slightly higher rate of prostate specific antigen testing and no change in the prostate biopsy rate. Collectively, our findings temper concerns that adopting new technology accelerates diagnostic testing for prostate cancer. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Development of in-pile test and evaluation technology

    Kang, Yung Hwan; Park, Jong Man; Joo, Kee Nam; Park, Duk Keun; Park, Se Jin; Oh, Jong Myung; Kim, Tae Ryong; Park Jin Suk; Lee, Jae Han [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    To develop the in-pile test and evaluation technologies using KMRR, basic design of instrumented capsule and auxiliary system for material irradiation test and the related studies are performed. First, reactor and test hole characteristics are summarized, and conceptual design requirements of capsule to KMRR are reviewed. And fundamental principles and criteria for the instrumented capsule design are summarized. Basic design and analysis of instrumented capsule are performed, and design of capsule supporting system are also performed and structural integrity of the system is analyzed. Based on the prior studies, test mock-ups are designed and manufactured, and thermohydraulic and vibration tests are prepared. And, as in-pile test evaluation technologies, KMRR neutron dosimetry and mechanical tests related to material irradiation are investigated. 67 figs, 30 tabs, 41 refs. (Author).

  3. The development of flow test technology for PWR fuel assembly

    Chung, Moon Ki; Cha, Chong Hee; Chung, Chang Hwan; Chun, Se Young; Song, Chul Hwa; Chung, Heung Joon; Won, Soon Yeun; Cho, Yeong Rho; Kim, Bok Deuk

    1988-05-01

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  4. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Denslow, Kayte M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their ability to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.

  5. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  6. Development of modelling algorithm of technological systems by statistical tests

    Shemshura, E. A.; Otrokov, A. V.; Chernyh, V. G.

    2018-03-01

    The paper tackles the problem of economic assessment of design efficiency regarding various technological systems at the stage of their operation. The modelling algorithm of a technological system was performed using statistical tests and with account of the reliability index allows estimating the level of machinery technical excellence and defining the efficiency of design reliability against its performance. Economic feasibility of its application shall be determined on the basis of service quality of a technological system with further forecasting of volumes and the range of spare parts supply.

  7. Honeycomb technology materials, design, manufacturing, applications and testing

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  8. Development of non-destructive testing (NDT) technology in Pakistan

    Khan, A.A.

    2005-01-01

    Non-Destructive Testing (NDT) techniques are being extensively used to improve and maintain the quality of manufactured goods as well as for proper maintenance of industrial plants and equipment. Typical industries that benefit most include Aerospace, Chemical, Heavy Mechanical Fabrication, Conventional and Nuclear Power Generation, Automobiles, Oil and Gas, Shipbuilding, Foundries, and Armaments, etc. As the name implies, with these techniques an industrial product is inspected mostly for defects in its structure without destroying it. Among the most widely used NDT techniques for the detection of internal defects are Radiographic and Ultrasonic Testing. For surface and just below the surface defects Magnetic Particle Testing, Penetrant Testing and Eddy Current Testing are commonly used. In addition to these, there are some NDT methods which have specific applications. These include Acoustic Emission, Thermal and Infrared Testing, Microwave Testing, Computer Tomography, Strain Gauging, Leak Testing and Holography, etc. This paper describes various phases through which the development of NDT technology passed and its present state of the art. It started with the undertaking of a nuclear technology programme and has matured along with it. As it stands we are fully competent to undertake various essential activities related to this technology, namely, (I) raining and certification of NDT personnel at various levels. (II) revision of NDT services to various industrial sectors including nuclear power during manufacture, fabrication, pre-service inspection (PSI) and in-service inspection (ISI). (author)

  9. New technologies in electromagnetic non-destructive testing

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  10. NASA funding opportunities for optical fabrication and testing technology development

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  11. Selected Test Results from the Encell Technology Nickel Iron Battery

    Ferreira, Summer Kamal Rhodes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources R& D; Baca, Wes Edmund [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Power Sources R& D; Avedikian, Kristan [Encell Technology, Alachua, FL (United States)

    2014-09-01

    The performance of the Encell Nickel Iron (NiFe) battery was measured. Tests included capacity, capacity as a function of rate, capacity as a function of temperature, charge retention (28-day), efficiency, accelerated life projection, and water refill evaluation. The goal of this work was to evaluate the general performance of the Encell NiFe battery technology for stationary applications and demonstrate the chemistry's capabilities in extreme conditions. Test results have indicated that the Encell NiFe battery technology can provide power levels up to the 6C discharge rate, ampere-hour efficiency above 70%. In summary, the Encell batteries have met performance metrics established by the manufacturer. Long-term cycle tests are not included in this report. A cycle test at elevated temperature was run, funded by the manufacturer, which Encell uses to predict long-term cycling performance, and which passed their prescribed metrics.

  12. Testing Template and Testing Concept of Operations for Speaker Authentication Technology

    Sipko, Marek M

    2006-01-01

    This thesis documents the findings of developing a generic testing template and supporting concept of operations for speaker verification technology as part of the Iraqi Enrollment via Voice Authentication Project (IEVAP...

  13. Semantic test of a technology management model in family business

    Guillermo Jesús Larios

    2017-10-01

    Full Text Available This paper assembles family business conceptions from the innovation and technology management perspective, and tests them in the case of a Mexican sugarcane producer. Literature indicates that non-financial objectives, risk aversion and strong controls negatively influence family firms’ innovation outcomes. Based on semantic network analysis, we collected transversal information on the firm’s technology activities, innovation values and organizational flows, which allowed for the identification of an organizational management profile that shapes an innovation style. Although we acknowledge literature consistency in aspects such as family direct influence and control, or the importance of STI partnerships and external knowledge, our findings didn’t identify any concerns about losing control in parts of the family business. This research contributes to the understanding of technology management and organizational elements in an emerging economy’s family firm from a relational perspective. Implications for theory endorsement and characterization of family business innovation and technology management in developing countries are discussed.

  14. Utility advanced turbine systems (ATS) technology readiness testing

    NONE

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  15. RF and microwave integrated circuit development technology, packaging and testing

    Gamand, Patrice; Kelma, Christophe

    2018-01-01

    RF and Microwave Integrated Circuit Development bridges the gap between existing literature, which focus mainly on the 'front-end' part of a product development (system, architecture, design techniques), by providing the reader with an insight into the 'back-end' part of product development. In addition, the authors provide practical answers and solutions regarding the choice of technology, the packaging solutions and the effects on the performance on the circuit and to the industrial testing strategy. It will also discuss future trends and challenges and includes case studies to illustrate examples. * Offers an overview of the challenges in RF/microwave product design * Provides practical answers to packaging issues and evaluates its effect on the performance of the circuit * Includes industrial testing strategies * Examines relevant RF MIC technologies and the factors which affect the choice of technology for a particular application, e.g. technical performance and cost * Discusses future trends and challen...

  16. 2009 Continued Testing of the Orion Atmosphere Revitalization Technology

    Button, Amy B.; Swerterlitsch, Jeffrey J.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment, with simulated and real human metabolic loads, in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended

  17. A Study on Test Technology to Diagnose the Power Apparatus

    Kim, K H; Kang, Y S; Jeon, Y K; Lee, W Y; Kang, D S; Kyu, H S; Sun, J H; Jo, K H [Korea Electrotechnology Research Institute (Korea, Republic of); Jung, J S; Mun, Y T; Lee, K H; Jung, E H; Kim, J H [Korea Water Resources Corporation (Korea, Republic of)

    1997-02-01

    In this study, we have educated KOWACO(Korea Water Resources Corporation) specialists about the insulation diagnostic technology and trained them the insulation diagnostic test and estimation method of power apparatus. The main results of this study are as follows; A. Education of basic high-voltage engineering. B. Research of insulation characteristic and deterioration mechanism in power apparatus C. Discussion on high-voltage test standard specifications. D. Study on insulation deterioration diagnostics in power apparatus. E. Field testing of insulation diagnosis in power apparatus. F. Engineering of insulation diagnostic testing apparatus to diagnose power apparatus. KOWACO specialists are able to diagnose insulation diagnostic test of power apparatus through this study. As they have instruments to diagnose power apparatus, they can do the test and estimation of the power apparatus insulation diagnosis. (author). refs., figs., tabs.

  18. Heavy Section Steel Technology Program. Part II. Intermediate vessel testing

    Whitman, G.D.

    1975-01-01

    The testing of the intermediate pressure vessels is a major activity under the Heavy Section Steel Technology Program. A primary objective of these tests is to develop or verify methods of fracture prediction, through the testing of selected structures and materials, in order that a valid basis can be established for evaluating the serviceability and safety of light-water reactor pressure vessels. These vessel tests were planned with sufficiently specific objectives that substantial quantitative weight could be given to the results. Each set of testing conditions was chosen so as to provide specific data by which analytical methods of predicting flaw growth, and in some cases crack arrest, could be evaluated. Every practical effort was made to assure that results would be relevant to some aspect of real reactor pressure vessel performance through careful control of material properties, selection of test temperatures, and design of prepared flaws. 5 references

  19. Infrared detectors and test technology of cryogenic camera

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  20. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  1. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  2. IFE chamber technology testing program in NIF and chamber development test plan

    Abdou, M.A.

    1995-01-01

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF

  3. Utility Advanced Turbine Systems (ATS) technology readiness testing

    NONE

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  4. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  5. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  6. Development testing of grouting and liner technology for humid sites

    Vaughan, N.D.

    1981-01-01

    Shallow land burial, although practiced for many years, has not always secured radionuclides from the biosphere in humid environments. To develop and demonstrate improved burial technology the Engineered Test Facility was implemented. An integral part of this experiment was site characterization, with geologic and hydrologic factors as major the components. Improved techniques for burial of low-level waste were developed and tested in the laboratory before being applied in the field. The two techniques studied were membrane trench liner and grouting void spaces

  7. Development of tritium technology at the Tritium Systems Test Assembly

    Anderson, J.L.; Bartlit, J.R.

    1982-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for large scale fusion reactor systems starting with the Fusion Engineering Device (FED) or the International Tokamak Reactor (INTOR). This paper briefly describes the fuel cycle and safety systems at TSTA including the Vacuum Facility, Fuel Cleanup, Isotope Separation, Transfer Pumping, Emergency Tritium Cleanup, Tritium Waste Treatment, Tritium Monitoring, Data Acquisition and Control, Emergency Power and Gas Analysis systems. Discussed in further detail is the experimental program proposed for the startup and testing of these systems

  8. Advanced Test Accelerator (ATA) pulse power technology development

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described

  9. Continued research, development and test of SOFC Technology. Final report

    2008-09-15

    The aim of the project was to further develop the SOFC cell and stack technology and drive down manufacturing costs in order to accomplish the performance and economic targets set forward in the SOFC road map, which has been developed in collaboration with the national Danish SOFC Strategy group. The project was divided into four parts. Part 1, Continued cell development covered the successful development of larger cells with a 500 cm2 footprint. Part 2, Cell manufacturing covered the production of 9.859 equivalents (12x12 cm2 standard cells) that were used in the stacks for demonstration projects (EFP 33033-0050)and for in-house research, development and testing in this project. Part 3, Continued stack development covered the successful test of a 3 kW{sub e} stack as well as the planning of a >8.000 hours stack test with new stack technology. The >8.000 hours test that started after the end date for this project will last for 12 months and be reported in the PSO 2008-1-010049 project. Part 4, Stack manufacturing covered a number of small stacks for in-house research, development and testing. (auther)

  10. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every

  11. Understanding Student Teachers’ Behavioural Intention to Use Technology: Technology Acceptance Model (TAM Validation and Testing

    Kung-Teck, Wong

    2013-01-01

    Full Text Available This study sets out to validate and test the Technology Acceptance Model (TAM in the context of Malaysian student teachers’ integration of their technology in teaching and learning. To establish factorial validity, data collected from 302 respondents were tested against the TAM using confirmatory factor analysis (CFA, and structural equation modelling (SEM was used for model comparison and hypotheses testing. The goodness-of-fit test of the analysis shows partial support of the applicability of the TAM in a Malaysian context. Overall, the TAM accounted for 37.3% of the variance in intention to use technology among student teachers and of the five hypotheses formulated, four are supported. Perceived usefulness is a significant influence on attitude towards computer use and behavioural intention. Perceived ease of use significantly influences perceived usefulness, and finally, behavioural intention is found to be influenced by attitude towards computer use. The findings of this research contribute to the literature by validating the TAM in the Malaysian context and provide several prominent implications for the research and practice of technology integration development.

  12. Full-Scale Testing of Pipeline Unplugging Technologies - NuVision's Fluidic Wave-Action Technology

    Gokaltun, S.; McDaniel, D.; Varona, J.; Patel, R.; Awwad, A.; Roelant, D.; Keszler, E.

    2009-01-01

    In this paper, we present a technical evaluation of a pipeline unplugging method that can be used as a feasible tool to clean fouled pipes at Department of Energy (DOE) sites. The unplugging method depends on running water against the plugged section in the pipeline for multiple times and breaking the mechanical bonds of the material that hold the plug together. The working principles of the method are similar to beach erosion since a water wave is generated using the suction and drive mechanisms caused by the system in the pipeline that erodes the plug from one end. The technology tested also is capable of creating an external force on the plug that helps the unplugging process however this characteristic of the technology was not tested during the testing reported in this work. More focus was given to the erosion capability of the technology and how wave characteristics affected that. Results obtained demonstrated that there is a correlation between the suction and drive characteristics of the wave generated in the pipeline with the maximum pressures attained in the plug region, the velocity of the wave prior to colliding with the plug and the erosion. It was found that the technology was most effective in unplugging Phosphate based chemical plugs and Kaolin clay based plugs while it took more time to erode Aluminum based plugs for the same pipeline test layouts. (authors)

  13. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  14. Testing QoE in Different 3D HDTV Technologies

    M. Slanina

    2012-04-01

    Full Text Available The three dimensional (3D display technology has started flooding the consumer television market. There is a number of different systems available with different marketing strategies and different advertised advantages. The main goal of the experiment described in this paper is to compare the systems in terms of achievable Quality of Experience (QoE in different situations. The display systems considered are the liquid crystal display using polarized light and passive lightweight glasses for the separation of the left- and right-eye images, a plasma display with time multiplexed images and active shutter glasses and a projection system with time multiplexed images and active shutter glasses. As no standardized test methodology has been defined for testing of stereoscopic systems, we develop our own approach to testing different aspects of QoE on different systems without reference using semantic differential scales. We present an analysis of scores with respect to different phenomena under study and define which of the tested aspects can really express a difference in the performance of the considered display technologies.

  15. The Savannah River Technology Center environmental monitoring field test platform

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  16. Integrated testing strategies for toxicity employing new and existing technologies.

    Combes, Robert D; Balls, Michael

    2011-07-01

    We have developed individual, integrated testing strategies (ITS) for predicting the toxicity of general chemicals, cosmetics, pharmaceuticals, inhaled chemicals, and nanoparticles. These ITS are based on published schemes developed previously for the risk assessment of chemicals to fulfil the requirements of REACH, which have been updated to take account of the latest developments in advanced in chemico modelling and in vitro technologies. In addition, we propose an ITS for neurotoxicity, based on the same principles, for incorporation in the other ITS. The technologies are deployed in a step-wise manner, as a basis for decision-tree approaches, incorporating weight-of-evidence stages. This means that testing can be stopped at the point where a risk assessment and/or classification can be performed, with labelling in accordance with the requirements of the regulatory authority concerned, rather than following a checklist approach to hazard identification. In addition, the strategies are intelligent, in that they are based on the fundamental premise that there is no hazard in the absence of exposure - which is why pharmacokinetic modelling plays a key role in each ITS. The new technologies include the use of complex, three-dimensional human cell tissue culture systems with in vivo-like structural, physiological and biochemical features, as well as dosing conditions. In this way, problems of inter-species extrapolation and in vitro/in vivo extrapolation are minimised. This is reflected in the ITS placing more emphasis on the use of volunteers at the whole organism testing stage, rather than on existing animal testing, which is the current situation. 2011 FRAME.

  17. Pseudoisochromatic test plate colour representation dependence on printing technology

    Luse, K; Ozolinsh, M; Fomins, S

    2012-01-01

    The aim of the study is to determine best printing technology for creation of colour vision deficiency tests. Valid tests for protanopia and deuteranopia were created from perceived colour matching experiments from printed colour samples by colour deficient individuals. Calibrated EpsonStylus Pro 7800 printer for ink prints and Noritsu HD 3701 digital printer for photographic prints were used. Multispectral imagery (by tunable liquid crystal filters system CRI Nuance Vis 07) data analysis show that in case of ink prints, the measured pixel colour coordinate dispersion (in the CIExy colour diagram) of similar colour arrays is smaller than in case of photographic printing. The print quality in terms of colour coordinate dispersion for printing methods used is much higher than in case of commercially available colour vision deficiency tests.

  18. Structural testing of the technology integration box beam

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  19. Test results, Industrial Solar Technology parabolic trough solar collector

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  20. Exploratory battery technology development and testing report for 1989

    Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

    1990-12-01

    Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

  1. Development of 3-Pin Fuel Test Loop and Utilization Technology

    Lee, Chung Young; Sim, B. S.; Lee, C. Y.

    2007-06-01

    The principal contents of this project are to design, fabricate and install the steady-state fuel test loop in HANARO for nuclear technology development. Procurement and, fabrication of main equipment, licensing and installation for fuel test loop have been performed. Following contents are described in the report. 1. Design - Design of the In-pile system and Out pile system 2. Fabrication and procurement of the equipment - Fabrication of the In-pile system and In-pool piping - Fabrication and procurement of the equipment of the out-pile system 3. Acquisition of the license - Preparation of the safety analysis report and acquisition of the license - Pre-service inspection of the facility 4. Installation and commissioning - Installation of the FTL - Development of the commissioning procedure

  2. Miniature specimen technology for postirradiation fatigue crack growth testing

    Mervyn, D.A.; Ermi, A.M.

    1979-01-01

    Current magnetic fusion reactor design concepts require that the fatigue behavior of candidate first wall materials be characterized. Fatigue crack growth may, in fact, be the design limiting factor in these cyclic reactor concepts given the inevitable presence of crack-like flaws in fabricated sheet structures. Miniature specimen technology has been developed to provide the large data base necessary to characterize irradiation effects on the fatigue crack growth behavior. An electrical potential method of measuring crack growth rates is employed on miniature center-cracked-tension specimens (1.27 cm x 2.54 cm x 0.061 cm). Results of a baseline study on 20% cold-worked 316 stainless steel, which was tested in an in-cell prototypic fatigue machine, are presented. The miniature fatigue machine is designed for low cost, on-line, real time testing of irradiated fusion candidate alloys. It will enable large scale characterization and development of candidate first wall alloys

  3. Letter report: Evaluation of dryer/calciner technologies for testing

    Sevigny, G.

    1996-02-01

    This letter report describes some past experiences on the drying and calcination of radioactive materials or corresponding simulants; and the information needed from testing. The report also includes an assessment of informational needs including possible impacts to a full-scale plant. This includes reliability, maintenance, and overall size versus throughput. Much of the material was previously compiled and reported by Mike Elliott of PNL open-quotes Melter Performance Assessmentclose quotes and Larry Eisenstatt of SEG on contract to WHC in a letter to Rod Powell. Also, an annotated bibliography was prepared by Reagan Seymour of WHC. Descriptions of the drying and calciner technologies, development status, advantages and disadvantages of using a WFE or calciner, and recommendations for future testing are discussed in this report

  4. Research and test facilities required in nuclear science and technology

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  5. Technology and testing for the extension of plant life

    Blumer, U.R.; Edelmann, X.

    1988-01-01

    This paper describes selected portions of a recommended program for the application of equipment-manufacturing-related technology and testing for the extension of life for operating nuclear power plants. It is appropriate to mention that the Swiss nuclear plants, their staffs, and the supporting Swiss nuclear industry are rightfully proud of their record of performance. Plant staffs have been intimately involved in system and equipment design and engineering from the very beginnings of their plants. Maintenance of the plant systems and equipment is referred to as engineering rather than maintenance, because it is viewed as a technical effort and an extension of the original plant and equipment design and construction effort. Care, competence, cleanliness, and attention to detail have been bywords for the Swiss plants. Success has been demonstrated through enviable availability performance. With operation and availability capability already demonstrated, the Swiss are now turning their attention to the extension of plant life. This summary describes some aspects of this work, which is fundamentally based on the application of technology and testing skills developed for equipment manufacture and the original installation of this equipment in the plants, but has been enhanced by research and development (R and D) and an ongoing effort to serve utilities in their maintenance activities

  6. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  7. Measuring and test equipment control through bar-code technology

    Crockett, J.D.; Carr, C.C.

    1993-01-01

    Over the past several years, the use, tracking, and documentation of measuring and test equipment (M ampersand TE) has become a major issue. New regulations are forcing companies to develop new policies for providing use history, traceability, and accountability of M ampersand TE. This paper discusses how the Fast Flux Test Facility (FFTF), operated by Westinghouse Hanford Company and located at the Hanford site in Rich- land, Washington, overcame these obstacles by using a computerized system exercising bar-code technology. A data base was developed to identify M ampersand TE containing 33 separate fields, such as manufacturer, model, range, bar-code number, and other pertinent information. A bar-code label was attached to each piece of M ampersand TE. A second data base was created to identify the employee using the M ampersand TE. The fields contained pertinent user information such as name, location, and payroll number. Each employee's payroll number was bar coded and attached to the back of their identification badge. A computer program was developed to automate certain tasks previously performed and tracked by hand. Bar-code technology was combined with this computer program to control the input and distribution of information, eliminate common mistakes, electronically store information, and reduce the time required to check out the M ampersand TE for use

  8. The future of viral hepatitis testing: innovations in testing technologies and approaches.

    Peeling, Rosanna W; Boeras, Debrah I; Marinucci, Francesco; Easterbrook, Philippa

    2017-11-01

    A large burden of undiagnosed hepatitis virus cases remains globally. Despite the 257 million people living with chronic hepatitis B virus infection, and 71 million with chronic viraemic HCV infection, most people with hepatitis remain unaware of their infection. Advances in rapid detection technology have created new opportunities for enhancing access to testing and care, as well as monitoring of treatment. This article examines a range of other technological innovations that can be leveraged to provide more affordable and simplified approaches to testing for HBV and HCV infection and monitoring of treatment response. These include improved access to testing through alternative sampling methods (use of dried blood spots, oral fluids, self-testing) and combination rapid diagnostic tests for detection of HIV, HBV and HCV infection; more affordable options for confirmation of virological infection (HBV DNA and HCV RNA) such as point-of-care molecular assays, HCV core antigen and multi-disease polyvalent molecular platforms that make use of existing centralised laboratory based or decentralised TB and HIV instrumentation for viral hepatitis testing; and finally health system improvements such as integration of laboratory services for procurement and sample transportation and enhanced data connectivity to support quality assurance and supply chain management.

  9. Blanket Manufacturing Technologies : Thermomechanical Tests on HCLL Blanket Mocks Up

    Laffont, G.; Cachon, L.; Taraud, P.; Challet, F.; Rampal, G.; Salavy, J.F.

    2006-01-01

    In the Helium Cooled Lithium Lead (HCLL) Blanket concept, the lithium lead plays the double role of breeder and multiplier material, and the helium is used as coolant. The HCCL Blanket Module are made of steel boxes reinforced by stiffening plates. These stiffening plates form cells in which the breeder is slowly flowing. The power deposited in the breeder material is recovered by the breeder cooling units constituted by 5 parallel cooling plates. All the structures such as first wall, stiffening and cooling plates are cooled by helium. Due to the complex geometry of these parts and the high level of pressure and temperature loading, thermo-mechanical phenomena expected in the '' HCLL blanket concept '' have motivated the present study. The aim of this study, carried out in the frame of EFDA Work program, is to validate the manufacturing technologies of HCLL blanket module by testing small scale mock-up under breeder blanket representative operating conditions.The first step of this experimental program is the design and manufacturing of a relevant test section in the DIADEMO facility, which was recently upgraded with an He cooling loop (pressure of 80 bar, maximum temperature of 500 o C,flow rate of 30 g/s) taking the opportunity of synergies with the gas-cooled fission reactor R-and-D program. The second step will deal with the thermo-mechanical tests. This paper focuses on the program made to support the cooling plate mock up tests which will be carried out on the DIADEMO facility (CEA) by thermo-mechanical calculations in order to define the relevant test conditions and the experimental parameters to be monitored. (author)

  10. Application of high precision temperature control technology in infrared testing

    Cao, Haiyuan; Cheng, Yong; Zhu, Mengzhen; Chu, Hua; Li, Wei

    2017-11-01

    In allusion to the demand of infrared system test, the principle of Infrared target simulator and the function of the temperature control are presented. The key technology of High precision temperature control is discussed, which include temperature gathering, PID control and power drive. The design scheme of temperature gathering is put forward. In order to reduce the measure error, discontinuously current and four-wire connection for the platinum thermal resistance are adopted. A 24-bits AD chip is used to improve the acquisition precision. Fuzzy PID controller is designed because of the large time constant and continuous disturbance of the environment temperature, which result in little overshoot, rapid response, high steady-state accuracy. Double power operational amplifiers are used to drive the TEC. Experiments show that the key performances such as temperature control precision and response speed meet the requirements.

  11. Initial ACTR retrieval technology evaluation test material recommendations

    Powell, M.R.

    1996-04-01

    Millions of gallons of radiaoctive waste are contained in underground storage tanks at Hanford (SE Washington). Techniques for retrieving much of this waste from the storage tanks have been developed. Current baseline approach is to use sluice jets for single-shell tanks and mixer pumps for double-shell tanks. The Acquire Commercial Technology for Retrieval (ACTR) effort was initiated to identify potential improvements in or alternatives to the baseline waste retrieval methods. Communications with a variety of vendors are underway to identify improved methods that can be implemented at Hanford with little or no additional development. Commercially available retrieval methods will be evaluated by a combination of testing and system-level cost estimation. Current progress toward developing waste simulants for testing ACTR candidate methods is reported; the simulants are designed to model 4 different types of tank waste. Simulant recipes are given for wet sludge, hardpan/dried sludge,hard saltcake, and soft saltcake. Comparisons of the waste and simulant properties are documented in this report

  12. Fission Surface Power Technology Demonstration Unit Test Results

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  13. Testing teacher knowledge for technology teaching in primary schools

    Rohaan, E.J.

    2009-01-01

    Today's pupils grow up in a world full of technology. Education's duty is to offer them the opportunity to develop the ability to use, manage, assess, and understand technology in order to `survive' in today's technological society, and to provide them with a comprehensive and realistic concept of

  14. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  15. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  16. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  17. VERIFICATION TESTING OF AIR POLLUTION CONTROL TECHNOLOGY QUALITY MANAGEMENT PLAN

    This document is the basis for quality assurance for the Air Pollution Control Technology Verification Center (APCT Center) operated under the U.S. Environmental Protection Agency (EPA). It describes the policies, organizational structure, responsibilities, procedures, and qualit...

  18. Automatic testing technologies for I and C systems for nuclear power plants

    Yoshida, Motoko; Sugio, Takayuki; Konishi, Tadao

    2014-01-01

    With the aim of enhancing the global competitiveness of instrumentation and control (I and C) systems for nuclear power plants, Toshiba has been making efforts to reduce the worker hours required for the testing of such systems and improve the quality of the tests. Display screen tests, which include many routine, repetitive tests and manual tests requiring a large number of operators to monitor multiple screen displays of the I and C system, are an essential element of the testing process. The introduction of automatic testing technologies is expected to substantially improve the efficiency of such display screen tests. We have now developed automatic testing technologies for display screen tests that can be applied without the need to change the I and C system. These technologies contribute to both the reduction of worker hours for testing and improvement of the quality of the tests. (author)

  19. MATE: Modern Software Technology for Flight Test Automation and Orchestration, Phase I

    National Aeronautics and Space Administration — The development of advanced technologies for flight testing, measurement, and data acquisition are critical to effectively meeting the future goals and challenges...

  20. The Savannah River Environmental Technology Field Test Platform: Phase 2

    Rossabi, J.; Riha, B.D.; Eddy-Dilek, C.A.; Pemberton, B.E.; May, C.P.; Jarosch, T.R.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs) and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. This approach allows use of the technology by onsite groups for compliance monitoring tasks (e.g. Environmental Restoration and Waste Management), while following parallel research and development organizations the opportunity to evaluate the long term performance and to make modifications or improvements to the technology. This probationary period also provides regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs

  1. Characteristic test technology for PWR fuel and its components

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho; Jeong, Yong Hwan; Park, Sang Yoon; Kim, Kyeng Ho; Nam, Cheol; Baek, Jong Hyuk; Lee, Myung Ho; Choi, Byoung Kwon; Song, Kun Woo; Kang, Ki Won; Kim, Keon Sik; Kim, Jong Hun; Kim, Young Min; Yang, Jae Ho; Song, Kee Nam; Kim, Hyung Kyu; Kang, Heung Seok; Yoon, Kyung Ho; Chun, Tae Hyun; In, Wang Kee; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Characteristic tests of fuel assembly and its components being developed in the Advanced LWR Fuel Development Project supported by the mid-long term nuclear R and D program are described in this report. Performance verification of fuel and its components by the characteristic tests are essential to their development. Fuel components being developed in the Advanced LWR Fuel Development Project are zirconium alloy cladding, UO{sub 2} and burnable absorber pellets, spacer grid and top and bottom end pieces. Detailed test plans for those fuel components are described in this report, and test procedures of cladding and pellet are also described in the Appendix. Examples of the described tests are in- and out-of- pile corrosion and mechanical tests such as creep and burst tests for the cladding, in-pile capsule and ramp tests for the pellet, mechanical tests such as strength and vibration, and thermal-hydraulic tests such as pressure drop and critical heat flux for the spacer grid and top and bottom end pieces. It is expected that this report could be used as the standard reference for the performance verification tests in the development of LWR fuel and its components. 11 refs., 9 figs., 2 tabs. (Author)

  2. Digital radiographic technology; non-destructive testing of tubine blades

    Penumadu, P.S.

    2014-01-01

    Inspection of turbine blades has always been a big challenge. Any irregularities in the blade have a huge impact on the gas turbine, so these blades have to be manufactured and inspected in the most sophisticated way possible. The evolution of digital radiographic technology took a leap forward to

  3. Continuous-Flow Biochips: Technology, Physical Design Methods and Testing

    Pop, Paul; Araci, Ismail Emre; Chakrabarty, Krishnendu

    2015-01-01

    This article is a tutorial on continuous-flow biochips where the basic building blocks are microchannels, and microvalves, and by combining them, more complex units such as mixers, switches, and multiplexers can be built. It also presents the state of the art in flow-based biochip technology...

  4. ENRAF Series 854 Advanced Technology Gauge (ATG) Acceptance Test Procedure

    HUBER, J.H.

    1999-01-01

    This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gauge prior to installation package preparation

  5. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  6. Study on the petroleum recovery technology: well testing analysis

    Huh, Dae Gee; Kim, Se Joon; Kim, Hyun Tae [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Well testing is one of the most widely used tools to characterize reservoirs throughout the entire life of petroleum exploration and production. In this study, we first try to set up a procedure of computer aided well test analysis and then attempt to characterize potential reservoirs by performing well test analysis for some of the exploratory wells in the Korean continental shelf. A couple of gas well testing data already published in the literature were also analyzed and compared. First task was to analyze the drill stem test(DST) in KCS-1 gas well. The second analysis was also DST data on multi-rate gas wells. The third case is a Devonian shale reservoir. The final problem is a multi-rate drawdown test without early time pressure data. It is now possible to analyze insufficient well test data with less accuracy. One remark should be pointed out on multi-rate gas well testing. It is recommended to have variable skins rather than a constant skin because rate dependent skins due to turbulence of gas flow must be considered in addition to the mechanical skin. (author). 14 refs.

  7. Application of software technology to automatic test data analysis

    Stagner, J. R.

    1991-01-01

    The verification process for a major software subsystem was partially automated as part of a feasibility demonstration. The methods employed are generally useful and applicable to other types of subsystems. The effort resulted in substantial savings in test engineer analysis time and offers a method for inclusion of automatic verification as a part of regression testing.

  8. Rotor blade full-scale fatigue testing technology and research

    Nielsen, Per Hørlyk; Berring, Peter; Pavese, Christian

    was started in the beginning of the 1980´s and has been further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. These methods...

  9. Nondestructive testing technology for measurement coatings thickness on material

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  10. Development of seismic technology and reliability based on vibration tests

    Sasaki, Youichi

    1997-01-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  11. Development of seismic technology and reliability based on vibration tests

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  12. Testing telehealth using technology-enhanced nurse monitoring.

    Grant, Leslie A; Rockwood, Todd; Stennes, Leif

    2014-10-01

    Technology-enhanced nurse monitoring is a telehealth solution that helps nurses with assessment, diagnosis, and triage of older adults living in community-based settings. This technology links biometric and nonbiometric sensors to a data management system that is monitored remotely by RNs and unlicensed support staff. Nurses faced a number of challenges related to data interpretation, including making clinical inferences from nonbiometric data, integrating data generated by three different telehealth applications into a clinically meaningful cognitive framework, and figuring out how best to use nursing judgment to make valid inferences from online reporting systems. Nurses developed expertise over the course of the current study. The sponsoring organization achieved a high degree of organizational knowledge about how to use these systems more effectively. Nurses saw tremendous value in the telehealth applications. The challenges, learning curve, and organizational improvements are described. Copyright 2014, SLACK Incorporated.

  13. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  14. Affect and technology acceptance: A test of two mechanisms

    Scholderer, Joachim; Grunert, Klaus G.; Søndergaard, Helle Alsted

    Commercialization of new technologies may be hampered by stakeholder resistance and a sceptical public. Genetic modification (GM) has suffered particularly from such problems. At present, for example, practically no products exist on the shelves of European retailers that are labelled as containi...... and practice, focusing on point-of-sale promotions that could be the key element in the launch of the first genetically modified foods in markets that are as yet GM-free....

  15. Qualification Testing Versus Quantitative Reliability Testing of PV - Gaining Confidence in a Rapidly Changing Technology: Preprint

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Whitfield, Kent [Underwriters Laboratories; Phillips, Nancy [DuPont; Sample, Tony [European Commission; Monokroussos, Christos [TUV Rheinland; Hsi, Edward [Swiss RE; Wohlgemuth, John [PowerMark Corporation; Seidel, Peter [First Solar; Jahn, Ulrike [TUV Rheinland; Tanahashi, Tadanori [National Institute of Advanced Industrial Science and Technology; Chen, Yingnan [China General Certification Center; Jaeckel, Bengt [Underwriters Laboratories; Yamamichi, Masaaki [RTS Corporation

    2017-10-05

    Continued growth of PV system deployment would be enhanced by quantitative, low-uncertainty predictions of the degradation and failure rates of PV modules and systems. The intended product lifetime (decades) far exceeds the product development cycle (months), limiting our ability to reduce the uncertainty of the predictions for this rapidly changing technology. Yet, business decisions (setting insurance rates, analyzing return on investment, etc.) require quantitative risk assessment. Moving toward more quantitative assessments requires consideration of many factors, including the intended application, consequence of a possible failure, variability in the manufacturing, installation, and operation, as well as uncertainty in the measured acceleration factors, which provide the basis for predictions based on accelerated tests. As the industry matures, it is useful to periodically assess the overall strategy for standards development and prioritization of research to provide a technical basis both for the standards and the analysis related to the application of those. To this end, this paper suggests a tiered approach to creating risk assessments. Recent and planned potential improvements in international standards are also summarized.

  16. High-Technology Companies Often Turn to Colleges for Confidential 'Beta Tests' of New Products.

    Turner, Judith Axler

    1988-01-01

    Beta testing--the process of trying a product in a real-world setting before releasing it commercially--exploits a natural interface between universities and high-technology industries. High-tech companies need confidential, real-world tests of new products, and universities are eager to get an early look at tomorrow's technology. (MLW)

  17. 78 FR 49287 - Environmental Assessment for Potential Lease Issuance and Marine Hydrokinetic Technology Testing...

    2013-08-13

    ...; MMAA104000] Environmental Assessment for Potential Lease Issuance and Marine Hydrokinetic Technology Testing... important environmental issues associated with data collection and technology testing activities (76 FR... Availability of a Revised Environmental Assessment and a Finding of No Significant Impact. SUMMARY: BOEM has...

  18. A Study on Virtual Operating Crew and Test Commander For the Experience Accumulating Test of Unproven MMIS Technology

    Shin, Yeong Cheol; Kang, Sung Kon

    2007-01-01

    New MMIS (Man Machine Interface System) technology is rapidly advanced as digital technology provides opportunity for more functionality and better cost effectiveness. Also, NPP (Nuclear Power Plant) operators are inclined to use the new technology for the construction of new plant and for the upgrade of existing plants. However, this new technology may include risks at the same time. These risks are mainly due to the poor reliability of newly developed technology. According to the user requirement (KURD: Korean Utility Requirement Document), advanced MMIS technology may be applied if it could be apparently needed to obtain a defined gain in simplicity or performance. For applying new MMIS technology, reliability needs to be verified on the basis of the requirements of proven technology. KURD suggests two methods for verifying satisfaction of the requirement of proven technology. These methods are to verity whether or not unproven MMIS technology has adequate reliability. First method is that it has at least three years of documented, satisfactory service as modules of subsystems in power plant applications similar to that in LWRs or in other than power plant applications which are similar to the use in the APR1400 M-MIS. Second method is that it has satisfactorily completed a defined program of prototype testing which has been designed to verify its performance in the APR1400 M-MIS application. But, new MMIS technology had not yet opportunity to apply in the Nuclear Power Plant. Therefore, we think that second method is the effective method to demonstrate reliability and performance of new technology through the experience accumulation test. In here, Experience accumulation test means that we emulate the process of nuclear power plant such as installation after shipping, trial operation, operation, and maintenance with MMIS facility and verify reliability and performance through various test method under the circumstance of emulation and if any problem occurs

  19. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    Berglin, E.J.

    1997-07-31

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  20. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    Berglin, E.J.

    1997-01-01

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36'' diameter x 6' high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20' diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  1. Nuclear technology in materials testing and radiation protection

    Neider, R.

    1975-01-01

    A report of the 1974 activities of the laboratories for physical and measuring technical fundamentals, radiation effects and radiation protection, application of radionuclides and testing of radioactive materials of the Bundesanstalt fuer Materialpruefung (BAM) is given. (RW/LH) [de

  2. Virtualization Technology for System of Systems Test and Evaluation

    2012-06-01

    Peterson , Tillman, & Hatfield (1972) outlined the capabilities of virtualization in the early days of VM with some guiding principles. The following...Sheikh, based on the work of Balci (1994, 1995), and Balci et al. ( 1996 ), seeks to organize types of tests and to align requirements to the appropriate...Verification, validation, and testing in software engineering (pp. 155–184). Hershey , PA: Idea Group. Adair, R. J., Bayles, R. U., Comeau, L. W

  3. Latent Trait Model Contributions to Criterion-Referenced Testing Technology.

    1982-02-01

    levels of ability (ranging from very low to very high). The steps in the reserach were as follows: 1. Specify the characteristics of a "typical" pool...conventional testing methodologies displayed good fit to both of the latent trait models. The one-parameter model compared favorably with the three- parameter... Methodological developments: New directions for testing a!nd measurement (No. 4). San Francisco: Jossey-Bass, 1979. Haubleton, R. K. Advances in

  4. Toward a model for field-testing patient decision-support technologies: a qualitative field-testing study.

    Evans, R.; Elwyn, G.; Edwards, A.; Watson, E.; Austoker, J.; Grol, R.P.T.M.

    2007-01-01

    BACKGROUND: Field-testing is a quality assurance criterion in the development of patient decision-support technologies (PDSTs), as identified in the consensus statement of the International Patient Decision Aids Standards Collaboration. We incorporated field-testing into the development of a

  5. FIELD TESTING & OPTIMIZATION OF CO2/SAND FRACTURING TECHNOLOGY

    Raymond L. Mazza

    2004-11-30

    These contract efforts involved the demonstration of a unique liquid free stimulation technology which was, at the beginning of these efforts, in 1993 unavailable in the US. The process had been developed, and patented in Canada in 1981, and held promise for stimulating liquid sensitive reservoirs in the US. The technology differs from that conventionally used in that liquid carbon dioxide (CO{sub 2}), instead of water is the base fluid. The CO{sub 2} is pumped as a liquid and then vaporizes at reservoir conditions, and because no other liquids or chemicals are used, a liquid free fracture is created. The process requires a specialized closed system blender to mix the liquid CO{sub 2} with proppant under pressure. These efforts were funded to consist of up to 21 cost-shared stimulation events. Because of the vagaries of CO{sub 2} supplies, service company support and operator interest only 19 stimulation events were performed in Montana, New Mexico, and Texas. Final reports have been prepared for each of the four demonstration groups, and the specifics of those demonstrations are summarized. A summary of the demonstrations of a novel liquid-free stimulation process which was performed in four groups of ''Candidate Wells'' situated in Crockett Co., TX; San Juan Co., NM; Phillips Co., MT; and Blaine Co., MT. The stimulation process which employs CO{sub 2} as the working fluid and the production responses were compared with those from wells treated with conventional stimulation technologies, primarily N{sub 2} foam, excepting those in Blaine Co., MT where the reservoir pressure is too low to clean up spent stimulation liquids. A total of 19 liquid-free CO{sub 2}/sand stimulations were performed in 16 wells and the production improvements were generally uneconomic.

  6. Incremental Approach to the Technology of Test Design for Industrial Projects

    P. D. Drobintsev

    2014-01-01

    Full Text Available The paper presents an approach to effort reduction in developing test suites for industrial software products based on the incremental technology. The main problems to be solved by the incremental technology are full automation design of test scenarios and significant reducing of test explosion. The proposed approach provides solutions to the mentioned problems through joint co-working of a designer and a customer, through the integration of symbolic verification with the automatic generation of test suites; through the usage of an efficient technology with the toolset VRS/TAT.

  7. Reusable LH2 tank technology demonstration through ground test

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  8. Moving Technologies from the Test Tube to Commercial Products

    Bryant, Robert G.

    2013-01-01

    Successful technologies include objects, processes, and procedures that share a common theme; they are being used to generate new products that create economic growth. The foundation is the invention, but the invention is a small part of the overall effort. The pathway to success is understanding the competition, proper planning, record keeping, integrating a supply chain, understanding actual costs, intellectual property (IP), benchmarking, and timing. Additionally, there are obstacles that include financing, what to make, buy, and sell, and the division of labor i.e. recognizing who is best at what task. Over the past two decades, NASA Langley Research Center (LaRC) has developed several commercially available technologies. The approach to commercialization of three of these inventions; Langley Research Center-Soluble Imide (LaRC-SI, Imitec Inc.), the Thin Layer Unimorph Driver (THUNDER, FACE International), and the Macrofiber Composite (MFC, Smart Material Corp.) will be described, as well as some of the lessons learned from the process. What makes these three inventions interesting is that one was created in the laboratory; another was built using the previous invention as part of its process, and the last one was created by packaging commercial-off-the-shelf (COTS) materials thereby creating a new component.

  9. Technology Solutions Case Study: Combustion Safety Simplified Test Protocol

    L. Brand, D. Cautley, D. Bohac, P. Francisco, L. Shen, and S. Gloss

    2015-12-01

    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives.

  10. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    Ternes, MP

    2001-12-05

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use of the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.

  11. Test Standards for Contingency Base Waste-to-Energy Technologies

    2015-08-01

    test runs are preferred to allow a more comprehensive statistical evaluation of the results. In 8 • Minimize the complexity , difficulty, and...with water or, in the case of cyanide - or sulfide-bearing wastes, when exposed to mild acidic or basic conditions; 4) explode when subjected to a

  12. Review of Artificial Abrasion Test Methods for PV Module Technology

    Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muller, Matt T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Lin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended to provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.

  13. [The advance of detection technology of HIV self-testing].

    Yan, L; Xiao, P P; Yan, H J; Huan, X P; Fu, G F; Li, J J; Yang, H T

    2017-11-06

    At present, China's AIDS testing increased rapidly, but there are still many people living with HIV do not recognize their status, thus postponing the antiviral treatment time. HIV self-testing (HST) is an effective method to expand the testing, not only simple operation, easy to get a result, effectively protect the detection privacy, expand the selection of testers, suit to the entire population, but also the premise and basis of other AIDS comprehensive prevention measures, all over the world are promoting it. Because the HST has controversies in the window period, price and before and after controversial, and our country is in the initial stage of HST, so it is not to develop related policies, but more and more countries are in accordance with their own situations are modified or developed to allow to use rapid detection of AIDS policy to regulate the field. This paper analyzed and summarized the advantage and influence factors of HST promotion, HST believes that in the long term, the advantages outweigh the disadvantages, we need to formulate relevant policies, and improve the sensitivity of the kit, shorten the window period of time, production and promotion of operation standard of video, specification and testing the operating practices, preventing and reporting the possible social harm, investigation and understanding of the needs of the people of the crowd, to maximize the advantages of HST, find more infection, so as to curb the epidemic of AIDS.

  14. In situ gas treatment technology demonstration test plan

    Thornton, E.C.; Miller, R.D.

    1996-01-01

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities

  15. Advancements in the technologies for mechanized ultrasonic testing

    Sterke, A. de.

    1976-01-01

    Review is given of the techniques applied, with an accent on weld testing and examination of nuclear pressure vessels during fabrication and periodically. The use of multiprobe systems, the merits of data recording, the present restrictions, the requirements and the trends are examined

  16. Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation

    already spent on these technologies also lead to commercial success. The project ‘Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation’ was aiming at starting with the Establishment of such a center. The following report documents the achievements within the project...... of the fluctuating wind energy. As the fuel cell and hydrogen technologies come closer to commercialization, development of testing methodology, qualified testing and demonstration become increasingly important. Danish industrial players have expressed a strong need for support in the process to push fuel cell...... and hydrogen technologies from the research and development stage into the commercial domain. A Center to support industry with test, development, analysis, approval, certification, consultation, and training in the areas of fuel cell and hydrogen technologies was needed. Denmark has demonstrated leading...

  17. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  18. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented

  19. Development and test of LARP technological quadrupole (TQC) magnet

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  20. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-06-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence.

  1. Development and test of LARP technological quadrupole (TQC) magnet

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.

    2006-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented

  2. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-01-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence

  3. Development of endplug welding technology for irradiation testing capsule

    Lee, J. W.; Shin, Y. T.; Kim, S. S.; Kim, B. K.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2001-10-01

    To evaluate the performance of newly developed nuclear fuel, it is necessary to irradiate the fuel at a research reactor and examine the irradiated fuel. For the irradiation test in a reasearch reactor, a fuel assembly which is generally called a capsule should be fabricated, considering the fuel irradiation plan and the characteristics of the reactor to be used. And also the fuel elements containing the developed fuel pellets should be made and assembled into a capsule. In this study, the welding method, welding equipment, welding conditions and parameters were developed to make fuel elements for the irradiation test at the HANARO research reactor. The TIG welding method using automatic orbital tube welding system was adopted and the welding joint design was developed for the fabrication of various kinds of irradiation fuel elements. And the optimal welding conditions and parameters were also established for the endplug welding of Zircaloy-4 cladding tube.

  4. NMSBA: Aken Technologies Final Report: Toxicity Testing of Liquidoff

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    To determine the effect of Liquidoff on bacteria, three bacterial strains were tested: Escherichia coli DH5α, Synechococcus sp. PCC 7002, and Synechococcus elongatus PCC 7942. E. coli DH5α is a Gram-negative, aerobic bacterium that is often found in normal gut flora and is commonly used the laboratory due to its fast growth rate. Synechococcus sp. PCC 7002 and S. elongatus PCC 7942 are Gram-negative, aquatic, autophototrophic cyanobacteria. Synechococcus sp. PCC 7002 is a marine cyanobacterium isolated from ‘fish pens’ on Magueyes Island, Puerto Rico in 1962, while S. elongatus PCC 7942 is a freshwater cyanobacterium. It should be noted that no Gram-positive bacterium was tested in this study.

  5. Aerospace Technology: Technical Data and Information on Foreign Test Facilities

    1990-06-22

    referred to in English as the German Aerospace Research Establishment. Foreign acronyms and names with their translations are included in the list of...Unique Characteristics: None Applications/Current Programs: In 1963, the first in a long series of nozzle tests were conducted for SNECMA’s ATAR 9C and...HP compressor RB- 199, IP compressor RB- 199, transonic compressor (single-stage), transonic compressor (six-stage), and ATAR compressor. Turbine

  6. Evaluation methodologies for security testing biometric systems beyond technological evaluation

    Fernández Saavedra, María Belén

    2013-01-01

    The main objective of this PhD Thesis is the specification of formal evaluation methodologies for testing the security level achieved by biometric systems when these are working under specific contour conditions. This analysis is conducted through the calculation of the basic technical biometric system performance and its possible variations. To that end, the next two relevant contributions have been developed. The first contribution is the definition of two independent biometric performance ...

  7. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology.

    Hayden, Randall T; Clinton, Lani K; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J

    2016-11-01

    The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Advanced testing and validation centre gets electric vehicle technology to market faster

    Astil, T.; Girard, F. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2010-07-01

    The National Research Council (NRC) Institute for Fuel Cell Innovation is advancing Canada's clean energy advantage through NRC's technology cluster initiatives, which help Canadian small and medium enterprises achieve commercialization breakthroughs in key sectors. This presentation discussed the technology evaluation program (TEP) offered by the NRC Institute for Fuel Cell Innovation. The presentation discussed the TEPs mission, advanced testing and validation centre (ATVC), previous ATVC clients, environmental chamber, dynamometer, vibration table, electrochemical battery testing, and electrochemical testing laboratory. The ATVC is a specialized and safe environment for objective, reliable and accurate standardized testing applications of electric vehicle technologies. It offers independent test services to external organizations, making it easier to prove that electric vehicle technologies will perform under specific operating conditions. figs.

  9. Enhanced Sampling and Analysis, Selection of Technology for Testing

    Svoboda, John; Meikrantz, David

    2010-02-01

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. This report details the progress made in the first half of FY 2010 and includes a further consideration of the research focus and goals for this year. Our sampling options and focus for the next generation sampling method are presented along with the criteria used for choosing our path forward. We have decided to pursue the option of evaluating the feasibility of microcapillary based chips to remotely collect, transfer, track and supply microliters of sample solutions to analytical equipment in support of aqueous processes for used nuclear fuel cycles. Microchip vendors have been screened and a choice made for the development of a suitable microchip design followed by production of samples for evaluation by ANL, LANL, and INL on an independent basis.

  10. Technology issues for decommissioning the Tokamak Fusion Test Reactor

    Spampinato, P.T.; Walton, G.R.

    1994-01-01

    The approach for decommissioning the Tokamak Fusion Test Reactor has evolved from a conservative plan based on cutting up and burying all of the systems, to one that considers the impact tritium contamination will have on waste disposal, how large size components may be used as their own shipping containers, and even the possibility of recycling the materials of components such as the toroidal field coils and the tokamak structure. In addition, the project is more carefully assessing the requirements for using remotely operated equipment. Finally, valuable cost database is being developed for future use by the fusion community

  11. 7th Conference Simulation and Testing for Vehicle Technology

    Riese, Jens; Rüden, Klaus

    2016-01-01

    The book includes contributions on the latest model-based methods for the development of personal and commercial vehicle control devices. The main topics treated are: application of simulation and model design to development of driver assistance systems; physical and database model design for engines, motors, powertrain, undercarriage and the whole vehicle; new simulation tools, methods and optimization processes; applications of simulation in function and software development; function and software testing using HiL, MiL and SiL simulation; application of simulation and optimization in application of control devices; automation approaches at all stages of the development process.

  12. The technology development for surveillance test of reactor vessel materials

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Sun Phil; Park, Day Young; Choi, Kwen Jai

    1997-12-01

    Benchmark test was performed in accordance with the requirement of US NRC Reg. Guide DG-1053 for Kori unit-1 in order to determine best-estimated fast neutron fluence irradiated into reactor vessel. Since the uncertainty of radiation analysis comes from the calculation error due to neutron cross-section data, reactor core geometrical dimension, core source, mesh density, angular expansion and convergence criteria, evaluation of calculational uncertainty due to analytical method was performed in accordance with the regulatory guide and the proof was performed for entire analysis by comparing the measurement value obtained by neutron dosimetry located in surveillance capsule. Best-estimated neutron fluence in reactor vessel was calculated by bias factor, neutron flux measurement value/calculational value, from reanalysis result from previous 1st through 4th surveillance testing and finally fluence prediction was performed for the end of reactor life and the entire period of plant life extension. Pressurized thermal shock analysis was performed in accordance with 10 CFR 50.61 using the result of neutron fluence analysis in order to predict the life of reactor vessel material and the criteria of safe operation for Kori unit 1 was reestablished. (author). 55 refs., 55 figs.

  13. Acceptance Test Report for the 241-AN-107 Enraf Advanced Technology Gauges

    Dowell, J.L.; Enderlin, V.R.

    1995-06-01

    This Acceptance Test Report covers the results of the execution of the Acceptance Test Procedure for the 241-AN-107 Enraf Advanced Technology Gauges. The test verified the proper operation of the gauges to measure waste density and level in the 241-AN-107 tank

  14. Hanford tanks initiative - test implementation plan for demonstration of in-tank retrieval technology

    Schaus, P.S.

    1997-01-01

    This document presents a Systems Engineering approach for performing the series of tests associated with demonstrating in-tank retrieval technologies. The testing ranges from cold testing of individual components at the vendor's facility to the final fully integrated demonstration of the retrieval system's ability to remove hard heel high-level waste from the bottom of a Hanford single-shell tank

  15. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers

  16. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

  17. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  18. Technologies for exhaust aftertreatment testing under real conditions; Abgasnachbehandlungs-Technologien. Erprobung im realen Bahnbetrieb

    Weigel, Claudia; Schaeffner, Guido; Hehle, Marc; Bergmann, Dirk [MTU Friedrichshafen GmbH, Friedrichshafen (Germany); Kattwinkel, Peter [Umicore AG und Co. KG, Hanau-Wolfgang (Germany). Geschaeftsbereich Automotive Catalysts; Viehweg, Petra [DB AG, Leipzig (Germany). Bereich Technik Systemverbund und Dienstleistungen

    2010-11-15

    The use of exhaust aftertreatment technology in off-highway applications is not yet universally established. For this reason, MTU Friedrichshafen GmbH and Deutsche Bahn AG conducted a joint research project involving early testing of various basic technologies for exhaust gas aftertreatment (EGA) under real conditions. The knowledge gained in the rail applications sector will be transferrable to other sectors and it will also be possible to combine the basic technologies involved in different ways. (orig.)

  19. Improving the Thermal Testing Technology of Technological Equipment of Autonomous Complexes

    V. V. Chugunkov

    2017-01-01

    Full Text Available The environmental conditions of autonomous objects of different-purpose technical complexes are in close relationship with increased values of operating temperatures. This requires thermal pretesting of the process equipment. The publication [1] considers the thermal test conditions in which the equipment elements under test are placed in a heated water tank covered by the globe insulators where, under automatic temperature control using a block of heaters, they are then kept for a specified period of time at a specified temperature range. Such an approach to the thermal tests of equipment allows us to reduce, but not eliminate completely the mass flows of water from evaporation with reducing power consumption of test equipment.Despite the results achieved, even a little bit of water vapor available when conducting the thermal tests may cause a failure of equipment. Therefore, there is a need in test equipment modernization for complete eliminating the fluxes of mass water and better power consumption in the test process. To this end, it is proposed to place a three-layer bubble wrap on the open surface of water.To justify an efficiency of the proposed option was developed a mathematical model of heat and mass transfer processes that occur during thermal tests, taking into account the geometric and thermo-physical characteristics of test tank, polymer film, and equipment. Using the laws and equations of heat and mass transfer enabled us to determine the required capacities for heating the tank with water and equipment to the required temperature range for a specified time, as well as the mass flows of water when evaporating from the tank surface.The efficiency of the three-layer bubble film as compared with the globe insulators as the elements for covering the test tank the surface has been analysed on the basis of the results obtained.The proposed film coating allowed almost complete elimination of evaporation losses of water mass and almost 8

  20. The Study on the Measurement and Testing Technology of the HMCVT Hydraulic Pressure Based on the Data Fusion Technology

    Cheng, G W; Zhou, Z L; Men, Q Y; Deng, C N

    2006-01-01

    The pressure of the hydro-mechanical continuously variable transmission (HMCVT) is not only one of the major factors affecting the performance of the power train but also the major control parameter of the HMCVT control system. So how to improve the high accuracy hydraulic pressure parameter for the HMCVT control system will be one of the key technologies in system development. Based on the HMCVT test system for a certain tracked vehicle, the hydraulic pressure is studied, and multi-sensor data fusion technology based on Taylor polynomial regression equation is put forward, which turn out to improve the performance of the pressure sensor. Utilizing the above-mentioned method, the ability of antijamming of the hydraulic screen pressure system of the HMCVT is effectively improved, and the validity of the test data in the test system is improved too

  1. Integrating Telemedicine for Disaster Response: Testing the Emergency Telemedicine Technology Acceptance Model

    Davis, Theresa M.

    2013-01-01

    Background: There is little evidence that technology acceptance is well understood in healthcare. The hospital environment is complex and dynamic creating a challenge when new technology is introduced because it impacts current processes and workflows which can significantly affect patient care delivery and outcomes. This study tested the effect…

  2. The technology development for surveillance test of RPV materials 2

    Chang, Kee Ok; Lee, Sam Lai; Kim, Byoung Chul; Choi, Sun Pil; Choi, Kwen Jai

    1998-12-01

    Irradiation-induced changes in mechanical properties and magnetic parameters were measured and compared to explore possible correlations for Mn-Mo-Ni low alloy steel surveillance specimens which were irradiated to a neutron fluence of 2.4 x 10 1 9n/cm 2 (E≥1.0 MeV) in a typical pressurized water reactor environment at about 288 deg C. For mechanical property parameters, microvickers hardness, tensile and Charpy impact test were performed and Barkhausen Noise(BN) amplitude, coercivity, maximum induction were measured for magnetic parameters, respectively. Results of mechanical property measurements showed an increase in yield and tensil strength, microvickers hardness 41J indexed RT NDT and a decrease in upper shelf energy irrespective of base and weld metals. In the case of magnetic measurements, it is found that magnetic remanence, BN amplitude, BN energy have dropped significantly but coercivity has increased rapidly after irradiation. For isothermally heat treated condition of irradiated specimen, BN energy has increased while Vickers microhardness has decreased. Results of BNE and Vickers microhardness are reversed to the results on irradiated condition. All these consistent changes in magnetic parameter and Vickers microhardness measurement, which are thought to be resulted from the interaction between irradiation-induced defects and dislocation, and magnetic domain, respectively, show a possibility that magnetic measurement may be used to the evaluation of material degradation and recovery due to neutron irradiation and heat treatment, respectively, if a relevant large database is prepared. (author). 49 refs., 7 tabs., 23 figs

  3. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed

  4. A Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology

    Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [U.S. Department of Energy (DOE), Washington, DC (United States).Office of Energy Efficiency and Renewable Energy (EERE); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pracheil, Brenda M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); O' Connor, Patrick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Tsakiris, Achilleas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Kutz, Benjamin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Bishop, Norm [Knight Piesold, Denver, CO (United States); McKeown, Alisha [McKeown and Associates, Moberly, MO (United States); Rabon, Daniel [U.S. Department of Energy (DOE), Washington, DC (United States).Office of Energy Efficiency and Renewable Energy (EERE); Zimmerman, Gregory P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uria Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamay, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-01

    The Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology (MYRP) presents a strategy for specifying, designing, testing, and demonstrating the efficacy of standard modular hydropower (SMH) as an environmentally compatible and cost-optimized renewable electricity generation technology. The MYRP provides the context, background, and vision for testing the SMH hypothesis: if standardization, modularity, and preservation of stream functionality become essential and fully realized features of hydropower technology, project design, and regulatory processes, they will enable previously unrealized levels of new project development with increased acceptance, reduced costs, increased predictability of outcomes, and increased value to stakeholders. To achieve success in this effort, the MYRP outlines a framework of stakeholder-validated criteria, models, design tools, testing facilities, and assessment protocols that will facilitate the development of next-generation hydropower technologies.

  5. An update to inplace testing of safety/relief valves utilizing lift assist technology

    Heorman, K.R.

    1992-01-01

    Inplace testing of safety and relief valves with lift-assist devices has received mixed reviews from nuclear power plant testing personnel. While many plants use the technology, most limit its use to testing main steam safety valves (even though both OM-1-1981 and PTC 25.3-1976 allow its use for several different service applications). Test coordinator concerns regarding the technology range from lift set point accuracy and repeatability to the quality of the test result output. In addition, OM-1-1981 and PTC 25.3-1976 differ in their approach to the technology. The reasons for the differences between PTC 25.3-1976 and OM-1-1981 are discussed along with additional considerations applicable to the use of the technology in testing liquid service valves. This paper shows that lift assist technology is capable of determining lift set points within the accuracy requirements of OM-1 and PTC 25.3. It also demonstrates that the technology should not be limited to compressible service systems. Also, improvements in test repeatability and output quality are discussed as a function of the assist device design used and valve characteristics. Lift assist testing is often preferred over inplace testing that uses direct system pressure. It is often more cost efficient than bench testing because it does not require removal of critical systems from service and transportation of components. Also, duplicating system temperatures and other environmental factors is not an issue during inplace testing. Valve testing that once required an outage and maintenance period can now be conducted prior to such periods. This approach minimizes the possibility of failures becoming critical path limiting items

  6. Development and Testing the Technology of Complex Transformation of Carbohydrates from Vegetable Raw Materials into Bioethanol

    S.P. Tsygankov

    2013-07-01

    Full Text Available Results of development and testing the tentative technology of sweet sorghum and finger millet processing into bioethanol are described. The carbohydrates content and range of the studied vegetable biomass as the raw material is defined. Bioethanol potential output from sugar sorghum and finger millet carbohydrates and key technological parameters of preparation of both types of vegetable raw material for alcohol fermentation are defined. The concept of the tentative technology of bioethanol production from carbohydrate raw material of the first and second generations is offered. Testing of complex transformation of carbohydrates from vegetable raw materials into bioethanol is performed.

  7. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  8. Living labs an arena for development and testing Ambient Assisted living technology

    Lassen, Anna Marie; Bangshaab, Jette

    everyday activities. Conclusion: Based on staff and end user interviews, the study were able to conclude that independence is the main motivation for using AAL-technology. Application to Practice: The results are now used at the municipality level in several areas. The project has provided a more user......Background: This gives an example of Living labs as an arena for development/testing Ambient Assisted Living technology (AAL-technology). The selected Living lab is part of an EU-supported development project in collaboration with practice and concerns a Living lab that has developed...... an implementation model for an AAL-technology – toilets with douche and drying. (2) Method: The study involves Living lab as location for technology development/testing as well as user-driven approaches to obtain initial data. (1) Moreover, the study is based on process interviews, qualitative research interviews...

  9. DOE/LLNL verification symposium on technologies for monitoring nuclear tests related to weapons proliferation

    Nakanishi, K.K.

    1993-01-01

    The rapidly changing world situation has raised concerns regarding the proliferation of nuclear weapons and the ability to monitor a possible clandestine nuclear testing program. To address these issues, Lawrence Livermore National Laboratory's (LLNL) Treaty Verification Program sponsored a symposium funded by the US Department of Energy's (DOE) Office of Arms Control, Division of Systems and Technology. The DOE/LLNL Symposium on Technologies for Monitoring Nuclear Tests Related to Weapons Proliferation was held at the DOE's Nevada Operations Office in Las Vegas, May 6--7,1992. This volume is a collection of several papers presented at the symposium. Several experts in monitoring technology presented invited talks assessing the status of monitoring technology with emphasis on the deficient areas requiring more attention in the future. In addition, several speakers discussed proliferation monitoring technologies being developed by the DOE's weapons laboratories

  10. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PERFORMANCE TESTING OF THE INDUSTRIAL TEST SYSTEM, INC. CYANIDE REAGENTSTRIP™ TEST KIT

    Cyanide can be present in various forms in water. The cyanide test kit evaluated in this verification study (Industrial Test System, Inc. Cyanide Regent Strip ™ Test Kit) was designed to detect free cyanide in water. This is done by converting cyanide in water to cyanogen...

  11. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  12. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  13. Arms Control and nonproliferation technologies: Technology options and associated measures for monitoring a Comprehensive Test Ban, Second quarter

    Casey, Leslie A.

    1994-01-01

    This newsletter contains reprinted papers discussing technology options and associated measures for monitoring a Comprehensive Test Ban Treaty (CTBT). These papers were presented to the Conference on Disarmament (CD) in May and June 1994. An interagency Verification Monitoring Task Force developed the papers. The task force included participants from the Arms Control and Disarmament Agency, the Department of Defense, the Department of Energy, the Intelligence Community, the Department of Interior, and the Department of State. The purpose of this edition of Arms Control and Nonproliferation Technologies is to share these papers with the broad base of stakeholders in a CTBT and to facilitate future technology discussions. The papers in the first group discuss possible technology options for monitoring a CTBT in all environments (underground, underwater, atmosphere, and space). These technologies, along with on-site inspections, would facilitate CTBT monitoring by treaty participants. The papers in the second group present possible associated measures, e.g., information exchanges and transparency measures, that would build confidence among states participating in a CTBT.

  14. Accumulation of operational history through emulation test to meet proven technology requirement for newly developed I and C technology

    Yeong Cheol, Shin; Sung Kon, Kang; Han Seong, Son

    2006-01-01

    As new advanced digital I and C technology with potential benefits of higher functionality and better cost effectiveness is available in the market, NPP (Nuclear Power Plant) operators are inclined to use the new technology for the construction of new plant and the upgrade of existing plants. However, this new technology poses risks to the NPP operators at the same time. These risks are mainly due to the poor reliability of newly developed technology. KHNP's past experiences with the new equipment shows many cases of reliability problems. And their consequences include unintended plant trips, lowered acceptance of the new digital technology by the plant I and C maintenance crew, and increased licensing burden in answering for questions from the nuclear regulatory body. Considering the fact that the risk of these failures in the nuclear plant operation is far greater than those in other industry, nuclear power plant operators want proven technology for I and C systems. This paper presents an approach for the emulation of operational history through which a newly developed technology becomes a proven technology. One of the essential elements of this approach is the feedback scheme of running the new equipment in emulated environment, gathering equipment failure, and correcting the design(and test bed). The emulation of environment includes normal and abnormal events of the new equipment such as reconfiguration of control system due to power failure, plant operation including full spectrum of credible scenarios in an NPP. Emulation of I and C equipment execution mode includes normal operation, initialization and termination, abnormal operation, hardware maintenance and maintenance of algorithm/software. Plant specific simulator is used to create complete profile of plant operational conditions that I and C equipment is to experience in the real plant. Virtual operating crew technology is developed to run the simulator scenarios without involvement of actual operators

  15. The Impact of the Use of Hierarchical Teaching on Test Scores of Students’ Technology

    Zhao Guorong

    2015-01-01

    Full Text Available Test scores of students’ technology is the main basis for physical examination of college students’ physical, fitness evaluation based on test results. To change the view by the stratified teaching method consistent system of teaching mode, special movement technical level of students is improved significantly.

  16. Testing Predictive Models of Technology Integration in Mexico and the United States

    Velazquez, Cesareo Morales

    2008-01-01

    Data from Mexico City, Mexico (N = 978) and from Texas, USA (N = 932) were used to test the predictive validity of the teacher professional development component of the Will, Skill, Tool Model of Technology Integration in a cross-cultural context. Structural equation modeling (SEM) was used to test the model. Analyses of these data yielded…

  17. An Overview of the Needs of Technology in Language Testing in Spain

    Garcia Laborda, Jesus; Magal Royo, Teresa; Barcena Madera, Elena

    2015-01-01

    Over the few years, computer based language testing has become prevailing worldwide. The number of institutions the use computers as the main means of delivery has increased dramatically. Many students face each day tests for well-known high-stakes decisions which imply the knowledge and ability to use technology to provide evidence of language…

  18. [Progress in isokinetic technology in testing and training for assessment of muscle function].

    Huang, Ting-Ting; Fan, Li-Hua; Gao, Dong; Xia, Qing; Zhang, Min

    2013-02-01

    Isokinetic technology in testing and training is the most advanced practical technique in the evaluation of muscle function. This method is a continuous dynamic test in the full range of the joint motion which has strong pertinence at the aspect of assessing muscle strength, and is an objective and quantitative method for reflecting each point's muscle strength in the range of the joint motion. This article reviews the key concepts, brief history of development and influencing factors of isokinetic technology in testing and training, introduces the progress in the field of rehabilitation medicine and sport science, etc., and discusses the future exploration in forensic science.

  19. Development of nuclear technologies and conversion of nuclear weapon testing system infrastructure in Kazakhstan

    Cherepnin, Yu.; Takibaev, Zh.

    2000-01-01

    The article gives a brief description of the work done by the National Nuclear Center of the Republic of Kazakhstan in development of nuclear technology and conversion of nuclear weapon testing infrastructure in Kazakhstan. Content and trends of works are as follows: 1. Peaceful use of all physical facilities, created earlier for nuclear tests in Kazakhstan; 2. Development of methods and technologies for safe nuclear reactors use; 3. Examination of different materials in field of great neutron flow for thermonuclear reactor's first wall development; 4. Liquidation of all wells, which were formed in the results of underground nuclear explosions in Degelen mountain massif of former Semipalatinsk test site; 5. Study of consequences of nuclear tests in West Kazakhstan (territory of Azgir test site and Karachaganak oil field); 6. Study of radiological situation on the Semipalatinsk test site and surrounding territories; 7. Search of ways for high-level radioactive wastes disposal; 8. Construction of safe nuclear power plants in Kazakhstan

  20. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  1. Retrieval process development and enhancements: Hydraulic test bed integrated testing. Fiscal year 1995 technology development summary report

    Hatchell, B.K.; Smalley, J.T.; Tucker, J.C.

    1996-02-01

    The Retrieval Process Development and Enhancements Program is sponsored by the U.S. Department of Energy (DOE) Office of Science and Technology to investigate waste dislodging and conveyance processes suitable for the retrieval of high-level radioactive waste. This program, represented by industry, national laboratories, and academia, is testing the performance of a technology of high-pressure waterjet dislodging and pneumatic conveyance integrated as a scarifier as a means of retrieval of waste inside waste storage tanks. Waste stimulants have been designed to challenge this retrieval process, and this technology has been shown to mobilize and convey the waste stimulants, at target retrieval rates while operating within the space envelope and the dynamic loading constraints of postulated deployment systems. The approach has been demonstrated to be versatile in dislodging and conveying a broad range of waste forms, from hard wastes to soft sludge wastes, through the use of simple and reliable in-tank components

  2. Development of Design Concept and Applied Technology for RCP Performance Test Facility

    Park, Sang Jin; Lee, Jung Ho; Yoon, Seok Ho

    2010-02-01

    Performance test facility for RCP (reactor coolant pump) is essential to verify the performance and reliability of RCP before installation in the nuclear power plant. The development of RCP for new-type reactor and the performance verification of hydraulic revolving body also needs the RCP test facility. The design concept of test loop and the technology of flow rate measurement are investigated in this research

  3. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  4. U.S. advanced accelerator applications program: plans to develop and test waste transmutation technologies

    Van Tuyle, G.; Bennett, D.; Arthur, E.; Cappiello, M.; Finck, P.; Hill, D.; Herczeg, J.; Goldner, F.

    2001-01-01

    The primary mission of the U.S. Advanced Accelerator Applications (AAA) Program is to establish a national nuclear technology research capability that can demonstrate accelerator-based transmutation of waste and conduct transmutation research while at the same time providing a capability for the production of tritium if required. The AAA Program was created during fiscal year 2001 from the Accelerator Transmutation of Waste (ATW) Program and the Accelerator Production of Tritium (APT) Project. This paper describes the new AAA Program, as well as its two major components: development and testing of waste transmutation technologies and construction of an integrated accelerator-driven test facility (ADTF). (author)

  5. Comprehensive Nuclear-Test-Ban Treaty: Science and Technology 2011 (S and T2011). Announcement

    2011-01-01

    To build and strengthen its relationship with the broader science community in support of the Treaty, the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) invites the community to a scientific conference CTBT: Science and Technology 2011 (S and T 2011), to be held from 8 to 10 June 2011 at the Hofburg Palace in Vienna, Austria. The conference goals are: Discuss advances in science and technology relevant to test ban verification; Explore scientific applications of the CTBT verification infrastructure; Encourage partnerships and knowledge exchange between the CTBTO and the broader scientific community.

  6. Melter system technology testing for Hanford Site low-level tank waste vitrification

    Wilson, C.N.

    1996-01-01

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission

  7. Development of treatment technology of radio-contaminated coolant in fuel test loop

    Kim, J. Y.

    1997-10-01

    In 1995, the installation of KMRR located in KAERI provided a milestone in independence of nuclear technologies in Korea. The independence of technologies is only possible through the enormous investment for research and through the active approaches for various experiments. The performance of various experiments enhanced the risk of environmental pollution and the nuclear fuel irradiation test is one of those experiments. The damage of fuel which might happen any time in irradiation test, will discharge high level radioactive materials from the inside of failed fuel and will gradually contaminate the cooling water in near vicinity. Accordingly, the proper management of coolant having high temperature and high level . (author). refs., tabs., figs.

  8. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  9. Development of treatment technology of radio-contaminated coolant in fuel test loop

    Kim, J. Y.

    1997-10-01

    In 1995, the installation of KMRR located in KAERI provided a milestone in independence of nuclear technologies in Korea. The independence of technologies is only possible through the enormous investment for research and through the active approaches for various experiments. The performance of various experiments enhanced the risk of environmental pollution and the nuclear fuel irradiation test is one of those experiments. The damage of fuel which might happen any time in irradiation test, will discharge high level radioactive materials from the inside of failed fuel and will gradually contaminate the cooling water in near vicinity. Accordingly, the proper management of coolant having high temperature and high level . (author). refs., tabs., figs

  10. Waste water processing technology for Space Station Freedom - Comparative test data analysis

    Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.

    1991-01-01

    Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.

  11. JOYO modification program for demonstration tests of FBR innovative technology development

    Yoshimi, H.; Hachiya, Y.

    1990-01-01

    A plan is under way at PNC to modify the experimental fast reactor JOYO. The project is called MARK-III (MK-III) program. The purpose of MK-III is to expand the function of JOYO, and to make it possible to receive demonstration tests of new or high level technologies for FBR development. The MK-III program consists of two main modifications: conversion to a highly efficient irradiation facility; and a modification for demonstration testing of new technologies and concepts that have a high potential to reduce FBR plant construction cost, to evaluate plant reliability and to improve plant safety. These modifications are scheduled to start in 1991

  12. Simulation technologies in networking and communications selecting the best tool for the test

    Pathan, Al-Sakib Khan; Khan, Shafiullah

    2014-01-01

    Simulation is a widely used mechanism for validating the theoretical models of networking and communication systems. Although the claims made based on simulations are considered to be reliable, how reliable they really are is best determined with real-world implementation trials.Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test addresses the spectrum of issues regarding the different mechanisms related to simulation technologies in networking and communications fields. Focusing on the practice of simulation testing instead of the theory, it presents

  13. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  14. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  15. A digital fly-by-wire technology development program using an F-8C test aircraft

    Jarvis, C. R.

    1974-01-01

    A digital fly-by-wire flight control system has been installed in an F-8C test airplane and has undergone extensive ground and flight testing as part of an overall program to develop digital fly-by-wire technology. This is the first airplane to fly with a digital fly-by-wire system as its primary means of control and with no mechanical reversion capability. Forty-two test flights were made for a total flight time of 57 hours. Six pilots participated in the evaluation. This paper presents an overview of the digital fly-by-wire program and discusses some of the flight-test results.

  16. SEU testing of a novel hardened register implemented using standard CMOS technology

    Monnier, T.; Roche, F.M.; Cosculluela, J.; Velazco, R.

    1999-01-01

    A novel memory structure, designed to tolerate SEU perturbations, has been implemented in registers and tested. The design was completed using a standard submicron nonradiation hardened CMOS technology. This paper presents the results of heavy ions tests which evidence the noticeable improvement of the SEU-robustness with an increased LET threshold and reduced cross-section, without significant impact to die real estate, write time, or power consumption

  17. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2010-01-01

    We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.

  18. [Optimization of stir-baking with vinegar technology for Curcumae Radix by orthogonal test].

    Shi, Dianhua; Su, Benzheng; Sun, Lili; Zhang, Jun; Qu, Yongsheng

    2011-05-01

    To optimize the stir-baking with vinegar technology for Curcumae Radix. The intrinsic quality (the content of Curcumin) and traditional outward appearance were chosen as indexes. The best technology was determined by orthogonal test L9 (3(4)). The factors of the moistening time, stir-baking temperature and stir-baking time were investigated. The optimal technology was as follows: the quantity of vinegar was 10%, the moistening time was 10 min, the stir-baking temperature was 130 degrees C and the stir-baking time was 10 min. The optimal stir-baking with vinegar technology for Curcumae Radix is reasonable, which can be used to guide the standardized production of Curcumae Radix stir-baked with vinegar.

  19. Method and equipment for treating waste water resulting from the technological testing processes of NPP equipment

    Radulescu, M. C.; Valeca, S.; Iorga, C.

    2016-01-01

    Modern methods and technologies coupled together with advanced equipment for treating residual substances resulted from technological processes are mandatory measures for all industrial facilities. The correct management of the used working agents and of the all wastes resulted from the different technological process (preparation, use, collection, neutralization, discharge) is intended to reduce up to removal of their potential negative impact on the environment. The high pressure and temperature testing stands from INR intended for functional testing of nuclear components (fuel bundles, fuelling machines, etc.) were included in these measures since the use of oils, demineralized water chemically treated, greases, etc. This paper is focused on the method and equipment used at INR Pitesti in the chemical treatment of demineralized waters, as well as the equipment for collecting, neutralizing and discharging them after use. (authors)

  20. TASKA-M - a low cost, near term tandem mirror device for fusion technology testing

    Badger, B.; Corradini, M.L.; El-Guebaly, L.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Maynard, C.W.; Perkins, L.J.; Peterson, R.R.; Plute, K.E.; Santarius, J.F.; Sawan, M.E.; Scharer, J.E.; Sviatoslavsky, I.N.; Sze, D.K.; Vogelsang, W.F.; Wittenberg, L.J.; Leppelmeier, G.W.; Grover, J.M.; Opperman, E.K.; Vogel, M.A.; Borie, E.; Taczanowski, S.; Arendt, F.; Dittrich, H.G.; Fett, T.; Haferkamp, B.; Heinz, W.; Hoelzchen, E.; Kleefeldt, K.; Klingelhoefer, R.; Komarek, P.; Kuntze, M.; Leiste, H.G.; Link, W.; Malang, S.; Manes, B.M.; Maurer, W.; Michael, I.; Mueller, R.A.; Neffe, G.; Schramm, K.; Suppan, A.; Weinberg, D.

    1984-04-01

    TASKA-M (Modifizierte Tandem Spiegelmaschine Karlsruhe) is a study of a dedicated fusion technology device based on the mirror principle, in continuation of the 1981/82 TASKA study. The main objective is to minimize cost while retaining key requirements of neutron flux and fluence for blanket and material development and for component testing in a nuclear environment. Direct costs are reduced to about 400 M$ by dropping reactor-relevant aspects not essential to technology testing: No thermal barrier and electrostatic plugging of the plasma; fusion power of 7 MW at an injected power of 44 MW; tritium supply from external sources. All technologies for operating the machine are expected to be available by 1990; the plasma physics relies on microstabilization in a sloshing ion population. (orig.) [de

  1. Demonstration test on decontamination of contaminated pool water using liquid-solid settling technology with flocculants

    Aritomi, Masanori; Adachi, Toshihiro; Watanabe, Noriyuki; Tagawa, Akihiro; Hosobuchi, Shigeki; Takanashi, Junko

    2013-01-01

    For the purpose of supplying agricultural water, a stationary purification system for contaminated water had been developed on the basis of the liquid-solid settling technology using flocculants. Two kinds of flocculants had been developed on the basis of preliminary tests: one that compounds iron ferrocyanide and the other that does not. With the use of this system and flocculants, a demonstration test was conducted to apply the decontamination technology on contaminated water in two swimming pools in an elementary school located at Motomiya City, Fukushima Prefecture, Japan. It is proved from the results that both the developed purification system and the flocculants can be established as a practicable decontamination technology for contaminated water: the treatment rate was 10 m 3 /hour and the elimination factor of radioactive materials was higher than 99%. (author)

  2. Constructing a multiple choice test to measure elementary school teachers' Pedagogical Content Knowledge of technology education.

    Rohaan, E.J.; Taconis, R.; Jochems, W.M.G.

    2009-01-01

    This paper describes the construction and validation of a multiple choice test to measure elementary school teachers' Pedagogical Content Knowledge of technology education. Pedagogical Content Knowledge is generally accepted to be a crucial domain of teacher knowledge and is, therefore, an important

  3. TEST DESIGN FOR ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) OF ADD-ON NOX CONTROL UTILIZING OZONE INJECTION

    The paper discusses the test design for environmental technology verification (ETV) of add-0n nitrogen oxides (NOx) control utilizing ozone injection. (NOTE: ETV is an EPA-established program to enhance domestic and international market acceptance of new or improved commercially...

  4. Spanish Minister of Science and Technology visits the LHC magnet test facility

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister for Science and Technology, Spain, toured the test facility for LHC magnets in building SM18 during his visit to CERN in November. Photos 01, 02: Felix Rodriguez Mateos (right) explains some of a cryomagnet's myriad connections to the Minister.

  5. Spanish Minister of Science and Technology visits the LHC magnet test facility

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister of Science and Technology, Spain, visited CERN in November. Here Felix Rodriguez Mateos (right) explains aspects of the test facility to the Minister (left). Between them are M. Aguilar Benitez, Spanish delegate to CERN Council (left), and Francisco Giménez-Reyna, Spanish delegate to the CERN Finance Committee.

  6. Spanish Minister of Science and Technology visits the LHC magnet test facility

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister for Science and Technology, Spain, toured the test facility for LHC magnets in building SM18 during his visit to CERN in November. Photo 01: The Minister (left) with M. Cerrada and G. Babé.

  7. Field Measurements of Perceived Air Quality in the Test-Bed for Innovative Climate Conditioning Technologies

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, Michal

    the potential influence of aforementioned technologies on the perceived air quality. Additionally, the effect of Demand Controlled Ventilation (DCV) on the perceived air quality was tested. Measurements comprised of the assessments of perceived air quality and objective measurements of operative temperature...

  8. A Dataset of Three Educational Technology Experiments on Differentiation, Formative Testing and Feedback

    Haelermans, Carla; Ghysels, Joris; Prince, Fernao

    2015-01-01

    This paper describes a dataset with data from three individually randomized educational technology experiments on differentiation, formative testing and feedback during one school year for a group of 8th grade students in the Netherlands, using administrative data and the online motivation questionnaire of Boekaerts. The dataset consists of pre-…

  9. Patients' Acceptance of Smartphone Health Technology for Chronic Disease Management: A Theoretical Model and Empirical Test.

    Dou, Kaili; Yu, Ping; Deng, Ning; Liu, Fang; Guan, YingPing; Li, Zhenye; Ji, Yumeng; Du, Ningkai; Lu, Xudong; Duan, Huilong

    2017-12-06

    Chronic disease patients often face multiple challenges from difficult comorbidities. Smartphone health technology can be used to help them manage their conditions only if they accept and use the technology. The aim of this study was to develop and test a theoretical model to predict and explain the factors influencing patients' acceptance of smartphone health technology for chronic disease management. Multiple theories and factors that may influence patients' acceptance of smartphone health technology have been reviewed. A hybrid theoretical model was built based on the technology acceptance model, dual-factor model, health belief model, and the factors identified from interviews that might influence patients' acceptance of smartphone health technology for chronic disease management. Data were collected from patient questionnaire surveys and computer log records about 157 hypertensive patients' actual use of a smartphone health app. The partial least square method was used to test the theoretical model. The model accounted for .412 of the variance in patients' intention to adopt the smartphone health technology. Intention to use accounted for .111 of the variance in actual use and had a significant weak relationship with the latter. Perceived ease of use was affected by patients' smartphone usage experience, relationship with doctor, and self-efficacy. Although without a significant effect on intention to use, perceived ease of use had a significant positive influence on perceived usefulness. Relationship with doctor and perceived health threat had significant positive effects on perceived usefulness, countering the negative influence of resistance to change. Perceived usefulness, perceived health threat, and resistance to change significantly predicted patients' intentions to use the technology. Age and gender had no significant influence on patients' acceptance of smartphone technology. The study also confirmed the positive relationship between intention to use

  10. Patients’ Acceptance of Smartphone Health Technology for Chronic Disease Management: A Theoretical Model and Empirical Test

    Dou, Kaili; Yu, Ping; Liu, Fang; Guan, YingPing; Li, Zhenye; Ji, Yumeng; Du, Ningkai; Lu, Xudong; Duan, Huilong

    2017-01-01

    Background Chronic disease patients often face multiple challenges from difficult comorbidities. Smartphone health technology can be used to help them manage their conditions only if they accept and use the technology. Objective The aim of this study was to develop and test a theoretical model to predict and explain the factors influencing patients’ acceptance of smartphone health technology for chronic disease management. Methods Multiple theories and factors that may influence patients’ acceptance of smartphone health technology have been reviewed. A hybrid theoretical model was built based on the technology acceptance model, dual-factor model, health belief model, and the factors identified from interviews that might influence patients’ acceptance of smartphone health technology for chronic disease management. Data were collected from patient questionnaire surveys and computer log records about 157 hypertensive patients’ actual use of a smartphone health app. The partial least square method was used to test the theoretical model. Results The model accounted for .412 of the variance in patients’ intention to adopt the smartphone health technology. Intention to use accounted for .111 of the variance in actual use and had a significant weak relationship with the latter. Perceived ease of use was affected by patients’ smartphone usage experience, relationship with doctor, and self-efficacy. Although without a significant effect on intention to use, perceived ease of use had a significant positive influence on perceived usefulness. Relationship with doctor and perceived health threat had significant positive effects on perceived usefulness, countering the negative influence of resistance to change. Perceived usefulness, perceived health threat, and resistance to change significantly predicted patients’ intentions to use the technology. Age and gender had no significant influence on patients’ acceptance of smartphone technology. The study also

  11. 4H-SiC JFET Multilayer Integrated Circuit Technologies Tested Up to 1000 K

    Spry, D. J.; Neudeck, P. G.; Chen, L.; Chang, C. W.; Lukco, D.; Beheim, G. M.

    2015-01-01

    Testing of semiconductor electronics at temperatures above their designed operating envelope is recognized as vital to qualification and lifetime prediction of circuits. This work describes the high temperature electrical testing of prototype 4H silicon carbide (SiC) junction field effect transistor (JFET) integrated circuits (ICs) technology implemented with multilayer interconnects; these ICs are intended for prolonged operation at temperatures up to 773K (500 C). A 50 mm diameter sapphire wafer was used in place of the standard NASA packaging for this experiment. Testing was carried out between 300K (27 C) and 1150K (877 C) with successful electrical operation of all devices observed up to 1000K (727 C).

  12. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  13. A Laser Technology Test Facility for Laser Inertial Fusion Energy (LIFE)

    Bayramian, A.J.; Campbell, R.W.; Ebbers, C.A.; Freitas, B.L.; Latkowski, J.; Molander, W.A.; Sutton, S.B.; Telford, S.; Caird, J.A.

    2010-01-01

    A LIFE laser driver needs to be designed and operated which meets the rigorous requirements of the NIF laser system while operating at high average power, and operate for a lifetime of >30 years. Ignition on NIF will serve to demonstrate laser driver functionality, operation of the Mercury laser system at LLNL demonstrates the ability of a diode-pumped solid-state laser to run at high average power, but the operational lifetime >30 yrs remains to be proven. A Laser Technology test Facility (LTF) has been designed to specifically address this issue. The LTF is a 100-Hz diode-pumped solid-state laser system intended for accelerated testing of the diodes, gain media, optics, frequency converters and final optics, providing system statistics for billion shot class tests. These statistics will be utilized for material and technology development as well as economic and reliability models for LIFE laser drivers.

  14. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  15. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  16. The AMT maglev test sled -- EML weapons technology transition to transportation

    Schaaf, J.C. Jr. [BDM Federal, Huntsville, AL (United States); Zowarka, R.C. Jr. [Univ. of Texas, Austin, TX (United States); Davey, K. [American Maglev Technology, Inc., Edgewater, FL (United States); Weldon, J.M. [Parker Kinetic Designs, Inc., Austin, TX (United States)

    1997-01-01

    Technology spinoffs from prior electromagnetic launcher work enhance a magnetic levitation transportation system test bed being developed by American Maglev Technology of Florida. This project uses a series wound linear DC motor and brushes to simplify the magnetic levitation propulsion system. It takes advantage of previous related work in electromagnetic launcher technology to achieve success with this innovative design. Technology and knowledge gained from developments for homopolar generators and proposed railgun arc control are key to successful performance. This contribution supports a cost effective design that is competitive with alternative concepts. Brushes transfer power from the guideway (rail) to the vehicle (armature) in a novel design that activates the guideway only under the vehicle, reducing power losses and guideway construction costs. The vehicle carries no power for propulsion and levitation, and acts only as a conduit for the power through the high speed brushes. Brush selection and performance is based on previous EML homopolar generator research. A counterpulse circuit, first introduced in an early EML conference, is used to suppress arcing on the trailing brush and to transfer inductive energy to the next propulsion coil. Isolated static lift and preliminary propulsion tests have been completed, and integrated propulsion and lift tests are scheduled in early 1996.

  17. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  18. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye

    2013-01-01

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses

  19. Development of Welding and Instrumentation Technology for Nuclear Fuel Test Rod

    Joung, Chang Young; Ahn, Sung Ho; Heo, Sung Ho; Hong, Jin Tae; Kim, Ka Hye [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is necessary to develop various types of welding, instrumentation and helium gas filling techniques that can conduct TIG spot welding exactly at a pin-hole of the end-cap on the nuclear fuel rod to fill up helium gas. The welding process is one of the most important among the instrumentation processes of the nuclear fuel test rod. To manufacture the nuclear fuel test rod, a precision welding system needs to be fabricated to develop various welding technologies of the fuel test rod jointing the various sensors and end-caps on a fuel cladding tube, which is charged with fuel pellets and component parts. We therefore designed and fabricated an orbital TIG welding system and a laser welding system. This paper describes not only some experiment results from weld tests for the parts of a nuclear fuel test rod, but also the contents for the instrumentation process of the dummy fuel test rod installed with the C-type T. C. A dummy nuclear fuel test rod was successfully fabricated with the welding and instrumentation technologies acquired with various tests. In the test results, the round welding has shown a good weldability at both the orbital TIG welding system and the fiber laser welding system. The spot welding to fill up helium gas has shown a good welding performance at a welding current of 30A, welding time of 0.4 sec and gap of 1 mm in a helium gas atmosphere. The soundness of the nuclear fuel test rod sealed by a mechanical sealing method was confirmed by helium leak tests and microstructural analyses.

  20. Results from a beam test of silicon strip sensors manufactured by Infineon Technologies AG

    Dragicevic, M., E-mail: marko.dragicevic@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Auzinger, G. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); CERN, Geneva (Switzerland); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Gamerith, S.; Hacker, J. [Infineon Technologies Austria AG, Villach (Austria); König, A. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Infineon Technologies Austria AG, Villach (Austria); Kröner, F.; Kucher, E.; Moser, J.; Neidhart, T. [Infineon Technologies Austria AG, Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, Munich (Germany); Schustereder, W. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Wübben, T. [Infineon Technologies Austria AG, Villach (Austria)

    2014-11-21

    Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors were capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European-based semiconductor manufacturer Infineon Technologies AG (Infineon) the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) developed planar silicon strip sensors in p-on-n technology. This work presents the first results from a beam test of strip sensors manufactured by Infineon.

  1. Research program of the high temperature engineering test reactor for upgrading the HTGR technology

    Kunitomi, Kazuhiko; Tachibana, Yukio; Takeda, Takeshi; Saikusa, Akio; Sawa, Kazuhiro

    1997-07-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium-cooled reactor with an outlet power of 30 MW and outlet coolant temperature of 950degC, and its first criticality will be attained at the end of 1997. In the HTTR, researches establishing and upgrading the technology basis necessary for an HTGR and innovative basic researches for a high temperature engineering will be conducted. A research program of the HTTR for upgrading the technology basis for the HTGR was determined considering realization of future generation commercial HTGRs. This paper describes a research program of the HTTR. (author)

  2. Contributions of fast breeder test reactor to the advanced technology in India

    Kapoor, R.P.

    2001-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe loop type, sodium cooled, plutonium rich mixed carbide fuelled reactor. Its operation at Indira Gandhi Centre for Atomic Research, since first criticality in 1985, has contributed immensely to the advancement of this multidisciplinary and complex fast breeder technology in the country. It has also given a valuable operational feedback for the design of 500 MWe Prototype Fast Breeder Reactor. This paper highlights FBTR's significant contributions to this important technology which has a potential to provide energy security to the country in future. (author)

  3. Developing a 'Research Test Bed' to introduce innovative Emission Testing Technology to improve New Zealand's Vehicle Emission Standards

    Cox, Stephen J

    2012-01-01

    Vehicle exhaust emissions arise from the combustion of the fuel and air mixture in the engine. Exhaust emission gases generally include carbon monoxide (CO), oxides of nitrogen (NOx), hydrocarbons (HC), particulates, and the greenhouse gas carbon dioxide (CO2). In New Zealand improvements have occurred in emissions standards over the past 20 years however significant health related issues are now being discovered in Auckland as a direct effect of high vehicle emission levels. Pollution in New Zealand, especially via vehicle emissions are an increasing concern and threatens New Zealand's 'clean and green' image. Unitec Institute of Technology proposes establishing a Vehicle Emissions Testing Facility, and with an understanding with Auckland University, National Institute of Water and Atmosphere Research Ltd (NIWA) this research group can work collaboratively on vehicle emissions testing. New Zealand research providers would support an application in the UK led by the University of Huddersfield to a range of European Union Structural Funds. New Zealand has an ideal 'vehicle emissions research environment' supported by significant expertise in vehicle emission control technology and associated protocols at the University of Auckland, and the effects of high vehicle emissions on health at the National Institutes of Water and Atmosphere (NIWA).

  4. Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit

    Price, T. W.; Shain, T. W.; Bryant, J. A.

    1981-01-01

    The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.

  5. Establishing benchmarks and metrics for disruptive technologies, inappropriate and obsolete tests in the clinical laboratory.

    Kiechle, Frederick L; Arcenas, Rodney C; Rogers, Linda C

    2014-01-01

    Benchmarks and metrics related to laboratory test utilization are based on evidence-based medical literature that may suffer from a positive publication bias. Guidelines are only as good as the data reviewed to create them. Disruptive technologies require time for appropriate use to be established before utilization review will be meaningful. Metrics include monitoring the use of obsolete tests and the inappropriate use of lab tests. Test utilization by clients in a hospital outreach program can be used to monitor the impact of new clients on lab workload. A multi-disciplinary laboratory utilization committee is the most effective tool for modifying bad habits, and reviewing and approving new tests for the lab formulary or by sending them out to a reference lab. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The development of the neutron flux measurement technology using SPNDs during nuclear fuel irradiation test

    Kim, B. G.; Kang, Y. H.; Cho, M. S.; Joo, K. N.; Choi, M. H.; Park, S. J.; Shin, Y. T.; Oh, J. M.; Kim, Y. J

    2004-03-01

    As a part of the development of instrumentation technologies for a nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), a study is performed to measure and evaluate the neutron flux at the same position as the nuclear fuel during irradiation test using the SPND(Self Powered Neutron Detector). To perform this study, rhodium type SPNDs and amplifier are selected suitable to irradiation test, and the selected SPNDs are installed in instrumented fuel capsule(02F-11K). The irradiation test using a instrumented fuel capsule are performed in the OR5 vertical hole of HANARO for about 54 days, and SPND output signals are acquired successfully during irradiation test. Acquired SPND signals are analyzed and evaluated as a reliable data by COSMOS Code. This will be utilized for the fuel related research together with fuel center temperature and reactor operation data.

  7. Tests for manufacturing technology of disposal canisters for nuclear spent fuel

    Raiko, H.; Salonen, T.; Meuronen, I.; Lehto, K.

    1999-06-01

    The summary and status of the results of the manufacturing technology programmes concerning the disposal canister for spent nuclear fuel conducted by Posiva Oy are given in this report. Posiva has maintained a draft plan for a disposal canister design and an assessment of potential manufacturing technologies for about ten years in Finland. Now, during the year 1999, the first full scale demonstration canister is manufactured in Finland. The technology used for manufacturing of this prototype is developed by Posiva Oy mainly in co-operation with domestic industry. The main partner in developing the manufacturing technology for the copper shell has been Outokumpu Poricopper Oy, Pori, Finland, and the main partner in developing the technology for the iron insert of the canister has been Valmet Oyj Rautpohja Foundry, Jyvaeskylae, Finland. In both areas many subcontractors have been used, predominantly domestic engineering workshops, but also some foreign subcontractors, e.g. for EB-welding, who have had large enough welding equipment. This report describes the developing programmes for canister manufacturing, evaluates the results and presents some alternative methods, and tries to evaluate the pros and contras of them. In addition, the adequacy of the achieved technological know-how is assessed in respect of the required quality of the disposal canister. The following manufacturing technologies have been the concrete topics of the development programme: Electron beam welding technology development for thick-walled copper, Casting of massive copper billets, Hot rolling of thick-walled copper plates, Hot pressing and forging in lid manufacture, Extrusion and drawing of copper tubes, Bending of copper plates by roller or press, Machining of copper, Residual stress removal by heat treatment, Non-destructive testing, Long-term strength of EB-welds, Casting and machining of the iron insert of the canister The specialists from all the main developing partner companies have

  8. Development of Out-pile Test Technology for Fuel Assembly Performance Verification

    Chun, Tae Hyun; In, W. K.; Oh, D. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-03-15

    Out-pile tests with full scale fuel assembly are to verify the design and to evaluate the performance of the final products. HTL for the hydraulic tests and FAMeCT for mechanical/structural tests were constructed in this project. The maximum operating conditions of HTL are 30 bar, 320 .deg. C, and 500 m3/hr. This facility can perform the pressure drop test, fuel assembly uplift test, and flow induced vibration test. FAMeCT can perform the bending and vibration tests. The verification of the developed facilities were carried out by comparing the reference data of the fuel assembly which was obtained at the Westinghouse Co. The compared data showed a good coincidence within uncertainties. FRETONUS was developed for high temperature and high pressure fretting wear simulator and performance test. A performance test was conducted for 500 hours to check the integrity, endurance, data acquisition capability of the simulator. The technology of turbulent flow analysis and finite element analysis by computation was developed. From the establishments of out-pile test facilities for full scale fuel assembly, the domestic infrastructure for PWR fuel development has been greatly upgraded.

  9. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all

  10. Nurses' perceptions, acceptance, and use of a novel in-room pediatric ICU technology: testing an expanded technology acceptance model.

    Holden, Richard J; Asan, Onur; Wozniak, Erica M; Flynn, Kathryn E; Scanlon, Matthew C

    2016-11-15

    The value of health information technology (IT) ultimately depends on end users accepting and appropriately using it for patient care. This study examined pediatric intensive care unit nurses' perceptions, acceptance, and use of a novel health IT, the Large Customizable Interactive Monitor. An expanded technology acceptance model was tested by applying stepwise linear regression to data from a standardized survey of 167 nurses. Nurses reported low-moderate ratings of the novel IT's ease of use and low to very low ratings of usefulness, social influence, and training. Perceived ease of use, usefulness for patient/family involvement, and usefulness for care delivery were associated with system satisfaction (R 2  = 70%). Perceived usefulness for care delivery and patient/family social influence were associated with intention to use the system (R 2  = 65%). Satisfaction and intention were associated with actual system use (R 2  = 51%). The findings have implications for research, design, implementation, and policies for nursing informatics, particularly novel nursing IT. Several changes are recommended to improve the design and implementation of the studied IT.

  11. Integrated Electrical and Thermal Grid Facility - Testing of Future Microgrid Technologies

    Sundar Raj Thangavelu

    2015-09-01

    Full Text Available This paper describes the Experimental Power Grid Centre (EPGC microgrid test facility, which was developed to enable research, development and testing for a wide range of distributed generation and microgrid technologies. The EPGC microgrid facility comprises a integrated electrical and thermal grid with a flexible and configurable architecture, and includes various distributed energy resources and emulators, such as generators, renewable, energy storage technologies and programmable load banks. The integrated thermal grid provides an opportunity to harness waste heat produced by the generators for combined heat, power and cooling applications, and support research in optimization of combined electrical-thermal systems. Several case studies are presented to demonstrate the testing of different control and operation strategies for storage systems in grid-connected and islanded microgrids. One of the case studies also demonstrates an integrated thermal grid to convert waste heat to useful energy, which thus far resulted in a higher combined energy efficiency. Experiment results confirm that the facility enables testing and evaluation of grid technologies and practical problems that may not be apparent in a computer simulated environment.

  12. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  13. Instrumentation Technologies for Improving an Irradiation Testing of Nuclear Fuels and Materials at the HANARO

    Kim, Bong Goo; Park, Sung Jae; Choo, Ki Nam

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in Materials Test Reactors (MTRs) or research reactors. Recent effort to deploy new fuels and materials in existing and advanced reactors has increased the demand for well-instrumented irradiation tests. Specifically, demand has increased for tests with sensors capable of providing real-time measurement of key parameters, such as temperature, geometry changes, thermal conductivity, fission gas release, cracking, coating buildup, thermal and fast flux, etc. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes on-going research efforts to deploy new sensors. There is increased interest to irradiate new materials and reactor fuels for advanced PWRs and the Gen-IV reactor systems, such as SFRs (Sodium-cooled Fast Reactors), VHTRs (Very-High-Temperature Reactors), SCWRs (Supercritical-Water-cooled Reactors) and GFRs (Gas-cooled Fast Reactor). This review documents the current state of instrumentation technologies in MTRs in the world, identifies challenges faced by previous testing methods and how these challenges were overcome. A wide range of sensors are available to measure key parameters of interest during fuels and materials irradiations in MTRs. Such sensors must be reliable, small size, highly accurate, and able to withstand harsh conditions. On-going development efforts are focusing on providing MTR users a wider range of parameter measurements with increased accuracy. In addition, development efforts are focusing on reducing the impact of sensor on measurements by reducing sensor size. This report includes not only status of instrumentation using research reactors in the world to irradiate nuclear fuels and materials but also future directions relating to instrumentation technologies for

  14. Test plan guidance for transuranic-contaminated arid landfill remedial technology development

    Evans, J.; Shaw, P.

    1995-05-01

    This document provides guidance for preparing plans to test or demonstrate buried waste assessment or remediation technologies supported by the U.S. Department of Energy's Landfill Stabilization Focus Area, Transuranic-Contaminated Arid Landfill Product Line. This document also provides guidance for development of data quality objectives, along with the necessary data to meet the project objectives. The purpose is to ensure that useful data of known quality are collected to support conclusions associated with the designated demonstration or test. A properly prepared test plan will integrate specific and appropriate objectives with needed measurements to ensure data will reflect the Department of Energy Office of Technology Development's mission, be consistent with Landfill Stabilization Focus Area test goals, and be useful for the Department of Energy Environmental Restoration and Waste Management programs and other potential partners (e.g., commercial concerns). The test plan becomes the planning and working document for the demonstration or test to be conducted ensuring procedures are followed that will allow data of sufficient quality to be collected for comparison and evaluation

  15. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  16. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    None

    1999-09-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  17. Testing of technology readiness index model based on exploratory factor analysis approach

    Ariani, AF; Napitupulu, D.; Jati, RK; Kadar, JA; Syafrullah, M.

    2018-04-01

    SMEs readiness in using ICT will determine the adoption of ICT in the future. This study aims to evaluate the model of technology readiness in order to apply the technology on SMEs. The model is tested to find if TRI model is relevant to measure ICT adoption, especially for SMEs in Indonesia. The research method used in this paper is survey to a group of SMEs in South Tangerang. The survey measures the readiness to adopt ICT based on four variables which is Optimism, Innovativeness, Discomfort, and Insecurity. Each variable contains several indicators to make sure the variable is measured thoroughly. The data collected through survey is analysed using factor analysis methodwith the help of SPSS software. The result of this study shows that TRI model gives more descendants on some indicators and variables. This result can be caused by SMEs owners’ knowledge is not homogeneous about either the technology that they are used, knowledge or the type of their business.

  18. Characterization and radiation studies of diode test structures in LFoundry CMOS technology

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    In order to prepare for the High Luminosity upgrade of the LHC, all subdetector systems of the ATLAS experiment will be upgraded. In preparation for this process, different possibilities for new radiation-hard and cost-efficient silicon sensor technologies to be used as part of hybrid pixel detectors in the ATLAS inner tracker are being investigated. One promising way to optimize the cost-efficiency of silicon-based pixel detectors is to use commercially available CMOS technologies such as the 150 nm process by LFoundry. In this talk, several CMOS pixel test structures, such as simple diodes and small pixel arrays, that were manufactured in this technology are characterized regarding general performance and radiation hardness and compared to each other as well as to the current ATLAS pixel detector.

  19. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rader, Jordan D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examination facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.

  20. Cascade Distillation Subsystem Development: Early Results from the Exploration Life Support Distillation Technology Comparison Test

    Callahan, Michael R.; Patel, Vipul; Pickering, Karen D.

    2010-01-01

    In 2009, the Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, California) was assessed in the National Aeronautics and Space Administration (NASA) Exploration Life Support (ELS) distillation comparison test. The purpose of the test was to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. The CDS portion of the comparison test was conducted between May 6 and August 19, 2009. The system was challenged with two pretreated test solutions, each intended to represent a feasible wastewater generated in a surface habitat. The 30-day equivalent wastewater loading volume for a crew of four was intended to be processed for each wastewater solution. Test Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. Test Solution 2 contained the addition of human-generated hygiene wastewater to the solution 1 waste stream components. Approximately 1500 kg of total wastewater was processed through the CDS during testing. Respective recoveries per solution were 93.4 +/- 0.7 and 90.3 +/- 0.5 percent. The average specific energy of the system during testing was calculated to be less than 120 W-hr/kg. The following paper provides detailed information and data on the performance of the CDS as challenged per the ELS distillation comparison test.

  1. SUMA Technology and Newborn Screening Tests for Inherited Metabolic Diseases in Cuba

    Ernesto Carlos González Reyes PhD

    2016-07-01

    Full Text Available The ultramicroanalytic system (SUMA, created in the 1980s, is a complete system of reagents and instrumentation to perform ultramicroassays combining the sensitivity of the micro-enzyme-linked immunosorbent assay (ELISA tests with the use of ultramicrovolumes. This technology permitted establishing large-scale newborn screening programs (NSPs for metabolic and endocrine disorders in Cuba. This article summarizes the main results of the implementation during the 30 years of SUMA technology in NSP for 5 inherited metabolic diseases, using ultramicroassays developed at the Department of Newborn Screening at the Immunoassay Center. Since 1986, SUMA technology has been used in the Cuban NSP for congenital hypothyroidism, initially studying thyroid hormone in cord serum samples. In 2000, a decentralized program for the detection of hyperphenylalaninemias using heel dried blood samples was initiated. These successful experiences permitted including protocols for screening congenital adrenal hyperplasia, galactosemia, and biotinidase deficiency in 2005. A program for the newborn screening of CH using the thyroid-stimulating hormone Neonatal ultramicro-ELISA was fully implemented in 2010. Nowadays, the NSP is supported by a network of 175 SUMA laboratories. After 30 years, more than 3.8 million Cuban newborns have been screened, and 1002 affected children have been detected. Moreover, SUMA technology has been presented in Latin America for over 2 decades and has contributed to screen around 17 million newborns. These results prove that developing countries can develop appropriate diagnostic technologies for making health care accessible to all.

  2. Application of new technologies for the nondestructive testing equipment Novovoronezh NPP-2 and Leningrad 2

    Nichev, V.; Cvitanović, M.; Nadinic, B.

    2016-01-01

    This presentation demonstrates the latest technology and means of nondestructive testing of equipment of reactor VVER-1200, realized at the Novovoronezh NPP-2 and Leningrad NPP-2. The developments are based on a contract between ATOMKOMPLEKT with HRID, Croatia as a designer and contractor and and Rosatom. The activities of the presented company and IQC are associated with the qualification of methodologies control of components important to safety as required by the European methodology and requirements of Russian legislation

  3. Static Aeroelastic Deformation Effects in Preliminary Wind-tunnel Tests of Silent Supersonic Technology Demonstrator

    Makino, Yoshikazu; Ohira, Keisuke; Makimoto, Takuya; Mitomo, Toshiteru; 牧野, 好和; 大平, 啓介; 牧本, 卓也; 三友, 俊輝

    2011-01-01

    Effects of static aeroelastic deformation of a wind-tunnel test model on the aerodynamic characteristics are discussed in wind-tunnel tests in the preliminary design phase of the silent supersonic technology demonstrator (S3TD). The static aeroelastic deformation of the main wing is estimated for JAXA 2m x 2m transonic wind-tunnel and 1m x 1m supersonic wind-tunnel by a finite element method (FEM) structural analysis in which its structural model is tuned with the model deformation calibratio...

  4. A Generic Danish Distribution Grid Model for Smart Grid Technology Testing

    Cha, Seung-Tae; Wu, Qiuwei; Østergaard, Jacob

    2012-01-01

    This paper describes the development of a generic Danish distribution grid model for smart grid technology testing based on the Bornholm power system. The frequency dependent network equivalent (FDNE) method has been used in order to accurately preserve the desired properties and characteristics...... as a generic Smart Grid benchmark model for testing purposes....... by comparing the transient response of the original Bornholm power system model and the developed generic model under significant fault conditions. The results clearly show that the equivalent generic distribution grid model retains the dynamic characteristics of the original system, and can be used...

  5. Pilot program on distance training in spirometry testing - the technology feasibility study.

    Nowiński, Adam; Romański, Emil; Bieleń, Przemysław; Bednarek, Michał; Puścińska, Elżbieta; Goljan-Geremek, Anna; Pływaczewski, Robert; Śliwinski, Paweł

    2015-01-01

    Office spirometry has been widely used in recent years by general practitioners in primary care setting, thus the need for stricter monitoring of the quality of spirometry has been recognized. A spirometry counseling network of outpatients clinics was created in Poland using portable spirometer Spirotel. The spirometry data were transferred to counseling centre once a week. The tests sent to the counseling centre were analyzed by doctors experienced in the analysis of spirometric data. In justified cases they sent their remarks concerning performed tests to the centres via e-mail. We received 878 records of spirometry tests in total. Data transmission via the telephone was 100% effective. The quality of spirometry tests performed by outpatients clinics was variable. The use of spirometers with data transfer for training purposes seems to be advisable. There is a need to proper face-to-face training of spirometry operators before an implementation of any telemedicine technology.

  6. MicroCHP: Overview of selected technologies, products and field test results

    Kuhn, Vollrad [Berliner Energieagentur GmbH, Franzoesische Strasse 23, 10117 Berlin (Germany); Klemes, Jiri; Bulatov, Igor [Centre for Process Integration, CEAS, The University of Manchester, P.O. Box 88, M60 1QD Manchester (United Kingdom)

    2008-11-15

    This paper gives an overview on selected microCHP technologies and products with the focus on Stirling and steam machines. Field tests in Germany, the UK and some other EC countries are presented, assessed and evaluated. Test results show the overall positive performance with differences in sectors (domestic vs. small business). Some negative experiences have been received, especially from tests with the Stirling engines and the free-piston steam machine. There are still obstacles for market implementation. Further projects and tests of microCHP are starting in various countries. When positive results will prevail and deficiencies are eliminated, a way to large-scale production and market implementation could be opened. (author)

  7. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  8. Preparation and Integration of ALHAT Precision Landing Technology for Morpheus Flight Testing

    Carson, John M., III; Robertson, Edward A.; Pierrottet, Diego F.; Roback, Vincent E.; Trawny, Nikolas; Devolites, Jennifer L.; Hart, Jeremy J.; Estes, Jay N.; Gaddis, Gregory S.

    2014-01-01

    The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.

  9. U.S. EPA Water Technology Innovation Cluster Leaders Meeting - "Successfully Supporting Early-Stage Companies: The Role of Technology Testing" Meeting Summary Report

    The goals of this workshop were to: (1) increase the cluster leaders’ level of knowledge regarding past and current water technology testing programs, facilities and requirements; (2) learn from the experiences of technology vendors in getting innovative, commercial-ready product...

  10. The new technologies and infrastructure conversion of nuclear testing in Kazakhstan

    Kadyrzhanov, K.K.

    1999-01-01

    It is known, that in August, 1991, in accordance with Decree by the Kazakhstan President, the Semipalatinsk test site (STS) was shut down, and practical works on its conversion were initiated. In 1991 the decision on creation of the Kazakhstan National Nuclear Center (KNNC) on a base of the test site scientific and industrial enterprises and Inst. of Nuclear Physics was taken. In 1993 within frame KNNC three new institutes (Inst. of Atomic Energy, Inst. of Geophysical Research, Inst. of Radiation Safety and Ecology) were created. Owing to this, at the condition of USSR disintegration and liquidation of military division in test site territory, high-qualified personnel was saved, the facilities that represent nuclear danger were left under operation and surveillance, and the full-scale program of STS conversion was developed and put into life. At present guidelines for the major research activities at KNNC on conversion program are as follows: liquidation of consequences of nuclear tests; liquidation of technological structure used before for preparation and implementation of nuclear weapons tests; creation of technology, equipment and locations for receipt and storage of radioactive wastes; working out the concept of nuclear power development in Kazakhstan; investigation of the behaviour of melted reactor core in view of potential heavy accidents at nuclear power plants; development of technique and means for detection of nuclear test in the world, continuous control for nuclear explosions; experimental works on investigation of behaviour of the materials-candidates for role of constructional materials for the thermonuclear reactor ITER; creation of high-technology industries. These and other activities undertaken in this respect allow to attract considerable foreign investments, to create in Kurchatov city hundreds of additional working places.The Government support rendered to KNNC in future will allow to expand substantially this area of activities as well as to

  11. Sensor-based supporting mobile system Parkinson disease clinical tests utilising biomedical and RFID technologies

    Chmielewski Mariusz

    2017-01-01

    Full Text Available This paper discusses method and tool for assisting clinical tests of pharmaceutical drugs utilising sensors and mobile technologies. Emerging sensor and mobile technologies deliver new opportunities to gather and process medical data. Presented analytical approach implements such observations and delivers new, convenient means for remote patient monitoring. Clinical tests are highly specialised process requiring methodology and tools to support such research. Currently available methods rely mostly on analogue approach (booklets, requiring the clinical test participant to fill in health state daily. Such approach often can be biased by unpunctual, not precise reporting. The mobile device can support this process by automatic scheduling and recording an actual time of reports and most of all it can record the inertial and biometric sensor data during the survey process. Presented analytical method (tremors recognition and mobile tool offers consistent approach to clinical test assistance transforming and Android smartphone into remote reporting and notification tool. The tool offers additionally features for sensor based diagnostics support for PD tremor recognition as well as specific clonic and tonic symptoms (dedicated for further system extensions towards epilepsy. Capabilities of the system delivers also RFID mechanisms for efficient on-site clinical test authorisation and configuration. This feature simplifies application installation and automatic set-up considering the participant, clinical test configuration, schedule, smartphone and sensor data. Such a composition delivers convenient and reliable tool which can assist patients and medical staff during the process objectifying the clinical tests results and helping to ensure good quality of the data, quickly available and easily accessible.

  12. Subtask 5.10 - Testing of an Advanced Dry Cooling Technology for Power Plants

    Martin, Christopher L. [Univ. of Oklahoma, Norman, OK (United States); Pavlish, John H. [Univ. of Oklahoma, Norman, OK (United States)

    2013-09-30

    The University of North Dakota’s Energy & Environmental Research Center (EERC) is developing a market-focused dry cooling technology that is intended to address the key shortcomings of conventional dry cooling technologies: high capital cost and degraded cooling performance during daytime temperature peaks. The unique aspect of desiccant dry cooling (DDC) is the use of a hygroscopic working fluid—a liquid desiccant—as a heat-transfer medium between a power plant’s steam condenser and the atmosphere. This configuration enables a number of beneficial features for large-scale heat dissipation to the atmosphere, without the consumptive use of cooling water. The overall goal of this project was to accurately define the performance and cost characteristics of DDC to determine if further development of the concept is warranted. A balanced approach of modeling grounded in applied experimentation was pursued to substantiate DDC-modeling efforts and outline the potential for this technology to cool full-scale power plants. The resulting analysis shows that DDC can be a lower-cost dry cooling alternative to an air-cooled condenser (ACC) and can even be competitive with conventional wet recirculating cooling under certain circumstances. This project has also highlighted the key technological steps that must be taken in order to transfer DDC into the marketplace. To address these issues and to offer an extended demonstration of DDC technology, a next-stage project should include the opportunity for outdoor ambient testing of a small DDC cooling cell. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program.

  13. Point-of-care testing in the diagnosis of gastrointestinal cancers: current technology and future directions.

    Huddy, Jeremy R; Ni, Melody Z; Markar, Sheraz R; Hanna, George B

    2015-04-14

    Point-of-care (POC) tests enable rapid results and are well established in medical practice. Recent advances in analytical techniques have led to a new generation of POC devices that will alter gastrointestinal diagnostic pathways. This review aims to identify current and new technologies for the POC diagnosis of gastrointestinal cancer. A structured search of the Embase and Medline databases was performed. Papers reporting diagnostic tests for gastrointestinal cancer available as a POC device or containing a description of feasibility for POC application were included. Studies recovered were heterogeneous and therefore results are presented as a narrative review. Six diagnostic methods were identified (fecal occult blood, fecal proteins, volatile organic compounds, pyruvate kinase isoenzyme type M2, tumour markers and DNA analysis). Fecal occult blood testing has a reported sensitivity of 66%-85% and specificity greater than 95%. The others are at a range of development and clinical application. POC devices have a proven role in the diagnosis of gastrointestinal cancer. Barriers to their implementation exist and the transition from experimental to clinical medicine is currently slow. New technologies demonstrate potential to provide accurate POC tests and an ability to diagnose gastrointestinal cancer at an early stage with improved clinical outcome and survival.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST/QA PLAN FOR THE VERIFICATION TESTING OF SELECTIVE CATALYTIC REDUCTION CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    The U.S. Environmental Protection Agency established the Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of product performance. Research Triangl...

  15. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States)

    2015-12-21

    This research project addresses one of the goals of the U.S. Department of Energy (DOE) Carbon Storage Program (CSP) aimed at developing Advanced Wellbore Integrity Technologies to Ensure Permanent Geologic Carbon Storage. The technology field-tested in this research project is referred to as microbially induced calcite precipitation (MICP), which utilizes a biologically-based process to precipitate calcium carbonate. If properly controlled MICP can successfully seal fractures, high permeability zones, and compromised wellbore cement in the vicinity of wellbores and in nearby caprock, thereby improving the storage security of geologically-stored carbon dioxide. This report describes an MICP sealing field test performed on a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama. The research was aimed at (1) developing methods for delivering MICP promoting fluids downhole using conventional oil field technologies and (2) assessing the ability of MICP to seal cement and formation fractures in the near wellbore region in a sandstone formation. Both objectives were accomplished successfully during a field test performed during the period April 1-11, 2014. The test resulted in complete biomineralization sealing of a horizontal fracture located 340.7 m (1118 feet) below ground surface. A total of 24 calcium injections and six microbial inoculation injections were required over a three day period in order to achieve complete sealing. The fractured region was considered completely sealed when it was no longer possible to inject fluids into the formation without exceeding the initial formation fracture pressure. The test was accomplished using conventional oil field technology including an 11.4 L (3.0 gallon) wireline dump bailer for injecting the biomineralization materials downhole. Metrics indicating successful MICP sealing included reduced injectivity during seal formation, reduction in pressure falloff, and

  16. Test methodology and technology of fracture toughness for small size specimens

    Wakai, E.; Takada, F.; Ishii, T.; Ando, M. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Matsukawa, S. [JNE Techno-Research Co., Kanagawa-ken (Japan)

    2007-07-01

    Full text of publication follows: Small specimen test technology (SSTT) is required to investigate mechanical properties in the limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources. The test methodology guideline and the manufacture processes for very small size specimens have not been established, and we would have to formulate it. The technology to control exactly the load and displacement is also required in the test technology under the environment of high dose radiation produced from the specimens. The objective of this study is to examine the test technology and methodology of fracture toughness for very small size specimens. A new bend test machine installed in hot cell has been manufactured to obtain fracture toughness and DBTT (ductile - brittle transition temperature) of reduced-activation ferritic/martensitic steels for small bend specimens of t/2-1/3PCCVN (pre-cracked 1/3 size Charpy V-notch) with 20 mm length and DFMB (deformation and fracture mini bend specimen) with 9 mm length. The new machine can be performed at temperatures from -196 deg. C to 400 deg. C under unloading compliance method. Neutron irradiation was also performed at about 250 deg. C to about 2 dpa in JMTR. After the irradiation, fracture toughness and DBTT were examined by using the machine. Checking of displacement measurement between linear gauge of cross head's displacement and DVRT of the specimen displacement was performed exactly. Conditions of pre-crack due to fatigue in the specimen preparation were also examined and it depended on the shape and size of the specimens. Fracture toughness and DBTT of F82H steel for t/2-1/3PCCVN, DFMB and 0.18DCT specimens before irradiation were examined as a function of temperature. DBTT of smaller size specimens of DFMB was lower than that of larger size specimen of t/2-1/3PCCVN and 0.18DCT. The changes of fracture toughness and DBTT due to irradiation were also

  17. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  18. Justification of Technical System Control in Developing and Testing Objects of Missile and Space Technology

    A. A. Fedorovskiy

    2015-01-01

    Full Text Available Tests in general lifecycle of missile and space technology, play a special role. The high cost of such products and a little time for creation and refinement, allow only a limited number of tests. Justification of the appropriate number of tests and finding the ways to reduce it are important from the practical point of view.When the appropriate number of field tests is impossible to implement, as well as if full or partial realization of the sample operation conditions is impossible the authors propose to use software with the involvement of previously obtained aprioristic information to have the modeling results of the functioning sample or its parts, according to the reliability and quality standards.Involvement of statistical methods for systems and objects of the missile and space equipment is limited to the single number of the carried-out tests. Currently used models and methods for systems of missile and barreled weapon do not allow us to conduct analysis and provide guidance on emerging issues of concern to ensure the quality and reliability of objects of the missile and space equipment by results of tests.The method of probabilistic and statistical analysis of the stochastic system operability is supposed to be used to solve a problem of the planning tests, assessment and control of reliability of technical systems at tests using aprioristic calculated and experimental information. This method makes it possible to relate the number of tests, required to prove the desirable level of reliability, to different types of constructional, functional, structural reserves of the system, as well as the level of information-and-measuring base and the completeness of available information.Thus, the structure of controlled elements, their importance, and acceptance conditions including elaboration of actions and recommendations to eliminate discrepancies in controlled parameters and improve quality of the considered system are justified and formed

  19. The English Proficiency Test of the Iranian Ministry of Science, Research, and Technology: A Review

    Mahdieh Noori

    2017-08-01

    Full Text Available One of the serious decisions which every administrator may need to make during his/her professional career is to select or reject applicants based on their general language skills or competence. These significant decisions, which may be of serious consequences not only for the individuals but also for the society in general, are occasionally made based on norm-referenced proficiency tests. Out of internationally available proficiency tests such as the TOEFL test, those which fit the specific local cultural and academic contexts seem of greater prominence. One such test, which has been specifically designed for the Iranian EFL context by the Ministry of Science, Research, and Technology, is the MSRT proficiency test. While a few studies have been conducted on the analysis of the reliability and validity of the mentioned test, no study has yet reviewed the test and its component parts. Therefore, the current study aimed at considering the strengths and weaknesses of the test in general and its component items in particular. The results implicated that the MSRT benefits from more efficient general reliability and validity, well planned language items, practicality, ease of administration, objective scoring, ease of accessibility, as well as reasonable fees, while it needs to be more substantiated in terms of the inclusion of the speaking skill assessment, the computerized adaptive assessment procedures, and the correction factor for guessing. In addition, the use of the individual-based listening apparatus for testing listening comprehension as well as the consideration of the integrative communicative tests for its concurrent validity purposes can contribute to more appropriate distinction of proficient and non-proficient applicants.

  20. The "T3 Support Centre" (Teaching, Technology and Testing - Not just another help desk

    Carol Miles

    2005-10-01

    Full Text Available Many faculty members embrace the challenge of responding to rising student demands for more technically advanced course supports by offering their courseware through a variety of media. However, it is often difficult for them to find the time required to become proficient in the use of the software packages, course management systems and web technologies at their disposal. These new realities of teaching point to the need for support systems for faculty members that go beyond the traditional computer services "help desk" with a more comprehensive support service that actually becomes involved in the development and modification of technology-based course materials and computerized test marking and analysis. Increasing demand for these types of services at Carleton University resulted in the establishment of the T3 (Teaching...Technology...Testing Support Centre. The service offers faculty members extended-hour phone-in and walk-in support as well as a variety of resources such as Scantron and Item Analysis service for multiple choice exams, the use of scanners and colour printers, as well as a variety of teaching publications and contacts. This paper details the planning, administration, and services offered of the T3 Service, including advice those attempting to establish a similar service. Usage statistics from the first year of operations will be delineated.

  1. Spanish Minister of Science and Technology visits the LHC magnet test facility

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister of Science and Technology, Spain, toured the test facility for LHC magnets in building SM18 during his visit to CERN in November. In this series of photos Felix Rodriguez Mateo explains the operation of the test facilty to the ministerial party. Photo 01: (left to right) Felix Rodriguez Mateo; the Minister; Francisco Giménez-Reyna, Spanish delegate to the CERN Finance Committee; M. Aguilar Benitez, Spanish delegate to the CERN Council; G. Babé and G. Léon. Photo 02: (left to right) Felix Rodriguez Mateos; César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology); the Minister; G. Babé; M. Aguilar Benitez; and G. Léon. Photo 03: Francisco Giménez-Reyna; Felix Rodriguez Mateos; César Dopazo; the Minister; Juan Antonio Rubio, leader of the Education and Technology Transfer division at CERN; G. Babé behind M. Aguilar Benitez. Photo 04: Francisco Giménez-Reyna, partially hidden behind Felix Rodriguez Mateos; César Dop...

  2. Spanish Minister of Science and Technology visits the LHC magnet test facility

    Patrice Loïez

    2002-01-01

    H.E. Mr Josep Piqué i Camps, Minister for Science and Technology, Spain, toured the test facility for LHC magnets in building SM18 during his visit to CERN in November. Photos 01, 02: (left to right) M. Cerrada, CERN; Francisco Giménez-Reyna, Spanish delegate to the CERN Finance Committee; G. Léon; Juan Antonio Rubio, leader of the Education and Technology Transfer division at CERN; M. Aguilar-Benitez, Spanish delegate to CERN Council; (behind) H.E. Mr Joaquin Pérez-Villanueva y Tovar, Ambassador and Permanent Representative of Spain to the United Nations in Geneva; the Minister; Manuel Delfino, leader of the Information Technology division at CERN; bodyguard; Matteo Cavalli-Sforza, ATLAS national contact physicist for Spain; Felix Rodriguez Mateos, CERN; G. Babé. Visible in the left background is one of the test benches where magnets are prepared for installation in String 2: the full-scale model of an LHC cell of the regular part of the arc. The extremity of String 2, which measures 120 m and runs the ...

  3. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences?

    Brezina, Paul R; Anchan, Raymond; Kearns, William G

    2016-07-01

    The purpose of the review was to define the various diagnostic platforms currently available to perform preimplantation genetic testing for aneuploidy and describe in a clear and balanced manner the various strengths and weaknesses of these technologies. A systematic literature review was conducted. We used the terms "preimplantation genetic testing," "preimplantation genetic diagnosis," "preimplantation genetic screening," "preimplantation genetic diagnosis for aneuploidy," "PGD," "PGS," and "PGD-A" to search through PubMed, ScienceDirect, and Google Scholar from the year 2000 to April 2016. Bibliographies of articles were also searched for relevant studies. When possible, larger randomized controlled trials were used. However, for some emerging data, only data from meeting abstracts were available. PGS is emerging as one of the most valuable tools to enhance pregnancy success with assisted reproductive technologies. While all of the current diagnostic platforms currently available have various advantages and disadvantages, some platforms, such as next-generation sequencing (NGS), are capable of evaluating far more data points than has been previously possible. The emerging complexity of different technologies, especially with the utilization of more sophisticated tools such as NGS, requires an understanding by clinicians in order to request the best test for their patients.. Ultimately, the choice of which diagnostic platform is utilized should be individualized to the needs of both the clinic and the patient. Such a decision must incorporate the risk tolerance of both the patient and provider, fiscal considerations, and other factors such as the ability to counsel patients on their testing results and how these may or may not impact clinical outcomes.

  4. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H.

    2006-07-01

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology

  5. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  6. Laboratory testing of glasses for Lockheed Idaho Technology Company: Final report

    Ellison, A.J.G.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Luo, J.S.; Wolf, S.F.; Bates, J.K.

    1997-06-01

    Tests have been conducted at Argonne National Laboratory (ANL) in support of the efforts of Lockheed Idaho Technology Company (LITCO) to vitrify high-level waste calcines. Tests were conducted with three classes of LITCO glass formulations: Formula 127 (fluorine-bearing), Formula 532 (fluorine-free), and 630 series (both single- and mixed-alkali) glasses. The test matrices included, as appropriate, the Product Consistency Test Method B (PCT-B), the Materials Characterization Center Test 1 (MCC-1), and the Argonne vapor hydration test (VHT). Test durations ranged from 7 to 183 d. In 7-d PCT-Bs, normalized mass losses of major glass-forming elements for the LITCO glasses are similar to, or lower than, normalized mass losses obtained for other domestic candidate waste glasses. Formula 532 glasses form zeolite alteration phases relatively early in their reaction with water. The formation of those phases increased the dissolution rate. In contrast, the Formula 127 glass is highly durable and forms alteration phases only after prolonged exposure to water in tests with very high surface area to volume ratios; these alteration phases have a relatively small effect on the rate of glass corrosion. No alteration phases formed within the maximum test duration of 183 d in PCT-Bs with the 630 series glasses. The corrosion behavior of the mixed-alkali 630 series glasses is similar to that of 630 series glasses containing sodium alone. In VHTs, both single- and mixed-alkali glasses form zeolite phases that increase the rate of glass reaction. The original 630 series glasses and those based on a revised surrogate calcine formulation react at the same rate in PCT-Bs and form the same major alteration phases in VHTs

  7. TECHNOLOGICAL TESTS USING QUARTZITE RESIDUES AS COMPONENT OF CERAMIC MASS AT THE PORCELAIN STONEWARE PRODUCTION

    Marcondes Mendes Souza

    2015-03-01

    Full Text Available This work aims to evaluate through technological tests the use of quartzite residues as component at the the production of porcelain stoneware. Were collected five samples of quartzites called of green quartzite, black quartzite, pink quartzite, goldy quartzite, white quartzite. After, the raw materials were milled, passed by a sieve with a Mesh of 200# (Mesh and characterized by chemical analysis in fluorescence of x-rays and also analysis of the crystalline phases by diffraction of x-rays. The porcelain tiles mass is composed of five formulations containing 57% of feldspar, 37% of clay and 6% of residues of quartzite with different coloration. For the preparation of the specimens, it was used uniaxial pressing, which afterwards were synthesized at 1150°C, 1200°C and 1250°C. After the sintering, the specimens were submit for tests of technological characterization like: water absorption, linear shrinkage, apparently porosity, density and flexural strain at three points. The results presented in the fluorescence of x-rays showed a high-content of iron oxide on black quartzite that is why it was discarded the utilization of it in porcelain stoneware. All quartzite formulations had low water absorption achieved when synthesized at 1200°C, getting 0.1 to 0.36% without having gone through the atomization process. At the tests of flexural strain, all the quartzite had in acceptance limits, according to the European norm EN 100, overcoming 27 MPA at 1200°C

  8. Determining student teachers' perceptions on using technology via Likert scale, visual association test and metaphors: A mixed study

    Mevhibe Kobak

    2013-04-01

    Full Text Available The aim of this study is to determine senior student teachers’ perceptions on using technology by approaching various points of view. In this study, researchers collected data through Technology Perceptions Scale, Visual Association Activity and Technology Metaphors. The participants of the study were 104 senior student teachers who were enrolled in Balıkesir University Necatibey Faculty of Education. In this descriptive study, researchers interpreted qualitative data in conjunction with quantitative data. Based on the data obtained, even though student teachers’ perceptions on using technology were found positive in the light of Likert scale, there was no significant relation in terms of gender and enrolled undergraduate program. According to the results of visual association test, student teachers ranked smartboard, Internet and computer in the first three, and portable media player, mobile phone and video/camera in the last three. Besides, researchers analyzed and classified student teachers’ metaphors about technology under 9 categories: 1developing-changing technology, 2rapidly progressing technology, 3 limitless-endless technology, 4beneficial technology, 5harmful technology, 6both beneficial and harmful technology, 7indispensible technology, 8technology as a necessity, 9 all-inclusive technology. At the end of the study, those nine categories which were acquired using the content analysis technique are presented in a table which shows the interaction between categories in a holistic view.

  9. Field tests applying multi-agent technology for distributed control. Virtual power plants and wind energy

    Schaeffer, G.J.; Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K. [Energy in the Built Environment and Networks, Petten (Netherlands)

    2007-01-15

    Multi-agent technology is state of the art ICT. It is not yet widely applied in power control systems. However, it has a large potential for bottom-up, distributed control of a network with large-scale renewable energy sources (RES) and distributed energy resources (DER) in future power systems. At least two major European R and D projects (MicroGrids and CRISP) have investigated its potential. Both grid-related as well as market-related applications have been studied. This paper will focus on two field tests, performed in the Netherlands, applying multi-agent control by means of the PowerMatcher concept. The first field test focuses on the application of multi-agent technology in a commercial setting, i.e. by reducing the need for balancing power in the case of intermittent energy sources, such as wind energy. In this case the flexibility is used of demand and supply of industrial and residential consumers and producers. Imbalance reduction rates of over 40% have been achieved applying the PowerMatcher, and with a proper portfolio even larger rates are expected. In the second field test the multi-agent technology is used in the design and implementation of a virtual power plant (VPP). This VPP digitally connects a number of micro-CHP units, installed in residential dwellings, into a cluster that is controlled to reduce the local peak demand of the common low-voltage grid segment the micro-CHP units are connected to. In this way the VPP supports the local distribution system operator (DSO) to defer reinforcements in the grid infrastructure (substations and cables)

  10. Field tests applying multi-agent technology for distributed control. Virtual power plants and wind energy

    Schaeffer, G.J.; Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K.

    2007-01-01

    Multi-agent technology is state of the art ICT. It is not yet widely applied in power control systems. However, it has a large potential for bottom-up, distributed control of a network with large-scale renewable energy sources (RES) and distributed energy resources (DER) in future power systems. At least two major European R and D projects (MicroGrids and CRISP) have investigated its potential. Both grid-related as well as market-related applications have been studied. This paper will focus on two field tests, performed in the Netherlands, applying multi-agent control by means of the PowerMatcher concept. The first field test focuses on the application of multi-agent technology in a commercial setting, i.e. by reducing the need for balancing power in the case of intermittent energy sources, such as wind energy. In this case the flexibility is used of demand and supply of industrial and residential consumers and producers. Imbalance reduction rates of over 40% have been achieved applying the PowerMatcher, and with a proper portfolio even larger rates are expected. In the second field test the multi-agent technology is used in the design and implementation of a virtual power plant (VPP). This VPP digitally connects a number of micro-CHP units, installed in residential dwellings, into a cluster that is controlled to reduce the local peak demand of the common low-voltage grid segment the micro-CHP units are connected to. In this way the VPP supports the local distribution system operator (DSO) to defer reinforcements in the grid infrastructure (substations and cables)

  11. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  12. Test-bed Assessment of Communication Technologies for a Power-Balancing Controller

    Findrik, Mislav; Pedersen, Rasmus; Hasenleithner, Eduard

    2016-01-01

    and control. In this paper, we present a Smart Grid test-bed that integrates various communication technologies and deploys a power balancing controller for LV grids. Control performance of the introduced power balancing controller is subsequently investigated and its robustness to communication network cross......Due to growing need for sustainable energy, increasing number of different renewable energy resources are being connected into distribution grids. In order to efficiently manage a decentralized power generation units, the smart grid will rely on communication networks for information exchange...

  13. High technology at 'General Turbo', DH 12/13 balance-over speed testing stand

    Nuta, Florian Nicolae; Vasiliu, Dinu; Mauna, Traian

    2005-01-01

    'General Turbo' activity started in 1970 including building the balancing and over speed stand. DH 12/13 is the latest up-to-date facility of this type, the best one of the five in Europe, and was commissioned in 2004. The facility was especially built to be used for Romanian Nuclear Power Plant rotor testing and also for thermal very big rotors. The paper underlines the main attributes and the components of the facility DH 12/13 based on the Schenck technology. (authors)

  14. Description and Operational Experiences of the Engineering Test Facility - Helium Technology (ETF-HT)

    Zhang Zuoyi; Yang Mingde; Bo Hanliang; Duan Riqqiang; Zhu Hongye

    2014-01-01

    This paper presents the configuration of the Engineering Test Facility - Helium Technology (ETF-HT) and the information of its key components and subsystems, which is located in the Changping campus of Tsinghua University. The ETF-HT facility began to be constructed in Jan. 2009. The main objective of the facility is to test and verify the thermo-hydraulic performance of one full-sized modular unit of HTR-PM helically coiled SG assembly. In the ETF-HT facility, electricity energy is used to heat the loop helium, centrifugal blower is used to circulate the helium medium, and the heat sink is one would-tested SG module. Up to now, except for the tested SG module, preheater and hot gas duct under way of construction, the other components has been installed in situ. Via the temporary connection of the installed components, the preliminary operation of the loop has been carried out to test its performances as can be done, which include the loop leak tightness, blower pneumatic performance and electrical heater at partial thermal load. (author)

  15. Task 4 supporting technology. Densification requirements definition and test objectives. Propellant densification requirements definition

    Lak, Tibor; Weeks, D. P.

    1995-01-01

    The primary challenge of the X-33 CAN is to build and test a prototype LO2 and LH2 densification ground support equipment (GSE) unit, and perform tank thermodynamic testing within the 15 month phase 1 period. The LO2 and LH2 propellant densification system will be scaled for the IPTD LO2 and LH2 tank configurations. The IPTD tanks were selected for the propellant technology demonstration because of the potential benefits to the phase 1 plan: tanks will be built in time to support thermodynamic testing; minimum cost; minimum schedule risk; future testing at MSFC will build on phase 1 data base; and densification system will be available to support X-33 and RLV engine test at IPTD. The objective of the task 1 effort is to define the preliminary requirements of the propellant densification GSE and tank recirculation system. The key densification system design parameters to be established in Task 1 are: recirculation flow rate; heat exchanger inlet temperature; heat exchanger outlet temperature; maximum heat rejection rate; vent flow rate (GN2 and GH2); densification time; and tank pressure level.

  16. Low-cost, smartphone based frequency doubling technology visual field testing using virtual reality (Conference Presentation)

    Alawa, Karam A.; Sayed, Mohamed; Arboleda, Alejandro; Durkee, Heather A.; Aguilar, Mariela C.; Lee, Richard K.

    2017-02-01

    Glaucoma is the leading cause of irreversible blindness worldwide. Due to its wide prevalence, effective screening tools are necessary. The purpose of this project is to design and evaluate a system that enables portable, cost effective, smartphone based visual field screening based on frequency doubling technology. The system is comprised of an Android smartphone to display frequency doubling stimuli and handle processing, a Bluetooth remote for user input, and a virtual reality headset to simulate the exam. The LG Nexus 5 smartphone and BoboVR Z3 virtual reality headset were used for their screen size and lens configuration, respectively. The system is capable of running the C-20, N-30, 24-2, and 30-2 testing patterns. Unlike the existing system, the smartphone FDT tests both eyes concurrently by showing the same background to both eyes but only displaying the stimulus to one eye at a time. Both the Humphrey Zeiss FDT and the smartphone FDT were tested on five subjects without a history of ocular disease with the C-20 testing pattern. The smartphone FDT successfully produced frequency doubling stimuli at the correct spatial and temporal frequency. Subjects could not tell which eye was being tested. All five subjects preferred the smartphone FDT to the Humphrey Zeiss FDT due to comfort and ease of use. The smartphone FDT is a low-cost, portable visual field screening device that can be used as a screening tool for glaucoma.

  17. Cargo container inspection test program at ARPA's Nonintrusive Inspection Technology Testbed

    Volberding, Roy W.; Khan, Siraj M.

    1994-10-01

    An x-ray-based cargo inspection system test program is being conducted at the Advanced Research Project Agency (ARPA)-sponsored Nonintrusive Inspection Technology Testbed (NITT) located in the Port of Tacoma, Washington. The test program seeks to determine the performance that can be expected from a dual, high-energy x-ray cargo inspection system when inspecting ISO cargo containers. This paper describes an intensive, three-month, system test involving two independent test groups, one representing the criminal smuggling element and the other representing the law enforcement community. The first group, the `Red Team', prepares ISO containers for inspection at an off-site facility. An algorithm randomly selects and indicates the positions and preparation of cargoes within a container. The prepared container is dispatched to the NITT for inspection by the `Blue Team'. After in-gate processing, it is queued for examination. The Blue Team inspects the container and decides whether or not to pass the container. The shipment undergoes out-gate processing and returns to the Red Team. The results of the inspection are recorded for subsequent analysis. The test process, including its governing protocol, the cargoes, container preparation, the examination and results available at the time of submission are presented.

  18. Development and test of a Nb3Sn racetrack magnet using the react and wind technology

    Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.; Carcagno, R.; Chichili, D.; Ewald, K.; Feher, S.; Imbasciati, L.; Kashikhin, V. V.; Limon, P.; Novitski, I.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; Yadav, S.; Zlobin, A.V.

    2002-01-01

    Fermilab is involved in the development of a high field accelerator magnet for future hadron colliders using Nb 3 Sn superconductor and the react-and-wind technology. The magnet design is based on single-layer common coils wound simultaneously into a laminated mechanical structure and impregnated with epoxy. In order to develop and optimize the fabrication techniques and to study the conductor performance, a magnet with flat racetrack type coils in a common coil configuration was assembled and tested. The coils were wound in the mechanical structure and in situ impregnated following a procedure that will be used in the single-layer common coil. The magnetic and mechanical design of the racetrack magnet, the fabrication techniques and the test results are presented and discussed in this paper

  19. Aerodynamic Drag Reduction Technologies Testing of Heavy-Duty Vocational Vehicles and a Dry Van Trailer

    Ragatz, Adam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thornton, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    This study focused on two accepted methods for quantifying the benefit of aerodynamic improvement technologies on vocational vehicles: the coastdown technique, and on-road constant speed fuel economy measurements. Both techniques have their advantages. Coastdown tests are conducted over a wide range in speed and allow the rolling resistance and aerodynamic components of road load force to be separated. This in turn allows for the change in road load and fuel economy to be estimated at any speed, as well as over transient cycles. The on-road fuel economy measurements only supply one lumped result, applicable at the specific test speed, but are a direct measurement of fuel usage and are therefore used in this study as a check on the observed coastdown results. Resulting coefficients were then used to populate a vehicle model and simulate expected annual fuel savings over real-world vocational drive cycles.

  20. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  1. Current status of technology development for fabrication of Indian Test Blanket Module (TBM) of ITER

    Jayakumar, T., E-mail: tjk@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Rajendra Kumar, E. [TBM Division, Institute for Plasma Research (IPR), Bhat, Gandhinagar 382428 (India)

    2014-10-15

    Highlights: • Status of technology developments for Indian TBM to be installed in ITER is presented. • Procedure development for EB, laser and laser-hybrid welding of RAFM steel presented. • Filler wires for RAFM steel for TIG, NG-TIG and laser-hybrid welding have been developed. • Feasibility of production of channel plate by HIP technology has been demonstrated. - Abstract: Ever since India decided to install its Lead-Lithium Ceramic Breeder (LLCB) TBM in ITER, various technologies for fabrication of Indian TBM are being pursued by IPR and IGCAR, in collaboration with various research laboratories in India. Welding consumables for joining India specific RAFM steels (IN-RAFMS), procedures for hot isostatic pressing, electron beam welding, laser and laser-hybrid welding have been developed. Considering the complex nature and limited access available for inspection, innovative inspection procedures that involved use of phased array ultrasonic and C-scan imaging are also being pursued. This paper presents the current status of these developments and provides a roadmap for the future activities planned in realizing Indian TBM for testing in ITER.

  2. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  3. Development of oxygen sensing technology in an irradiated fuel rod. Characteristic test of oxygen sensor

    Saito, Junichi; Hoshiya, Taiji; Sakurai, Fumio; Sakai, Haruyuki

    1996-03-01

    At the Department of JMTR (Japan Materials Test Reactor), the re-instrumentation technologies to a high burnup fuel rod irradiated in an LWR have been developed to study irradiation behavior of the fuel during power transient. It has been progressed developing a chemical sensor as one of the re-instrumentation technologies. This report summarizes the results of characteristic tests of an oxygen sensor made of Yttria Stabilized Zirconia (YSZ) as a solid electrolyte. Several kinds of experiments were carried out to evaluate the electromotive force (emf) performance, stability and lifetime of the oxygen sensor with Ni/NiO, Cr/Cr 2 O 3 and Fe/FeO, respectively as a reference electrode. From the experimental data, it is suggested that the reference electrode of Ni/NiO reveals the most appropriate characteristic of the sensor to measure the partial oxygen pressure in a fuel rod. It is the final goal of this development to clarify the change of oxygen chemical potential in a fuel rod during power transient. (author)

  4. FIRE, A Test Bed for ARIES-RS/AT Advanced Physics and Plasma Technology

    Meade, Dale M.

    2004-01-01

    The overall vision for FIRE [Fusion Ignition Research Experiment] is to develop and test the fusion plasma physics and plasma technologies needed to realize capabilities of the ARIES-RS/AT power plant designs. The mission of FIRE is to attain, explore, understand and optimize a fusion dominated plasma which would be satisfied by producing D-T [deuterium-tritium] fusion plasmas with nominal fusion gains ∼10, self-driven currents of ∼80%, fusion power ∼150-300 MW, and pulse lengths up to 40 s. Achieving these goals will require the deployment of several key fusion technologies under conditions approaching those of ARIES-RS/AT. The FIRE plasma configuration with strong plasma shaping, a double null pumped divertor and all metal plasma-facing components is a 40% scale model of the ARIES-RS/AT plasma configuration. ''Steady-state'' advanced tokamak modes in FIRE with high beta, high bootstrap fraction, and 100% noninductive current drive are suitable for testing the physics of the ARIES-RS/A T operating modes. The development of techniques to handle power plant relevant exhaust power while maintaining low tritium inventory is a major objective for a burning plasma experiment. The FIRE high-confinement modes and AT-modes result in fusion power densities from 3-10 MWm -3 and neutron wall loading from 2-4 MWm -2 which are at the levels expected from the ARIES-RS/AT design studies

  5. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

    2004-12-01

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

  6. A review on the welding technology for the sealing of irradiation test fuel element

    Lee, J. W.; Kang, Y. H.; Kim, B. G.; Joo, K. N.; Oh, J. M.; Park, S. J.; Shin, Y. T

    2000-02-01

    For the irradiation test of nuclear fuel in a research reactor, the fuel manufacturing technology should be developed in advance. Highly radioactive fission products are produced and can be released from the fuel materials during irradiation. Therefore, The sealing of the test is one of the most important procedure among the test fuel manufacturing processes, considering its impacts on the safety of a reactor operation.many welding techniques such as TIG, EBW, LBW, upset butt welding and flash welding are applied in sealing the end of fuel elements. These welding techniques are adopted in conjunction with the weld material, weldability, weld joint design and cost effectiveness. For fuel irradiation test, the centerline temperature of fuel pellets is one of the important item to be measured. For this, a thermocouple is installed into the center of the fuel pellet. The sealing of the penetration hole of the thermocouple sheath should be conducted and the hole should be perfectly sealed using the dissimilar metal joining technique. For this purpose, the dissimilar metal welding between zircaloy-4 and Inconel or stainless steel is needed to be developed. This report describes the techniques sealing the end cap and the penetration of a thermocouple sheath by welding. (author)

  7. Test of piezo-ceramic motor technology in ITER relevant high magnetic fields

    Monti, Chiara, E-mail: chiara.monti@enea.it [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Besi Vetrella, Ugo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Viola, Rosario [Associazione EURATOM-ENEA sulla Fusione, via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    In the framework of a Fusion for Energy (F4E) grant, a test campaign started in 2012 in order to assess the performance of the in-vessel viewing system (IVVS) probe concept and to verify its compatibility when exposed to ITER typical working conditions. ENEA laboratories went through with several tests simulating high magnetic fields, high temperature, high vacuum, gamma radiation and neutron radiation. A customized motor has been adopted to study the performances of ultrasonic piezo motors technology in high magnetic field conditions. This paper reports on the testing activity performed on the motor in a multi Tesla magnetic field. The job was carried out in a test facility of ENEA laboratories able to achieve 14 T. A maximum field of 10 T, fully compliant with ITER requirements (8 T), was applied. A specific mechanical assembly has been designed and manufactured to hold the motor in the region with high homogeneity of the field. Results obtained so far indicate that the motor is compatible with high magnetic fields, and are presented in the paper.

  8. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  9. Empirical Testing of a Theoretical Extension of the Technology Acceptance Model: An Exploratory Study of Educational Wikis

    Liu, Xun

    2010-01-01

    This study extended the technology acceptance model and empirically tested the new model with wikis, a new type of educational technology. Based on social cognitive theory and the theory of planned behavior, three new variables, wiki self-efficacy, online posting anxiety, and perceived behavioral control, were added to the original technology…

  10. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development

    Cheng, E.T.; Cerbone, R.J.; Sviatoslavsky, I.N.; Galambos, L.D.; Peng, Y.-K.M.

    2000-01-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device can be complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation three, can produce a neutron wall loading from 0.5 to 5 MW m -2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW year m -2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept

  11. Development of Micro-welding Technology of Cladding Tube with Temperature Sensor for Nuclear Fuel Irradiation Test

    Kim, Soo Sung; Lee, C. Y.; Kim, W. K.; Lee, J. W.; Lee, D. Y

    2006-01-15

    Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-laser welding is one of the key technology to be developed to fabricate precise products of fuel irradiation test. We have to secure laser welding technology to perform various instrumentations for fuel irradiation test. The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15mm. The soundness of weld area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various applications in the industry.

  12. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  13. Test results from the GA Technologies engineering-scale off-gas treatment system

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1985-01-01

    Test results are available from the GA Technologies (GA) off-gas treatment facilities using gas streams from both the graphite fuel element burner system and from the spent fuel dissolver. The off-gas system is part of a pilot plant for development of processes for treating spent fuel from high temperature gas-cooled reactors (HTGRs). One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO 2 , CO, O 2 , and SO 2 . The BOG system employs components designed to remove these constituents. Test results are reported for the iodine and SO 2 adsorbers and the CO/HT oxidizer. Integrated testing of major BOG system components confirmed the performance of units evaluated in individual tests. Design decontamination and conversion factors were maintained for up to 72 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO 3 -impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  14. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  15. Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 C

    Spry, David; Neudeck, Phil; Chen, Liangyu; Chang, Carl; Lukco, Dorothy; Beheim, Glenn M

    2016-01-01

    We have reported SiC integrated circuits (IC's) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 C [1, 2]. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 C [3]. However, this thermal ramp was not ended until a peak temperature of 880 C (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology. Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 C. In one test, the temperature was ramped and then held at 727 C, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 C before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 C (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 C.

  16. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    Benson, Jeff B; Marshall, Frances M [Idaho National Laboratory, Idaho Falls, ID (United States); Allen, Todd R [Univ. of Wisconsin, Madison, WI (United States)

    2012-03-15

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  17. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  18. JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy

    Michael Jones; Brandon Pavlish; Stephen Sollom; John Kay

    2007-06-30

    An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. The Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling

  19. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  20. RadBall™ Technology Testing and MCNP Modeling of the Tungsten Collimator

    Farfán, Eduardo B.; Foley, Trevor Q.; Coleman, J. Rusty; Jannik, G. Timothy; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.

    2010-01-01

    The United Kingdom’s National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall™, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall™ consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall™ has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall™ testing and modeling accomplished at SRNL. PMID:21617740

  1. The development of maple technology for materials testing, isotope production, and neutron-beam applications

    Lidstone, R.F.; Gillespie, G.E.; Lee, A.G.; Bishop, W.E.

    1996-01-01

    AECL has been developing MAPLE technology to meet Canadian and international requirements for high-performance research reactors. MAPLE refers to a family of open-tank-in-pool reactors that employ compact H 2 O-cooled cores within D 2 O vessels to efficiently furnish neutrons to various types of irradiation facilities. The initial focus was on a 10-MW t Canadian facility for radioisotope production, the HANARO multipurpose-reactor project, and an associated R and D program. Recently, AECL began to develop the concept for a new Canadian Irradiation Research Facility (IRF) which will support the continued evolution of CANDU (CANadian Deuterium Uranium) technology and generate neutrons for basic and applied materials science. Additionally, AECL is currently developing a standardized MAPLE research-centre design with integrated neutron-application facilities; various reactor-core options have been optimized for different combinations of utilization: a 19-site core for neutron-beam applications and ancillary isotope production, a 31-site core for multipurpose materials testing and neutron-beam applications, and twin 18-site cores for high-flux neutron-beam applications. (author)

  2. Testing Starshade Manufacturing and Deployment Through NASA's Technology Development for Exoplanet Missions Program

    Kasdin, N. J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Lo, A.; Macintosh, B.

    2014-01-01

    An external occulter is a satellite employing a large screen, or starshade, that flies in formation with a spaceborne telescope to provide the starlight suppression needed for detecting and characterizing exoplanets. Among the advantages of using an occulter are the broadband allowed for characterization and the removal of light before entering the observatory, greatly relaxing the requirements on the telescope and instrument. In this poster we report on the results of our two Technology Development for Exoplanet Missions (TDEM) studies. In the first we examined the manufacturability and metrology of starshade petals, successfully constructing a full size petal from flight like materials and showing through precise edge shape measurements that an occulter made with petals consistent with the measured accuracy would achieve close to 10^-10 contrast. Our second TDEM tested the deployment precision of a roughly half-scale starshade. We demonstrated the deployment of an existing deployable truss outfitted with four sub-scale petals and a custom designed central hub. We showed that the system can be deployed multiple times with a repeatable positioning accuracy of the petals better than the requirement of 1.0 mm. The combined results of these two TDEM projects has significantly advanced the readiness level of occulter technology and moved the community closer to a realizable mission.

  3. Description of a reference design tokamak for the Technology Test Assembly

    Haubenreich, P.N.

    1975-10-01

    Early conceptual studies for the Technology Test Assembly involved a reference conceptual design for a tokamak with superconducting toroidal field magnets. The TF magnet conductors are NbTi filaments in a copper matrix. The 24 TF coils and associated structure operate at 4--5 K and a maximum field (at the windings) of 75 kG. Principal dimensions of the machine are: TF coil bore, 1.8 x 2.4 m (oval); major radius, 2.25 m; plasma minor radius, 0.6 m. A preliminary but detailed cost estimate for the reference machine was prepared to serve as an anchor point for cost scaling for larger machines in subsequent TTA parameter studies

  4. Radiation hardness tests with a demonstrator preamplifier circuit manufactured in silicon on sapphire (SOS) VLSI technology

    Bingefors, N.; Ekeloef, T.; Eriksson, C.; Paulsson, M.; Moerk, G.; Sjoelund, A.

    1992-01-01

    Samples of the preamplifier circuit, as well as of separate n and p channel transistors of the type contained in the circuit, were irradiated with gammas from a 60 Co source up to an integrated dose of 3 Mrad (30 kGy). The VLSI manufacturing technology used is the SOS4 process of ABB Hafo. A first analysis of the tests shows that the performance of the amplifier remains practically unaffected by the radiation for total doses up to 1 Mrad. At higher doses up to 3 Mrad the circuit amplification factor decreases by a factor between 4 and 5 whereas the output noise level remains unchanged. It is argued that it may be possible to reduce the decrease in amplification factor in future by optimizing the amplifier circuit design further. (orig.)

  5. Testing communication strategies to convey genomic concepts using virtual reality technology.

    Kaphingst, Kimberly A; Persky, Susan; McCall, Cade; Lachance, Christina; Beall, Andrew C; Blascovich, Jim

    2009-06-01

    Health professionals need to be able to communicate information about genomic susceptibility in understandable and usable ways, but substantial challenges are involved. We developed four learning modules that varied along two factors: (1) learning mode (active learning vs. didactic learning) and (2) metaphor (risk elevator vs. bridge) and tested them using a 2 x 2 between-subjects, repeated measures design. The study used an innovative virtual reality technology experimental platform; four virtual worlds were designed to convey the concept that genetic and behavioral factors interact to affect common disease risk. The primary outcome was comprehension (recall, transfer). Study participants were 42 undergraduates aged 19-23. The results indicated that the elevator metaphor better supported learning of the concept than the bridge metaphor. Mean transfer score was significantly higher for the elevator metaphor (p health information. The findings also indicated that less complex metaphors might convey abstract concepts more effectively.

  6. Microfluidic very large-scale integration for biochips: Technology, testing and fault-tolerant design

    Araci, Ismail Emre; Pop, Paul; Chakrabarty, Krishnendu

    2015-01-01

    of this paper is on continuous-flow biochips, where the basic building block is a microvalve. By combining these microvalves, more complex units such as mixers, switches, multiplexers can be built, hence the name of the technology, “microfluidic Very Large-Scale Integration” (mVLSI). A roadblock......Microfluidic biochips are replacing the conventional biochemical analyzers by integrating all the necessary functions for biochemical analysis using microfluidics. Biochips are used in many application areas, such as, in vitro diagnostics, drug discovery, biotech and ecology. The focus...... presents the state-of-the-art in the mVLSI platforms and emerging research challenges in the area of continuous-flow microfluidics, focusing on testing techniques and fault-tolerant design....

  7. Balancing animal welfare and assisted reproduction: ethics of preclinical animal research for testing new reproductive technologies.

    Jans, Verna; Dondorp, Wybo; Goossens, Ellen; Mertes, Heidi; Pennings, Guido; de Wert, Guido

    2018-02-07

    In the field of medically assisted reproduction (MAR), there is a growing emphasis on the importance of introducing new assisted reproductive technologies (ARTs) only after thorough preclinical safety research, including the use of animal models. At the same time, there is international support for the three R's (replace, reduce, refine), and the European Union even aims at the full replacement of animals for research. The apparent tension between these two trends underlines the urgency of an explicit justification of the use of animals for the development and preclinical testing of new ARTs. Considering that the use of animals remains necessary for specific forms of ART research and taking account of different views on the moral importance of helping people to have a genetically related child, we argue that, in principle, the importance of safety research as part of responsible innovation outweighs the limited infringement of animal wellbeing involved in ART research.

  8. Status of international cooperation in nuclear technology on testing/research reactors between JAEA and INP-NNC

    Kawamura, Hiroshi; Tsuchiya, Kunihiko; Takemoto, Noriyuki; Kimura, Akihiro; Tanimoto, Masataka; Izumo, Hironobu; Chakrov, Petr; Gizatulin, Shamil; Chakrova, Yelena; Ludmila, Chkushuina; Asset, Shaimerdenov; Nataliya, Romanova

    2012-02-01

    Based on the implementing arrangement between National Nuclear Center of the Republic of Kazakhstan (NNC) and the Japan Atomic Energy Agency (JAEA) for 'Nuclear Technology on Testing/Research Reactors' in cooperation in Research and Development in Nuclear Energy and Technology, four specific topics of cooperation (STC) have been carried out from June, 2009. Four STCs are as follows; (1) STC No.II-1 : International Standard of Instrumentation. (2) STC No.II-2 : Irradiation Technology of RI Production. (3) STC No.II-3 : Lifetime Expansion of Beryllium Reflector. (4) STC No.II-4 : Irradiation Technology for NTD-Si. The information exchange, personal exchange and cooperation experiments are carried out under these STCs. The status in the field of nuclear technology on testing/research reactors in the implementing arrangement is summarized, and future plans of these specific topics of cooperation are described in this report. (author)

  9. Laboratory testing of glasses for Lockheed Idaho Technology Co. - fiscal year 1994 report

    Ellison, A.J.G.; Wolf, S.F.; Bates, J.K.

    1995-04-01

    The purpose of this project is to measure the intermediate and long-term durability of vitrified waste forms developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes at Idaho National Engineering Laboratory. Two vitreous materials referred to as Formula 127 and Formula 532, have been subjected to accelerated durability tests to measure their long-term performance. Formula 127 consists of a glass matrix containing 5-10 vol % fluorite (CaF 2 ) as a primary crystalline phase. It shows low releases of glass components to solution in 7-, 28-, 70-, and 140-day Product Consistency Tests performed at 2000 m -1 at 90 degrees C. In these tests, release rates for glass-forming components were similar to those found for durable waste glasses. The Ca and F released by the glass as it corrodes appear to reprecipitate as fluorite. Formula 532 consists of a glass matrix containing 5-10 vol % of an Al-Si-rich primary crystalline phase. The release rates for components other than aluminum are relatively low, but aluminum is released at a much higher rate than is typical for durable waste glasses. Secondary crystalline phases form relatively early during the corrosion of Formula 532 and appear to consist almost entirely of the Al-Si-rich primary phase (or a crystal with the same Al:Si ratio) and a sodium-bearing zeolite. Future test results are expected to highlight the relative importance of primary and secondary crystalline phases to the rate of corrosion of Formula 127 and Formula 532

  10. Final technology report for D-Area oil seepage basin bioventing optimization test, environmental restoration support

    Radway, J.C.; Lombard, K.H.; Hazen, T.C.

    1997-01-01

    One method proposed for the cleanup of the D-Area Oil Seepage Basin was in situ bioremediation (bioventing), involving the introduction of air and gaseous nutrients to stimulate contaminant degradation by naturally occurring microorganisms. To test the feasibility of this approach, a bioventing system was installed at the site for use in optimization testing by the Environmental Biotechnology Section of the Savannah River Technology Center. During the interim action, two horizontal wells for a bioventing remediation system were installed eight feet below average basin grade. Nine piezometers were also installed. In September of 1996, a generator, regenerative blower, gas cylinder station, and associated piping and nutrient injection equipment were installed at the site and testing was begun. After baseline characterization of microbial activity and contaminant degradation at the site was completed, four injection campaigns were carried out. These consisted of (1) air alone, (2) air plus triethylphosphate (TEP), (3) air plus nitrous oxide, and (4) air plus methane. This report describes results of these tests, together with conclusions and recommendations for further remediation of the site. Natural biodegradation rates are high. Oxygen, carbon dioxide, and methane levels in soil gas indicate substantial levels of baseline microbial activity. Oxygen is used by indigenous microbes for biodegradation of organics via respiration and hence is depleted in the soil gas and water from areas with high contamination. Carbon dioxide is elevated in contaminated areas. High concentrations of methane, which is produced by microbes via fermentation once the oxygen has been depleted, are found at the most contaminated areas of this site. Groundwater measurements also indicated that substantial levels of natural contaminant biodegradation occurred prior to air injection

  11. A Technology Platform to Test the Efficacy of Purification of Alginate

    Genaro A. Paredes-Juarez

    2014-03-01

    Full Text Available Alginates are widely used in tissue engineering technologies, e.g., in cell encapsulation, in drug delivery and various immobilization procedures. The success rates of these studies are highly variable due to different degrees of tissue response. A cause for this variation in success is, among other factors, its content of inflammatory components. There is an urgent need for a technology to test the inflammatory capacity of alginates. Recently, it has been shown that pathogen-associated molecular patterns (PAMPs in alginate are potent immunostimulatories. In this article, we present the design and evaluation of a technology platform to assess (i the immunostimulatory capacity of alginate or its contaminants, (ii where in the purification process PAMPs are removed, and (iii which Toll-like receptors (TLRs and ligands are involved. A THP1 cell-line expressing pattern recognition receptors (PRRs and the co-signaling molecules CD14 and MD2 was used to assess immune activation of alginates during the different steps of purification of alginate. To determine if this activation was mediated by TLRs, a THP1-defMyD88 cell-line was applied. This cell-line possesses a non-functional MyD88 coupling protein, necessary for activating NF-κB via TLRs. To identify the specific TLRs being activated by the PAMPs, we use different human embryonic kidney (HEK cell-line that expresses only one specific TLR. Finally, specific enzyme-linked immunosorbent assays (ELISAs were applied to identify the specific PAMP. By applying this three-step procedure, we can screen alginate in a manner, which is both labor and cost efficient. The efficacy of the platform was evaluated with an alginate that did not pass our quality control. We demonstrate that this alginate was immunostimulatory, even after purification due to reintroduction of the TLR5 activating flagellin. In addition, we tested two commercially available purified alginates. Our experiments show that these commercial

  12. U.S. Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    Berry, J.B.

    1993-01-01

    Both chemically hazardous and radioactive species contaminate mixed waste. Historically, technology has been developed to treat either hazardous or radioactive waste. Technology specifically designed to produce a low-risk final waste form for mixed low-level waste has not been developed, demonstrated, or tested. Site-specific solutions to management of mixed waste have been initiated; however, site-specific programs result in duplication of technology development effort between various sites. There is a clear need for technology designed to meet the unique requirements for mixed-waste processing and a system-wide integrated strategy for developing technology and managing mixed waste. This paper discusses the US Department of Energy (DOE) approach to addressing these unique requirements through a national technology development effort

  13. High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979

    1980-01-01

    Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

  14. Nuclear fuels technologies Fiscal Year 1996 research and development test results

    Beard, C.A.; Blair, H.T.; Buksa, J.J.; Butt, D.P.; Chidester, K.; Eaton, S.L.; Farish, T.J.; Hanrahan, R.J.; Ramsey, K.B.

    1996-11-01

    During fiscal year 1996, the Department of Energy's Office of Fissile Materials Disposition (OFMD) funded Los Alamos National Laboratory (LANL) to investigate issues associated with the fabrication of plutonium from dismantled weapons into mixed-oxide (MOX) nuclear fuel for disposition in nuclear power reactors. These issues can be divided into two main categories: issues associated with the fact that the plutonium from dismantled weapons contains gallium, and issues associated with the unique characteristics of the PuO[sub 2] produced by the dry conversion process that OFMD is proposing to convert the weapons material. Initial descriptions of the experimental work performed in fiscal year 1996 to address these issues can be found in Nuclear Fuels Technologies Fiscal Year 1996 Research and Development Test Matrices. However, in some instances the change in programmatic emphasis towards the Parallex program either altered the manner in which some of these experiments were performed (i.e., the work was done as part of the Parallex fabrication development and not as individual separate-effects tests as originally envisioned) or delayed the experiments into Fiscal Year 1997. This report reviews the experiments that were conducted and presents the results

  15. Fusion technology development: role of fusion facility upgrades and fission test reactors

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  16. Technology for cleaning of Pb-Bi adhering to steel (1). Basic tests

    Saito, Shigeru; Sasa, Toshinobu; Umeno, Makoto; Kurata, Yuji; Kikuchi, Kenji; Futakawa, Masatoshi

    2004-12-01

    The accelerator driven system (ADS) is proposed to transmute minor actinides (MA) in high-level waste from spent fuels of nuclear power reactors. Liquid Pb-Bi alloy is a candidate material for spallation target and coolant of ADS. Pb-Bi cleaning technology is required to reduce radiation exposure during maintenance service and to decontaminate replaced components. In this study, three cleaning methods were tested; silicon oil cleaning at 170degC, mixture of acetic acid and nitric acid cleaning. Specimens were prepared by immersion in melted Pb-Bi. After silicon oil tests, most of Pb-Bi remained on the surface of the specimens. It was found that blushing was needed to remove Pb-Bi effectively. On the other hands, Pb-Bi was easily dissolved and almost removed in the mixed acid and nitric acid. Silicon oil cleaning did not affect on base metals. The surface of base metals was slightly blacked after mixed acid cleaning. F82H base metals were corroded by nitric acid. (author)

  17. Nuclear fuels technologies fiscal year 1996 research and research development test results

    Beard, C.A.; Blair, H.T.; Buksa, J.J.; Butt, D.P.

    1996-01-01

    During fiscal year 1996, the Department of Energy's Office of Fissile Materials Disposition (OFMD) funded Los Alamos National Laboratory (LANL) to investigate issues associated with the fabrication of plutonium from dismantled weapons into mixed-oxide (MOX) nuclear fuel for disposition in nuclear power reactors. These issues can be divided into two main categories: issues associated with the fact that the plutonium from dismantled weapons contains gallium, and issues associated with the unique characteristics of the PuO 2 produced by the dry conversion process that OFMD is proposing to convert the weapons material. Initial descriptions of the experimental work performed in fiscal year 1996 to address these issues can be found in Nuclear Fuels Technologies Fiscal Year 1996 Research and Development Test Matrices'. However, in some instances the change in programmatic emphasis towards the Parallex program either altered the manner in which some of these experiments were performed (i.e., the work was done as part of the Parallex fabrication development and not as individual separate-effects tests as originally envisioned) or delayed the experiments into Fiscal Year 1997. This report reviews the experiments that were conducted and presents the results. 7 figs., 14 tabs

  18. Development of operation and maintenance technology for HTGRs by using HTTR (High Temperature engineering Test Reactor)

    Shimizu, Atsushi, E-mail: shimizu.atsushi35@jaea.go.jp [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Kawamoto, Taiki [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Tochio, Daisuke [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Saito, Kenji; Sawahata, Hiroaki; Honma, Fumitaka; Furusawa, Takayuki; Saikusa, Akio [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Takada, Shoji [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Shinozaki, Masayuki [HTTR Operation Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan)

    2014-05-01

    To establish the technical basis of HTGR (High Temperature Gas cooled Reactor), the long term high temperature operation using HTTR was carried out in the high temperature test operation mode during 50-day since January till March, 2010. It is necessary to establish the technical basis of operation and maintenance by demonstrating the stability of plant during long-term operation and the reliability of components and facilities special to HTGRs, in order to attain the stable supply of the high temperature heat to the planned heat utilization system of HTTR. Test data obtained in the operation were evaluated for the technical issues which were extracted before the operation. As the results, it was confirmed that the temperatures and flow rate of primary and secondary coolant were well controlled within sufficiently small deviation against the disturbance by the atmospheric temperature variation in daily. Stability and reliability of the components and facility special to HTGRs was demonstrated through the long term high temperature operation by evaluating the heat transfer performance of high temperature components, the stability performance of pressure control to compensate helium gas leak, the reliability of the dynamic components such as helium gas circulators, the performance of heat-up protection of radiation shielding. Through the long term high temperature operation of HTTR, the technical basis for the operation and maintenance technology of HTGRs was established.

  19. Fusion technology development: role of fusion facility upgrades and fission test reactors

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  20. Development of operation and maintenance technology for HTGRs by using HTTR (High Temperature engineering Test Reactor)

    Shimizu, Atsushi; Kawamoto, Taiki; Tochio, Daisuke; Saito, Kenji; Sawahata, Hiroaki; Honma, Fumitaka; Furusawa, Takayuki; Saikusa, Akio; Takada, Shoji; Shinozaki, Masayuki

    2014-01-01

    To establish the technical basis of HTGR (High Temperature Gas cooled Reactor), the long term high temperature operation using HTTR was carried out in the high temperature test operation mode during 50-day since January till March, 2010. It is necessary to establish the technical basis of operation and maintenance by demonstrating the stability of plant during long-term operation and the reliability of components and facilities special to HTGRs, in order to attain the stable supply of the high temperature heat to the planned heat utilization system of HTTR. Test data obtained in the operation were evaluated for the technical issues which were extracted before the operation. As the results, it was confirmed that the temperatures and flow rate of primary and secondary coolant were well controlled within sufficiently small deviation against the disturbance by the atmospheric temperature variation in daily. Stability and reliability of the components and facility special to HTGRs was demonstrated through the long term high temperature operation by evaluating the heat transfer performance of high temperature components, the stability performance of pressure control to compensate helium gas leak, the reliability of the dynamic components such as helium gas circulators, the performance of heat-up protection of radiation shielding. Through the long term high temperature operation of HTTR, the technical basis for the operation and maintenance technology of HTGRs was established

  1. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    No, Hee Cheon; Moon, Young Min; Lee, Dong Won; Lee, Sang Ik; Kim, Eung Soo; Yeom, Keum Soo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    The objective of the present research is to perform the separate effect tests and to assess the RELAP5/MOD3.2 code for the analysis of thermal-hydraulic behavior in the reactor coolant system and the improvement of the auditing technology of safety analysis. Three Separate Effect Tests (SETs) are the reflux condensation in the U-tube, the direct contact condensation in the hot-leg and the mixture level buildup in the pressurizer. The experimental data and the empirical correlations are obtained through SETs. On the ases of the three SET works, models in RELAP5 are modified and improved, which are compared with the data. The Korea Standard Nuclear Power Plant (KSNP) are assessed using the modified RELAP5. In the reflux condensation test, the data of heat transfer coefficients and flooding are obtained and the condensation models are modified using the non-iterative model, as results, modified code better predicts the data. In the direct contact condensation test, the data of heat transfer coefficients are obtained for the cocurrent and countercurrent flow between the mixture gas and the water in condition of horizontal stratified flow. Several condensation and friction models are modified, which well predict the present data. In the mixture level test, the data for the mixture level and the onset of water draining into the surge line are obtained. The standard RELAP5 over-predicts the mixture level and the void fraction in the pressurizer. Simple modification of model related to the pool void fraction is suggested. The KSNP is assessed using the standard and the modified RELAP5 resulting from the experimental and code works for the SETs. In case of the pressurizer manway opening with available secondary side of the steam generators, the modified code predicts that the collapsed level in the pressurizer is little accumulated. The presence and location of the opening and the secondary condition of the steam generators have an effect on the coolant inventory. The

  2. The European ITER test blanket modules: Progress in development of fabrication technologies towards standardization

    Zmitko, Milan, E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Thomas, Noël [ATMOSTAT, F-94815 Villejuif (France); LiPuma, Antonella; Forest, Laurent [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Cogneau, Laurence [CEA-DRT, 38000 Grenoble (France); Rey, Jörg; Neuberger, Heiko [Karlsruhe Institute of Technology (KIT), Postfach 3640, Karlsruhe (Germany); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain)

    2016-11-01

    Highlights: • Significant progress on the development of welding procedures for European TBM achieved. • Fabrication processes feasibility based on diffusion and fusion welding demonstrated. • An optimized welding scenario/sequence for TBM box assembly identified. • Future qualification of pF/WPS proposed through realization of a number of QMUs. - Abstract: The paper reviews progress achieved in development of fabrication technologies and procedures applied for manufacturing of the TBM sub-components, like, HCLL and HCPB cooling plates, HCLL/HCPB stiffening plates, and HCLL/HCPB first wall and side caps. The used technologies are based on fusion and diffusion welding techniques taking into account specificities of the EUROFER97 steel. Development of a standardized procedure complying with professional codes and standards (RCC-MRx), a preliminary fabrication/welding procedure specification (pF/WPS), is described based on fabrication and non-destructive and destructive characterization of feasibility mock-ups (FMU) aimed at assessing the suitability of a fabrication process for fulfilling the design and fabrication specifications. The main FMUs characterization results are reported (e.g. pressure resistance and helium leak tightness tests, mechanical properties and microstructure at the weld joints, geometrical characteristics of the sub-components and internal cooling channels) and the key pF/WPS steps and parameters are outlined. Also, fabrication procedures for the TBM box assembly are presently under development for the establishment of an optimized assembly sequence/scenario and development of standardized welding procedure specifications. In conclusions, further steps towards the pF/WPS qualification are briefly discussed.

  3. The advanced test reactor national scientific user facility advancing nuclear technology

    Allen, T.R.; Thelen, M.C.; Meyer, M.K.; Marshall, F.M.; Foster, J.; Benson, J.B.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  4. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    Allen, T.R.; Benson, J.B.; Foster, J.A.; Marshall, F.M.; Meyer, M.K.; Thelen, M.C.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  5. From road to lab to math: the co-evolution of technological, regulatory, and organizational innovations for automotive crash testing.

    Leonardi, Paul M

    2010-04-01

    Today, in the midst of economic crisis, senior executives at US automakers and influential industry analysts frequently reflect on the progression that safety testing has taken from the crude trials done on the road, to controlled laboratory experiments, and to today's complex math-based simulation models. They use stories of this seemingly linear and natural sequence to justify further investment in simulation technologies. The analysis presented in this paper shows that change in the structures of automakers' organizations co-evolved with regulations specifying who was at fault in vehicle impacts, how vehicles should be built to withstand the force of an impact, and how testing should be done to assure that vehicles met those requirements. Changes in the regulatory environment were bolstered by new theories about crash test dynamics and changing technologies with which to test those theories. Thus, as new technological and regulatory innovations co-evolved with innovations in organizational structuring, ideas about how to best conduct crash tests shifted and catalyzed new cycles of technological, regulatory, and organizational innovation. However, this co-evolutionary story tells us that the move from road to lab to math was not natural or linear as today's managerial rhetoric would have us believe. Rather, the logic of math-based simulation was the result of technological, regulatory and organizational changes that created an industry-wide ideology that supported the move toward math while making it appear natural within the shifting structure of the industry.

  6. A scintillation testing technology at a viewpoint of optical test. At a memory of winning of the Radiation Prize (Prize of Encouragement)

    Maekawa, Tatsuyuki

    2000-01-01

    In a 'summer school' held at Matsushima, a series of developmental results had been introduced on a wavelength shift type beta-ray detector and others recently progressed by author at a viewpoint of 'new reconsideration on scintillation testing, one of the oldest radiation testing technology for an optical testing'. As a chance to write this theme again was obtained at present, here were introduced on trial and errors, backgrounds on ideas, pains for trial production and so forth at a process of putting together them for actual technologies and products under combining a series of ideas with their needs. Here were newly introduced on developmental backgrounds, points for practicability, and so forth on optical radiation testing technology which had been developed by authors. By upgrading of radiation resistance on the optical fibers themselves, developments for not only radiation testing but also instrumentation in storage vessel specific to nuclear instrumentation are considered in future. And, some findings on new elements and techniques, such as application of radiation to refractive index change due to much minute exotherm, application of Cherenkov phenomenon in glass, fiber grating and interference test assembles a minute diffraction lattice into a core, and so forth are found recently, which will be expected for their future developments. (G.K.)

  7. A scintillation testing technology at a viewpoint of optical test. At a memory of winning of the Radiation Prize (Prize of Encouragement)

    Maekawa, Tatsuyuki [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-04-01

    In a 'summer school' held at Matsushima, a series of developmental results had been introduced on a wavelength shift type beta-ray detector and others recently progressed by author at a viewpoint of 'new reconsideration on scintillation testing, one of the oldest radiation testing technology for an optical testing'. As a chance to write this theme again was obtained at present, here were introduced on trial and errors, backgrounds on ideas, pains for trial production and so forth at a process of putting together them for actual technologies and products under combining a series of ideas with their needs. Here were newly introduced on developmental backgrounds, points for practicability, and so forth on optical radiation testing technology which had been developed by authors. By upgrading of radiation resistance on the optical fibers themselves, developments for not only radiation testing but also instrumentation in storage vessel specific to nuclear instrumentation are considered in future. And, some findings on new elements and techniques, such as application of radiation to refractive index change due to much minute exotherm, application of Cherenkov phenomenon in glass, fiber grating and interference test assembles a minute diffraction lattice into a core, and so forth are found recently, which will be expected for their future developments. (G.K.)

  8. Verification Testing of Air Pollution Control Technology Quality Management Plan Revision 2.3

    The Air Pollution Control Technology Verification Center was established in 1995 as part of the EPA’s Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technologies’ performance.

  9. US Department of Energy, Office of Technology Development, mixed-waste treatment research, development, demonstration, testing, and evaluation

    Berry, J.B.; Backus, P.M.; Conley, T.B.; Coyle, G.J.; Lurk, P.W.; Wolf, S.M.

    1993-01-01

    Department of Energy (DOE) mixed waste is contaminated with both chemically hazardous and radioactive species. The DOE is responsible for regulating radioactive species while the Environmental Protection Agency (EPA) is responsible for regulating hazardous species. Dual regulations establish treatment standards and therefore affect the treatment technologies used to process mixed waste. This duality is reflected in technology development initiatives. Significant technology development has been conducted for either radioactive or hazardous waste, but limited technology development, specifically addressing mixed waste treatment issues, has been completed. Technology has not been designed, developed, demonstrated, or tested to produce a low-risk final waste form that increases the probability that the final waste form will be disposed

  10. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  11. The application of virtual reality technology to testing resistance to motion sickness

    Menshikova G. Ya.

    2017-09-01

    Full Text Available Background. Prolonged exposure to moving images in virtual reality systems can cause virtual reality induced motion sickness (VIMS. The ability to resist motion sickness may be associated with the level of vestibular function development. objective. The aim of the present research is to study the oculomotor characteristics of individuals whose observation of moving virtual environments causes the VIMS effect. We hypothesized that people who have a robust vestibular function as a result of their professional activity, are less susceptible to VIMS than people who have no such professional abilities. The differences in people’s abilities to resist the effects of the virtual environment may be revealed in the oculomotor characteristics registered during their interaction with a virtual environment. Design. Figure skaters, football players, wushu fighters, and non-trained people were tested. e CAVE virtual reality system was used to initiate the VIMS effect. three virtual scenes were constructed consisting of many bright balls moving as a whole around the observer. e scenes differed in the width of the visual field; all balls subtended either 45°, 90° or 180°. Results. The results showed more active eye movements for athletes compared to non-trained people, i.e. an increase in blink, fixation, and saccade counts. A decrease in saccadic amplitudes was revealed for figure skaters. These characteristics were considered specific indicators of the athletes’ ability to resist motion sickness. Conclusions. It was found that the strength of the VIMS effect increased with the increasing width of the visual field. The effectiveness of virtual reality and eye-tracking technologies to test the VIMS effect was demonstrated.

  12. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  13. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997

    NONE

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  14. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF THREE IMMUNOASSAY TEST KITS FOR ANTHRAX, BOTULINUM TOXIN AND RICIN

    Immunoassay test kits are based on immunoassay methods, where specific antibodies are used to detect and measure the contaminants of interest. Immunoassay test kits rely on the reaction of a contaminant or antigen with a selective antibody to give a product that can be measures....

  15. Technology for home dementia care: A prototype locating system put to the test.

    Megges, Herlind; Freiesleben, Silka Dawn; Jankowski, Natalie; Haas, Brigitte; Peters, Oliver

    2017-09-01

    The user experience of persons with dementia and their primary caregivers with locating systems is not firmly established. Eighteen dyads used a prototype locating system during 4 weeks. Primary outcome measures were ratings of usability, and product functions and features. Secondary outcome measures were caregiver burden, perceived self-efficacy, frequency of use, and willingness to purchase the prototype. Changes in scores between baseline (T 1 ) and end of testing period (T 2 ) were compared by performing independent and dependent samples correlations and descriptive statistics. Seventeen dyads made up the final sample. Ratings of usability and product functions and features were fair, but usability ratings were significantly reduced after 4 weeks. Although the prototype was used infrequently by majority of the participants, most caregivers would be willing to purchase the prototype, with men more willing than women. No significant change in technological willingness, caregiver burden, or perceived self-efficacy was found between T 1 and T 2 . Perceived self-efficacy significantly negatively correlated with willingness to purchase the prototype after 4 weeks. Results highlight the importance of including end users in the research and development phase of locating systems to improve the user experience in home dementia care. Necessary indications for further research are carrying out randomized controlled trials with larger, more representative samples and developing innovative software and hardware solutions.

  16. The research on x-ray nondestructive testing and image processing technology of explosive components

    Shi, C.; Zhai, X.; Liu, Z.; Lin, H.

    2004-01-01

    The explosive components will inevitably produce defects such as impurity, crack and degumming during production and storage, therefore the inside substance of the explosive components must be examined and the findings concerned must be identified and estimated in order to ensure the quality and service life of the explosive components. Firstly, some analyses are conducted on the usual X-ray NDT system theory, and the simulation explosive component is made with some pre-built defects such as debonding, cracks, blow holes, impurities, and non-uniform density. The image testing system most fit for the explosive components is established. Secondly, the ways of X-ray digital image processing are discussed; the obtained images are enhanced and restored through the self-accommodating build-up arithmetic and proper restoring methods. By means of the results of the overall comparison and analysis of the digital image processing technology, it is clearly indicated that it is feasible to use X-ray digital-imaging ways to carry out the NDT of explosive components and identify the inside defects. (author)

  17. Crash tests with Smartcrash barriers, a technology with a future; Zukunftssichere Crashtests mit Smartcrash-Barrieren

    Barz, D.; Evers, W. [Kistler Instrumente AG (Switzerland). Geschaeftsbereich Fahrzeugmesstechnik

    2005-02-01

    The Smartcrash barrier by Kistler is a completely new technology. State-of-the-art data processing with Microdau modules is combined with a singular mechanical modularity which meets all requirements of present and future crash standards. Together with a piezo measuring system perfectly tuned to the highly dynamic processes during crash tests, this provides a basis for making crash laboratories economically efficient, with safe and accurate data, and compatible with other measuring systems. The system is a 'must' for every modern crash laboratory. (orig.) [German] Die Smartcrash-Barriere von Kistler setzt in jeder Hinsicht Massstaebe. Neueste Technologie der Datenverarbeitung beim Crash mit Microdau-Modulen, wie sie auch in Dummys eingesetzt werden, wird mit einer einzigartigen mechanischen Modularitaet kombiniert, die alle erforderlichen Voraussetzungen fuer bestehende und zukuenftige Crash-Standards bietet. In Verbindung mit der fuer die Messung von hochdynamischen Kraftverlaeufen beim Crash praedestinierte Piezo-Messtechnik ist hiermit die Basis geschaffen, Crash-Laboratorien wirtschaftlich und hinsichtlich des Datenakquisition sicher und kompatibel mit anderen Messgroessen im Labor auszuruesten. Ein 'Muss' fuer jedes moderne Crash-Labor. (orig.)

  18. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Na, Y J; Ju, U S; Park, Y C [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  19. Technology.

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  20. [The progress and prospect of application of genetic testing technology-based gene detection technology in the diagnosis and treatment of hereditary cancer].

    He, J X; Jiang, Y F

    2017-08-06

    Hereditary cancer is caused by specific pathogenic gene mutations. Early detection and early intervention are the most effective ways to prevent and control hereditary cancer. High-throughput sequencing based genetic testing technology (NGS) breaks through the restrictions of pedigree analysis, provide a convenient and efficient method to detect and diagnose hereditary cancer. Here, we introduce the mechanism of hereditary cancer, summarize, discuss and prospect the application of NGS and other genetic tests in the diagnosis of hereditary retinoblastoma, hereditary breast and ovarian cancer syndrome, hereditary colorectal cancer and other complex and rare hereditary tumors.

  1. Test and approval center for fuel cell and hydrogen technologies: Phase I. Initiation. Final report; Test- og godkendelsescenter for braendselscelle- og brintteknologier. Fase 1. Opstart. Slutrapport

    Hagen, A. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark)

    2012-09-15

    The aim of the present project was to initialize a Test and Approval Center for Fuel Cell and Hydrogen Technologies at the sites of the project partners Risoe DTU (Fuel Cells and Solid State Chemistry Division), and DGC (work package 1). The project furthermore included start-up of first activities with focus on the development of accelerated life-time tests of fuel cell systems, preparations for standardization of these methods, and advising in relation to certification and approval of fuel cell systems (work package 2). The main achievements of the project were: Work package 1: 1) A large national and international network was established comprising of important commercial players, research institutions, and other test centers; 2) The test center is known in large part of the international Fuel Cell and Hydrogen community due to substantial efforts in 'marketing'; 3) New national and international projects have been successfully applied for, with significant roles of the test center, which secure the further establishment and development of the center. Work package 2: 1) Testing equipment was installed and commissioned at DTU (Risoe Campus); 2) A comprehensive survey among international players regarding activities on accelerated SOFC testing was carried out; 3) A test procedure for 'compressed' testing of SOFC in relation to {mu} CHP application was developed and used for one-cell stack and 50-cell-stack testing; 4) Guidelines for Danish authority handling were formulated. (Author)

  2. First tests of CHERWELL, a Monolithic Active Pixel Sensor: A CMOS Image Sensor (CIS) using 180 nm technology

    Mylroie-Smith, James, E-mail: j.mylroie-smith@qmul.ac.uk [Queen Mary, University of London (United Kingdom); Kolya, Scott; Velthuis, Jaap [University of Bristol (United Kingdom); Bevan, Adrian; Inguglia, Gianluca [Queen Mary, University of London (United Kingdom); Headspith, Jon; Lazarus, Ian; Lemon, Roy [Daresbury Laboratory, STFC (United Kingdom); Crooks, Jamie; Turchetta, Renato; Wilson, Fergus [Rutherford Appleton Laboratory, STFC (United Kingdom)

    2013-12-11

    The Cherwell is a 4T CMOS sensor in 180 nm technology developed for the detection of charged particles. Here, the different test structures on the sensor will be described and first results from tests on the reference pixel variant are shown. The sensors were shown to have a noise of 12 e{sup −} and a signal to noise up to 150 in {sup 55}Fe.

  3. Nuclear fuels technologies fiscal year 1998 research and development test plan

    Alberstein, D.; Blair, H.T.; Buksa, J.J.

    1998-06-01

    A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO 2 and UO 2 feed materials. Fuel fabrication development efforts include studies with a new UO 2 feed material, alternate sources of PuO 2 , and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities

  4. Development of Test Rig for Robotization of Mining Technological Processes - Oversized Rock Breaking Process Case

    Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw

    2017-12-01

    Production chain (PCh) in underground copper ore mine consists of several subprocesses. From our perspective implementation of so called ZEPA approach (Zero Entry Production Area) might be very interesting [16]. In practice, it leads to automation/robotization of subprocesses in production area. In this paper was investigated a specific part of PCh i.e. a place when cyclic transport by LHDs is replaced with continuous transport by conveying system. Such place is called dumping point. The objective of dumping points with screen is primary classification of the material (into coarse and fine material) and breaking oversized rocks with hydraulic hammer. Current challenges for the underground mining include e.g. safety improvement as well as production optimization related to bottlenecks, stoppages and operational efficiency of the machines. As a first step, remote control of the hydraulic hammer has been introduced, which not only transferred the operator to safe workplace, but also allowed for more comfortable work environment and control over multiple technical objects by a single person. Today literature analysis shows that current mining industry around the world is oriented to automation and robotization of mining processes and reveals technological readiness for 4th industrial revolution. The paper is focused on preliminary analysis of possibilities for the use of the robotic system to rock-breaking process. Prototype test rig has been proposed and experimental works have been carried out. Automatic algorithms for detection of oversized rocks, crushing them as well as sweeping and loosening of material have been formulated. Obviously many simplifications have been assumed. Some near future works have been proposed.

  5. High energy nuclear database: a test-bed for nuclear data information technology

    Brown, D.A.; Vogt, R.; Beck, B.; Pruet, J.; Vogt, R.

    2008-01-01

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a test-bed for the further development of an object-oriented nuclear data format and database system. By using 'off-the-shelf' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a 'Grand Unified Nuclear Format' encapsulating data types used in the ENSDF, Endf/B, EXFOR, NSR and other formats, including processed data formats. (authors)

  6. Technology Foresight and nuclear test verification: a structured and participatory approach

    Noack, Patrick; Gaya-Piqué, Luis; Haralabus, Georgios; Auer, Matthias; Jain, Amit; Grenard, Patrick

    2013-04-01

    As part of its mandate, the CTBTO's nuclear explosion monitoring programme aims to maintain its sustainability, effectiveness and its long-term relevance to the verification regime. As such, the PTS is conducting a Technology Foresight programme of activities to identify technologies, processes, concepts and ideas that may serve said purpose and become applicable within the next 20 years. Through the Technology Foresight activities (online conferences, interviews, surveys, workshops and other) we have involved the wider science community in the fields of seismology, infrasound, hydroacoustics, radionuclide technology, remote sensing and geophysical techniques. We have assembled a catalogue of over 200 items, which incorporate technologies, processes, concepts and ideas which will have direct future relevance to the IMS (International Monitoring System), IDC (International Data Centre) and OSI (On-Site Inspection) activities within the PTS. In order to render this catalogue as applicable and useful as possible for strategy and planning, we have devised a "taxonomy" based on seven categories, against which each technology is assessed through a peer-review mechanism. These categories are: 1. Focus area of the technology in question: identify whether the technology relates to (one or more of the following) improving our understanding of source and source physics; propagation modelling; data acquisition; data transport; data processing; broad modelling concepts; quality assurance and data storage. 2. Current Development Stage of the technology in question. Based on a scale from one to six, this measure is specific to PTS needs and broadly reflects Technology Readiness Levels (TRLs). 3. Impact of the technology on each of the following capabilities: detection, location, characterization, sustainment and confidence building. 4. Development cost: the anticipated monetary cost of validating a prototype (i.e. Development Stage 3) of the technology in question. 5. Time to

  7. Testing the Utility of Person-Environment Correspondence Theory with Instructional Technology Students in Turkey

    Perkmen, Serkan

    2012-01-01

    The main objective of this study was to examine the validity and usefulness of the person-environment correspondence theory with instructional technology students in Turkey. The participants included 211 students and three teachers. Results revealed that instructional technology students value achievement most and that they believe that entering a…

  8. Technology Knowledge Self-Assessment and Pre-Test Performance among Digital Natives

    Nelms, Keith R.

    2015-01-01

    According to education pundits, traditional-age college students are "digital natives" inherently savvy in digital technology due to their constant exposure to technology from an early age. This widely held meme is at odds with observation in the college classroom. In this research, college students in an introductory information…

  9. Maximizing Research and Development Resources: Identifying and Testing "Load-Bearing Conditions" for Educational Technology Innovations

    Iriti, Jennifer; Bickel, William; Schunn, Christian; Stein, Mary Kay

    2016-01-01

    Education innovations often have a complicated set of assumptions about the contexts in which they are implemented, which may not be explicit. Education technology innovations in particular may have additional technical and cultural assumptions. As a result, education technology research and development efforts as well as scaling efforts can be…

  10. Creating a testing field where delta technology and water innovations are tested and demonstrated with the help of citizen science methods

    de Vries, Sandra; Rutten, Martine; de Vries, Liselotte; Anema, Kim; Klop, Tanja; Kaspersma, Judith

    2017-04-01

    In highly populated deltas, much work is to be done. Complex problems ask for new and knowledge driven solutions. Innovations in delta technology and water can bring relief to managing the water rich urban areas. Testing fields form a fundamental part of the knowledge valorisation for such innovations. In such testing fields, product development by start-ups is coupled with researchers, thus supplying new scientific insights. With the help of tests, demonstrations and large-scale applications by the end-users, these innovations find their way to the daily practices of delta management. More and more cities embrace the concept of Smart Cities to tackle the ongoing complexity of urban problems and to manage the city's assets - such as its water supply networks and other water management infrastructure. Through the use of new technologies and innovative systems, data are collected from and with citizens and devices - then processed and analysed. The information and knowledge gathered are keys to enabling a better quality of life. By testing water innovations together with citizens in order to find solutions for water management problems, not only highly spatial amounts of data are provided by and/or about these innovations, they are also improved and demonstrated to the public. A consortium consisting of a water authority, a science centre, a valorisation program and two universities have joined forces to create a testing field for delta technology and water innovations using citizen science methods. In this testing field, the use of citizen science for water technologies is researched and validated by facilitating pilot projects. In these projects, researchers, start-ups and citizens work together to find the answer to present-day water management problems. The above mentioned testing field tests the use of crowd-sourcing data as for example hydrological model inputs, or to validate remote sensing applications, or improve water management decisions. Currently the

  11. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  12. Successful completion of the development and testing of a coal to fuel cell grade hydrogen technology package for New Zealand

    Anthony H. Clemens; Tana P. Levi; Robert S. Whitney; Alister I. Gardiner

    2009-07-01

    A technology package for the production, from New Zealand lignite, of high purity hydrogen suitable for use in an alkaline fuel cell has been successfully developed and tested. The technology involves the integration of an air-blown 1 tonne per day fluidised bed gasifier with a range of downstream syngas clean-up components leading to the fuel cell. The development of the technology package was built on earlier work that showed New Zealand lignites to be among the most reactive in the world and well suited to fluidised bed gasification. The reason for their high reactivity was shown to be due to the presence of ion-exchanged calcium within the lignite structure. The clean-up line is comprised of some commonly used 'off the shelf' technologies. These include a cyclone and Venturi scrubber for particulate and condensables capture respectively and a high temperature water gas shift reactor. It also contains a less commonly used counterflow caustic wash packed column for H{sub 2}S removal and an experimental membrane for final hydrogen separation. The clean-up line is constructed so that it may be used to testbed other new syngas clean-up technologies. The paper describes the new technology package, considers several issues that arose during its development and how these were addressed. It also considers the future development of the technology including co-gasification with biomass and conversion to an oxygen blown unit for synfuel production. 20 refs., 4 figs., 1 tab.

  13. Research and field tests of staged fracturing technology for casing deformation sections in horizontal shale gas wells

    Shimeng Liao

    2018-02-01

    Full Text Available Horizontal shale gas well fracturing is mostly carried out by pumping bridge plugs. In the case of casing deformation, the bridge plug can not be pumped down to the designated position, so the hole sections below the deformation could not be stimulated according to the design program. About 30% of horizontal shale gas wells in the Changning and Weiyuan Blocks, Sichuan Basin, suffer various casing deformation after fracturing. Previously, the hole sections which could not be stimulated due to casing deformation were generally abandoned. As a result, the resources controlled by shale gas wells weren't exploited effectively and the fracturing effect was impacted greatly. There are a lot of difficulties in investigating casing deformation, such as complex mechanisms, various influencing factors and unpredictable deformation time. Therefore, it is especially important to seek a staged fracturing technology suitable for the casing deformation sections. In this paper, the staged fracturing technology with sand plugs inside fractures and the staged fracturing technology with temporary plugging balls were tested in casing deformation wells. The staged fracturing technology with sand plugs inside fractures was carried out in the mode of single-stage perforation and single-stage fracturing. The staged fracturing technology with temporary plugging balls was conducted in the mode of single perforation, continuous fracturing and staged ball dropping. Then, two kinds of technologies were compared in terms of their advantages and disadvantages. Finally, they were tested on site. According to the pressure response, the pressure monitoring of the adjacent wells and the microseismic monitoring in the process of actual fracturing, both technologies are effective in the stimulation of the casing deformation sections, realizing well control reserves efficiently and guaranteeing fracturing effects. Keywords: Shale gas, Horizontal well, Casing deformation, Staged

  14. SHEARING STRENGTH TEST OF ORTOPEDIC TITANIUM ALLOY SCREW PRODUCED IN THE PROCESS OF 3D TECHNOLOGY PRINTING

    Patrycja Ruszniak

    2016-03-01

    Full Text Available The aim of the present dissertation is the assessment of technical shear resistance (technological shear of orthopedic screw made of titanium alloy Ti6Al4V, produced using incremental technology in the process of 3D printing process. The first part of the work presents incremental techniques in production engineering. The second part of the present work contains specification of the 3D printing process of samples as well as the description of the used material. The fundamental part of the article is composed out of endurance tests for orthopaedic screws as well as the analysis of the obtained results and conclusions. The method of incremental production SLM using SLM 280HL metal printer was used during the technological process. The resistance tests were performed using ZWICK/ROELL Z150 machines. Identical endurance trials were performed for monolithic bars made of titanium alloys (of bar core size made on a wire electric discharge machine Sodick SL600Q for comparative purposes. The obtained test results enabled comparative assessment of the value of shear resistance Rt in the conditions of technological shear. According to the performed tests, the shear resistance Rt of orthopaedic screws is nearly 33% lower than of monolithic bars of the same core size.

  15. Digital radiography - usability of experience in medical technology with fluorescent storage material for technical X-ray testing

    Mattis, A.; Winterberg, K.H.

    1992-01-01

    In nearly 100 years' development of X-ray technique, synergy effects between medical technology and non-destructive material testing (NDT) have repeatedly led to new applications. Thus digital radiography in medicine is a 'low dose' process introduced years ago which, by using a specially developed storage foil technique, offers extensive possibilities of application for NDT. (orig.) [de

  16. Interim report on testing of off-gas treatment technologies for abatement of atmospheric emissions of chlorinated volatile organic compounds

    Haselow, J.S.; Jarosch, T.R.; Rossabi, J.; Burdick, S.; Lombard, K.

    1993-12-01

    The purpose of this report is to briefly summarize the results to date of the off-gas treatment program for atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program is part of the Department of Energy's Office of Technology Development's Integrated Demonstration for Treatment of Organics in Soil and Water at a Non-Arid Site. The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed. That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment program would complement the Integrated Demonstration not only because off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the US to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate systematic and unbiased evaluation of the emerging technologies

  17. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-01

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development's VOC's in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry

  18. Technology development on production of test specimens from irradiated capsule outer-tube and mechanical evaluation test of stainless steel with high dose carried out by the technology

    Hayashi, Koji; Shibata, Akira; Iwamatsu, Shigemi; Sozawa, Shizuo; Takada, Fumiki; Ohmi, Masao; Nakagawa, Tetsuya

    2008-03-01

    The irradiation capsule 74M-52J was irradiated during total 136 cycles at reactor core of JMTR and the maximum neutron dose reached on 3.9x10 26 n/m 2 at the capsule outer-tube made of a type 304 stainless steel. In order to produce mechanical test specimens from the outer-tube, a punching technique was developed as a simple remote-handling method in a hot-cell. From comparison between the punching and the mechanical cutting methods, it was clarified that the punching technique was applicable to practical use. Moreover, an evaluation test of mechanical properties using specimens sampled from the 74M-52 was performed with in-water high temperature condition, less than 288degC. The result shows that the residual elongation is 18% at 150degC and 13% at 288degC. It was confirmed that the type 304 stainless steel irradiated up to such high dose shows enough ductility. (author)

  19. Technology

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  20. Use-Driven Testbed for Evaluating Systems and Technologies (U-TEST), Phase II

    National Aeronautics and Space Administration — NextGen will require the development of novel solutions to shape the airspace of tomorrow. Along with the ability to generate new systems and technologies comes the...

  1. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  2. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  3. A novel application of small-angle scattering techniques: Quality assurance testing of virus quantification technology

    Kuzmanovic, Deborah A.; Elashvili, Ilya; O'Connell, Catherine; Krueger, Susan

    2008-01-01

    Small-angle scattering (SAS) techniques, like small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), were used to measure and thus to validate the accuracy of a novel technology for virus sizing and concentration determination. These studies demonstrate the utility of SAS techniques for use in quality assurance measurements and as novel technology for the physical characterization of viruses

  4. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  5. Vacuum decay container/closure integrity testing technology. Part 1. ASTM F2338-09 precision and bias studies.

    Wolf, Heinz; Stauffer, Tony; Chen, Shu-Chen Y; Lee, Yoojin; Forster, Ronald; Ludzinski, Miron; Kamat, Madhav; Godorov, Phillip; Guazzo, Dana Morton

    2009-01-01

    ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method is applicable for leak-testing rigid and semi-rigid non-lidded trays; trays or cups sealed with porous barrier lidding materials; rigid, nonporous packages; and flexible, nonporous packages. Part 1 of this series describes the precision and bias studies performed in 2008 to expand this method's scope to include rigid, nonporous packages completely or partially filled with liquid. Round robin tests using three VeriPac 325/LV vacuum decay leak testers (Packaging Technologies & Inspection, LLC, Tuckahoe, NY) were performed at three test sites. Test packages were 1-mL glass syringes. Positive controls had laser-drilled holes in the barrel ranging from about 5 to 15 microm in nominal diameter. Two different leak tests methods were performed at each site: a "gas leak test" performed at 250 mbar (absolute) and a "liquid leak test" performed at about 1 mbar (absolute). The gas leak test was used to test empty, air-filled syringes. All defects with holes > or = 5.0 microm and all no-defect controls were correctly identified. The only false negative result was attributed to a single syringe with a ASTM F2338-09 test method and the precision and bias study report are available by contacting ASTM International in West Conshohocken, PA, USA (www.astm.org).

  6. Electrically Heated Testing of the Kilowatt Reactor Using Stirling Technology (KRUSTY) Experiment Using a Depleted Uranium Core

    Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James

    2017-01-01

    The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one

  7. Testing the Abbreviated Food Technology Neophobia Scale and its relation to satisfaction with food-related life in university students.

    Schnettler, Berta; Grunert, Klaus G; Miranda-Zapata, Edgardo; Orellana, Ligia; Sepúlveda, José; Lobos, Germán; Hueche, Clementina; Höger, Yesli

    2017-06-01

    The aims of this study were to test the relationships between food neophobia, satisfaction with food-related life and food technology neophobia, distinguishing consumer segments according to these variables and characterizing them according to willingness to purchase food produced with novel technologies. A survey was conducted with 372 university students (mean aged=20.4years, SD=2.4). The questionnaire included the Abbreviated version of the Food Technology Neophobia Scale (AFTNS), Satisfaction with Life Scale (SWLS), and a 6-item version of the Food Neophobia Scale (FNS). Using confirmatory factor analysis, it was confirmed that SWFL correlated inversely with FNS, whereas FNS correlated inversely with AFTNS. No relationship was found between SWFL and AFTNS. Two main segments were identified using cluster analysis; these segments differed according to gender and family size. Group 1 (57.8%) possessed higher AFTNS and FNS scores than Group 2 (28.5%). However, these groups did not differ in their SWFL scores. Group 1 was less willing to purchase foods produced with new technologies than Group 2. The AFTNS and the 6-item version of the FNS are suitable instruments to measure acceptance of foods produced using new technologies in South American developing countries. The AFTNS constitutes a parsimonious alternative for the international study of food technology neophobia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author).

  9. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh

    1995-07-01

    This is the '94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author)

  10. The science, technology and mission design for the Laser Astrometric test of relativity

    Turyshev, Slava G.

    2006-01-01

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun.

  11. Contributions to ultrasounds applications in non-destructive tests on materials used in nuclear technologies

    Stanica, V.

    1979-01-01

    The problems expounded in the paper, besides servjng the practical purpose generated by the need to perform quality tests on fuel element compounds by means of the ultrasounds method, are also interesting to ultrasounds non-destructive tests applied in all industry branches as they assert the necessity of passing from manual to automation tests carried out by installations which should record the signals caused by failures, both to increase the productivjty and especially to transform it into an objective, effective test. (author)

  12. Simulated testing in mobile datacom systems (GPRS/UMTS) : postgraduate thesis information and communication technology

    Arslanagic, Aida; Siqveland, Elisabeth

    2000-01-01

    Masteroppgave i informasjons- og kommunikasjonsteknologi 2000 - Høgskolen i Agder, Grimstad The assignment described in this thesis is given by Ericsson AS and gives an evaluation of simulation and testing tools used in their development projects. Since Ericsson wants to change their testing process the task was to evaluate and suggest a solution to how this could be done. In order to make testing available for all developers it was required to run tests independent of hardware...

  13. Present status of mechanical testing technology at the Research Hot Laboratory

    Kizaki, M.; Tobita, T.; Koya, T.; Kikuchi, T.

    1993-01-01

    Mechanical tests of irradiated metallic materials at the Research Hot Laboratory(RHL) have been carried out for 30 years to support material research in JAERI and to evaluate the irradiation integrity of pressure vessel steel in commercial power plant. Two tensile testing machines and one Charpy impact testing machine are available for the examinations. One of the tensile testing machines has 1000 kgf load capacity under the vacuum of ∼ 10 -7 torr at the temperature of 1300degC max.. The other one has 10 tonf load capacity, and is utilized for the multi-purpose tests such as tensile and compressive tests in air atmosphere at the temperature between -160 and 900degC. Examinations cover tensile test, bending test, J ic fracture toughness test, low cycle fatigue test and so on. Charpy impact testing machine with notched-bar specimen is instrumented with 30 kgf-m capacity in the temperature range of -140 - 240 degC. To support these mechanical tests in RHL, special jigs, devices and instruments have been developed. (author)

  14. Developments and the preliminary tests of Resistive GEMs manufactured by a screen printing technology

    Agócs, G; Oliveira, R; Martinego, P; Peskov, Vladimir; Pietropaolo, P; Picchi, P

    2008-01-01

    We report promising initial results obtained with new resistive-electrode GEM (RETGEM) detectors manufactured, for the first time, using screen printing technology. These new detectors allow one to reach gas gains nearly as high as with ordinary GEM-like detectors with metallic electrodes; however, due to the high resistivity of its electrodes the RETGEM, in contrast to ordinary hole-type detectors, has the advantage of being fully spark protected. We discovered that RETGEMs can operate stably and at high gains in noble gases and in other badly quenched gases, such as mixtures of noble gases with air and in pure air; therefore, a wide range of practical applications, including dosimetry and detection of dangerous gases, is foreseeable. To promote a better understanding of RETGEM technology some comparative studies were completed with metallic-electrode thick GEMs. A primary benefit of these new RETGEMs is that the screen printing technology is easily accessible to many research laboratories. This accessibilit...

  15. Phase I Field Test Results of an Innovative DNAPL Remediation Technology: The Hydrophobic Lance

    Tuck, D.M.

    1999-01-01

    An innovative technology for recovery of pure phase DNAPL was deployed in the subsurface near the M-Area Settling Basin, continuing the support of the A/M Area Ground Water Corrective Action Program (per Part B requirements). This technology, the Hydrophobic Lance, operates by placing a neutral/hydrophobic surface (Teflon) in contact with the DNAPL. This changes the in situ conditions experienced by the DNAPL, allowing it to selectively drain into a sump from which it can be pumped. Collection of even small amounts of DNAPL can save years of pump-and-treat operation because of the generally low solubility of DNAPL components

  16. Role of fission-reactor-testing capabilities in the development of fusion technology

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-01-01

    Testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for testing when fusion reactors become available. Fission testing is capable of filling many gaps in fusion reactor design information, and thus should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, we investigated radiation damage to magnet insulators. This work is now continuing with the use of an improved test capsule. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, we explored a conceptual design for a fission-based Integrated Test Facility (ITF), which can accommodate entire First Wall/Blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  17. Some applications of fission-based testing capabilities in the development of fusion technology

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-10-01

    The testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for fusion testing when they do become available. Fission testing is capable of filling many gaps in fusion reactor design information, and should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, work was performed on the irradiation of magnet insulators. This work is continuing with an improved test environment. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, a conceptual design is presented for a fission-based Integrated Test Facility (ITF), which can accommodate entire wall/blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  18. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs

  19. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.

  20. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  1. RESEARCH ON NON-DESTRUCTIVE TESTING TECHNOLOGY IN CONSERVATION REPAIR PROJECT OF ANCESTRAL TEMPLE IN MUKDEN PALACE

    J. Yang

    2017-08-01

    Full Text Available Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  2. Leach test methodology for the Waste/Rock Interactions Technology Program

    Bradley, D.J.; McVay, G.L.; Coles, D.G.

    1980-05-01

    Experimental leach studies in the WRIT Program have two primary functions. The first is to determine radionuclide release from waste forms in laboratory environments which attempt to simulate repository conditions. The second is to elucidate leach mechanisms which can ultimately be incorporated into nearfield transport models. The tests have been utilized to generate rates of removal of elements from various waste forms and to provide specimens for surface analysis. Correlation between constituents released to the solution and corresponding solid state profiles is invaluable in the development of a leach mechanism. Several tests methods are employed in our studies which simulate various proposed leach incident scenarios. Static tests include low temperature (below 100 0 C) and high temperature (above 100 0 C) hydrothermal tests. These tests reproduce nonflow or low-flow repository conditions and can be used to compare materials and leach solution effects. The dynamic tests include single-pass, continuous-flow(SPCF) and solution-change (IAA)-type tests in which the leach solutions are changed at specific time intervals. These tests simulate repository conditions of higher flow rates and can also be used to compare materials and leach solution effects under dynamic conditions. The modified IAEA test is somewhat simpler to use than the one-pass flow and gives adequate results for comparative purposes. The static leach test models the condition of near-zero flow in a repository and provides information on element readsorption and solubility limits. The SPCF test is used to study the effects of flowing solutions at velocities that may be anticipated for geologic groundwaters within breached repositories. These two testing methods, coupled with the use of autoclaves, constitute the current thrust of WRIT leach testing

  3. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  4. Measuring primary school teachers' pedagogical content knowledge in technology education with a multiple choice test

    Rohaan, E.J.; Taconis, R.; Jochems, W.M.G.; Fatih Tasar, M.; Cakankci, G.; Akgul, E.

    2009-01-01

    Pedagogical content knowledge (PCK) is a crucial part of a teacher’s knowledge base for teaching. Studies in the field of technology education for primary schools showed that this domain of teacher knowledge is related to pupils’ increased learning, motivation, and interest. The common methods to

  5. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  6. Information-Processing Architectures in Multidimensional Classification: A Validation Test of the Systems Factorial Technology

    Fific, Mario; Nosofsky, Robert M.; Townsend, James T.

    2008-01-01

    A growing methodology, known as the systems factorial technology (SFT), is being developed to diagnose the types of information-processing architectures (serial, parallel, or coactive) and stopping rules (exhaustive or self-terminating) that operate in tasks of multidimensional perception. Whereas most previous applications of SFT have been in…

  7. A Quantitative Investigation of Cloud Computing Adoption in Nigeria: Testing an Enhanced Technology Acceptance Model

    Ishola, Bashiru Abayomi

    2017-01-01

    Cloud computing has recently emerged as a potential alternative to the traditional on-premise computing that businesses can leverage to achieve operational efficiencies. Consequently, technology managers are often tasked with the responsibilities to analyze the barriers and variables critical to organizational cloud adoption decisions. This…

  8. Industrial tests of a new technology for sulfuric acid alkylation of isobutane by olefines

    Tarakanov, V.S.; Karamyshev, M.S.; Khadzhiyev, S.N.; Mel' man, A.Z.

    1971-01-01

    A complex of elements of a new technology for sulfuric acid alkylation of isobutane by alkenes with the use of a KSG-2 reactor and an acetic settler of a new design is realized as a result of the joint work of the Novo-Yaroslav oil refinery, GrozNII, VNIIOINeft and VNIINeftemash in an alkylation installation.

  9. South African physicians’ acceptance of e-prescribing technology: an empirical test of a modified UTAUT model

    Jason Cohen

    2013-07-01

    Full Text Available E-prescribing systems hold promise for improving the quality and efficiency of the scripting process. Yet, the use of the technology has been associated with a number of challenges. The diffusion of e-prescribing into physician practices and the consequent realisation of its potential benefits will depend on whether physicians are willing to accept and engage with the technology. This study draws on the Unified Theory of Acceptance and Use of Technology (UTAUT and recent literature on user trust in technology to develop and test a model of the factors influencing South African physicians’ acceptance of e-prescribing. Data was collected from a sample of 72 physicians. Results indicate a general acceptance of e-prescribing amongst physicians who on average reported strong intentions to use e-prescribing technologies if given the opportunity. PLS analysis revealed that physicians’ performance expectancies and perceptions of facilitating conditions had significant direct effects on acceptance whilst trust and effort expectancy had important indirect effects. Social influence and price value perceptions did not add additional explanatory power. The model explained 63% of the variation in physician acceptance.

  10. Development and testing of single-shell tank waste retrieval technologies: Milestone M-45-01 summary report

    Shen, E.J.

    1994-08-01

    This report summarizes the activities undertaken to develop single-shell tank (SST) waste retrieval technology and complete scale-model testing. Completion of these activities fulfills the commitment of Milestone M-45-01 of the Hanford Federal Facility Agreement and Consent Order (the Tri-Party Agreement). Initial activities included engineering studies that compiled and evaluated data on all known retrieval technologies. Based on selection criteria incorporating regulatory, safety, and operational issues, several technologies were selected for further evaluation and testing. The testing ranged from small-scale, bench-top evaluations of individual technologies to full-scale integrated tests of multiple subsystems operating concurrently as a system using simulated wastes. The current baseline retrieval method for SSTs is hydraulic sluicing. This method has been used successfully in the past to recover waste from SSTs. Variations of this hydraulic or ''past practice'' sluicing may be used to retrieve the waste from the majority of the SSTs. To minimize the potential for releases to the soil, arm-based retrieval systems may be used to recover waste from tanks that are known or suspected to have leaked. Both hydraulic sluicing and arm-based retrieval will be demonstrated in the first SST. Hydraulic sluicing is expected to retrieve most of the waste, and arm-based retrieval will retrieve wastes that remain after sluicing. Subsequent tanks will be retrieved by either hydraulic sluicing or arm-based methods, but not both. The method will be determined by waste characterization, tank integrity (leak status), and presence of in-tank hardware. Currently, it is assumed that approximately 75% of all SSTs will be retrieved by hydraulic sluicing and the remaining tanks by arm-based methods

  11. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  12. Revolutionize Propulsion Test Facility High-Speed Video Imaging with Disruptive Computational Photography Enabling Technology

    National Aeronautics and Space Administration — Advanced rocket propulsion testing requires high-speed video recording that can capture essential information for NASA during rocket engine flight certification...

  13. Test Plan for the Wake Steering Experiment at the Scaled Wind Farm Technology (SWiFT) Facility.

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document is a test plan describing the objectives, configuration, procedures, reporting, roles, and responsibilities for conducting the joint Sandia National Laboratories and National Renewable Energy Laboratory Wake Steering Experiment at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in 2016 and 2017 . The purpose of this document is to ensure the test objectives and procedures are sufficiently detailed such that al l involved personnel are able to contribute to the technical success of the test. This document is not intended to address safety explicitly which is addressed in a separate document listed in the references titled Sandia SWiFT Facility Site Operations Manual . Both documents should be reviewed by all test personnel.

  14. Integrated test plan ResonantSonic drilling system technology demonstration-1995, at the Hanford Site: Revision 1

    McLellan, G.W.

    1994-01-01

    This integrated test plan describes the demonstration test of the ResonantSonic drilling system. This demonstration is part of the Office of Technology Development's Volatile Organic Compound Arid Integrated Demonstration (VOC-Arid ID). Two main purposes of this demonstration are (1) to continue testing the ResonantSonic drilling system compatibility with the Hanford Site waste characterization programs, and (2) to transfer this method for use at the Hanford Site, other government sites, and the private sector. The ResonantSonic method is a dry drilling technique. Field testing of this method began in July 1993. During the next four months, nine holes were drilled, and continuous core samples were retrieved. Penetration rates were 2 to 3 times the baseline, and the operational downtime rate was less than 10%. Successfully demonstrated equipment refinements included a prototype 300 series ResonantSonic head, a new drill rod design for 18-centimeter diameter pipe, and an automated pipe handling system. Various configurations of sampling equipment and drill bits were tested, depending on geologic conditions. The principal objective of the VOC-Arid ID is to determine the viability of emerging technologies that can be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination

  15. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  16. Testing over-representation of observations in subsets of a DEA technology

    Asmild, Mette; Hougaard, Jens Leth; Olesen, Ole Bent

    2013-01-01

    This paper proposes a test for whether data are over-represented in a given production zone, i.e. a subset of a production possibility set which has been estimated using the non-parametric Data Envelopment Analysis (DEA) approach. A binomial test is used that relates the number of observations...

  17. Implementation of in vitro replacement technologies in regulatory drug testing - An innovation systems perspective

    Kooijman, M.; Van Meer, P.J.K.; Moors, E.H.M.; Hekkert, M.P.; Schellekens, H.

    2011-01-01

    The replacement of in vivo methods by in vitro methods in regulatory drug testing is rare. The aim of this research is to identify barriers and drivers of the replacement of in vivo methods by in vitro methods in Europe. We studied two cases. The first case is the Draize eye test. Since 2009, the in

  18. Enraf series 854 Advanced Technology Gauge (ATG) acceptance test procedure. Revision 3

    Barnes, G.A.

    1995-01-01

    This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area

  19. Development of large aperture telescope technology (LATT): test results on a demonstrator bread-board

    Briguglio, R.; Xompero, M.; Riccardi, A.; Lisi, F.; Duò, F.; Vettore, C.; Gallieni, D.; Tintori, M.; Lazzarini, P.; Patauner, C.; Biasi, R.; D'Amato, F.; Pucci, M.; Pereira do Carmo, João.

    2017-11-01

    The concept of a low areal density primary mirror, actively controlled by actuators, has been investigated through a demonstration prototype. A spherical mirror (400 mm diameter, 2.7 Kg mass) has been manufactured and tested in laboratory and on the optical bench, to verify performance, controllability and optical quality. In the present paper we will describe the prototype and the test results.

  20. Qualification of class 1e equipment: regulation, technological margins and test experience

    Pasco, Y.; Le Meur, M.; Henry, J.Y.; Droger, J.P.; Morange, E.; Roubault, J.

    1986-10-01

    French regulation requires licensee to qualify electrical equipment important to safety for service in nuclear power plants to ensure that the equipment can perform its safety function under the set of plausible operating conditions. The French regulatory texts entitled Fundamental safety rules have classified safety related electrical equipment in three main categories: k1, k2, k3, according to their location and operating conditions. The definition of a design basis accident test profile must account for margins applied to thermal hydraulic code outputs. Specific safety margins was added to cover uncertainties in qualification test representativity. Up to now, accidental sequence studies have shown the validity of such a qualification test profile. On the other hand, the results from post accident simulation tests have shown that it is useful not only to validate post accident operating life but also to reveal failures initiated during previous tests [fr

  1. Packaging and testing of multi-wavelength DFB laser array using REC technology

    Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia

    2014-02-01

    Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.

  2. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  3. DARPA Antibody Technology Program. Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv Antibody Produced by Illumina

    2016-08-01

    ECBC-TR-1395 DARPA ANTIBODY TECHNOLOGY PROGRAM STANDARDIZED TEST BED FOR... ANTIBODY CHARACTERIZATION: CHARACTERIZATION OF AN MS2 SCFV ANTIBODY PRODUCED BY ILLUMINA Patricia E. Buckley Alena M. Calm Heather Welsh Roy...4. TITLE AND SUBTITLE DARPA Antibody Technology Program Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv

  4. Evaluation of the Radar Stage Sensor manufactured by Forest Technology Systems—Results of laboratory and field testing

    Kunkle, Gerald A.

    2018-01-31

    Two identical Radar Stage Sensors from Forest Technology Systems were evaluated to determine if they are suitable for U.S. Geological Survey (USGS) hydrologic data collection. The sensors were evaluated in laboratory conditions to evaluate the distance accuracy of the sensor over the manufacturer’s specified operating temperatures and distance to water ranges. Laboratory results were compared to the manufacturer’s accuracy specification of ±0.007 foot (ft) and the USGS Office of Surface Water (OSW) policy requirement that water-level sensors have a measurement uncertainty of no more than 0.01 ft or 0.20 percent of the indicated reading. Both of the sensors tested were within the OSW policy requirement in both laboratory tests and within the manufacturer’s specification in the distance to water test over tested distances from 3 to 15 ft. In the temperature chamber test, both sensors were within the manufacturer’s specification for more than 90 percent of the data points collected over a temperature range of –40 to +60 degrees Celsius at a fixed distance of 8 ft. One sensor was subjected to an SDI-12 communication test, which it passed. A field test was conducted on one sensor at a USGS field site near Landon, Mississippi, from February 5 to March 29, 2016. Water-level measurements made by the radar during the field test were in agreement with those made by the Sutron Accubar Constant Flow Bubble Gauge.Upon the manufacturer’s release of updated firmware version 1.09, additional SDI-12 and temperature testing was performed to evaluate added SDI-12 functions and verify that performance was unaffected by the update. At this time, an Axiom data logger is required to perform a firmware update on this sensor. The data confirmed the results of the original test. Based on the test results, the Radar Stage Sensor is a suitable choice for USGS hydrologic data collection.

  5. Technology Development for Integrated Safety Test of Spent Nuclear Fuel Transportation and Storage System

    Seo, Kiseog; Seo, J. S.; Lee, J. C.

    2012-05-01

    A dedicated review on the U. S. NRC Regulation 10 CFR Part 72 and regulatory guide NUREG/1536 has been performed. The safety requirements for spent nuclear fuel dry storage cask are analyzed and summarized in structural, thermal, shielding, criticality, materials, tests and maintenance aspects. Also a guideline for preparing the safety analysis report is provided. The heat flow analysis was performed by varying the dimensions of the heat flow test facility. From the heat flow analysis for the test facility, as the test facility became test facility. From the heat flow analysis for the test facility, as the test facility became bigger; the thermal effect became smaller. Therefore, the dimensions of the heat flow test facility was designed with 5m Χ 5m Χ 6m(H). Analyses of heat transfer characteristics and mechanism for spent PWR fuel assemblies, option study for production of the effective thermal conductivity and option study for effective thermal conductivity test have been performed to obtain the basic data for production of the effective thermal conductivity. It became clear that the diffusion coefficient of chloride ion of concrete remarkably increases along with the temperature rise, and that there is a linear relation between the logarithm values of the diffusion coefficients and the reciprocal of the temperature. It is understood to be able to express the temperature dependency of the diffusion coefficient roughly by an Arrhenius equation as the velocity coefficient is provided as the diffusion coefficient. The specifications and characteristics of storage facilities under operation including dual purpose casks were investigated. Components subject to material degradation were examined. Based on literature survey, investigating a drop analysis incorporating with material degradation, the basic data to develop an analysis methodology was obtained

  6. Aerodynamic and acoustic test of a United Technologies model scale rotor at DNW

    Yu, Yung H.; Liu, Sandy R.; Jordan, Dave E.; Landgrebe, Anton J.; Lorber, Peter F.; Pollack, Michael J.; Martin, Ruth M.

    1990-01-01

    The UTC model scale rotors, the DNW wind tunnel, the AFDD rotary wing test stand, the UTRC and AFDD aerodynamic and acoustic data acquisition systems, and the scope of test matrices are discussed and an introduction to the test results is provided. It is pointed out that a comprehensive aero/acoustic database of several configurations of the UTC scaled model rotor has been created. The data is expected to improve understanding of rotor aerodynamics, acoustics, and dynamics, and lead to enhanced analytical methodology and design capabilities for the next generation of rotorcraft.

  7. Technology of CCS coal utilization (outline of large-size demonstration test for CCS); CCS tan riyo gijutsu

    Konno, K [Center for Coal Utilization, Japan, Tokyo (Japan); Hironaka, H [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal cartridge system (CCS) is a series of the total system, in which coal is processed centrally at a supply base for each unit of consumer areas, supplied as pulverized coal in bulk units, and coal ash after combustion is recovered and treated. The system is expected of advantages resulted from the centralized production, elimination of handling troubles, and cleanliness. Following a small scale demonstration test, a large demonstration test for practically usable scale has begun in 1990, and completed in fiscal 1995. This paper introduces the CCS and reports the result of the test. In the large demonstration test, a supply station (with manufacturing capability of 200,000 tons a year) was installed in the Aichi refinery of Idemitsu Kosan Co., Ltd., and systematization on quality design and system technologies has been carried out. Long-term continuous operation for five years was achieved (operation time of the supply facilities was about 19,000 hours) without a failure and accident, to which every elemental technology was evaluated highly, and convenience and reliability of the system was verified. 13 figs., 3 tabs.

  8. Are We There Yet? Exploring the Impact of Translating Cognitive Tests for Dementia Using Mobile Technology in an Aging Population.

    Ruggeri, Kai; Maguire, Áine; Andrews, Jack L; Martin, Eric; Menon, Shantanu

    2016-01-01

    This study examines implications of the expanded use of mobile platforms in testing cognitive function, and generates evidence on the impact utilizing mobile platforms for dementia screen. The Saint Louis University Mental State examination (SLUMS) was ported onto a computerized mobile application named the Cambridge University Pen to Digital Equivalence assessment (CUPDE). CUPDE was piloted and compared to the traditional pen and paper version, with a common comparator test for both groups. Sixty healthy participants (aged 50-79) completed both measurements. Differences were tested between overall outcomes, individual items, and relationship with the comparator. Significant differences in the overall scores between the two testing versions as well as within individual items were observed. Even when groups were matched by cognitive function and age, scores on SLUMS original version (M = 19.75, SD = 3) were significantly higher than those on CUPDE (M = 15.88, SD = 3.5), t (15) = 3.02, p Mobile platforms require the development of new normative standards, even when items can be directly translated. Furthermore, these must fit aging populations with significant variance in familiarity with mobile technology. Greater understanding of the interplay and related mechanisms between auditory and visual systems, which are not well understood yet in the context of mobile technologies, is mandatory.

  9. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  10. Investigation of special capsule technologies for material in-pile irradiation test and development plan in HANARO

    Cho, M. S.; Son, J. M.; Kim, D. S.; Park, S. J.; Cho, Y. G.; Seo, C. K.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    In-pile test for several materials such as Zr alloy, stainless steel, Cr-Ni steel etc. which are used as structural material of the advanced reactor and KNGR(Korea Next Generation Reactor) like SMART, is necessary to produce the design data for developing new reactor materials. Advanced countries like USA, Europe and Japan etc. are not only performing the simple irradiation test for materials, but developing many kinds of special capsule to perform in-pile test having special purpose. For the special test items of fuel rod, fission products, total heat generation, swelling, deformation, sweep gas, temperature ramping and BOCA etc. are being actively concerned. There are capsules measuring creep, fatigue, crack growth, and controlling fluence etc. for special irradiation test of materials. In addition, the advanced countries are developing several instrument technologies suitable for the special capsules. In HANARO, non-instrumented, instrumented material capsules and non-instrumented fuel capsule have been developed and they have been utilized in the irradiation test for users, and creep capsule loading single specimen was made and is planned to test in the reactor soon. For some forthcoming years, special capsules not only measuring creep deformation with multi-specimens, fatigue, controlling fluence but crack propagation and gas sweep considering the requirements of users will be developed in HANARO.

  11. Commercial Skills Test Information Management System final report and self-sustainability plan : [technology brief].

    2014-04-01

    The Commercial Skills Test Information Management System (CSTIMS) was developed to address the fraudulent issuance of commercial drivers licenses (CDLs) across the United States. CSTIMS was developed as a Web-based, software-as-a-service system to...

  12. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32

    National Aeronautics and Space Administration — The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the...

  13. TESTING AS THE BASIC TECHNOLOGY OF THE KNOWLEDGE CONTROL OF LISTENERS OF COURSE ECDL

    H. Kravtsov

    2010-11-01

    Full Text Available Results of research of distance testing systems and their introduction for the knowledge control in the course of professional skill improvement under program ECDL with use of distance learning are presented.

  14. Laboratory Rock Testing and Hydrologic Calculations to Support the Underground Technology Program

    Chitty, Daniel

    1998-01-01

    .... The testing and data analysis will support definition of the mechanical properties of the rock as functions of porosity, as well as assignment of porosity values for the various in situ layers...

  15. Development of a cognitive function test using virtual reality technology: examination in healthy participants.

    Sakai, Hiromi; Nagano, Akinori; Seki, Keiko; Okahashi, Sayaka; Kojima, Maki; Luo, Zhiwei

    2018-07-01

    We developed a virtual reality test to assess the cognitive function of Japanese people in near-daily-life environment, namely, a virtual shopping test (VST). In this test, participants were asked to execute shopping tasks using touch panel operations in a "virtual shopping mall." We examined differences in VST performances among healthy participants of different ages and correlations between VST and screening tests, such as the Mini-Mental State Examination (MMSE) and Everyday Memory Checklist (EMC). We included 285 healthy participants between 20 and 86 years of age in seven age groups. Therefore, each VST index tended to decrease with advancing age; differences among age groups were significant. Most VST indices had a significantly negative correlation with MMSE and significantly positive correlation with EMC. VST may be useful for assessing general cognitive decline; effects of age must be considered for proper interpretation of the VST scores.

  16. Irradiation tests on bipolar front-end preamplifier using the Harris UHF1 technology

    Goyot, M

    1997-09-01

    A low noise, low power, radiation hard, full custom integrated circuit has been studied for coupling with photodetectors of the CMS electromagnetic calorimeter. A new version of the prototype preamplifier has been designed with improved performances (noise, dynamic range, consumption). Irradiation tests on this monolithic circuit have been performed at CERN with a X ray SEIFERT RP149 generator up to 10 Mrad equivalent silicon oxide. Tests results are presented. (author) 5 refs.

  17. Irradiation Tests on Bipolar Front-End Preamplifier Using the Harris UHF1 Technology

    Goyot, Michel

    1997-01-01

    A low noise, low power, radiation hard, full custom integrated circuit has been studied for coupling with photodetectors of the CMS electromagnetic calorimeter. A new version of the prototype preamplifier has been designed with improved performances ( noise, dynamic range, consumption). Irradiation tests on this monolithic circuit have been performed at CERN with a Xray SEIFERT RP149 generator up to 10Mrad ( SiO2). Tests results are presented.

  18. The European ITER Test Blanket Modules: Current status of fabrication technologies development and a way forward

    Zmitko, Milan, E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Galabert, Jose [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain); Thomas, Noël [ATMOSTAT, F-94815 Villejuif (France); Forest, Laurent [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bucci, Philippe; Cogneau, Laurence [CEA-DRT, 38000 Grenoble (France); Rey, Jörg; Neuberger, Heiko [Karlsruhe Institute of Technology (KIT), Postfach 3640, Karlsruhe (Germany); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla 2, Barcelona (Spain)

    2015-10-15

    Highlights: • Significant progress on development of welding procedures for European TBM achieved. • Fabrication processes feasibility based on diffusion and fusion welding demonstrated. • TBM box assembly welding scenarios investigated and welding scenarios identified. • Future qualification of pF/WPS proposed through realization of a number of QMUs. - Abstract: The paper reviews fabrication technologies and procedures applied for manufacturing of the TBM sub-components, like, HCLL and HCPB cooling plates, HCLL/HCPB stiffening plates, and HCLL/HCPB first wall and side caps. The used technologies are based on fusion and diffusion welding techniques taking into account specificities of the EUROFER-97 steel. Development of a standardized procedure complying with professional codes and standards (RCC-MRx), a preliminary fabrication/welding procedure specification (pF/WPS), is described as well as a fabrication and characterization of feasibility mock-ups (FMU) aimed at assessing the suitability of a fabrication process for fulfilling the design and fabrication specifications. Also, fabrication procedures for the TBM box assembly are presently under development through collaboration between European Fusion Laboratories and Industry for the establishment of an optimized assembly sequence/scenario and development of standardized welding procedure specifications. Selection of optimized assembly scenario takes into accounts not only the design requirements and fabrication possibilities/constraints but also maximum accessibility to the welds for sound non-destructive examination in compliance with welds classification. A future approach towards qualification of the developed fabrication technologies and procedures, through a number of medium to full-size qualification mock-ups according to European standards, is outlined before construction of the first TBMs.

  19. Tests for development of estimation technology of reactor core deformation. Report No.1: fundamental mechanical properties of wrapper tube (test report)

    Nishiura, Takeo; Shimazaki, Yuji; Horikiri, Morito

    1998-10-01

    Mechanical properties such as local contact compression stiffness, bending stiffness, deformation properties, material properties, and friction properties of a wrapper tube structure were clarified experimentally, which can be used as the basic data for development of estimation technology of reactor core deformation. Contents of the Tests data as follows: (1) Effects of load supporting boundary conditions, whether or not a contact-proof pad is attached, and length of duct, on cross section deformation of wrapper tube were made clear as the local contact compression stiffness characteristics. (2) Bending stiffness does not depend on the difference of load supporting boundary conditions. The property of cross section deformation under bending load was obtained. (3) The deformation modes and the strain distributions were obtained by the deformation tests of wrapper tube. (4) The stress-strain diagrams including plastic range under various strain variation rates were obtained by the material tests at room temperature. (5) The static and the dynamic friction coefficients by various contact angles and the contact loads between contact-proof pads of two wrapper tubes were obtained by friction property tests. (author)

  20. Design and test of 4πβ-γ coincidence measurement device based on DSP technology

    Zeng Herong; Feng Qijie; Leng Jun; Qian Dazhi; Bai Lixin; Zhang Yiyun

    2012-01-01

    The paper illustrates the hardware and software of the 4πβ-γ coincidence measurement device based on DSP technology in detail. In such device, the single-channel analyzer, gate generator, coincidence circuit and scalar in the traditional coincidence measurement device are replaced by the digital coincidence acquirer which is researched and manufactured by ourselves. Doing so, the measurement efficiency will be respectively improved, and the hardware cost will be lowered. The comparison experiment shows that the design of such device is a success. (authors)

  1. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  2. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE's goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD's RDDT and E

  3. Helicopter Flight Test of 3-D Imaging Flash LIDAR Technology for Safe, Autonomous, and Precise Planetary Landing

    Roback, Vincent; Bulyshev, Alexander; Amzajerdian, Farzin; Reisse, Robert

    2013-01-01

    Two flash lidars, integrated from a number of cutting-edge components from industry and NASA, are lab characterized and flight tested for determination of maximum operational range under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project (in its fourth development and field test cycle) which is seeking to develop a guidance, navigation, and control (GN&C) and sensing system based on lidar technology capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The flash lidars incorporate pioneering 3-D imaging cameras based on Indium-Gallium-Arsenide Avalanche Photo Diode (InGaAs APD) and novel micro-electronic technology for a 128 x 128 pixel array operating at 30 Hz, high pulse-energy 1.06 micrometer Nd:YAG lasers, and high performance transmitter and receiver fixed and zoom optics. The two flash lidars are characterized on the NASA-Langley Research Center (LaRC) Sensor Test Range, integrated with other portions of the ALHAT GN&C system from partner organizations into an instrument pod at NASA-JPL, integrated onto an Erickson Aircrane Helicopter at NASA-Dryden, and flight tested at the Edwards AFB Rogers dry lakebed over a field of human-made geometric hazards during the summer of 2010. Results show that the maximum operational range goal of 1 km is met and exceeded up to a value of 1.2 km. In addition, calibrated 3-D images of several hazards are acquired in real-time for later reconstruction into Digital Elevation Maps (DEM's).

  4. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  5. CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION

    Hammond, C; William Pepper, W

    2008-01-01

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  6. Development of control technology for HTTR hydrogen production system with mock-up test facility

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Takeda, Tetsuaki; Hayashi, Koji; Takada, Shoji; Inagaki, Yoshiyuki

    2006-01-01

    The Japan Atomic Energy Agency has been planning the demonstration test of hydrogen production with the High Temperature Engineering Test Reactor (HTTR). In a HTTR hydrogen production system (HTTR-H2), it is required to control a primary helium temperature within an allowable value at a reactor inlet to prevent a reactor scram. A cooling system for a secondary helium with a steam generator (SG) and a radiator is installed at the downstream of a chemical rector in a secondary helium loop in order to mitigate the thermal disturbance caused by the hydrogen production system. Prior to HTTR-H2, the simulation test with a mock-up test facility has been carried out to establish the controllability on the helium temperature using the cooling system against the loss of chemical reaction. It was confirmed that the fluctuations of the helium temperature at chemical reactor outlet, more than 200 K, at the loss of chemical reaction could be successfully mitigated within the target of ±10 K at SG outlet. A dynamic simulation code of the cooling system for HTTR-H2 was verified with the obtained test data

  7. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING PHASE 3 RESTRUCTURED (3R); TOPICAL

    Unknown

    1999-01-01

    In the early 90's GE recognized the need to introduce new technology to follow on to the ''F'' technology the Company introduced in 1988. By working with industry and DOE, GE helped shape the ATS program goal of demonstrating a gas turbine, combined-cycle system using natural gas as the primary fuel that achieves the following targets: system efficiency exceeding 60% lower heating value basis; environmental superiority under full-load operating conditions without the use of post-combustion emissions controls, environmental superiority includes limiting NO(sub 2) to less than 10 parts per mission by volume (dry basis) at 15% oxygen; busbar energy costs that are 10% less than current state-of-the-art turbine systems meeting the same environmental requirements; fuel-flexible designs operating on natural gas but also capable of being adapted to operate on coal-based, distillate, or biomass fuels; reliability-availability-maintainability (RAM) that is equivalent to modern advanced power generation systems; and commercial systems that could enter the market in the year 2000

  8. Cooperative transparency for nonproliferation. Technology demonstrations at the Joyo test bed for advanced remote monitoring

    Betsill, J. David; Hashimoto, Yu

    2009-01-01

    The term 'Transparency' has been used widely by many authors and practitioners for various purposes, and there is an assortment of definitions for the term. These definitions vary depending on the field in which the term is used and within the context of its usage. For the purposes of our current project on regional, cooperative nonproliferation transparency and remote monitoring, the relevant field is nuclear nonproliferation, and in this context, we define the term Cooperative Nonproliferation Transparency as: 'Providing sufficient and appropriate information to a cooperating party so that they can independently develop their own evaluation and assessment of the reviewed party regarding their consistency with nonproliferation goals.' Key aspects of cooperative nonproliferation transparency activities include mutually agreeing upon the type of information or data that will be shared, how it will be collected, and who has access to that information. The Japan Atomic Energy Agency's (JAEA) Nonproliferation Science and Technology Center (NPSTC) has been exploring the possible use, development, and application of methods and technologies for Cooperative Transparency for Nonproliferation to support regional confidence building and cooperation n the peaceful use of nuclear energy throughout the East Asia region. (author)

  9. Testing of Technology Acceptance Model on Core Banking System: A Perspective on Mandatory Use

    Burhan Suryo Ambodo

    2017-03-01

    Full Text Available This study aims to examine the acceptance of Core Banking System (CBS which is mandatory use software. The objects of this research are teller, customer service, and back office Branch of Bank BPD DIY Wonosari. Data were measured using Likert scale in five range value. A number of 49 data were analyzed using Partial Least Square (PLS. The results showed that ease of use had no positive effect on symbolic adoption; attitudes toward usage and perceived conformance has a positive effect on symbolic adoption, ease of use and perceived compatibility has no effect on attitudes towards usage. Usability, satisfaction and compatibility that are felt to positively affect attitude toward usage. In the information technology model that is mandatory use, it is important to note the symbolic adoption of information technology therefore the performance of the user (employee/employee can remain good. In particular for banking institutions that using CBS, it is important to improve the use of CBS, user satisfaction and CBS conformity with business processes, given the current banking business processes that are constantly expanding, there is no possibility of adjusting CBS to business processes at later.

  10. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2015-01-01

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system

  11. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  12. Task 4 supporting technology. Part 2: Detailed test plan for thermal seals. Thermal seals evaluation, improvement and test. CAN8-1, Reusable Launch Vehicle (RLV), advanced technology demonstrator: X-33. Leading edge and seals thermal protection system technology demonstration

    Hogenson, P. A.; Lu, Tina

    1995-01-01

    The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.

  13. An Analysis Of Tensile Test Results to Assess the Innovation Risk for an Additive Manufacturing Technology

    Adamczak Stanisław

    2015-03-01

    Full Text Available The aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was determined for three printing orientations. The results suggest that the material used to fabricate the tensile specimens shows clear anisotropy of the properties in relation to the printing direction.

  14. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  15. Aquila Remotely Piloted Vehicle System Technology Demonstration (RPV-STD) Program. Volume 3. Field Test Program

    1979-04-01

    FLIGHT TESTS Tis 8ootion sumarizes ech of the Crows Landln Flight Tests, hrm I to It Deoemiber 1975. 23 2.4.1 Flight 1 Aquila RPV 001 took off at 09.42...RC pilot In the stablied RC mode. To facilitate theme attempts, an automobile , with Its headlights on high beam, was positioned on each side of the...the vans. At approxi- mately 2 to 3 km, the actual automobile headlights would become visible. Then, the operator would attempt to reposition the RPV

  16. Technology developments for ACIGA high power test facility for advanced interferometry

    Barriga, P [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Barton, M [California Institute of Technology, LIGO Project, Pasadena, CA 91125 (United States); Blair, D G [School of Physics, University of Western Australia, Perth, WA 6009 (Australia)] [and others

    2005-05-21

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with {approx}200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented.

  17. Technology developments for ACIGA high power test facility for advanced interferometry

    Barriga, P; Barton, M; Blair, D G

    2005-01-01

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with ∼200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented

  18. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  19. Proceedings of the Technology Roadmap Workshop on Communication and Control Systems for Distributed Energy Implementation and Testing

    none,

    2002-05-01

    More than 50 experts from energy and information technology industries, Federal and State government agencies, universities, and National Laboratories participated in the “Communication and Control Systems for Distributed Energy Implementation and Testing Workshop” in Reston, Virginia, on May 14-15, 2002. This was a unique workshop in that, for the first time, representatives from the information technology sector and those from energy-related industries, Federal and State government agencies, universities, and National Laboratories, gathered to discuss these issues and develop a set of action-oriented implementation strategies. A planning committee of industry, consultant, and government representatives laid the groundwork for the workshop by identifying key participants and developing an appropriate agenda. This document reflects the ideas and priorities discussed by workshop participants.

  20. Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis, Yersinia pestis, and Burkholderia pseudomallei by Use of Laser Light Scattering Technology.

    Bugrysheva, Julia V; Lascols, Christine; Sue, David; Weigel, Linda M

    2016-06-01

    Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials. Results were available in 10 h of incubation. Use of laser scattering technology decreased the time required to determine antimicrobial susceptibility by 50% to 75% for B. anthracis, Y. pestis, and B. pseudomallei compared to conventional methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: CLEAN DIESEL TECHNOLOGIES FUEL-BORNE CATALYST WITH MITSUI/PUREARTH CATALYZED WIRE MESH FILTER

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with Mitsui/PUREarth Catalyzed Wire Mesh Filter manufactured by Clean Diesel Technologies, Inc. The technology is a platinum/cerium fuel-borne catalyst in commerci...

  3. Technology-assisted self-testing and management of oral anticoagulation therapy: a qualitative patient-focused study.

    Kuljis, Jasna; Money, Arthur G; Perry, Mark; Barnett, Julie; Young, Terry

    2017-09-01

    Oral anticoagulation therapy requires regular blood testing to ensure therapeutic levels are maintained and excessive bleeding/clotting is avoided. Technology-assisted self-testing and management is seen as one of the key areas in which quality of care can be improved whilst reducing costs. Nevertheless, levels of patient engagement in self-testing and management remain low. To date, little research emphasis has been placed on understanding the patients' perspectives for low engagement. The typical approach adopted by healthcare providers is to provide patient education programmes, with the expectation that individual patients will change their behaviour and adopt new self-care strategies. However, if levels of patient engagement are to be increased, healthcare providers must also develop a better understanding of how their clinical service provision is perceived by patients and make adaptations. To explore patient views, needs and expectations of an anticoagulation service and the self-testing and management services provided. Interviews were conducted with 17 patients who currently engage in international normalised ratio (INR) self-testing and management. Thematic coding and analysis were carried out on the interview transcripts. Four high-level themes emerged from interviews: (i) role of clinic, (ii) motivations for self-testing, (iii) managing INR and (iv) trust. The clinic was seen as adding value in terms of specifying testing frequency, dosage profiles and calibrating equipment. Prompt communication from clinic to patient was also valued, although more personalised/real-time communication would help avoid feelings of isolation. Patients felt more in control as self-tester/managers and often took decisions about treatment adjustments themselves. However, some also manipulated their own test results to avoid 'unnecessary' interventions. More personalised/real-time communication, pragmatic and collaborative patient-clinician partnerships and recognition of

  4. Proceedings of the 1984 international meeting on Reduced Enrichment for Research and Test Reactors. Base technology

    1985-07-01

    More than 40 papers were presented at this RERTR Meeting during the following sessions: Status of RERTR programs and licensing procedures; LEU fuel element development; fuel fabrication and testing; economics; mixed reactor cores; and applications, i.e. neutronics and thermal hydraulics design of upgraded reactors, with new LEU fuel, fuel cycle studies, feasibility and safety analyses

  5. Development of an End-plug Welding Technology for an Instrumented Fuel Irradiation Test

    Kim, Soo Sung; Lee, Chul Yong; Shin, Yoon Taek; Choo, Kee Nam

    2010-01-01

    The irradiation test of end-plug specimens was planned for the evaluation of nuclear fuels performance. To establish the fabrication process, and for satisfying the requirements of the irradiation test, an orbital-GTA weld machine for the specimens of the dual rods was developed, and the preliminary welding experiments for optimizing the process conditions of the specimens of the dual rods were performed. Dual rods with a 9.5mm diameter and a 0.6mm wall thickness of the cladding tubes and end-plugs have been used and the optimum conditions of the pin-hole welding have also been selected. This paper describes the experimental results of the GTA welds of the specimens of the dual rods and the metallography examinations of the GTA welded specimens for various welding conditions for the instrumented fuel irradiation test. These investigations satisfied the requirements of the instrumented irradiation test and the GTA welds for the specimens of the dual rods at the HANARO research reactor

  6. A comparison of usability methods for testing interactive health technologies: Methodological aspects and empirical evidence

    Jaspers, Monique W. M.

    2009-01-01

    OBJECTIVE: Usability evaluation is now widely recognized as critical to the success of interactive health care applications. However, the broad range of usability inspection and testing methods available may make it difficult to decide on a usability assessment plan. To guide novices in the

  7. Proceedings of the 1984 international meeting on Reduced Enrichment for Research and Test Reactors. Base technology

    NONE

    1985-07-01

    More than 40 papers were presented at this RERTR Meeting during the following sessions: Status of RERTR programs and licensing procedures; LEU fuel element development; fuel fabrication and testing; economics; mixed reactor cores; and applications, i.e. neutronics and thermal hydraulics design of upgraded reactors, with new LEU fuel, fuel cycle studies, feasibility and safety analyses.

  8. Evaluation of a Proposed Drift Reduction Technology High-Speed Wind Tunnel Testing Protocol

    2009-03-01

    05: “Standard Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Nonimaging Light- Scattering Instruments” 15...Method for Determining Liquid Drop Size Characteris- tics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards

  9. Use of Information and Communication Technologies in Sign Language Test Development: Results of an International Survey

    Haug, Tobias

    2015-01-01

    Sign language test development is a relatively new field within sign linguistics, motivated by the practical need for assessment instruments to evaluate language development in different groups of learners (L1, L2). Due to the lack of research on the structure and acquisition of many sign languages, developing an assessment instrument poses…

  10. Rapid diagnostic testing for community-acquired pneumonia: can innovative technology for clinical microbiology be exploited?

    Yu, Victor L; Stout, Janet E

    2009-12-01

    Two nonsynchronous events have affected the management of community-acquired pneumonia (CAP): spiraling empiricism for CAP and the "golden era" of clinical microbiology. The development of broad-spectrum antibiotics has led to widespread empiric use without ascertaining the etiology of the infecting microbe. Unfortunately, this approach clashes with the second event, which is the advent of molecular-based microbiology that can identify the causative pathogen rapidly at the point of care. The urinary antigen is a most effective rapid test that has allowed targeted therapy for Legionnaire disease at the point of care. The high specificity (> 90%) allows the clinician to administer appropriate anti-Legionella therapy based on a single rapid test; however, its low sensitivity (76%) means that a notable number of cases of Legionnaire disease will go undiagnosed if other tests, especially culture, are not performed. Further, culture for Legionella is not readily available. If a culture is not performed, epidemiologic identification of the source of the bacterium cannot be ascertained by molecular fingerprinting of the patient and the putative source strain. We recommend resurrection of the basic principles of infectious disease, which are to identify the microbial etiology of the infection and to use narrow, targeted antimicrobial therapy. To reduce antimicrobial overuse with subsequent antimicrobial resistance, these basic principles must be applied in concert with traditional and newer tests in the clinical microbiology laboratory.

  11. Technology Solutions Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles

    None

    2015-11-01

    This case study by the U.S. Department of Energy’s Building America research team Building Science Corporation is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, Florida; zone 2A), insulated with air-permeable insulation (netted and blown fiberglass).

  12. Exploring High School Students Beginning Reasoning about Significance Tests with Technology

    García, Víctor N.; Sánchez, Ernesto

    2017-01-01

    In the present study we analyze how students reason about or make inferences given a particular hypothesis testing problem (without having studied formal methods of statistical inference) when using Fathom. They use Fathom to create an empirical sampling distribution through computer simulation. It is found that most student´s reasoning rely on…

  13. Measuring Japanese EFL Student Perceptions of Internet-Based Tests with the Technology Acceptance Model

    Dizon, Gilbert

    2016-01-01

    The Internet has made it possible for teachers to administer online assessments with affordability and ease. However, little is known about Japanese English as a Foreign Language (EFL) students' attitudes of internet-based tests (IBTs). Therefore, this study aimed to measure the perceptions of IBTs among Japanese English language learners with the…

  14. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  15. Animal testing, 3R models and regulatory acceptance : Technology transition in a risk-averse context

    Schiffelers, M.J.W.A.

    2016-01-01

    Risk avoidance has resulted in a broad range of regulations to guarantee the safety of products such as pharmaceuticals and chemicals. Many of these regulations rely on animal tests. About 3 million laboratory animals are used annually in Europe to meet such regulatory requirements.Regulatory animal

  16. Dynamic testing for radiation induced failures in a standard CMOS submicron technology pixel front-end

    Venuto, D. de; Corsi, F.; Ohletz, M.J.

    1999-01-01

    A testing method for the detection of performance degradation induced by high-dose irradiation in high-energy experiments has been developed. The method used is based on a fault signature generation defined on the basis of the state-space analysis for linear circuits. By sampling the response of the circuit under test (CUT) to a single rectangular pulse, a set of parameters α are evaluated which are functions of the circuit singularities and constitute a signature for the CUT. Amplitude perturbations of these parameters engendered by element drift failure indicate a possible faulty condition. The effects of radiation induced faults in the analogue CMOS front-end of a silicon pixel detector employed in high energy physics experiments has been investigated. The results show that, even for the 800 krad dose, the test devised is able to detect the degradation of the amplifier performances. The results show also that hardened devices do not necessarily produce high circuit immunity to radiation and the proposed test method provides a mean to detect these performance deviations and to monitor them during the operating life of the chip. (A.C.)

  17. Persuasive technology in teaching acute pain assessment in nursing: Results in learning based on pre and post-testing.

    Alvarez, Ana Graziela; Dal Sasso, Grace T Marcon; Iyengar, M Sriram

    2017-03-01

    Thousands of patients seek health services every day with complaints of pain. However, adequate pain assessment is still flawed, a fact that is partly related to gaps in professional learning on this topic. Innovative strategies such as the use of a virtual learning object mediated by persuasive technology in the learning of undergraduate nursing students can help to fill these gaps and to provide different ways of learning to learn. To evaluate the results in learning among undergraduate nursing students about assessment of acute pain in adults and newborns, before and after an online educational intervention. This is a quasi-experimental, non-equivalent study using pre-and post-testing. Federal University of Santa Catarina, Brazil. 75 undergraduate nursing students. Our study was conducted in three steps (pre-test, education intervention, post-test). Data were collected from November 2013 to February 2014. The educational intervention was performed using online access to virtual learning object about acute pain assessment, which students accessed on their mobile devices. A significant difference was seen in student learning (ptechnology and method applied. The use of persuasive technology such as small mobile devices as mediators of online educational interventions broadens learning spaces in an innovative, flexible, motivational, and promising manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  19. The Prestressed Track Beam Testing Technology of Shanghai Electromagnetic Levitation Train

    Qing-biao WANG

    2013-07-01

    Full Text Available Shanghai electromagnetic levitation train (maglev is the first one that is constructed and operated commercially in the world. Many technological problems have to be tackled during its construction, and the most difficult problem in the civil engineering part is the making of prestressed track beam. It requires high precision because of its special function. The stretching control of the pre-tensioning force and the post-tensioning force in the making of prestressed track beam is most important during the construction. This paper introduces and analyses the technical features of vibrating wire sensors as well as the development, the research and the application of force sensor for pulling force measurement of anchor cable.

  20. Accelerator Magnet Quench Heater Technology and Quality Control Tests for the LHC High Luminosity Upgrade

    AUTHOR|(CDS)2132435; Seifert, Thomas

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) foresees the installation of new superconducting Nb$_{3}$Sn magnets. For the protection of these magnets, quench heaters are placed on the magnet coils. The quench heater circuits are chemically etched from a stainless steel foil that is glued onto a flexible Polyimide film, using flexible printed circuit production technology. Approximately 500 quench heaters with a total length of about 3000 m are needed for the HL-LHC magnets. In order to keep the heater circuit electrical resistance in acceptable limits, an approximately 10 µm-thick Cu coating is applied onto the steel foil. The quality of this Cu coating has been found critical in the quench heater production. The work described in this thesis focuses on the characterisation of Cu coatings produced by electrolytic deposition, sputtering and electron beam evaporation. The quality of the Cu coatings from different manufacturers has been assessed for instance by ambient temperature electrica...

  1. Development of neutron fluence measurement and evaluation technology for the test materials in the capsule

    Hong, U.; Choi, S. H.; Kang, H. D. [Kyungsan University, Kyungsan (Korea)

    2000-03-01

    The four kinds of the fluence monitor considered by self-shielding are design and fabricated for evaluation of neutron irradiation fluence. They are equipped with dosimeters consisting of Ni, Fe and Ti wires and so forth. The nuclear reaction rate is obtained by measurement on dosimeter using the spectroscopic analysis of induced {gamma}-ray. We established the nuetron fluence evaluating technology that is based on the measurement of the reaction rate considering reactor's irradiation history, burn-out, self-shielding in fluence monitor, and the influence of impurity in dosimeter. The distribution of high energy neutron flux on the vertical axis of the capsule shows fifth order polynomial equation and is good agree with theoretical value in the error range of 30% by MCNP/4A code. 22 refs., 50 figs., 27 tabs. (Author)

  2. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  3. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test.

    Steenhaut, Kevin; Lapage, Koen; Bové, Thierry; De Hert, Stefan; Moerman, Annelies

    2017-12-01

    An increasing number of NIRS devices are used to provide measurements of peripheral tissue oxygen saturation (S t O 2 ). The aim of the present study is to test the hypothesis that despite technological differences between devices, similar trend values will be obtained during a vascular occlusion test. The devices compared are NIRO-200NX, which measures S t O 2 and oxyhemoglobin by spatially resolved spectroscopy and the Beer-Lambert law, respectively, and INVOS 5100C and Foresight Elite, which both measure S t O 2 with the Beer-Lambert law, enhanced with the spatial resolution technique. Forty consenting adults scheduled for CABG surgery were recruited. The respective sensors of the three NIRS devices were applied over the brachioradial muscle. Before induction of anesthesia, 3 min of ischemia were induced by inflating a blood pressure cuff at the upper arm, whereafter cuff pressure was rapidly released. Tissue oxygenation measurements included baseline, minimum and maximum values, desaturation and resaturation slopes, and rise time. Comparisons between devices were performed with the Kruskal-Wallis test with post hoc Mann-Whitney pairwise comparisons. Agreement was evaluated using Bland-Altman plots. Oxyhemoglobin measured with NIRO responded faster than the other NIRS technologies to changes in peripheral tissue oxygenation (20 vs. 27-40 s, p ≤ 0.01). When comparing INVOS with Foresight, oxygenation changes were prompter (upslope 311 [92-523]%/min vs. 114[65-199]%/min, p ≤ 0.01) and more pronounced (minimum value 36 [21-48] vs. 45 [40-51]%, p ≤ 0.01) with INVOS. Significant differences in tissue oxygen saturation measurements were observed, both within the same device as between different devices using the same measurement technology.

  4. Small-scale and large-scale testing of photo-electrochemically activated leaching technology in Aprelkovo and Delmachik Mines

    Sekisov, AG; Lavrov, AYu; Rubtsov, YuI

    2017-02-01

    The paper gives a description of tests and trials of the technology of heap gold leaching from rebellious ore in Aprelkovo and Delmachik Mines. Efficiency of leaching flowsheets with the stage-wise use of activated solutions of different reagents, including active forms of oxygen, is evaluated. Carbonate-peroxide solutions are used at the first stage of leaching to oxidize sulfide and sulfide-arsenide ore minerals to recover iron and copper from them. The second stage leaching uses active cyanide solutions to leach encapsulated and disperse gold and silver.

  5. Verification of the machinery condition monitoring technology by fault simulation tests

    Maehara, Takafumi; Watanabe, Yukio; Osaki, Kenji; Higuma, Koji; Nakano, Tomohito

    2009-01-01

    This paper shows the test items and equipments introduced by Japan Nuclear Energy Safety Organization to establish the monitoring technique for machinery conditions. From the result of vertical pump simulation tests, it was confirmed that fault analysis was impossible by measuring the accelerations on both motor and pump column pipes, however, was possible by measuring of pump shaft vibrations. Because hydraulic whirls by bearing wear had significant influences over bearing misalignments and flow rates, the monitoring trends must be done under the same condition (on bearing alignments and flow rates). We have confirmed that malfunctions of vertical pumps can be diagnosed using measured shaft vibration by ultrasonic sensors from outer surface of pump casing on the floor. (author)

  6. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  7. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form

  8. Scientific and technological basis for maintenance optimization, planning, testing and monitoring for NPP with WWER

    Kovrizhkin, Yu.L.; Skalozubov, V.I.; Kochneva, V.Yu.

    2009-01-01

    The main results of the developments in the sphere of NPPs with WWER production efficiency increasing by the way of the maintenance optimization planning, testing and monitoring of the equipment and systems are shown. The attention is paid to the metal control during maintenance period of Power Unit. The realization methods of the transition concept at the repair according to the technical condition are resulted

  9. Study on environmental test technology of LiDAR used for vehicle

    Wang, Yi; Yang, Jianfeng; Ou, Yong

    2018-03-01

    With the development of intelligent driving, the LiDAR used for vehicle plays an important role in it, in some extent LiDAR is the key factor of intelligent driving. And environmental adaptability is one critical factor of quality, it relates success or failure of LiDAR. This article discusses about the environment and its effects on LiDAR used for vehicle, it includes analysis of any possible environment that vehicle experiences, and environmental test design.

  10. Test results from the GA technologies engineering-scale off-gas treatment system

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1984-06-01

    One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO 2 , CO, O 2 , and SO 2 . The BOG system employs components designed to remove these constitutents. Test results are reported for the iodine and SO 2 adsorbers and the CO/HT oxidizer. Silver-based iodine adsorbents were found to catalyze the premature conversion of CO to CO 2 . Subsequent tests showed that iodine removal could not be performed downstream of the CO/HT oxidizer since iodine in the BOG system rapidly deactivated the Pt-coated alumina CO catalyst. Lead-exchanged zeolite (PbX) was found to be an acceptable alternative for removing iodine from BOG without CO conversion. Intermittent and steady-state tests of the pilot-plant SO 2 removal unit containing sodium-exchanged zeolite (NaX) demonstrated that decontamination factors greater than or equal to 100 could be maintained for up to 50 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system at GA, iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO 3 -impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective

  11. Deep n-well MAPS in a 130 nm CMOS technology: Beam test results

    Neri, N.; Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A.; Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Paoloni, E.; Piendibene, M.

    2010-01-01

    We report on recent beam test results for the APSEL4D chip, a new deep n-well MAPS prototype with a full in-pixel signal processing chain obtained by exploiting the triple well option of the CMOS 0.13μm process. The APSEL4D chip consists of a 4096 pixel matrix (32 rows and 128 columns) with 50x50μm 2 pixel cell area, with custom readout architecture capable of performing data sparsification at pixel level. APSEL4D has been characterized in terms of charge collection efficiency and intrinsic spatial resolution under different conditions of discriminator threshold settings using a 12 GeV/c proton beam in the T9 area of the CERN PS. We observe a maximum hit efficiency of 92% and we estimate an intrinsic resolution of about 14μm. The data driven approach of the tracking detector readout chips has been successfully used to demonstrate the possibility to build a Level 1 trigger system based on associative memories. The analysis of the beam test data is critically reviewed along with the characterization of the device under test.

  12. Improvement of the CULTEX® exposure technology by radial distribution of the test aerosol.

    Aufderheide, Michaela; Heller, Wolf-Dieter; Krischenowski, Olaf; Möhle, Niklas; Hochrainer, Dieter

    2017-07-05

    The exposure of cellular based systems cultivated on microporous membranes at the air-liquid interface (ALI) has been accepted as an appropriate approach to simulate the exposure of cells of the respiratory tract to native airborne substances. The efficiency of such an exposure procedure with regard to stability and reproducibility depends on the optimal design at the interface between the cellular test system and the exposure technique. The actual exposure systems favor the dynamic guidance of the airborne substances to the surface of the cells in specially designed exposure devices. Two module types, based on a linear or radial feed of the test atmosphere to the test system, were used for these studies. In our technical history, the development started with the linear designed version, the CULTEX ® glass modules, fulfilling basic requirements for running ALI exposure studies (Mohr and Durst, 2005). The instability in the distribution of different atmospheres to the cells caused us to create a new exposure module, characterized by a stable and reproducible radial guidance of the aerosol to the cells. The outcome was the CULTEX ® RFS (Mohr et al., 2010). In this study, we describe the differences between the two systems with regard to particle distribution and deposition clarifying the advantages and disadvantages of a radial to a linear aerosol distribution concept. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. USE OF PERFLUOROCARBON TRACER (PFT) TECHNOLOGY FOR SUBSURFACE BARRIER INTEGRITY VERIFICATION AT THE WALDO TEST SITE

    SULLIVAN,T.; HEISER,J.; SENUM,G.; MILLIAN,L.

    2000-02-27

    Researchers from Brookhaven National Laboratory (BNL) tested perfluorocarbon (PFT) gas tracers on a subsurface barrier with known flaws at the Waldo test facility [operated by Science and Engineering Associates, Inc (SEA)]. The tests involved the use of five unique PFT tracers with a different tracer injected along the interior of each wall of the barrier. A fifth tracer was injected exterior to the barrier to examine the validity of diffusion controlled transport of the PFTs. The PFTs were injected for three days at a nominal flow rate of 15 cm{sup 3}/min and a concentrations in the range of a few hundred ppm. Approximately 65 liters of air laced with tracer was injected for each tracer. The tracers were able to accurately detect the presence of the engineered flaws. Two flaws were detected on the north and east walls and lane flaw was detected on the south and west walls. In addition, one non-engineered flaw at the seam between the north and east walls was also detected. The use of multiple tracers provided independent confirmation of the flaws and permitted a distinction between tracers arriving at a monitoring port after being released from a nearby flaw and non-engineered flaws. The PFTs detected the smallest flaw, 0.5 inches in diameter. Visual inspection of the data showed excellent agreement with the known flaw locations and the relative size of the flaws was accurately estimated.

  14. PIE technology on mechanical tests for HTTR core component and structural materials developed at Research Hot Laboratory

    Kizaki, Minoru; Honda, Junichi; Usami, Kouji; Ouchi, Asao; Oeda, Etsuro; Matsumoto, Seiichiro

    2001-02-01

    The high temperature engineering test reactor (HTTR) with the target operation temperature of 950degC established the first criticality on November, 1998 based on a large amount of R and D results on fuel and materials. In such R and D works, the development of reactor materials are one of the key issues from the view point of reactor environments such as extremely high temperature, neutron irradiation and so on for the HTTR. The Research Hot Laboratory (RHL) had carried out much kind of post irradiation examinations (PIEs) on core component and pressure vessel materials for during more than a quarter century. And obtained data played an important role in development, characterization and licensing of those materials for the HTTR. This paper describes the PIE technology developed at RHL and typical results on mechanical tests such as elevated temperature tensile and creep rupture tests for Hasteloy-X, Incolloy 800H and so on, and Charpy impact, J IC fracture toughness, K Id fracture toughness and small punch tests for normalized and tempered 2 1/4Cr-1Mo steel from historical view. In addition, an electrochemical test technique established for investigating the irradiation embrittlement mechanism on 2 1/4Cr-1Mo steel is also mentioned. (author)

  15. Do rapid 'superbug' tests pay off? Balance the costs and benefits of leading-edge technology. Interview by Alan Joch.

    Morgan, Margie Ann

    2009-02-01

    As hospitals become increasingly sensitive to the health and financial consequences of health care-associated infections (HAIs), a new generation of molecular-based testing technologies promises to significantly shorten the time required to identify "superbugs" and other bacterial infections. The leading-edge techniques promise to reduce costs by helping hospitals quickly determine which patients to isolate because they carry active methicillin-resistant Staphylococcus aureus (MRSA) infections, for example, or which ones to release from prophylactic isolation because they ultimately tested negative for a dangerous infection. But diagnostic speed comes at a price--the costs to perform molecular tests are significantly higher than conventional methods. This challenges hospitals to balance health care expenses with medical efficacy, says molecular testing veteran Margie Morgan, Ph.D., scientific director at Cedars-Sinai Medical Center, Los Angeles. "The rapid methods can be extreme time savers and possibly help a great deal with the isolation of patients. But some of the tests may cost five times what manual methods might be, so there is a price for seeing so much of a reduction in time," she says.

  16. Research of built-in self test technology on cable-free self-positioning seismograph

    Huaizhu, Z.; Lin, J.; Chen, Z.; Zhang, L.; Yang, H.; Zheng, F.

    2011-12-01

    Cable-free self-positioning seismograph is the key instrument and equipment required for deep seismic exploration in China. In order to measure the performance of seismic data acquisition systems whether meet exploration requirements , to ensure the accuracy of seismic data, and to ensure equipment reliability and stability, a built-in self test solution of the cable-free self-positioning seismic recorder is provided. Within a 24-bits Σ-Δ DAC, the seismograph can produce sine, step, pulse and other high-precision analog test signal, with dynamic range of 120dB or more, through the FPGA to control the analog multiplexer switching the input signal acquisition channels, and start the 24-bit Σ-Δ ADC in the instrument internal simultaneously to acquisition the test signal data, carries on the fast Fournier transformation by instrument internal CPU, to achieve the instrument of analysis and calculation of performance indicators, including: the equivalent noise and drift, common mode rejection ratio (CMRR), crosstalk, harmonic distortion, dynamic range, channel response consistency, detector impulse response , etc. A lot of testing experiments about the various parameters were performed and studied currently. By setting different sampling rate (1Hz, 5Hz, ..., 4kHz), each of the measurement system noise level was measured, and the maximum noise is about 0.5μV; the crosstalk between channels was tested using the 31.25Hz sine wave, the result is more than-120dB with sampling rate of 1kHz; the harmonic distortion was measured by adding the high-precision sine wave signals of different frequencies, such as 500Hz, 250 Hz, 125 Hz, 62.5 Hz, 31.25 Hz, 15.625 Hz, 7.812 Hz, 3.90625Hz, etc. the calculated results is in-118dB or more. The experimental results show that, the parameters of the cable-free self-positioning of the seismic recorder meet the technical requirements for the deep exploration, compared to the corresponding parameters with the 428XL seismograph of the French

  17. Test

    Bendixen, Carsten

    2014-01-01

    Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....

  18. Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE

    Stern, Theodore G.; Lyons, John

    2000-01-01

    A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.

  19. Air quality monitoring in the Canadian oil sands. Tests of new technology

    Platt, Ulrich; Seitz, Katja; Buxmann, Joelle [Heidelberg Univ. (Germany). Inst. of Environmental Physics; Thimm, Harald F. [Thimm Petroleum Technologies Inc., Calgary (Canada)

    2012-12-15

    Modern bitumen recovery processes, such as Steam Assisted Gravity Drainage (SAGD), minimize the environmental footprint of oil recovery in terms of land disturbance and water demands. However, as a corollary, air monitoring becomes more difficult. In particular air quality monitoring for sulphur and nitrogen oxides, as currently practiced, suffers from significant limitations in remote regions, such as the Canadian Oil Sands Areas. Current techniques require the placement of monitoring trailers in accessible locations, but the electrical power or even access for optimal location for trailers is not always given. In addition, the trailers are capable of monitoring air quality only at the location of their deployment. There would be an advantage in deploying monitoring techniques that require minimal power (e.g. car battery, solar cell) and are capable of measuring air quality at a distance from the place of deployment. In the autumn of 2008, a trial of DOAS (Differential Optical Absorption Spectroscopy) was undertaken in Northern Alberta and Northern Saskatchewan, at four SAGD plants in various stages of development. Results of this study, and a discussion of the technology, will be given. Advantages and limitations of DOAS for deployment in Athabasca will be discussed. In general it was found that SO{sub 2} results showed remarkably low degrees of contamination, while NO{sub 2} concentrations were more noticeable. (orig.)

  20. Heavy-Section Steel Technology Program intermediate-scale pressure vessel tests

    Bryan, R.H.; Merkle, J.G.; Smith, G.C.; Whitman, G.D.

    1977-01-01

    The tests of intermediate-size vessels with sharp flaws permitted the comparison of experimentally observed behavior with analytical predictions of the behavior of flawed pressure vessels. Fracture strains estimated by linear elastic fracture mechanics (LEFM) were accurate in the cases in which the flaws resided in regions of high transverse restraint and the fracture toughness was sufficiently low for unstable fracture to occur prior to yielding through the vessel wall. When both of these conditions were not present, unstable fracture did occur, always preceded by stable crack growth; and the cylinders with flaws initially less than halfway through the wall attained gross yield prior to burst. Predictions of failure pressure of the vessels with flawed nozzles, based upon LEFM estimates of failure strain, were very conservative. LEFM calculations of critical load were based upon small-specimen fracture toughness test data. Whenever gross yielding preceded failure, the actual strains achieved were considerably greater than the estimated strains at failure based on LEFM. In such cases the strength of the vessel may be no longer dependent upon plane-strain fracture toughness but upon the capacity of the cracked section to carry the imposed load stably in the plastic range. Stable crack growth, which has not been predictable quantitatively, is an important factor in elastic-plastic analysis of strength. The ability of the flawed vessels to attain gross yield in unflawed sections has important qualitative implications on pressure vessel safety margins. The gross yield condition occurs in light-water-reactor pressure vessels at about 2 x design pressure. The intermediate vessel tests that demonstrated a capacity for exceeding this load confirm that the presumed margin of safety is not diminished by the presence of flaws of substantial size, provided that material properties are adequate

  1. A comparison of usability methods for testing interactive health technologies: methodological aspects and empirical evidence.

    Jaspers, Monique W M

    2009-05-01

    Usability evaluation is now widely recognized as critical to the success of interactive health care applications. However, the broad range of usability inspection and testing methods available may make it difficult to decide on a usability assessment plan. To guide novices in the human-computer interaction field, we provide an overview of the methodological and empirical research available on the three usability inspection and testing methods most often used. We describe two 'expert-based' and one 'user-based' usability method: (1) the heuristic evaluation, (2) the cognitive walkthrough, and (3) the think aloud. All three usability evaluation methods are applied in laboratory settings. Heuristic evaluation is a relatively efficient usability evaluation method with a high benefit-cost ratio, but requires high skills and usability experience of the evaluators to produce reliable results. The cognitive walkthrough is a more structured approach than the heuristic evaluation with a stronger focus on the learnability of a computer application. Major drawbacks of the cognitive walkthrough are the required level of detail of task and user background descriptions for an adequate application of the latest version of the technique. The think aloud is a very direct method to gain deep insight in the problems end users encounter in interaction with a system but data analyses is extensive and requires a high level of expertise both in the cognitive ergonomics and in computer system application domain. Each of the three usability evaluation methods has shown its usefulness, has its own advantages and disadvantages; no single method has revealed any significant results indicating that it is singularly effective in all circumstances. A combination of different techniques that compliment one another should preferably be used as their collective application will be more powerful than applied in isolation. Innovative mobile and automated solutions to support end-user testing have

  2. Radioactive Waste Treatment and Conditioning Using Plasma Technology Pilot Plant: Testing and Commissioning

    Rafizi Salihuddin; Rohyiza Baan; Norasalwa Zakaria

    2016-01-01

    Plasma pilot plant was commissioned for research and development program on radioactive waste treatment. The plant is equipped with a 50 kW direct current of non-transferred arc plasma torch which mounted vertically on top of the combustion chamber. The plant also consists of a dual function chamber, a water cooling system, a compress air supply system and a control system. This paper devoted the outcome after testing and commissioning of the plant. The problems arise was discussed in order to find the possible suggestion to overcome the issues. (author)

  3. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  4. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data

  5. Sodium technology. 1 - FFTF support work: friction tests, January-March 1974

    Kurzeka, W.J.; Oliva, R.M.; Horton, P.

    1974-01-01

    The objective of this program is to conduct friction screening tests in an environment of high-temperature, high-purity liquid sodium or sodium vapor to: (1) develop backup materials, processes, and vendors for core component wear pads, (2) investigate material treatments and coatings for improvement of wear behavior of common LMFBR structural materials, (3) evaluate weld-deposited hardfacings and/or prefabricated bearing materials for use in long-term, high-temperature, high-fluence regions, (4) evaluate bearing materials with a low potential for change in surface composition due to corrosion or mass transfer effects, and (5) develop statistical confidence in friction values for selected material combinations

  6. Point-of-Care Hemoglobin/Hematocrit Testing: Comparison of Methodology and Technology.

    Maslow, Andrew; Bert, Arthur; Singh, Arun; Sweeney, Joseph

    2016-04-01

    Point-of-care (POC) testing allows rapid assessment of hemoglobin (Hgb) and hematocrit (Hct) values. This study compared 3 POC testing devices--the Radical-7 pulse oximeter (Radical-7, Neuchȃtel, Switzerland), the i-STAT (Abbott Point of Care, Princeton, NJ), and the GEM 4000 (Instrumentation Laboratory, Bedford, MA)--to the hospital reference device, the UniCel DxH 800 (Beckman Coulter, Brea, CA) in cardiac surgery patients. Prospective study. Tertiary care cardiovascular center. Twenty-four consecutive elective adult cardiac surgery patients. Hgb and Hct values were measured using 3 POC devices (the Radical-7, i-STAT, and GEM 4000) and a reference laboratory device (UniCel DxH 800). Data were collected simultaneously before surgery, after heparin administration, after heparin reversal with protamine, and after sternal closure. Data were analyzed using bias analyses. POC testing data were compared with that of the reference laboratory device. Hgb levels ranged from 6.8 to 15.1 g/dL, and Hct levels ranged from 20.1% to 43.8%. The overall mean bias was lowest with the i-STAT (Hct, 0.22%; Hgb 0.05 g/dL) compared with the GEM 4000 (Hct, 2.15%; Hgb, 0.63 g/dL) and the Radical-7 (Hgb 1.16 g/dL). The range of data for the i-STAT and Radical-7 was larger than that with the GEM 4000, and the pattern or slopes changed significantly with the i-STAT and Radical-7, whereas that of the GEM 4000 remained relatively stable. The GEM 4000 demonstrated a consistent overestimation of laboratory data, which tended to improve after bypass and at lower Hct/Hgb levels. The i-STAT bias changed from overestimation to underestimation, the latter in the post-cardiopulmonary bypass period and at lower Hct/Hgb levels. By contrast, the Radical-7 biases increased during the surgical procedure and in the lower ranges of Hgb. Important clinical differences and limitations were found among the 3 POC testing devices that should caution clinicians from relying on these data as sole determinants of

  7. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  8. A virtual test of screening technology based on the AGEIA PhysX

    Ai-min Li; Rui-ling Lv; Chu-sheng Liu [China University of Mining and Technology, Xuzhou (China). School of Mechanical and Electrical Engineering

    2008-06-15

    The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software, the MAXScript scripting language and the AGEIA PhysX physics processing unit (PPU). The affect of various parameters on screening efficiency were modeled. The parameters included vibration amplitude, frequency and direction. The length and inclination of the vibrating surface were also varied. The virtual experiment is in basic agreement with results predicted from screening theory. This shows that the virtual screener can be used for preliminary investigations and the results used to evaluate screen design. In addition it can help with theoretical research. 11 refs., 7 figs., 7 tabs.

  9. A field test of a waste containment technology using a new generation of injectable barrier liquids

    Moridis, G.; Apps, J.; Persoff, P.; Myer, L.; Muller, S.; Pruess, K.; Yen, P.

    1996-08-01

    A first stage field injection of a new generation of barrier liquids was successfully completed. Two types of barrier liquids, colloidal silica (CS) and polysiloxane (PSX), were injected into heterogeneous unsaturated deposits of sand, silt, and gravel typical of many of the arid DOE cleanup sites and particularly analogous to the conditions of the Hanford Site. Successful injection by commercially available chemical grouting equipment and the tube-a-manchette technique was demonstrated. Excavation of the grout bulbs permitted visual evaluation of the soil permeation by the grout, as well as sample collection. Both grouts effectively permeated all of the formation. The PSX visually appeared to perform better, producing a more uniform and symmetric permeation regardless of heterogeneity, filling large as well as small pores and providing more structural strength than the CS. Numerical simulation of the injection tests incorporated a stochastic field to represent site heterogeneity and was able to replicate the general test behavior. Tiltmeters were used successfully to monitor surface displacements during grout injection

  10. Electrodynamic levitated train. Erlangen large-scale test plant is being converted to long stator technology

    Muckelberg, E

    1976-10-01

    The development work for a future high-power fast train have been marked for years by the competition of two magnetic levitation systems, i.e., the electrodynamic levitation system (EDS) with superconducting magnets and the electromagnetic levitation system (EMS). The present study particularly deals with the EDS system. The vehicle is driven by a linear motor. The levitation height is between 10 cm and 30 cm without any complicated control in the EDS system. The disadvantage with this system, however, is that a starting and landing device is needed as a certain starting speed is required before the levitation process fully begins. The first levitation tests were possible on a round course at the beginning of May 1976. A second test stand is being put into operation at present. The first results are reported. Finally, possible development trends are indicated. It seems possible that the end project 'high-power fast train' will be a combination of the EMS and EDS systems.

  11. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  12. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  13. Getting a technology-based diabetes intervention ready for prime time: a review of usability testing studies.

    Lyles, Courtney R; Sarkar, Urmimala; Osborn, Chandra Y

    2014-10-01

    Consumer health technologies can educate patients about diabetes and support their self-management, yet usability evidence is rarely published even though it determines patient engagement, optimal benefit of any intervention, and an understanding of generalizability. Therefore, we conducted a narrative review of peer-reviewed articles published from 2009 to 2013 that tested the usability of a web- or mobile-delivered system/application designed to educate and support patients with diabetes. Overall, the 23 papers included in our review used mixed (n = 11), descriptive quantitative (n = 9), and qualitative methods (n = 3) to assess usability, such as documenting which features performed as intended and how patients rated their experiences. More sophisticated usability evaluations combined several complementary approaches to elucidate more aspects of functionality. Future work pertaining to the design and evaluation of technology-delivered diabetes education/support interventions should aim to standardize the usability testing processes and publish usability findings to inform interpretation of why an intervention succeeded or failed and for whom.

  14. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  15. VNS: A volumetric neutron source for fusion nuclear technology testing and development

    Abdou, M.A.; Peng, Y.K.; Ying, A.Y.

    1994-01-01

    Recent progress in fusion plasma research and the initiation of the Engineering Design Activity for ITER provide incentives to seriously explore technically sound and logically consistent pathways toward development of fusion as a practical and attractive energy source. A critical goal is the successful construction and operation of a fusion power demonstration plant (DEMO). Major world program strategies call for DEMO operation by the year 2025. Such a date is important in order for fusion to play a significant role in the energy supply market in the second half of the twenty-first century. Without such a DEMO goal, it will be very hard to justify major financial commitments in the near term for major projects such as ITER. The major question is whether a DEMO goal by the year 2025 is attainable from a technical standpoint. This has been the central question being addressed in a study, called VENUS. Results to date show that a DEMO by the year 2025 can be realized if three major facilities begin operation in parallel by the year 2005. These facilities are: (1) ITER, (2) VNS, and (3) IFMIF. Results show that VNS is a necessary element toward DEMO in a strategy consistent with present world program plans. The key requirements to test and develop fusion nuclear components (e.g. blanket) are 1 MW/m 2 neutron wall load, >10 m 2 of test area at the first wall, steady state or long burn plasma operation, fluence of ∼6MWy/m 2 at the first wall in ∼10-12 year period, and duty cycle x availability factor of ∼0.3. Results of the study show that an attractive design envelope for VNS that satisfies the nuclear testing and development requirements exists. Within this design envelope, the most attractive design points for VNS appear to be driven plasma (Q∼1) in tokamak configuration with normal toroidal-field copper coils, major radius 1.5-2.0m, fusion power ∼100MW, and neutron wall load ∼1.5MW/m 2

  16. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T., E-mail: tjk@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  17. Early testing of new sanitation technology for urban slums: The case of the Blue Diversion Toilet.

    Tobias, Robert; O'Keefe, Mark; Künzle, Rahel; Gebauer, Heiko; Gründl, Harald; Morgenroth, Eberhard; Pronk, Wouter; Larsen, Tove A

    2017-01-15

    The toilets used most in informal urban settlements have detrimental consequences for the environment and human health due to the lack of proper collection and treatment of toilet waste. Concepts for safe, sustainable and affordable sanitation systems exist, but their feasibility and acceptance have to be investigated at an early stage of development, which is difficult due to the high costs of building working models. In this paper, we present an approach to estimate acceptance in a valid and representative form with only one working model, and apply it to test an innovative zero-emission toilet with recycling of wash water. Four basic principles were specified for investigation and nine hypotheses formulated to test the feasibility and acceptance of these principles: source separation of urine and feces with subsequent collection for resource recovery; provision of wash water in a separate cycle with on-site recovery through a membrane bioreactor; a convenient and attractive overall design; and a financially sustainable business plan. In Kampala (Uganda), in 2013, data was collected from 22 regular users, 308 one-time users and a representative sample of 1538 participants. Qualitative data was collected from the users, who evaluated their likes, perceived benefits, social norms and expected ease of use based on verbal and visual information. Most of the hypotheses were confirmed, indicating the feasibility and acceptance of the basic principles. Source separation and on-site water recovery were found to be feasible and accepted, provided users can be convinced that the emptying service and water recovery process work reliably. In the survey, the toilet was evaluated favorably and 51% of the participants agreed to be placed on a bogus waiting list. However, some design challenges were revealed, such as the size of the toilet, hiding feces from view and improving the separation of urine and water. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights

  18. At technology's frontiers : Russians launch Canada's microgravity test into orbit

    Mahony, J.

    2005-08-01

    This article discussed the launch of a Russian-built rocket containing a Canadian Space Agency microgravity experiment. The Soret Coefficient of Crude Oil project (SCCO) was sent into orbit to test how samples of crude react to various temperature gradients absent of gravity. Current mathematical models of reservoirs are not considered accurate enough to plan large-scale developments. A key goal of the SCCO was to improve the accuracy of these models. The project was developed by researchers at Ryerson University in order to analyse the Soret effect, which is the separation that occurs when a mixture of fluids is submitted to various temperature gradients. Under normal gravity and pressure, heavier hydrocarbons in an oil reservoir sink, while lighter ones rise. Deeper down, where temperatures and pressures are higher, a departure from normal dynamics occurs, and lighter hydrocarbons sometimes fall, while heavier ones rise. The anomaly is partially attributed to thermodiffusion. Gravity causes convection currents in the reservoir, making the Soret effect difficult to detect and measure. The project will allow for the development of digital simulators that will aid in measuring the quality and characterization of oil reservoirs. It was concluded that further study of the results will bring a deeper understanding of the fluid-flow problems that exist in reservoirs, leading to more reliable estimates of Canadian oil reservoirs. 3 figs.

  19. Generation and testing of the shielding data library EURLIB for fission and fusion technology

    Caglioti, E.; Hehn, G.; Herrnberger, V.; Mattes, M.; Nicks, R.; Penkuhn, H.

    1977-01-01

    For the common field of core physics and shielding, the CSEWG group structure of 239 fast neutron groups had been proposed, of which the 100 neutron groups of the EURLIB Library is a sub-set for shielding. This standard group Library EURLIB had been initiated by the NEA-specialist group on shielding benchmarks in 1974. The wide acceptance of the Library for interpretation of benchmarks in the NEA program represents an important step forward in the standardization of group data which is the basic requirement for a useful collaboration. On the other side the interpretation of a series of different benchmark experiments with the EURLIB Library provides the best check of the cross section data for neutron and gamma-rays showing the needs for further improvements. The paper describes the joint work of IKE, Stuttgart and EURATOM, Ispra in generating multigroup libraries for neutron and gamma-rays. Special effort has been devoted to improve the flux weighting for both types of radiation and proper treatment of thermal neutrons. The coupled multigroup Library of 100 neutron and 20 gamma groups is collapsed into few group structures for typical designs of LWR, LMFBR, gas cooled and thermonuclear reactors. The work for optimal few group representation is done in cooperation with EIR, Wurenlingen. The testing of the EURLIB Library is a common effort of several institutions participating in the NEA shielding benchmark program

  20. Costs of genetic testing: Supporting Brazilian Public Policies for the incorporating of molecular diagnostic technologies

    Rosane Paixão Schlatter

    2015-09-01

    Full Text Available This study identifies and describes the operating costs associated with the molecular diagnosis of diseases, such as hereditary cancer. To approximate the costs associated with these tests, data informed by Standard Operating Procedures for various techniques was collected from hospital software and a survey of market prices. Costs were established for four scenarios of capacity utilization to represent the possibility of suboptimal use in research laboratories. Cost description was based on a single site. The results show that only one technique was not impacted by rising costs due to underutilized capacity. Several common techniques were considerably more expensive at 30% capacity, including polymerase chain reaction (180%, microsatellite instability analysis (181%, gene rearrangement analysis by multiplex ligation probe amplification (412%, non-labeled sequencing (173%, and quantitation of nucleic acids (169%. These findings should be relevant for the definition of public policies and suggest that investment of public funds in the establishment of centralized diagnostic research centers would reduce costs to the Public Health System.