WorldWideScience

Sample records for radar target signatures

  1. Environmental effects on the radar signature of maritime targets and assets

    NARCIS (Netherlands)

    Heemskerk, H.J.M.

    1999-01-01

    The member nations of task group 5 (TG05) of the NATO AC/323 SET panel have conducted the cooperative research project Livorno'96 to investigate the dependence of the radar signature on radar, geometrical and target parameters, and to investigate the environmental effects on the measured radar

  2. Developments in target micro-Doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar

    OpenAIRE

    Clemente, C.; Balleri, A.; Woodbridge, K.; Soraghan, J. J.

    2013-01-01

    Target motions, other than the main bulk translation of the target, induce Doppler modulations around the main Doppler shift that form what is commonly called a target micro-Doppler signature. Radar micro-Doppler signatures are generally both target and action speci c and hence can be used to classify and recognise targets as well as to identify possible threats. In recent years, research into the use of micro-Doppler signatures for target classi cation to address many defence and security ch...

  3. Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Warrick, A.L.; Azevedo, S.G.; Mast, J.E.

    1998-04-06

    Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.

  4. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  5. Passive Infrared Signature Augmentation of Full-Scale Plastic Targets

    National Research Council Canada - National Science Library

    Gebus, Lisa M; Sanders, Jeffrey S

    2002-01-01

    ... (IR), and radar signatures of threat systems. To address this need, a program was initiated by TMO to augment an existing full-scale, vacuum-formed plastic target with sufficient signature fidelity to adequately stress U.S...

  6. Radar micro-doppler signatures processing and applications

    CERN Document Server

    Chen, Victor C; Miceli, William J

    2014-01-01

    Radar Micro-Doppler Signatures: Processing and applications concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a good working knowledge on a variety of applications of radar micro-Doppler signatures.

  7. Analysis of Radar Doppler Signature from Human Data

    Directory of Open Access Journals (Sweden)

    M. ANDRIĆ

    2014-04-01

    Full Text Available This paper presents the results of time (autocorrelation and time-frequency (spectrogram analyses of radar signals returned from the moving human targets. When a radar signal falls on the human target which is moving toward or away from the radar, the signals reflected from different parts of his body produce a Doppler shift that is proportional to the velocity of those parts. Moving parts of the body causes the characteristic Doppler signature. The main contribution comes from the torso which causes the central Doppler frequency of target. The motion of arms and legs induces modulation on the returned radar signal and generates sidebands around the central Doppler frequency, referred to as micro-Doppler signatures. Through analyses on experimental data it was demonstrated that the human motion signature extraction is better using spectrogram. While the central Doppler frequency can be determined using the autocorrelation and the spectrogram, the extraction of the fundamental cadence frequency using the autocorrelation is unreliable when the target is in the clutter presence. It was shown that the fundamental cadence frequency increases with increasing dynamic movement of people and simultaneously the possibility of its extraction is proportional to the degree of synchronization movements of persons in the group.

  8. Amplification of radar and lidar signatures using quantum sensors

    Science.gov (United States)

    Lanzagorta, Marco

    2013-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramat­ ically increase the performance of a wide variety of classical devices. These advances in quantum information science have had a considerable impact on the development of photonic-based quantum sensors. Even though quantum radar and quantum lidar remain theoretical proposals, preliminary results suggest that these sensors have the potential of becoming disruptive technologies able to revolutionize reconnaissance systems. In this paper we will discuss how quantum entanglement can be exploited to increase the radar and lidar signature of rectangular targets. In particular, we will show how the effective visibility of the target is increased if observed with an entangled multi-photon quantum sensor.

  9. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  10. Geological signatures of drillhole radar reflectors in ONKALO

    International Nuclear Information System (INIS)

    Doese, C.; Gustafsson, J.

    2011-12-01

    The geological signatures of radar reflectors in ONKALO have been evaluated as a subactivity within the Joint Work Programme 'Rock Suitability Criteria' strategies and methodology' between Svensk Kaernbraenslehantering AB and Posiva Oy. In addition to the geological signature, the usage of geophysical data to predict large fractures was evaluated. Pilot hole radar loggings were carried out using a RAMAC GPR-250 MHz dipole antenna. The radar data were evaluated and reflectors with known position and intersection angle to the pilot hole were correlated with fractures or foliation in the pilot hole and with Tunnel Crosscutting Fractures in the tunnel. This data served as in-data for the evaluation of the geological signatures of radar reflectors. The result of the evaluation is not univocal. Half of the reflectors could be explained by fractures in the pilot hole, but only about 10 % of the reflectors can be explained by Tunnel Crosscutting Fractures. Of these 10 %, 2/3 can also be explained by foliation, leaving only some 3 % of the total reflectors more unambiguously correlated with Tunnel Crosscutting Fractures. The fractures correlated with radar reflectors do not diverge much from other fractures. Fractures having intersection angles of 30 deg- 60 deg are more likely to be detected by radar relative to other. Other properties that seem to be overrepresented in fractures correlated with radar reflectors are quartz and/or graphite content, width ≥0.8 mm and higher alteration (J a ≥3), but the data is not unambiguous. (orig.)

  11. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  12. Coupling Between Doppler Radar Signatures and Tornado Damage Tracks

    Science.gov (United States)

    Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank

    2011-01-01

    On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and

  13. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Science.gov (United States)

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  14. A signature correlation study of ground target VHF/UHF ISAR imagery

    Science.gov (United States)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Kersey, William T.; Waldman, Jerry; Carter, Steve; Nixon, William E.

    2003-09-01

    VV and HH-polarized radar signatures of several ground targets were acquired in the VHF/UHF band (171-342 MHz) by using 1/35th scale models and an indoor radar range operating from 6 to 12 GHz. Data were processed into medianized radar cross sections as well as focused, ISAR imagery. Measurement validation was confirmed by comparing the radar cross section of a test object with a method of moments radar cross section prediction code. The signatures of several vehicles from three vehicle classes (tanks, trunks, and TELs) were measured and a signature cross-correlation study was performed. The VHF/UHF band is currently being exploited for its foliage penetration ability, however, the coarse image resolution which results from the relatively long radar wavelengths suggests a more challenging target recognition problem. One of the study's goals was to determine the amount of unique signature content in VHF/UHF ISAR imagery of military ground vehicles. Open-field signatures are compared with each other as well as with simplified shapes of similar size. Signatures were also acquired on one vehicle in a variety of configurations to determine the impact of monitor target variations on the signature content at these frequencies.

  15. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    Science.gov (United States)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  16. Tabu search for target-radar assignment

    DEFF Research Database (Denmark)

    Hindsberger, Magnus; Vidal, Rene Victor Valqui

    2000-01-01

    In the paper the problem of assigning air-defense illumination radars to enemy targets is presented. A tabu search metaheuristic solution is described and the results achieved are compared to those of other heuristic approaches, implementation and experimental aspects are discussed. It is argued ...

  17. Minefield overwatch using moving target indicator radar

    Science.gov (United States)

    Donadio, Anthony; Ewing, Robert; Kenneally, William J.; Santapietro, John J.

    1999-07-01

    Traditional antipersonnel land mines are an effective military tool, but they are unable to distinguish friend from foe, or civilian from military personnel. The concept described here uses an advanced moving target indicator (MTI) radar to scan the minefield in order to detect movement towards or within the minefield, coupled with visual identification by a human operator and a communication link for command and control. Selected mines in the minefield can then be activated by means of the command link. In order to demonstrate this concept, a 3D, interactive simulation has been developed. This simulation builds on previous work by integrating a detailed analytical model of an MTI radar. This model has been tailored to the specific application of detection of slowly moving dismounted entities immersed in ground clutter. The model incorporates the effects of internal scatterer motion and antenna scanning modulation in order to provide a realistic representation of the detection problem in this environment. The angle information on the MTI target detection is then passed to a virtual 3D sight which cues a human operator to the target location. In addition, radar propagation effects and an experimental design in which the radar itself is used as a command link are explored.

  18. Feature Extraction in Radar Target Classification

    Directory of Open Access Journals (Sweden)

    Z. Kus

    1999-09-01

    Full Text Available This paper presents experimental results of extracting features in the Radar Target Classification process using the J frequency band pulse radar. The feature extraction is based on frequency analysis methods, the discrete-time Fourier Transform (DFT and Multiple Signal Characterisation (MUSIC, based on the detection of Doppler effect. The analysis has turned to the preference of DFT with implemented Hanning windowing function. We assumed to classify targets-vehicles into two classes, the wheeled vehicle and tracked vehicle. The results show that it is possible to classify them only while moving. The feature of the class results from a movement of moving parts of the vehicle. However, we have not found any feature to classify the wheeled and tracked vehicles while non-moving, although their engines are on.

  19. Artifacts in Radar Imaging of Moving Targets

    Science.gov (United States)

    2012-09-01

    CA, USA, 2007. [11] B. Borden, Radar imaging of airborne targets: A primer for Applied mathematicians and Physicists . New York, NY: Taylor and... Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 21 September 2012 3. REPORT TYPE AND DATES COVERED...CW Continuous Wave DAC Digital to Analog Convertor DFT Discrete Fourier Transform FBP Filtered Back Projection FFT Fast Fourier Transform GPS

  20. Methods and limitations in radar target imagery

    Science.gov (United States)

    Bertrand, P.

    An analytical examination of the reflectivity of radar targets is presented for the two-dimensional case of flat targets. A complex backscattering coefficient is defined for the amplitude and phase of the received field in comparison with the emitted field. The coefficient is dependent on the frequency of the emitted signal and the orientation of the target with respect to the transmitter. The target reflection is modeled in terms of the density of illumined, colored points independent from one another. The target therefore is represented as an infinite family of densities indexed by the observational angle. Attention is given to the reflectivity parameters and their distribution function, and to the conjunct distribution function for the color, position, and the directivity of bright points. It is shown that a fundamental ambiguity exists between the localization of the illumined points and the determination of their directivity and color.

  1. Target & Propagation Models for the FINDER Radar

    Science.gov (United States)

    Cable, Vaughn; Lux, James; Haque, Salmon

    2013-01-01

    Finding persons still alive in piles of rubble following an earthquake, a severe storm, or other disaster is a difficult problem. JPL is currently developing a victim detection radar called FINDER (Finding Individuals in Emergency and Response). The subject of this paper is directed toward development of propagation & target models needed for simulation & testing of such a system. These models are both physical (real rubble piles) and numerical. Early results from the numerical modeling phase show spatial and temporal spreading characteristics when signals are passed through a randomly mixed rubble pile.

  2. Radar Target Classification using Recursive Knowledge-Based Methods

    DEFF Research Database (Denmark)

    Jochumsen, Lars Wurtz

    The topic of this thesis is target classification of radar tracks from a 2D mechanically scanning coastal surveillance radar. The measurements provided by the radar are position data and therefore the classification is mainly based on kinematic data, which is deduced from the position. The target...... been terminated. Therefore, an update of the classification results must be made for each measurement of the target. The data for this work are collected throughout the PhD and are both collected from radars and other sensors such as GPS....

  3. Radar cross-section (RCS) analysis of high frequency surface wave radar targets

    OpenAIRE

    ÇAKIR, Gonca; SEVGİ, Levent

    2010-01-01

    Realistic high frequency surface wave radar (HFSWR) targets are investigated numerically in terms of electromagnetic wave -- target interactions. Radar cross sections (RCS) of these targets are simulated via both the finite-difference time-domain (FDTD) method and the Method of Moments (MoM). The virtual RCS prediction tool that was introduced in previous work is used for these investigations. The virtual tool automatically creates the discrete FDTD model of the target under investi...

  4. Target Detection Based on EBPSK Satellite Passive Radar

    Directory of Open Access Journals (Sweden)

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  5. Warship Radar Signatures (Ship Survivability Part III-A)

    NARCIS (Netherlands)

    Galle, L.F.; Heemskerk, H.J.M.; Ewijk, L.J. van

    2000-01-01

    Radar Cross Section (RCS) management is of paramount importance for a warships's survivability. In this first part of the paper (Part III-A), the operational benefits of low RCS will be explained. Basic RCS theory, measurement and simulation techniques will be addressed. The RCS of representative

  6. General principles of passive radar signature reducing – stealth technology and its applications

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2010-03-01

    Full Text Available The paper presents passive radar signature reducing principles and technologies and discusses the ways to implement stealthy characteristics in general vehicle design. Stealth is a major requirement to all current-generation military vehicle designs and also a strong selling point for various aircraft and UAVs.

  7. Radar Resource Management in a Dense Target Environment

    Science.gov (United States)

    2014-03-01

    linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search...detect, and track operations concurrently with missile guidance functions allow MFRs to deliver superior battle space awareness and air defense

  8. Target scattering characteristics for OAM-based radar

    Directory of Open Access Journals (Sweden)

    Kang Liu

    2018-02-01

    Full Text Available The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM based radar system. To illustrate the role of OAM-based radar cross section (ORCS, conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS. The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  9. Target scattering characteristics for OAM-based radar

    Science.gov (United States)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  10. Bi-Spectral Method for Radar Target Recognition

    National Research Council Canada - National Science Library

    Yeo, Jiunn W

    2006-01-01

    .... Since World War II, the Identification of Friend or Foe (IFF) systems installed in radar systems have served as the primary cooperative target identification techniques based on the "question and answer" interrogation loop of unidentified aircraft...

  11. An Overview of Radar Waveform Optimization for Target Detection

    Directory of Open Access Journals (Sweden)

    Wang Lulu

    2016-10-01

    Full Text Available An optimal waveform design method that fully employs the knowledge of the target and the environment can further improve target detection performance, thus is of vital importance to research. In this paper, methods of radar waveform optimization for target detection are reviewed and summarized and provide the basis for the research.

  12. The radar signature of revolution objects in scientific computing

    International Nuclear Information System (INIS)

    Bonnemason, P.; Le Martret, R.; Scheurer, B.; Stupfel, B.

    1990-12-01

    This work is motivated by the study of stealthy (or discrete) revolution objects vis-a-vis a radar. Efficient algorithms, specific numerical methods and two original industrial software (SHF 89 and SHF C) have been developed. These are reliable tools in intensive scientific computing. In particular, they have enabled the precise numerical modeling of complex objects, of very general forms, in the field of high frequencies and a thorough understanding of the physics of the problems involved. The purpose of this note is a general description of the work and its context, which is illustrated by examples of numerical applications (presented in Appendix 4). The technical aspects are detailed in reports and publications (a list is attached to this note) [fr

  13. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    Science.gov (United States)

    Gergely, Mathias; Cooper, Steven J.; Garrett, Timothy J.

    2017-10-01

    The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  14. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    Directory of Open Access Journals (Sweden)

    M. Gergely

    2017-10-01

    Full Text Available The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs. Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  15. Radar Imaging of Stationary and Moving Targets

    Science.gov (United States)

    2012-06-28

    Sciences Research Institute. Member of Organizing Committee for introductory workshop at MSRI • June 14-18, 2010, arranged for AFRL (Matt Ferrara ) to...Schneible, Vincent Amuso, SciTech Publishing, Inc., 2010. 2. K. Voccola, B. Yazici, M. Ferrara , and M. Cheney, “On the relationship between the generalized...echo imaging using distributed apertures in multi-path,” IEEE Radar Conference, May, 2008, Rome, Italy . 14 10. “Wideband pulse-echo imaging using

  16. Radar automatic target recognition (ATR) and non-cooperative target recognition (NCTR)

    CERN Document Server

    Blacknell, David

    2013-01-01

    The ability to detect and locate targets by day or night, over wide areas, regardless of weather conditions has long made radar a key sensor in many military and civil applications. However, the ability to automatically and reliably distinguish different targets represents a difficult challenge. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR) captures material presented in the NATO SET-172 lecture series to provide an overview of the state-of-the-art and continuing challenges of radar target recognition. Topics covered include the problem as applied to th

  17. Automatic radar target recognition of objects falling on railway tracks

    International Nuclear Information System (INIS)

    Mroué, A; Heddebaut, M; Elbahhar, F; Rivenq, A; Rouvaen, J-M

    2012-01-01

    This paper presents an automatic radar target recognition procedure based on complex resonances using the signals provided by ultra-wideband radar. This procedure is dedicated to detection and identification of objects lying on railway tracks. For an efficient complex resonance extraction, a comparison between several pole extraction methods is illustrated. Therefore, preprocessing methods are presented aiming to remove most of the erroneous poles interfering with the discrimination scheme. Once physical poles are determined, a specific discrimination technique is introduced based on the Euclidean distances. Both simulation and experimental results are depicted showing an efficient discrimination of different targets including guided transport passengers

  18. Two target localization using passive monopulse radar

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2016-01-01

    The simultaneous lobing technique, also known as monopulse technique, has been widely used for fast target localization and tracking purposes. Many works focused on accurately localizing one or two targets laying within a narrow beam centered around

  19. Adaptive Waveform Design for Cognitive Radar in Multiple Targets Situations

    Directory of Open Access Journals (Sweden)

    Xiaowen Zhang

    2018-02-01

    Full Text Available In this paper, the problem of cognitive radar (CR waveform optimization design for target detection and estimation in multiple extended targets situations is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended targets with unknown target impulse response (TIR. To address this problem, an improved algorithm is employed for target detection by maximizing the detection probability of the received echo on the promise of ensuring the TIR estimation precision. In this algorithm, an additional weight vector is introduced to achieve a trade-off among different targets. Both the estimate of TIR and transmit waveform can be updated at each step based on the previous step. Under the same constraint on waveform energy and bandwidth, the information theoretical approach is also considered. In addition, the relationship between the waveforms that are designed based on the two criteria is discussed. Unlike most existing works that only consider single target with temporally correlated characteristics, waveform design for multiple extended targets is considered in this method. Simulation results demonstrate that compared with linear frequency modulated (LFM signal, waveforms designed based on maximum detection probability and maximum mutual information (MI criteria can make radar echoes contain more multiple-target information and improve radar performance as a result.

  20. Two target localization using passive monopulse radar

    KAUST Repository

    Jardak, Seifallah

    2016-02-19

    The simultaneous lobing technique, also known as monopulse technique, has been widely used for fast target localization and tracking purposes. Many works focused on accurately localizing one or two targets laying within a narrow beam centered around the monopulse antenna boresight direction. In this work, however, a new approach uses the outputs of a four quadrant antenna receiver to rapidly localize two point targets present in the hemisphere. A second set of antennas can be required to localize two targets sharing the same elevation or azimuth angles. To combine the outputs of both antenna sets and enhance the estimation performance of the algorithm, two methods are presented and compared.

  1. Phase calibration of the EISCAT Svalbard Radar interferometer using optical satellite signatures

    Directory of Open Access Journals (Sweden)

    J. M. Sullivan

    2006-09-01

    Full Text Available The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.

  2. Detection of hail signatures from single-polarization C-band radar reflectivity

    Science.gov (United States)

    Kunz, Michael; Kugel, Petra I. S.

    2015-02-01

    Five different criteria that estimate hail signatures from single-polarization radar data are statistically evaluated over a 15-year period by categorical verification against loss data provided by a building insurance company. The criteria consider different levels or thresholds of radar reflectivity, some of them complemented by estimates of the 0 °C level or cloud top temperature. Applied to reflectivity data from a single C-band radar in southwest Germany, it is found that all criteria are able to reproduce most of the past damage-causing hail events. However, the criteria substantially overestimate hail occurrence by up to 80%, mainly due to the verification process using damage data. Best results in terms of highest Heidke Skill Score HSS or Critical Success Index CSI are obtained for the Hail Detection Algorithm (HDA) and the Probability of Severe Hail (POSH). Radar-derived hail probability shows a high spatial variability with a maximum on the lee side of the Black Forest mountains and a minimum in the broad Rhine valley.

  3. Detection and identification of human targets in radar data

    Science.gov (United States)

    Gürbüz, Sevgi Z.; Melvin, William L.; Williams, Douglas B.

    2007-04-01

    Radar offers unique advantages over other sensors, such as visual or seismic sensors, for human target detection. Many situations, especially military applications, prevent the placement of video cameras or implantment seismic sensors in the area being observed, because of security or other threats. However, radar can operate far away from potential targets, and functions during daytime as well as nighttime, in virtually all weather conditions. In this paper, we examine the problem of human target detection and identification using single-channel, airborne, synthetic aperture radar (SAR). Human targets are differentiated from other detected slow-moving targets by analyzing the spectrogram of each potential target. Human spectrograms are unique, and can be used not just to identify targets as human, but also to determine features about the human target being observed, such as size, gender, action, and speed. A 12-point human model, together with kinematic equations of motion for each body part, is used to calculate the expected target return and spectrogram. A MATLAB simulation environment is developed including ground clutter, human and non-human targets for the testing of spectrogram-based detection and identification algorithms. Simulations show that spectrograms have some ability to detect and identify human targets in low noise. An example gender discrimination system correctly detected 83.97% of males and 91.11% of females. The problems and limitations of spectrogram-based methods in high clutter environments are discussed. The SNR loss inherent to spectrogram-based methods is quantified. An alternate detection and identification method that will be used as a basis for future work is proposed.

  4. Estimation of Radar Cross Section of a Target under Track

    Directory of Open Access Journals (Sweden)

    Hong Sun-Mog

    2010-01-01

    Full Text Available In allocating radar beam for tracking a target, it is attempted to maintain the signal-to-noise ratio (SNR of signal returning from the illuminated target close to an optimum value for efficient track updates. An estimate of the average radar cross section (RCS of the target is required in order to adjust transmitted power based on the estimate such that a desired SNR can be realized. In this paper, a maximum-likelihood (ML approach is presented for estimating the average RCS, and a numerical solution to the approach is proposed based on a generalized expectation maximization (GEM algorithm. Estimation accuracy of the approach is compared to that of a previously reported procedure.

  5. Radar Target Recognition Based on Stacked Denoising Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Zhao Feixiang

    2017-04-01

    Full Text Available Feature extraction is a key step in radar target recognition. The quality of the extracted features determines the performance of target recognition. However, obtaining the deep nature of the data is difficult using the traditional method. The autoencoder can learn features by making use of data and can obtain feature expressions at different levels of data. To eliminate the influence of noise, the method of radar target recognition based on stacked denoising sparse autoencoder is proposed in this paper. This method can extract features directly and efficiently by setting different hidden layers and numbers of iterations. Experimental results show that the proposed method is superior to the K-nearest neighbor method and the traditional stacked autoencoder.

  6. Biologically Inspired Target Recognition in Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liang Qilian

    2010-01-01

    Full Text Available One of the great mysteries of the brain is cognitive control. How can the interactions between millions of neurons result in behavior that is coordinated and appears willful and voluntary? There is consensus that it depends on the prefrontal cortex (PFC. Many PFC areas receive converging inputs from at least two sensory modalities. Inspired by human's innate ability to process and integrate information from disparate, network-based sources, we apply human-inspired information integration mechanisms to target detection in cognitive radar sensor network. Humans' information integration mechanisms have been modelled using maximum-likelihood estimation (MLE or soft-max approaches. In this paper, we apply these two algorithms to cognitive radar sensor networks target detection. Discrete-cosine-transform (DCT is used to process the integrated data from MLE or soft-max. We apply fuzzy logic system (FLS to automatic target detection based on the AC power values from DCT. Simulation results show that our MLE-DCT-FLS and soft-max-DCT-FLS approaches perform very well in the radar sensor network target detection, whereas the existing 2D construction algorithm does not work in this study.

  7. Target tracking using a 2D radar

    CSIR Research Space (South Africa)

    Kriel, M

    2012-08-01

    Full Text Available stream_source_info Kriel_2012.pdf.txt stream_content_type text/plain stream_size 29522 Content-Encoding ISO-8859-1 stream_name Kriel_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 737 33 Target Tracking Using....410634] 0.000019 [ 0.000020]4000.0 0 0 250.0 3D AASC 3D AASC 3D AASC Er ro r (m ) Er ro r (m ) E rr o r (m ) Time (s) 0 0 250.0Time (s) 0 0 250.0Time (s) AACT : AASC : AACT : AASC : AACT : 4000.0 4000.0 FIGURE 33...

  8. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    NARCIS (Netherlands)

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  9. MPD model for radar echo signal of hypersonic targets

    Directory of Open Access Journals (Sweden)

    Xu Xuefei

    2014-08-01

    Full Text Available The stop-and-go (SAG model is typically used for echo signal received by the radar using linear frequency modulation pulse compression. In this study, the authors demonstrate that this model is not applicable to hypersonic targets. Instead of SAG model, they present a more realistic echo signal model (moving-in-pulse duration (MPD for hypersonic targets. Following that, they evaluate the performances of pulse compression under the SAG and MPD models by theoretical analysis and simulations. They found that the pulse compression gain has an increase of 3 dB by using the MPD model compared with the SAG model in typical cases.

  10. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    OpenAIRE

    Raja Syamsul Azmir Raja Abdullah; Noor Hafizah Abdul Aziz; Nur Emileen Abdul Rashid; Asem Ahmad Salah; Fazirulhisyam Hashim

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of th...

  11. Investigation of hopped frequency waveforms for range and velocity measurements of radar targets

    CSIR Research Space (South Africa)

    Kathree, U

    2015-10-01

    Full Text Available In the field of radar, High Range Resolution (HRR) profiles are often used to improve target tracking accuracy in range and to allow the radar system to produce an image of an object using techniques such as inverse synthetic aperture radar (ISAR...

  12. Analysis and Simulation of Multi-target Echo Signals from a Phased Array Radar

    OpenAIRE

    Jia Zhen; Zhou Rui

    2017-01-01

    The construction of digital radar simulation systems has been a research hotspot of the radar field. This paper focuses on theoretical analysis and simulation of multi-target echo signals produced in a phased array radar system, and constructs an array antenna element and a signal generation environment. The antenna element is able to simulate planar arrays and optimizes these arrays by adding window functions. And the signal environment can model and simulate radar transmission signals, rada...

  13. Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets

    Directory of Open Access Journals (Sweden)

    Ning Chao

    2014-04-01

    Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.

  14. Joint passive radar tracking and target classification using radar cross section

    Science.gov (United States)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  15. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity

    Directory of Open Access Journals (Sweden)

    Jiang Tie-zhen

    2015-01-01

    Full Text Available Space target surveillance generally uses active radars. To take full advantage of passive radars, the idea of using spaceborne illuminators of opportunity for space target detection is presented in this paper. Analysis of the detectable time and direct wave suppression shows that passive radar using spaceborne illuminators of opportunity can effectively detect a Low-Earth-Orbit (LEO target. Meanwhile, Ku and L band bi-static radar cross section of passive radars that use spaceborne illuminators of opportunity are presented by simulation, providing the basis of choosing space target forward scatter. Finally the key parameters, mainly system gain, accumulation time and radiation source selection are studied. Results show that system size using satellite TV signals as illuminators of opportunity is relatively small. These encouraging results should stimulate the development of passive radar detection of space targets using spaceborne illuminators of opportunity.

  16. Joint synthetic aperture radar plus ground moving target indicator from single-channel radar using compressive sensing

    Science.gov (United States)

    Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum

    2017-10-17

    The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.

  17. A Review of Ground Target Detection and Classification Techniques in Forward Scattering Radars

    Directory of Open Access Journals (Sweden)

    M. E. A. Kanona

    2018-06-01

    Full Text Available This paper presents a review of target detection and classification in forward scattering radar (FSR which is a special state of bistatic radars, designed to detect and track moving targets in the narrow region along the transmitter-receiver base line. FSR has advantages and incredible features over other types of radar configurations. All previous studies proved that FSR can be used as an alternative system for ground target detection and classification. The radar and FSR fundamentals were addressed and classification algorithms and techniques were debated. On the other hand, the current and future applications and the limitations of FSR were discussed.

  18. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-04-01

    Thanks to its improved capabilities, the Multiple Input Multiple Output (MIMO) radar is attracting the attention of researchers and practitioners alike. Because it transmits orthogonal or partially correlated waveforms, this emerging technology outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize the transmitted power in a given region of interest and minimize it elsewhere. This problem is known as the transmit beampattern design and is usually tackled as a two-step process: a transmit covariance matrix is firstly designed by minimizing a convex optimization problem, which is then used to generate practical waveforms. In this work, we propose simple novel methods to generate correlated waveforms using finite alphabet constant and non-constant-envelope symbols. To generate finite alphabet waveforms, the proposed method maps easily generated Gaussian random variables onto the phase-shift-keying, pulse-amplitude, and quadrature-amplitude modulation schemes. For such mapping, the probability density function of Gaussian random variables is divided into M regions, where M is the number of alphabets in the corresponding modulation scheme. By exploiting the mapping function, the relationship between the cross-correlation of Gaussian and finite alphabet symbols is derived. The second part of this thesis covers the topic of target parameter estimation. To determine the reflection coefficient, spatial location, and Doppler shift of a target, maximum likelihood estimation yields the best performance. However, it requires a two dimensional search problem. Therefore, its computational complexity is prohibitively high. So, we proposed a reduced complexity and optimum performance algorithm which allows the two dimensional fast Fourier transform to jointly estimate the spatial location

  19. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets

    Directory of Open Access Journals (Sweden)

    Feng Cun-qian

    2015-12-01

    Full Text Available This study examines the complexities of using netted radar to recognize and resolve ballistic midcourse targets. The application of micro-motion feature extraction to ballistic mid-course targets is analyzed, and the current status of application and research on micro-motion feature recognition is concluded for singlefunction radar networks such as low- and high-resolution imaging radar networks. Advantages and disadvantages of these networks are discussed with respect to target recognition. Hybrid-mode radar networks combine low- and high-resolution imaging radar and provide a specific reference frequency that is the basis for ballistic target recognition. Main research trends are discussed for hybrid-mode networks that apply micromotion feature extraction to ballistic mid-course targets.

  20. Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target

    Science.gov (United States)

    2016-06-01

    AWARD NUMBER: W81XWH-14-1-0107 TITLE: Tumor Microenvironment Gene Signature as a Prognostic Classifier and Therapeutic Target PRINCIPAL...AND SUBTITLE Tumor Microenvironment Gene Signature as a 5a. CONTRACT NUMBER W81XWH-14-1-0107 Prognostic Classifier and Therapeutic Target 5b...gene signature that correlates with poor survival in ovarian cancer patients. We are refining this gene signature to develop biomarkers for the

  1. Low-resolution Airborne Radar Air/ground Moving Target Classification and Recognition

    Directory of Open Access Journals (Sweden)

    Wang Fu-you

    2014-10-01

    Full Text Available Radar Target Recognition (RTR is one of the most important needs of modern and future airborne surveillance radars, and it is still one of the key technologies of radar. The majority of present algorithms are based on wide-band radar signal, which not only needs high performance radar system and high target Signal-to-Noise Ratio (SNR, but also is sensitive to angle between radar and target. Low-Resolution Airborne Surveillance Radar (LRASR in downward-looking mode, slow flying aircraft and ground moving truck have similar Doppler velocity and Radar Cross Section (RCS, leading to the problem that LRASR air/ground moving targets can not be distinguished, which also disturbs detection, tracking, and classification of low altitude slow flying aircraft to solve these issues, an algorithm based on narrowband fractal feature and phase modulation feature is presented for LRASR air/ground moving targets classification. Real measured data is applied to verify the algorithm, the classification results validate the proposed method, helicopters and truck can be well classified, the average discrimination rate is more than 89% when SNR ≥ 15 dB.

  2. Hyperspectral Imagery Target Detection Using Improved Anomaly Detection and Signature Matching Methods

    National Research Council Canada - National Science Library

    Smetek, Timothy E

    2007-01-01

    This research extends the field of hyperspectral target detection by developing autonomous anomaly detection and signature matching methodologies that reduce false alarms relative to existing benchmark detectors...

  3. Detection of small targets in a marine environment using laser radar

    NARCIS (Netherlands)

    Kunz, G.J.; Bekman, H.H.P.T.; Benoist, K.W.; Cohen, L.H.; Heuvel, J.C. van den; Putten, F.J.M.

    2005-01-01

    Small maritime targets, e.g., periscope tubes, jet skies, swimmers and small boats, are potential threats for naval ships under many conditions, but are difficult to detect with current radar systems due to their limited radar cross section and the presence of sea clutter. On the other hand,

  4. Turbulence scales in the high-latitude ionosphere and their signatures upon echoes detected by SuperDARN HF radars

    International Nuclear Information System (INIS)

    Vallieres, Xavier

    2002-01-01

    SuperDARN is a coherent HF radar network dedicated to the study of high-latitude ionospheric plasma convection and finds its major applications in the field of Sun/Earth connection. This work deals with the interactions between a transmitted radar wave and ionisation gradients at different scales and their impact on measurements. Studies are performed in order to detect the ion cyclotron signature, superimposed to turbulent motions, in observed spectra. On the other hand, the role of intermediate scales (from hundreds of meters to kilometers) on spectral width estimation is evidenced. Statistical studies show that the value of this parameter depends upon transmitted frequency and echo range. We propose an interpretation in terms of a wave front de-correlation during propagation and validate it with numerical simulations based upon realistic ionospheric parameters. (author) [fr

  5. Statistical signatures of a targeted search by bacteria

    Science.gov (United States)

    Jashnsaz, Hossein; Anderson, Gregory G.; Pressé, Steve

    2017-12-01

    Chemoattractant gradients are rarely well-controlled in nature and recent attention has turned to bacterial chemotaxis toward typical bacterial food sources such as food patches or even bacterial prey. In environments with localized food sources reminiscent of a bacterium’s natural habitat, striking phenomena—such as the volcano effect or banding—have been predicted or expected to emerge from chemotactic models. However, in practice, from limited bacterial trajectory data it is difficult to distinguish targeted searches from an untargeted search strategy for food sources. Here we use a theoretical model to identify statistical signatures of a targeted search toward point food sources, such as prey. Our model is constructed on the basis that bacteria use temporal comparisons to bias their random walk, exhibit finite memory and are subject to random (Brownian) motion as well as signaling noise. The advantage with using a stochastic model-based approach is that a stochastic model may be parametrized from individual stochastic bacterial trajectories but may then be used to generate a very large number of simulated trajectories to explore average behaviors obtained from stochastic search strategies. For example, our model predicts that a bacterium’s diffusion coefficient increases as it approaches the point source and that, in the presence of multiple sources, bacteria may take substantially longer to locate their first source giving the impression of an untargeted search strategy.

  6. Colocated MIMO Radar: Beamforming, Waveform design, and Target Parameter Estimation

    KAUST Repository

    Jardak, Seifallah

    2014-01-01

    outperformed the phased array radar by providing better parametric identifiability, achieving higher spatial resolution, and designing complex beampatterns. To avoid jamming and enhance the signal to noise ratio, it is often interesting to maximize

  7. Detection and localization of multiple short range targets using FMCW radar signal

    KAUST Repository

    Jardak, Seifallah; Kiuru, Tero; Metso, Mikko; Pursula, Pekka; Hakli, Janne; Hirvonen, Mervi; Ahmed, Sajid; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, a 24 GHz frequency-modulated continuous wave radar is used to detect and localize both stationary and moving targets. Depending on the application, the implemented software offers different modes of operation. For example, it can

  8. Electromagnetic modelling of Ground Penetrating Radar responses to complex targets

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonis

    2014-05-01

    defined through a constant real value, or else its frequency-dispersion properties can be taken into account by incorporating into the model Debye approximations. The electromagnetic source can be represented as a simple line of current (in the case of two-dimensional models), a Hertzian dipole, a bow tie antenna, or else, the realistic description of a commercial antenna can be included in the model [2]. Preliminary results for some of the proposed cells are presented, obtained by using GprMax [3], a freeware tool which solves Maxwell's equations by using a second order in space and time Finite-Difference Time-Domain algorithm. B-Scans and A-Scans are calculated at 1.5 GHz, for the total electric field and for the field back-scattered by targets embedded in the cells. A detailed description of the structures, together with the relevant numerical results obtained to date, are available for the scientific community on the website of COST Action TU1208, www.GPRadar.eu. Research groups working on the development of electromagnetic forward- and inverse-scattering techniques, as well as on imaging methods, might test and compare the accuracy and applicability of their approaches on the proposed set of scenarios. The aim of this initiative is not that of identifying the best methods, but more properly to indicate the range of reliability of each approach, highlighting its advantages and drawbacks. In the future, the realisation of the proposed concrete cells and the acquisition of GPR experimental data would allow a very effective benchmark for forward and inverse scattering methods. References [1] R. Yelf, A. Ward, "Nine steps to concrete wisdom." Proc. 13th International Conference on Ground Penetrating Radar, Lecce, Italy, 21-25 June 2010, pp. 1-8. [2] C. Warren, A. Giannopoulos, "Creating FDTD models of commercial GPR antennas using Taguchi's optimisation method." Geophysics (2011), 76, article ID G37. [3] A. Giannopoulos, "Modelling ground penetrating radar by GPRMAX

  9. A distinct epigenetic signature at targets of a leukemia protein

    Directory of Open Access Journals (Sweden)

    van der Spek Peter

    2007-02-01

    Full Text Available Abstract Background Human myelogenous leukemia characterized by either the non random t(8; 21(q22; q22 or t(16; 21(q24; q22 chromosome translocations differ for both their biological and clinical features. Some of these features could be consequent to differential epigenetic transcriptional deregulation at AML1 targets imposed by AML1-MTG8 and AML1-MTG16, the fusion proteins deriving from the two translocations. Preliminary findings showing that these fusion proteins lead to transcriptional downregulation of AML1 targets, marked by repressive chromatin changes, would support this hypothesis. Here we show that combining conventional global gene expression arrays with the power of bioinformatic genomic survey of AML1-consensus sequences is an effective strategy to identify AML1 targets whose transcription is epigenetically downregulated by the leukemia-associated AML1-MTG16 protein. Results We interrogated mouse gene expression microarrays with probes generated either from 32D cells infected with a retroviral vector carrying AML1-MTG16 and unable of granulocyte differentiation and proliferation in response to the granulocyte colony stimulating factor (G-CSF, or from 32D cells infected with the cognate empty vector. From the analysis of differential gene expression alone (using as criteria a p value 3, we were unable to conclude which of the 37 genes downregulated by AML1-MTG16 were, or not, direct AML1 targets. However, when we applied a bioinformatic approach to search for AML1-consensus sequences in the 10 Kb around the gene transcription start sites, we closed on 17 potential direct AML1 targets. By focusing on the most significantly downregulated genes, we found that both the AML1-consensus and the transcription start site chromatin regions were significantly marked by aberrant repressive histone tail changes. Further, the promoter of one of these genes, containing a CpG island, was aberrantly methylated. Conclusion This study shows that a

  10. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target

    Science.gov (United States)

    Knight, Jason S.; Meng, He; Coit, Patrick; Yalavarthi, Srilakshmi; Sule, Gautam; Gandhi, Alex A.; Grenn, Robert C.; Mazza, Levi F.; Ali, Ramadan A.; Renauer, Paul; Wren, Jonathan D.; Bockenstedt, Paula L.; Wang, Hui; Eitzman, Daniel T.; Sawalha, Amr H.

    2017-01-01

    Antiphospholipid antibodies, present in one-third of lupus patients, increase the risk of thrombosis. We recently reported a key role for neutrophils — neutrophil extracellular traps (NETs), in particular — in the thrombotic events that define antiphospholipid syndrome (APS). To further elucidate the role of neutrophils in APS, we performed a comprehensive transcriptome analysis of neutrophils isolated from patients with primary APS. Moreover, APS-associated venous thrombosis was modeled by treating mice with IgG prepared from APS patients, followed by partial restriction of blood flow through the inferior vena cava. In patients, APS neutrophils demonstrated a proinflammatory signature with overexpression of genes relevant to IFN signaling, cellular defense, and intercellular adhesion. For in vivo studies, we focused on P-selectin glycoprotein ligand-1 (PSGL-1), a key adhesion molecule overexpressed in APS neutrophils. The introduction of APS IgG (as compared with control IgG) markedly potentiated thrombosis in WT mice, but not PSGL-1–KOs. PSGL-1 deficiency was also associated with reduced leukocyte vessel wall adhesion and NET formation. The thrombosis phenotype was restored in PSGL-1–deficient mice by infusion of WT neutrophils, while an anti–PSGL-1 monoclonal antibody inhibited APS IgG–mediated thrombosis in WT mice. PSGL-1 represents a potential therapeutic target in APS. PMID:28931754

  11. Computer Models of the Human Body Signature for Sensing Through the Wall Radar Applications

    National Research Council Canada - National Science Library

    Dogaru, Traian; Nguyen, Lam; Le, Calvin

    2007-01-01

    .... We analyze the radar cross section (RCS) of the human body in different configurations as a function of aspect angle, frequency, and polarization, drawing important conclusions in terms of the magnitude, variability, and statistics...

  12. Moving Target Detection With Compact Laser Doppler Radar

    Science.gov (United States)

    Sepp, G.; Breining, A.; Eisfeld, W.; Knopp, R.; Lill, E.; Wagner, D.

    1989-12-01

    This paper describes an experimental integrated optronic system for detection and tracking of moving objects. The system is based on a CO2 waveguide laser Doppler ra-dar with homodyne receiver and galvanometer mirror beam scanner. A "hot spot" seeker consisting of a thermal imager with image processor transmits the coordinates of IR-emitting, i.e. potentially powered, objects to the laser radar scanner. The scanner addresses these "hot" locations operating in a large field-of-view (FOV) random ac-cess mode. Hot spots exhibiting a Doppler shifted laser signal are indicated in the thermal image by velocity-to-colour encoded markers. After switching to a small FOV scanning mode, the laser Doppler radar is used to track fast moving objects. Labora-tory and field experiments with moving objects including rotating discs, automobiles and missiles are described.

  13. Non-Cooperative Target Recognition by Means of Singular Value Decomposition Applied to Radar High Resolution Range Profiles

    Directory of Open Access Journals (Sweden)

    Patricia López-Rodríguez

    2014-12-01

    Full Text Available Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising.

  14. Bubbles in Titan’s Seas: Nucleation, Growth, and RADAR Signature

    Science.gov (United States)

    Cordier, Daniel; Liger-Belair, Gérard

    2018-05-01

    In the polar regions of Titan, the main satellite of Saturn, hydrocarbon seas have been discovered by the Cassini–Huygens mission. RADAR observations have revealed surprising and transient bright areas over the Ligeia Mare surface. As suggested by recent research, bubbles could explain these strange features. However, the nucleation and growth of such bubbles, together with their RADAR reflectivity, have never been investigated. All of these aspects are critical to an actual observation. We have thus applied the classical nucleation theory to our context, and we developed a specific radiative transfer model that is appropriate for bubble streams in cryogenic liquids. According to our results, the sea bed appears to be the most plausible place for the generation of bubbles, leading to a signal comparable to observations. This conclusion is supported by thermodynamic arguments and by RADAR properties of a bubbly column. The latter are also valid in the case of bubble plumes, due to gas leaking from the sea floor.

  15. Effects of target shape and reflection on laser radar cross sections.

    Science.gov (United States)

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  16. Translation compensation and micro-Doppler extraction for precession ballistic targets with a wideband terahertz radar

    Science.gov (United States)

    Yang, Qi; Deng, Bin; Wang, Hongqiang; Zhang, Ye; Qin, Yuliang

    2018-01-01

    Imaging, classification, and recognition techniques of ballistic targets in midcourse have always been the focus of research in the radar field for military applications. However, the high velocity translation of ballistic targets will subject range profile and Doppler to translation, slope, and fold, which are especially severe in the terahertz region. Therefore, a two-step translation compensation method based on envelope alignment is presented. The rough compensation is based on the traditional envelope alignment algorithm in inverse synthetic aperture radar imaging, and the fine compensation is supported by distance fitting. Then, a wideband imaging radar system with a carrier frequency of 0.32 THz is introduced, and an experiment on a precession missile model is carried out. After translation compensation with the method proposed in this paper, the range profile and the micro-Doppler distributions unaffected by translation are obtained, providing an important foundation for the high-resolution imaging and micro-Doppler extraction of the terahertz radar.

  17. Development of fast scattering model of complex shape target for seminatural tests of onboard proximity radars in real time mode

    Directory of Open Access Journals (Sweden)

    Likhoedenko Andrei K.

    2016-01-01

    Full Text Available Problems of creation of models of real time of complex shape targets on the basis of use of their polygonal models are considered. Formulas for radar cross section of multipoint model of target and power of input signal of onboard radar are described. Technique of semi-natural tests of onboard radar detector on the base of multipoint model of target is proposed. Results of digital simulation of input signals of the onboard radar detector of the target from the aerodynamic target on the basis of their multipoint models are given.

  18. Exploitation of Microdoppler and Multiple Scattering Phenomena for Radar Target Recognition

    Science.gov (United States)

    2006-08-24

    progress on the reserach grant "Exploitation of MicroDoppler and Multiple Scattering Phenomena for Radar Target Recognition" during the period 1...paper describes a methodology of modeling A number of ray-based EM techniques have been interferometric synthetic aperture radar (IFSAR) images...modes including the single present an IFSAR simulation methodology to simulate the antenna transmit mode, the ping-pong mode or the repeat interferogram

  19. Quantitative roughness characterization of geological surfaces and implications for radar signature analysis

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    1999-01-01

    Stochastic surface models are useful for analyzing in situ roughness profiles and synthetic aperture radar (SAR) images of geological terrain. In this paper, two different surface models are discussed: surfaces with a stationary random roughness (conventional model) and surfaces with a power...

  20. Simulation and analysis of auroral radar signatures generated by a magnetospheric cavity mode

    International Nuclear Information System (INIS)

    McDiarmid, D.R.; Allan, W.

    1990-01-01

    Coherent auroral radar pulsation data are simulated for impulsively excited field line resonances (FLR) driven by a magnetospheric MHD cavity mode. These data are then analyzed according to three assumptions namely, (1) that each radar time sequence is monochromatic with a frequency fixed over latitude, (2) that each radar time sequence is monochromatic with a frequency which varies with latitude, and (3) that each radar time sequence consists of the sum of two damped sinusoids for which the frequency of one varies and the other is constant with latitude. Pulsations corresponding to all three assumptions have been previously observed and described in the literature. The results indicate the degree to which these analyses can misdirect the researcher with respect to the excitation of the pulsation. The first two analyses can indicate the existence of a constant-frequency single-component pulsation when there exists, in fact, an additional period-varying component as well. The results also suggest that the variation of the period with time in thse pulsations may be a useful detection criterion for cavity-driven FLRs

  1. Drone Detection with Chirp‐Pulse Radar Based on Target Fluctuation Models

    Directory of Open Access Journals (Sweden)

    Byung‐Kwan Kim

    2018-04-01

    Full Text Available This paper presents a pulse radar system to detect drones based on a target fluctuation model, specifically the Swerling target model. Because drones are small atypical objects and are mainly composed of non‐conducting materials, their radar cross‐section value is low and fluctuating. Therefore, determining the target fluctuation model and applying a proper integration method are important. The proposed system is herein experimentally verified and the results are discussed. A prototype design of the pulse radar system is based on radar equations. It adopts three different pulse modes and a coherent pulse integration to ensure a high signal‐to‐noise ratio. Outdoor measurements are performed with a prototype radar system to detect Doppler frequencies from both the drone frame and blades. The results indicate that the drone frame and blades are detected within an instrumental maximum range. Additionally, the results show that the drone's frame and blades are close to the Swerling 3 and 4 target models, respectively. By the analysis of the Swerling target models, proper integration methods for detecting drones are verified and can thus contribute to increasing in detectability.

  2. Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system

    Science.gov (United States)

    Biggerstaff, Michael I.; Zounes, Zackery; Addison Alford, A.; Carrie, Gordon D.; Pilkey, John T.; Uman, Martin A.; Jordan, Douglas M.

    2017-08-01

    A series of vertical cross sections taken through a small mesoscale convective system observed over Florida by the dual-polarimetric SMART radar were combined with VHF radiation source locations from a lightning mapping array (LMA) to examine the lightning channel propagation paths relative to the radar-observed ice alignment signatures associated with regions of negative specific differential phase (KDP). Additionally, charge layers inferred from analysis of LMA sources were related to the ice alignment signature. It was found that intracloud flashes initiated near the upper zero-KDP boundary surrounding the negative KDP region. The zero-KDP boundary also delineated the propagation path of the lightning channel with the negative leaders following the upper boundary and positive leaders following the lower boundary. Very few LMA sources were found in the negative KDP region. We conclude that rapid dual-polarimetric radar observations can diagnose strong electric fields and may help identify surrounding regions of charge.

  3. LPI Optimization Framework for Target Tracking in Radar Network Architectures Using Information-Theoretic Criteria

    Directory of Open Access Journals (Sweden)

    Chenguang Shi

    2014-01-01

    Full Text Available Widely distributed radar network architectures can provide significant performance improvement for target detection and localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the problem of low probability of intercept (LPI design for radar network and propose two novel LPI optimization schemes based on information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver operation characteristics (ROC, we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic algorithm (NPGA is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our proposed LPI strategies are effective in enhancing the LPI performance for radar network.

  4. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    Directory of Open Access Journals (Sweden)

    Raja Syamsul Azmir Raja Abdullah

    2016-09-01

    Full Text Available The passive bistatic radar (PBR system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR. The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  5. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    Science.gov (United States)

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  6. Improved OAM-Based Radar Targets Detection Using Uniform Concentric Circular Arrays

    Directory of Open Access Journals (Sweden)

    Mingtuan Lin

    2016-01-01

    Full Text Available Without any relative moves or beam scanning, the novel Orbital-Angular-Momentum- (OAM- based radar targets detection technique using uniform concentric circular arrays (UCCAs shows the azimuthal estimation ability, which provides new perspective for radar system design. However, the main estimation method, that is, Fast Fourier Transform (FFT, under this scheme suffers from low resolution. As a solution, this paper rebuilds the OAM-based radar targets detection model and introduces the multiple signal classification (MUSIC algorithm to improve the resolution for detecting targets within the main lobes. The spatial smoothing technique is proposed to tackle the coherent problem brought by the proposed model. Analytical study and simulation demonstrate the superresolution estimation capacity the MUSIC algorithm can achieve for detecting targets within the main lobes. The performance of the MUSIC algorithm to detect targets not illuminated by the main lobes is further evaluated. Despite the fact that MUSIC algorithm loses the resolution advantage under this case, its estimation is more robust than that of the FFT method. Overall, the proposed MUSIC algorithm for the OAM-based radar system demonstrates the superresolution ability for detecting targets within the main lobes and good robustness for targets out of the main lobes.

  7. Generalised two target localisation using passive monopulse radar

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2017-01-01

    The simultaneous lobing technique, also known as monopulse technique, has been widely used for fast target localisation and tracking purposes. Many works focused on accurately localising one or two targets lying within a narrow beam centred around

  8. Residual translation compensations in radar target narrowband imaging based on trajectory information

    Science.gov (United States)

    Yue, Wenjue; Peng, Bo; Wei, Xizhang; Li, Xiang; Liao, Dongping

    2018-05-01

    High velocity translation will result in defocusing scattering centers in radar imaging. In this paper, we propose a Residual Translation Compensations (RTC) method based on target trajectory information to eliminate the translation effects in radar imaging. Translation could not be simply regarded as a uniformly accelerated motion in reality. So the prior knowledge of the target trajectory is introduced to enhance compensation precision. First we use the two-body orbit model to figure out the radial distance. Then, stepwise compensations are applied to eliminate residual propagation delay based on conjugate multiplication method. Finally, tomography is used to confirm the validity of the method. Compare with translation parameters estimation method based on the spectral peak of the conjugate multiplied signal, RTC method in this paper enjoys a better tomography result. When the Signal Noise Ratio (SNR) of the radar echo signal is 4dB, the scattering centers can also be extracted clearly.

  9. Generalised two target localisation using passive monopulse radar

    KAUST Repository

    Jardak, Seifallah

    2017-04-07

    The simultaneous lobing technique, also known as monopulse technique, has been widely used for fast target localisation and tracking purposes. Many works focused on accurately localising one or two targets lying within a narrow beam centred around the monopulse antenna boresight. In this study, a new approach is proposed, which uses the outputs of four antennas to rapidly localise two point targets present in the hemisphere. If both targets have the same elevation angle, the proposed scheme cannot detect them. To detect such targets, a second set of antennas is required. In this study, to detect two targets at generalised locations, the antenna array is divided into multiple overlapping sets each of four antennas. Two algorithms are proposed to combine the outputs from multiple sets and improve the detection performance. Simulation results show that the algorithm is able to localise both targets with <;2° mean square error in azimuth and elevation.

  10. Maximum Likelihood-Based Methods for Target Velocity Estimation with Distributed MIMO Radar

    Directory of Open Access Journals (Sweden)

    Zhenxin Cao

    2018-02-01

    Full Text Available The estimation problem for target velocity is addressed in this in the scenario with a distributed multi-input multi-out (MIMO radar system. A maximum likelihood (ML-based estimation method is derived with the knowledge of target position. Then, in the scenario without the knowledge of target position, an iterative method is proposed to estimate the target velocity by updating the position information iteratively. Moreover, the Carmér-Rao Lower Bounds (CRLBs for both scenarios are derived, and the performance degradation of velocity estimation without the position information is also expressed. Simulation results show that the proposed estimation methods can approach the CRLBs, and the velocity estimation performance can be further improved by increasing either the number of radar antennas or the information accuracy of the target position. Furthermore, compared with the existing methods, a better estimation performance can be achieved.

  11. A Parasitic Array Receiver for ISAR Imaging of Ship Targets Using a Coastal Radar

    Directory of Open Access Journals (Sweden)

    Fabrizio Santi

    2016-01-01

    Full Text Available The detection and identification of ship targets navigating in coastal areas are essential in order to prevent maritime accidents and to take countermeasures against illegal activities. Usually, coastal radar systems are employed for the detection of vessels, whereas noncooperative ship targets as well as ships not equipped with AIS transponders can be identified by means of dedicated active radar imaging system by means of ISAR processing. In this work, we define a parasitic array receiver for ISAR imaging purposes based on the signal transmitted by an opportunistic coastal radar over its successive scans. In order to obtain the proper cross-range resolution, the physical aperture provided by the array is combined with the synthetic aperture provided by the target motion. By properly designing the array of passive devices, the system is able to correctly observe the signal reflected from the ships over successive scans of the coastal radar. Specifically, the upper bounded interelement spacing provides a correct angular sampling accordingly to the Nyquist theorem and the lower bounded number of elements of the array ensures the continuity of the observation during multiple scans. An ad hoc focusing technique has been then proposed to provide the ISAR images of the ships. Simulated analysis proved the effectiveness of the proposed system to provide top-view images of ship targets suitable for ATR procedures.

  12. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes

    Directory of Open Access Journals (Sweden)

    Chun-mao Yeh

    2016-01-01

    Full Text Available This study focuses on the rotating target imaging and parameter estimation with narrowband radar echoes, which is essential for radar target recognition. First, a two-dimensional (2D imaging model with narrowband echoes is established in this paper, and two images of the target are formed on the velocity-acceleration plane at two neighboring coherent processing intervals (CPIs. Then, the rotating velocity (RV is proposed to be estimated by utilizing the relationship between the positions of the scattering centers among two images. Finally, the target image is rescaled to the range-cross-range plane with the estimated rotational parameter. The validity of the proposed approach is confirmed using numerical simulations.

  13. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  14. Detection of Moving Targets Based on Doppler Spectrum Analysis Technique for Passive Coherent Radar

    Directory of Open Access Journals (Sweden)

    Zhao Yao-dong

    2013-06-01

    Full Text Available A novel method of moving targets detection taking Doppler spectrum analysis technique for Passive Coherent Radar (PCR is provided. After dividing the receiving signals into segments as pulse series, it utilizes the technique of pulse compress and Doppler processing to detect and locate the targets. Based on the algorithm for Pulse-Doppler (PD radar, the equipollence between continuous and pulsed wave in match filtering is proved and details of this method are introduced. To compare it with the traditional method of Cross-Ambiguity Function (CAF calculation, the relationship and mathematical modes of them are analyzed, with some suggestions on parameters choosing. With little influence to the gain of targets, the method can greatly promote the processing efficiency. The validity of the proposed method is demonstrated by offline processing real collected data sets and simulation results.

  15. Signatures of DNA target selectivity by ETS transcription factors.

    Science.gov (United States)

    Poon, Gregory M K; Kim, Hye Mi

    2017-05-27

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.

  16. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar

    Science.gov (United States)

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-01-01

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058

  17. Detection and localization of multiple short range targets using FMCW radar signal

    KAUST Repository

    Jardak, Seifallah

    2016-07-26

    In this paper, a 24 GHz frequency-modulated continuous wave radar is used to detect and localize both stationary and moving targets. Depending on the application, the implemented software offers different modes of operation. For example, it can simply output raw data samples for advanced offline processing or directly carry out a two dimensional fast Fourier transform to estimate the location and velocity of multiple targets. To suppress clutter and detect only moving targets, two methods based on the background reduction and the slow time processing techniques are implemented. A trade-off between the two methods is presented based on their performance and the required processing time. © 2016 IEEE.

  18. Detection-Discrimination Method for Multiple Repeater False Targets Based on Radar Polarization Echoes

    Directory of Open Access Journals (Sweden)

    Z. W. ZONG

    2014-04-01

    Full Text Available Multiple repeat false targets (RFTs, created by the digital radio frequency memory (DRFM system of jammer, are widely used in practical to effectively exhaust the limited tracking and discrimination resource of defence radar. In this paper, common characteristic of radar polarization echoes of multiple RFTs is used for target recognition. Based on the echoes from two receiving polarization channels, the instantaneous polarization radio (IPR is defined and its variance is derived by employing Taylor series expansion. A detection-discrimination method is designed based on probability grids. By using the data from microwave anechoic chamber, the detection threshold of the method is confirmed. Theoretical analysis and simulations indicate that the method is valid and feasible. Furthermore, the estimation performance of IPRs of RFTs due to the influence of signal noise ratio (SNR is also covered.

  19. Automatic detection of the unknown number point targets in FMICW radar signals

    Czech Academy of Sciences Publication Activity Database

    Rejfek, L.; Mošna, Zbyšek; Beran, L.; Fišer, O.; Dobrovolný, M.

    2017-01-01

    Roč. 4, č. 11 (2017), s. 116-120 ISSN 2313-626X R&D Projects: GA ČR(CZ) GA15-24688S Institutional support: RVO:68378289 Keywords : FMICW radar * 2D FFT * signal filtration * taraget detection * target parameter estimation Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences http://science-gate.com/IJAAS/Articles/2017-4-11/18%202017-4-11-pp.116-120.pdf

  20. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB Radar Systems

    Directory of Open Access Journals (Sweden)

    Jana Rovňáková

    2013-09-01

    Full Text Available In the case of through-the-wall localization of moving targets by ultra wideband (UWB radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  1. Monte Carlo Simulation of the Echo Signals from Low-Flying Targets for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Mingyuan Man

    2014-01-01

    Full Text Available A demonstrated hybrid method based on the combination of half-space physical optics method (PO, graphical-electromagnetic computing (GRECO, and Monte Carlo method on echo signals from low-flying targets based on actual environment for airborne radar is presented in this paper. The half-space physical optics method , combined with the graphical-electromagnetic computing (GRECO method to eliminate the shadow regions quickly and rebuild the target automatically, is employed to calculate the radar cross section (RCS of the conductive targets in half space fast and accurately. The direct echo is computed based on the radar equation. The reflected paths from sea or ground surface cause multipath effects. In order to accurately obtain the echo signals, the phase factors are modified for fluctuations in multipath, and the statistical average value of the echo signals is obtained using the Monte Carlo method. A typical simulation is performed, and the numerical results show the accuracy of the proposed method.

  2. Analysis of the Chirplet Transform-Based Algorithm for Radar Detection of Accelerated Targets

    Science.gov (United States)

    Galushko, V. G.; Vavriv, D. M.

    2017-06-01

    Purpose: Efficiency analysis of an optimal algorithm of chirp signal processing based on the chirplet transform as applied to detection of radar targets in uniformly accelerated motion. Design/methodology/approach: Standard methods of the optimal filtration theory are used to investigate the ambiguity function of chirp signals. Findings: An analytical expression has been derived for the ambiguity function of chirp signals that is analyzed with respect to detection of radar targets moving at a constant acceleration. Sidelobe level and characteristic width of the ambiguity function with respect to the coordinates frequency and rate of its change have been estimated. The gain in the signal-to-noise ratio has been assessed that is provided by the algorithm under consideration as compared with application of the standard Fourier transform to detection of chirp signals against a “white” noise background. It is shown that already with a comparatively small (processing channels (elementary filters with respect to the frequency change rate) the gain in the signal-tonoise ratio exceeds 10 dB. A block diagram of implementation of the algorithm under consideration is suggested on the basis of a multichannel weighted Fourier transform. Recommendations as for selection of the detection algorithm parameters have been developed. Conclusions: The obtained results testify to efficiency of application of the algorithm under consideration to detection of radar targets moving at a constant acceleration. Nevertheless, it seems expedient to perform computer simulations of its operability with account for the noise impact along with trial measurements in real conditions.

  3. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2016-02-01

    Full Text Available A multiple targets cognitive radar tracking method based on Compressed Sensing (CS is proposed. In this method, the theory of CS is introduced to the case of cognitive radar tracking process in multiple targets scenario. The echo signal is sparsely expressed. The designs of sparse matrix and measurement matrix are accomplished by expressing the echo signal sparsely, and subsequently, the restruction of measurement signal under the down-sampling condition is realized. On the receiving end, after considering that the problems that traditional particle filter suffers from degeneracy, and require a large number of particles, the particle swarm optimization particle filter is used to track the targets. On the transmitting end, the Posterior Cramér-Rao Bounds (PCRB of the tracking accuracy is deduced, and the radar waveform parameters are further cognitively designed using PCRB. Simulation results show that the proposed method can not only reduce the data quantity, but also provide a better tracking performance compared with traditional method.

  4. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She

    2016-12-01

    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  5. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    Science.gov (United States)

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  6. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    Directory of Open Access Journals (Sweden)

    Van-Han Nguyen

    2015-03-01

    Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  7. Joint Direction-of-Departure and Direction-of-Arrival Estimation in a UWB MIMO Radar Detecting Targets with Fluctuating Radar Cross Sections

    Directory of Open Access Journals (Sweden)

    Idnin Pasya

    2014-01-01

    Full Text Available This paper presents a joint direction-of-departure (DOD and direction-of-arrival (DOA estimation in a multiple-input multiple-output (MIMO radar utilizing ultra wideband (UWB signals in detecting targets with fluctuating radar cross sections (RCS. The UWB MIMO radar utilized a combination of two-way MUSIC and majority decision based on angle histograms of estimated DODs and DOAs at each frequency of the UWB signal. The proposed angle estimation scheme was demonstrated to be effective in detecting targets with fluctuating RCS, compared to conventional spectra averaging method used in subband angle estimations. It was found that a wider bandwidth resulted in improved estimation performance. Numerical simulations along with experimental evaluations in a radio anechoic chamber are presented.

  8. Non-Cooperative Air Target Identification Using Radar (l’Identification radar des cibles aeriennes non cooperatives)

    Science.gov (United States)

    1998-11-01

    des techniques tr~s prometteuse pour la detection longue port~e. Les progr~s escompt ~s dans le domaine des techniques radar devraient amener des...cibles fixes, des cibles mobiles ou du fouillis de sol. Sa vocation Le moyen de mesures comprend un radar premiere est d’enrichir les banques de donn6es

  9. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    Science.gov (United States)

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  10. Radar Micro-Doppler classification of Mini-UAVs

    NARCIS (Netherlands)

    Harmanny, R.L.A.; Prémel-Cabic, G.; Wit, J.J.M.

    2015-01-01

    The radar micro-Doppler signature of a target depends on its micro-motion, i.e., the motion of parts of a target relative to the motion of the target as a whole. These micro-motions are very characteristic considering different target classes, e.g., the slow pendulum-like motion of a bird’s wings

  11. The research of radar target tracking observed information linear filter method

    Science.gov (United States)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  12. Detection of hail through the three-body scattering signatures and its effects on radar algorithms observed in Romania

    OpenAIRE

    CARBUNARU, DANIEL VICTOR; SASU, MONICA; BURCEA, SORIN; BELL, AURORA

    2014-01-01

    The Romanian National Meteorological Administration (NMA) radar network consists of five S-band and four C-band radars. Observation of convection in Romania through the Doppler radar network offered a new perspective in understanding the climatologic risk of certain regions and mesoscale environments. Highly organized convective systems, such as supercells, are better observed and their subsequent threat can be better anticipated during the nowcasting process using Doppler velocity fields and...

  13. Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets

    Science.gov (United States)

    Thakur, S.; Bruzzone, L.

    2017-12-01

    Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For

  14. Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2010-09-01

    The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the 'seek time'.

  15. Improving angular resolution with Scan-MUSIC algorithm for real complex targets using 35-GHz millimeter-wave radar

    Science.gov (United States)

    Ly, Canh

    2004-08-01

    Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.

  16. Dual-Polarimetric Radar-Based Tornado Debris Signatures and Paths Associated with Tornadoes Over Northern Alabama During the Historic Outbreak of 27 April 2011

    Science.gov (United States)

    Carey, Lawrence D.; Schultz, Christopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedloved, Gary J.; Carcione, Brian C.; Darden, Christopher B.; hide

    2012-01-01

    A historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by 40 tornadoes, including 6 that reached EF-4 to EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Many of these tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures in 6 tornadoes in North Alabama on April 27, 2011. Several of these debris signatures were disseminated in real-time to the NWS Huntsville and local media to confirm storm spotter reports, confidence to enhance wording within warnings, and accurately pinpoint the locations of tornadoes for residents downstream of the storm. Also, the debris signature locations were used in post-event storm surveys to help locate areas of damage in regions where damage went unreported, or to help separate tornado tracks that were in close proximity to each other. Furthermore, the relative locations of the debris and damage paths for long track EF-4 and EF-5 tornadoes will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys.

  17. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    Science.gov (United States)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  18. Laser radar IV; Proceedings of the Meeting, Orlando, FL, Mar. 29, 30, 1989

    Science.gov (United States)

    Becherer, Richard J.

    1989-09-01

    Various papers on laser radars are presented. Individual topics considered include: frequency chirp of a low-pressure hybrid TE CO2 laser, design of a high-power isotopic CO2 laser amplifier, monolithic beam steering for large aperture laser radar, laser radar receiver using a Digicon detector, all-solid-state CO2 laser driver, noise in an acoustooptic-modulated laser source, laser signature prediction using the Value computer program, laser radar acquisition and tracking, concept of a moving target indicator search ladar, system design philosophy for laser radar wavelength determination, imaging three-frequency CO2 laser radar, backscatter-modulation semiconductor laser radar, three-dimensional imaging using a single laser pulse, design and manufacture of a high-resolution laser radar scanner, calculations of vibrational signatures for coherent ladar, coherent subaperture ultraviolet imagery, and range-Doppler resolution degradation associated with amplitude distortion.

  19. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation.

    Directory of Open Access Journals (Sweden)

    Hongkai Ji

    Full Text Available The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP, global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs. We further document that a Myc core signature (MCS set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.

  20. Modified linear predictive coding approach for moving target tracking by Doppler radar

    Science.gov (United States)

    Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao

    2016-07-01

    Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.

  1. Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine.

    Science.gov (United States)

    Zhao, Feixiang; Liu, Yongxiang; Huo, Kai; Zhang, Shuanghui; Zhang, Zhongshuai

    2018-01-10

    A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available.

  2. Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering

    Institute of Scientific and Technical Information of China (English)

    LI Shuo; TAO Ran

    2006-01-01

    We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.

  3. Robust through-the-wall radar image classification using a target-model alignment procedure.

    Science.gov (United States)

    Smith, Graeme E; Mobasseri, Bijan G

    2012-02-01

    A through-the-wall radar image (TWRI) bears little resemblance to the equivalent optical image, making it difficult to interpret. To maximize the intelligence that may be obtained, it is desirable to automate the classification of targets in the image to support human operators. This paper presents a technique for classifying stationary targets based on the high-range resolution profile (HRRP) extracted from 3-D TWRIs. The dependence of the image on the target location is discussed using a system point spread function (PSF) approach. It is shown that the position dependence will cause a classifier to fail, unless the image to be classified is aligned to a classifier-training location. A target image alignment technique based on deconvolution of the image with the system PSF is proposed. Comparison of the aligned target images with measured images shows the alignment process introducing normalized mean squared error (NMSE) ≤ 9%. The HRRP extracted from aligned target images are classified using a naive Bayesian classifier supported by principal component analysis. The classifier is tested using a real TWRI of canonical targets behind a concrete wall and shown to obtain correct classification rates ≥ 97%. © 2011 IEEE

  4. A New Methodology for 3D Target Detection in Automotive Radar Applications

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2016-04-01

    Full Text Available Today there is a growing interest in automotive sensor monitoring systems. One of the main challenges is to make them an effective and valuable aid in dangerous situations, improving transportation safety. The main limitation of visual aid systems is that they do not produce accurate results in critical visibility conditions, such as in presence of rain, fog or smoke. Radar systems can greatly help in overcoming such limitations. In particular, imaging radar is gaining interest in the framework of Driver Assistance Systems (DAS. In this manuscript, a new methodology able to reconstruct the 3D imaged scene and to detect the presence of multiple targets within each line of sight is proposed. The technique is based on the use of Compressive Sensing (CS theory and produces the estimation of multiple targets for each line of sight, their range distance and their reflectivities. Moreover, a fast approach for 2D focus based on the FFT algorithm is proposed. After the description of the proposed methodology, different simulated case studies are reported in order to evaluate the performances of the proposed approach.

  5. Investigation of radiant millimeter wave/terahertz radiation from low-infrared signature targets

    Science.gov (United States)

    Aytaç, B.; Alkuş, Ü.; Sivaslıgil, M.; Şahin, A. B.; Altan, H.

    2017-10-01

    Millimeter (mm) and sub-mm wave radiation is increasingly becoming a region of interest as better methods are developed to detect in this wavelength range. The development of sensitive focal plane array (FPA) architectures as well as single pixel scanners has opened up a new field of passive detection and imaging. Spectral signatures of objects, a long standing area of interest in the Short Wave Infrared (SWIR), Mid-Wave (MWIR) and Long Wave-IR (LWIR) bands can now be assessed in the mm-wave/terahertz (THz) region. The advantage is that this form of radiation is not as adversely affected by poor atmospheric conditions compared to other bands. In this study, a preliminary experiment in a laboratory environment is performed to assess the radiance from targets with low infrared signatures in the millimeter wave/terahertz (THz) band (<1 THz). The goal of this approach is to be able to model the experimental results to better understand the mm-wave/THz signature of targets with low observability in the IR bands.

  6. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy

    Science.gov (United States)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2017-08-01

    Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.

  7. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  8. Terrain feature recognition for synthetic aperture radar (SAR) imagery employing spatial attributes of targets

    Science.gov (United States)

    Iisaka, Joji; Sakurai-Amano, Takako

    1994-08-01

    This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.

  9. Automatic identification of bird targets with radar via patterns produced by wing flapping

    NARCIS (Netherlands)

    Zaugg, S.; Saporta, G.; van Loon, E.; Schmaljohann, H.; Liechti, F.

    2008-01-01

    Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical

  10. Spin-image surface matching based target recognition in laser radar range imagery

    International Nuclear Information System (INIS)

    Li, Wang; Jian-Feng, Sun; Qi, Wang

    2010-01-01

    We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the range imagery of Ladar is time-consuming, owing to its complicated procedure, which violates the requirement of real-time target recognition in practical applications. To simplify the troublesome procedures, we improve the spin-image algorithm by introducing a statistical correlated coefficient into target recognition in range imagery of Ladar. The system performance is demonstrated on sixteen simulated noise range images with targets rotated through an arbitrary angle in plane. A high efficiency and an acceptable recognition rate obtained herein testify the validity of the improved algorithm for practical applications. The proposed algorithm not only solves the problem of in-plane rotation-invariance rationally, but also meets the real-time requirement. This paper ends with a comparison of the proposed method and the previous one. (classical areas of phenomenology)

  11. Joint angle and Doppler frequency estimation of coherent targets in monostatic MIMO radar

    Science.gov (United States)

    Cao, Renzheng; Zhang, Xiaofei

    2015-05-01

    This paper discusses the problem of joint direction of arrival (DOA) and Doppler frequency estimation of coherent targets in a monostatic multiple-input multiple-output radar. In the proposed algorithm, we perform a reduced dimension (RD) transformation on the received signal first and then use forward spatial smoothing (FSS) technique to decorrelate the coherence and obtain joint estimation of DOA and Doppler frequency by exploiting the estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. The joint estimated parameters of the proposed RD-FSS-ESPRIT are automatically paired. Compared with the conventional FSS-ESPRIT algorithm, our RD-FSS-ESPRIT algorithm has much lower complexity and better estimation performance of both DOA and frequency. The variance of the estimation error and the Cramer-Rao Bound of the DOA and frequency estimation are derived. Simulation results show the effectiveness and improvement of our algorithm.

  12. Reduced complexity FFT-based DOA and DOD estimation for moving target in bistatic MIMO radar

    KAUST Repository

    Ali, Hussain

    2016-06-24

    In this paper, we consider a bistatic multiple-input multiple-output (MIMO) radar. We propose a reduced complexity algorithm to estimate the direction-of-arrival (DOA) and direction-of-departure (DOD) for moving target. We show that the calculation of parameter estimation can be expressed in terms of one-dimensional fast-Fourier-transforms which drastically reduces the complexity of the optimization algorithm. The performance of the proposed algorithm is compared with the two-dimension multiple signal classification (2D-MUSIC) and reduced-dimension MUSIC (RD-MUSIC) algorithms. It is shown by simulations, our proposed algorithm has better estimation performance and lower computational complexity compared to the 2D-MUSIC and RD-MUSIC algorithms. Moreover, simulation results also show that the proposed algorithm achieves the Cramer-Rao lower bound. © 2016 IEEE.

  13. Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition

    Science.gov (United States)

    Yan, Yue

    2018-03-01

    A synthetic aperture radar (SAR) automatic target recognition (ATR) method based on the convolutional neural networks (CNN) trained by augmented training samples is proposed. To enhance the robustness of CNN to various extended operating conditions (EOCs), the original training images are used to generate the noisy samples at different signal-to-noise ratios (SNRs), multiresolution representations, and partially occluded images. Then, the generated images together with the original ones are used to train a designed CNN for target recognition. The augmented training samples can contrapuntally improve the robustness of the trained CNN to the covered EOCs, i.e., the noise corruption, resolution variance, and partial occlusion. Moreover, the significantly larger training set effectively enhances the representation capability for other conditions, e.g., the standard operating condition (SOC), as well as the stability of the network. Therefore, better performance can be achieved by the proposed method for SAR ATR. For experimental evaluation, extensive experiments are conducted on the Moving and Stationary Target Acquisition and Recognition dataset under SOC and several typical EOCs.

  14. Low Complexity Moving Target Parameter Estimation for MIMO Radar using 2D-FFT

    KAUST Repository

    Jardak, Seifallah

    2017-06-16

    In multiple-input multiple-output radar, to localize a target and estimate its reflection coefficient, a given cost function is usually optimized over a grid of points. The performance of such algorithms is directly affected by the grid resolution. Increasing the number of grid points enhances the resolution of the estimator but also increases its computational complexity exponentially. In this work, two reduced complexity algorithms are derived based on Capon and amplitude and phase estimation (APES) to estimate the reflection coefficient, angular location and, Doppler shift of multiple moving targets. By exploiting the structure of the terms, the cost-function is brought into a form that allows us to apply the two-dimensional fast-Fourier-transform (2D-FFT) and reduce the computational complexity of estimation. Using low resolution 2D-FFT, the proposed algorithm identifies sub-optimal estimates and feeds them as initial points to the derived Newton gradient algorithm. In contrast to the grid-based search algorithms, the proposed algorithm can optimally estimate on- and off-the-grid targets in very low computational complexity. A new APES cost-function with better estimation performance is also discussed. Generalized expressions of the Cramér-Rao lower bound are derived to asses the performance of the proposed algorithm.

  15. Three-Dimensional Precession Feature Extraction of Ballistic Targets Based on Narrowband Radar Network

    Directory of Open Access Journals (Sweden)

    Zhao Shuang

    2017-02-01

    Full Text Available Micro-motion is a crucial feature used in ballistic target recognition. To address the problem that single-view observations cannot extract true micro-motion parameters, we propose a novel algorithm based on the narrowband radar network to extract three-dimensional precession features. First, we construct a precession model of the cone-shaped target, and as a precondition, we consider the invisible problem of scattering centers. We then analyze in detail the micro-Doppler modulation trait caused by the precession. Then, we match each scattering center in different perspectives based on the ratio of the top scattering center’s micro-Doppler frequency modulation coefficient and extract the 3D coning vector of the target by establishing associated multi-aspect equation systems. In addition, we estimate feature parameters by utilizing the correlation of the micro-Doppler frequency modulation coefficient of the three scattering centers combined with the frequency compensation method. We then calculate the coordinates of the conical point in each moment and reconstruct the 3D spatial portion. Finally, we provide simulation results to validate the proposed algorithm.

  16. Low Complexity Moving Target Parameter Estimation for MIMO Radar using 2D-FFT

    KAUST Repository

    Jardak, Seifallah; Ahmed, Sajid; Alouini, Mohamed-Slim

    2017-01-01

    In multiple-input multiple-output radar, to localize a target and estimate its reflection coefficient, a given cost function is usually optimized over a grid of points. The performance of such algorithms is directly affected by the grid resolution. Increasing the number of grid points enhances the resolution of the estimator but also increases its computational complexity exponentially. In this work, two reduced complexity algorithms are derived based on Capon and amplitude and phase estimation (APES) to estimate the reflection coefficient, angular location and, Doppler shift of multiple moving targets. By exploiting the structure of the terms, the cost-function is brought into a form that allows us to apply the two-dimensional fast-Fourier-transform (2D-FFT) and reduce the computational complexity of estimation. Using low resolution 2D-FFT, the proposed algorithm identifies sub-optimal estimates and feeds them as initial points to the derived Newton gradient algorithm. In contrast to the grid-based search algorithms, the proposed algorithm can optimally estimate on- and off-the-grid targets in very low computational complexity. A new APES cost-function with better estimation performance is also discussed. Generalized expressions of the Cramér-Rao lower bound are derived to asses the performance of the proposed algorithm.

  17. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies

    Directory of Open Access Journals (Sweden)

    Gao Jingkun

    2018-02-01

    Full Text Available Echo simulation is a precondition for developing radar imaging systems, algorithms, and subsequent applications. Electromagnetic scattering modeling of the target is key to echo simulation. At terahertz (THz frequencies, targets are usually of ultra-large electrical size that makes applying classical electromagnetic calculation methods unpractical. In contrast, the short wavelength makes the surface roughness of targets a factor that cannot be ignored, and this makes the traditional echo simulation methods based on point scattering hypothesis in applicable. Modeling the scattering characteristics of targets and efficiently generating its radar echoes in THz bands has become a problem that must be solved. In this paper, a hierarchical semi-deterministic modeling method is proposed. A full-wave algorithm of rough surfaces is used to calculate the scattered field of facets. Then, the scattered fields of all facets are transformed into the target coordinate system and coherently summed. Finally, the radar echo containing phase information can be obtained. Using small-scale rough models, our method is compared with the standard high-frequency numerical method, which verifies the effectiveness of the proposed method. Imaging results of a full-scale cone-shape target is presented, and the scattering model and echo generation problem of the full-scale convex targets with rough surfaces in THz bands are preliminary solved; this lays the foundation for future research on imaging regimes and algorithms.

  18. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  19. Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing

    KAUST Repository

    Ali, Hussain; Ahmed, Sajid; Al-Naffouri, Tareq Y.; Sharawi, Mohammad S.; Alouini, Mohamed-Slim

    2017-01-01

    Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.

  20. Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing

    KAUST Repository

    Ali, Hussain

    2017-01-09

    Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.

  1. Radar Coincidence Imaging for Off-Grid Target Using Frequency-Hopping Waveforms

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2016-01-01

    Full Text Available Radar coincidence imaging (RCI is a high-resolution staring imaging technique without the limitation of the target relative motion. To achieve better imaging performance, sparse reconstruction is commonly used. While its performance is based on the assumption that the scatterers are located at the prediscretized grid-cell centers, otherwise, off-grid emerges and the performance of RCI degrades significantly. In this paper, RCI using frequency-hopping (FH waveforms is considered. The off-grid effects are analyzed, and the corresponding constrained Cramér-Rao bound (CCRB is derived based on the mean square error (MSE of the “oracle” estimator. For off-grid RCI, the process is composed of two stages: grid matching and off-grid error (OGE calibration, where two-dimension (2D band-excluded locally optimized orthogonal matching pursuit (BLOOMP and alternating iteration minimization (AIM algorithms are proposed, respectively. Unlike traditional sparse recovery methods, BLOOMP realizes the recovery in the refinement grids by overwhelming the shortages of coherent dictionary and is robust to noise and OGE. AIM calibration algorithm adaptively adjusts the OGE and, meanwhile, seeks the optimal target reconstruction result.

  2. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    Science.gov (United States)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  3. SAR (Synthetic Aperture Radar) Data Collection and Processing Summary - 1984 SARSEX (SAR Internal Wave Signature Experiment) Experiment.

    Science.gov (United States)

    1985-03-01

    DIVISION ;! -0 N xr-0 n 0n4 1 1 I- C) 0 Ic 0 C WIx W Qr - - r -r 01............................. I Cq I1 -a I- I X 0’ an w I w kI~r 1 0r- r- r . 0~~~ Cs CW 1...object from the SAR platform . Ground range, the 102 ~RIM RADAR DIVISION 0 0 sc 0’. C4 C4 Xn en % >4-4 441i V-u -- - W 1-11 04 v4 0o 0 4 0 (A~U Go 4J...Rg = rRF -hy ,(3) for the flat earth or low-altitude case, where h is the platform altitude. Because the range and azimuth scales are not the same

  4. Three-Dimensional Target Localization and Cramér-Rao Bound for Two-Dimensional OFDM-MIMO Radar

    Directory of Open Access Journals (Sweden)

    Xingxing Li

    2017-01-01

    Full Text Available Target localization using a frequency diversity multiple-input multiple-output (MIMO system is one of the hottest research directions in the radar society. In this paper, three-dimensional (3D target localization is considered for two-dimensional MIMO radar with orthogonal frequency division multiplexing linear frequency modulated (OFDM-LFM waveforms. To realize joint estimation for range and angle in azimuth and elevation, the range-angle-dependent beam pattern with high range resolution is produced by the OFDM-LFM waveform. Then, the 3D target localization proposal is presented and the corresponding closed-form expressions of Cramér-Rao bound (CRB are derived. Furthermore, for mitigating the coupling of angle and range and further improving the estimation precision, a CRB optimization method is proposed. Different from the existing methods of FDA-based radar, the proposed method can provide higher range estimation because of multiple transmitted frequency bands. Numerical simulation results are provided to demonstrate the effectiveness of the proposed approach and its improved performance of target localization.

  5. Radar Micro-Doppler Feature Extraction Using the Spectrogram and the Cepstrogram

    NARCIS (Netherlands)

    Harmanny, R.I.A.; Wit, J.J.M. de; Prémel Cabic, G.

    2014-01-01

    The radar micro-Doppler signature of a target is determined by parts of the target moving or rotating in addition to the main body motion. The relative motion of parts is characteristic for different classes of targets, e.g. the flapping motion of a bird's wings vs. the spinning of propeller blades.

  6. Radar Micro-Doppler Mini-UAV Classification using Spectrograms and Cepstrograms

    NARCIS (Netherlands)

    Harmanny, R.I.A.; Wit, J.J.M. de; Prémel-Cabic, G.

    2015-01-01

    The radar micro-Doppler signature of a target is determined by parts of the target moving or rotating in addition to the main body motion. The relative motion of these parts is characteristic for different classes of targets, e.g. the flapping motion of a bird’s wings versus the spinning of

  7. Automatic target classification of man-made objects in synthetic aperture radar images using Gabor wavelet and neural network

    Science.gov (United States)

    Vasuki, Perumal; Roomi, S. Mohamed Mansoor

    2013-01-01

    Processing of synthetic aperture radar (SAR) images has led to the development of automatic target classification approaches. These approaches help to classify individual and mass military ground vehicles. This work aims to develop an automatic target classification technique to classify military targets like truck/tank/armored car/cannon/bulldozer. The proposed method consists of three stages via preprocessing, feature extraction, and neural network (NN). The first stage removes speckle noise in a SAR image by the identified frost filter and enhances the image by histogram equalization. The second stage uses a Gabor wavelet to extract the image features. The third stage classifies the target by an NN classifier using image features. The proposed work performs better than its counterparts, like K-nearest neighbor (KNN). The proposed work performs better on databases like moving and stationary target acquisition and recognition against the earlier methods by KNN.

  8. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition.

    Science.gov (United States)

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-06

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  9. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    Science.gov (United States)

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  10. Target Localization by Resolving the Time Synchronization Problem in Bistatic Radar Systems Using Space Fast-Time Adaptive Processor

    Directory of Open Access Journals (Sweden)

    D. Madurasinghe

    2009-01-01

    Full Text Available The proposed technique allows the radar receiver to accurately estimate the range of a large number of targets using a transmitter of opportunity as long as the location of the transmitter is known. The technique does not depend on the use of communication satellites or GPS systems, instead it relies on the availability of the direct transmit copy of the signal from the transmitter and the reflected paths off the various targets. An array-based space-fast time adaptive processor is implemented in order to estimate the path difference between the direct signal and the delayed signal, which bounces off the target. This procedure allows us to estimate the target distance as well as bearing.

  11. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs.

    Science.gov (United States)

    Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen

    2017-09-04

    According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.

  12. Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves

    Science.gov (United States)

    2017-07-01

    by Acoustic Modulation of Electromagnetic Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory J... Program 13 List of Symbols, Abbreviations, and Acronyms 18 Distribution List 19 Approved for public release; distribution is...4 Fig. 4 Flowchart of wireless experiment to receive acoustically modulated radar waveforms

  13. Targeted Metabolomics Reveals Early Dominant Optic Atrophy Signature in Optic Nerves of Opa1delTTAG/+ Mice.

    Science.gov (United States)

    Chao de la Barca, Juan Manuel; Simard, Gilles; Sarzi, Emmanuelle; Chaumette, Tanguy; Rousseau, Guillaume; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Ferré, Marc; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Gueguen, Naïg; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Amati-Bonneau, Patrizia; Procaccio, Vincent; Hamel, Christian; Lenaers, Guy; Reynier, Pascal; Prunier-Mirebeau, Delphine

    2017-02-01

    Dominant optic atrophy (MIM No. 165500) is a blinding condition related to mutations in OPA1, a gene encoding a large GTPase involved in mitochondrial inner membrane dynamics. Although several mouse models mimicking the disease have been developed, the pathophysiological mechanisms responsible for retinal ganglion cell degeneration remain poorly understood. Using a targeted metabolomic approach, we measured the concentrations of 188 metabolites in nine tissues, that is, brain, three types of skeletal muscle, heart, liver, retina, optic nerve, and plasma in symptomatic 11-month-old Opa1delTTAG/+ mice. Significant metabolic signatures were found only in the optic nerve and plasma of female mice. The optic nerve signature was characterized by altered concentrations of phospholipids, amino acids, acylcarnitines, and carnosine, whereas the plasma signature showed decreased concentrations of amino acids and sarcosine associated with increased concentrations of several phospholipids. In contrast, the investigation of 3-month-old presymptomatic Opa1delTTAG/+ mice showed no specific plasma signature but revealed a significant optic nerve signature in both sexes, although with a sex effect. The Opa1delTTAG/+ versus wild-type optic nerve signature was characterized by the decreased concentrations of 10 sphingomyelins and 10 lysophosphatidylcholines, suggestive of myelin sheath alteration, and by alteration in the concentrations of metabolites involved in neuroprotection, such as dimethylarginine, carnitine, spermine, spermidine, carnosine, and glutamate, suggesting a concomitant axonal metabolic dysfunction. Our comprehensive metabolomic investigations revealed in symptomatic as well as in presymptomatic Opa1delTTAG/+ mice, a specific sensitiveness of the optic nerve to Opa1 insufficiency, opening new routes for protective therapeutic strategies.

  14. Effect of Beam Scanning on Target Polarization Scattering Matrix Observed by Fully Polarimetric Phased-array Radar

    Directory of Open Access Journals (Sweden)

    Li Mianquan

    2016-04-01

    Full Text Available The polarization feature of a fully Polarimetric Phased-Array Radar (PPAR antenna varies according to the beam-scanning angle, thereby introducing two problems on the target Polarization Scattering Matrix (PSM measurement. First, the antenna polarization basis is defined within the vertical cross-section of an electromagnetic wave propagation direction, and the polarization basis of each beam direction angle is not identical, resulting in the PSM of a fixed-posture target observed by PPAR being not identical for different beam-scanning angles. Second, the cross polarization of the PPAR antenna increases with increasing beamscanning angle, resulting in a crosstalk among the elements of PSM observed by PPAR. This study focuses on the analysis of the abovementioned two aspects of the effect of beam scanning on target PSM observed by PPAR. The results will establish a more accurate observation of the equation for the precision PSM measurement of PPAR.

  15. Efficient moving target analysis for inverse synthetic aperture radar images via joint speeded-up robust features and regular moment

    Science.gov (United States)

    Yang, Hongxin; Su, Fulin

    2018-01-01

    We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.

  16. System for Automatic Detection and Analysis of Targets in FMICW Radar Signal

    Czech Academy of Sciences Publication Activity Database

    Rejfek, Luboš; Mošna, Zbyšek; Urbář, Jaroslav; Koucká Knížová, Petra

    2016-01-01

    Roč. 67, č. 1 (2016), s. 36-41 ISSN 1335-3632 R&D Projects: GA ČR(CZ) GAP209/12/2440; GA ČR(CZ) GA15-24688S Institutional support: RVO:68378289 Keywords : power spectral density (PSD) * FMICW radar * Doppler measurement * thresholding * false alert detection Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.483, year: 2016 http://iris.elf.stuba.sk/JEEEC/data/pdf/1_116-05.pdf

  17. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  18. Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma.

    Science.gov (United States)

    Johnson, Jennifer; Ascierto, Maria Libera; Mittal, Sandeep; Newsome, David; Kang, Liang; Briggs, Michael; Tanner, Kirk; Marincola, Francesco M; Berens, Michael E; Vande Woude, George F; Xie, Qian

    2015-09-17

    Constitutive MET signaling promotes invasiveness in most primary and recurrent GBM. However, deployment of available MET-targeting agents is confounded by lack of effective biomarkers for selecting suitable patients for treatment. Because endogenous HGF overexpression often causes autocrine MET activation, and also indicates sensitivity to MET inhibitors, we investigated whether it drives the expression of distinct genes which could serve as a signature indicating vulnerability to MET-targeted therapy in GBM. Interrogation of genomic data from TCGA GBM (Student's t test, GBM patients with high and low HGF expression, p ≤ 0.00001) referenced against patient-derived xenograft (PDX) models (Student's t test, sensitive vs. insensitive models, p ≤ 0.005) was used to identify the HGF-dependent signature. Genomic analysis of GBM xenograft models using both human and mouse gene expression microarrays (Student's t test, treated vs. vehicle tumors, p ≤ 0.01) were performed to elucidate the tumor and microenvironment cross talk. A PDX model with EGFR(amp) was tested for MET activation as a mechanism of erlotinib resistance. We identified a group of 20 genes highly associated with HGF overexpression in GBM and were up- or down-regulated only in tumors sensitive to MET inhibitor. The MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall impede tumor growth by inhibiting cell cycle progression. EGFR (amp) tumors undergo erlotinib resistance responded to a combination of MET and EGFR inhibitors. Combining TCGA primary tumor datasets (human) and xenograft tumor model datasets (human tumor grown in mice) using therapeutic efficacy as an endpoint may serve as a useful approach to discover and develop molecular signatures as therapeutic biomarkers for targeted therapy. The HGF dependent signature may serve as a candidate predictive signature for patient enrollment in clinical trials using MET inhibitors

  19. High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors

    International Nuclear Information System (INIS)

    Ma Jun-Tao; Gao Mei-Guo; Xiong Di; Feng Qi; Guo Bao-Feng; Dong Jian

    2017-01-01

    The development of inverse synthetic aperture radar (ISAR) imaging techniques is of notable significance for monitoring, tracking and identifying space targets in orbit. Usually, a well-focused ISAR image of a space target can be obtained in a deliberately selected imaging segment in which the target moves with only uniform planar rotation. However, in some imaging segments, the nonlinear range migration through resolution cells (MTRCs) and time-varying Doppler caused by the three-dimensional rotation of the target would degrade the ISAR imaging performance, and it is troublesome to realize accurate motion compensation with conventional methods. Especially in the case of low signal-to-noise ratio (SNR), the estimation of motion parameters is more difficult. In this paper, a novel algorithm for high-resolution ISAR imaging of a space target by using its precise ephemeris and orbital motion model is proposed. The innovative contributions are as follows. 1) The change of a scatterer projection position is described with the spatial-variant angles of imaging plane calculated based on the orbital motion model of the three-axis-stabilized space target. 2) A correction method of MTRC in slant- and cross-range dimensions for arbitrarily imaging segment is proposed. 3) Coarse compensation for translational motion using the precise ephemeris and the fine compensation for residual phase errors by using sparsity-driven autofocus method are introduced to achieve a high-resolution ISAR image. Simulation results confirm the effectiveness of the proposed method. (paper)

  20. Development and Testing of a Multiple Frequency Continuous Wave Radar for Target Detection and Classification

    Science.gov (United States)

    2007-03-01

    1 2’ VIH " 1 ’ 󈧏) (34) where is the modified Bessel function of zero order. Here is the conditional variance and is the conditional probability...10, the probability of detection is the area under the signal-plus-noise curve above the detection threshold co M vF (V 2+ A2)]10 ( vAPd= fnp~ju,( vIH ...Spectrogram O /STFT < 12 +J F Q’I " ’ " ""-’"’" -STFT TFRgram 2I1+ IST 21 U- •’j -/STFT,, I HP STFT ISTFTI Figure 19. 3FCW radar processing prior to

  1. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2016-10-01

    Full Text Available Ultra-wideband (UWB radar has been widely used for detecting human physiological signals (respiration, movement, etc. in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc., the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  2. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method.

    Science.gov (United States)

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-10-27

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  3. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Koch, Wolfgang

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Waveform diversity and cognitive radar and Target tracking and data fusion.

  4. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  5. A target recognition method for maritime surveillance radars based on hybrid ensemble selection

    Science.gov (United States)

    Fan, Xueman; Hu, Shengliang; He, Jingbo

    2017-11-01

    In order to improve the generalisation ability of the maritime surveillance radar, a novel ensemble selection technique, termed Optimisation and Dynamic Selection (ODS), is proposed. During the optimisation phase, the non-dominated sorting genetic algorithm II for multi-objective optimisation is used to find the Pareto front, i.e. a set of ensembles of classifiers representing different tradeoffs between the classification error and diversity. During the dynamic selection phase, the meta-learning method is used to predict whether a candidate ensemble is competent enough to classify a query instance based on three different aspects, namely, feature space, decision space and the extent of consensus. The classification performance and time complexity of ODS are compared against nine other ensemble methods using a self-built full polarimetric high resolution range profile data-set. The experimental results clearly show the effectiveness of ODS. In addition, the influence of the selection of diversity measures is studied concurrently.

  6. FrFT-CSWSF: Estimating cross-range velocities of ground moving targets using multistatic synthetic aperture radar

    Directory of Open Access Journals (Sweden)

    Li Chenlei

    2014-10-01

    Full Text Available Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar (SAR, which is important for ground moving target indication (GMTI. Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model (ESTIM of the azimuth signal, has two steps: first, a set of finite impulse response (FIR filter banks based on a fractional Fourier transform (FrFT is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting (CSWSF algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.

  7. EEG and Eye Tracking Signatures of Target Encoding during Structured Visual Search

    Directory of Open Access Journals (Sweden)

    Anne-Marie Brouwer

    2017-05-01

    Full Text Available EEG and eye tracking variables are potential sources of information about the underlying processes of target detection and storage during visual search. Fixation duration, pupil size and event related potentials (ERPs locked to the onset of fixation or saccade (saccade-related potentials, SRPs have been reported to differ dependent on whether a target or a non-target is currently fixated. Here we focus on the question of whether these variables also differ between targets that are subsequently reported (hits and targets that are not (misses. Observers were asked to scan 15 locations that were consecutively highlighted for 1 s in pseudo-random order. Highlighted locations displayed either a target or a non-target stimulus with two, three or four targets per trial. After scanning, participants indicated which locations had displayed a target. To induce memory encoding failures, participants concurrently performed an aurally presented math task (high load condition. In a low load condition, participants ignored the math task. As expected, more targets were missed in the high compared with the low load condition. For both conditions, eye tracking features distinguished better between hits and misses than between targets and non-targets (with larger pupil size and shorter fixations for missed compared with correctly encoded targets. In contrast, SRP features distinguished better between targets and non-targets than between hits and misses (with average SRPs showing larger P300 waveforms for targets than for non-targets. Single trial classification results were consistent with these averages. This work suggests complementary contributions of eye and EEG measures in potential applications to support search and detect tasks. SRPs may be useful to monitor what objects are relevant to an observer, and eye variables may indicate whether the observer should be reminded of them later.

  8. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval

    Directory of Open Access Journals (Sweden)

    Liu Zhen

    2012-03-01

    Full Text Available Blind zones and ambiguities in range and velocity measurement are two important issues in traditional pulse-Doppler radar. By generating random deviations with respect to a mean Pulse Repetition Interval (PRI, this paper proposes a novel algorithm of Moving Target Detection (MTD based on the Compressed Sensing (CS theory, in which the random deviations of the PRIare converted to the Restricted Isometry Property (RIP of the observing matrix. The ambiguities of range and velocity are eliminated by designing the signal parameters. The simulation results demonstrate that this scheme has high performance of detection, and there is no ambiguity and blind zones as well. It can also shorten the coherent processing interval compared to traditional staggered PRI mode because only one pulse train is needed instead of several trains.

  9. An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer

    Directory of Open Access Journals (Sweden)

    Liang Yu

    2008-12-01

    Full Text Available Abstract Background Patients diagnosed with lung adenocarcinoma (AD and squamous cell carcinoma (SCC, two major histologic subtypes of lung cancer, currently receive similar standard treatments, but resistance to adjuvant chemotherapy is prevalent. Identification of differentially expressed genes marking AD and SCC may prove to be of diagnostic value and help unravel molecular basis of their histogenesis and biologies, and deliver more effective and specific systemic therapy. Methods MiRNA target genes were predicted by union of miRanda, TargetScan, and PicTar, followed by screening for matched gene symbols in NCBI human sequences and Gene Ontology (GO terms using the PANTHER database that was also used for analyzing the significance of biological processes and pathways within each ontology term. Microarray data were extracted from Gene Expression Omnibus repository, and tumor subtype prediction by gene expression used Prediction Analysis of Microarrays. Results Computationally predicted target genes of three microRNAs, miR-34b/34c/449, that were detected in human lung, testis, and fallopian tubes but not in other normal tissues, were filtered by representation of GO terms and their ability to classify lung cancer subtypes, followed by a meta-analysis of microarray data to classify AD and SCC. Expression of a minimal set of 17 predicted miR-34b/34c/449 target genes derived from the developmental process GO category was identified from a training set to classify 41 AD and 17 SCC, and correctly predicted in average 87% of 354 AD and 82% of 282 SCC specimens from total 9 independent published datasets. The accuracy of prediction still remains comparable when classifying 103 AD and 79 SCC samples from another 4 published datasets that have only 14 to 16 of the 17 genes available for prediction (84% and 85% for AD and SCC, respectively. Expression of this signature in two published datasets of epithelial cells obtained at bronchoscopy from cigarette

  10. Radar observations of Mercury

    International Nuclear Information System (INIS)

    Harmon, J.K.; Campbell, D.B.

    1988-01-01

    Some of the radar altimetry profiles of Mercury obtained on the basis of data from the Arecibo Observatory are presented. In these measurements, the delay-Doppler method was used to measure altitudes along the Doppler equator, rather than to map radar reflectivity. The profiles, derived from observations made over a 6-yr period, provide extensive coverage over a restricted equatorial band and permit the identification of radar signatures for features as small as 50-km diameter craters and 1-km-high arcuate scarps. The data allowed identification of large-scale topographic features such as smooth plains subsidence zones and major highland regions

  11. Signatures of RNA binding proteins globally coupled to effective microRNA target sites

    DEFF Research Database (Denmark)

    Jacobsen, Anders; Wen, Jiayu; Marks, Debora S

    2010-01-01

    MicroRNAs (miRNAs) and small interfering RNAs (siRNAs), bound to Argonaute proteins (RISC), destabilize mRNAs through base-pairing with the mRNA. However, the gene expression changes after perturbations of these small RNAs are only partially explained by predicted miRNA/siRNA targeting. Targeting...

  12. Study on moving target detection to passive radar based on FM broadcast transmitter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Target detection by a noncooperative illuminator is a topic of general interest in the electronic warfare field.First of all,direct-path interference(DPI)suppression which is the technique of bottleneck of moving target detection by a noncooperative frequency modulation(FM) broadcast transmitter is analyzed in this article;Secondly,a space-time-frequency domain synthetic solution to this problem is introduced:Adaptive nulling array processing is considered in the space domain,DPI cancellation based on adaptive fractional delay interpolation(AFDI)technique is used in planned time domain,and long-time coherent integration is utilized in the frequency domain;Finally,an experimental system is planned by considering FM broadcast transmitter as a noncooperative illuminator,Simulation results by real collected data show that the proposed method has a better performance of moving target detection.

  13. Detection of Unexploded Ordnance Using Airborne LWIR Emissivity Signatures

    Science.gov (United States)

    2015-11-25

    glass and wood, are spectrally distinct and would not appear as false alarms. Index Terms— Hyperspectral, Long Wave Infrared , Emissivity, Target...hyperspectral; radar). Because of previous successes using thermal infrared bands for UXO [3, 4] and landmine detection [5], this paper aims at...potential false alarms. They included materials made of rubber , cardboard, metal, wood, glass and plastic (Figure 1). 2.2. Laboratory LWIR signature

  14. Geometric saliency to characterize radar exploitation performance

    Science.gov (United States)

    Nolan, Adam; Keserich, Brad; Lingg, Andrew; Goley, Steve

    2014-06-01

    Based on the fundamental scattering mechanisms of facetized computer-aided design (CAD) models, we are able to define expected contributions (EC) to the radar signature. The net result of this analysis is the prediction of the salient aspects and contributing vehicle morphology based on the aspect. Although this approach does not provide the fidelity of an asymptotic electromagnetic (EM) simulation, it does provide very fast estimates of the unique scattering that can be consumed by a signature exploitation algorithm. The speed of this approach is particularly relevant when considering the high dimensionality of target configuration variability due to articulating parts which are computationally burdensome to predict. The key scattering phenomena considered in this work are the specular response from a single bounce interaction with surfaces and dihedral response formed between the ground plane and vehicle. Results of this analysis are demonstrated for a set of civilian target models.

  15. Joint inference of dominant scatterer locations and motion parameters of an extended target in high range-resolution radar

    CSIR Research Space (South Africa)

    De Freitas, A

    2015-06-01

    Full Text Available of scatterers using the PF method are compared with those obtained using standard range-Doppler inverse synthetic aperture radar (ISAR) imaging when using the same radar returns for both cases. The PF infers the location of scatterers more accurately than ISAR...

  16. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.

    Science.gov (United States)

    Hanson, E; Ingold, S; Haas, C; Ballantyne, J

    2018-05-01

    The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and

  17. Development of a Near-Field Bistatic Synthetic Aperture Radar for Complex Target Reconstruction

    Directory of Open Access Journals (Sweden)

    David G. Johnson

    2012-01-01

    Full Text Available This paper begins with a description of the design, construction, and characterization of a small electromagnetic anechoic chamber, developed specifically to house a bistatic ISAR system for the analysis of rock samples. Particular emphasis is given to the practicalities of construction, with the intention of assisting those in a similar position, wishing to build an anechoic chamber on a tight budget. The second part of the paper outlines efficient algorithms that may be applied to the tomographic and topographic reconstruction of complex targets within the viewing geometry of this ISAR system.

  18. Signal Processing of Ground Penetrating Radar Using Spectral Estimation Techniques to Estimate the Position of Buried Targets

    Directory of Open Access Journals (Sweden)

    Shanker Man Shrestha

    2003-11-01

    Full Text Available Super-resolution is very important for the signal processing of GPR (ground penetration radar to resolve closely buried targets. However, it is not easy to get high resolution as GPR signals are very weak and enveloped by the noise. The MUSIC (multiple signal classification algorithm, which is well known for its super-resolution capacity, has been implemented for signal and image processing of GPR. In addition, conventional spectral estimation technique, FFT (fast Fourier transform, has also been implemented for high-precision receiving signal level. In this paper, we propose CPM (combined processing method, which combines time domain response of MUSIC algorithm and conventional IFFT (inverse fast Fourier transform to obtain a super-resolution and high-precision signal level. In order to support the proposal, detailed simulation was performed analyzing SNR (signal-to-noise ratio. Moreover, a field experiment at a research field and a laboratory experiment at the University of Electro-Communications, Tokyo, were also performed for thorough investigation and supported the proposed method. All the simulation and experimental results are presented.

  19. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO Radar Based on the Elements of the Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Zhengyan Zhang

    2018-03-01

    Full Text Available In this paper, we consider the problem of tracking the direction of arrivals (DOA and the direction of departure (DOD of multiple targets for bistatic multiple-input multiple-output (MIMO radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  20. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    Science.gov (United States)

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  1. Targeted and genome-scale methylomics reveals gene body signatures in human cell lines

    Science.gov (United States)

    Ball, Madeleine Price; Li, Jin Billy; Gao, Yuan; Lee, Je-Hyuk; LeProust, Emily; Park, In-Hyun; Xie, Bin; Daley, George Q.; Church, George M.

    2012-01-01

    Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions. PMID:19329998

  2. Study of the microdoppler signature of a bicyclist for different directions of approach

    Science.gov (United States)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2015-05-01

    The successful implementation of autonomous driving in an urban setting depends on the ability of the environment perception system to correctly classify vulnerable road users such as pedestrians and bicyclists in dense, complex scenarios. Self-driving vehicles include sensor systems such as cameras, lidars, and radars to enable decision making. Among these systems, radars are particularly relevant due to their operational robustness under adverse weather and night light conditions. Classification of pedestrian and car in urban settings using automotive radar has been widely investigated, suggesting that micro-Doppler signatures are useful for target discrimination. Our objective is to analyze and study the micro-Doppler signature of bicyclists approaching a vehicle from different directions in order to establish the basis of a classification criterion to distinguish bicycles from other targets including clutter. The micro-Doppler signature is obtained by grouping individual reflecting points using a clustering algorithm and observing the evolution of all the points belonging to an object in the Doppler domain over time. A comparison is then made with simulated data that uses a kinematic model of bicyclists' movement. The suitability of the micro-Doppler bicyclist signature as a classification feature is determined by comparing it to those belonging to cars and pedestrians approaching the automotive radar system.

  3. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wusheng

    2012-01-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC, the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB, normal differentiated squamous epithelium (ND, and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and

  4. Under the radar--how the tobacco industry targets youth in Australia.

    Science.gov (United States)

    Harper, Todd A; Martin, Jane E

    2002-12-01

    Tobacco consumption has been declining in Australia since the 1970s when controls on advertising were first introduced. Since this time, legislation has been progressively introduced, severely restricting tobacco advertising and promotion in the mainstream media. This has resulted in limited opportunities for the tobacco industry to reach new smokers, particularly young people. This paper outlines marketing strategies used by tobacco companies and their advertising agencies to reach this group; it examines how the industry exploits loopholes in current legislation and identifies new promotional opportunities. Increasingly, the industry has targeted young people through film, dance parties, nightclubs, fashion shows, e-mail and the internet. The industry is also capitalizing on promoting pack design elements and enhancing them through event promotion. Unless restrictions on tobacco marketing and promotion are comprehensive they undermine the effectiveness of those already in place and will continue to be exploited by the tobacco industry. The recent announcement by the Federal government to reassess the current legislative restrictions in light of these new marketing trends is welcome. The removal of all incentives to promote tobacco products, including imagery associated with the pack and its design, is essential in removing one of the key factors influencing the uptake and prevalence of smoking in youth.

  5. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Bramsen, Jesper Bertram; Lamy, Philippe

    2010-01-01

    hybridization. Ectopic expression of miR-145 induced extensive apoptosis in urothelial carcinoma cell lines (T24 and SW780) as characterized by caspase activation, nuclear condensation and fragmentation, cellular shrinkage, and detachment. However, cell death also proceeded upon caspase inhibition...... sites. Among these, direct targeting of CBFB, PPP3CA, and CLINT1 was confirmed by a luciferase reporter assay. Notably, a 22-gene signature targeted on enforced miR-145 expression in T24 cells was significantly (P

  6. VHF/UHF imagery and RCS measurements of ground targets in forested terrain

    Science.gov (United States)

    Gatesman, Andrew J.; Beaudoin, Christopher J.; Giles, Robert H.; Waldman, Jerry; Nixon, William E.

    2002-08-01

    The monostatic VV and HH-polarized radar signatures of several targets and trees have been measured at foliage penetration frequencies (VHF/UHF) by using 1/35th scale models and an indoor radar range operating at X-band. An array of high-fidelity scale model ground vehicles and test objects as well as scaled ground terrain and trees have been fabricated for the study. Radar measurement accuracy has been confirmed by comparing the signature of a test object with a method of moments radar cross section prediction code. In addition to acquiring signatures of targets located on a smooth, dielectric ground plane, data have also been acquired with targets located in simulated wooded terrain that included scaled tree trunks and tree branches. In order to assure the correct backscattering behavior, all dielectric properties of live tree wood and moist soil were scaled properly to match the complex dielectric constant of the full-scale materials. The impact of the surrounding tree clutter on the VHF/UHF radar signatures of ground vehicles was accessed. Data were processed into high-resolution, polar-formatted ISAR imagery and signature comparisons are made between targets in open-field and forested scenarios.

  7. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  8. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  9. Marine target detection in quad-pol synthetic aperture radar imagery based on the relative phase of cross-polarized channels

    Science.gov (United States)

    Wang, Yunhua; Li, Huimin; Zhang, Yanmin; Guo, Lixin

    2015-01-01

    A focus on marine target detection in noise corrupted fully polarimetric synthetic aperture radar (SAR) is presented. The property of the relative phase between two cross-polarized channels reveals that the relative phases evaluated within sea surface area or noise corrupted area are widely spread phase angle region [-π,π] due to decorrelation effect; however, the relative phases are concentrated to zero and ±π for real target and its first-order azimuth ambiguities (FOAAs), respectively. Exploiting this physical behavior, the reciprocal of the mean square value of the relative phase (RMSRP) is defined as a new parameter for target detection, and the experiments based on fully polarimetric Radarsat-2 SAR images show that the strong noise and the FOAAs can be effectively suppressed in RMSRP image. Meanwhile, validity of the new parameter for target detection is also verified by two typical Radarsat-2 SAR images, in which targets' ambiguities and strong noise are present.

  10. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study.

    Directory of Open Access Journals (Sweden)

    Vijay R Varma

    2018-01-01

    Full Text Available The metabolic basis of Alzheimer disease (AD is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression.Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180 assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA (N = 44, mean age = 81.33, % female = 36.36 from AD (N = 15, control (CN; N = 14, and "asymptomatic Alzheimer's disease" (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15 participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes-sphingolipids and glycerophospholipids-that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer's Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63 and preclinical (BLSA (N = 207, mean age = 78.68, % female = 42.63 AD, in which we tested their associations with magnetic resonance imaging (MRI measures of AD-related brain atrophy, cerebrospinal fluid (CSF biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that summarized the relative importance of

  11. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study

    Science.gov (United States)

    Oommen, Anup M.; Varma, Sudhir; Casanova, Ramon; An, Yang; O’Brien, Richard; Pletnikova, Olga; Kastenmueller, Gabi; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima; Thambisetty, Madhav

    2018-01-01

    Background The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships between systemic abnormalities in metabolism and AD pathogenesis are unclear. Understanding how global perturbations in metabolism are related to severity of AD neuropathology and the eventual expression of AD symptoms in at-risk individuals is critical to developing effective disease-modifying treatments. In this study, we undertook parallel metabolomics analyses in both the brain and blood to identify systemic correlates of neuropathology and their associations with prodromal and preclinical measures of AD progression. Methods and findings Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantification] p180) assays were performed on brain tissue samples from the autopsy cohort of the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female = 36.36) from AD (N = 15), control (CN; N = 14), and “asymptomatic Alzheimer’s disease” (ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during life; N = 15) participants. Using machine-learning methods, we identified a panel of 26 metabolites from two main classes—sphingolipids and glycerophospholipids—that discriminated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%, and 80%, respectively. We then assayed these 26 metabolites in serum samples from two well-characterized longitudinal cohorts representing prodromal (Alzheimer’s Disease Neuroimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical (BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cerebrospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and trajectories of cognitive performance. We developed an integrated blood and brain endophenotype score that

  12. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  13. A boundary integral method for numerical computation of radar cross section of 3D targets using hybrid BEM/FEM with edge elements

    Science.gov (United States)

    Dodig, H.

    2017-11-01

    This contribution presents the boundary integral formulation for numerical computation of time-harmonic radar cross section for 3D targets. Method relies on hybrid edge element BEM/FEM to compute near field edge element coefficients that are associated with near electric and magnetic fields at the boundary of the computational domain. Special boundary integral formulation is presented that computes radar cross section directly from these edge element coefficients. Consequently, there is no need for near-to-far field transformation (NTFFT) which is common step in RCS computations. By the end of the paper it is demonstrated that the formulation yields accurate results for canonical models such as spheres, cubes, cones and pyramids. Method has demonstrated accuracy even in the case of dielectrically coated PEC sphere at interior resonance frequency which is common problem for computational electromagnetic codes.

  14. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Science.gov (United States)

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  15. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Directory of Open Access Journals (Sweden)

    Kazuhide Watanabe

    Full Text Available Deregulation of canonical Wnt/CTNNB1 (beta-catenin pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells.We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis.Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  16. On the design and construction of drifting-mine test targets for sonar, radar and electro-optical detection experiments

    NARCIS (Netherlands)

    Dol, H.S.

    2014-01-01

    The timely detection of small hazardous objects at the sea surface, such as drifting mines, is challenging for ship-mounted sensor systems, both for underwater sensor systems like sonar and above-water sensor systems like radar and electro-optics (lidar, infrared/visual cameras). This is due to the

  17. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  18. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight.

    Science.gov (United States)

    Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.

  19. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  20. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  1. A Fly-Through Mission Strategy Targeting Peptide as a Signature of Chemical Evolution and Possible Life in Enceladus Plumes

    Science.gov (United States)

    Fujishima, Kosuke; Dziomba, Szymon; Takahagi, Wataru; Shibuya, Takazo; Takano, Yoshinori; Guerrouache, Mohamed; Carbonnier, Benjamin; Takai, Ken; Rothschild, Lynn J.; Yano, Hajime

    2016-01-01

    In situ detection of organic molecules in the extraterrestrial environment provides a key step towards better understanding the variety and the distribution of building blocks of life and it may ultimately lead to finding extraterrestrial life within the Solar System. Here we present combined results of two separate experiments that enable us to realize such in situ life signature detection from the deep habitats of the "Ocean World": a hydrothermal reactor experiment simulating complex organic synthesis and a simulated fly-through capture experiment of organic-bearing microparticles using silica aerogels, followed by subsequent analysis. Both experiments employ peptide as a plausible organics existing in Encleadus plume particles produced in its subsurface ocean. Recent laboratory hydrothermal experiments and a theoretical model on silica saturation indicated an on going hydrothermal reactions in subsurface Enceladus ocean. Given the porous chondritic origin of the core, it is likely that organic compounds originated by radiation chemistry such as amino acid precursors could have been provided, leached, and altered through widespread water-rock interactions. By using the same laboratory experimental setup from the latest water-rock interaction study, we performed amino acid polymerization experiments for 144 days and monitored the organic complexity changing over time. So far over 3,000 peaks up to the size of greater than 600 MW were observed through the analysis of capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS) with an indication of amino acid derivatives and short peptides. Generally abiotic polymerization of enantiomeric amino acids results in forming stereoisomeric peptides with identical molecular weight and formula as opposed to homochiral biopolymers. Assuming Enceladus plume particles may contain a mixture of stereoisomeric peptides, we were able to distinguish 16 of the 17 stereoisomeric tripeptides as a test sample using

  2. Generalized synthetic aperture radar automatic target recognition by convolutional neural network with joint use of two-dimensional principal component analysis and support vector machine

    Science.gov (United States)

    Zheng, Ce; Jiang, Xue; Liu, Xingzhao

    2017-10-01

    Convolutional neural network (CNN), as a vital part of the deep learning research field, has shown powerful potential for automatic target recognition (ATR) of synthetic aperture radar (SAR). However, the high complexity caused by the deep structure of CNN makes it difficult to generalize. An improved form of CNN with higher generalization capability and less probability of overfitting, which further improves the efficiency and robustness of the SAR ATR system, is proposed. The convolution layers of CNN are combined with a two-dimensional principal component analysis algorithm. Correspondingly, the kernel support vector machine is utilized as the classifier layer instead of the multilayer perceptron. The verification experiments are implemented using the moving and stationary target acquisition and recognition database, and the results validate the efficiency of the proposed method.

  3. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  4. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  5. German Radar Observation Shuttle Experiment (ROSE)

    Science.gov (United States)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  6. Physics of Automatic Target Recognition

    CERN Document Server

    Sadjadi, Firooz

    2007-01-01

    Physics of Automatic Target Recognition addresses the fundamental physical bases of sensing, and information extraction in the state-of-the art automatic target recognition field. It explores both passive and active multispectral sensing, polarimetric diversity, complex signature exploitation, sensor and processing adaptation, transformation of electromagnetic and acoustic waves in their interactions with targets, background clutter, transmission media, and sensing elements. The general inverse scattering, and advanced signal processing techniques and scientific evaluation methodologies being used in this multi disciplinary field will be part of this exposition. The issues of modeling of target signatures in various spectral modalities, LADAR, IR, SAR, high resolution radar, acoustic, seismic, visible, hyperspectral, in diverse geometric aspects will be addressed. The methods for signal processing and classification will cover concepts such as sensor adaptive and artificial neural networks, time reversal filt...

  7. Social Radar

    Science.gov (United States)

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  8. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    Science.gov (United States)

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  9. Signature Balancing

    NARCIS (Netherlands)

    Noordkamp, H.W.; Brink, M. van den

    2006-01-01

    Signatures are an important part of the design of a ship. In an ideal situation, signatures must be as low as possible. However, due to budget constraints it is most unlikely to reach this ideal situation. The arising question is which levels of signatures are optimal given the different scenarios

  10. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  11. Feature-based RNN target recognition

    Science.gov (United States)

    Bakircioglu, Hakan; Gelenbe, Erol

    1998-09-01

    Detection and recognition of target signatures in sensory data obtained by synthetic aperture radar (SAR), forward- looking infrared, or laser radar, have received considerable attention in the literature. In this paper, we propose a feature based target classification methodology to detect and classify targets in cluttered SAR images, that makes use of selective signature data from sensory data, together with a neural network technique which uses a set of trained networks based on the Random Neural Network (RNN) model (Gelenbe 89, 90, 91, 93) which is trained to act as a matched filter. We propose and investigate radial features of target shapes that are invariant to rotation, translation, and scale, to characterize target and clutter signatures. These features are then used to train a set of learning RNNs which can be used to detect targets within clutter with high accuracy, and to classify the targets or man-made objects from natural clutter. Experimental data from SAR imagery is used to illustrate and validate the proposed method, and to calculate Receiver Operating Characteristics which illustrate the performance of the proposed algorithm.

  12. A randomized controlled trial of an exercise intervention targeting cardiovascular and metabolic risk factors for prostate cancer patients from the RADAR trial

    International Nuclear Information System (INIS)

    Galvão, Daniel A; Spry, Nigel; Taaffe, Dennis R; Denham, James; Joseph, David; Lamb, David S; Levin, Greg; Duchesne, Gillian; Newton, Robert U

    2009-01-01

    Androgen deprivation therapy leads to a number of adverse effects including deterioration of the musculoskeletal system and increased risk factors for cardiovascular and metabolic complications. The purpose of this study is to determine the effects, efficacy, retention and compliance of a physical exercise intervention in a large established cohort of prostate cancer patients from the Randomised Androgen Deprivation and Radiotherapy (RADAR) study. Specifically, we aim to compare short- and long-term effects of a prostate cancer-specific supervised exercise program to a standard public health physical activity strategy utilizing printed resources on cardiovascular and metabolic risk factors. Our primary outcomes are cardiorespiratory capacity, abdominal obesity, and lipid and glycemic control, while secondary outcomes include self-reported physical activity, quality of life and psychological distress. Multi-site randomized controlled trial of 370 men from the RADAR study cohort undergoing treatment or previously treated for prostate cancer involving androgen deprivation therapy in the cities of Perth and Newcastle (Australia), and Wellington (New Zealand). Participants will be randomized to (1) supervised resistance/aerobic exercise or (2) printed material comprising general physical activity recommendations. Participants will then undergo progressive training for 6 months. Measurements for primary and secondary endpoints will take place at baseline, 6 months (end of intervention), and at 6 months follow-up. This study uses a large existent cohort of patients and will generate valuable information as to the continuing effects of exercise specifically targeting cardiovascular function and disease risk, insulin metabolism, abdominal obesity, physical function, quality of life and psychological distress. We expect dissemination of the knowledge gained from this project to reduce risk factors for the development of co-morbid diseases commonly associated with androgen

  13. Combined untargeted and targeted fingerprinting by comprehensive two-dimensional gas chromatography: revealing fructose-induced changes in mice urinary metabolic signatures.

    Science.gov (United States)

    Bressanello, Davide; Liberto, Erica; Collino, Massimo; Chiazza, Fausto; Mastrocola, Raffaella; Reichenbach, Stephen E; Bicchi, Carlo; Cordero, Chiara

    2018-04-01

    This study exploits the information potential of comprehensive two-dimensional gas chromatography configured with a parallel dual secondary column-dual detection by mass spectrometry and flame ionization (GC×2GC-MS/FID) to study changes in urinary metabolic signatures of mice subjected to high-fructose diets. Samples are taken from mice fed with normal or fructose-enriched diets provided either in aqueous solution or in solid form and analyzed at three stages of the dietary intervention (1, 6, and 12 weeks). Automated Untargeted and Targeted fingerprinting for 2D data elaboration is adopted for the most inclusive data mining of GC×GC patterns. The UT fingerprinting strategy performs a fully automated peak-region features fingerprinting and combines results from pre-targeted compounds and unknowns across the sample-set. The most informative metabolites, with statistically relevant differences between sample groups, are obtained by unsupervised multivariate analysis (MVA) and cross-validated by multi-factor analysis (MFA) with external standard quantitation by GC-MS. Results indicate coherent clustering of mice urine signatures according to dietary manipulation. Notably, the metabolite fingerprints of mice fed with liquid fructose exhibited greater derangement in fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric acids, glycine acyl derivatives (N-carboxy glycine, N-butyrylglycine, N-isovaleroylglycine, N-phenylacetylglycine), and hippuric acid. Untargeted fingerprinting indicates some analytes which were not a priori pre-targeted which provide additional insights: N-acetyl glucosamine, N-acetyl glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid. Visual features fingerprinting is used to track individual variations during experiments, thereby extending the panorama of possible data elaboration tools. Graphical abstract ᅟ.

  14. Adult high-grade B-cell lymphoma with Burkitt lymphoma signature: genomic features and potential therapeutic targets.

    Science.gov (United States)

    Bouska, Alyssa; Bi, Chengfeng; Lone, Waseem; Zhang, Weiwei; Kedwaii, Ambreen; Heavican, Tayla; Lachel, Cynthia M; Yu, Jiayu; Ferro, Roberto; Eldorghamy, Nanees; Greiner, Timothy C; Vose, Julie; Weisenburger, Dennis D; Gascoyne, Randy D; Rosenwald, Andreas; Ott, German; Campo, Elias; Rimsza, Lisa M; Jaffe, Elaine S; Braziel, Rita M; Siebert, Reiner; Miles, Rodney R; Dave, Sandeep; Reddy, Anupama; Delabie, Jan; Staudt, Louis M; Song, Joo Y; McKeithan, Timothy W; Fu, Kai; Green, Michael; Chan, Wing C; Iqbal, Javeed

    2017-10-19

    The adult high-grade B-cell lymphomas sharing molecular features with Burkitt lymphoma (BL) are highly aggressive lymphomas with poor clinical outcome. High-resolution structural and functional genomic analysis of adult Burkitt lymphoma (BL) and high-grade B-cell lymphoma with BL gene signature (adult-molecularly defined BL [mBL]) revealed the MYC-ARF-p53 axis as the primary deregulated pathway. Adult-mBL had either unique or more frequent genomic aberrations (del13q14, del17p, gain8q24, and gain18q21) compared with pediatric-mBL, but shared commonly mutated genes. Mutations in genes promoting the tonic B-cell receptor (BCR)→PI3K pathway ( TCF3 and ID3 ) did not differ by age, whereas effectors of chronic BCR→NF-κB signaling were associated with adult-mBL. A subset of adult-mBL had BCL2 translocation and mutation and elevated BCL2 mRNA and protein expression, but had a mutation profile similar to mBL. These double-hit lymphomas may have arisen from a tumor precursor that acquired both BCL2 and MYC translocations and/or KMT2D ( MLL2 ) mutation. Gain/amplification of MIR17HG and its paralogue loci was observed in 50% of adult-mBL. In vitro studies suggested miR-17∼92 's role in constitutive activation of BCR signaling and sensitivity to ibrutinib. Overall integrative analysis identified an interrelated gene network affected by copy number and mutation, leading to disruption of the p53 pathway and the BCR→PI3K or NF-κB activation, which can be further exploited in vivo by small-molecule inhibitors for effective therapy in adult-mBL.

  15. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  16. Synthetic range profiling, ISAR imaging of sea vessels and feature extraction, using a multimode radar to classify targets: initial results from field trials

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2011-04-01

    Full Text Available tanazi@kacst.edu.sa, aazamil@kacst.edu.sa Abstract?This paper describes the design and working principles of an experimental multimode radar with a stepped-frequency Synthetic Range Profiling (SRP) and Inverse Synthetic Aperture Radar (ISAR...

  17. Doppler Velocity Signatures of Idealized Elliptical Vortices

    Directory of Open Access Journals (Sweden)

    Wen-Chau Lee

    2006-01-01

    Full Text Available Doppler radar observations have revealed a class of atmospheric vortices (tropical cyclones, tornadoes, dust devils that possess elliptical radar reflectivity signatures. One famous example is Typhoon Herb (1996 that maintained its elliptical reflectivity structure over a 40-hour period. Theoretical work and dual-Doppler analyses of observed tropical cyclones have suggested two physical mechanisms that can explain the formation of two types of elliptical vortices observed in nature, namely, the combination of a circular vortex with either a wavenumber two vortex Rossby wave or a deformation field. The characteristics of these two types of elliptical vortices and their corresponding Doppler velocity signatures have not been previously examined.

  18. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  19. Reduction of radar cross-section of a wind turbine

    Science.gov (United States)

    McDonald, Jacob Jeremiah; Brock, Billy C.; Clem, Paul G.; Loui, Hung; Allen, Steven E.

    2016-08-02

    The various technologies presented herein relate to formation of a wind turbine blade having a reduced radar signature in comparison with a turbine blade fabricated using conventional techniques. Various techniques and materials are presented to facilitate reduction in radar signature of a wind turbine blade, where such techniques and materials are amenable for incorporation into existing manufacturing techniques without degradation in mechanical or physical performance of the blade or major alteration of the blade profile.

  20. Development Of Signal Detection For Radar Navigation System

    OpenAIRE

    Theingi Win Hlaing; Hla Myo Tun; Zaw Min Naing; Win Khaing Moe

    2017-01-01

    This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum...

  1. Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method

    Science.gov (United States)

    Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.

    2017-08-01

    Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.

  2. MicroRNA Signatures as Biomarkers and Therapeutic Target for CNS Embryonal Tumors: The Pros and the Cons

    Directory of Open Access Journals (Sweden)

    Tarek Shalaby

    2014-11-01

    Full Text Available Embryonal tumors of the central nervous system represent a heterogeneous group of childhood cancers with an unknown pathogenesis; diagnosis, on the basis of histological appearance alone, is controversial and patients’ response to therapy is difficult to predict. They encompass medulloblastoma, atypical teratoid/rhabdoid tumors and a group of primitive neuroectodermal tumors. All are aggressive tumors with the tendency to disseminate throughout the central nervous system. The large amount of genomic and molecular data generated over the last 5–10 years encourages optimism that new molecular targets will soon improve outcomes. Recent neurobiological studies have uncovered the key role of microRNAs (miRNAs in embryonal tumors biology and their potential use as biomarkers is increasingly being recognized and investigated. However the successful use of microRNAs as reliable biomarkers for the detection and management of pediatric brain tumors represents a substantial challenge. This review debates the importance of miRNAs in the biology of central nervous systemembryonal tumors focusing on medulloblastoma and atypical teratoid/rhabdoid tumors and highlights the advantages as well as the limitations of their prospective application as biomarkers and candidates for molecular therapeutic targets.

  3. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    Science.gov (United States)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  4. Detection performance improvement of FMCW radar using frequency shift

    NARCIS (Netherlands)

    Wu, Y.; Linnartz, J.P.M.G.

    2011-01-01

    Frequency modulated continuous wave (FMCW) radars have been widely used for measuring target range and speed. In this paper, we present a mathematical model that quantifies the system-level performance of FMCW radar systems. In FMCW radar, the target range is measured through measuring the beat

  5. Distributed Subarray Antennas for Multifunction Phased-Array Radar

    National Research Council Canada - National Science Library

    Lin, Chih-heng

    2003-01-01

    As the target radar cross section (RCS) continuously decreases, the need for high-resolution high-gain radar increases, One approach to high resolution is to use distributed subarray antennas (DSAs...

  6. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  7. Digital data acquisition for laser radar for vibration analysis

    OpenAIRE

    Montes, Felix G.

    1998-01-01

    Approved for public release; distribution is unlimited Laser radar for vibration analysis represents a military application to develop a target identification system in the future. The problem addressed is how to analyze the vibrations of a target illuminated by the laser radar to achieve a positive identification. This thesis develops a computer-based data acquisition and analysis system for improving the laser radar capability. Specifically, a review is made of the CO2 laser radar, coher...

  8. Targeted proteomics guided by label-free global proteome analysis in saliva reveal transition signatures from health to periodontal disease.

    Science.gov (United States)

    Bostanci, Nagihan; Selevsek, Nathalie; Wolski, Witold; Grossmann, Jonas; Bao, Kai; Wahlander, Asa; Trachsel, Christian; Schlapbach, Ralph; Özturk, Veli Özgen; Afacan, Beral; Emingil, Gulnur; Belibasakis, Georgios N

    2018-04-02

    Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. We carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva (n=67, health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort (n=82). The LFQ platform led to the discovery of 119 proteins with at least two-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1), with maximum area under the receiver operating curve >0.97. This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum

  9. Millimeter wave radars raise weapon IQ

    Science.gov (United States)

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  10. PTBS segmentation scheme for synthetic aperture radar

    Science.gov (United States)

    Friedland, Noah S.; Rothwell, Brian J.

    1995-07-01

    The Image Understanding Group at Martin Marietta Technologies in Denver, Colorado has developed a model-based synthetic aperture radar (SAR) automatic target recognition (ATR) system using an integrated resource architecture (IRA). IRA, an adaptive Markov random field (MRF) environment, utilizes information from image, model, and neighborhood resources to create a discrete, 2D feature-based world description (FBWD). The IRA FBWD features are peak, target, background and shadow (PTBS). These features have been shown to be very useful for target discrimination. The FBWD is used to accrue evidence over a model hypothesis set. This paper presents the PTBS segmentation process utilizing two IRA resources. The image resource (IR) provides generic (the physics of image formation) and specific (the given image input) information. The neighborhood resource (NR) provides domain knowledge of localized FBWD site behaviors. A simulated annealing optimization algorithm is used to construct a `most likely' PTBS state. Results on simulated imagery illustrate the power of this technique to correctly segment PTBS features, even when vehicle signatures are immersed in heavy background clutter. These segmentations also suppress sidelobe effects and delineate shadows.

  11. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  12. Using phase for radar scatterer classification

    Science.gov (United States)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  13. Plasma-based radar cross section reduction

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  14. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  15. COAT/Target-Signature Interactions

    Science.gov (United States)

    1976-07-01

    NT1 (a) WITH 0.05 mm RECEIVER 100 DC LEVEL 0.15 mm RECEIVER INTEGRATION 4850-21 HI 0.1 0 0.5 xlO4 1.0 xlO4 SPATIAL FREQUENCY M-1 (b) WITH...erator and a blooming cell placed between the elements of a second demagni- ■ fying telescope. The final beam, collimated at an aperture of...using a flowing liquid blooming cell , with the cell occupying the first 81% of the focused, 22 cm propagation path. This condition provides

  16. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  17. Sea clutter scattering, the K distribution and radar performance

    CERN Document Server

    Ward, Keith; Watts, Simon

    2013-01-01

    Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd Edition gives an authoritative account of our current understanding of radar sea clutter. Topics covered include the characteristics of radar sea clutter, modelling radar scattering by the ocean surface, statistical models of sea clutter, the simulation of clutter and other random processes, detection of small targets in sea clutter, imaging ocean surface features, radar detection performance calculations, CFAR detection, and the specification and measurement of radar performance. The calculation of the performance of pract

  18. Radiation signatures

    International Nuclear Information System (INIS)

    McGlynn, S.P.; Varma, M.N.

    1992-01-01

    A new concept for modelling radiation risk is proposed. This concept is based on the proposal that the spectrum of molecular lesions, which we dub ''the radiation signature'', can be used to identify the quality of the causal radiation. If the proposal concerning radiation signatures can be established then, in principle, both prospective and retrospective risk determination can be assessed on an individual basis. A major goal of biophysical modelling is to relate physical events such as ionization, excitation, etc. to the production of radiation carcinogenesis. A description of the physical events is provided by track structure. The track structure is determined by radiation quality, and it can be considered to be the ''physical signature'' of the radiation. Unfortunately, the uniqueness characteristics of this signature are dissipated in biological systems in ∼10 -9 s. Nonetheless, it is our contention that this physical disturbance of the biological system eventuates later, at ∼10 0 s, in molecular lesion spectra which also characterize the causal radiation. (author)

  19. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  20. Forward scatter radar for detection of moving people inside buildings

    NARCIS (Netherlands)

    Wit, J.J.M. de; Rossum, W.L. van

    2017-01-01

    Through-wall radar offers capabilities that allow an important contribution to inside-building awareness, such as target detection and tracking. However, reliable radar tracking of people inside a building is not a trivial task. In monostatic operation, radar measures the backscatter from people

  1. Radar Observations of Main-Belt M-class Asteroids

    NARCIS (Netherlands)

    Shepard, Michael K.; Clark, B. E.; Ockert-Bell, M.; Nolan, M. C.; Howell, E. S.; Magri, C.; Giorgini, J. D.; Benner, L. A. M.; Ostro, S. J.; Harris, A. W.; Warner, B. D.; Stephens, R. D.; Mueller, M.

    2009-01-01

    Using the S-band radar at Arecibo Observatory, we have observed 19 Tholen M-class asteroids. The mean radar albedo for all our targets is 0.28 ± 0.13, considerably higher than the mean radar albedo of every other class (Magri et al. 2007, Icarus 186, 126-151). We find approximately one-third (six)

  2. Condor equatorial electrojet campaign: Radar results

    International Nuclear Information System (INIS)

    Kudeki, E.; Fejer, B.G.; Farley, D.T.; Hanuise, C.

    1987-01-01

    A review of the experimental and theoretical background to the Condor equatorial electrojet compaign is followed by the presentation and discussion of VHF radar interferometer and HF radar backscatter data taken concurrently with two rocket in situ experiments reported in companion papers (Pfaff et al., this issue (a, b). Both experiments were conducted in strongly driven periods with the on-line radar interferometer displaying signatures of what has been interpreted in earlier radar work (Kudeki et al., 1982) as kilometer scale gradient drift waves. Low-frequency density fluctuations detected by in situ rocket sensors confirm the earlier interpretation. VHF radar/rocket data comparisons also indicate the existence of a turbulent layer in the upper portion of the daytime electrojet at about 108 km altitude driven purely by the two-stream instability. Nonlinear mode coupling of linearly growing two-stream waves to linearly damped 3-m vertical modes could account for the radar echoes scattered from this layer, which showed no indication of large-scale gradient drift waves. Nonlinear mode coupling may therefore compete with the wave-induced anomalous diffusion mechanism proposed recently by Sudan (1983) for the saturation of directly excited two-stream waves. Nighttime radar data show a bifurcated layer with the two parts having comparable echo strength but oppositely directed zonal drift velocities. The lower layer shows narrow backscatter spectra; the upper layer is characterized by kilometer scale waves and vertically propagating type 1 waves

  3. Targeted Morphoproteomic Profiling of Ewing's Sarcoma Treated with Insulin-Like Growth Factor 1 Receptor (IGF1R) Inhibitors: Response/Resistance Signatures

    Science.gov (United States)

    Subbiah, Vivek; Naing, Aung; Brown, Robert E.; Chen, Helen; Doyle, Laurence; LoRusso, Patricia; Benjamin, Robert; Anderson, Pete; Kurzrock, Razelle

    2011-01-01

    Background Insulin-like growth factor 1 receptor (IGF1R) targeted therapies have resulted in responses in a small number of patients with advanced metastatic Ewing's sarcoma. We performed morphoproteomic profiling to better understand response/resistance mechanisms of Ewing's sarcoma to IGF1R inhibitor-based therapy. Methodology/Principal Findings This pilot study assessed two patients with advanced Ewing's sarcoma treated with IGF1R antibody alone followed by combined IGF1R inhibitor plus mammalian target of rapamycin (mTOR) inhibitor treatment once resistance to single-agent IGF1R inhibitor developed. Immunohistochemical probes were applied to detect p-mTOR (Ser2448), p-Akt (Ser473), p-ERK1/2 (Thr202/Tyr204), nestin, and p-STAT3 (Tyr 705) in the original and recurrent tumor. The initial remarkable radiographic responses to IGF1R-antibody therapy was followed by resistance and then response to combined IGF1R plus mTOR inhibitor therapy in both patients, and then resistance to the combination regimen in one patient. In patient 1, upregulation of p-Akt and p-mTOR in the tumor that relapsed after initial response to IGF1R antibody might explain the resistance that developed, and the subsequent response to combined IGF1R plus mTOR inhibitor therapy. In patient 2, upregulation of mTOR was seen in the primary tumor, perhaps explaining the initial response to the IGF1R and mTOR inhibitor combination, while the resistant tumor that emerged showed activation of the ERK pathway as well. Conclusion/Significance Morphoproteomic analysis revealed that the mTOR pathway was activated in these two patients with advanced Ewing's sarcoma who showed response to combined IGF1R and mTOR inhibition, and the ERK pathway in the patient in whom resistance to this combination emerged. Our pilot results suggests that morphoproteomic assessment of signaling pathway activation in Ewing's sarcoma merits further investigation as a guide to understanding response and resistance signatures. PMID

  4. Comet radar explorer

    Science.gov (United States)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p

  5. Navy Needs to Establish Effective Metrics to Achieve Desired Outcomes for SPY1 Radar Sustainment (Redacted)

    Science.gov (United States)

    2016-08-01

    subsystems in the AEGIS Weapon System that searches, detects, and tracks air and surface targets to support Anti -Air Warfare and Ballistic Missile... System that searches, detects, and tracks air and surface targets to support Anti -Air Warfare and Ballistic Missile Defense missions. The SPY-1 radar...a series on SPY-1 radar spare parts. The SPY-1 radar is an advanced, automatic detect and track radar system . The SPY-1 radar is one of 13 major

  6. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  7. Development Of Signal Detection For Radar Navigation System

    Directory of Open Access Journals (Sweden)

    Theingi Win Hlaing

    2017-09-01

    Full Text Available This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum for detection in non-Gaussian nature. The theory of target detection in Gaussian distributed clutter has been well established and the closed form of the detection performances can be easily obtained. However that is not the case in non-Gaussian clutter distributions. The operation of radar detection is determined by radar detection theory with different types of Swerling target models such as Swerling I II III IV and V. By using MATLAB these signal detection techniques are developed.

  8. Radar and Lidar Radar DEM

    Science.gov (United States)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  9. Minimum redundancy MIMO radars

    OpenAIRE

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  10. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  11. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  12. Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data

    Science.gov (United States)

    Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.

  13. POLARIMETRIC SIGNATURES IDENTIFICATION FOR DIFFERENT FEATURES IN RADARSAT-2 POLSAR IMAGE: A CASE STUDY OF HALAYIB AREA, EGYPT

    Directory of Open Access Journals (Sweden)

    A. H. Nasr

    2016-06-01

    Full Text Available In fully polarized SAR (PolSAR data the returned signal from a target contains all polarizations. More information about this target may be inferred with respect to single-polarization. Distinct polarization separates targets due to its different backscattering responses. A Radarsat-2 PolSAR image acquired on December 2013 of part of Halayib area (Egypt was used in this study. Polarimetric signatures for various features (Wadi deposits, Tonalite, Chlorite schist, and Radar penetrated areas were derived and identified. Their Co-polarized and Cross-polarized signatures were generated, based on the calculation of the backscattered power at various ellipticity and orientation angles. Graphical 3D-representation of these features was provided and more details of their physical information are depicted according to their different polarization bases. The results illustrate that polarimetric signatures, obtained due to factors like surface roughness, dielectric constant and feature orientation, can be an effective representation for analyzing various features. The shape of the signature is significant and can also indicate the scattering mechanisms dominating the features response.

  14. Analysis of sea-surface radar signatures by means of wavelet-based edge detection and detection of regularities; Analyse von Radarsignaturen der Meeresoberflaeche mittels auf Wavelets basierender Kantenerkennung und Regularitaetsbestimmung

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, U. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    2000-07-01

    The derivation and implementation of an algorithm for edge detection in images and for the detection of the Lipschitz regularity in edge points are described. The method is based on the use of the wavelet transform for edge detection at different resolutions. The Lipschitz regularity is a measure that characterizes the edges. The description of the derivation is first performed in one dimension. The approach of Mallat is formulated consistently and proved. Subsequently, the two-dimensional case is addressed, for which the derivation, as well as the description of the algorithm, is analogous. The algorithm is applied to detect edges in nautical radar images using images collected at the island of Sylt. The edges discernible in the images and the Lipschitz values provide information about the position and nature of spatial variations in the depth of the seafloor. By comparing images from different periods of measurement, temporal changes in the bottom structures can be localized at different resolutions and interpreted. The method is suited to the monitoring of coastal areas. It is an inexpensive way to observe long-term changes in the seafloor character. Thus, the results of this technique may be used by the authorities responsible for coastal protection to decide whether measures should be taken or not. (orig.)

  15. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  16. A comparison on radar range profiles between in-flight measurements and RCS-predictions

    NARCIS (Netherlands)

    Heiden, R. van der; Ewijk, L.J. van; Groen, F.C.A.

    1998-01-01

    The validation of Radar Cross Section (RCS) prediction techniques against real measurements is crucial to acquire confidence in predictions when measurements are nut available. In this paper we present the results of a comparison on one-dimensional signatures, i.e. radar range profiles. The profiles

  17. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  18. ISTEF Laser Radar Program

    National Research Council Canada - National Science Library

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  19. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  20. Novel radar techniques and applications

    CERN Document Server

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  1. Sensor management in RADAR/IRST track fusion

    Science.gov (United States)

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  2. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  3. Small battery operated unattended radar sensor for security systems

    Science.gov (United States)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  4. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  5. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  6. Signature of intermittent behavior in the emission spectra of target associated particles from 84Kr-AgBr interactions at 0.95 GeV/A

    International Nuclear Information System (INIS)

    Bhattacharjee, B.

    2005-01-01

    Intermittency and fractal behavior have been studied for emission spectra of target associated fast and slow particles from 84 Kr-AgBr interactions at 0.95 GeV/A. Intermittent behavior is observed for both knocked out and slow target fragments. In both the cases anomalous dimensions are seen to increase with the order of moments thereby indicating the association of multifractility with production mechanism of both fast and slow target associated particles

  7. RMS slope of exponentially correlated surface roughness for radar applications

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    2000-01-01

    In radar signature analysis, the root mean square (RMS) surface slope is utilized to assess the relative contribution of multiple scattering effects. For an exponentially correlated surface, an effective RMS slope can be determined by truncating the high frequency tail of the roughness spectrum...

  8. Detecting and mitigating wind turbine clutter for airspace radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  9. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2013-01-01

    Full Text Available It is well recognized that a wind turbine has a large radar cross-section (RCS and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  10. POLCAL - POLARIMETRIC RADAR CALIBRATION

    Science.gov (United States)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  11. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  12. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  13. Autonomous target recognition using remotely sensed surface vibration measurements

    Science.gov (United States)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  14. Gesture recognition for smart home applications using portable radar sensors.

    Science.gov (United States)

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  15. Synthetic pulse radar including a microprocessor based controller

    International Nuclear Information System (INIS)

    Fowler, J.C.; Rubin, L.A.; Still, W.L.

    1980-01-01

    This invention relates to pulse radar detection of targets in extended media, including natural phenomena such as oil, coal and ore deposits within the earth. In particular, this invention relates to a pulse radar system employing a synthetic pulse formed from a fourier spectrum of frequencies generated and detected by a digitally controlled transmitter and receiver circuits

  16. Meteor head echo polarization at 930 MHz studied with the EISCAT UHF HPLA radar

    Directory of Open Access Journals (Sweden)

    G. Wannberg

    2011-06-01

    Full Text Available The polarization characteristics of 930-MHz meteor head echoes have been studied for the first time, using data obtained in a series of radar measurements carried out with the tristatic EISCAT UHF high power, large aperture (HPLA radar system in October 2009. An analysis of 44 tri-static head echo events shows that the polarization of the echo signal recorded by the Kiruna receiver often fluctuates strongly on time scales of tens of microseconds, illustrating that the scattering process is essentially stochastic. On longer timescales (> milliseconds, more than 90 % of the recorded events show an average polarization signature that is independent of meteor direction of arrival and echo strength and equal to that of an incoherent-scatter return from underdense plasma filling the tristatic observation volume. This shows that the head echo plasma targets scatter isotropically, which in turn implies that they are much smaller than the 33-cm wavelength and close to spherically symmetric, in very good agreement with results from a previous EISCAT UHF study of the head echo RCS/meteor angle-of-incidence relationship. Significant polarization is present in only three events with unique target trajectories. These all show a larger effective target cross section transverse to the trajectory than parallel to it. We propose that the observed polarization may be a signature of a transverse charge separation plasma resonance in the region immediately behind the meteor head, similar to the resonance effects previously discussed in connection with meteor trail echoes by Herlofson, Billam and Browne, Jones and Jones and others.

  17. Signature-based User Authentication

    OpenAIRE

    Hámorník, Juraj

    2015-01-01

    This work aims on missing handwritten signature authentication in Windows. Result of this work is standalone software that allow users to log into Windows by writing signature. We focus on security of signature authentification and best overall user experience. We implemented signature authentification service that accept signature and return user access token if signature is genuine. Signature authentification is done by comparing given signature to signature patterns by their similarity. Si...

  18. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  19. Solution of inverse localization problem associated to multistatic radar system

    Directory of Open Access Journals (Sweden)

    Boutkhil M.

    2016-01-01

    Full Text Available This work deals with the problem of inverse localization by a target with the aim to retrieve the position of the target, given the intensity and phase of the electromagnetic waves scattered by this object. Assuming the surface cross section to be known as well as the intensity and phase of the scattered waves, the target position was reconstructed through the echo signals scattered of each bistatic. We develop in the same time a multistatic ambiguity function trough bistatic ambiguity function to investigate several fundamental aspects that determine multistatic radar performance. We used a multistatic radar constructed of two bistatic radars, two transmitters and one receiver.

  20. Signature of intermittent behavior in the emission spectra of target associated particles from 84Kr-AgBr interactions at 0.95 GeV/A

    International Nuclear Information System (INIS)

    Bhattacharjee, B.; Sengupta, S.; Mukhopadhyay, A.; Singh, V.

    2004-01-01

    In this report an attempt has been made to study, by studying the fluctuation in spatial distribution in χ(cosθ) space, the intermittent behaviour and fractal properties of emission spectra of fast and slow target associated particles from 84 Kr-AgBr interactions at 0.95 GeV/A

  1. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  2. Mutual information-based LPI optimisation for radar network

    Science.gov (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  3. Wind farms impact on radar aviation interests - final report

    Energy Technology Data Exchange (ETDEWEB)

    Poupart, G.J.

    2003-09-01

    The main objectives of the study were: to determine the effects of siting wind turbines adjacent to primary air traffic control radar; to gather the information required for the generation of guidelines by civil, military and wind farm developer stakeholders; to determine the extent to which the design of wind turbines influences their effects on radar systems and to determine the extent to which design of the radar processing influences the effects of wind turbines on radar systems. A computer model was developed to predict the Radar Cross Section (RCS) of wind turbines and understand the interaction of radar energy and turbines. The model was designed to predict and simulate the impact of wind farms on the primary radar display. Validation of the model was carried out in a full-scale trial and modelling process, with data collected from a number of sources. The model was validated against a single turbine scenario and showed an accurate prediction capability. Further validation of the model could be gained through a multiple turbine trial. The knowledge gained from the development and validation of the predictive computer model has been used to conduct a sensitivity analysis (of the sub-elements of the radar and wind farm interaction) and to compile a list of the key factors influencing the radar signature of wind turbines. The result is a more detailed quantification of the complex interactions between wind turbines and radar systems than was previously available. The key findings of how the design, size and construction materials of wind turbines affect RCS are summarised.

  4. Electronic Signature Policy

    Science.gov (United States)

    Establishes the United States Environmental Protection Agency's approach to adopting electronic signature technology and best practices to ensure electronic signatures applied to official Agency documents are legally valid and enforceable

  5. Lesson 6: Signature Validation

    Science.gov (United States)

    Checklist items 13 through 17 are grouped under the Signature Validation Process, and represent CROMERR requirements that the system must satisfy as part of ensuring that electronic signatures it receives are valid.

  6. Exotic signatures from supersymmetry

    International Nuclear Information System (INIS)

    Hall, L.J.

    1989-08-01

    Minor changes to the standard supersymmetric model, such as soft flavor violation and R parity violation, cause large changes in the signatures. The origin of these changes and the resulting signatures are discussed. 15 refs., 7 figs., 2 tabs

  7. Signature molecular descriptor : advanced applications.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  8. Aspects of Radar Polarimetry

    OpenAIRE

    LÜNEBURG, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  9. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  10. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  11. Blinding for unanticipated signatures

    NARCIS (Netherlands)

    D. Chaum (David)

    1987-01-01

    textabstractPreviously known blind signature systems require an amount of computation at least proportional to the number of signature types, and also that the number of such types be fixed in advance. These requirements are not practical in some applications. Here, a new blind signature technique

  12. Fair quantum blind signatures

    International Nuclear Information System (INIS)

    Tian-Yin, Wang; Qiao-Yan, Wen

    2010-01-01

    We present a new fair blind signature scheme based on the fundamental properties of quantum mechanics. In addition, we analyse the security of this scheme, and show that it is not possible to forge valid blind signatures. Moreover, comparisons between this scheme and public key blind signature schemes are also discussed. (general)

  13. Unusual Radar Echo from the Wake of Meteor Fireball in Nearly

    Directory of Open Access Journals (Sweden)

    Young-Sook Lee

    2018-06-01

    Full Text Available The summer polar lower thermosphere (90–100 km has an interesting connection to meteors, adjacent to the mesopause region attaining the lowest temperature in summer. Meteors supply condensation nuclei for charged ice particles causing polar mesospheric summer echoes (PMSE. We report the observation of meteor trail with nearly horizontal transit at high speed (20–50 km/s, and at last with re-enhanced echo power followed by diffusive echoes. Changes in phase difference between radar receivers aligned in meridional and zonal directions are used to determine variations in horizontal displacements and speeds with respect to time by taking advantage of radar interferometric analysis. The actual transit of echo target is observed along the straight pathway vertically and horizontally extended as much as a distance of at least 24 km and at most 29 km. The meteor trail initially has a signature similar to ‘head echoes’, with travel speeds from 20 – 50 km/s. It subsequently transforms into a different type of echo target including specular echo and then finally the power reenhanced. The reenhancement of echo power is followed by fume-like diffusive echoes, indicating sudden release of plasma as like explosive process probably involved. We discuss a possible role of meteor-triggered secondary plasma trail, such as fireball embedded with electrical discharge that continuously varies the power and transit speed.

  14. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  15. A Multiple Model SNR/RCS Likelihood Ratio Score for Radar-Based Feature-Aided Tracking

    National Research Council Canada - National Science Library

    Slocumb, Benjamin J; Klusman, III, Michael E

    2005-01-01

    ...) and radar cross section (RCS) for use in narrowband radar tracking. The formulation requires an estimate of the target mean RCS, and a key challenge is the tracking of the mean RCS through significant jumps due to aspect dependencies...

  16. Radar Methods in Urban Environments

    Science.gov (United States)

    2016-10-26

    and A. Nehorai, "A low-complexity multi-target tracking algorithm in urban environments using sparse modeling ,’’ Signal Processing, Vol. 92, pp. 2199...AFRL-AFOSR-VA-TR-2016-0344 Radar Methods in Urban Environments Arye Nehorai WASHINGTON UNIVERSITY THE Final Report 10/26/2016 DISTRIBUTION A...of information   if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION . 1. REPORT DATE

  17. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  18. HF Surface Wave Radar Operation in Adverse Conditions

    National Research Council Canada - National Science Library

    Ponsford, Anthony M; Dizaji, Reza M; McKerracher, Richard

    2005-01-01

    ...) system based on HF Surface Wave Radar (HFSWR). the primary objective behind the programme was to demonstrate the capability of HFSWR to continuously detect and track surface targets (ships and icebergs...

  19. Innovative SAR/MTI Concepts for Digital Radar

    NARCIS (Netherlands)

    Wit, J.J.M. de

    2008-01-01

    Contemporary military operations make high demands on the capabilities of sensors. Modern sensors must have the capability to perform different tasks, such as ground surveillance and target tracking, simultaneously. Multifunction digital radar may provide the required capabilities and meet the

  20. 35-GHz radar sensor for automotive collision avoidance

    Science.gov (United States)

    Zhang, Jun

    1999-07-01

    This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.

  1. Real Traceable Signatures

    Science.gov (United States)

    Chow, Sherman S. M.

    Traceable signature scheme extends a group signature scheme with an enhanced anonymity management mechanism. The group manager can compute a tracing trapdoor which enables anyone to test if a signature is signed by a given misbehaving user, while the only way to do so for group signatures requires revealing the signer of all signatures. Nevertheless, it is not tracing in a strict sense. For all existing schemes, T tracing agents need to recollect all N' signatures ever produced and perform RN' “checks” for R revoked users. This involves a high volume of transfer and computations. Increasing T increases the degree of parallelism for tracing but also the probability of “missing” some signatures in case some of the agents are dishonest.

  2. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  3. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    Science.gov (United States)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  4. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  5. To See the Unseen: A History of Planetary Radar Astronomy

    Science.gov (United States)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  6. A statistical model for radar images of agricultural scenes

    Science.gov (United States)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.

    1982-01-01

    The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.

  7. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  8. Wind farm radar study

    International Nuclear Information System (INIS)

    Davies, N.G.

    1995-01-01

    This report examines the possible degradations of radar performance that may be caused by the presence of a wind turbine generator within the radar coverage area. A brief literature survey reviews the previously published work, which is mainly concerned with degradation of broadcast TV reception. Estimates are made of wind turbine generator scattering cross-sections, and of the time and Doppler characteristics of the echo signals from representative wind turbine generator. The general characteristics of radar detection and tracking methods are described, and the behaviour of such systems in the presence of strong returns from a wind turbine generator (or an array of them) is discussed. (author)

  9. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  10. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  11. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  12. Bistatic Forward Scattering Radar Detection and Imaging

    Directory of Open Access Journals (Sweden)

    Hu Cheng

    2016-06-01

    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  13. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  14. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  15. Radar detection of Vesta

    International Nuclear Information System (INIS)

    Ostro, S.J.; Cornell University, Ithaca, N.Y.); Campbell, D.B.; Pettengill, G.H.

    1980-01-01

    Asteroid 4 Vesta was detected on November 6, 1979 with the Arecibo Observatory's S-band (12.6-cm-wavelength) radar. The echo power spectrum, received in the circular polarization opposite to that transmitted, yields a radar cross section of (0.2 + or - 0.1)pi a-squared, for a 272 km. The data are too noisy to permit derivation of Vesta's rotation period

  16. Downhole pulse radar

    Science.gov (United States)

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  17. Unconditionally Secure Quantum Signatures

    Directory of Open Access Journals (Sweden)

    Ryan Amiri

    2015-08-01

    Full Text Available Signature schemes, proposed in 1976 by Diffie and Hellman, have become ubiquitous across modern communications. They allow for the exchange of messages from one sender to multiple recipients, with the guarantees that messages cannot be forged or tampered with and that messages also can be forwarded from one recipient to another without compromising their validity. Signatures are different from, but no less important than encryption, which ensures the privacy of a message. Commonly used signature protocols—signatures based on the Rivest–Adleman–Shamir (RSA algorithm, the digital signature algorithm (DSA, and the elliptic curve digital signature algorithm (ECDSA—are only computationally secure, similar to public key encryption methods. In fact, since these rely on the difficulty of finding discrete logarithms or factoring large primes, it is known that they will become completely insecure with the emergence of quantum computers. We may therefore see a shift towards signature protocols that will remain secure even in a post-quantum world. Ideally, such schemes would provide unconditional or information-theoretic security. In this paper, we aim to provide an accessible and comprehensive review of existing unconditionally securesecure signature schemes for signing classical messages, with a focus on unconditionally secure quantum signature schemes.

  18. Study of the Bistatic Radar Cross Section of a 155-mm Artillery Round

    Science.gov (United States)

    2017-06-01

    ARL-TR-8045 ● JUNE 2017 US Army Research Laboratory Study of the Bistatic Radar Cross Section of a 155-mm Artillery Round by...when it is no longer needed. Do not return it to the originator. ARL-TR-8045 ● JUNE 2017 US Army Research Laboratory Study of the...signature. This means that as far as polarization goes, the bistatic radar is an example where the reciprocity principle cannot be applied . Finally, we

  19. Low Complexity Receiver Design for MIMO-Radar

    KAUST Repository

    Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  20. Low Complexity Receiver Design for MIMO-Radar

    KAUST Repository

    Ahmed, Sajid

    2012-09-08

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  1. Radar-cross-section reduction of wind turbines. part 1.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  2. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  3. Radar facies of unconsolidated sediments in The Netherlands : A radar stratigraphy interpretation method for hydrogeology

    NARCIS (Netherlands)

    Overmeeren, R.A. van

    1998-01-01

    Since 1990, The Netherlands Institute of Applied Geoscience TNO has been carrying out ground penetrating radar (GPR) measurements to assess the potential for imaging and characterising different hydrogeological targets in more than 30 pilot areas in The Netherlands. The experience gained by

  4. Science of Land Target Spectral Signatures

    Science.gov (United States)

    2013-04-03

    more mines than people. In addition to fatal casualties and enormous financial losses, mines ruin large areas of fertile farmland and waterways. In...fields as climatology [100], detection theory [74], anomaly detection [89], and financial analysis [25]. It is in the last field where most of the theory...thankful for their ability to endure my shenanigans . I thank Alina Zare, Nathan VanderKraats, Nicholas Fisher, Xuping Zhang, Raazia Mazhar, Wen

  5. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  6. L-Band Polarimetric SAR Signatures of Lava Flows in the Northern Volcanic Zone, Iceland

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Haack, Henning

    1998-01-01

    Studies of radar scattering signatures typical for lava surfaces are needed in order to interprete SAR images of volcanic terrain on the Earth and on other planets, and to establish a physical basis for the choice of optimal radar configurations for geological mapping. The authors focus on a study...... of different morphologic types within a flow. The largest contrasts are observed at cross-polarization. The phase difference between the VV- and HH-channels may provide information about a vegetation cover on the lava. The radar signal scattered from the flows is dominated by surface scattering contributions...

  7. Detection of chemical explosives using multiple photon signatures

    International Nuclear Information System (INIS)

    Loschke, K.W.; Dunn, W.L.

    2008-01-01

    Full text: A template-matching procedure to aid in rapid detection of improvised explosive devices (IEDs) is being investigated. Multiple photon-scattered and photon-induced positron annihilation radiation responses are being used as part of a photon-neutron signature-based radiation scanning (SBRS) approach (see companion reference for description of the neutron component), in an attempt to detect chemical explosives at safe standoff distances. Many past and present photon interrogation methods are based on imaging. Imaging techniques seek to determine at high special resolution the internal structure of a target of interest. Our technique simply seeks to determine if an unknown target contains a detectable amount of chemical explosives by comparing multiple responses (signatures) that depend on both density and composition of portions of a target. In the photon component, beams of photons are used to create back-streaming signatures, which are dependent on the density and composition of part of the target being interrogated. These signatures are compared to templates, which are collections of the same signatures if the interrogated volume contained a significant amount of explosives. The signature analysis produces a figure-of-merit and a standard deviation of the figure-of-merit. These two metrics are used to filter safe from dangerous targets. Experiments have been conducted that show that explosive surrogates (fertilizers) can be distinguished from several inert materials using these photon signatures, demonstrating that these signatures can be used effectively to help IEDs

  8. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  9. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  10. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  11. Human walking estimation with radar

    NARCIS (Netherlands)

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  12. Threshold Signature Schemes Application

    Directory of Open Access Journals (Sweden)

    Anastasiya Victorovna Beresneva

    2015-10-01

    Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.

  13. PENGGUNAAN SECONDARY SURVEILLANCE RADAR UNTUK PENENTUAN POSISI PESAWAT UDARA

    Directory of Open Access Journals (Sweden)

    Akhmad Hafidz Irfandi

    2015-02-01

    Full Text Available Republik Indonesia merupakan negara kepulauan terbesar di dunia yang memiliki lebih dari 17.000 pulau dengan pertumbuhan demografi yang sangat pesat, hal ini menjadikan Indonesia sebagai negara berpenduduk terbesar ke-empat di dunia. Pesawat udara merupakan alat transportasi yang paling efektif dalam mendukung mobilitas penduduk.Navigasi atau pandu arah adalah penentuan kedudukan (position dan arah perjalanan baik di medan sebenarnya atau di peta. Navigasi ini dilakukan pada pesawat udara yang dipandu dari darat melalui sinyal yang dipancarkan oleh instrumen terpasang pada menara (ground base maupun sinyal dari satelit (satellite base.Dalam navigasi ada beberapa macam radar yang umum digunakan yaitu Primary Surveillance Radar (PSR dan Secondary Surveillance Radar (SSR.Kedua jenis radar baik PSR maupun SSR mempunyai cara kerja berbeda. Pada PSR sifatnya aktif dan pesawat yang ditargetkan sifatnya pasif.Karena PSR hanya menerima pantulan gelombang radio dari refleksi pesawat tersebut (echo.Sedangkan pesawat itu sendiri tidak ikut aktif dengan pancaran sinyal radar di bawah. Pada SSR, baik radar maupun pesawat kedua-duanya aktif. Hal ini dapat dilakukan karena pesawat terbang telah dilengkapi dengan transponder. Pesawat-pesawat yang tidak dilengkapi transponder tidak akan dapat dilihat pada radar scope seperti identifikasi pesawat, ketinggiannya, dan lain-lain.SSR merupakan peralatan untuk mendeteksi dan mengetahui posisi dan data target yang ada di sekelilingnya secara aktif, dimana pesawat ikut aktif jika menerima pancaran sinyal Radio Frequency (RF radar sekunder. Pancaran radar ini berupa pulsa-pulsa mode, pesawat yang dipasangi transponder, akan menerima pulsa-pulsa tersebut dan akan menjawab berupa pulsa-pulsa code ke sistem penerima radar.

  14. Reduction of snapshots for MIMO radar detection by block/group orthogonal matching pursuit

    KAUST Repository

    Ali, Hussain El Hosiny

    2014-10-01

    Multiple-input multiple-output (MIMO) radar works on the principle of transmission of independent waveforms at each element of its antenna array and is widely used for surveillance purposes. In this work, we investigate MIMO radar target localization problem with compressive sensing. Specifically, we try to solve the problem of estimation of target location in MIMO radar by group and block sparsity algorithms. It will lead us to a reduced number of snapshots required and also we can achieve better radar resolution. We will use group orthogonal matching pursuit (GOMP) and block orthogonal matching pursuit (BOMP) for our problem. © 2014 IEEE.

  15. Integration and Validation of Avian Radars (IVAR)

    Science.gov (United States)

    2011-07-01

    TrackViewer Workstation UAV Unmanned Aerial Vehicle USDA United States Department of Agriculture USFWS United States Fish & Wildlife Service...hovering above water, with the hope that they are feeding on fish below. Many marine radars in fact have a “bird” setting on the setup and installation...the current position (yellow blob ) of the target (in this case, a flock of Mallards), while a straight line of blue blobs denoting returns from the

  16. Advanced Missile Signature Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  17. THE ELECTRONIC SIGNATURE

    Directory of Open Access Journals (Sweden)

    Voiculescu Madalina Irena

    2009-05-01

    Full Text Available Article refers to significance and the digital signature in electronic commerce. Internet and electronic commerce open up many new opportunities for the consumer, yet, the security (or perceived lack of security of exchanging personal and financial data

  18. Digital signature feasibility study

    Science.gov (United States)

    2008-06-01

    The purpose of this study was to assess the advantages and disadvantages of using digital signatures to assist the Arizona Department of Transportation in conducting business. The Department is evaluating the potential of performing more electronic t...

  19. Netted LPI RADARs

    Science.gov (United States)

    2011-09-01

    CHALLENGES ............................66 1. Radar Processing Gain ........................66 2. High Sensitivity Requirement .................68 B...Relationship Between Network Space and Challenges .....................................127 Figure 42. Maneuverability................................129...virtually any kind of terrain. It has five modes: Normal, Weather, ECCM, LPI, and Very Low Clearance ( VLC ). Pictures of the LANTIRN pod aboard and F-16

  20. Physics Signatures at CLIC

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    A set of signatures for physics processes of potential interests for the CLIC programme at = 1 - 5 TeV are discussed. These signatures, that may correspond to the manifestation of different scenarios of new physics as well as to Standard Model precision tests, are proposed as benchmarks for the optimisation of the CLIC accelerator parameters and for a first definition of the required detector response.

  1. Motion measurement for synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  2. Rotating Parabolic-Reflector Antenna Target in SAR Data: Model, Characteristics, and Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2013-01-01

    Full Text Available Parabolic-reflector antennas (PRAs, usually possessing rotation, are a particular type of targets of potential interest to the synthetic aperture radar (SAR community. This paper is aimed to investigate PRA’s scattering characteristics and then to extract PRA’s parameters from SAR returns, for supporting image interpretation and target recognition. We at first obtain both closed-form and numeric solutions to PRA’s backscattering by geometrical optics (GO, physical optics, and graphical electromagnetic computation, respectively. Based on the GO solution, a migratory scattering center model is at first presented for representing the movement of the specular point with aspect angle, and then a hybrid model, named the migratory/micromotion scattering center (MMSC model, is proposed for characterizing a rotating PRA in the SAR geometry, which incorporates PRA’s rotation into its migratory scattering center model. Additionally, we in detail analyze PRA’s radar characteristics on radar cross-section, high-resolution range profiles, time-frequency distribution, and 2D images, which also confirm the models proposed. A maximal likelihood estimator is developed for jointly solving the MMSC model for PRA’s multiple parameters by optimization. By exploiting the aforementioned characteristics, the coarse parameter estimation guarantees convergency upon global minima. The signatures recovered can be favorably utilized for SAR image interpretation and target recognition.

  3. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    Science.gov (United States)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  4. The use of radar for bathymetry assessment

    OpenAIRE

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered bathymetric data. The paper reviews the concepts of bathymetry assessment by radar, the radar imaging mechanism, and the possibilities and limitations of the use of radar data in rapid assessment.

  5. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    Science.gov (United States)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  6. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  7. AMSNEXRAD-Automated detection of meteorite strewnfields in doppler weather radar

    Science.gov (United States)

    Hankey, Michael; Fries, Marc; Matson, Rob; Fries, Jeff

    2017-09-01

    For several years meteorite recovery in the United States has been greatly enhanced by using Doppler weather radar images to determine possible fall zones for meteorites produced by witnessed fireballs. While most fireball events leave no record on the Doppler radar, some large fireballs do. Based on the successful recovery of 10 meteorite falls 'under the radar', and the discovery of radar on more than 10 historic falls, it is believed that meteoritic dust and or actual meteorites falling to the ground have been recorded on Doppler weather radar (Fries et al., 2014). Up until this point, the process of detecting the radar signatures associated with meteorite falls has been a manual one and dependent on prior accurate knowledge of the fall time and estimated ground track. This manual detection process is labor intensive and can take several hours per event. Recent technological developments by NOAA now help enable the automation of these tasks. This in combination with advancements by the American Meteor Society (Hankey et al., 2014) in the tracking and plotting of witnessed fireballs has opened the possibility for automatic detection of meteorites in NEXRAD Radar Archives. Here in the processes for fireball triangulation, search area determination, radar interfacing, data extraction, storage, search, detection and plotting are explained.

  8. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  9. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    Science.gov (United States)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  10. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  11. Radar Exploration of Cometary Nuclei

    Science.gov (United States)

    Gim, Yonggyu; Heggy, E.; Belton, M.; Weissman, P.; Asphaug, E.

    2012-10-01

    We have developed a mission formulation, based on the use of previously flown planetary radar sounding techniques, to image the 3D internal structure of the nucleus of a Jupiter-family comet (JFC). Believed to originate in the outer solar system and to be delivered recently to the inner solar system from the Kuiper Belt, JFCs are among the most primitive bodies accessible by spacecraft, and are indicated in the 2010 Decadal Survey as primary targets for primitive bodies sample return. We consider a sounder design operating at dual frequencies, 5 and 15 MHz center frequencies with 1 and 10 MHz bandwidths, respectively. Operating from close orbit about the nucleus of a spinning comet nucleus, CORE obtains a dense network of echoes that are used to image its interior structure to 10 m and to map the dielectric properties inside the nucleus to better than 200 m throughout. Clear images of internal structure and dielectric composition will reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit will provide an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and the time-evolving activity, structure, and composition of the inner coma. By making global yet detailed connections from interior to exterior, the data from CORE will provide answers to fundamental questions about the earliest stages of planetesimal evolution and planet formation, will be an important complement to the Rosetta mission science, and will lay the foundation for comet nucleus sample return.

  12. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  13. Practical quantum digital signature

    Science.gov (United States)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  14. Trace element ink spiking for signature authentication

    International Nuclear Information System (INIS)

    Hatzistavros, V.S.; Kallithrakas-Kontos, N.G.

    2008-01-01

    Signature authentication is a critical question in forensic document examination. Last years the evolution of personal computers made signature copying a quite easy task, so the development of new ways for signature authentication is crucial. In the present work a commercial ink was spiked with many trace elements in various concentrations. Inorganic and organometallic ink soluble compounds were used as spiking agents, whilst ink retained its initial properties. The spiked inks were used for paper writing and the documents were analyzed by a non destructive method, the energy dispersive X-ray fluorescence. The thin target model was proved right for quantitative analysis and a very good linear relationship of the intensity (X-ray signal) against concentration was estimated for all used elements. Intensity ratios between different elements in the same ink gave very stable results, independent on the writing alterations. The impact of time both to written document and prepared inks was also investigated. (author)

  15. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  16. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  17. LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification DNA Signatures

    Directory of Open Access Journals (Sweden)

    Gardner Shea N

    2011-06-01

    Full Text Available Abstract Background We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP signature design program called LAVA (LAMP Assay Versatile Analysis. LAVA was created in response to limitations of existing LAMP signature programs. Results LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. Conclusions We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/.

  18. Radar Image, Hokkaido, Japan

    Science.gov (United States)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  19. Automated Ground Penetrating Radar hyperbola detection in complex environment

    Science.gov (United States)

    Mertens, Laurence; Lambot, Sébastien

    2015-04-01

    Ground Penetrating Radar (GPR) systems are commonly used in many applications to detect, amongst others, buried targets (various types of pipes, landmines, tree roots ...), which, in a cross-section, present theoretically a particular hyperbolic-shaped signature resulting from the antenna radiation pattern. Considering the large quantity of information we can acquire during a field campaign, a manual detection of these hyperbolas is barely possible, therefore we have a real need to have at our disposal a quick and automated detection of these hyperbolas. However, this task may reveal itself laborious in real field data because these hyperbolas are often ill-shaped due to the heterogeneity of the medium and to instrumentation clutter. We propose a new detection algorithm for well- and ill-shaped GPR reflection hyperbolas especially developed for complex field data. This algorithm is based on human recognition pattern to emulate human expertise to identify the hyperbolas apexes. The main principle relies in a fitting process of the GPR image edge dots detected with Canny filter to analytical hyperbolas, considering the object as a punctual disturbance with a physical constraint of the parameters. A long phase of observation of a large number of ill-shaped hyperbolas in various complex media led to the definition of smart criteria characterizing the hyperbolic shape and to the choice of accepted value ranges acceptable for an edge dot to correspond to the apex of a specific hyperbola. These values were defined to fit the ambiguity zone for the human brain and present the particularity of being functional in most heterogeneous media. Furthermore, the irregularity is particularly taken into account by defining a buffer zone around the theoretical hyperbola in which the edge dots need to be encountered to belong to this specific hyperbola. First, the method was tested in laboratory conditions over tree roots and over PVC pipes with both time- and frequency-domain radars

  20. Design, Performance and Optimization for Multimodal Radar Operation

    Directory of Open Access Journals (Sweden)

    Surendra S. Bhat

    2012-09-01

    Full Text Available This paper describes the underlying methodology behind an adaptive multimodal radar sensor that is capable of progressively optimizing its range resolution depending upon the target scattering features. It consists of a test-bed that enables the generation of linear frequency modulated waveforms of various bandwidths. This paper discusses a theoretical approach to optimizing the bandwidth used by the multimodal radar. It also discusses the various experimental results obtained from measurement. The resolution predicted from theory agrees quite well with that obtained from experiments for different target arrangements.

  1. Impulse radar scanning of intact salt at the Avery Island Mine

    International Nuclear Information System (INIS)

    Cook, C.W.

    1980-05-01

    A series of experiments was run in the Avery Island Mine to evaluate the capability of an impulse radar to locate anomalies and simulated waste targets in intact dome salt. Voids in salt were difficult to detect. On the positive side, metal targets and simulated waste (glass) were easily located in intact salt. Radar scanning at ranges of greater than 25 meters and short-range resolution of target positions to within a few centimeters were achieved

  2. Analytical Research by Computer Simulation of Developmental Polarimetric/Frequency Agile Pulsed Radars.

    Science.gov (United States)

    1982-12-01

    scattering matrix format so that the entire radar signature will be available for future radar hardware and simulator designers . Without such data and...validated models the radar system analyst and designer will continue to suffer from the so called "Sedenquist Effect" that is, put two radar engineers...P4AsME 7Em VAMqA5OIE I uU04 I.ATEGE.4. VARIAdLE AVAL U00036 REAL*4 VAmIAdLE CAdS vu0uvi4 iKEA *4 sN(,CEOumE CUM"Uiv iLUC.A /AUOX L.Ei#GTH 04UOaUt HO0SAV

  3. TDMA X-band FMCW MIMO radar for short range surveillance applications

    NARCIS (Netherlands)

    Belfiori, F.; Maas, A.P.M.; Hoogeboom, P.; Rossum, W.L. van

    2011-01-01

    The work presented in this paper was aimed at the design of a compact radar device to be used for private area surveillance applications. The radar is connected to a pan tilt zoom camera and it provides the camera system with high accuracy position information (bearing and range) of moving targets;

  4. Low-Cost Radar Sensors for Personnel Detection and Tracking in Urban Areas

    Science.gov (United States)

    2007-01-31

    progress on the reserach grant "Low-Cost Radar Sensors for Personnel Detection and Tracking in Urban Areas" during the period 1 May 2005 - 31 December...The limitations of the proposed system resulting from DOA ambiguity of multiple moving targets are studied. 2. METHODOLOGY Our radar receiver

  5. FMCW radar system for detection and classification of small vessels in high sea state conditions

    NARCIS (Netherlands)

    Wasselin, J.-P.; Mazuel, S.; Itcia, E.; Huizing, A.G.; Theil, A.

    2012-01-01

    The ROCKWELL COLLINS France radar department is currently developing a FMCW radar system for the detection and the classification of small maritime targets in the frame of the SISMARIS, SARGOS & I2C projects. Several test campaigns have been conducted since 2009 to develop a sensor as well as an

  6. Imaging of concrete specimens using inverse synthetic aperture radar

    International Nuclear Information System (INIS)

    Rhim, Hong C.; Buyukozturk, Oral

    2000-01-01

    Radar Measurement results of laboratory size concrete specimens are presented in this paper. The purpose of this research work is to study various aspects of the radar method in an effort to develop an improved radar system for nondestructive testing of concrete structures. The radar system used for the study is an Inverse Synthetic Aperture Radar (ISAR), which is capable of transmitting microwaves at three different frequency ranges of 2-3.4, 3.4-5.8, and 8-12 GHz. Radar measurement setup is such that the radar is locates 14.4 m away from a concrete target to satisfy a far-field criterion. The concrete target is rotated for 20 degrees during the measurements for the generation of two-dimensional (cross-range) imagery. Concrete targets used for the measurements have the dimensions of 305 mm (width)x305 mm (height)x92 mm (thickness) with different inside configurations. Comparisons are made for dry and wet specimens, specimens with and without inclusions. Each specimen is made to model various situations that a concrete structure can have in reality. Results show that center frequency, frequency bandwidth, and polarization of the incident wave have different effects on identifying the thickness or inclusions inside concrete specimens. Results also suggest that a certain combination of measurement parameters is suitable for a specific application area. Thus, measurement parameters can be optimized for a specific problem. The findings are presented and discussed in details in the paper. Signal processing schemes implemented for imaging of the specimens are also discussed

  7. Signatures of the Invisible

    CERN Multimedia

    Strom, D

    2003-01-01

    On the Net it is possible to take a look at art from afar via Virtual Museums. One such exhibition was recently in the New York Museum of Modern Art's branch, PS1. Entitled 'Signatures of the Invisible' it was a collaborative effort between artists and physicists (1/2 page).

  8. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy

    Directory of Open Access Journals (Sweden)

    Ge Jianjun

    2017-12-01

    Full Text Available Nowadays, the battlefield environment has become much more complex and variable. This paper presents a quantitative method and lower bound for the amount of target information acquired from multiple radar observations to adaptively and dynamically organize the detection of battlefield resources based on the principle of information entropy. Furthermore, for minimizing the given information entropy’s lower bound for target measurement at every moment, a method to dynamically and adaptively select radars with a high amount of information for target tracking is proposed. The simulation results indicate that the proposed method has higher tracking accuracy than that of tracking without adaptive radar selection based on entropy.

  9. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  10. Broadview Radar Altimetry Toolbox

    Science.gov (United States)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  11. Doppler radar flowmeter

    Science.gov (United States)

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  12. Verification of target motion effects on SAR imagery using the Gotcha GMTI challenge dataset

    Science.gov (United States)

    Hack, Dan E.; Saville, Michael A.

    2010-04-01

    This paper investigates the relationship between a ground moving target's kinematic state and its SAR image. While effects such as cross-range offset, defocus, and smearing appear well understood, their derivations in the literature typically employ simplifications of the radar/target geometry and assume point scattering targets. This study adopts a geometrical model for understanding target motion effects in SAR imagery, termed the target migration path, and focuses on experimental verification of predicted motion effects using both simulated and empirical datasets based on the Gotcha GMTI challenge dataset. Specifically, moving target imagery is generated from three data sources: first, simulated phase history for a moving point target; second, simulated phase history for a moving vehicle derived from a simulated Mazda MPV X-band signature; and third, empirical phase history from the Gotcha GMTI challenge dataset. Both simulated target trajectories match the truth GPS target position history from the Gotcha GMTI challenge dataset, allowing direct comparison between all three imagery sets and the predicted target migration path. This paper concludes with a discussion of the parallels between the target migration path and the measurement model within a Kalman filtering framework, followed by conclusions.

  13. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    Science.gov (United States)

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  14. Prospective IS-MST radar. Potential and diagnostic capabilities

    Directory of Open Access Journals (Sweden)

    Potekhin A.P.

    2016-09-01

    Full Text Available In the next few years, a new radar is planned to be built near Irkutsk. It should have capabilities of incoherent scatter (IS radars and mesosphere-stratosphere-troposphere (MST radars [Zherebtsov et al., 2011]. The IS-MST radar is a phased array of two separated antenna panels with a multichannel digital receiving system, which allows detailed space-time processing of backscattered signal. This paper describes characteristics, configuration, and capabilities of the antenna and transceiver systems of this radar. We estimate its potential in basic operating modes to study the ionosphere by the IS method at heights above 100 km and the atmosphere with the use of signals scattered from refractive index fluctuations, caused by turbulent mixing at heights below 100 km. The modeling shows that the radar will allow us to regularly measure neutral atmosphere parameters at heights up to 26 km as well as to observe mesosphere summer echoes at heights near 85 km in the presence of charged ice particles (an increase in Schmidt number and mesosphere winter echoes at heights near 65 km with increasing background electron density. Evaluation of radar resources at the IS mode in two height ranges 100–600 and 600–2000 km demonstrates that in the daytime and with the accumulation time of 10 min, the upper boundaries of electron density and ionospheric plasma temperature are ~1500 and ~1300 km respectively, with the standard deviation of no more than 10 %. The upper boundary of plasma drift velocity is ~1100 km with the standard deviation of 45 m/s. The estimation of interferometric capabilities of the MST radar shows that it has a high sensitivity to objects of angular size near 7.5 arc min, and its potential accuracy in determining target angles can reach 40 arc sec.

  15. Microphysical Structures of Hurricane Irma Observed by Polarimetric Radar

    Science.gov (United States)

    Didlake, A. C.; Kumjian, M. R.

    2017-12-01

    This study examines dual-polarization radar observations of Hurricane Irma as its center passed near the WSR-88D radar in Puerto Rico, capturing needed microphysical information of a mature tropical cyclone. Twenty hours of observations continuously sampled the inner core precipitation features. These data were analyzed by annuli and azimuth, providing a bulk characterization of the primary eyewall, secondary eyewall, and rainbands as they varied around the storm. Polarimetric radar variables displayed distinct signatures of convective and stratiform precipitation in the primary eyewall and rainbands that were organized in a manner consistent with the expected kinematic asymmetry of a storm in weak environmental wind shear but with moderate low-level storm-relative flow. In the front quadrants of the primary eyewall, vertical profiles of differential reflectivity (ZDR) exhibit increasing values with decreasing height consistent with convective precipitation processes. In particular, the front-right quadrant exhibits a signature in reflectivity (ZH) and ZDR indicating larger, sparser drops, which is consistent with a stronger updraft present in this quadrant. In the rear quadrants, a sharply peaked ZDR maximum occurs within the melting layer, which is attributed of stratiform processes. In the rainbands, the convective to stratiform transition can be seen traveling from the front-right to the front-left quadrant. The front-right quadrant exhibits lower co-polar correlation coefficient (ρHV) values in the 3-8 km altitude layer, suggesting larger vertical spreading of various hydrometeors that occurs in convective vertical motions. The front-left quadrant exhibits larger ρHV values, suggesting less diversity of hydrometeor shapes, consistent with stratiform processes. The secondary eyewall did not exhibit a clear signature of processes preferred in a specific quadrant, and a temporal analysis of the secondary eyewall revealed a complex evolution of its structure

  16. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  17. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  18. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  19. 100 years of radar

    CERN Document Server

    Galati, Gaspare

    2016-01-01

    This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hülsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred ima...

  20. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  1. A Directed Signature Scheme and its Applications

    OpenAIRE

    Lal, Sunder; Kumar, Manoj

    2004-01-01

    This paper presents a directed signature scheme with the property that the signature can be verified only with the help of signer or signature receiver. We also propose its applications to share verification of signatures and to threshold cryptosystems.

  2. Forestry applications of ground-penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, H.; Perez-Gracia, V.; Novo, A.; Armesto, J.

    2010-07-01

    Ground-penetrating radar (GPR) is a geophysical and close-range remote sensing technique based on the use of radar pulses to obtain cross-section images of underground features. This method is characterized by the transmission of an electromagnetic short length pulse (1-2 ns), presenting a centre frequency ranging from 10 MHz to 2.5 GHz. The principles of GPR operation are based on the ability of low frequency radar waves to penetrate into a non-conductive medium, usually subsoil, but also walls, concrete or wood. Those waves are detected after suffering a reflection in electromagnetic discontinuities of the propagation medium. Therefore, this is a suitable method to study changes in those physical properties, and also to characterize different mediums and the reflective targets providing information about their physical properties. The aim of this work is to describe and demonstrate different applications of GPR in forestry, showing the obtained results together with their interpretation. Firstly, in this paper, it is illustrated how GPR is able to map shallow bedrock, subsoil stratigraphy and also to estimate shallow water table depth. Secondly, different tree trunks as well as dry timber are analyzed, evaluating the different radar data obtained in each particular case, and observing differences in their electromagnetic properties related to the GPR response. Finally, several measurements were taken in order to analyze the use of GPR to detect tree root systems using polarimetric techniques, being possible to detect medium and big size roots, together with groups of small roots. (Author) 39 refs.

  3. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  4. Determination of meteoroid physical properties from tristatic radar observations

    Directory of Open Access Journals (Sweden)

    J. Kero

    2008-08-01

    Full Text Available In this work we give a review of the meteor head echo observations carried out with the tristatic 930 MHz EISCAT UHF radar system during four 24 h runs between 2002 and 2005 and compare these with earlier observations. A total number of 410 tristatic meteors were observed. We describe a method to determine the position of a compact radar target in the common volume monitored by the three receivers and demonstrate its applicability for meteor studies. The inferred positions of the meteor targets have been utilized to estimate their velocities, decelerations and directions of arrival as well as their radar cross sections with unprecedented accuracy. The velocity distribution of the meteoroids is bimodal with peaks at 35–40 km/s and 55–60 km/s, and ranges from 19–70 km/s. The estimated masses are between 10−9–10−5.5 kg. There are very few detections below 30 km/s. The observations are clearly biased to high-velocity meteoroids, but not so biased against slow meteoroids as has been presumed from previous tristatic measurements. Finally, we discuss how the radial deceleration observed with a monostatic radar depends on the meteoroid velocity and the angle between the trajectory and the beam. The finite beamwidth leads to underestimated meteoroid masses if radial velocity and deceleration of meteoroids approaching the radar are used as estimates of the true quantities in a momentum equation of motion.

  5. Mirage: a visible signature evaluation tool

    Science.gov (United States)

    Culpepper, Joanne B.; Meehan, Alaster J.; Shao, Q. T.; Richards, Noel

    2017-10-01

    This paper presents the Mirage visible signature evaluation tool, designed to provide a visible signature evaluation capability that will appropriately reflect the effect of scene content on the detectability of targets, providing a capability to assess visible signatures in the context of the environment. Mirage is based on a parametric evaluation of input images, assessing the value of a range of image metrics and combining them using the boosted decision tree machine learning method to produce target detectability estimates. It has been developed using experimental data from photosimulation experiments, where human observers search for vehicle targets in a variety of digital images. The images used for tool development are synthetic (computer generated) images, showing vehicles in many different scenes and exhibiting a wide variation in scene content. A preliminary validation has been performed using k-fold cross validation, where 90% of the image data set was used for training and 10% of the image data set was used for testing. The results of the k-fold validation from 200 independent tests show a prediction accuracy between Mirage predictions of detection probability and observed probability of detection of r(262) = 0:63, p Pearson correlation) and a MAE = 0:21 (mean absolute error).

  6. Principal Component Analysis In Radar Polarimetry

    Directory of Open Access Journals (Sweden)

    A. Danklmayer

    2005-01-01

    Full Text Available Second order moments of multivariate (often Gaussian joint probability density functions can be described by the covariance or normalised correlation matrices or by the Kennaugh matrix (Kronecker matrix. In Radar Polarimetry the application of the covariance matrix is known as target decomposition theory, which is a special application of the extremely versatile Principle Component Analysis (PCA. The basic idea of PCA is to convert a data set, consisting of correlated random variables into a new set of uncorrelated variables and order the new variables according to the value of their variances. It is important to stress that uncorrelatedness does not necessarily mean independent which is used in the much stronger concept of Independent Component Analysis (ICA. Both concepts agree for multivariate Gaussian distribution functions, representing the most random and least structured distribution. In this contribution, we propose a new approach in applying the concept of PCA to Radar Polarimetry. Therefore, new uncorrelated random variables will be introduced by means of linear transformations with well determined loading coefficients. This in turn, will allow the decomposition of the original random backscattering target variables into three point targets with new random uncorrelated variables whose variances agree with the eigenvalues of the covariance matrix. This allows a new interpretation of existing decomposition theorems.

  7. South African passive radar and towards its characterisation

    CSIR Research Space (South Africa)

    Lysko, Albert A

    2017-05-01

    Full Text Available A passive or passive coherent location (PCL) radar does not have an own transmitter or require owning spectrum, making it a very cost effective instrument for tracking non-cooperative targets. The paper discusses achievements in FM-based passive...

  8. Design and analysis of compressed sensing radar detectors

    NARCIS (Netherlands)

    Anitori, L.; Maleki, A.; Otten, M.P.G.; Baraniuk, R.G.; Hoogeboom, P.

    2013-01-01

    We consider the problem of target detection from a set of Compressed Sensing (CS) radar measurements corrupted by additive white Gaussian noise. We propose two novel architectures and compare their performance by means of Receiver Operating Characteristic (ROC) curves. Using asymptotic arguments and

  9. Wide Band and Wide Azimuth Beam Effect on High-resolution Synthetic Aperture Radar Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Hong Jun

    2015-06-01

    Full Text Available Passive corner reflectors and active transponders are often used as man-made reference targets in Synthetic Aperture Radar (SAR radiometric calibration, With the emergence of new radar systems and the increasing demand for greater accuracy, wide-band and wide-beam radars challenge the hypothesis that the Radar Cross Section (RCS of reference targets is constant. In this study, the FEKO electromagnetic simulation software is used to obtain the change curve of the target RCS as a function of frequency and aspect angle while incorporating high-resolution point-target SAR simulation, and quantitatively analyzing the effect of the modulation effect on SAR images. The simulation results suggest that the abovementioned factors affect the SAR calibration by more than 0.2 dB within a fractional bandwidth greater than 10% or azimuth beam width of more than 20°, which must be corrected in the data processing.

  10. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  11. See-and-Avoid Collision Avoidance Using ADS-B Signal and Radar Sensing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI proposes an innovative collision avoidance radar and communication technology to detect and track both cooperative and non-cooperative targets. The system...

  12. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  13. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  14. Design and Implementation of Radar Cross-Section Models on a Virtex-6 FPGA

    Directory of Open Access Journals (Sweden)

    B. U. V. Prashanth

    2014-01-01

    Full Text Available The simulation of radar cross-section (RCS models in FPGA is illustrated. The models adopted are the Swerling ones. Radar cross-section (RCS which is also termed as echo area gives the amount of scattered power from a target towards the radar. This paper elucidates the simulation of RCS to represent the specified targets under different conditions, namely, aspect angle and frequency. This model is used for the performance evaluation of radar. RCS models have been developed for various targets like simple objects to complex objects like aircrafts, missiles, tanks, and so forth. First, the model was developed in MATLAB real time simulation environment and after successful verification, the same was implemented in FPGA. Xilinx ISE software was used for VHDL coding. This simulation model was used for the testing of a radar system. The results were compared with MATLAB simulations and FPGA based timing diagrams and RTL synthesis. The paper illustrates the simulation of various target radar cross-section (RCS models. These models are simulated in MATLAB and in FPGA, with the aim of implementing them efficiently on a radar system. This method can be generalized to apply to objects of arbitrary geometry for the two configurations of transmitter and receiver in the same as well as different locations.

  15. Radar observations of asteroids

    International Nuclear Information System (INIS)

    Ostro, S.J.

    1989-01-01

    This paper describes echoes from 33 main-belt asteroids (MBAs) and 19 near-Earth asteroids (NEAs) have provided a wealth of new information about these objects such as sizes, shapes, spin vectors, and such surface characteristics as decimeter-scale morphology, topographic relief, regolith porosity and metal concentrations. On average, small NEAs are much rougher at decimeter scales than MBAs, comets or terrestrial planets. Some of the largest MBAs (e.g., 1 Ceres and 2 Pallas ) are smoother than the moon at decimeter scales but much rougher than the Moon at some much larger scale. There is at least a five-fold variation in the radar albedos of MBAs, implying substantial variations in the surface porosities or metal concentrations of these objects. The highest MBA albedo estimate, for 16 Psyche, is consistent with a metal concentration near unity and lunar porosities

  16. Under the Radar

    CERN Document Server

    Goss, WM

    2010-01-01

    This is the biography of Ruby Payne-Scott (1912 to 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II and were used by Australian, US and New Zealand personnel. From a sociological perspective, her career also offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs this book gives a fascinating insight into the beginning of radio astronomy and the role of a pioneering woman in astronomy.

  17. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  18. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  19. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  20. Radar spectrum opportunities for cognitive communications transmission

    OpenAIRE

    Wang, L; McGeehan, JP; Williams, C; Doufexi, A

    2008-01-01

    In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR...

  1. Simulation of laser radar tooling ball measurements: focus dependence

    Science.gov (United States)

    Smith, Daniel G.; Slotwinski, Anthony; Hedges, Thomas

    2015-10-01

    The Nikon Metrology Laser Radar system focuses a beam from a fiber to a target object and receives the light scattered from the target through the same fiber. The system can, among other things, make highly accurate measurements of the position of a tooling ball by locating the angular position of peak signal quality, which is related to the fiber coupling efficiency. This article explores the relationship between fiber coupling efficiency and focus condition.

  2. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  3. Modem Signature Analysis.

    Science.gov (United States)

    1982-10-01

    AD-A127 993 MODEM SIGNATURE ANALISIS (U) PAR TECHNOLOGY CORP NEW / HARTFORD NY V EDWARDS ET AL. OCT 82 RADC-TR-82-269 F30602-80-C-0264 NCLASSIFIED F/G...as an indication of the class clustering and separation between different classes in the modem data base. It is apparent from the projection that the...that as the clusters disperse, the likelihood of a sample crossing the boundary into an adjacent region and causing a symbol decision error increases. As

  4. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment.

    Science.gov (United States)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-06

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  5. Solid-state radar switchboard

    Science.gov (United States)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  6. Radar velocity determination using direction of arrival measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.; Horndt, Volker

    2017-12-19

    The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis. This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.

  7. Sparse Representation Denoising for Radar High Resolution Range Profiling

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available Radar high resolution range profile has attracted considerable attention in radar automatic target recognition. In practice, radar return is usually contaminated by noise, which results in profile distortion and recognition performance degradation. To deal with this problem, in this paper, a novel denoising method based on sparse representation is proposed to remove the Gaussian white additive noise. The return is sparsely described in the Fourier redundant dictionary and the denoising problem is described as a sparse representation model. Noise level of the return, which is crucial to the denoising performance but often unknown, is estimated by performing subspace method on the sliding subsequence correlation matrix. Sliding window process enables noise level estimation using only one observation sequence, not only guaranteeing estimation efficiency but also avoiding the influence of profile time-shift sensitivity. Experimental results show that the proposed method can effectively improve the signal-to-noise ratio of the return, leading to a high-quality profile.

  8. Modeling and Experimental Validation for 3D mm-wave Radar Imaging

    Science.gov (United States)

    Ghazi, Galia

    As the problem of identifying suicide bombers wearing explosives concealed under clothing becomes increasingly important, it becomes essential to detect suspicious individuals at a distance. Systems which employ multiple sensors to determine the presence of explosives on people are being developed. Their functions include observing and following individuals with intelligent video, identifying explosives residues or heat signatures on the outer surface of their clothing, and characterizing explosives using penetrating X-rays, terahertz waves, neutron analysis, or nuclear quadrupole resonance. At present, mm-wave radar is the only modality that can both penetrate and sense beneath clothing at a distance of 2 to 50 meters without causing physical harm. Unfortunately, current mm-wave radar systems capable of performing high-resolution, real-time imaging require using arrays with a large number of transmitting and receiving modules; therefore, these systems present undesired large size, weight and power consumption, as well as extremely complex hardware architecture. The overarching goal of this thesis is the development and experimental validation of a next generation inexpensive, high-resolution radar system that can distinguish security threats hidden on individuals located at 2-10 meters range. In pursuit of this goal, this thesis proposes the following contributions: (1) Development and experimental validation of a new current-based, high-frequency computational method to model large scattering problems (hundreds of wavelengths) involving lossy, penetrable and multi-layered dielectric and conductive structures, which is needed for an accurate characterization of the wave-matter interaction and EM scattering in the target region; (2) Development of combined Norm-1, Norm-2 regularized imaging algorithms, which are needed for enhancing the resolution of the images while using a minimum number of transmitting and receiving antennas; (3) Implementation and experimental

  9. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  10. The NASA Polarimetric Radar (NPOL)

    Science.gov (United States)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  11. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar

    Directory of Open Access Journals (Sweden)

    H. Hidayat

    2012-07-01

    Full Text Available Floodplain lakes and peatlands in the middle Mahakam lowland area are considered as ecologically important wetland in East Kalimantan, Indonesia. However, due to a lack of data, the hydrological functioning of the region is still poorly understood. Among remote sensing techniques that can increase data availability, radar is well-suitable for the identification, mapping, and measurement of tropical wetlands, for its cloud unimpeded sensing and night and day operation. Here we aim to extract flood extent and flood occurrence information from a series of radar images of the middle Mahakam lowland area. We explore the use of Phased Array L-band Synthetic Aperture Radar (PALSAR imagery for observing flood inundation dynamics by incorporating field water level measurements. Water level measurements were carried out along the river, in lakes and in peatlands, using pressure transducers. For validation of the open water flood occurrence map, bathymetry measurements were carried out in the main lakes. A series of PALSAR images covering the middle and lower Mahakam area in the years 2007 through 2010 were collected. A fully inundated region can be easily recognized on radar images from a dark signature. Open water flood occurrence was mapped using a threshold value taken from radar backscatter of the permanently inundated river and lakes areas. Radar backscatter intensity analysis of the vegetated floodplain area revealed consistently high backscatter values, indicating flood inundation under forest canopy. We used those values as the threshold for flood occurrence mapping in the vegetated area.

  12. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Science.gov (United States)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  13. Wind turbine clutter mitigation in coastal UHF radar.

    Science.gov (United States)

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  14. Electronic Signature (eSig)

    Data.gov (United States)

    Department of Veterans Affairs — Beginning with the Government Paperwork Elimination Act of 1998 (GPEA), the Federal government has encouraged the use of electronic / digital signatures to enable...

  15. Expressiveness considerations of XML signatures

    DEFF Research Database (Denmark)

    Jensen, Meiko; Meyer, Christopher

    2011-01-01

    XML Signatures are used to protect XML-based Web Service communication against a broad range of attacks related to man-in-the-middle scenarios. However, due to the complexity of the Web Services specification landscape, the task of applying XML Signatures in a robust and reliable manner becomes...... more and more challenging. In this paper, we investigate this issue, describing how an attacker can still interfere with Web Services communication even in the presence of XML Signatures. Additionally, we discuss the interrelation of XML Signatures and XML Encryption, focussing on their security...

  16. Electronic Warfare Signature Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electronic Warfare Signature Measurement Facility contains specialized mobile spectral, radiometric, and imaging measurement systems to characterize ultraviolet,...

  17. Ground clutter cancellation in incoherent radars: solutions for EISCAT Svalbard radar

    Directory of Open Access Journals (Sweden)

    T. Turunen

    2000-09-01

    Full Text Available Incoherent scatter radars measure ionosphere parameters using modified Thomson scatter from free electrons in the target (see e.g. Hagfors, 1997. The integrated cross section of the ionospheric scatterers is extremely small and the measurements can easily be disturbed by signals returned by unwanted targets. Ground clutter signals, entering via the antenna side lobes, can render measurements at the nearest target ranges totally impossible. The EISCAT Svalbard Radar (ESR, which started measurements in 1996, suffers from severe ground clutter and the ionosphere cannot be measured in any simple manner at ranges less than about 120–150 km, depending on the modulation employed. If the target and clutter signals have different, and clearly identifiable, properties then, in principle, there are always ways to eliminate the clutter. In incoherent scatter measurements, differences in the coherence times of the wanted and unwanted signals can be used for clutter cancellation. The clutter cancellation must be applied to all modulations, usually alternating codes in modern experiments, used for shorter ranges. Excellent results have been obtained at the ESR using a simple pulse-to-pulse clutter subtraction method, but there are also other possibilities.Key words: Radio science (ionospheric physics; signal processing; instruments and techniques

  18. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

    Directory of Open Access Journals (Sweden)

    Chenguang Shi

    2016-12-01

    Full Text Available This paper investigates the joint target parameter (delay and Doppler estimation performance of linear frequency modulation (LFM-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS component and weak isotropic scatterers (WIS components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR, target’s radar cross section (RCS and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  19. Traveling Ionospheric Disturbances Observed by Midlatitude SuperDARN Radars

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; West, M. L.; Bristow, W. A.

    2012-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of 100-250 km and periods between ~15 - 60 min, and are generally thought to be the ionospheric manifestation of Atmospheric Gravity Waves (AGWs). High-latitude MSTIDs have been studied using SuperDARN radars since 1989, and are typically attributed to auroral sources and propagated by the Earth Reflected Wave (ERW) mode. Tropospheric sources and earthquakes are also known to be sources of MSTIDs. Observations of MSTIDs using both mid- and high- latitude SuperDARN radars are presented. North American radar data from November 2010 - November 2011 were searched for signatures of MSTIDs. Initial results suggest that MSTIDs are observed at high latitudes primarily in the fall/winter months, which is consistent with published results. This search also reveals that mid-latitude MSTIDs often appear concurrently with high-latitude MSTIDs and share similar wave parameters. During the fall/winter months, SuperDARN mid-latitude MSTIDs appear more often than high-latitude MSTIDs, likely due to calmer ionospheric conditions at mid-latitudes. In the springtime, SuperDARN-observed MSTIDs are less likely to be seen at high-latitudes, but still appear at mid-latitudes. Selected events are analyzed for wave parameters using the Multiple Signal Classification (MUSIC) technique.

  20. Joint Optimization of Receiver Placement and Illuminator Selection for a Multiband Passive Radar Network.

    Science.gov (United States)

    Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin

    2017-06-14

    The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.

  1. Estimation of three-dimensional radar tracking using modified extended kalman filter

    Science.gov (United States)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  2. Distributed radar network for real-time tracking of bullet trajectory

    Science.gov (United States)

    Zhang, Yimin; Li, Xin; Jin, Yuanwei; Amin, Moeness G.; Eydgahi, Ali

    2009-05-01

    Gunshot detection, sniper localization, and bullet trajectory prediction are of significant importance in military and homeland security applications. While the majority of existing work is based on acoustic and electro-optical sensors, this paper develops a framework of networked radar systems that uses distributed radar sensor networks to achieve the aforementioned objectives. The use of radio frequency radar systems allows the achievement of subtime- of-flight tracking response, enabling to response before the bullet reaches its target and, as such, effectively leading to the reduction of injuries and casualties in military and homeland security operations. The focus of this paper is to examine the MIMO radar concept with concurrent transmission of low-correlation waveforms from multiple radar sets to ensure wide surveillance coverage and maintain a high waveform repetition frequency for long coherent time interval required to achieve return signal concentration.

  3. Apodization of spurs in radar receivers using multi-channel processing

    Science.gov (United States)

    Doerry, Armin W.; Bickel, Douglas L.

    2017-11-21

    The various technologies presented herein relate to identification and mitigation of spurious energies or signals (aka "spurs") in radar imaging. Spurious energy in received radar data can be a consequence of non-ideal component and circuit behavior. Such behavior can result from I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), etc. The manifestation of the spurious energy in a radar image (e.g., a range-Doppler map) can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images which have been processed using the same data but of different signal paths and modulations enables identification of undesired spurs, with subsequent cropping or apodization of the undesired spurs from a radar image. Spurs can be identified by comparison with a threshold energy. Removal of an undesired spur enables enhanced identification of true targets in a radar image.

  4. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Science.gov (United States)

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  5. Formulation and Analysis of the Quantum Radar Cross Section

    Science.gov (United States)

    Brandsema, Matthew J.

    In radar, the amount of returns that an object sends back to the receiver after being struck by an electromagnetic wave is characterized by what is known as the radar cross section, denoted by sigma typically. There are many mechanisms that affect how much radiation is reflected back in the receiver direction, such as reflectivity, physical contours and dimensions, attenuation properties of the materials, projected cross sectional area and so on. All of these characteristics are lumped together in a single value of sigma, which has units of m2. Stealth aircrafts for example are designed to minimize its radar cross section and return the smallest amount of radiation possible in the receiver direction. A new concept has been introduced called quantum radar, that uses correlated quantum states of photons as well as the unique properties of quantum mechanics to ascertain information on a target at a distance. At the time of writing this dissertation, quantum radar is very much in its infancy. There still exist fundamental questions about the feasibility of its implementation, especially in the microwave spectrum. However, what has been theoretically determined, is that quantum radar has a fundamental advantage over classical radar in terms of resolution and returns in certain regimes. Analogous to the classical radar cross section (CRCS), the concept of the quantum radar cross section (QRCS) has been introduced. This quantity measures how an object looks to a quantum radar be describing how a single photon, or small cluster of photons scatter off of a macroscopic target. Preliminary simulations of the basic quantum radar cross section equation have yielded promising results showing an advantage in sidelobe response in comparison to the classical RCS. This document expands upon this idea by providing insight as to where this advantage originates, as well as developing more rigorous simulation analysis, and greatly expanding upon the theory. The expanded theory presented

  6. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  7. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  8. Signatures of Mechanosensitive Gating.

    Science.gov (United States)

    Morris, Richard G

    2017-01-10

    The question of how mechanically gated membrane channels open and close is notoriously difficult to address, especially if the protein structure is not available. This perspective highlights the relevance of micropipette-aspirated single-particle tracking-used to obtain a channel's diffusion coefficient, D, as a function of applied membrane tension, σ-as an indirect assay for determining functional behavior in mechanosensitive channels. While ensuring that the protein remains integral to the membrane, such methods can be used to identify not only the gating mechanism of a protein, but also associated physical moduli, such as torsional and dilational rigidity, which correspond to the protein's effective shape change. As an example, three distinct D-versus-σ "signatures" are calculated, corresponding to gating by dilation, gating by tilt, and gating by a combination of both dilation and tilt. Both advantages and disadvantages of the approach are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Signatures de l'invisible

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    "Signatures of the Invisible" is an unique collaboration between contemporary artists and contemporary physicists which has the potential to help redefine the relationship between science and art. "Signatures of the Invisible" is jointly organised by the London Institute - the world's largest college of art and design and CERN*, the world's leading particle physics laboratory. 12 leading visual artists:

  10. An interpretation of signature inversion

    International Nuclear Information System (INIS)

    Onishi, Naoki; Tajima, Naoki

    1988-01-01

    An interpretation in terms of the cranking model is presented to explain why signature inversion occurs for positive γ of the axially asymmetric deformation parameter and emerges into specific orbitals. By introducing a continuous variable, the eigenvalue equation can be reduced to a one dimensional Schroedinger equation by means of which one can easily understand the cause of signature inversion. (author)

  11. Cell short circuit, preshort signature

    Science.gov (United States)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  12. Ship Signature Management System : Functionality

    NARCIS (Netherlands)

    Arciszewski, H.F.R.; Lier, L. van; Meijer, Y.G.S.; Noordkamp, H.W.; Wassenaar, A.S.

    2010-01-01

    A signature of a platform is the manner in which the platform manifests itself to a certain type of sensor and how observable it is when such a sensor is used to detect the platform. Because many military platforms use sensors in different media, it is the total of its different signatures that

  13. On the radar cross section (RCS) prediction of vehicles moving on the ground

    International Nuclear Information System (INIS)

    Sabihi, Ahmad

    2014-01-01

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea

  14. On the radar cross section (RCS) prediction of vehicles moving on the ground

    Energy Technology Data Exchange (ETDEWEB)

    Sabihi, Ahmad [Department of Mathematical Sciences, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  15. Universal Library for Building Radar Operator Interface

    Directory of Open Access Journals (Sweden)

    A. A. Karankevich

    2014-01-01

    Full Text Available The article contains the results of the development of a software library, used for building software interfaces for radars being developed in BMSTU Radioelectronic Technics Scientific and Research Institute. The library is a software application library written in C++ using Qt and OpenGL libraries.The article describes the requirements, that the library is supposed to meet, in particular — cross-platform capabilities and versatility of the solution. The data types, that library uses, are described. The description of theinterface elements developed is shown, and some pictures of their operation are given.The article shows the main interface elements used. They are: «Matrix» that shows twodimensional data, «Waterfall», that is used for time scanning of the parameter specified, and «Plan Position Indicator» that shows circular scan from surveillance radar without geometric distortions.The part «Library implementation» shows the example of radiolocation station interface, that was based on this library, used in the working model of ultrashortpulse radar. Some results of the operation of this interface are also shown. The experiment shows the system working with two people in the field. As people start to move, the system becomes capable of distinguishing moving targets and stationary surface. The article shows the system operation the same way as the system operator can see it through his interface.The conclusion contains brief results of the development, the sphere of application of the software, and the prospects of the further development of the library.

  16. Perspective information in the cockpit as a target acquisition aid

    NARCIS (Netherlands)

    Breda, L. van; Veltman, H.A.

    1998-01-01

    In a simulator experiment, the potential benefits of perspective radar displays for situation awareness support were investigated. A target acquisition task was used in which fighter pilots were required to locate and intercept a target. The pilots were supported by a conventional plan-view radar

  17. Radar Rainfall Bias Correction based on Deep Learning Approach

    Science.gov (United States)

    Song, Yang; Han, Dawei; Rico-Ramirez, Miguel A.

    2017-04-01

    Radar rainfall measurement errors can be considerably attributed to various sources including intricate synoptic regimes. Temperature, humidity and wind are typically acknowledged as critical meteorological factors in inducing the precipitation discrepancies aloft and on the ground. The conventional practices mainly use the radar-gauge or geostatistical techniques by direct weighted interpolation algorithms as bias correction schemes whereas rarely consider the atmospheric effects. This study aims to comprehensively quantify those meteorological elements' impacts on radar-gauge rainfall bias correction based on a deep learning approach. The deep learning approach employs deep convolutional neural networks to automatically extract three-dimensional meteorological features for target recognition based on high range resolution profiles. The complex nonlinear relationships between input and target variables can be implicitly detected by such a scheme, which is validated on the test dataset. The proposed bias correction scheme is expected to be a promising improvement in systematically minimizing the synthesized atmospheric effects on rainfall discrepancies between radar and rain gauges, which can be useful in many meteorological and hydrological applications (e.g., real-time flood forecasting) especially for regions with complex atmospheric conditions.

  18. Multiple-scattering in radar systems: A review

    International Nuclear Information System (INIS)

    Battaglia, Alessandro; Tanelli, Simone; Kobayashi, Satoru; Zrnic, Dusan; Hogan, Robin J.; Simmer, Clemens

    2010-01-01

    predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.

  19. Borehole radar diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14

  20. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  1. Hydrologic applications of weather radar

    Science.gov (United States)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  2. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials.

    Science.gov (United States)

    Han, Tiancheng; Bai, Xue; Thong, John T L; Li, Baowen; Qiu, Cheng-Wei

    2014-03-19

    Thermal camouflage and cloaking can transform an actual heat signature into a pre-controlled one. A viable recipe for controlling and manipulating heat signatures using thermal metamaterials to empower cloaking and camouflage in heat conduction is demonstrated. The thermal signature of the object is thus metamorphosed and perceived as multiple targets with different geometries and compositions, with the original object cloaked. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reducing Surface Clutter in Cloud Profiling Radar Data

    Science.gov (United States)

    Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood

    2008-01-01

    An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p 10 dB and a reduction of the contaminated altitude over ocean from about 1 km to about 0.5 km (over the ocean). The algorithm has been embedded in CloudSat L1B processing as of Release 04 (July 2007), and the estimated flat surface clutter is removed in L2B-GEOPROF product from the

  4. Meteorite Falls Observed in U.S. Weather Radar Data in 2015 and 2016 (To Date)

    Science.gov (United States)

    Fries, Marc; Fries, Jeffrey; Hankey, Mike; Matson, Robert

    2016-01-01

    To date, over twenty meteorite falls have been located in the weather radar imagery of the National Oceanic and Atmospheric Administration (NOAA)'s NEXRAD radar network. We present here the most prominent events recorded since the last Meteoritical Society meeting, covering most of 2015 and early 2016. Meteorite Falls: The following events produced evidence of falling meteorites in radar imagery and resulted in meteorites recovered at the fall site. Creston, CA (24 Oct 2015 0531 UTC): This event generated 218 eyewitness reports submitted to the American Meteor Society (AMS) and is recorded as event #2635 for 2015 on the AMS website. Witnesses reported a bright fireball with fragmentation terminating near the city of Creston, CA, north of Los Angeles. Sonic booms and electrophonic noise were reported in the vicinity of the event. Weather radar imagery records signatures consistent with falling meteorites in data from the KMUX, KVTX, KHNX and KVBX. The Meteoritical Society records the Creston fall as an L6 meteorite with a total recovered mass of 688g. Osceola, FL (24 Jan 2016 1527 UTC): This daytime fireball generated 134 eyewitness reports on AMS report number 266 for 2016, with one credible sonic boom report. The fireball traveled roughly NE to SW with a terminus location north of Lake City, FL in sparsely populated, forested countryside. Radar imagery shows distinct and prominent evidence of a significant meteorite fall with radar signatures seen in data from the KJAX and KVAX radars. Searchers at the fall site found that recoveries were restricted to road sites by the difficult terrain, and yet several meteorites were recovered. Evidence indicates that this was a relatively large meteorite fall where most of the meteorites are unrecoverable due to terrain. Osceola is an L6 meteorite with 991 g total mass recovered to date. Mount Blanco, TX (18 Feb 2016 0343 UTC): This event produced only 39 eyewitness reports and is recorded as AMS event #635 for 2016. No

  5. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  6. MST radar data-base management

    Science.gov (United States)

    Wickwar, V. B.

    1983-01-01

    Data management for Mesospheric-Stratospheric-Tropospheric, (MST) radars is addressed. An incoherent-scatter radar data base is discussed in terms of purpose, centralization, scope, and nature of the data base management system.

  7. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  8. Modern approach to relativity theory (radar formulation)

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1991-01-01

    The main peculiarities of the radar formulation of the relativity theory are presented. This formulation operates with the retarded (light) distances and relativistic or radar length introduced on their basis. 21 refs.; 1 tab

  9. Meteor detection on ST (MST) radars

    International Nuclear Information System (INIS)

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  10. SAR Ambiguity Study for the Cassini Radar

    Science.gov (United States)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  11. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  12. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  13. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  14. Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dubbert, Dale F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tise, Bertice L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.

  15. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  16. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  17. Radar geomorphology of coastal and wetland environments

    Science.gov (United States)

    Lewis, A. J.; Macdonald, H. C.

    1973-01-01

    Details regarding the collection of radar imagery over the past ten years are considered together with the geomorphic, geologic, and hydrologic data which have been extracted from radar imagery. Recent investigations were conducted of the Louisiana swamp marsh and the Oregon coast. It was found that radar imagery is a useful tool to the scientist involved in wetland research.

  18. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... within one mile of land must be fitted with a FCC Type Accepted general marine radar system for surface... Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD...

  19. Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability

    Science.gov (United States)

    1994-10-01

    Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar

  20. Determination of meteoroid physical properties from tristatic radar observations

    Directory of Open Access Journals (Sweden)

    J. Kero

    2008-08-01

    Full Text Available In this work we give a review of the meteor head echo observations carried out with the tristatic 930 MHz EISCAT UHF radar system during four 24 h runs between 2002 and 2005 and compare these with earlier observations. A total number of 410 tristatic meteors were observed. We describe a method to determine the position of a compact radar target in the common volume monitored by the three receivers and demonstrate its applicability for meteor studies. The inferred positions of the meteor targets have been utilized to estimate their velocities, decelerations and directions of arrival as well as their radar cross sections with unprecedented accuracy. The velocity distribution of the meteoroids is bimodal with peaks at 35–40 km/s and 55–60 km/s, and ranges from 19–70 km/s. The estimated masses are between 10−9–10−5.5 kg. There are very few detections below 30 km/s. The observations are clearly biased to high-velocity meteoroids, but not so biased against slow meteoroids as has been presumed from previous tristatic measurements. Finally, we discuss how the radial deceleration observed with a monostatic radar depends on the meteoroid velocity and the angle between the trajectory and the beam. The finite beamwidth leads to underestimated meteoroid masses if radial velocity and deceleration of meteoroids approaching the radar are used as estimates of the true quantities in a momentum equation of motion.

  1. European coordination for coastal HF radar data in EMODnet Physics

    Science.gov (United States)

    Mader, Julien; Novellino, Antonio; Gorringe, Patrick; Griffa, Annalisa; Schulz-Stellenfleth, Johannes; Montero, Pedro; Montovani, Carlo; Ayensa, Garbi; Vila, Begoña; Rubio, Anna; Sagarminaga, Yolanda

    2015-04-01

    Historically, joint effort has been put on observing open ocean, organizing, homogenizing, sharing and reinforcing the impact of the acquired information based on one technology: ARGO with profilers Argo floats, EuroSites, ESONET-NoE, FixO3 for deep water platforms, Ferrybox for stations in ships of opportunities, and GROOM for the more recent gliders. This kind of networking creates synergies and makes easier the implementation of this source of data in the European Data exchange services like EMODnet, ROOSs portals, or any applied services in the Blue economy. One main targeted improvement in the second phase of EMODnet projects is the assembling of data along coastline. In that sense, further coordination is recommended between platform operators around a specific technology in order to make easier the implementation of the data in the platforms (4th EuroGOOS DATAMEQ WG). HF radar is today recognized internationally as a cost-effective solution to provide high spatial and temporal resolution current maps (depending on the instrument operation frequency, covering from a few kilometres offshore up to 200 km) that are needed for many applications for issues related to ocean surface drift or sea state characterization. Significant heterogeneity still exists in Europe concerning technological configurations, data processing, quality standards and data availability. This makes more difficult the development of a significant network for achieving the needed accessibility to HF Radar data for a pan European use. EuroGOOS took the initiative to lead and coordinate activities within the various observation platforms by establishing a number of Ocean Observing Task Teams such as HF-Radars. The purpose is to coordinate and join the technological, scientific and operational HF radar communities at European level. The goal of the group is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of

  2. Radar sensing via a Micro-UAV-borne system

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar

  3. Reduction and coding of synthetic aperture radar data with Fourier transforms

    Science.gov (United States)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  4. Improvement of antenna decoupling in radar systems

    Science.gov (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  5. Initial Semantics for Strengthened Signatures

    Directory of Open Access Journals (Sweden)

    André Hirschowitz

    2012-02-01

    Full Text Available We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax. Our strengthened arities admit colimits, which allows the treatment of the λ-calculus with explicit substitution.

  6. Retail applications of signature verification

    Science.gov (United States)

    Zimmerman, Thomas G.; Russell, Gregory F.; Heilper, Andre; Smith, Barton A.; Hu, Jianying; Markman, Dmitry; Graham, Jon E.; Drews, Clemens

    2004-08-01

    The dramatic rise in identity theft, the ever pressing need to provide convenience in checkout services to attract and retain loyal customers, and the growing use of multi-function signature captures devices in the retail sector provides favorable conditions for the deployment of dynamic signature verification (DSV) in retail settings. We report on the development of a DSV system to meet the needs of the retail sector. We currently have a database of approximately 10,000 signatures collected from 600 subjects and forgers. Previous work at IBM on DSV has been merged and extended to achieve robust performance on pen position data available from commercial point of sale hardware, achieving equal error rates on skilled forgeries and authentic signatures of 1.5% to 4%.

  7. Magnetic Signature Analysis & Validation System

    National Research Council Canada - National Science Library

    Vliet, Scott

    2001-01-01

    The Magnetic Signature Analysis and Validation (MAGSAV) System is a mobile platform that is used to measure, record, and analyze the perturbations to the earth's ambient magnetic field caused by object such as armored vehicles...

  8. Frequency Diverse Array Radar Signal Processing via Space-Range-Doppler Focus (SRDF Method

    Directory of Open Access Journals (Sweden)

    Chen Xiaolong

    2018-04-01

    Full Text Available To meet the urgent demand of low-observable moving target detection in complex environments, a novel method of Frequency Diverse Array (FDA radar signal processing method based on Space-Rang-Doppler Focusing (SRDF is proposed in this paper. The current development status of the FDA radar, the design of the array structure, beamforming, and joint estimation of distance and angle are systematically reviewed. The extra degrees of freedom provided by FDA radar are fully utilizsed, which include the Degrees Of Freedom (DOFs of the transmitted waveform, the location of array elements, correlation of beam azimuth and distance, and the long dwell time, which are also the DOFs in joint spatial (angle, distance, and frequency (Doppler dimensions. Simulation results show that the proposed method has the potential of improving target detection and parameter estimation for weak moving targets in complex environments and has broad application prospects in clutter and interference suppression, moving target refinement, etc..

  9. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    Science.gov (United States)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  10. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    Science.gov (United States)

    2018-01-01

    REPORT TYPE Technical Note 3. DATES COVERED (From - To) December 2017 4. TITLE AND SUBTITLE Doppler Processing with Ultra-Wideband (UWB) Radar...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This technical note revisits previous work performed at the US Army Research Laboratory related to...target considered previously is proportional to a delayed version of the transmitted signal, up to a complex constant factor. We write the received

  11. APPLICATION OF SUPERLUMINAL RADAR TO MAINTAIN AIR SUPERIORITY IN 2035

    Science.gov (United States)

    2016-02-16

    Calculus and Analytic Geometry, 7th ed. (Reading, MA: Addison-Wesley Publishing Company) A-47. 9 Diagram drawn by author based on: Fleisch, A Student’s...Publishing, Inc., 1998. 17 Thomas, George B. Jr and Ross L. Finney. Calculus and Analytic Geometry, 7th ed. Reading, MA: Addison-Wesley Publishing Company...first two, we have to account for the energy lost in the space between the radar and the target due to atmospheric absorption and geometric spreading

  12. Streaming-based verification of XML signatures in SOAP messages

    DEFF Research Database (Denmark)

    Somorovsky, Juraj; Jensen, Meiko; Schwenk, Jörg

    2010-01-01

    approach for XML processing, the Web Services servers easily become a target of Denial-of-Service attacks. We present a solution for these problems: an external streaming-based WS-Security Gateway. Our implementation is capable of processing XML Signatures in SOAP messages using a streaming-based approach...

  13. Radioprotection and radar: practical aspects

    International Nuclear Information System (INIS)

    Pepersack, J.P.

    1979-01-01

    The author, on basis of his experience in radar-radioprotection, exposes the standard and security norms and recommendations to be applied for the preventive adapation of the work-areas as well as for the follow-up of the exposed workers. (author)

  14. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  15. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  16. Adaptive sidelobe control for clutter rejection of atmospheric radars

    Directory of Open Access Journals (Sweden)

    K. Kamio

    2004-11-01

    Full Text Available Clutter rejection is among the most important issues in radar signal processing, for which the adaptive antenna technique can be a powerful means. Compared to other applications of the adaptive antenna, however, atmospheric radars require strict conditions, which have prevented application of this technique; the main antenna beam pattern should not be altered since the target region is defined by its shape. In particular, the loss of the antenna gain should be kept to no more than about 0.5dB, in order to maintain the high sensitivity of the system. Also, clutter from surrounding mountains is often stronger than the desired weak scattering from atmospheric turbulence. We introduce a new algorithm which satisfies the above conditions, and confirms its capability by applying it to actual data taken by the MU radar. This paper presents the first report that demonstrates the effectiveness of the adaptive antenna technique in atmospheric radar applications. Despite the fact that no information is given on the spectral features of the desired and undesired signals, only the clutter echoes from surrounding mountains were effectively cancelled without affecting the desired echoes from atmospheric turbulence.

  17. Monostatic radar cross section of flying wing delta planforms

    Directory of Open Access Journals (Sweden)

    Sevoor Meenakshisundaram Vaitheeswaran

    2017-04-01

    Full Text Available The design of the flying wing and its variants shapes continues to have a profound influence in the design of the current and future use of military aircraft. There is very little in the open literature available to the understanding and by way of comparison of the radar cross section of the different wing planforms, for obvious reasons of security and sensitivity. This paper aims to provide an insight about the radar cross section of the various flying wing planforms that would aid the need and amount of radar cross section suppression to escape detection from surveillance radars. Towards this, the shooting and bouncing ray method is used for analysis. In this, the geometric optics theory is first used for launching and tracing the electromagnetic rays to calculate the electromagnetic field values as the waves bounce around the target. The physical optics theory is next used to calculate the final scattered electric field using the far field integration along the observation direction. For the purpose of comparison, all the planform shapes are assumed to be having the same area, and only the aspect ratio and taper ratio are varied to feature representative airplanes.

  18. Radar-based collision avoidance for unmanned surface vehicles

    Science.gov (United States)

    Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing

    2016-12-01

    Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.

  19. Data fusion approach to threat assessment for radar resources management

    Science.gov (United States)

    Komorniczak, Wojciech; Pietrasinski, Jerzy; Solaiman, Basel

    2002-03-01

    The paper deals with the problem of the multifunction radar resources management. The problem consists of target/tasks ranking and tasks scheduling. The paper is focused on the target ranking, with the data fusion approach. The data from the radar (object's velocity, range, altitude, direction etc.), IFF system (Identification Friend or Foe) and ESM system (Electronic Support Measures - information concerning threat's electro - magnetic activities) is used to decide of the importance assignment for each detected target. The main problem consists of the multiplicity of various types of the input information. The information from the radar is of the probabilistic or ambiguous imperfection type and the IFF information is of evidential type. To take the advantage of these information sources the advanced data fusion system is necessary. The system should deal with the following situations: fusion of the evidential and fuzzy information, fusion of the evidential information and a'priori information. The paper describes the system which fuses the fuzzy and the evidential information without previous change to the same type of information. It is also described the proposal of using of the dynamic fuzzy qualifiers. The paper shows the results of the preliminary system's tests.

  20. New inverse synthetic aperture radar algorithm for translational motion compensation

    Science.gov (United States)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  1. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  2. 21 CFR 11.50 - Signature manifestations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Signature manifestations. 11.50 Section 11.50 Food... RECORDS; ELECTRONIC SIGNATURES Electronic Records § 11.50 Signature manifestations. (a) Signed electronic...: (1) The printed name of the signer; (2) The date and time when the signature was executed; and (3...

  3. 76 FR 30542 - Adult Signature Services

    Science.gov (United States)

    2011-05-26

    ... POSTAL SERVICE 39 CFR Part 111 Adult Signature Services AGENCY: Postal Service\\TM\\. ACTION: Final..., Domestic Mail Manual (DMM[supreg]) 503.8, to add a new extra service called Adult Signature. This new service has two available options: Adult Signature Required and Adult Signature Restricted Delivery. DATES...

  4. 1 CFR 18.7 - Signature.

    Science.gov (United States)

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Signature. 18.7 Section 18.7 General Provisions... PREPARATION AND TRANSMITTAL OF DOCUMENTS GENERALLY § 18.7 Signature. The original and each duplicate original... stamped beneath the signature. Initialed or impressed signatures will not be accepted. Documents submitted...

  5. Attribute-Based Digital Signature System

    NARCIS (Netherlands)

    Ibraimi, L.; Asim, Muhammad; Petkovic, M.

    2011-01-01

    An attribute-based digital signature system comprises a signature generation unit (1) for signing a message (m) by generating a signature (s) based on a user secret key (SK) associated with a set of user attributes, wherein the signature generation unit (1) is arranged for combining the user secret

  6. Cassini RADAR Observations of Phoebe, Iapetus, Enceladus, and Rhea

    Science.gov (United States)

    Ostro, S. J.; West, R. D.; Janssen, M. A.; Zebker, H. A.; Wye, L. C.; Lunine, J. I.; Lopes, R. M.; Kelleher, K.; Hamilton, G. A.; Gim, Y.; Anderson, Y. Z.; Boehmer, R. A.; Lorenz, R. D.

    2005-12-01

    Operating in its scatterometry mode, the Cassini radar has obtained 2.2-cm-wavelength echo power spectra from Phoebe on the inbound and outbound legs of its flyby (subradar points at W. Long, Lat. = 245,-22 deg and 328,+27 deg), from Iapetus' leading side (66,+39 deg) and trailing side (296,+44 deg) on the inbound and outbound legs of orbit BC, from Enceladus during orbits 3 (0,0 deg) and 4 (70,-13 deg), and from Rhea during orbit 11 (64,-77 deg). Our echo spectra, obtained in the same linear (SL) polarization as transmitted, are broad, nearly featureless, and much stronger than expected if the echoes were due just to single backreflections. Rather, volume scattering from the subsurface probably is primarily responsible for the echoes. This conclusion is supported by the strong anticorrelation between our targets' radar albedos (radar cross section divided by target projected area) and disc brightness temperatures estimated from passive radiometric measurements obtained during each radar flyby. Taking advantage of the available information about the radar properties of the icy satellites of Saturn and Jupiter, especially the linear- and circular-polarization characteristics of groundbased echoes from the icy Galilean satellites (Ostro et al. 1992, J. Geophys. Res. 97, 18227-18244), we estimate our targets' 2.2-cm total-power (TP) albedos and compare them to Arecibo and Goldstone values for icy satellites at 3.5, 13, and 70 cm. Our four targets' albedos span an order of magnitude and decrease in the same order as their optical albedos: Enceladus/Rhea/Iapetus/Phoebe. This sequence most likely corresponds to increasing contamination of near-surface water ice, whose extremely low electrical loss at radio wavelengths permits the multiple scattering responsible for high radar albedos. Plausible candidates for contaminants causing variations in radar albedo include ammonia, silicates, and polar organics. Modeling of icy Galilean satellite echoes indicates that penetration

  7. A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients.

    Science.gov (United States)

    Lee, Unjin; Frankenberger, Casey; Yun, Jieun; Bevilacqua, Elena; Caldas, Carlos; Chin, Suet-Feung; Rueda, Oscar M; Reinitz, John; Rosner, Marsha Rich

    2013-01-01

    Although triple negative breast cancers (TNBC) are the most aggressive subtype of breast cancer, they currently lack targeted therapies. Because this classification still includes a heterogeneous collection of tumors, new tools to classify TNBCs are urgently required in order to improve our prognostic capability for high risk patients and predict response to therapy. We previously defined a gene expression signature, RKIP Pathway Metastasis Signature (RPMS), based upon a metastasis-suppressive signaling pathway initiated by Raf Kinase Inhibitory Protein (RKIP). We have now generated a new BACH1 Pathway Metastasis gene signature (BPMS) that utilizes targets of the metastasis regulator BACH1. Specifically, we substituted experimentally validated target genes to generate a new BACH1 metagene, developed an approach to optimize patient tumor stratification, and reduced the number of signature genes to 30. The BPMS significantly and selectively stratified metastasis-free survival in basal-like and, in particular, TNBC patients. In addition, the BPMS further stratified patients identified as having a good or poor prognosis by other signatures including the Mammaprint® and Oncotype® clinical tests. The BPMS is thus complementary to existing signatures and is a prognostic tool for high risk ER-HER2- patients. We also demonstrate the potential clinical applicability of the BPMS as a single sample predictor. Together, these results reveal the potential of this pathway-based BPMS gene signature to identify high risk TNBC patients that can respond effectively to targeted therapy, and highlight BPMS genes as novel drug targets for therapeutic development.

  8. Quantum messages with signatures forgeable in arbitrated quantum signature schemes

    International Nuclear Information System (INIS)

    Kim, Taewan; Choi, Jeong Woon; Jho, Nam-Su; Lee, Soojoon

    2015-01-01

    Even though a method to perfectly sign quantum messages has not been known, the arbitrated quantum signature scheme has been considered as one of the good candidates. However, its forgery problem has been an obstacle to the scheme becoming a successful method. In this paper, we consider one situation, which is slightly different from the forgery problem, that we use to check whether at least one quantum message with signature can be forged in a given scheme, although all the messages cannot be forged. If there are only a finite number of forgeable quantum messages in the scheme, then the scheme can be secured against the forgery attack by not sending forgeable quantum messages, and so our situation does not directly imply that we check whether the scheme is secure against the attack. However, if users run a given scheme without any consideration of forgeable quantum messages, then a sender might transmit such forgeable messages to a receiver and in such a case an attacker can forge the messages if the attacker knows them. Thus it is important and necessary to look into forgeable quantum messages. We show here that there always exists such a forgeable quantum message-signature pair for every known scheme with quantum encryption and rotation, and numerically show that there are no forgeable quantum message-signature pairs that exist in an arbitrated quantum signature scheme. (paper)

  9. SIGNATURE: A workbench for gene expression signature analysis

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey T

    2011-11-01

    Full Text Available Abstract Background The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise. Results We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access. Conclusions SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

  10. Characteristics and Validation Techniques for PCA-Based Gene-Expression Signatures

    Directory of Open Access Journals (Sweden)

    Anders E. Berglund

    2017-01-01

    Full Text Available Background. Many gene-expression signatures exist for describing the biological state of profiled tumors. Principal Component Analysis (PCA can be used to summarize a gene signature into a single score. Our hypothesis is that gene signatures can be validated when applied to new datasets, using inherent properties of PCA. Results. This validation is based on four key concepts. Coherence: elements of a gene signature should be correlated beyond chance. Uniqueness: the general direction of the data being examined can drive most of the observed signal. Robustness: if a gene signature is designed to measure a single biological effect, then this signal should be sufficiently strong and distinct compared to other signals within the signature. Transferability: the derived PCA gene signature score should describe the same biology in the target dataset as it does in the training dataset. Conclusions. The proposed validation procedure ensures that PCA-based gene signatures perform as expected when applied to datasets other than those that the signatures were trained upon. Complex signatures, describing multiple independent biological components, are also easily identified.

  11. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  12. RADARSAT-1 synthetic aperture radar analysis

    Energy Technology Data Exchange (ETDEWEB)

    Simecek-Beatty, D. [National Oceanic and Atmospheric Adminstration, National Ocean Service, Seattle, WA (United States). Office of Response and Restoration; Pichel, W.G. [National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, Camp Springs, MD (United States). Office of Research and Applications

    2006-07-01

    The M/V Selendang Ayu grounded off Unalaska Island in Alaska on December 8, 2004, and spilled over 1270 m{sup 3} of oil and an unknown quantity of soybeans. The freighter grounded nearshore in a high-wave energy zone along a remote and rugged coastline, a terrain which can cause difficulties for remote sensors in detecting oil slicks. In addition, guano, kelp beds, whale and fish sperm, and releases from fishing activities generated biogenic films on the sea surface that had a signature similar to that of petroleum films. RADARSAT-1 synthetic aperture radar (SAR) imagery was used as part of the response effort to assist in the pollution monitoring effort. This paper described the methodology and results of the RADARSAT-1 analysis. Detailed information on the spill response was reported daily, and provided an opportunity to compare field observations with RADARSAT-1 SAR imagery. Observers recorded observations onto electronic maps during 35 aerial surveillance flights. Fifty-seven incident reports describing the vessel status were also used for comparison. Using screening criteria for the favorable wind and wave conditions, 37 images were available for viewing the wreck, and 22 images were acceptable for oil slick viewing. Image analysis for the wreck suggested that the sensor has the resolution and capability to monitor a grounded freighter. Visual inspection of the images showed that SAR can capture changes in vessel status, such as the gradual sinking of the bow. However, SAR's oil slick detection capability was disappointing due to the significant number of biogenic films in the nearshore areas of Alaska. It was concluded that future work should concentrate on developing a ranking system to indicate analysis confidence that a particular image does in fact contain a petroleum pocket. 25 refs., 2 tabs., 10 figs.

  13. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    Science.gov (United States)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    observed sensitivity as low as -37 dBZ at 1 km range and resolved linear depolarization ratio (LDR) signature better than -29 dB during its latest test flights. References: Kollias, P., and B. A. Albrecht, 2000: The turbulence structure in a continental stratocumulus cloud from millimeter wavelength radar observation. J. Atmos. Sci., 57, 2417-2434. Kollias, P., B.A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair weather cumuli. J. Atmos. Sci. 58, 1750-1766. Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. Hunning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bulletin of the American Meteorological Society, 87, 896-909. Pazmany, A. L., R. E. McIntosh, R. Kelly, and V. G., 1994: An airborne 95-GHz dual-polarized radar for cloud studies. IEEE Trans. Geosci. Remote Sens., 32, 731-739. Vali, G., Kelly, R.D., French, J., Haimov, S., Leon, D., McIntosh, R., Pazmany, A., 1998. Fine-scale structure and microphysics of coastal stratus. J. Atmos. Sci. 55, 3540-3564.

  14. Generic framework for vessel detection and tracking based on distributed marine radar image data

    Science.gov (United States)

    Siegert, Gregor; Hoth, Julian; Banyś, Paweł; Heymann, Frank

    2018-04-01

    Situation awareness is understood as a key requirement for safe and secure shipping at sea. The primary sensor for maritime situation assessment is still the radar, with the AIS being introduced as supplemental service only. In this article, we present a framework to assess the current situation picture based on marine radar image processing. Essentially, the framework comprises a centralized IMM-JPDA multi-target tracker in combination with a fully automated scheme for track management, i.e., target acquisition and track depletion. This tracker is conditioned on measurements extracted from radar images. To gain a more robust and complete situation picture, we are exploiting the aspect angle diversity of multiple marine radars, by fusing them a priori to the tracking process. Due to the generic structure of the proposed framework, different techniques for radar image processing can be implemented and compared, namely the BLOB detector and SExtractor. The overall framework performance in terms of multi-target state estimation will be compared for both methods based on a dedicated measurement campaign in the Baltic Sea with multiple static and mobile targets given.

  15. Multistatic Wireless Fidelity Network Based Radar – Results of the Chrcynno Experiment

    Directory of Open Access Journals (Sweden)

    S. Rzewuski

    2014-04-01

    Full Text Available This paper presents the theory and experimental result of passive radar using WIFI transmitters as illuminators of opportunity. As a result of experiments conducted on 17th August 2013 at airfield Chrcynno a Cessna C208 airplane was detected and tracked using multistatic passive radar system based on low power signal from WIFI network nodes, which were acting as non cooperative illuminators of opportunity. In the experiment 3 wireless access points were communicating with each other and illuminating the radar scene (airfield. The direct reference and reflected (surveillance signals have been acquired and processed using specially developed algorithm presented in the paper. After signal processing using Passive Coherent Location methods target has been detected. This paper describes in details the algorithms and the results of the experiment for the multistatic passive radar based on the WIFI signal.

  16. A Novel Motion Compensation Method for Random Stepped Frequency Radar with M-sequence

    Science.gov (United States)

    Liao, Zhikun; Hu, Jiemin; Lu, Dawei; Zhang, Jun

    2018-01-01

    The random stepped frequency radar is a new kind of synthetic wideband radar. In the research, it has been found that it possesses a thumbtack-like ambiguity function which is considered to be the ideal one. This also means that only a precise motion compensation could result in the correct high resolution range profile. In this paper, we will introduce the random stepped frequency radar coded by M-sequence firstly and briefly analyse the effect of relative motion between target and radar on the distance imaging, which is called defocusing problem. Then, a novel motion compensation method, named complementary code cancellation, will be put forward to solve this problem. Finally, the simulated experiments will demonstrate its validity and the computational analysis will show up its efficiency.

  17. Precision metrology of NSTX surfaces using coherent laser radar ranging

    International Nuclear Information System (INIS)

    Kugel, H.W.; Loesser, D.; Roquemore, A. L.; Menon, M. M.; Barry, R. E.

    2000-01-01

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 microm laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100microm at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated

  18. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  19. Magnetotail processes and their ionospheric signatures

    Science.gov (United States)

    Ferdousi, B.; Raeder, J.; Zesta, E.; Murphy, K. R.; Cramer, W. D.

    2017-12-01

    In-situ observations in the magnetotail are sparse and limited to single point measurements. In the ionosphere, on the other hand, there is a broad range of observations, including magnetometers, auroral imagers, and various radars. Since the ionosphere is to some extent a mirror of plasmasheet processes it can be used as a monitor of magnetotail dynamics. Thus, it is of great importance to understand the coupling between the ionosphere and the magnetosphere in order to properly interpret the ionosphere and ground observations in terms of magnetotail dynamics. For this purpose, the global magnetohydrodynamic model OpenGGCM is used to investigate magnetosphere-ionosphere coupling. One of the key processes in magnetotail dynamics are bursty bulk flows (BBFs) which are the major means by which momentum and energy get transferred through the magnetotail and down to the ionosphere. BBFs often manifested in the ionosphere as auroral streamers. This study focuses on mapping such flow bursts from the magnetotail to the ionosphere along the magnetic field lines for three states of the magnetotail: pre-substorm onset through substorm expansion and during steady magnetospheric convection (SMC) following the substorm. We find that the orientation of streamers in the ionosphere differes for different local times, and that, for both tail and ionospheric signatures, activity increases during the SCM configutation compared to the pre-onset and quiet times. We also find that the background convection in the tail impacts the direction and deflection of the BBFs and the subsequent orientation of the auroral streamers in the ionosphere.

  20. Laser radar cross-section estimation from high-resolution image data.

    Science.gov (United States)

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.