WorldWideScience

Sample records for radar range measurements

  1. A 100 GHz Polarimetric Compact Radar Range for Scale-Model Radar Cross Section Measurements

    2013-10-01

    common radar bands. ACKNOWLEDGEMENTS The authors wish to thank David Jillson (UML STL – Electrical Engineer) for efforts involved in RF and DC wiring...Waldman J., Fetterman H.R., Duffy P.E., Bryant T.G., Tannenwald P.E., “Submillimeter Model Measurements and Their Applications to Millimeter Radar

  2. A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements

    Escalante, George

    2017-05-01

    Weak Value Measurements (WVMs) with pre- and post-selected quantum mechanical ensembles were proposed by Aharonov, Albert, and Vaidman in 1988 and have found numerous applications in both theoretical and applied physics. In the field of precision metrology, WVM techniques have been demonstrated and proven valuable as a means to shift, amplify, and detect signals and to make precise measurements of small effects in both quantum and classical systems, including: particle spin, the Spin-Hall effect of light, optical beam deflections, frequency shifts, field gradients, and many others. In principal, WVM amplification techniques are also possible in radar and could be a valuable tool for precision measurements. However, relatively limited research has been done in this area. This article presents a quantum-inspired model of radar range and range-rate measurements of arbitrary strength, including standard and pre- and post-selected measurements. The model is used to extend WVM amplification theory to radar, with the receive filter performing the post-selection role. It is shown that the description of range and range-rate measurements based on the quantum-mechanical measurement model and formalism produces the same results as the conventional approach used in radar based on signal processing and filtering of the reflected signal at the radar receiver. Numerical simulation results using simple point scatterrer configurations are presented, applying the quantum-inspired model of radar range and range-rate measurements that occur in the weak measurement regime. Potential applications and benefits of the quantum inspired approach to radar measurements are presented, including improved range and Doppler measurement resolution.

  3. A comparison on radar range profiles between in-flight measurements and RCS-predictions

    Heiden, R. van der; Ewijk, L.J. van; Groen, F.C.A.

    1998-01-01

    The validation of Radar Cross Section (RCS) prediction techniques against real measurements is crucial to acquire confidence in predictions when measurements are nut available. In this paper we present the results of a comparison on one-dimensional signatures, i.e. radar range profiles. The profiles

  4. Investigation of hopped frequency waveforms for range and velocity measurements of radar targets

    Kathree, U

    2015-10-01

    Full Text Available In the field of radar, High Range Resolution (HRR) profiles are often used to improve target tracking accuracy in range and to allow the radar system to produce an image of an object using techniques such as inverse synthetic aperture radar (ISAR...

  5. Auroral radar measurements at 16-cm wavelength with high range and time resolution

    Schlegel, K.; Turunen, T.; Moorcroft, D.R.

    1990-01-01

    Auroral radar measurements performed with the EISCAT facility are presented. Backscatter cross sections of the irregularities produced by the two-stream (Farley-Buneman) or gradient drift plasma instabilities have been recorded with a range separation of 1.5 km, corresponding to a spacing of successive values in height of about 0.4 km. The apparent height profiles of the backscatter have a width of about 5-6 km and occur between 95 and 112 km altitude, with a mean at 104 km. Very often, fast motions of the backscatter layers are observed which can be explained as fast moving ionospheric structures controlled by magnetospheric convection. The maximal time resolution of the measurements is 12.5 ms. The statistics of the backscatter amplitudes at this time resolution is close to a Rice distribution with a Rice parameter a ∼ 3.7. The observed backscatter spectra do not change significantly in shape when the integration time is reduced from 5 s to 100 ms

  6. In-flight measurements and RCS-predictions: A comparison on broad-side radar range profiles of a Boeing 737

    Heiden, R. van der; Ewijk, L.J. van; Groen, F.C.A.

    1997-01-01

    The validation of Radar Cross Section (RCS) prediction techniques against real measurements is crucial to acquire confidence in predictions when measurements are not available. In this paper we present the first results of a comparison on one dimensional images, i.e., radar range profiles. The

  7. Design of transmission-type phase holograms for a compact radar-cross-section measurement range at 650 GHz.

    Noponen, Eero; Tamminen, Aleksi; Vaaja, Matti

    2007-07-10

    A design formalism is presented for transmission-type phase holograms for use in a submillimeter-wave compact radar-cross-section (RCS) measurement range. The design method is based on rigorous electromagnetic grating theory combined with conventional hologram synthesis. Hologram structures consisting of a curved groove pattern on a 320 mmx280 mm Teflon plate are designed to transform an incoming spherical wave at 650 GHz into an output wave generating a 100 mm diameter planar field region (quiet zone) at a distance of 1 m. The reconstructed quiet-zone field is evaluated by a numerical simulation method. The uniformity of the quiet-zone field is further improved by reoptimizing the goal field. Measurement results are given for a test hologram fabricated on Teflon.

  8. Terahertz radar cross section measurements.

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  9. Radar meteors range distribution model. I. Theory

    Pecinová, Drahomíra; Pecina, Petr

    2007-01-01

    Roč. 37, č. 2 (2007), s. 83-106 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  10. Terahertz radar cross section measurements

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  11. Precision metrology of NSTX surfaces using coherent laser radar ranging

    Kugel, H.W.; Loesser, D.; Roquemore, A. L.; Menon, M. M.; Barry, R. E.

    2000-01-01

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 microm laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100microm at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated

  12. X-Band high range resolution radar measurements of sea surface forward scatter at low grazing angles

    Smit, JC

    2008-05-01

    Full Text Available in the sea surface forward scatter component exists. Based on this measurement, we propose a temporal correlation extension to an existing low-angle propagation model, together with a correlation filter structure to realize the correlation extension...

  13. Motion measurement for synthetic aperture radar

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.

  14. Radar meteors range distribution model. IV. Ionization coefficient

    Pecinová, Drahomíra; Pecina, Petr

    2008-01-01

    Roč. 38, č. 1 (2008), s. 12-20 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  15. Test results for triple-modulation radar electronics with improved range disambiguation

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it; Neri, Carlo

    2015-10-15

    Highlights: • A new digital radar electronic system based on triple-modulation has been developed. • The triple-modulation system uses an improved algorithm for the range-disambiguation. • The new radar electronics has been applied in the IVVS optical radar prototype for ITER. • The performances obtained with IVVS double and triple-modulation were compared. - Abstract: The In Vessel Viewing System (IVVS) is an optical radar with sub milimetrical resolution that will be used for imaging and metrology pourposes in ITER. The electronics of the system is based on a Digital Radar Electronics developed in ENEA Frascati laboratories during the past years. Until the present study, the system was based on amplitude modulation technique having double-modulation frequency. The power of the laser is sinusoidally modulated and the distance of the points scanned by the laser beam is obtained measuring the phase difference between outgoing and echo signals. Recently a triple-modulation radar electronics version and an algorithm able to solve the range disambiguation were developed. The aim of the upgrade was the increase of the robustness in the range disambiguation. The paper briefly describes the updates carried out on the Digital Radar Electronics and extensively the test results obtained by comparing the performance of the triple modulation versus the double modulation techniques.

  16. Sparse Representation Denoising for Radar High Resolution Range Profiling

    Min Li

    2014-01-01

    Full Text Available Radar high resolution range profile has attracted considerable attention in radar automatic target recognition. In practice, radar return is usually contaminated by noise, which results in profile distortion and recognition performance degradation. To deal with this problem, in this paper, a novel denoising method based on sparse representation is proposed to remove the Gaussian white additive noise. The return is sparsely described in the Fourier redundant dictionary and the denoising problem is described as a sparse representation model. Noise level of the return, which is crucial to the denoising performance but often unknown, is estimated by performing subspace method on the sliding subsequence correlation matrix. Sliding window process enables noise level estimation using only one observation sequence, not only guaranteeing estimation efficiency but also avoiding the influence of profile time-shift sensitivity. Experimental results show that the proposed method can effectively improve the signal-to-noise ratio of the return, leading to a high-quality profile.

  17. Greenland Radar Ice Sheet Thickness Measurements

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  18. A 100,000 Scale Factor Radar Range.

    Blanche, Pierre-Alexandre; Neifeld, Mark; Peyghambarian, Nasser

    2017-12-19

    The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects. We have now devised a new scaling technique to overcome these difficulties, and make accurate measurements of the radar cross section of large items. In this article we demonstrate that by reducing the scale of the model by a factor 100,000, and using near infrared wavelength, the radar cross section can be determined in a tabletop setup. The accuracy of the method is compared to simulations, and an example of measurement is provided on a 1 mm highly detailed model of a ship. The advantages of this scaling approach is its versatility, and the possibility to perform fast, convenient, and inexpensive measurements.

  19. Radar cross section measurements using terahertz waves

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...

  20. Arecibo Radar Observation of Near-Earth Asteroids: Expanded Sample Size, Determination of Radar Albedos, and Measurements of Polarization Ratios

    Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.

    2017-10-01

    The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we

  1. Soliton microcomb range measurement

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  2. Radar velocity determination using direction of arrival measurements

    Doerry, Armin W.; Bickel, Douglas L.; Naething, Richard M.; Horndt, Volker

    2017-12-19

    The various technologies presented herein relate to utilizing direction of arrival (DOA) data to determine various flight parameters for an aircraft A plurality of radar images (e.g., SAR images) can be analyzed to identify a plurality of pixels in the radar images relating to one or more ground targets. In an embodiment, the plurality of pixels can be selected based upon the pixels exceeding a SNR threshold. The DOA data in conjunction with a measurable Doppler frequency for each pixel can be obtained. Multi-aperture technology enables derivation of an independent measure of DOA to each pixel based on interferometric analysis. This independent measure of DOA enables decoupling of the aircraft velocity from the DOA in a range-Doppler map, thereby enabling determination of a radar velocity. The determined aircraft velocity can be utilized to update an onboard INS, and to keep it aligned, without the need for additional velocity-measuring instrumentation.

  3. Coherent laser radar with dual-frequency Doppler estimation and interferometric range detection

    Onori, D.; Scotti, F.; Laghezza, F.; Scaffardi, M.; Bogoni, A.

    2016-01-01

    The concept of a coherent interferometric dual frequency laser radar, that measures both the target range and velocity, is presented and experimentally demonstrated. The innovative architecture combines the dual frequency lidar concept, allowing a precise and robust Doppler estimation, with the

  4. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  5. Radar for Measuring Soil Moisture Under Vegetation

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  6. Detection Range Estimation of UV Spectral Band Laser Radar

    V. A. Gorodnichev

    2014-01-01

    Full Text Available Recently, has come into existence an interest in the systems operating in the ultra-violet (UF band of wavelengths, which use other spectral information (coefficients of reflection or radiation in UF range about location objects, than laser systems in the visible, near or average infrared bands. Thus, a point is not only to receive additional (in another spectral range information on location objects. Laser radiation in the UF spectral band of 0.315 – 0.4 microns is safer than laser radiation with the wavelengths of 0.38 – 1.4 microns.The work presents a comparative estimation of the detection systems range of laser radars in the UV and visible spectral bands for the following wavelengths of radiation:- UF band: 0.266 microns (the fourth harmonic of YAG-laser activated by neodymium ions, 0.308 microns (the XeCl-excimer laser, 0.355 microns (the third harmonic of YAG-laser activated by neodymium ions;- visible band: 0.532 microns (the second harmonic of YAG-laser activated by neodymium ions.Results of calculations show that for the horizontal pathway in the terrestrial atmosphere at the selected radiation wavelengths a detection range is in the range of 2510m – 5690 m.The maximum range of detection corresponds to the visible spectral band. A sweep range decreases with transition to the UF band. This is caused by the fact that with transition to the UF band there is a rise of atmosphere attenuation (generally, because of absorption by ozone, this effect being smoothed by reducing background radiation.In the UF band a wavelength of 0.355 microns is the most acceptable. For this wavelength a detection range is about 1,5 times less (in comparison with the visible band of 0.532 microns. However, this is the much more eye-safe wavelength. With transition to the UV band a detection range decreases not that much and can be compensated by changing parameters of transmitting or receiving channels of laser radar.

  7. A computer simulation of a long-range CWFM radar showing the tradeoffs of performance as a function of range

    Gordy, Robert S.; Zoledziowski, Severyn

    2011-06-01

    This paper describes a study of the operation of a long range CWFM radar using "System View" software for modeling and simulation. The System View software is currently offered by Agilent. The models that were studied include: a model illustrating the basic principle of operation of the CWFM radar, the range resolution of the radar, the effect of long range processing and the resultant approach with the tradeoff of detected range resolution due to Doppler frequency shift as a function of range distance. The study was performed as part of the design of an airborne CWFM radar. The radar can be designed with a single antenna or a dual antenna. The dual antenna approach is presented in this paper.

  8. Automotive FMCW Radar-Enhanced Range Estimation via a Local Resampling Fourier Transform

    Cailing Wang

    2016-02-01

    Full Text Available In complex traffic scenarios, more accurate measurement and discrimination for an automotive frequency-modulated continuous-wave (FMCW radar is required for intelligent robots, driverless cars and driver-assistant systems. A more accurate range estimation method based on a local resampling Fourier transform (LRFT for a FMCW radar is developed in this paper. Radar signal correlation in the phase space sees a higher signal-noise-ratio (SNR to achieve more accurate ranging, and the LRFT - which acts on a local neighbour as a refinement step - can achieve a more accurate target range. The rough range is estimated through conditional pulse compression (PC and then, around the initial rough estimation, a refined estimation through the LRFT in the local region achieves greater precision. Furthermore, the LRFT algorithm is tested in numerous simulations and physical system experiments, which show that the LRFT algorithm achieves a more precise range estimation than traditional FFT-based algorithms, especially for lower bandwidth signals.

  9. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  10. A systematic method for characterizing the time-range performance of ground penetrating radar

    Strange, A D

    2013-01-01

    The fundamental performance of ground penetrating radar (GPR) is linked to the ability to measure the signal time-of-flight in order to provide an accurate radar-to-target range estimate. Having knowledge of the actual time range and timing nonlinearities of a trace is therefore important when seeking to make quantitative range estimates. However, very few practical methods have been formally reported in the literature to characterize GPR time-range performance. This paper describes a method to accurately measure the true time range of a GPR to provide a quantitative assessment of the timing system performance and detect and quantify the effects of timing nonlinearity due to timing jitter. The effect of varying the number of samples per trace on the true time range has also been investigated and recommendations on how to minimize the effects of timing errors are described. The approach has been practically applied to characterize the timing performance of two commercial GPR systems. The importance of the method is that it provides the GPR community with a practical method to readily characterize the underlying accuracy of GPR systems. This in turn leads to enhanced target depth estimation as well as facilitating the accuracy of more sophisticated GPR signal processing methods. (paper)

  11. TDMA X-band FMCW MIMO radar for short range surveillance applications

    Belfiori, F.; Maas, A.P.M.; Hoogeboom, P.; Rossum, W.L. van

    2011-01-01

    The work presented in this paper was aimed at the design of a compact radar device to be used for private area surveillance applications. The radar is connected to a pan tilt zoom camera and it provides the camera system with high accuracy position information (bearing and range) of moving targets;

  12. Application of ranging technique of radar level meter for draft survey

    SHEN Yijun

    2017-12-01

    Full Text Available [Objectives] This paper aims to solve the problems of the high subjectivity and low accuracy and efficiency of draft surveying relying on human visual inspection.[Methods] Radar-level oil and liquid measurement technology products are widely used in the petrochemical industry. A device is developed that uses radar to survey the draft of a boat, designed with data series optimization formulae to ensure that the data results are true and correct. At the same time, a test is designed to prove the accuracy of the results.[Results] According to the conditions of the ship,the device is composed of a radar sensor, triangular bracket and display,and is put to use in the test.[Conclusions] With 15 vessels as the research objects,the comparison experiment shows a difference in range between 0.001-0.022 meters, with an average difference rate of 0.028%, which meets the requirements for ship draft survey accuracy.

  13. Measurements of mesospheric ice aerosols using radars and rockets

    Strelnikova, Irina; Li, Qiang; Strelnikov, Boris; Rapp, Markus [Leibniz Institute of Atmospheric Physics, Kuehlungsborn (Germany)

    2010-07-01

    Polar summer mesopause is the coldest region of Earth's atmosphere with temperatures as low as minus 130 C. In this extreme environment ice aerosol layers have appeared. Larger aerosols can be seen from the ground as clouds known as NLC (Noctilucent clouds). Ice aerosols from sub-visible range give rise to the phenomena known as Polar Mesosphere Sommer Echo (PMSE). For efficient scattering, electron number density must be structured at the radar half wavelength (Bragg condition). The general requirement to allow for the observation of structures at VHF and higher frequencies is that the dust size (and charge number) must be large enough to extend the convective-diffusive subrange of the energy spectrum of electrons (by reducing their diffusivity) to the wavelength which is shorter than the Bragg-scale of the probing radar. In this paper we present main results of ice particles measurements inside the PMSE layers obtained from in situ rocket soundings and newly developed radar techniques.

  14. Simulation of recording the microwave holograms of complex objects by the near range radars

    V. V. Razevig

    2014-01-01

    Full Text Available Radar is an object-detection technology that uses radio waves to determine the presence, range, altitude, direction, or speed of objects. In the recent time, there is an increasingly arising interest to the near range microwave imaging that allows detection of the shape and, in some cases, the inner structure of the investigated objects.For design engineering and efficiency evaluation of the cutting-edge radars as well as for testing the developed recovery algorithms a set of microwave holograms of various objects obtained under different conditions is needed. Microwave holograms cannot be obtained only on the basis of the experimental researches related to the measurements of electromagnetic scattering by the real objects since such experiments are time consuming and quite expensive. Therefore, to simulate electromagnetic scattering processes via objects examination is quite a challenge.This investigation goal is to develop a computer simulation method to record the microwave holograms of complex objects by the near range radars.To specify the shape of the investigated objects, Autodesk 3ds Max (3D computer graphics program for making 3D animations, models, and images is used. At a second stage the surface of the created object is described by a set of triangular facets. While calculating the reflected field, a final representation of the object as a set of point reflectors is used. Thus, the model of single scattering, is used without taking into consideration re-reflection and cross-influence of reflectors.Methods are also described to form the focused images of the microwave holograms that allow us to obtain a function describing object reflectivity, by which in most cases an object shape can be easily recognized.A comparison of computer-simulated holograms with experimental data proves the model adequacy.The model can be used to find a dependence of the plane resolution on used frequency, step of scanning, and distance to the object and a

  15. Performance Analysis of Ultra-Wideband Channel for Short-Range Monopulse Radar at Ka-Band

    Naohiko Iwakiri

    2012-01-01

    Full Text Available High-range resolution is inherently provided with Ka-band ultra-wideband (UWB vehicular radars. The authors have developed a prototype UWB monopulse radar equipped with a two-element receiving antenna array and reported its measurement results. In this paper, a more detailed verification using these measurements is presented. The measurements were analyzed employing matched filtering and eigendecomposition, and then multipath components were extracted to examine the behavior of received UWB monopulse signals. Next, conventional direction finding algorithms based on narrowband assumption were evaluated using the extracted multipath components, resulting in acceptable angle-of-arrival (AOA from the UWB monopulse signal regardless of wideband signals. Performance degradation due to a number of averaging the received monopulses was also examined to design suitable radar's waveforms.

  16. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  17. Research on effect of rough surface on FMCW laser radar range accuracy

    Tao, Huirong

    2018-03-01

    The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.

  18. Measuring Balance Across Multiple Radar Receiver Channels.

    Doerry, Armin W.; Bickel, Douglas L.

    2018-03-01

    When radar receivers employ multiple channels, the general intent is for the receive channels to be as alike as possible, if not as ideal as possible. This is usually done via prudent hardware design, supplemented by system calibration. Towards this end, we require a quality metric for ascertaining the goodness of a radar channel, and the degree of match to sibling channels. We propose a relevant and useable metric to do just that. Acknowledgements This report was the result of an unfunded research and development activity.

  19. A high sensitive 66 dB linear dynamic range receiver for 3-D laser radar

    Ma, Rui; Zheng, Hao; Zhu, Zhangming

    2017-08-01

    This study presents a CMOS receiver chip realized in 0.18 μm standard CMOS technology and intended for high precision 3-D laser radar. The chip includes an adjustable gain transimpedance pre-amplifier, a post-amplifier and two timing comparators. An additional feedback is employed in the regulated cascode transimpedance amplifier to decrease the input impedance, and a variable gain transimpedance amplifier controlled by digital switches and analog multiplexer is utilized to realize four gain modes, extending the input dynamic range. The measurement shows that the highest transimpedance of the channel is 50 k {{Ω }}, the uncompensated walk error is 1.44 ns in a wide linear dynamic range of 66 dB (1:2000), and the input referred noise current is 2.3 pA/\\sqrt{{Hz}} (rms), resulting in a very low detectable input current of 1 μA with SNR = 5.

  20. Nonlinear Suppression of Range Ambiguity in Pulse Doppler Radar

    Anderson, Jon

    2001-01-01

    ... ambiguities in Doppler and range. First introduced by Palermo in 1962 using two conjugate LFM pulses, the primary nonlinear suppression objective involves reducing range ambiguity, given the waveform is nominally unambiguous...

  1. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  2. Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dubbert, Dale F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tise, Bertice L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.

  3. Estimating soil water evaporation using radar measurements

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  4. Research on the range side lobe suppression method for modulated stepped frequency radar signals

    Liu, Yinkai; Shan, Tao; Feng, Yuan

    2018-05-01

    The magnitude of time-domain range sidelobe of modulated stepped frequency radar affects the imaging quality of inverse synthetic aperture radar (ISAR). In this paper, the cause of high sidelobe in modulated stepped frequency radar imaging is analyzed first in real environment. Then, the chaos particle swarm optimization (CPSO) is used to select the amplitude and phase compensation factors according to the minimum sidelobe criterion. Finally, the compensated one-dimensional range images are obtained. Experimental results show that the amplitude-phase compensation method based on CPSO algorithm can effectively reduce the sidelobe peak value of one-dimensional range images, which outperforms the common sidelobe suppression methods and avoids the coverage of weak scattering points by strong scattering points due to the high sidelobes.

  5. Doppler radar observation of thunderstorm circulation in the 1977 trip program. [triple Doppler radar network for lightning detection and ranging

    Lhermitte, R. M.; Conte, D.; Pasqualucci, F.; Lennon, C.; Serafin, R. J.

    1978-01-01

    Storm data obtained on August 1, 1977 are examined in an attempt to interpret the relationship between lightning occurrence and the thunderstorm inner dynamics and precipitation processes. Horizontal maps are presented which indicated the position of radiation sources detected by the Lightning Detection and Ranging (LDAR) network, together with the horizontal motion fields and radar reflectivity data. Detailed inspection of these fields showed that, although radiation sources are found in the vicinity of precipitation cells, they are not located in the heavy precipitation areas, but rather on their rear side in regions where the configuration of the wind fields suggests the presence of updrafts.

  6. Characterization of the range effect in synthetic aperture radar images of concrete specimens for width estimation

    Alzeyadi, Ahmed; Yu, Tzuyang

    2018-03-01

    Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.

  7. Sparse Representation Based Range-Doppler Processing for Integrated OFDM Radar-Communication Networks

    Bo Kong

    2017-01-01

    Full Text Available In an integrated radar-communication network, multiuser access techniques with minimal performance degradation and without range-Doppler ambiguities are required, especially in a dense user environment. In this paper, a multiuser access scheme with random subcarrier allocation mechanism is proposed for orthogonal frequency division multiplexing (OFDM based integrated radar-communication networks. The expression of modulation Symbol-Domain method combined with sparse representation (SR for range-Doppler estimation is introduced and a parallel reconstruction algorithm is employed. The radar target detection performance is improved with less spectrum occupation. Additionally, a Doppler frequency detector is exploited to decrease the computational complexity. Numerical simulations show that the proposed method outperforms the traditional modulation Symbol-Domain method under ideal and realistic nonideal scenarios.

  8. Specification for a surface-search radar-detection-range model

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  9. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  10. Radar Fundamentals, Presentation

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  11. Borehole radar measurements performed on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    Carlsten, S.

    1991-05-01

    Borehole radar measurements with the RAMAC system have been performed in 24 boreholes distributed between the investigation areas Kuhmo Romuvaara, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Sievi Syyry, and Eurajoki Olkiluoto. The purpose of the borehole radar measurement program has been to investigate the bedrock in the vicinity of the boreholes in order to obtain information about geometry and extent of fracture zones, lithological contacts and other structures. The measurements have been performed as singlehole radar reflection measurements and Vertical Radar Profiling (VRP) measurements, using antennas with 22 MHz frequency range in both configurations. The total measured length in the singlehole radar reflection mode is 13304 meter and in the VRP mode 9200 meter. The VRP measurements are not presented in the report. Radar data from the singlehole reflection measurements are presented as grey scale radar maps after digital filtering with a bandpass filter and a moving average filter. Interpreted zones from the singlehole radar measurements are presented in tables for each borehole. It has been possible to study structures at distances of more than 110 meter from the borehole

  12. Compact range for variable-zone measurements

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-08-02

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  13. Radar meteors range distribution model. II. Shower flux density and mass distribution index

    Pecinová, Drahomíra; Pecina, Petr

    2007-01-01

    Roč. 37, č. 2 (2007), s. 107-124 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  14. Radar meteors range distribution model. III. Ablation, shape-density and self-similarity parameters

    Pecinová, Drahomíra; Pecina, Petr

    2007-01-01

    Roč. 37, č. 3 (2007), s. 147-160 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  15. Estimating Radar Velocity using Direction of Arrival Measurements

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horndt, Volker [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States); Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naething, Richard M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Direction of Arrival (DOA) measurements, as with a monopulse antenna, can be compared against Doppler measurements in a Synthetic Aperture Radar ( SAR ) image to determine an aircraft's forward velocity as well as its crab angle, to assist the aircraft's navigation as well as improving high - performance SAR image formation and spatial calibration.

  16. Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus

    Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.

    1974-01-01

    The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.

  17. Frequency Diverse Array Radar Signal Processing via Space-Range-Doppler Focus (SRDF Method

    Chen Xiaolong

    2018-04-01

    Full Text Available To meet the urgent demand of low-observable moving target detection in complex environments, a novel method of Frequency Diverse Array (FDA radar signal processing method based on Space-Rang-Doppler Focusing (SRDF is proposed in this paper. The current development status of the FDA radar, the design of the array structure, beamforming, and joint estimation of distance and angle are systematically reviewed. The extra degrees of freedom provided by FDA radar are fully utilizsed, which include the Degrees Of Freedom (DOFs of the transmitted waveform, the location of array elements, correlation of beam azimuth and distance, and the long dwell time, which are also the DOFs in joint spatial (angle, distance, and frequency (Doppler dimensions. Simulation results show that the proposed method has the potential of improving target detection and parameter estimation for weak moving targets in complex environments and has broad application prospects in clutter and interference suppression, moving target refinement, etc..

  18. Interim report - performance of laser and radar ranging devices in adverse environmental conditions

    Nicholas Hillier; Julian Ryde; Eleonora WidzykCapehart; Graham Brooker; Javier Martinez; Andrew Denman [CSIRO (Australia)

    2008-10-15

    CSIRO in conjunction with CRC Mining and the Australian Centre for Field Robotics (ACFR) conducted a series of controlled experiments to examine the performance of three scanning range devices: two scanning infrared laser range finders and millimetrewave radar. Within the controlled environment, the performance of the devices were tested in various rain, mist and dustcloud conditions. Subsequently, these sensors were installed on a P&H 2800BLE electric rope shovel at the Bracalba Quarry, near Caboolture, Queensland, and the system performance was evaluated. The three scanning range sensors tested as part of this study were: 1. A Riegl LMSQ120 scanning laser range finder; 2. A SICK LMS291S05 scanning laser range finder; and, 3. ACFR's prototype 95GHz millimetrewave radar (2D HSS). The range data from these devices is to be used to construct accurate models of the environment in which the electric rope shovel operates and to, subsequently, make control decisions for its operation. Of the currently available range sensing technologies, it is considered that the infrared laser range finders and millimetrewave radar offer the best means of obtaining this data. This report summarises the results of both the controlled (laboratory) and field testing and presents key findings on sensor performance that are likely to impact the creation of digital models of the terrain surrounding a mining shovel.

  19. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  20. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  1. Registration-Based Range-Dependence Compensation for Bistatic STAP Radars

    Lapierre Fabian D

    2005-01-01

    Full Text Available We address the problem of detecting slow-moving targets using space-time adaptive processing (STAP radar. Determining the optimum weights at each range requires data snapshots at neighboring ranges. However, in virtually all configurations, snapshot statistics are range dependent, meaning that snapshots are nonstationary with respect to range. This results in poor performance. In this paper, we propose a new compensation method based on registration of clutter ridges and designed to work on a single realization of the stochastic snapshot at each range. The method has been successfully tested on simulated, stochastic snapshots. An evaluation of performance is presented.

  2. Radar and ARPA manual

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  3. Measurements of millimeter wave radar transmission and backscatter during dusty infrared test 2, dirt 2

    Petito, F. C.; Wentworth, E. W.

    1980-05-01

    Recently there has been much interest expressed to determine the ability of millimeter wave radar to perform target acquisition during degraded visibility conditions. In this regard, one of the primary issues of concern has been the potential of high-explosive artillery barrages to obscure the battlefield from millimeter wave radar systems. To address this issue 95 GHz millimeter wave radar measurements were conducted during the Dusty Infrared Test 2 (DIRT 2). This test was held at White Sands Missile Range, NM, 18-28 July 1979. Millimeter wave transmission and backscatter measurements were performed during singular live firings and static detonations of 155 mm and 105 mm high-explosive artillery rounds in addition to static detonations of C-4 explosives. A brief description of the millimeter wave portion of the test and instrumentation is given. The data along with some preliminary conclusions are presented.

  4. Range-Measuring Video Sensors

    Howard, Richard T.; Briscoe, Jeri M.; Corder, Eric L.; Broderick, David

    2006-01-01

    Optoelectronic sensors of a proposed type would perform the functions of both electronic cameras and triangulation- type laser range finders. That is to say, these sensors would both (1) generate ordinary video or snapshot digital images and (2) measure the distances to selected spots in the images. These sensors would be well suited to use on robots that are required to measure distances to targets in their work spaces. In addition, these sensors could be used for all the purposes for which electronic cameras have been used heretofore. The simplest sensor of this type, illustrated schematically in the upper part of the figure, would include a laser, an electronic camera (either video or snapshot), a frame-grabber/image-capturing circuit, an image-data-storage memory circuit, and an image-data processor. There would be no moving parts. The laser would be positioned at a lateral distance d to one side of the camera and would be aimed parallel to the optical axis of the camera. When the range of a target in the field of view of the camera was required, the laser would be turned on and an image of the target would be stored and preprocessed to locate the angle (a) between the optical axis and the line of sight to the centroid of the laser spot.

  5. Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar

    Xikun Hu

    2016-11-01

    Full Text Available The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD and a vital sign separation method based on the continuous-wavelet transform (CWT are proposed jointly to improve the signal-to-noise ratio (SNR in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications.

  6. Range Sidelobe Suppression Using Complementary Sets in Distributed Multistatic Radar Networks

    Wang, Xuezhi; Song, Yongping; Huang, Xiaotao; Moran, Bill

    2017-01-01

    We propose an alternative waveform scheme built on mutually-orthogonal complementary sets for a distributed multistatic radar. Our analysis and simulation show a reduced frequency band requirement for signal separation between antennas with centralized signal processing using the same carrier frequency. While the scheme can tolerate fluctuations of carrier frequencies and phases, range sidelobes arise when carrier frequencies between antennas are significantly different. PMID:29295566

  7. Diurnal evolution of wind structure and data availability measured by the DOE prototype radar system

    Hirth, Brian D.; Schroeder, John L.; Guynes, Jerry G.

    2017-11-01

    A new Doppler radar prototype has been developed and deployed at Texas Tech University with a focus on enhancing the technologies’ capability to contribute to wind plant relevant complex flow measurements. In particular, improvements in data availability, total data coverage, and autonomous operation were targeted to enable contributions to a wider range of wind energy applications. Doppler radar offers rapid scan speeds, extended maximum range and excellent along-beam range resolution allowing for the simultaneous measurement of various wind phenomena ranging from regional and wind plant scales to inflow and wake flow assessment for an individual turbine. Data examples and performance improvements relative to a previous edition of the technology are presented, including insights into the influence of diurnal atmospheric stability evolution of wind structure and system performance.

  8. A computer simulation of a CWFM radar showing the tradeoffs of performance as a function of range

    Gordy, Robert S.; Zoledziowski, Severyn

    2010-04-01

    This paper describes a study of the operation of CWFM radar using "System View" software for modeling and simulation. The System View software is currently offered by Agilent; a link to the website is given in the footnote. The models that were studied include: a model illustrating the basic principle of operation of the CWFM radar, the range resolution of the radar, the effect of nonlinear distortions on the detected signals, and the effect of interference and jamming on the reception of CWFM signals. The study was performed as part of the design of an airborne CWFM radar.

  9. Joint inference of dominant scatterer locations and motion parameters of an extended target in high range-resolution radar

    De Freitas, A

    2015-06-01

    Full Text Available of scatterers using the PF method are compared with those obtained using standard range-Doppler inverse synthetic aperture radar (ISAR) imaging when using the same radar returns for both cases. The PF infers the location of scatterers more accurately than ISAR...

  10. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  11. VHF and HF radar measurements of E and R region plasma drifts at the magnetic equator

    Viswanathan, K.S.; Namboothiri, S.P.; Rao, P.B.

    1992-01-01

    Simultaneous observations of E region horizontal irregularity drifts by VHF backscatter radar and of F region vertical plasma drift by HF Doppler radar conducted during daytime on a few magnetically quiet days at Trivandrum (dip 0.2 degree N) are presented. A comparative study of the two measurements indicates broadly (1) a resemblance in the daytime changes of the E-W component between the electric field and (2) evidence of quasi-periodic electric field variations with periods ranging mostly from 1 to 2 hours. The electric fields derived from HF Doppler radar observations are somewhat lower than those deduced by HVHF radar observations. The correlation coefficient for the variations of the electric fields measured by the two experimental techniques is found to be in the range of about 0.5 to 0.9. The observed difference in the E and F region electric fields at the magnetic equator is discussed in terms of the measurement uncertainties and the limitations involved in deriving E-W electric fields. The observations are suggestive of a latitudinal variation in the E-W component of the electric field in the equatorial ionosphere

  12. Range resolution improvement in passive bistatic radars using nested FM channels and least squares approach

    Arslan, Musa T.; Tofighi, Mohammad; Sevimli, Rasim A.; ćetin, Ahmet E.

    2015-05-01

    One of the main disadvantages of using commercial broadcasts in a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple broadcast channels to improve the radar performance is offered as a solution to this problem. However, it suffers from detection performance due to the side-lobes that matched filter creates for using multiple channels. In this article, we introduce a deconvolution algorithm to suppress the side-lobes. The two-dimensional matched filter output of a PBR is further analyzed as a deconvolution problem. The deconvolution algorithm is based on making successive projections onto the hyperplanes representing the time delay of a target. Resulting iterative deconvolution algorithm is globally convergent because all constraint sets are closed and convex. Simulation results in an FM based PBR system are presented.

  13. Radar Cross Section measurements on the stealth metamaterial objects

    Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.

    have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS...

  14. Simulation of laser radar tooling ball measurements: focus dependence

    Smith, Daniel G.; Slotwinski, Anthony; Hedges, Thomas

    2015-10-01

    The Nikon Metrology Laser Radar system focuses a beam from a fiber to a target object and receives the light scattered from the target through the same fiber. The system can, among other things, make highly accurate measurements of the position of a tooling ball by locating the angular position of peak signal quality, which is related to the fiber coupling efficiency. This article explores the relationship between fiber coupling efficiency and focus condition.

  15. Maritime target and sea clutter measurements with a coherent Doppler polarimetric surveillance radar

    Smith, A.J.E.; Gelsema, S.J.; Kester, L.J.H.M.; Melief, H.W.; Premel Cabic, G.; Theil, A.; Woudenberg, E.

    2002-01-01

    Doppler polarimetry in a surveillance radar for the maritime surface picture is considered. This radar must be able to detect low-RCS targets in littoral environments. Measurements on such targets have been conducted with a coherent polarimetric measurement radar in March 2001 and preliminary

  16. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  17. Surface Current Measurements In Terra Nova Bay By Hf Radar

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  18. Range performance calculations using the NVEOL-Georgia Tech Research Institute 0.1- to 100-GHz radar performance model

    Rodak, S. P.; Thomas, N. I.

    1983-05-01

    A computer model that can be used to calculate radar range performance at any frequency in the 0.1-to 100-GHz electromagnetic spectrum is described. These different numerical examples are used to demonstrate how to use the radar range performance model. Input/output documentation are included for each case that was run on the MERADCOM CDC 6600 computer at Fort Belvoir, Virginia.

  19. On results using automated wideband instrumentation for radar measurements and characterization

    Govoni, Mark A.; Dogaru, Traian; Le, Calvin; Sobczak, Kevin

    2017-05-01

    Experiences are shared from a recent radar measurement and characterization effort. A regimented data collection procedure ensures repeatability and provides an expedited alternative to typical narrowband capabilities. Commercially-available instrumentation is repurposed to support wideband data collections spanning a contiguous range of frequencies from 700 MHz to 40 GHz. Utilizing a 4-port network analyzer, both monostatic and quasi-monostatic measurements are achievable. Polarization is varied by way of a custom-designed antenna mount that allows for the mechanical reorientation of the antennas. Computational electromagnetic modeling is briefly introduced and serves in validating the legitimacy of the collection capability. Data products presented will include high-range resolution profiles and inverse synthetic aperture radar (ISAR) imagery.

  20. Solvent extraction treatment of PCB contaminated soil at Sparrevohn Long Range Radar Station, Alaska

    Weimer, L. D.

    1999-01-01

    On-site soil treatment at a long range radar station in Alaska, which was contaminated with between 50 and 350 mg/kg of polychlorinated biphenyls (PCBs) is described. The stock-piled soil was treated by the Terra Kleen Response Group, using a solvent extraction process. After the treatment, PCB concentrations in the treated soil were found to have been reduced to less than the target treatment level of 15 mg/kg. Not only was the process successful, it also saved the government about $ 1 million over what hauling and off-site treatment and disposal would have cost. 1 tab

  1. Sandia National Laboratories land use permit for operations at Oliktok Alaska Long Range Radar Station.

    Catechis, Christopher Spyros

    2013-02-01

    The property subject to this Environmental Baseline Survey (EBS) is located at the Oliktok Long Range Radar Station (LRRS). The Oliktok LRRS is located at 70À 30 W latitude, 149À 53 W longitude. It is situated at Oliktok Point on the shore of the Beaufort Sea, east of the Colville River. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  2. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  3. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs.

    Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen

    2017-09-04

    According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.

  4. Non-Cooperative Target Recognition by Means of Singular Value Decomposition Applied to Radar High Resolution Range Profiles

    Patricia López-Rodríguez

    2014-12-01

    Full Text Available Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising.

  5. First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region

    H. Chandra

    2008-09-01

    Full Text Available A campaign to study turbulence in the mesosphere, over low latitudes in India, using rocket-borne measurements and Indian MST radar, was conducted during July 2004. A rocket-borne Langmuir probe detected a spectrum of electron density irregularities, with scale sizes in the range of about 1 m to 1 km, in 67.5–78.0 km and 84–89 km altitude regions over a low latitude station Sriharikota (13.6° N, 80.2° E. A rocket-borne chaff experiment measured zonal and meridional winds about 30 min after the Langmuir probe flight. The MST radar located at Gadanki (13.5° N, 79.2° E, which is about 100 km west of Sriharikota, also detected the presence of a strong scattering layer in 73.5–77.5 km region from which radar echoes corresponding to 3 m irregularities were received. Based on the region of occurrence of irregularities, which was highly collisional, presence of significant shears in zonal and meridional components of wind measured by the chaff experiment, 10 min periodicity in zonal and meridional winds obtained by the MST radar and the nature of wave number spectra of the irregularities, it is suggested that the observed irregularities were produced through the neutral turbulence mechanism. The percentage amplitude of fluctuations across the entire scale size range showed that the strength of turbulence was stronger in the lower altitude regions and decreased with increasing altitude. It was also found that the amplitude of fluctuations was large in regions of steeper electron density gradients. MST radar observations showed that at smaller scales of turbulence such as 3 m, (a the thickness of the turbulent layer was between 2 and 3 km and (b and fine structures, with layer thicknesses of about a km or less were also embedded in these layers. Rocket also detected 3-m fluctuations, which were very strong (a few percent in lower altitudes (67.5 to 71.0 km and small but clearly well above the noise floor at higher altitudes. Rocket and radar

  6. First mesospheric turbulence study using coordinated rocket and MST radar measurements over Indian low latitude region

    Chandra, H.; Sinha, H.S.S.; Das, U.; Misra, R.N.; Das, S.R. [Physical Research Lab., Ahmedabad (India); Datta, J.; Chakravarty, S.C. [ISRO Headquarters, Bangalore (India); Patra, A.K.; Vekateswara Rao, N.; Narayana Rao, D. [National Atmospheric Research Lab., Tirupati (India)

    2008-07-01

    A campaign to study turbulence in the mesosphere, over low latitudes in India, using rocket-borne measurements and Indian MST radar, was conducted during July 2004. A rocket-borne Langmuir probe detected a spectrum of electron density irregularities, with scale sizes in the range of about 1 m to 1 km, in 67.5-78.0 km and 84-89 km altitude regions over a low latitude station Sriharikota (13.6 N, 80.2 E). A rocket-borne chaff experiment measured zonal and meridional winds about 30 min after the Langmuir probe flight. The MST radar located at Gadanki (13.5 N, 79.2 E), which is about 100 km west of Sriharikota, also detected the presence of a strong scattering layer in 73.5-77.5 km region from which radar echoes corresponding to 3 m irregularities were received. Based on the region of occurrence of irregularities, which was highly collisional, presence of significant shears in zonal and meridional components of wind measured by the chaff experiment, 10 min periodicity in zonal and meridional winds obtained by the MST radar and the nature of wave number spectra of the irregularities, it is suggested that the observed irregularities were produced through the neutral turbulence mechanism. The percentage amplitude of fluctuations across the entire scale size range showed that the strength of turbulence was stronger in the lower altitude regions and decreased with increasing altitude. It was also found that the amplitude of fluctuations was large in regions of steeper electron density gradients. MST radar observations showed that at smaller scales of turbulence such as 3 m, (a) the thickness of the turbulent layer was between 2 and 3 km and (b) and fine structures, with layer thicknesses of about a km or less were also embedded in these layers. Rocket also detected 3-m fluctuations, which were very strong (a few percent) in lower altitudes (67.5 to 71.0 km) and small but clearly well above the noise floor at higher altitudes. Rocket and radar results also point to the

  7. The effect of fog on the probability density distribution of the ranging data of imaging laser radar

    Song, Wenhua; Lai, JianCheng; Ghassemlooy, Zabih; Gu, Zhiyong; Yan, Wei; Wang, Chunyong; Li, Zhenhua

    2018-02-01

    This paper outlines theoretically investigations of the probability density distribution (PDD) of ranging data for the imaging laser radar (ILR) system operating at a wavelength of 905 nm under the fog condition. Based on the physical model of the reflected laser pulses from a standard Lambertian target, a theoretical approximate model of PDD of the ranging data is developed under different fog concentrations, which offer improved precision target ranging and imaging. An experimental test bed for the ILR system is developed and its performance is evaluated using a dedicated indoor atmospheric chamber under homogeneously controlled fog conditions. We show that the measured results are in good agreement with both the accurate and approximate models within a given margin of error of less than 1%.

  8. The effect of fog on the probability density distribution of the ranging data of imaging laser radar

    Wenhua Song

    2018-02-01

    Full Text Available This paper outlines theoretically investigations of the probability density distribution (PDD of ranging data for the imaging laser radar (ILR system operating at a wavelength of 905 nm under the fog condition. Based on the physical model of the reflected laser pulses from a standard Lambertian target, a theoretical approximate model of PDD of the ranging data is developed under different fog concentrations, which offer improved precision target ranging and imaging. An experimental test bed for the ILR system is developed and its performance is evaluated using a dedicated indoor atmospheric chamber under homogeneously controlled fog conditions. We show that the measured results are in good agreement with both the accurate and approximate models within a given margin of error of less than 1%.

  9. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  10. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    We present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error...... sources considered include phase noise, atmospheric distortions, baseline calibration errors, a dry snow layer, and the stationary-flow assumption used in differential interferometry. The additional error sources in the analysis of FD errors are noise, bias and unknown variations of the ice thickness...

  11. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  12. Radar measurements of the latitudinal variation of auroral ionization

    Vondrak, R.R.; Baron, M.J.

    1976-01-01

    The Chatanika, Alaska, incoherent scatter radar has been used to measure the spatial variation of auroral ionization. A two-dimensional (altitude, latitude) cross-sectional map of electron densities in the ionosphere is produced by scanning in the geomagnetic meridian plane. The altitutde variation of ionization is used to infer the differential energy distribution of the incident auroral electrons. The latitudinal variation of this energy distribution and the total energy input are obtained by use of the meridian-scanning technique. Examples are shown of observations made during an active aurora

  13. Analysis of measured radar data for specific emitter identification

    Conning, M

    2010-05-01

    Full Text Available and can be used more efficiently to determine the exact times when a pulse starts and ends [3]. Other statistical methods are also available, as mentioned below. To determine the start of a signal, [4] and [5] used a variance fractal dimension... measure together with a Bayesian step change detector. Temporal, nonstationary signals’ fractal dimensions change over time. Multifractals can be used with such signals, e.g. radar pulses that have time-varying fractal dimensions [4], [6] and [7]. A...

  14. Frequency Diverse Array Radar Cramér-Rao Lower Bounds for Estimating Direction, Range, and Velocity

    Yongbing Wang

    2014-01-01

    Full Text Available Different from phased-array radar, frequency diverse array (FDA radar offers range-dependent beampattern and thus provides new application potentials. But there is a fundamental question: what estimation performance can achieve for an FDA radar? In this paper, we derive FDA radar Cramér-Rao lower bounds (CRLBs for estimating direction, range (time delay, and velocity (Doppler shift. Two different data models including pre- and postmatched filtering are investigated separately. As the FDA radar has range-angle coupling, we use a simple transmit subaperturing strategy which divides the whole array into two subarrays, each uses a distinct frequency increment. Assuming temporally white Gaussian noise and linear frequency modulated transmit signal, extensive simulation examples are performed. When compared to conventional phased-array radar, FDA can yield better CRLBs for estimating the direction, range, and velocity. Moreover, the impacts of the element number and frequency increment are also analyzed. Simulation results show that the CRLBs decrease with the increase of the elements number and frequency increment.

  15. Spaceborne Applications of P Band Imaging Radars for Measuring Forest Biomass

    Rignot, Eric J.; Zimmermann, Reiner; vanZyl, Jakob J.

    1995-01-01

    In three sites of boreal and temperate forests, P band HH, HV, and VV polarization data combined estimate total aboveground dry woody biomass within 12 to 27% of the values derived from allometric equations, depending on forest complexity. Biomass estimates derived from HV-polarization data only are 2 to 14% less accurate. When the radar operates at circular polarization, the errors exceed 100% over flooded forests, wet or damaged trees and sparse open tall forests because double-bounce reflections of the radar signals yield radar signatures similar to that of tall and massive forests. Circular polarizations, which minimize the effect of Faraday rotation in spaceborne applications, are therefore of limited use for measuring forest biomass. In the tropical rain forest of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 50 kg/sq m in old, undisturbed floodplain stands, the P band horizontal and vertical polarization data combined separate biomass classes in good agreement with forest inventory estimates. The worldwide need for large scale, updated, biomass estimates, achieved with a uniformly applied method, justifies a more in-depth exploration of multi-polarization long wavelength imaging radar applications for tropical forests inventories.

  16. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    N. F. Arnold

    2001-04-01

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  17. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    N. F. Arnold

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.

    Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  18. Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement

    B. Damtie

    2009-02-01

    Full Text Available Improving an estimate of an incoherent scatter radar signal is vital to provide reliable and unbiased information about the Earth's ionosphere. Thus optimizing the measurement spatial and temporal resolutions has attracted considerable attention. The optimization usually relies on employing different kinds of pulse compression filters in the analysis and a matched filter is perhaps the most widely used one. A mismatched filter has also been used in order to suppress the undesirable sidelobes that appear in the case of matched filtering. Moreover, recently an adaptive pulse compression method, which can be derived based on the minimum mean-square error estimate, has been proposed. In this paper we have investigated the performance of matched, mismatched and adaptive pulse compression methods in terms of the output signal-to-noise ratio (SNR and the variance and bias of the estimator. This is done by using different types of optimal radar waveforms. It is shown that for the case of low SNR the signal degradation associated to an adaptive filtering is less than that of the mismatched filtering. The SNR loss of both matched and adaptive pulse compression techniques was found to be nearly the same for most of the investigated codes for the case of high SNR. We have shown that the adaptive filtering technique is a compromise between matched and mismatched filtering method when one evaluates its performance in terms of the variance and the bias of the estimator. All the three analysis methods were found to have the same performance when a sidelobe-free matched filter code is employed.

  19. Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement

    B. Damtie

    2009-02-01

    Full Text Available Improving an estimate of an incoherent scatter radar signal is vital to provide reliable and unbiased information about the Earth's ionosphere. Thus optimizing the measurement spatial and temporal resolutions has attracted considerable attention. The optimization usually relies on employing different kinds of pulse compression filters in the analysis and a matched filter is perhaps the most widely used one. A mismatched filter has also been used in order to suppress the undesirable sidelobes that appear in the case of matched filtering. Moreover, recently an adaptive pulse compression method, which can be derived based on the minimum mean-square error estimate, has been proposed. In this paper we have investigated the performance of matched, mismatched and adaptive pulse compression methods in terms of the output signal-to-noise ratio (SNR and the variance and bias of the estimator. This is done by using different types of optimal radar waveforms. It is shown that for the case of low SNR the signal degradation associated to an adaptive filtering is less than that of the mismatched filtering. The SNR loss of both matched and adaptive pulse compression techniques was found to be nearly the same for most of the investigated codes for the case of high SNR. We have shown that the adaptive filtering technique is a compromise between matched and mismatched filtering method when one evaluates its performance in terms of the variance and the bias of the estimator. All the three analysis methods were found to have the same performance when a sidelobe-free matched filter code is employed.

  20. 79 GHz UWB automotive short range radar – Spectrum allocation and technology trends

    H.-L. Bloecher

    2009-05-01

    Full Text Available Automotive UWB (Ultra-Wideband short range radar (SSR is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.

  1. Measurement needs guided by synthetic radar scans in high-resolution model output

    Varble, A.; Nesbitt, S. W.; Borque, P.

    2017-12-01

    Microphysical and dynamical process interactions within deep convective clouds are not well understood, partly because measurement strategies often focus on statistics of cloud state rather than cloud processes. While processes cannot be directly measured, they can be inferred with sufficiently frequent and detailed scanning radar measurements focused on the life cycleof individual cloud regions. This is a primary goal of the 2018-19 DOE ARM Cloud, Aerosol, and Complex Terrain Interactions (CACTI) and NSF Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaigns in central Argentina, where orographic deep convective initiation is frequent with some high-impact systems growing into the tallest and largest in the world. An array of fixed and mobile scanning multi-wavelength dual-polarization radars will be coupled with surface observations, sounding systems, multi-wavelength vertical profilers, and aircraft in situ measurements to characterize convective cloud life cycles and their relationship with environmental conditions. While detailed cloud processes are an observational target, the radar scan patterns that are most ideal for observing them are unclear. They depend on the locations and scales of key microphysical and dynamical processes operating within the cloud. High-resolution simulations of clouds, while imperfect, can provide information on these locations and scales that guide radar measurement needs. Radar locations are set in the model domain based on planned experiment locations, and simulatedorographic deep convective initiation and upscale growth are sampled using a number of different scans involving RHIs or PPIs with predefined elevation and azimuthal angles that approximately conform with radar range and beam width specifications. Each full scan pattern is applied to output atsingle model time steps with time step intervals that depend on the length of time

  2. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Costley, A; Prentice, R [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R [Toulouse-3 Univ., 31 (France). Centre d` Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  3. Range Sidelobe Response from the Use of Polyphase Signals in Spotlight Synthetic Aperture Radar

    2015-12-01

    the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 2015 Approved by...depicted in Figure 30. Figure 30. Top- Level Diagram of Radar Operation Adapted from [1]: M. Skolnik, Introduction to Radar Systems, 3rd ed., New York...Figure 37. Notional Synthetic Aperture Data Matrix In this chapter, we reviewed top- level radar concepts and generated the equations that describe

  4. Radar speed gun true velocity measurements of sports-balls in flight: application to tennis

    Robinson, Garry; Robinson, Ian

    2016-01-01

    Spectators of ball-games often seem to be fascinated by the speed of delivery of the ball. They appear to be less interested in or even oblivious to the mechanism and accuracy of the measurement or where in the flight path of the ball the measurement is actually made. Radar speed guns using the Doppler effect are often employed for such speed measurements. It is well known that such guns virtually always measure the line-of-sight or radial velocity of the ball and as such will return a reading less than or equal to the true speed of the ball. In this paper, using only basic physics principles we investigate such measurements, in particular those associated with the service stroke in tennis. For the service trajectories employed here, a single radar gun located in line with the centre-line of the court in fact under-estimates the speed of a wide serve by about 3.4% at the point of delivery, and by about 14.3% on impact with the court. However, we demonstrate that both the magnitude and direction of the true velocity of the ball throughout its entire flight path may be obtained, at least in principle, by the use of four suitably placed radar speed guns. These four guns must be able to measure the ‘range’ to the ball, enabling its position in flight to be determined, and three of them must be able to measure the radial velocity of the ball. Restrictions on the locations of the speed guns are discussed. Such restrictions are quite liberal, although there are certain configurations of the radar gun positions which cannot be used. Importantly, with the one proviso that no speed gun can be directly in the path of the ball (not only for the obvious reasons), we find that if the speed of the ball can be determined for one point in the trajectory, it can also be determined for all points. The accuracy of the range and radial velocity measurements required to give meaningful results for the true velocity are also briefly discussed. It is found that the accuracy required

  5. Spin-image surface matching based target recognition in laser radar range imagery

    Li, Wang; Jian-Feng, Sun; Qi, Wang

    2010-01-01

    We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the range imagery of Ladar is time-consuming, owing to its complicated procedure, which violates the requirement of real-time target recognition in practical applications. To simplify the troublesome procedures, we improve the spin-image algorithm by introducing a statistical correlated coefficient into target recognition in range imagery of Ladar. The system performance is demonstrated on sixteen simulated noise range images with targets rotated through an arbitrary angle in plane. A high efficiency and an acceptable recognition rate obtained herein testify the validity of the improved algorithm for practical applications. The proposed algorithm not only solves the problem of in-plane rotation-invariance rationally, but also meets the real-time requirement. This paper ends with a comparison of the proposed method and the previous one. (classical areas of phenomenology)

  6. Conceptual Architecture to Measure the Effects of Subauroral Polarization Streams on Radar Operations

    2016-09-01

    Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of...and estimate how much SAPS effects radar operations, the execution of over the horizon radars and documentation of clutter should use the high- level ...for various operations will be portrayed in a systems model to show all parts involved in the measurements. The degree of radar interference due to

  7. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    C. Z. van de Beek

    2010-02-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The aim of this paper is to present a thorough analysis of a climatological dataset using a high spatial (120 m and temporal (16 s resolution X-band radar. This makes it a study of the potential for high-resolution rainfall measurements with non-polarimetric X-band radar over flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than what can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  8. Determination of the thermospheric neutral wind from incoherent scatter radar measurements

    Haeggstroem, I.; Murdin, J.; Rees, D.

    1984-11-01

    Measurements made by the EISCAT UHF incoherent scatter radar are used to derive thermospheric winds. The derived wind is compared to Fabry-Perot interferometer measurements of the neutral wind made simultaneously. The uncertainties in the radar derived wind are discussed. (author)

  9. Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements

    Wye, Lauren C.; Zebker, Howard A.; Ostro, Steven J.; West, Richard D.; Gim, Yonggyu; Lorenz, Ralph D.; The Cassini Radar Team

    2007-06-01

    albedo feature Shangri-La is best fit by a Hagfors model with a dielectric constant close to 2.4 and an rms slope near 9.5°. From the modeled backscatter curves, we find the average radar albedo in the same linear (SL) polarization to be near 0.34. We constrain the total-power albedo in order to compare the measurements with available groundbased radar results, which are typically obtained in both senses of circular polarization. We estimate an upper limit of 0.4 on the total-power albedo, a value that is significantly higher than the 0.21 total albedo value measured at 13 cm [Campbell, D., Black, G., Carter, L., Ostro, S., 2003. Science 302, 431-434]. This is consistent with a surface that has more small-scale structure and is thus more reflective at 2-cm than 13-cm. We compare results across overlapping observations and observe that the reduction and analysis are repeatable and consistent. We also confirm the strong correlations between radar and near-infrared images.

  10. Full Waveform Analysis for Long-Range 3D Imaging Laser Radar

    Wallace AndrewM

    2010-01-01

    Full Text Available The new generation of 3D imaging systems based on laser radar (ladar offers significant advantages in defense and security applications. In particular, it is possible to retrieve 3D shape information directly from the scene and separate a target from background or foreground clutter by extracting a narrow depth range from the field of view by range gating, either in the sensor or by postprocessing. We discuss and demonstrate the applicability of full-waveform ladar to produce multilayer 3D imagery, in which each pixel produces a complex temporal response that describes the scene structure. Such complexity caused by multiple and distributed reflection arises in many relevant scenarios, for example in viewing partially occluded targets, through semitransparent materials (e.g., windows and through distributed reflective media such as foliage. We demonstrate our methodology on 3D image data acquired by a scanning time-of-flight system, developed in our own laboratories, which uses the time-correlated single-photon counting technique.

  11. Mixing height measurements from UHF wind profiling radar

    Angevine, W.M.; Grimsdell, A.W. [CIRES, Univ. of Colorado, and NOAA Aeronomy Lab., Boulder, Colorado (United States)

    1997-10-01

    Mixing height in convective boundary layers can be detected by wind profiling radars (profilers) operating at or near 915 MHZ. We have made such measurements in a variety of settings including Alabama in 1992; Nova Scotia, Canada, during the North Atlantic Regional Experiment (NARE) 1993; Tennessee during the Southern Oxidant Study (SOS) 1994; near a 450 m tower in Wisconsin in 1995; and extensively in Illinois during the Flatland95, `96, and `97 experiments, as well as continuous operations at the Flatland Atmospheric Observatory. Profiler mixing height measurements, like all measurements, are subject to some limitations. The most important of these are due to rainfall, minimum height, and height resolution. Profilers are very sensitive to rain, which dominates the reflectivity and prevents the mixing height from being detected. Because the best height resolution is currently 60 m and the minimum height is 120-150 m AGL, the profiler is not suited for detecting mixing height in stable or nocturnal boundary layers. Problems may also arise in very dry or cold environments. (au) 12 refs.

  12. Comparisons between high-resolution profiles of squared refractive index gradient M2 measured by the Middle and Upper Atmosphere Radar and unmanned aerial vehicles (UAVs during the Shigaraki UAV-Radar Experiment 2015 campaign

    H. Luce

    2017-03-01

    Full Text Available New comparisons between the square of the generalized potential refractive index gradient M2, estimated from the very high-frequency (VHF Middle and Upper Atmosphere (MU Radar, located at Shigaraki, Japan, and unmanned aerial vehicle (UAV measurements are presented. These comparisons were performed at unprecedented temporal and range resolutions (1–4 min and  ∼  20 m, respectively in the altitude range  ∼  1.27–4.5 km from simultaneous and nearly collocated measurements made during the ShUREX (Shigaraki UAV-Radar Experiment 2015 campaign. Seven consecutive UAV flights made during daytime on 7 June 2015 were used for this purpose. The MU Radar was operated in range imaging mode for improving the range resolution at vertical incidence (typically a few tens of meters. The proportionality of the radar echo power to M2 is reported for the first time at such high time and range resolutions for stratified conditions for which Fresnel scatter or a reflection mechanism is expected. In more complex features obtained for a range of turbulent layers generated by shear instabilities or associated with convective cloud cells, M2 estimated from UAV data does not reproduce observed radar echo power profiles. Proposed interpretations of this discrepancy are presented.

  13. Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data

    Steinbrügge, G.; Schroeder, D. M.; Haynes, M. S.; Hussmann, H.; Grima, C.; Blankenship, D. D.

    2018-01-01

    The tidal Love number h2 is a key geophysical measurement for the characterization of Europa's interior, especially of its outer ice shell if a subsurface ocean is present. We performed numerical simulations to assess the potential for estimating h2 using altimetric measurements with a combination of radar sounding and stereo imaging data. The measurement principle exploits both delay and Doppler information in the radar surface return in combination with topography from a digital terrain model (DTM). The resulting radar range measurements at cross-over locations can be used in combination with radio science Doppler data for an improved trajectory solution and for estimating the h2 Love number. Our simulation results suggest that the absolute accuracy of h2 from the joint analysis of REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) surface return and EIS (Europa Imaging System) DTM data will be in the range of 0.04-0.17 assuming full radio link coverage. The error is controlled by the SNR budget and DTM quality, both dependent on the surface properties of Europa. We estimate that this would unambiguously confirm (or reject) the global ocean hypothesis and, in combination with a nominal radio-science based measurement of the tidal Love number k2, constrain the thickness of Europa's outer ice shell to up to ±15 km.

  14. Atlantic Test Range. Dynamic RCS Measurement Capability

    2000-01-01

    .... These systems include radars (fighter/attack, sea surveillance, and AEW), Navigation (IFF, GPS, and INS), communications (voice and data link), reconnaissance systems, antenna systems, forward looking infrared systems and ASW systems...

  15. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition

    Yifan Zhang

    2018-05-01

    Full Text Available The High Resolution Range Profile (HRRP recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR. However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  16. An interferometric radar sensor for monitoring the vibrations of structures at short ranges

    Luzi Guido

    2018-01-01

    Full Text Available The Real-Aperture-Radar (RAR interferometry technique consolidated in the last decade as an operational tool for the monitoring of large civil engineering structures as bridges, towers, and buildings. In literature, experimental campaigns collected through a well-known commercial equipment have been widely documented, while the cases where different types of sensors have been tested are a few. On the bases of some experimental tests, a new sensor working at high frequency, providing some improved performances, is here discussed. The core of the proposed system is an off-the-shelf, linear frequency modulated continuous wave device. The development of this apparatus is aimed at achieving a proof-of-concept, tackling operative aspects related to the development of a low cost and reliable system. The capability to detect the natural frequencies of a lightpole has been verified; comparing the results of the proposed sensor with those ones obtained through a commercial system based on the same technique, a more detailed description of the vibrating structure has been achieved. The results of this investigation confirmed that the development of sensors working at higher frequencies, although deserving deeper studies, is very promising and could open new applications demanding higher spatial resolutions at close ranges.

  17. Research and development of laser radar for environmental measurements. Pt. 3; Kankyo keisokuyo laser radar no kenkyu kaihatsu. 3

    NONE

    1996-03-01

    Described herein are the results of the joint project between Japan and Indonesia to construct a new laser radar network system, which can three-dimensionally measure air pollution conditions in urban areas, in Djakarta. This joint project is implemented to elucidate the mechanisms involved in air pollution in the city, and thereby to contribute to environmental administration of Indonesia. This project is expected to give the basic approach to solution of environmental problems in urban areas, and eventually on a global scale, and hence to contribute to construction of the global network systems for environment-related information, which should be necessary in the near future. The (ODA Laser Radar Development Committee) is the deliberative body for the project, responsible for evaluating the project results. The project will be implemented on a 4-year plan from FY1993 to 1996. The activities in this year, the third year for the project, include on-the-spot survey, selection of the laser radar site, and development/improvement of the laser radar system. These results are described herein. (NEDO)

  18. Detection and localization of multiple short range targets using FMCW radar signal

    Jardak, Seifallah; Kiuru, Tero; Metso, Mikko; Pursula, Pekka; Hakli, Janne; Hirvonen, Mervi; Ahmed, Sajid; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, a 24 GHz frequency-modulated continuous wave radar is used to detect and localize both stationary and moving targets. Depending on the application, the implemented software offers different modes of operation. For example, it can

  19. Measuring the relativistic perigee advance with satellite laser ranging

    Iorio, L; Pavlis, E C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 sup - sup 2 -10 sup - sup 3. In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 sup 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 sup - sup 3. With the corresponding measured value of (2 + 2 gamma - beta)/3, ...

  20. Radar equations for modern radar

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  1. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  2. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  3. Interpretation of measured data and the resolution analysis of the RTP 4-channel pulsed radar

    Pavlo, P.

    1993-01-01

    The resolution of a 4-channel pulsed radar being built at Rijnhuisen for the RTP tokamak is analyzed. The achievable resolution mainly depends on the accuracy of the time-of-flight measurements and the number of sampling frequencies; since the technological solution and the configuration have already been set, emphasis is put on interpretation of the measured data (the inversion problem) and minimization of the overall error. For this purpose, a specific neural network - the Multi Layer Perceptron (MLP) - has successfully been applied. Central density in the range of 0.2-0.6 x 10 20 m -3 was considered, i.e., one above the critical density for all four frequencies but not so high as to restrict the measurements to just the edge of the plasma. By balancing the inversion error and the time measurement error, for a wide class of density profiles the overall error in estimating the reflection point position of between 0.72 cm (for the lowest frequency) and 0.52 cm (for the highest frequency) root mean square was obtained, assuming an RMS error of 70 ps in the time of flight measurements. This is probably much better than what could be obtained by the Abel transform. Moreover, mapping with the MLP is considerably faster, and it should be considered for routine multichannel pulsed radar data processing. (author) 2 tabs., 4 figs., 6 refs

  4. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  5. ONKALO EDZ-measurements using ground penetrating radar (GPR) method

    Silvast, M.; Wiljanen, B. (Roadscanners Oy, Rovaniemi (Finland))

    2008-09-15

    This report presents pilot project results from various Ground Penetrating Radar (GPR) tests performed on bedrock in ONKALO, the research tunnel system being built for the final disposal of spent nuclear fuel (in Finland). In recent years the GPR technology for structure inspection has improved to faster systems and higher frequencies. Processing and interpretation software has been developed for better visualization of processed data. GPR is a powerful non-destructive testing method with major advantages such as fast measurement speed and continuous survey lines. The purpose of the tests was to determine the capacity of GPR in identifying the Excavation Damaged or Disturbed Zone (EDZ). Topics included comparison of different types of GPR systems and antennas in select locations in the tunnel system and data presentation. High quality GPR data was obtained from all systems that were used on surfaces without concrete or steel reinforcement. Data processed using Geo Doctor software, which enables integrated analysis of available datasets on a single screen, provided promising results. (orig.)

  6. ONKALO EDZ-measurements using ground penetrating radar (GPR) method

    Silvast, M.; Wiljanen, B.

    2008-09-01

    This report presents pilot project results from various Ground Penetrating Radar (GPR) tests performed on bedrock in ONKALO, the research tunnel system being built for the final disposal of spent nuclear fuel (in Finland). In recent years the GPR technology for structure inspection has improved to faster systems and higher frequencies. Processing and interpretation software has been developed for better visualization of processed data. GPR is a powerful non-destructive testing method with major advantages such as fast measurement speed and continuous survey lines. The purpose of the tests was to determine the capacity of GPR in identifying the Excavation Damaged or Disturbed Zone (EDZ). Topics included comparison of different types of GPR systems and antennas in select locations in the tunnel system and data presentation. High quality GPR data was obtained from all systems that were used on surfaces without concrete or steel reinforcement. Data processed using Geo Doctor software, which enables integrated analysis of available datasets on a single screen, provided promising results. (orig.)

  7. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  8. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents

    Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind

    2015-05-01

    High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.

  9. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing

    M. Maahn

    2012-11-01

    Full Text Available The Micro Rain Radar 2 (MRR is a compact Frequency Modulated Continuous Wave (FMCW system that operates at 24 GHz. The MRR is a low-cost, portable radar system that requires minimum supervision in the field. As such, the MRR is a frequently used radar system for conducting precipitation research. Current MRR drawbacks are the lack of a sophisticated post-processing algorithm to improve its sensitivity (currently at +3 dBz, spurious artefacts concerning radar receiver noise and the lack of high quality Doppler radar moments. Here we propose an improved processing method which is especially suited for snow observations and provides reliable values of effective reflectivity, Doppler velocity and spectral width. The proposed method is freely available on the web and features a noise removal based on recognition of the most significant peak. A dynamic dealiasing routine allows observations even if the Nyquist velocity range is exceeded. Collocated observations over 115 days of a MRR and a pulsed 35.2 GHz MIRA35 cloud radar show a very high agreement for the proposed method for snow, if reflectivities are larger than −5 dBz. The overall sensitivity is increased to −14 and −8 dBz, depending on range. The proposed method exploits the full potential of MRR's hardware and substantially enhances the use of Micro Rain Radar for studies of solid precipitation.

  10. Coherent change detection and interferometric ISAR measurements in the folded compact range

    Sorensen, K.W.

    1996-08-01

    A folded compact range configuration has been developed ant the Sandia National Laboratories` compact range antenna and radar-cross- section measurement facility as a means of performing indoor, environmentally-controlled, far-field simulations of synthetic aperture radar (SAR) measurements of distributed target samples (i.e. gravel, sand, etc.). The folded compact range configuration has previously been used to perform coherent-change-detection (CCD) measurements, which allow disturbances to distributed targets on the order of fractions of a wavelength to be detected. This report describes follow-on CCD measurements of other distributed target samples, and also investigates the sensitivity of the CCD measurement process to changes in the relative spatial location of the SAR sensor between observations of the target. Additionally, this report describes the theoretical and practical aspects of performing interferometric inverse-synthetic-aperture-radar (IFISAR) measurements in the folded compact range environment. IFISAR measurements provide resolution of the relative heights of targets with accuracies on the order of a wavelength. Several examples are given of digital height maps that have been generated from measurements performed at the folded compact range facility.

  11. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  12. Measuring the relativistic perigee advance with satellite laser ranging

    Iorio, Lorenzo; Ciufolini, Ignazio; Pavlis, Erricos C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 -2 -10 -3 . In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 -3 . With the corresponding measured value of (2 + 2γ - β)/3, by using η = 4β - γ - 3 from lunar laser ranging, we could get an estimate of the PPN parameters γ and β with an accuracy of the order of 10 -2 -10 -3 . Nevertheless, these accuracies would be substantially improved in the near future with the new Earth gravity field models by the CHAMP and GRACE missions. The use of the perigee of LARES (LAser RElativity Satellite), with a suitable combination of orbital residuals including also the node and the perigee of LAGEOS II, would also further improve the accuracy of the proposed measurement

  13. Detection performance improvement of FMCW radar using frequency shift

    Wu, Y.; Linnartz, J.P.M.G.

    2011-01-01

    Frequency modulated continuous wave (FMCW) radars have been widely used for measuring target range and speed. In this paper, we present a mathematical model that quantifies the system-level performance of FMCW radar systems. In FMCW radar, the target range is measured through measuring the beat

  14. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  15. Design and use of a mobile, x-band, high range resolution, radar research facility

    De Witt, JJ

    2012-10-01

    Full Text Available industries of the Centre for Science and Industrial Research (CSIR) (South Africa) and King Abdul Aziz City for Science and Technology (KACST) (Saudi Arabia). The radar employs true wideband processing in its complete RF and IF chain, supporting instantaneous...

  16. Stealth metamaterial objects characterized in the far field by Radar Cross Section measurements

    Iwaszczuk, Krzysztof; Fan, K.; Strikwerda, A. C.

    Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed.......Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed....

  17. Synthetic range profiling, ISAR imaging of sea vessels and feature extraction, using a multimode radar to classify targets: initial results from field trials

    Abdul Gaffar, MY

    2011-04-01

    Full Text Available tanazi@kacst.edu.sa, aazamil@kacst.edu.sa Abstract?This paper describes the design and working principles of an experimental multimode radar with a stepped-frequency Synthetic Range Profiling (SRP) and Inverse Synthetic Aperture Radar (ISAR...

  18. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  19. Study of sea-surface slope distribution and its effect on radar backscatter based on Global Precipitation Measurement Ku-band precipitation radar measurements

    Yan, Qiushuang; Zhang, Jie; Fan, Chenqing; Wang, Jing; Meng, Junmin

    2018-01-01

    The collocated normalized radar backscattering cross-section measurements from the Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) and the winds from the moored buoys are used to study the effect of different sea-surface slope probability density functions (PDFs), including the Gaussian PDF, the Gram-Charlier PDF, and the Liu PDF, on the geometrical optics (GO) model predictions of the radar backscatter at low incidence angles (0 deg to 18 deg) at different sea states. First, the peakedness coefficient in the Liu distribution is determined using the collocations at the normal incidence angle, and the results indicate that the peakedness coefficient is a nonlinear function of the wind speed. Then, the performance of the modified Liu distribution, i.e., Liu distribution using the obtained peakedness coefficient estimate; the Gaussian distribution; and the Gram-Charlier distribution is analyzed. The results show that the GO model predictions with the modified Liu distribution agree best with the KuPR measurements, followed by the predictions with the Gaussian distribution, while the predictions with the Gram-Charlier distribution have larger differences as the total or the slick filtered, not the radar filtered, probability density is included in the distribution. The best-performing distribution changes with incidence angle and changes with wind speed.

  20. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  1. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    Eugin Hyun

    2016-01-01

    Full Text Available For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  2. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  3. Detection and localization of multiple short range targets using FMCW radar signal

    Jardak, Seifallah

    2016-07-26

    In this paper, a 24 GHz frequency-modulated continuous wave radar is used to detect and localize both stationary and moving targets. Depending on the application, the implemented software offers different modes of operation. For example, it can simply output raw data samples for advanced offline processing or directly carry out a two dimensional fast Fourier transform to estimate the location and velocity of multiple targets. To suppress clutter and detect only moving targets, two methods based on the background reduction and the slow time processing techniques are implemented. A trade-off between the two methods is presented based on their performance and the required processing time. © 2016 IEEE.

  4. FMWC Radar for Breath Detection

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  5. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  6. Incoherent-scatter radar measurements of electric field and plasma in the auroral ionosphere

    Vondrak, R.

    1983-01-01

    This chapter summarizes Chatanika radar measurements of electric fields and currents, and their relation to E-region ionization and conductivity. Electric-field coupling between the ionosphere and magnetosphere and the relationship between field-aligned currents and meridional ionospheric currents are examined. Topics considered include the diurnal pattern of the ionization and electric field; electrical coupling between the ionosphere and magnetosphere; and the relationship between meridional currents and field-aligned currents. It is concluded that the incoherent-scatter radar technique has been developed into a powerful method for remotely measuring the electrical and thermal properties of the auroral ionospheric plasma, and that the usefulness of the radar measurements is greatly enhanced when combined with simultaneous satellite measurements

  7. Identification of hydrometeor mixtures in polarimetric radar measurements and their linear de-mixing

    Besic, Nikola; Ventura, Jordi Figueras i.; Grazioli, Jacopo; Gabella, Marco; Germann, Urs; Berne, Alexis

    2017-04-01

    entropy values: low for pure volumes, and high for different possible combinations of mixed hydrometeors. The parametrized entropy is further on applied to real polarimetric C and X band radar datasets, where we demonstrate the potential of linear de-mixing using a simplex formed by a set of pre-defined centroids in the five-dimensional space. As main outcome, the proposed approach allows to provide plausible proportions of the different hydrometeors contained in a given radar sampling volume. [1] Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425-4445, doi:10.5194/amt-9-4425-2016, 2016.

  8. Efficiency evaluation of ground-penetrating radar by the results of measurement of dielectric properties of soils

    Khakiev, Zelimkhan; Kislitsa, Konstantin; Yavna, Victor [Rostov State Transport University, Rostov-on-Don (Russian Federation)

    2012-12-15

    The work considers the depth evaluation of ground penetrating radar (GPR) surveys using the attenuation factor of electromagnetic radiation in a medium. A method of determining the attenuation factor of low-conductive non-magnetic soils is developed based on the results of direct measurements of permittivity and conductivity of soils in the range of typical frequencies of GPR. The method relies on measuring the shift and width of the resonance line after a soil sample is being placed into a tunable cavity resonator. The advantage of this method is the preservation of soil structure during the measurement.

  9. Simultaneous rocket and radar measurements of currents in an auroral arc

    Robinson, R.M.; Bering, E.A.; Vondrak, R.R.; Anderson, H.R.; Cloutier, P.A.

    1981-01-01

    A detailed study of electric field, current and conductivities associated with an auroral arc was made in a coordinated rocket and radar experiment in Alaska on March 9, 1978. The payload, designated 29.007 UE, was launched at 1013 p.m. local time. It penetrated the diffuse aurora on the upleg and at apogee traversed field lines connected to a stable auroral arc of 40 kR intensity. Among the instruments carried by the payload were a vector magnetometer, a set of electrostatic double probes and a set of electron and proton spectrometers. Simultaneous electron density and line-of-sight velocity measurements were made by Chatanika radar operating in an elevation scan mode in the magnetic meridian plane. Both the radar and rocket measurements indicated that the zonal electric field was westward and approximately constant across the arc with a magnitude of about 7 mV/m. Small differences between the rocket and radar zonal electric field measurements indicated the presence of upward drifting ions in the region of the arc. The meridional field was large and northward equatorward of the arc, but negligible within the arc. Conductivities computed from measured fluxes of energetic electrons agreed well with the conductivities derived from the radar measureements of electron density. The electric field and conductivity measurements indicated that the zonal currents were eastward equatorward of the arc and westward within the arc. These electrojet currents agreed well with those inferred from the rocket magnetometer data. Better agreement was obtained when a westward neutral wind was added. The westward wind was also consistent with differences between the rocket and radar meridional electric fields. The meridional currents computed from the electric field measurements were northward over the entire region

  10. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  11. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  12. Developments in radar and remote-sensing methods for measuring and forecasting rainfall.

    Collier, C G

    2002-07-15

    Over the last 25 years or so, weather-radar networks have become an integral part of operational meteorological observing systems. While measurements of rainfall made using radar systems have been used qualitatively by weather forecasters, and by some operational hydrologists, acceptance has been limited as a consequence of uncertainties in the quality of the data. Nevertheless, new algorithms for improving the accuracy of radar measurements of rainfall have been developed, including the potential to calibrate radars using the measurements of attenuation on microwave telecommunications links. Likewise, ways of assimilating these data into both meteorological and hydrological models are being developed. In this paper we review the current accuracy of radar estimates of rainfall, pointing out those approaches to the improvement of accuracy which are likely to be most successful operationally. Comment is made on the usefulness of satellite data for estimating rainfall in a flood-forecasting context. Finally, problems in coping with the error characteristics of all these data using both simple schemes and more complex four-dimensional variational analysis are being addressed, and are discussed briefly in this paper.

  13. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  14. Field campaign for the comparison of SOUSY radar wind measurements with rawinsonde and model data

    H. Steinhagen

    Full Text Available A field campaign was carried out from 26 October to 7 November 1992, using the SOUSY-VHF radar and a mobile rawinsonde system installed and operated nearby to produce vertical wind profiles. The purpose of this campaign was to compare the two types of wind measurements with one another and with results from forecast models. Numerical algorithms were developed and applied to the radar data in order to eliminate random errors, correct for velocity aliasing, and calculate the effective zenith angle of the off-vertical beams. Differences between wind profiler data and rawinsonde or model results depend not only upon the errors of the different systems, but also on temporal and spatial variations of the wind field. Therefore, methods for the comparison of radar and rawinsonde data were developed which take into consideration these variations. The practical potential of these methods is demonstrated by comparisons of rawinsonde and radar wind profiles. The comparison of radar data and model output shows excellent agreement in the direction and in the speed of the wind at virtually all altitudes. An evaluation of the quality of wind profiler measurements is possible using the estimation of variance and variability of wind components.

  15. Field campaign for the comparison of SOUSY radar wind measurements with rawinsonde and model data

    H. Steinhagen

    1994-07-01

    Full Text Available A field campaign was carried out from 26 October to 7 November 1992, using the SOUSY-VHF radar and a mobile rawinsonde system installed and operated nearby to produce vertical wind profiles. The purpose of this campaign was to compare the two types of wind measurements with one another and with results from forecast models. Numerical algorithms were developed and applied to the radar data in order to eliminate random errors, correct for velocity aliasing, and calculate the effective zenith angle of the off-vertical beams. Differences between wind profiler data and rawinsonde or model results depend not only upon the errors of the different systems, but also on temporal and spatial variations of the wind field. Therefore, methods for the comparison of radar and rawinsonde data were developed which take into consideration these variations. The practical potential of these methods is demonstrated by comparisons of rawinsonde and radar wind profiles. The comparison of radar data and model output shows excellent agreement in the direction and in the speed of the wind at virtually all altitudes. An evaluation of the quality of wind profiler measurements is possible using the estimation of variance and variability of wind components.

  16. Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

    J. Dole

    2001-08-01

    Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing

  17. Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

    J. Dole

    Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .

    Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing

  18. Social Radar

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  19. Error Ellipsoid Analysis for the Diameter Measurement of Cylindroid Components Using a Laser Radar Measurement System

    Zhengchun Du

    2016-05-01

    Full Text Available The use of three-dimensional (3D data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS. First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS.

  20. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  1. Grimsel test site. Analysis of radar measurements performed at the Grimsel rock laboratory in October 1985

    Falk, L.; Magnusson, K.A.; Olsson, O.; Ammann, M.; Keusen, H.R.; Sattel, G.

    1988-02-01

    In October 1985 Swedish Geological Co. conducted a radar reflection survey at Grimsel Test Site to map discontinuities in the rock mass of the Underground Seismic (US) test field. These measurements first designed as a test of the equipment at that specific site allowed a comprehensive interpretation of the geometrical structure of the test field. The geological interpretation of the radar reflectors observed is discussed and a possible way is shown to construct a geological model of a site using the combination of radar results and geological information. Additionally to these results the report describes the radar equipment and the theoretical background for the analysis of the data. The main geological features in the area under investigation, situated in the 'Zentraler Aaregranit', are lamprophyre dykes and fracture/shear zones. Their position and strike have been determined using single- and crosshole radar data, SABIS data (accoustic televiewer) as well as existing geological information from the boreholes or the drifts under the assumption of steep dipping elements (70 to 90 o ). (author) 10 refs., 32 figs., 17 tabs

  2. Relating multifrequency radar backscattering to forest biomass: Modeling and AIRSAR measurement

    Sun, Guo-Qing; Ranson, K. Jon

    1992-01-01

    During the last several years, significant efforts in microwave remote sensing were devoted to relating forest parameters to radar backscattering coefficients. These and other studies showed that in most cases, the longer wavelength (i.e. P band) and cross-polarization (HV) backscattering had higher sensitivity and better correlation to forest biomass. This research examines this relationship in a northern forest area through both backscatter modeling and synthetic aperture radar (SAR) data analysis. The field measurements were used to estimate stand biomass from forest weight tables. The backscatter model described by Sun et al. was modified to simulate the backscattering coefficients with respect to stand biomass. The average number of trees per square meter or radar resolution cell, and the average tree height or diameter breast height (dbh) in the forest stand are the driving parameters of the model. The rest of the soil surface, orientation, and size distributions of leaves and branches, remain unchanged in the simulations.

  3. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test

  4. Sensitivity of C-Band Polarimetric Radar-Based Drop Size Distribution Measurements to Maximum Diameter Assumptions

    Carey, Lawrence D.; Petersen, Walter A.

    2011-01-01

    The estimation of rain drop size distribution (DSD) parameters from polarimetric radar observations is accomplished by first establishing a relationship between differential reflectivity (Z(sub dr)) and the central tendency of the rain DSD such as the median volume diameter (D0). Since Z(sub dr) does not provide a direct measurement of DSD central tendency, the relationship is typically derived empirically from rain drop and radar scattering models (e.g., D0 = F[Z (sub dr)] ). Past studies have explored the general sensitivity of these models to temperature, radar wavelength, the drop shape vs. size relation, and DSD variability. Much progress has been made in recent years in measuring the drop shape and DSD variability using surface-based disdrometers, such as the 2D Video disdrometer (2DVD), and documenting their impact on polarimetric radar techniques. In addition to measuring drop shape, another advantage of the 2DVD over earlier impact type disdrometers is its ability to resolve drop diameters in excess of 5 mm. Despite this improvement, the sampling limitations of a disdrometer, including the 2DVD, make it very difficult to adequately measure the maximum drop diameter (D(sub max)) present in a typical radar resolution volume. As a result, D(sub max) must still be assumed in the drop and radar models from which D0 = F[Z(sub dr)] is derived. Since scattering resonance at C-band wavelengths begins to occur in drop diameters larger than about 5 mm, modeled C-band radar parameters, particularly Z(sub dr), can be sensitive to D(sub max) assumptions. In past C-band radar studies, a variety of D(sub max) assumptions have been made, including the actual disdrometer estimate of D(sub max) during a typical sampling period (e.g., 1-3 minutes), D(sub max) = C (where C is constant at values from 5 to 8 mm), and D(sub max) = M*D0 (where the constant multiple, M, is fixed at values ranging from 2.5 to 3.5). The overall objective of this NASA Global Precipitation Measurement

  5. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  6. Characterization of VHF radar observations associated with equatorial Spread F by narrow-band optical measurements

    R. Sekar

    2004-09-01

    Full Text Available The VHF radars have been extensively used to investigate the structures and dynamics of equatorial Spread F (ESF irregularities. However, unambiguous identification of the nature of the structures in terms of plasma depletion or enhancement requires another technique, as the return echo measured by VHF radar is proportional to the square of the electron density fluctuations. In order to address this issue, co-ordinated radar backscatter and thermospheric airglow intensity measurements were carried out during March 2003 from the MST radar site at Gadanki. Temporal variations of 630.0-nm and 777.4-nm emission intensities reveal small-scale ("micro" and large-scale ("macro" variations during the period of observation. The micro variations are absent on non-ESF nights while the macro variations are present on both ESF and non-ESF nights. In addition to the well-known anti-correlation between the base height of the F-region and the nocturnal variation of thermospheric airglow intensities, the variation of the base height of the F-layer, on occasion, is found to manifest as a bottomside wave-like structure, as seen by VHF radar on an ESF night. The micro variations in the airglow intensities are associated with large-scale irregular plasma structures and found to be in correspondence with the "plume" structures obtained by VHF radar. In addition to the commonly observed depletions with upward movement, the observation unequivocally reveals the presence of plasma enhancements which move downwards. The observation of enhancement in 777.4-nm airglow intensity, which is characterized as plasma enhancement, provides an experimental verification of the earlier prediction based on numerical modeling studies.

  7. Ground penetrating radar antenna measurements based on plane-wave expansions

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  8. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  9. Atomic bomb made in Germany. Geo-radar measurements provide new insights

    Hauk, Rolf-Guenter; Focken, Christel

    2017-01-01

    The authors describe new geo radar measurements In Jonastal and discuss the results in relation to rumors on German efforts to build an atomic bond during the Second World War. The book includes available documentation on German and American research and technological activities (Manhattan project).

  10. Dynamic radar cross section measurements of a full-scale aircraft for RCS modelling validation

    Van Schalkwyk, Richard F

    2017-10-01

    Full Text Available In this paper the process followed in generating a high fidelity reference data set for radar cross section (RCS) modelling validation for a full-scale aircraft, is presented. An overview of two dynamic RCS measurement campaigns, involving both...

  11. Plans for the Meter Class Autonomous Telescope and Potential Coordinated Measurements with Kwajalein Radars

    Stansberry, Gene; Kervin, Paul; Mulrooney, Mark

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Orbital Debris Program Office is teaming with the US Air Force Research Laboratory's (AFRL) Maui Optical Site to deploy a moderate field-of-view, 1.3 m aperture, optical telescope for orbital debris applications. The telescope will be located on the island of Legan in the Kwajalein Atoll and is scheduled for completion in the Spring of 2011. The telescope is intended to sample both low inclination/high eccentricity orbits and near geosynchronous orbits. The telescope will have a 1 deg diagonal field-of-view on a 4K x 4K CCD. The telescope is expected to be able to detect 10-cm diameter debris at geosynchronous altitudes (5 sec exposure assuming a spherical specular phase function w/ albedo =0.13). Once operational, the telescope has the potential of conducting simultaneous observations with radars operated by the US Army at Kwajalein Atoll (USAKA) and located on the island of Roi-Namur, approximately 55 km to the north of Legan. Four radars, representing 6 frequency bands, are available for use: ALTAIR (ARPA-Long Range Tracking and Instrumentation Radar) operating at VHF & UHF, TRADEX (Target Resolution and Discrimination Experiment) operating at L-band and S-band, ALCOR (ARPA-Lincoln C-band Observables Radar) operating at S-band, and MMW (Millimeter Wave) Radar operating at Ka-band. Also potentially available is the X-band GBRP (Ground Based Radar-Prototype located 25 km to the southeast of Legan on the main island of Kwajalein.

  12. Principles of modern radar systems

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  13. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    Marco Gabella

    2017-11-01

    Full Text Available The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1 the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE; (2 the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR; (3 a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip is used; (4 spaceborne observations, acquired by the dual-wavelength precipitation radar on board the Global Precipitation Measuring (GPM core satellite. There are obviously large differences in these sampling modes, which we have tried to minimize by integrating synchronous observations taken during the first 2 years of the GPM mission. The data comprises 327 “wet” overpasses of Switzerland, taken after the launch of GPM in February 2014. By comparing the GPM radar estimates with the MeteoSwiss products, a similar performance was found in terms of bias. On average (whole country, all days and seasons, both solid and liquid phases, underestimation is as large as −3.0 (−3.4 dB with respect to RADAR (GAUGE. GPM is not suitable for assessing what product is the best in terms of average precipitation over the Alps. GPM can nevertheless be used to evaluate the dispersion of the error around the mean, which is a measure of the geographical distribution of the error inside the country. Using 221 rain-gauge sites, the result is clear both in terms of correlation and in terms of scatter (a robust, weighted measure of the dispersion of the multiplicative error around the mean. The best agreement was observed between GPM and CombiPrecip, and, next, between GPM and RADAR, whereas a larger disagreement was found between GPM and GAUGE. Hence, GPM confirms that, for precipitation mapping in the Alpine region, the best results are obtained by combining ground-based radar with rain-gauge measurements using

  14. Ionospheric propagation effects on spectral widths measured by SuperDARN HF radars

    X. Vallières

    2004-06-01

    Full Text Available SuperDARN HF radars provide a global survey of the large-scale convection transversely to the Earth's magnetic field in the high-latitude ionosphere. In addition to the mean plasma velocity, this network also provides measurements of spectral widths which are related to the level of turbulence of the sounded plasma. There is an increasing interest in using spectral widths in geophysical studies, since they are used to monitor the footprints of several magnetospheric regions. In the present paper, we show the effect of radio wave propagation through a typical turbulent ionosphere on spectral widths measured by SuperDARN radars. This effect has already been evidenced experimentally in a previous paper. Here, we model the effects of meso-scale structures on a radar wave front and study their impact on a typical measurement. Numerical simulations reproduce the effect evidenced experimentally and show the role of meso-scale structures (1-10km in the systematic bias that affects spectral width values. As in experimental data, this effect is shown to be increasing with decreasing radar frequency.

  15. Ionospheric propagation effects on spectral widths measured by SuperDARN HF radars

    X. Vallières

    2004-06-01

    Full Text Available SuperDARN HF radars provide a global survey of the large-scale convection transversely to the Earth's magnetic field in the high-latitude ionosphere. In addition to the mean plasma velocity, this network also provides measurements of spectral widths which are related to the level of turbulence of the sounded plasma. There is an increasing interest in using spectral widths in geophysical studies, since they are used to monitor the footprints of several magnetospheric regions. In the present paper, we show the effect of radio wave propagation through a typical turbulent ionosphere on spectral widths measured by SuperDARN radars. This effect has already been evidenced experimentally in a previous paper. Here, we model the effects of meso-scale structures on a radar wave front and study their impact on a typical measurement. Numerical simulations reproduce the effect evidenced experimentally and show the role of meso-scale structures (1-10km in the systematic bias that affects spectral width values. As in experimental data, this effect is shown to be increasing with decreasing radar frequency.

  16. Radar and photometric measurements of an intense type A red aurora

    Robinson, R. M.; Mende, S. B.; Vondrak, R. R.; Kozyra, J. U.; Nagy, A. F.

    1985-01-01

    On the evening of March 5, 1981, an intense, type A red aurora appeared over southern Alaska. Radar and photometric measurements were made of the aurora from the Chatanika radar site. The line of sight intensity of the 630.0-nm emissions exceeded 150 kR and was accompanied by enhanced emissions at 486.1 and 427.8 nm. The Chatanika radar measured electron densities of 10 to the 6th per cu cm and electron temperatures of 6000 K at an altitude of 400 km and an invariant latitude of 59 deg in association with the aurora. Comparison of optical and radar measurements indicated that the 630.0-nm emissions were produced to a large degree by thermal excitation of O(1D) in the region of high electron temperatures and densities. Model calculations indicate that the observed density and temperature enhancements and the related optical emissions were the results of a relatively short duration (5-10 min) pulse of precipitating, low-energy (about 30 eV) electrons. Whereas conventional stable auroral red arcs are associated with a gradual decrease in ring current energy density during the recovery phase of a magnetic storm, the type A red aurora may be produced by impulsive ring current energy loss during the main phase.

  17. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  18. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    D. E. Scipión

    2016-09-01

    Full Text Available The SOUSY (SOUnding SYstem radar was relocated to the Jicamarca Radio Observatory (JRO near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz, it is able to characterize clear-air backscattering with high range resolution (37.5 m. A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz using the DataHawk (DH small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  19. Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG

    Merkel, K.D.; Krishna Mohan, R.; Cole, Z.; Chang, T.; Olson, A.; Babbitt, W.R.

    2004-01-01

    An optical device is described and demonstrated that uses a spatial-spectral holographic material to perform coherent signal processing operations on analog, high-bandwidth optical signals with large time-bandwidth-products. Signal processing is performed as the material records the coherent spectral interference (or cross-power spectrum) of modulated optical signals as a spatial-spectral population grating between electronic transition states. Multiple exposures of processing pulse sequences are integrated with increasing grating strength. The device, coined as the Spatial-Spectral Coherent Holographic Integrating Processor (or S 2 -CHIP), is described as currently envisioned for a broadband, mid-to-high pulse repetition frequency range-Doppler radar signal processing system. Experiments were performed in Tm:YAG (0.1 at% at 5 K) to demonstrate time delay variation, integration dynamics, and effects of coding as applied to a radar range processor. These demonstrations used baseband modulation with a 1 gigabit per second (GPBS) bit rate and code length of 512 bits (512 ns), where delays up to 1.0 μs were resolved with greater than a 40 dB peak to RMS sidelobe ratio after 800 processing shots. Multi-GHz processing was demonstrated using a bit rate of 2.5 GBPS (baseband modulation) and code length of 2048 bits (819.2 ns). Processing of double-sideband modulated signals on a radio frequency (RF) carrier was demonstrated, where 512 bit, 1.0 GBPS codes were modulated on a 1.75 GHz carrier and then modulated on the optical carrier

  20. Effects of Compound K-Distributed Sea Clutter on Angle Measurement of Wideband Monopulse Radar

    Hong Zhu

    2017-01-01

    Full Text Available The effects of compound K-distributed sea clutter on angle measurement of wideband monopulse radar are investigated in this paper. We apply the conditional probability density function (pdf of monopulse ratio (MR error to analyze these effects. Based on the angle measurement procedure of the wideband monopulse radar, this conditional pdf is first deduced in detail for the case of compound K-distributed sea clutter plus noise. Herein, the spatial correlation of the texture components for each channel clutter and the correlation of the texture components between the sum and difference channel clutters are considered, and two extreme situations for each of them are tackled. Referring to the measured sea clutter data, angle measurement performances in various K-distributed sea clutter plus noise circumstances are simulated, and the effects of compound K-distributed sea clutter on angle measurement are discussed.

  1. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  2. Retrievals of Ice Cloud Microphysical Properties of Deep Convective Systems using Radar Measurements

    Tian, J.; Dong, X.; Xi, B.; Wang, J.; Homeyer, C. R.

    2015-12-01

    This study presents innovative algorithms for retrieving ice cloud microphysical properties of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and newly derived empirical relationships from aircraft in situ measurements in Wang et al. (2015) during the Midlatitude Continental Convective Clouds Experiment (MC3E). With composite gridded NEXRAD radar reflectivity, four-dimensional (space-time) ice cloud microphysical properties of DCSs are retrieved, which is not possible from either in situ sampling at a single altitude or from vertical pointing radar measurements. For this study, aircraft in situ measurements provide the best-estimated ice cloud microphysical properties for validating the radar retrievals. Two statistical comparisons between retrieved and aircraft in situ measured ice microphysical properties are conducted from six selected cases during MC3E. For the temporal-averaged method, the averaged ice water content (IWC) and median mass diameter (Dm) from aircraft in situ measurements are 0.50 g m-3 and 1.51 mm, while the retrievals from radar reflectivity have negative biases of 0.12 g m-3 (24%) and 0.02 mm (1.3%) with correlations of 0.71 and 0.48, respectively. For the spatial-averaged method, the IWC retrievals are closer to the aircraft results (0.51 vs. 0.47 g m-3) with a positive bias of 8.5%, whereas the Dm retrievals are larger than the aircraft results (1.65 mm vs. 1.51 mm) with a positive bias of 9.3%. The retrieved IWCs decrease from ~0.6 g m-3 at 5 km to ~0.15 g m-3 at 13 km, and Dm values decrease from ~2 mm to ~0.7 mm at the same levels. In general, the aircraft in situ measured IWC and Dm values at each level are within one standard derivation of retrieved properties. Good agreements between microphysical properties measured from aircraft and retrieved from radar reflectivity measurements indicate the reasonable accuracy of our retrievals.

  3. Mapping ionospheric backscatter measured by the SuperDARN HF radars – Part 2: Assessing SuperDARN virtual height models

    T. K. Yeoman

    2008-05-01

    Full Text Available The Super Dual Auroral Radar Network (SuperDARN network of HF coherent backscatter radars form a unique global diagnostic of large-scale ionospheric and magnetospheric dynamics in the Northern and Southern Hemispheres. Currently the ground projections of the HF radar returns are routinely determined by a simple rangefinding algorithm, which takes no account of the prevailing, or indeed the average, HF propagation conditions. This is in spite of the fact that both direct E- and F-region backscatter and 1½-hop E- and F-region backscatter are commonly used in geophysical interpretation of the data. In a companion paper, Chisham et al. (2008 have suggested a new virtual height model for SuperDARN, based on average measured propagation paths. Over shorter propagation paths the existing rangefinding algorithm is adequate, but mapping errors become significant for longer paths where the roundness of the Earth becomes important, and a correct assumption of virtual height becomes more difficult. The SuperDARN radar at Hankasalmi has a propagation path to high power HF ionospheric modification facilities at both Tromsø on a ½-hop path and SPEAR on a 1½-hop path. The SuperDARN radar at Þykkvibǽr has propagation paths to both facilities over 1½-hop paths. These paths provide an opportunity to quantitatively test the available SuperDARN virtual height models. It is also possible to use HF radar backscatter which has been artificially induced by the ionospheric heaters as an accurate calibration point for the Hankasalmi elevation angle of arrival data, providing a range correction algorithm for the SuperDARN radars which directly uses elevation angle. These developments enable the accurate mappings of the SuperDARN electric field measurements which are required for the growing number of multi-instrument studies of the Earth's ionosphere and magnetosphere.

  4. Corrections for the effects of significant wave height and attitude on Geosat radar altimeter measurements

    Hayne, G. S.; Hancock, D. W., III

    1990-01-01

    Range estimates from a radar altimeter have biases which are a function of the significant wave height (SWH) and the satellite attitude angle (AA). Based on results of prelaunch Geosat modeling and simulation, a correction for SWH and AA was already applied to the sea-surface height estimates from Geosat's production data processing. By fitting a detailed model radar return waveform to Geosat waveform sampler data, it is possible to provide independent estimates of the height bias, the SWH, and the AA. The waveform fitting has been carried out for 10-sec averages of Geosat waveform sampler data over a wide range of SWH and AA values. The results confirm that Geosat sea-surface-height correction is good to well within the original dm-level specification, but that an additional height correction can be made at the level of several cm.

  5. Application of 2D MUSIC algorithm to range-azimuth FMCW radar data

    Belfiori, F.; Rossum, W.L. van; Hoogeboom, P.

    2012-01-01

    This paper investigates the use of a 2D MUSIC algorithm for the joint estimation of angular and range target locations. Coherency and correlation characteristics of the target signals are taken into account and 2D spatial smoothing technique is preliminarily applied in order to ensure the

  6. FrFT-CSWSF: Estimating cross-range velocities of ground moving targets using multistatic synthetic aperture radar

    Li Chenlei

    2014-10-01

    Full Text Available Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar (SAR, which is important for ground moving target indication (GMTI. Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model (ESTIM of the azimuth signal, has two steps: first, a set of finite impulse response (FIR filter banks based on a fractional Fourier transform (FrFT is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting (CSWSF algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.

  7. Research cooperation of the development of laser radar for environmental measurements; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    NONE

    1997-03-01

    Research and development of the laser radar for measuring the air pollution in urban areas and the environmental information network have been conducted through the cooperation with Indonesian researchers. A measurement system suitable to actual situation of Indonesia has been constructed. In FY 1996, some works have been conducted as in the final fiscal year. To set the laser radar for environmental measurements and to make a plan of measurement research, conditions of air pollution in Indonesia and setting places of systems have been investigated. Opinions for the cooperation research have been exchanged with Indonesian researchers. Actual trends of the environmental measurements technology using laser radar have been surveyed. Indonesian researchers have been invited to learn operation and data processing of the system. One unit of MIE diffusion laser radar system has been designed and fabricated, and an additional data processing program has been made. The system has been delivered to Jakarta and installed. After the adjustment, performance tests have been conducted to complete the construction of the system. 3 refs., 72 figs., 10 tabs.

  8. CENTIMETER COSMO-SKYMED RANGE MEASUREMENTS FOR MONITORING GROUND DISPLACEMENTS

    F. Fratarcangeli

    2016-06-01

    Full Text Available The SAR (Synthetic Aperture Radar imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR, based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano – Northern Italy, where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS, taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one stable PS’s are

  9. Observers' measurements in premetric electrodynamics: Time and radar length

    Gürlebeck, Norman; Pfeifer, Christian

    2018-04-01

    The description of an observer's measurement in general relativity and the standard model of particle physics is closely related to the spacetime metric. In order to understand and interpret measurements, which test the metric structure of the spacetime, like the classical Michelson-Morley, Ives-Stilwell, Kennedy-Thorndike experiments or frequency comparison experiments in general, it is necessary to describe them in theories, which go beyond the Lorentzian metric structure. However, this requires a description of an observer's measurement without relying on a metric. We provide such a description of an observer's measurement of the fundamental quantities time and length derived from a premetric perturbation of Maxwell's electrodynamics and a discussion on how these measurements influence classical relativistic observables like time dilation and length contraction. Most importantly, we find that the modification of electrodynamics influences the measurements at two instances: the propagation of light is altered as well as the observer's proper time normalization. When interpreting the results of a specific experiment, both effects cannot be disentangled, in general, and have to be taken into account.

  10. Coordinated measurements made by the Sondrestrom radar and the Polar Bear ultraviolet imager

    Robinson, R.; Vondrak, R.; Dabbs, T.; Vickrey, J.; Eastes, R.; Del Greco, F.; Huffman, R.; Meng, C.; Daniell, R.; Strickland, D.; Vondrak, R.

    1992-01-01

    In 1986 and 1987 the Sondrestrom incoherent scatter radar in Greenland was operated routinely in coordination with selected overpasses of the Polar Bear satellite. For these experiments the auroral ionospheric remote sensor on Polar Bear obtained images of auroral emissions in two far ultraviolet wavelength bands centered at approximately 136 and 160 nm and one visible band centered at 391.4 nm. Measurements at these three wavelengths were extracted from the images for comparison with the coincident radar measurements. Model calculations have shown that for Maxwellian incident electron distributions the ratio between the 136-nm luminosity and 391.4-nm luminosity can be used to estimate the mean energy of precipitating electrons. Once the mean energy is known, then either of the two emissions can be used to determine the total energy flux. This procedure is used to determine the properties of the incident electron distribution during three midnight sector auroral events over Sondre Stromfjord. The incident electron flux is then used to calculate the expected height profile of electron density which is compared with the simultaneous and coincident radar measurements. The results show that the derived profiles agree well with the measured profiles both in the peak electron density and the altitude of the peak. The accuracy with which the peak of the profile is predicted by this technique is such that many important ionospheric parameters can be reliably inferred from remote measurements, including, for example, the height-integrated electrical conductivities

  11. Error Analysis of Relative Calibration for RCS Measurement on Ground Plane Range

    Wu Peng-fei

    2012-03-01

    Full Text Available Ground plane range is a kind of outdoor Radar Cross Section (RCS test range used for static measurement of full-size or scaled targets. Starting from the characteristics of ground plane range, the impact of environments on targets and calibrators is analyzed during calibration in the RCS measurements. The error of relative calibration produced by the different illumination of target and calibrator is studied. The relative calibration technique used in ground plane range is to place the calibrator on a fixed and auxiliary pylon somewhere between the radar and the target under test. By considering the effect of ground reflection and antenna pattern, the relationship between the magnitude of echoes and the position of calibrator is discussed. According to the different distances between the calibrator and target, the difference between free space and ground plane range is studied and the error of relative calibration is calculated. Numerical simulation results are presented with useful conclusions. The relative calibration error varies with the position of calibrator, frequency and antenna beam width. In most case, set calibrator close to the target may keep the error under control.

  12. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Juha Lemmetyinen

    2018-01-01

    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  13. Constraining variable density of ice shelves using wide-angle radar measurements

    Drews, Reinhard; Brown, Joel; Matsuoka, Kenichi; Witrant, Emmanuel; Philippe, Morgane; Hubbard, Bryn; Pattyn, Frank

    2016-04-01

    The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium, for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g., temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar data sets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. We reconstruct depth to internal reflectors, local ice thickness, and firn-air content using a novel algorithm that includes traveltime inversion and ray tracing with a prescribed shape of the depth-density relationship. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggest that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals that the firn inside the channel is 4.7 % denser than that outside the channel. Hydrostatic ice thickness calculations used for determining basal melt rates should account for the denser firn in ice-shelf channels. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.

  14. Ice sheet anisotropy measured with polarimetric ice sounding radar

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  15. The measurement of echodirection in a phased-array radar

    Rijsdijk, F.B.; Spek, G.A. van der

    1978-01-01

    For a planar-array antenna with a monopulse feed horn, this study describes a simple algorithm for the determination of the direction of target echoes. Antenna pattern measurements of the array indicate that the direction sines of a received wavefront can be independently obtained with one simple

  16. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery.

    Jaenicke, J; Englhart, S; Siegert, F

    2011-03-01

    In the context of the ongoing climate change discussions the importance of peatlands as carbon stores is increasingly recognised in the public. Drainage, deforestation and peat fires are the main reasons for the release of huge amounts of carbon from peatlands. Successful restoration of degraded tropical peatlands is of high interest due to their huge carbon store and sequestration potential. The blocking of drainage canals by dam building has become one of the most important measures to restore the hydrology and the ecological function of the peat domes. This study investigates the capability of using multitemporal radar remote sensing imagery for monitoring the hydrological effects of these measures. The study area is the former Mega Rice Project area in Central Kalimantan, Indonesia, where peat drainage and forest degradation is especially intense. Restoration measures started in July 2004 by building 30 large dams until June 2008. We applied change detection analysis with more than 80 ENVISAT ASAR and ALOS PALSAR images, acquired between 2004 and 2009. Radar signal increases of up to 1.36 dB show that high frequency multitemporal radar satellite imagery can be used to detect an increase in peat soil moisture after dam construction, especially in deforested areas with a high density of dams. Furthermore, a strong correlation between cross-polarised radar backscatter coefficients and groundwater levels above -50 cm was found. Monitoring peatland rewetting and quantifying groundwater level variations is important information for vegetation re-establishment, fire hazard warning and making carbon emission mitigation tradable under the voluntary carbon market or REDD (Reducing Emissions from Deforestation and Degradation) mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Noise and LPI radar as part of counter-drone mitigation system measures

    Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles

    2017-05-01

    With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.

  18. Reconciling Electrical Properties of Titan's Surface Derived from Cassini RADAR Scatterometer and Radiometer Measurements

    Zebker, H. A.; Wye, L. C.; Janssen, M.; Paganelli, F.; Cassini RADAR Team

    2006-12-01

    We observe Titan, Saturn's largest moon, using active and passive microwave instruments carried on board the Cassini spacecraft. The 2.2-cm wavelength penetrates the thick atmosphere and provides surface measurements at resolutions from 10-200 km over much of the satellite's surface. The emissivity and reflectivity of surface features are generally anticorrelated, and both values are fairly high. Inversion of either set of data alone yields dielectric constants ranging from 1.5 to 3 or 4, consistent with an icy hydrocarbon or water ice composition. However, the dielectric constants retrieved from radiometric data alone are usually less than those inferred from backscatter measurements, a discrepancy consistent with similar analyses dating back to lunar observations in the 1960's. Here we seek to reconcile Titan's reflectivity and emissivity observations using a single physical model of the surface. Our approach is to calculate the energy scattered by Titan's surface and near subsurface, with the remainder absorbed. In equilibrium the absorption equals the emission, so that both the reflectivity and emissivity are described by the model. We use a form of the Kirchhoff model for modeling surface scatter, and a model based on weak localization of light for the volume scatter. With this model we present dielectric constant and surface roughness parameters that match both sets of Cassini RADAR observations over limited regions on Titan's surface, helping to constrain the composition and roughness of the surface. Most regions display electrical properties consistent with solid surfaces, however some of the darker "lake-like" features at higher latitudes can be modeled as either solid or liquid materials. The ambiguity arises from the limited set of observational angles available.

  19. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Handayani, Gunawan

    2015-01-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented

  20. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  1. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  2. High-resolution humidity profiles retrieved from wind profiler radar measurements

    Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo

    2018-03-01

    The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.

  3. A simple biota removal algorithm for 35 GHz cloud radar measurements

    Kalapureddy, Madhu Chandra R.; Sukanya, Patra; Das, Subrata K.; Deshpande, Sachin M.; Pandithurai, Govindan; Pazamany, Andrew L.; Ambuj K., Jha; Chakravarty, Kaustav; Kalekar, Prasad; Krishna Devisetty, Hari; Annam, Sreenivas

    2018-03-01

    Cloud radar reflectivity profiles can be an important measurement for the investigation of cloud vertical structure (CVS). However, extracting intended meteorological cloud content from the measurement often demands an effective technique or algorithm that can reduce error and observational uncertainties in the recorded data. In this work, a technique is proposed to identify and separate cloud and non-hydrometeor echoes using the radar Doppler spectral moments profile measurements. The point and volume target-based theoretical radar sensitivity curves are used for removing the receiver noise floor and identified radar echoes are scrutinized according to the signal decorrelation period. Here, it is hypothesized that cloud echoes are observed to be temporally more coherent and homogenous and have a longer correlation period than biota. That can be checked statistically using ˜ 4 s sliding mean and standard deviation value of reflectivity profiles. The above step helps in screen out clouds critically by filtering out the biota. The final important step strives for the retrieval of cloud height. The proposed algorithm potentially identifies cloud height solely through the systematic characterization of Z variability using the local atmospheric vertical structure knowledge besides to the theoretical, statistical and echo tracing tools. Thus, characterization of high-resolution cloud radar reflectivity profile measurements has been done with the theoretical echo sensitivity curves and observed echo statistics for the true cloud height tracking (TEST). TEST showed superior performance in screening out clouds and filtering out isolated insects. TEST constrained with polarimetric measurements was found to be more promising under high-density biota whereas TEST combined with linear depolarization ratio and spectral width perform potentially to filter out biota within the highly turbulent shallow cumulus clouds in the convective boundary layer (CBL). This TEST technique is

  4. Combined High Spectral Resolution Lidar and Millimeter Wavelength Radar Measurement of Ice Crystal Precipitation

    Eloranta, Edwin [Univ. of Wisconsin, Madison, WI (United States)

    2016-10-28

    The goal of this research has been to improve measurements of snowfall using a combination of millimeter-wavelength radar and High Spectral Resolution Lidar (HSRL) Observations. Snowflakes are large compared to the 532nm HSRL wavelength and small compared to the 3.2 and 8.6 mm wavelength radars used in this study. This places the particles in the optical scattering regime of the HSRL, where extinction cross-section is proportional to the projected area of the particles, and in the Rayleigh regime for the radar, where the backscatter cross-section is proportional to the mass-squared of the particles. Forming a ratio of the radar measured cross-section to the HSRL measured cross section eliminates any dependence on the number of scattering particles, yielding a quantity proportional to the average mass-squared of the snowflakes over the average area of the flakes. Using simultaneous radar measurements of particle fall velocities, which are dependent particle mass and cross-sectional area it is possible to derive the average mass of the snow flakes, and with the radar measured fall velocities compute the snowfall rate. Since this retrieval requires the optical extinction cross-section we began by considering errors this quantity. The HSRL is particularly good at measuring the backscatter cross-section. In previous studies of snowfall in the high Arctic were able to estimate the extinction cross-section directly as a fixed ratio to the backscatter cross-section. Measurements acquired in the STORMVEX experiment in Colorado showed that this approach was not valid in mid-latitude snowfalls and that direct measurement of the extinction cross-section is required. Attempts to measure the extinction directly uncovered shortcomings in thermal regulation and mechanical stability of the newly deployed DOE HSRL systems. These problems were largely mitigated by modifications installed in both of the DOE systems. We also investigated other sources of error in the HSRL direct

  5. CSU-CHILL Polarimetric Radar Measurements from a Severe Hail Storm in Eastern Colorado.

    Hubbert, J.; Bringi, V. N.; Carey, L. D.; Bolen, S.

    1998-08-01

    Polarimetric radar measurements made by the recently upgraded CSU-CHILL radar system in a severe hailstorm are analyzed permitting for the first time the combined use of Zh, ZDR, linear depolarization ratio (LDR), KDP, and h to infer hydrometeor types. A chase van equipped for manual collection of hail, and instrumented with a rain gauge, intercepted the storm core for 50 min. The period of golfball-sized hail is easily distinguished by high LDR (greater than or equal to 18 dB), negative ZDR (less than or equal to 0.5 dB), and low h (less than or equal to 0.93) values near the surface. Rainfall accumulation over the entire event (about 40 mm) estimated using KDP is in excellent agreement with the rain gauge measurement. Limited dual-Doppler synthesis using the CSU-CHILL and Denver WSR-88D radars permit estimates of the horizontal convergence at altitudes less than 3 km above ground level (AGL) at 1747 and 1812 mountain daylight time (MDT). Locations of peak horizontal convergence at these times are centered on well-defined positive ZDR columns. Vertical sections of multiparameter radar data at 1812 MDT are interpreted in terms of hydrometeor type. In particular, an enhanced LDR `cap' area on top of the the positive ZDR column is interpreted as a region of mixed phase with large drops mixed with partially frozen and frozen hydrometeors. A positive KDP column on the the western fringe of the main updraft is inferred to be the result of drops (1-2 mm) shed by wet hailstones. Swaths of large hail at the surface (inferred from LDR signatures) and positive ZDR at 3.5 km AGL suggest that potential frozen drop embryos are favorably located for growth into large hailstones. Thin section analysis of a sample of the large hailstones shows that 30%-40% have frozen drop embryos.

  6. Use of radar QPE for the derivation of Intensity-Duration-Frequency curves in a range of climatic regimes

    Marra, Francesco; Morin, Efrat

    2015-12-01

    Intensity-Duration-Frequency (IDF) curves are widely used in flood risk management because they provide an easy link between the characteristics of a rainfall event and the probability of its occurrence. Weather radars provide distributed rainfall estimates with high spatial and temporal resolutions and overcome the scarce representativeness of point-based rainfall for regions characterized by large gradients in rainfall climatology. This work explores the use of radar quantitative precipitation estimation (QPE) for the identification of IDF curves over a region with steep climatic transitions (Israel) using a unique radar data record (23 yr) and combined physical and empirical adjustment of the radar data. IDF relationships were derived by fitting a generalized extreme value distribution to the annual maximum series for durations of 20 min, 1 h and 4 h. Arid, semi-arid and Mediterranean climates were explored using 14 study cases. IDF curves derived from the study rain gauges were compared to those derived from radar and from nearby rain gauges characterized by similar climatology, taking into account the uncertainty linked with the fitting technique. Radar annual maxima and IDF curves were generally overestimated but in 70% of the cases (60% for a 100 yr return period), they lay within the rain gauge IDF confidence intervals. Overestimation tended to increase with return period, and this effect was enhanced in arid climates. This was mainly associated with radar estimation uncertainty, even if other effects, such as rain gauge temporal resolution, cannot be neglected. Climatological classification remained meaningful for the analysis of rainfall extremes and radar was able to discern climatology from rainfall frequency analysis.

  7. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  8. Research and development cooperation project on environmental measurement using laser radar in fiscal 1994; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    NONE

    1995-03-01

    The paper outlined activities in fiscal 1994 in the R and D cooperation project on a laser radar for environmental measurement. In the activities in fiscal 1994 of `the ODA laser radar development committee,` the committee held four meetings, two field surveys were carried out, and two researchers were invited from Indonesia. In the field survey, the environment in Jakarta city was investigated in terms of changes in population and number of the cars registered. Further, from data collected during 1994-1998 in the central Jakarta city, the following were made clear: the trend of a decrease in SO2, the trend of a rapid increase and an excess of NO2 content over the environmental standard, the status of pollution of which the level is close to the upper limit of the environmental standard of dust, etc. In the meeting of the policy study for the field survey at LIPI headquarters, Japan proposed a system which is constituted of a difference absorption laser radar, two Mie scattering laser radars, and a central processing unit. The sites proposed were studied in cooperation with Indonesia. 40 refs., 65 figs., 9 tabs.

  9. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  10. Storm Identification, Tracking and Forecasting Using High-Resolution Images of Short-Range X-Band Radar

    Sajid Shah

    2015-05-01

    Full Text Available Rain nowcasting is an essential part of weather monitoring. It plays a vital role in human life, ranging from advanced warning systems to scheduling open air events and tourism. A nowcasting system can be divided into three fundamental steps, i.e., storm identification, tracking and nowcasting. The main contribution of this work is to propose procedures for each step of the rain nowcasting tool and to objectively evaluate the performances of every step, focusing on two-dimension data collected from short-range X-band radars installed in different parts of Italy. This work presents the solution of previously unsolved problems in storm identification: first, the selection of suitable thresholds for storm identification; second, the isolation of false merger (loosely-connected storms; and third, the identification of a high reflectivity sub-storm within a large storm. The storm tracking step of the existing tools, such as TITANand SCIT, use only up to two storm attributes, i.e., center of mass and area. It is possible to use more attributes for tracking. Furthermore, the contribution of each attribute in storm tracking is yet to be investigated. This paper presents a novel procedure called SALdEdA (structure, amplitude, location, eccentricity difference and areal difference for storm tracking. This work also presents the contribution of each component of SALdEdA in storm tracking. The second order exponential smoothing strategy is used for storm nowcasting, where the growth and decay of each variable of interest is considered to be linear. We evaluated the major steps of our method. The adopted techniques for automatic threshold calculation are assessed with a 97% goodness. False merger and sub-storms within a cluster of storms are successfully handled. Furthermore, the storm tracking procedure produced good results with an accuracy of 99.34% for convective events and 100% for stratiform events.

  11. Evaluating precipitation in a regional climate model using ground-based radar measurements in Dronning Maud Land, East Antarctica

    Gorodetskaya, Irina; Maahn, Maximilan; Gallée, Hubert; Souverijns, Niels; Gossart, Alexandra; Kneifel, Stefan; Crewell, Susanne; Van Lipzig, Nicole

    2017-04-01

    Occasional very intense snowfall events over Dronning Maud Land (DML) region in East Antarctica, contributed significantly to the entire Antarctic ice sheet surface mass balance (SMB) during the last years. The meteorological-cloud-precipitation observatory running at the Princess Elisabeth station (PE) in the DML escarpment zone since 2009 (HYDRANT/AEROCLOUD projects), provides unique opportunity to estimate contribution of precipitation to the local snow accumulation and new data for evaluating precipitation in climate models. Our previous work using PE measurements showed that occasional intense precipitation events determine the total local yearly SMB and account for its large interannual variability. Here we use radar measurements to evaluate precipitation in a regional climate model with a special focus on intense precipitation events together with the large-scale atmospheric dynamics responsible for these events. The coupled snow-atmosphere regional climate model MAR (Modèle Atmosphérique Régional) is used to simulate climate and SMB in DML at 5-km horizontal resolution during 2012 using initial and boundary conditions from the European Centre for Medium-range Weather Forecasts (ECMWF) Interim re-analysis atmospheric and oceanic fields. Two evaluation approaches are used: observations-to-model and model-to-observations. In the first approach, snowfall rate (S) is derived from the MRR (vertically profiling 24-GHz precipitation radar) effective reflectivity factor (Ze) at 400 m agl using various Ze-S relationships for dry snow. The uncertainty in Ze-S relationships is constrained using snow particle size distribution from Snow Video Imager - Precipitation Imaging Package (SVI/PIP) and information about particle shapes. For the second approach we apply the Passive and Active Microwave radiative TRAnsfer model (PAMTRA), which allows direct comparison of the radar-measured and climate model-based vertical profiles of the radar Ze and Doppler velocity. In MAR

  12. SNOW THICKNESS ON AUSTRE GRØNFJORDBREEN, SVALBARD, FROM RADAR MEASUREMENTS AND STANDARD SNOW SURVEYS

    I. I. Lavrentiev

    2018-01-01

    Full Text Available Summary Comparison of two methods of measurements of snow cover thickness on the glacier Austre Grønfjordbreen, Svalbard was performed in the spring of 2014. These methods were the radar (500 MHz observations and standard snow surveys. Measurements were conducted in 77 different points on the surface of the glacier. A good correlation (R2 = 0.98 was revealed. In comparison with the data of snow surveys, the radar measurements show a similar but more detailed pattern of the distribution of the snow cover depth. The discrepancy between the depths of snow cover on maps plotted from data of both methods did not exceed 30 cm in most parts of the glacier. The standard error of interpolation of the radar data onto the entire glacier surface amounts, on average, to 18 cm. This corresponds to the error of radar measurements of 18.8% when an average snow depth is about 160 cm and 9.4% at its maximum thickness of 320 cm. The distance between the measurement points at which the spatial covariance of the snow depth disappears falls between 236 and 283 m along the glacier, and between 117 and 165 m across its position. We compared the results of radar measurements of the pulse-delay time of reflections from the base of the snow cover with the data of manual probe measurements at 10 points and direct measurements of snow depth and average density in 12 snow pits. The average speed of radio waves propagation in the snow was determined as Vcr = 23.4±0.2 cm ns−1. This magnitude and the Looyenga and Kovacs formulas allowed estimating the average density of snow cover ρL = 353.1±13.1 kg m−3 and ρK = 337.4±12.9 kg m−3. The difference from average density measured in 12 pits ρav.meas = 387.4±12.9 kg m−3 amounts to −10.8% and −14.8%. In 2014, according to snow and radar measurements, altitudinal gradient of snow accumulation on the glacier Austre Grønfjordbreen was equal to 0.21 m/100 m, which is smaller than the

  13. Site characterization and validation - monitoring of saline tracer transport by borehole radar measurements

    Olsson, O.; Andersson, P.; Gustafsson, E.

    1991-08-01

    The objective of this experiment was to map tracer transport in fractured crystalline rock through a combination of radar difference tomography and measurements of tracer concentration in boreholes and the validation drift. The experiment was performed twice, first the D-boreholes were used as a sink and then they were replaced by the validation drift and the experiment repeated. In both experiments saline tracer (200 ml/min, 2% salinity) was injected into fracture zone H about 25 m from the validation drift. The experiment revealed an inhomogeneous transmissivity distribution in Zone H. A significant portion of the tracer is transported upwards along Zone H and towards boreholes T1, T2, and W1. The breakthrough data from both experiments indicate that there are two major transport paths from borehole C2 to the D-boreholes/validation drift. One slow and diluted path to the bottom of the drift which carries the bulk of the mass and one fast path to the crown of the drift with high tracer concentration. The radar difference tomograms show that some tracer is lost through Zone S which intersects Zone H and is nearly perpendicular to it. The intersection between the two zones seems to constitute a preferred flow path. The breakthrough data and the radar difference tomograms have also been used to estimate flow porosity. The estimate obtained area of the same order approximately 10 -4 . (au) (28 refs.)

  14. Research and development of laser radar for environmental measurement. 2; Kankyo keisokuyo laser radar no kenkyu kaihatsu. 2

    NONE

    1995-03-01

    This project was received by Optoelectronic Industry and Technology Development Association from NEDO, and aims to contribute to the improvement of Indonesia's environmental administration through the development of an air pollution observing laser radar (LR) and of an environmental information network system fit for use in the country in cooperation with Indonesian engineers. LRs will be installed at several sites in an urban area where environmental problems are increasingly serious, and a observation network system will be constructed to link the laser radar sites. The observed data will be collected, analyzed, and processed by an observation data processing center for the investigation of the three-dimensional spatial distribution of air pollution to determine the actual state of air pollution over an urban area. The laser radars and the network will be placed in the city of Djakarta. The Indonesian authority responsible for the project is Indonesian Institute of Sciences. In fiscal 1994, part of the equipment (difference absorbing LR) was designed and manufactured, the design of the environmental information network system was developed, and various researches required in this connection were conducted. (NEDO)

  15. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  16. Surface current measurements in Juan de Fuca Strait using the SeaSonde HF [high frequency] radar

    Hodgins, D.O.

    1994-09-01

    The shore-based SeaSonde high-frequency (HF) radar was deployed for three weeks in summer 1993 to measure surface currents in the Strait of Georgia, British Columbia. Experimental objectives included documenting the complex flow regime generated by large tides and the brackish plume of the Fraser River, and determining the radar performance under low-wind, low-salinity conditions. The radar data showed that surface flows are dominated by the plume jet formed by the Fraser River outflow, giving rise to recurring, energetic eddies with scales of 8-12 km, strong flow meanders, and convergent fronts. These features were continuously modulated by the along-channel tidal flows. Comparisons with a detailed numerical model hindcast gave good correlation between observed and predicted flow fields, especially at tidal and low frequencies. Radar return was found to be correlated with local winds and radar performance was independent of salinity variations in the plume. Synthetic aperture radar (SAR) provides a map of the radar scattering characteristics of the ocean surface on a capillary wave scale. ERS-1 satellite and airborne SAR images for July 28, 1993 were obtained and surface features were examined in the context of the HF radar current fields. Results show that SAR images alone cannot reliably provide the dynamical data required in this region by oil spill models. Under certain conditions, however, the radar imagery offers valuable physical information on phenomena affecting oil slick development. Interpretation of SAR imagery in conjunction with other remote sensing information would offer more quantitative prediction data. 28 refs., 334 figs., 1 tab

  17. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  18. Observations of NEAs at Arecibo Observatory and NASA's IRTF: Combining Radar and Thermal Measurements to Better Understand NEA Physical Properties

    Nolan, Michael C.; Vervack, R. J.; Howell, E. S.; Magri, C.; Fernandez, Y. R.; Taylor, P. A.; Mueller, M.; Rivkin, A. S.; Benner, L. A. M.

    2010-01-01

    As we sample ever-smaller sizes of near-Earth asteroids (NEAs), we see an increasing variation in the range of physical properties. Radar experiments show a diverse range of shapes, surface features, and rotation states among NEAs. Infrared observations of these objects are equally varied,

  19. Research cooperation in the development of laser radar for environmental measurements. Environmental network; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku. Kankyo network

    NONE

    1997-03-01

    Among the research cooperation in the development of laser radar for environmental measurements with Indonesia between FY 1993 and FY 1996, results of the research and development of the environmental network are summarized. For the environmental information network, the Tokyo NOC is linked as an Internet connection point in Japan with the Jakarta NOC using an international dedicated line with a capacity of 64 Kbps. The Tokyo NOC is linked with domestic environmental information researchers using Internet. Thus, data stored in the data processing system of laser radar can be exchanged, information in both countries can be exchanged using E-mail, and data can be accumulated. For the research cooperation with Indonesia, research of path control and information relay server, research of effective transmission of data on the network, and research of multimedia communication have been conducted. The multimedia communication, distributed processing, and extension of dedicated line network using PPTP have been also conducted. 39 figs., 4 tabs.

  20. Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes

    V. F. Andrioli

    2013-05-01

    Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.

  1. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  2. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  3. Research and development cooperation project on environmental measurement using laser radar in fiscal 1995; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    NONE

    1996-03-01

    For the purpose of contributing to the environmental management in Indonesia, Japan made R and D of a laser radar to measure the urban air pollution and an environmental network jointly with Indonesia in compliance with the actual situation of the country. At present, in developing countries, air pollution is becoming a big problem because of increases in population and in energy consumption in urban areas according to the industrial/economic growth. As for the laser radar, it is an active sensor with laser as light source and can observe in high resolution the three-dimensional space distribution such as density and composition of air pollutants. Japan is a leader in the development of laser technology which is a core technology for the laser radar and the preceding research. The equipment is installed at several points of urban areas in Indonesia, and at the same time, the observation network is constructed to collect, analyze and process data at the central processing center. This is a 4-year plan from fiscal 1993 to 1996. In fiscal 1995, negotiations with Indonesia and field surveys were conducted to determine sites for installation. A plan for system improvement was also decided on. 38 refs., 24 figs., 14 tabs.

  4. Electron temperature measurements by the plasma line technique at the French incoherent scatter radar facilities

    Kofman, W.; Lejeune, G.; Hagfors, T.; Bauer, P.

    1981-01-01

    The results of experiments aimed at the determination of the electron temperature by a plasma line technique are presented. Using the multistatic capabilities of the French incoherent scatter radar, the plasma line frequencies were simultaneously measured at two receiving stations (Mende and Nancay) at the altitude corresponding to the maximum of the F layer. Different plasma line frequencies are measued because of different effective k vectors that appear in the thermal term of the plasma dispersion relation. We derive and apply two data analysis procedures that enable us to determine this frequency difference. Comparison of this measured frequency difference to that calculated using the ion component electron temperature demonstrates that the plasma lines could indeed be used to determine the electron temperature. A strong dependence of the power in the plasma line as a function of the angle between k vector and magnetic field is observed in agreement with the theory. The future developments of this technique with the EISCAT radar facilities are discussed

  5. Bistatic radar

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  6. New approach to Fork measurements data analysis by RADAR-CRISP and ORIGEN integration

    Vaccaro, S.; Svedkauskaite, J.; Smejkal, A.; Schwalbach, P.; De Baere, P.; Hu, J.; Gauld, I.C.

    2013-06-01

    Currently, in the EU, activities related to interim storage of spent fuel are constantly increasing. This is particularly true in Finland and Sweden, where final geological repository sites are planned to be operational in 2023 and 2026 respectively, but also in several other countries where fuel is moved from wet ponds to dry storage (Germany, Belgium, Spain, Czech, Bulgaria, etc). The required verification activities present a considerable challenge to the EURATOM Safeguards authority.. Both EURATOM and IAEA safeguards need to know what is in the storage casks and keep continuity of knowledge of the spent fuel. A frequently-used tool for the verification of the nuclear material during loading is the 'Fork' detectors for gross gamma and neutron counting. The IT applications RADAR (Remote Acquisition of Data and Review) and CRISP (Central RADAR Inspection Support Package), developed by EURATOM, are used to acquire safeguards measurement data and to analyze them in order to verify the declarations of the nuclear plant operators. Under the framework of the U.S. DOE-EURATOM Agreement on nuclear safeguards and security, a module for automated analysis of spent fuel measurement data using the ORIGEN (Oak Ridge Isotope Generation) code, part of the SCALE nuclear systems modeling and simulation package, has been integrated into CRISP. Measurement data are collected in an unattended mode by RADAR and then processed by CRISP, which outputs, for each fuel assembly, the measured gamma and neutron count rates. Simultaneously, ORIGEN performs burn-up calculations based on operator declarations previously entered into CRISP and calculates the expected neutron and gamma count rates for each assembly. These calculations also used response functions, developed using Monte Carlo modeling, to account for the detection probabilities of both neutron and photon particles that originated in each fuel pin. Finally, CRISP correlates and compares the expected (calculated) gamma

  7. Focusing millimeter wave radar for radial gap measurements in power plant combustion turbines; Fokussierendes Radarverfahren im Millimeterwellenbereich zur Radialspaltmessung in Kraftwerksturbinen

    Schicht, Andreas

    2011-07-11

    In this work a method for spatially resolved radial gap measurements in power plant combustion turbines by means of an autofocusing imaging radar technique in the millimeter wave range was developed and verified experimentally. The radial gap measurement has been subject of engineering studies for many years, as a reliable, simple solution does not seem to be possible due to the given boundary conditions. These include on the one hand the adverse measurement conditions such as high temperature and pressure, corrosive atmosphere and high speed of motion. On the other hand, the geometrical structure of the rotor blades at their tips turns out to be a key problem for the distance measurement. In particular, the blade tip is composed of small extended portions forming thin ribs of only a few millimeters width. Many established distance sensors like e. g. capacitive sensors cannot detect the correct tip clearance of the blade edge independently from other structures on the blade end only due to their large surface area and thus their lack of spatial resolution. The problem of small structure sizes is overcome by choosing a synthetic aperture radar (SAR) in the millimeter wave range capable of resolving the edges of a typical blade tip. The clearance is determined by measuring the reflection at the blade tip while passing by the antenna, subsequently focusing the data by means of a matched filter operation and interpreting the phase of the blade edge reflection according to the CW radar principle. For this, an autofocus approach was developed, which provides an estimate of the clearance as a first result, which is utilized to overcome the phase ambiguity and thus to increase the measurement range. The autofocus algorithm applies a weighted phase gradient of the point-like blade edge reflection as cost function and sensitive indicator for the focal quality.

  8. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.

    2014-01-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the ot...

  9. Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.

    Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E

    2014-09-01

    In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.

  10. Measurement of Mars Analog Soil Dielectric Properties for Mars 2020 Radar Science Applications

    Decrossas, E.; Bell, D. J.; Jin, C.; Steinfeld, D.; Batres, J.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. One important planetary application is the identification of subsurface water ice at Mars. Low frequency, 15 MHz to 25 MHz, instruments like SHARAD have been used from Mars orbit to investigate subsurface features from 10's to 1000's of meters below the surface of Mars with a vertical resolution of 15m and a horizontal resolution of 300 to 3000 meters. SHARAD has been able to identify vast layers of CO2 and water ice. The ground-penetrating RIMFAX instrument that will ride on the back of the Mars 2020 rover will operate over the 150 MHz to 1200 MHz band and penetrate to a depth of 10 meters with a vertical resolution of 15 to 30 cm. RIMFAX will be able to identify near surface water ice if it exists below the travel path of the Mars 2020 rover. Identification of near surface water ice has science application to current and past Mars hydrologic processes and to the potential for finding remnants of past Mars biologic activity. Identification of near surface water ice also has application to future human missions that would benefit from access to a Mars local water source. Recently, JPL investigators have been pursuing a secondary use of telecom signals to capture bistatic radar signatures from subsurface areas surrounding the rover but away from its travel path. A particularly promising potential source would be the telecom signal from a proposed Mars Helicopter back to the Mars 2020 rover. The Mars 2020 rover will be equipped with up to three telecom subsystems. The Rover Relay telecom subsystem operates at UHF receiving at 435 MHz frequency. Anticipating opportunistic collection of near-surface bistatic radar signatures from telecom signals received at the rover, it is valuable to understand the dielectric properties of the Martian soil in each of these three

  11. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  12. Understanding radar systems

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  13. Evaluation of dual polarization scattering matrix radar rain backscatter measurements in the X- and Q-bands

    Agrawal, A. P.; Carnegie, D. W.; Boerner, W.-M.

    This paper presents an evaluation of polarimetric rain backscatter measurements collected with coherent dual polarization radar systems in the X (8.9 GHz) and Q (45GHz) bands, the first being operated in a pulsed mode and the second being a FM-CW system. The polarimetric measurement data consisted for each band of fifty files of time-sequential scattering matrix measurements expressed in terms of a linear (H, V) antenna polarization state basis. The rain backscattering takes place in a rain cell defined by the beam widths and down range distances of 275 ft through 325 ft and the scattering matrices were measured far below the hydrometeoric scattering center decorrelation time so that ensemble averaging of time-sequential scattering matrices may be applied. In the data evaluation great care was taken in determining: (1) polarimetric Doppler velocities associated with the motion of descending oscillating raindrops and/or eddies within the moving swaths of coastal rain showers, and (2) also the properties of the associated co/cross-polarization rain clutter nulls and their distributions on the Poincare polarization sphere.

  14. Effects of an assimilation of radar and satellite data on a very-short range forecast of heavy convective rainfalls

    Sokol, Zbyněk

    2009-01-01

    Roč. 93, 1-3 (2009), s. 188-206 ISSN 0169-8095. [European Conference on Severe Storms /4./. Miramare -Trieste, 10.09.2007-14.09.2007] R&D Projects: GA ČR GA205/07/0905; GA MŠk OC 112; GA MŠk 1P05ME748 Institutional research plan: CEZ:AV0Z30420517 Keywords : Precipitation forecast * NWP model * Assimilation of radar and satellite data * Local convective precipitation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.811, year: 2009 http://www.sciencedirect.com/science/journal/01698095

  15. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  16. Solar Cycle variations in Earth's open flux content measured by the SuperDARN radar network

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-09-01

    We present a long term study, from 1996 - 2012, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection and is here used as a proxy for the amount of open flux in the polar cap. The mean HMB latitude (measured at midnight) is found to be at 64 degrees during the entire period, with secondary peaks at lower latitudes during the solar maximum of 2003, and at higher latitudes during the recent extreme solar minimum of 2008-2011. We associate these large scale statistical variations in open flux content with solar cycle variations in the solar wind parameters leading to changes in the intensity of the coupling between the solar wind and the magnetosphere.

  17. Measurements of Capture Efficiency of Range Hoods in Homes

    Simone, Angela; Sherman, Max H.; Walker, Iain S.

    2015-01-01

    mapped the pollution distribution in the room, and showed that the pollutants escape more at the sides of the cooktop. These preliminary results suggest that more measurements should be conducted investigating the capture efficiency at different pollutant source temperature, size and location...... want a range hood to use little energy and have high capture efficiency to minimize the required air flow to capture the cooking pollutants. Currently there are no standards for rating range hoods for capture efficiency In this study, measurements of range hood capture efficiency were made a tight...... kitchen-room built in a laboratory chamber, and a methodology for standardizing measurement of capture efficiency was developed. The results for a wall mounted range hood, showed that up to half of the cooking pollutants were not captured at a flow rate of 230 m3/h. A more detailed set of measurements...

  18. Forecasting slope failures from space-based synthetic aperture radar (SAR) measurements

    Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Chiaradia, M. T.; Tijani, K.; Morea, A.

    2017-12-01

    New space-borne radar sensors enable multi-scale monitoring of potentially unstable slopes thanks to wide-area coverage (tens of thousands km2), regular long-term image acquisition schedule with increasing re-visit frequency (weekly to daily), and high measurement precision (mm). In particular, the recent radar satellite missions e.g., COSMO-SkyMed (CSK), Sentinel-1 (S-1) and improved multi-temporal interferometry (MTI) processing techniques allow timely delivery of information on slow ground surface displacements. Here we use two case study examples to show that it is possible to capture pre-failure slope strains through long-term MTI-based monitoring. The first case is a retrospective investigation of a huge 500ML m3 landslide, which occurred in Sept. 2016 in a large, active open-cast coal mine in central Europe. We processed over 100 S-1 images acquired since Fall 2014. The MTI results showed that the slope that failed had been unstable at least since 2014. Importantly, we detected consistent displacement trends and trend changes, which can be used for slope failure forecasting. Specifically, we documented significant acceleration in slope surface displacement in the two months preceding the catastrophic failure. The second case of retrospectively captured pre-failure slope strains regards our earlier study of a small 50 m long landslide, which occurred on Jan. 2014 and caused the derailment of a train on the railway line connecting NW Italy to France. We processed 56 CSK images acquired from Fall 2008 to Spring 2014. The MTI results revealed pre-failure displacements of the engineering structures on the slope subsequently affected by the 2014 slide. The analysis of the MTI time series further showed that the displacements had been occurring since 2009. This information could have been used to forewarn the railway authority about the slope instability hazard. The above examples indicate that more frequent and consistent image acquisitions by the new radar

  19. Radar Cross Section Measurements of Pedestrian Dummies and Humans in the 24/77 GHz Frequency Bands

    FORTUNY GUASCH Joaquim; CHAREAU Jean-Marc

    2013-01-01

    Road safety has become a major societal issue that should not be ignored. At present, a wide range of new technologies, including intelligent speed adaptation and collision avoidance systems, are being introduced to improve road safety levels and reduce these casualties. Among the various types of collision avoidance systems, automotive short-range radars (SRRs) are those most widely deployed. A recent Communication of the European Commission (i.e., SEC(2010) 903) has stated that a wide deplo...

  20. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 1. Comparison of wind measurements with MF spaced antenna radar system

    Kumar, Karanam Kishore; Ramkumar, Geetha; Shelbi, S. T.

    2007-12-01

    In the present communication, initial results from the allSKy interferometric METeor (SKiYMET) radar installed at Thumba (8.5°N, 77°E) are presented. The meteor radar system provides hourly zonal and meridional winds in the mesosphere lower thermosphere (MLT) region. The meteor radar measured zonal and meridional winds are compared with nearby MF radar at Tirunalveli (8.7°N, 77.8°E). The present study provided an opportunity to compare the winds measured by the two different techniques, namely, interferometry and spaced antenna drift methods. Simultaneous wind measurements for a total number of 273 days during September 2004 to May 2005 are compared. The comparison showed a very good agreement between these two techniques in the height region 82-90 km and poor agreement above this height region. In general, the zonal winds compare very well as compared to the meridional winds. The observed discrepancies in the wind comparison above 90 km are discussed in the light of existing limitations of both the radars. The detailed analysis revealed the consistency of the measured winds by both the techniques. However, the discrepancies are observed at higher altitudes and are attributed to the contamination of MF radar neutral wind measurements with Equatorial Electro Jet (EEJ) induced inospheric drifts rather than the limitations of the spaced antenna technique. The comparison of diurnal variation of zonal winds above 90 km measured by both the radars is in reasonably good agreement in the absence of EEJ (during local nighttime). It is also been noted that the difference in the zonal wind measurements by both the radars is directly related to the strength of EEJ, which is a noteworthy result from the present study.

  1. Global measures of ionospheric electrodynamic activity inferred from combined incoherent scatter radar and ground magnetometer observations

    Richmond, A.D.; Kamide, Y.; Akasofu, S.I.; Alcayde, D.; Blanc, M.; De LaBeaujardiere, O.; Evans, D.S.; Foster, J.C.; Holt, J.M.; Friis-Christensen, E.; Pellinen, R.J.; Senior, C.; Zaitzev, A.N.

    1990-01-01

    An analysis of several global measures of high-latitude ionospheric electrodynamic activity is undertakn on the basis of results obtained from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure applied to incoherent scatter radar and ground magnetometer observatons for January 18-19, 1984. Different global measures of electric potentials, currents, resistances, and energy transfer from the magnetosphere show temporal variations that are generally well correlated. The authors present parameterizations of thees quantities in terms of the AE index and the hemispheric power index of precipitating auroral particles. It is shown how error estimates of the mapped electric fields can be used to correct the estimation of Joule heating. Global measures of potential drop, field-aligned current, and Joule heating as obtained by the AMIE procedure are compared with similar measures presented in previous studies. Agreement is found to within the uncertainties inherent in each study. The mean potential drop through which field-aligned currents flow in closing through the ionosphere is approximately 28% of the total polar cap potential drop under all conditions during these 2 days. They note that order-of-magnitude differences can appear when comparing different global measures of total electric current flow and of effective resistances of the global circuit, so that care must be exercised in choosing characteristic values of these parameters for circuit-analogy studies of ionosphere-magnetosphere electrodynamic coupling

  2. On reconciling ground-based with spaceborne normalized radar cross section measurements

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  3. Atomic bomb made in Germany. Geo-radar measurements provide new insights; Atombombe - Made in Germany. Georadarmessungen liefern neue Erkenntnisse

    Hauk, Rolf-Guenter; Focken, Christel

    2017-07-01

    The authors describe new geo radar measurements In Jonastal and discuss the results in relation to rumors on German efforts to build an atomic bond during the Second World War. The book includes available documentation on German and American research and technological activities (Manhattan project).

  4. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...

  5. Measurement of positron range in matter in strong magnetic fields

    Hammer, B.E.; Christensen, N.L.

    1995-01-01

    Positron range is one factor that places a limitation on Positron Emission Tomography (PET) resolution. The distance a positron travels through matter before it annihilates with an electron is a function of its initial energy and the electron density of the medium. A strong magnetic field limits positron range when momentum components are transverse to the field. Measurement of positron range was determined by deconvolving the effects of detector response and radioactive distribution from the measured annihilation spread function. The annihilation spread function for a 0.5 mm bead of 68 Ga was measured with 0.2 and 1.0 mm wide slit collimators. Based on the annihilation spread function FWHM (Full Width at Half Maximum) for a 1.0 mm wide slit the median positron range in tissue equivalent material is 0.87, 0.50, 0.22 mm at 0, 5.0 and 9.4 T, respectively

  6. Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison with in situ measurements. Part I : Sensitivity of polarimetric radar particle identification retrieval and case study evaluation

    Cazenave, Frédéric; Gosset, Marielle; Kacou, M.; Alcoba, M.; Fontaine, E.; Duroure, C.; Dolan, B.

    2016-01-01

    The particle identification scheme developed by Dolan and Rutledge for X-band polarimetric radar is tested for the first time in Africa and compared with in situ measurements. The data were acquired during the Megha-Tropiques mission algorithm-validation campaign that occurred in Niger in 2010. The radar classification is compared with the in situ observations gathered by an instrumented aircraft for the 13 August 2010 squall-line case. An original approach has been developed for the radar-in...

  7. Measurement of Seaward Ground Displacements on Coastal Landfill Area Using Radar Interferometry

    Baek, W.-K.; Jung, H.-S.

    2018-04-01

    In order to understand the mechanism of subsidence and help reducing damage, researchers has been observed the line-of-sight subsidence on the Noksan industrial complex using SAR Interferometry(InSAR) and suggested subsidence prediction models. Although these researches explained a spatially uneven ground subsidence near the seaside, they could not have been explained the occurrence of the newly proposed seaward horizontal, especially nearly north-ward, displacement because of the geometric limitation of InSAR measurements. In this study, we measured the seaward ground displacements trend on the coastal landfill area, Noksan Industrial Complex. We set the interferometric pairs from an ascending and a descending orbits strip map data of ALOS PALSAR2. We employed InSAR and MAI stacking approaches for the both orbits respectively in order to improve the measurement. Finally, seaward deformation was estimated by retrieving three-dimensional displacements from multi-geometric displacements. As a results, maximally 3.3 and 0.7 cm/year of ground displacements for the vertical and seaward directions. In further study, we plan to generate InSAR and MAI stacking measurements with additional SAR data to mitigate tropospheric effect and noise well. Such a seaward observation approach using spaceborne radar is expected to be effective in observing the long-term movements on coastal landfill area.

  8. MEASUREMENT OF SEAWARD GROUND DISPLACEMENTS ON COASTAL LANDFILL AREA USING RADAR INTERFEROMETRY

    W.-K. Baek

    2018-04-01

    Full Text Available In order to understand the mechanism of subsidence and help reducing damage, researchers has been observed the line-of-sight subsidence on the Noksan industrial complex using SAR Interferometry(InSAR and suggested subsidence prediction models. Although these researches explained a spatially uneven ground subsidence near the seaside, they could not have been explained the occurrence of the newly proposed seaward horizontal, especially nearly north-ward, displacement because of the geometric limitation of InSAR measurements. In this study, we measured the seaward ground displacements trend on the coastal landfill area, Noksan Industrial Complex. We set the interferometric pairs from an ascending and a descending orbits strip map data of ALOS PALSAR2. We employed InSAR and MAI stacking approaches for the both orbits respectively in order to improve the measurement. Finally, seaward deformation was estimated by retrieving three-dimensional displacements from multi-geometric displacements. As a results, maximally 3.3 and 0.7 cm/year of ground displacements for the vertical and seaward directions. In further study, we plan to generate InSAR and MAI stacking measurements with additional SAR data to mitigate tropospheric effect and noise well. Such a seaward observation approach using spaceborne radar is expected to be effective in observing the long-term movements on coastal landfill area.

  9. Research and development cooperation project on environmental measurement using laser radar in fiscal 1993; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    NONE

    1994-03-01

    As one of the international research cooperation projects, the research cooperation in developing laser radar for environment measurement started between Japan and Indonesia. The project is scheduled to be carried out in a 4-year plan starting fiscal 1993. In fiscal 1993, conducted were negotiations with Indonesia on its implementation and a field survey. Between January 6 and 15, 1994, the first field survey was made in terms of topography, climate, road network and traffic situation of Jakarta city, and the proposed sites for installation were reported. The paper also introduced the reception system on the Indonesian side and a request for technical learning through stay in Japan. The second field survey was conducted between February 27 and March 6, 1994. Indonesia requested that they want to make laser radar observation not only for the local area, but the one that covers industrial areas, central urban areas and residential areas. Incidentally, there was an opinion that it is important to elucidate the pollution mechanism. 19 refs., 43 figs., 6 tabs.

  10. Retrieval of convective boundary layer wind field statistics from radar profiler measurements in conjunction with large eddy simulation

    Danny Scipión

    2009-05-01

    Full Text Available The daytime convective boundary layer (CBL is characterized by strong turbulence that is primarily forced by buoyancy transport from the heated underlying surface. The present study focuses on an example of flow structure of the CBL as observed in the U.S. Great Plains on June 8, 2007. The considered CBL flow has been reproduced using a numerical large eddy simulation (LES, sampled with an LES-based virtual boundary layer radar (BLR, and probed with an actual operational radar profiler. The LES-generated CBL flow data are then ingested by the virtual BLR and treated as a proxy for prevailing atmospheric conditions. The mean flow and turbulence parameters retrieved via each technique (actual radar profiler, virtual BLR, and LES have been cross-analyzed and reasonable agreement was found between the CBL wind parameters obtained from the LES and those measured by the actual radar. Averaged vertical velocity variance estimates from the virtual and actual BLRs were compared with estimates calculated from the LES for different periods of time. There is good agreement in the estimates from all three sources. Also, values of the vertical velocity skewness retrieved by all three techniques have been inter-compared as a function of height for different stages of the CBL evolution, showing fair agreement with each other. All three retrievals contain positively skewed vertical velocity structure throughout the main portion of the CBL. Radar estimates of the turbulence kinetic energy (eddy dissipation rate (ε have been obtained based on the Doppler spectral width of the returned signal for the vertical radar beam. The radar estimates were averaged over time in the same fashion as the LES output data. The agreement between estimates was generally good, especially within the mixing layer. Discrepancies observed above the inversion layer may be explained by a weak turbulence signal in particular flow configurations. The virtual BLR produces voltage

  11. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  12. Smartphone photography utilized to measure wrist range of motion.

    Wagner, Eric R; Conti Mica, Megan; Shin, Alexander Y

    2018-02-01

    The purpose was to determine if smartphone photography is a reliable tool in measuring wrist movement. Smartphones were used to take digital photos of both wrists in 32 normal participants (64 wrists) at extremes of wrist motion. The smartphone measurements were compared with clinical goniometry measurements. There was a very high correlation between the clinical goniometry and smartphone measurements, as the concordance coefficients were high for radial deviation, ulnar deviation, wrist extension and wrist flexion. The Pearson coefficients also demonstrated the high precision of the smartphone measurements. The Bland-Altman plots demonstrated 29-31 of 32 smartphone measurements were within the 95% confidence interval of the clinical measurements for all positions of the wrists. There was high reliability between the photography taken by the volunteer and researcher, as well as high inter-observer reliability. Smartphone digital photography is a reliable and accurate tool for measuring wrist range of motion. II.

  13. Spatial filtering velocimeter for vehicle navigation with extended measurement range

    He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu

    2015-05-01

    The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.

  14. SEA ICE THICKNESS MEASUREMENT BY GROUND PENETRATING RADAR FOR GROUND TRUTH OF MICROWAVE REMOTE SENSING DATA

    M. Matsumoto

    2018-04-01

    Full Text Available Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  15. Radar cross-section measurements of ice particles using vector network analyzer

    Jinhu Wang

    2016-09-01

    Full Text Available We carried out radar cross-section (RSC measurements of ice particles in a microwave anechoic chamber at Nanjing University of Information Science and Technology. We used microwave similarity theory to enlarge the size of particle from the micrometer to millimeter scale and to reduce the testing frequency from 94 GHz to 10 GHz. The microwave similarity theory was validated using the method of moments for single metal sphere, single dielectric sphere, and spherical and non-spherical dielectric particle swarms. The differences between the retrieved and theoretical results at 94 GHz were 0.016117%, 0.0023029%, 0.027627%, and 0.0046053%, respectively. We proposed a device that can measure the RCS of ice particles in the chamber based on the S21 parameter obtained from vector network analyzer. On the basis of the measured S21 parameter of the calibration material (metal plates and their corresponding theoretical RCS values, the RCS values of a spherical Teflon particle swarm and cuboid candle particle swarm was retrieved at 10 GHz. In this case, the differences between the retrieved and theoretical results were 12.72% and 24.49% for the Teflon particle swarm and cuboid candle swarm, respectively.

  16. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  17. Sixteenth International Laser Radar Conference, Part 2

    Mccormick, M.P.

    1992-07-01

    Given here are extended abstracts of papers presented at the 16th International Laser Radar Conference, held in Cambridge, Massachusetts, July 20-24, 1992. Topics discussed include the Mt. Pinatubo volcanic dust laser observations, global change, ozone measurements, Earth mesospheric measurements, wind measurements, imaging, ranging, water vapor measurements, and laser devices and technology

  18. Case Study Analysis of Linear Chirp and Multitones (OFDM) Radar Signals Through Simulations and Measurement with HYCAM-Research Test Bench

    Le Kernec, Julien; Dreuillet, Philippe; Bobillot, Gerard; Garda, Patrick; Romain, Olivier; Denoulet, Julien

    2009-01-01

    This paper presents a experimental platform that allows comparing objectively any radar waveforms. This is realized by equating radar characteristics, using the same test-bench HYCAM-Research, the same signal processing and also insuring the reproducibility of the experiments. The experimental measurements on linear chirp and multitones are analyzed through distance and velocity imaging.

  19. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  20. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  1. Small Device For Short-Range Antenna Measurements Using Optics

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  2. Recoil range distribution measurement in 20Ne + 181Ta reaction

    Tripathi, R.; Sudarshan, K.; Goswami, A.; Guin, R.; Reddy, A.V.R.

    2005-01-01

    In order to investigate linear momentum transfer in various transfer channels in 20 Ne + 181 Ta, recoil range distribution measurements have been carried out at E lab = 180 MeV, populating significant number of l-waves above l crit

  3. Measurements of short-range ordering in Ni3Al

    Okamoto, J.K.; Ahn, C.C.

    1992-01-01

    This paper reports on extended electron energy-loss fine structure (EXELFS) that has been used to measure short-range ordering in Ni 3 Al. Films of fcc Ni 3 Al with suppressed short-range order synthesized by vacuum evaporation of Ni 3 Al onto room temperature substrates. EXELFS data were taken from both Al K and Ni L 23 edges. The development of short-range order was observed after the samples were annealed for various times at temperatures below 350 degrees C. Upon comparison with ab initio planewave EXELFS calculations, it was found that the Warren-Cowley short-range order parameter a(1nn) changed by about -0.1 after 210 minutes of annealing at 150 degrees C

  4. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  5. Comparison of Ground- and Space-based Radar Observations with Disdrometer Measurements During the PECAN Field Campaign

    Torres, A. D.; Rasmussen, K. L.; Bodine, D. J.; Dougherty, E.

    2015-12-01

    Plains Elevated Convection At Night (PECAN) was a large field campaign that studied nocturnal mesoscale convective systems (MCSs), convective initiation, bores, and low-level jets across the central plains in the United States. MCSs are responsible for over half of the warm-season precipitation across the central U.S. plains. The rainfall from deep convection of these systems over land have been observed to be underestimated by satellite radar rainfall-retrieval algorithms by as much as 40 percent. These algorithms have a strong dependence on the generally unmeasured rain drop-size distribution (DSD). During the campaign, our group measured rainfall DSDs, precipitation fall velocities, and total precipitation in the convective and stratiform regions of MCSs using Ott Parsivel optical laser disdrometers. The disdrometers were co-located with mobile pod units that measured temperature, wind, and relative humidity for quality control purposes. Data from the operational NEXRAD radar in LaCrosse, Wisconsin and space-based radar measurements from a Global Precipitation Measurement satellite overpass on July 13, 2015 were used for the analysis. The focus of this study is to compare DSD measurements from the disdrometers to radars in an effort to reduce errors in existing rainfall-retrieval algorithms. The error analysis consists of substituting measured DSDs into existing quantitative precipitation estimation techniques (e.g. Z-R relationships and dual-polarization rain estimates) and comparing these estimates to ground measurements of total precipitation. The results from this study will improve climatological estimates of total precipitation in continental convection that are used in hydrological studies, climate models, and other applications.

  6. Broadband Laser Ranging for Position Measurements in Shock Physics Experiments

    Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie

    2017-06-01

    Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.

  7. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  8. Lifetime measurements in the picosecond range: Achievements and Perspectives

    Kruecken, Reiner

    1999-01-01

    This contribution will review the recoil distance method (RDM), its current range of applications as well as future perspectives for the measurement of lifetimes in the picosecond range of excited nuclear levels. Recent Doppler-shift lifetime experiments with large gamma-ray spectrometers have achieved a new level of precision and sensitivity, providing new insights into nuclear structure physics. High precision RDM measurements of near-yrast states in various mass regions have revealed dynamic shape effects beyond the framework of collective models and have also allowed to study the interaction between coexisting shapes. The measurement of lifetimes in superdeformed bands has shown that lifetimes can be measured for nuclear excitations, which are only populated with a few percent of the production cross-section of a nucleus. These experiments have also enabled us to study the mechanism of the decay-out of superdeformed bands. Another example for the need of precise lifetime measurements is the recent verifications of the concept of 'magnetic rotation' in nuclei by the experimental observation of the characteristic drop of B(M1) values as a function of angular momentum. These recent breakthroughs have also opened new perspectives for the use of the RDM technique for more exotic regions of nuclei and nuclear excitations. Here the measurement of lifetimes in neutron rich nuclei, which are not accessible with conventional nuclear reactions using stable beams and targets, is of special interest. Possible experimental approaches and simple estimates for the feasibility of such experiments will be presented. (author)

  9. New phase method of measuring particle size with laser Doppler radar

    Zemlianskii, Vladimir M.

    1996-06-01

    A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.

  10. A prototype of radar-drone system for measuring the surface flow velocity at river sites and discharge estimation

    Moramarco, Tommaso; Alimenti, Federico; Zucco, Graziano; Barbetta, Silvia; Tarpanelli, Angelica; Brocca, Luca; Mezzanotte, Paolo; Rosselli, Luca; Orecchini, Giulia; Virili, Marco; Valigi, Paolo; Ciarfuglia, Thomas; Pagnottelli, Stefano

    2015-04-01

    Discharge estimation at a river site depends on local hydraulic conditions identified by recording water levels. In fact, stage monitoring is straightforward and relatively inexpensive compared with the cost necessary to carry out flow velocity measurements which are, however, limited to low flows and constrained by the accessibility of the site. In this context the mean flow velocity is hard to estimate for high flow, affecting de-facto the reliability of discharge assessment for extreme events. On the other hand, the surface flow velocity can be easily monitored by using radar sensors allowing to achieve a good estimate of discharge by exploiting the entropy theory applied to rivers hydraulic (Chiu,1987). Recently, a growing interest towards the use of Unmanned Aerial Vehicle (UVA), henceforth drone, for topographic applications is observed and considering their capability drones may be of a considerable interest for the hydrological monitoring and in particular for streamflow measurements. With this aim, for the first time, a miniaturized Doppler radar sensor, operating at 24 GHz, will be mounted on a drone to measure the surface flow velocity in rivers. The sensor is constituted by a single-board circuit (i.e. is a fully planar circuits - no waveguides) with the antenna on one side and the front-end electronic on the other side (Alimenti et al., 2007). The antenna has a half-power beam width of less than 10 degrees in the elevation plane and a gain of 13 dBi. The radar is equipped with a monolithic oscillator and transmits a power of about 4 mW at 24 GHz. The sensor is mounted with an inclination of 45 degrees with respect to the drone flying plane and such an angle is considered in recovering the surface speed of the water. The drone is a quadricopter that has more than 30 min, flying time before recharging the battery. Furthermore its flying plan can be scheduled with a suitable software and is executed thanks to the on-board sensors (GPS, accelerometers

  11. High-temperature absorbed dose measurements in the megagray range

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  12. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using...... airborne radar and laser altimeters. We find regional variable penetration of the radar signal at late spring conditions, where the difference of the radar and the reference laser range measurement never agrees with the expected snow thickness. In addition, a rough surface can lead to biases...

  13. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  14. An overview of Broadband Laser Ranging Architecture and Measurement Considerations

    Daykin, Edward; La Lone, Brandon; Miller, Edward; Younk, Patrick; Bennett, Corey; Catenacci, Jared; LLNL BLR Development Group Collaboration; LANL BLR Development Group Collaboration

    2017-06-01

    Broadband Laser Ranging (BLR) is a developmental diagnostic intended to measure the position of rapidly moving surfaces in combination with optical velocimetry. Design and employment of a BLR diagnostic on dynamic experiments requires consideration for both the inherent measurement system tradeoffs as well as architectural choices appropriate to the nature of investigation. The diagnostic uses spectral interferometry to measure distance by mapping femtosecond laser pulses to the time domain via chromatic dispersion within the fiber-optic architecture. The system parameters and governing equations that describe measurement range, resolution, and Doppler sensitivity will be discussed. We will also briefly review the impact of diagnostic architectural choices including: nature of interferometer, Interferometric dispersion matching, optical amplification, integration of optical velocimetry, BLR calibration, and field operability. To summarize we will present the architectural and operational approach currently being pursued by NSTec within an on-going collaboration between NSTec, Lawrence Livermore and Los Alamos National Labs. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

  15. Assessing a multilayered dynamic firn-compaction model for Greenland with ASIRAS radar measurements

    Simonsen, Sebastian Bjerregaard; Stenseng, Lars; Adalgeirsdottir, G.

    2013-01-01

    A method to assess firn compaction using data collected with the Airborne SAR (Synthetic Aperture Radar)/Interferometric Radar Altimeter System (ASIRAS) is developed. For this, we develop a dynamical firn-compaction model that includes meltwater retention. Based on the ASIRAS data, which show...... internal layers as annual horizons in the uppermost firn, the method relies on inferring the age/ depth (internal layers) information from the radar data using a Monte Carlo inversion technique to tune in parallel both the firn model and the atmospheric forcing parameters (temperature and accumulation......). The model is validated against two firn cores, and it is shown that applying both firn densities and age/ depth information for the inversion gives the most accurate understanding of model biases. The method is then applied to a 67 km section of the EGIG line forced by atmospheric output from a regional...

  16. MTF measurement of IR optics in different temperature ranges

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  17. An Observability Metric for Underwater Vehicle Localization Using Range Measurements

    Filippo Arrichiello

    2013-11-01

    Full Text Available The paper addresses observability issues related to the general problem of single and multiple Autonomous Underwater Vehicle (AUV localization using only range measurements. While an AUV is submerged, localization devices, such as Global Navigation Satellite Systems, are ineffective, due to the attenuation of electromagnetic waves. AUV localization based on dead reckoning techniques and the use of affordable motion sensor units is also not practical, due to divergence caused by sensor bias and drift. For these reasons, localization systems often build on trilateration algorithms that rely on the measurements of the ranges between an AUV and a set of fixed transponders using acoustic devices. Still, such solutions are often expensive, require cumbersome calibration procedures and only allow for AUV localization in an area that is defined by the geometrical arrangement of the transponders. A viable alternative for AUV localization that has recently come to the fore exploits the use of complementary information on the distance from the AUV to a single transponder, together with information provided by on-board resident motion sensors, such as, for example, depth, velocity and acceleration measurements. This concept can be extended to address the problem of relative localization between two AUVs equipped with acoustic sensors for inter-vehicle range measurements. Motivated by these developments, in this paper, we show that both the problems of absolute localization of a single vehicle and the relative localization of multiple vehicles can be treated using the same mathematical framework, and tailoring concepts of observability derived for nonlinear systems, we analyze how the performance in localization depends on the types of motion imparted to the AUVs. For this effect, we propose a well-defined observability metric and validate its usefulness, both in simulation and by carrying out experimental tests with a real marine vehicle during which the

  18. Meteor radar measurements of MLT winds near the equatorial electro jet region over Thumba (8.5° N, 77° E: comparison with TIDI observations

    S. R. John

    2011-07-01

    Full Text Available The All-Sky interferometric meteor (SKYiMET radar (MR derived winds in the vicinity of the equatorial electrojet (EEJ are discussed. As Thumba (8.5° N, 77° E; dip lat. 0.5° N is under the EEJ belt, there has been some debate on the reliability of the meteor radar derived winds near the EEJ height region. In this regard, the composite diurnal variations of zonal wind profiles in the mesosphere-lower thermosphere (MLT region derived from TIMED Doppler Interferometer (TIDI and ground based meteor radar at Thumba are compared. In this study, emphasis is given to verify the meteor radar observations at 98 km height region, especially during the EEJ peaking time (11:00 to 14:00 LT. The composite diurnal cycles of zonal winds over Thumba are constructed during four seasons of the year 2006 using TIDI and meteor radar observations, which showed good agreement especially during the peak EEJ hours, thus assuring the reliability of meteor radar measurements of neutral winds close to the EEJ height region. It is evident from the present study that on seasonal scales, the radar measurements are not biased by the EEJ. The day-time variations of HF radar measured E-region drifts at the EEJ region are also compared with MR measurements to show there are large differences between ionospheric drifts and MR measurements. The significance of the present study lies in validating the meteor radar technique over Thumba located at magnetic equator by comparing with other than the radio technique for the first time.

  19. Human walking estimation with radar

    Dorp, Ph. van; Groen, F.C.A.

    2003-01-01

    Radar can be used to observe humans that are obscured by objects such as walls. These humans cannot be visually observed. The radar measurements are used to animate an obscured human in virtual reality. This requires detailed information about the motion. The radar measurements give detailed

  20. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  1. Hourly surface currents measured by high frequency Wellen radars off western Oahu, Hawaii, from September 2002 to May 2003 (NODC Accession 0013113)

    National Oceanic and Atmospheric Administration, Department of Commerce — A pair of High Frequency Wellen radars (WERA) shore-based at southwest Oahu (Ko'Olina) and northwest Oahu (Kaena), Hawaii measured surface currents over a nine-month...

  2. Hourly surface currents measured by High Frequency (HF) Wellen radars (WERA) off western Oahu, Hawaii, from September 2002 to May 2003 (NODC Accession 0013113)

    National Oceanic and Atmospheric Administration, Department of Commerce — A pair of High Frequency Wellen radars (WERA) shore-based at southwest Oahu (Ko'Olina) and northwest Oahu (Kaena), Hawaii measured surface currents over a nine-month...

  3. Doppler radar physiological sensing

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  4. Near surface bulk density estimates of NEAs from radar observations and permittivity measurements of powdered geologic material

    Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An

    2018-05-01

    The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.

  5. Airborne Lidar and Radar Measurments In and Around Greenland CryoVEx 2006

    Stenseng, Lars; Hvidegaard, Sine Munk; Skourup, Henriette

    Air Greenland. The main purpose was to collect coincident ASIRAS and laser data at validation sites placed on land ice and sea ice in the Arctic area and offer logistic support to ground teams. The data collected will be important for the understanding of CryoSat-2 radar signals. A number...

  6. Coherent MUSIC technique for range/angle information retrieval: Application to a frequency modulated continuous wave MIMO radar

    Belfiori, F.; Rossum, W. van; Hoogeboom, P.

    2014-01-01

    A coherent two-dimensional (2D) multiple signal classification (MUSIC) processing for the simultaneous estimation of angular and range target positions has been presented. A 2D spatial smoothing technique is also introduced to cope with the coherent behaviour of the received echoes, which may result

  7. Measuring Systems for Thermometer Calibration in Low-Temperature Range

    Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.

    2011-12-01

    The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.

  8. Synergetic Combination of Radar Information and Gauge Measurements - with the Conflict between Two Types of Data Being Removed via Displacement and Downscaling

    Yan, J.; Bardossy, A.

    2017-12-01

    Rain gauges are the foundation in hydrology to collect rainfall data, however, gauge measurements alone are limited at representing the complete rainfall distribution. On the other hand, the reliability of radar data is often limited because of the errors in the radar signal (e.g. clutter, variation of the vertical reflectivity profile, beam blockage, attenuation, etc). Thus, merging radar information and gauge rainfall measurements is in an area of active research. The merging method proposed here is to use the radar data in its [0, 1] format (p-value). The actual precipitation values come from the gauge measurements. At each measurement location, two types of data are available, the radar p-value and the gauge measurement in mm. It happens very frequently that there exists a contradiction between these two types of data. A very likely reason is the influence of the unknown process between the radar measurement height and the surface onto which the hydrometeors fall. A method for quantification of the impact of the unknown process is proposed to fix the conflict, but only to a certain degree. Another possible source that can explain the discrepancy between these two types of data is discretization, i.e., the spatial variability cannot be identified by coarse discretization. Thus, downscaling is also considered to further remove the conflict. Based on the p-value from the radar data and the precipitation from the gauge measurements, a distribution function can be built up. The ultimate goal is to simulate the precipitation field for nowcasting purpose. The conditions to be fulfilled by the simulated field is as the following: honoring the measurements at the gauge locations; sharing a similar pattern with the radar image; preserving the inherent covariance structure. The simulation approach employed here is random mixing. The study domain is located in Reutlingen, Baden-Wuerttemberg, Germany (Latitude 48.49N, Longitude 9.20E). The radar data are obtained from a C

  9. Using high-resolution satellite radar to measure lava flow morphology, rheology, effusion rate and subsidence at El Reventador Volcano, Ecuador.

    Biggs, J.; Arnold, D. W. D.; Mothes, P. A.; Anderson, K. R.; Albino, F.; Wadge, G.; Vallejo Vargas, S.; Ebmeier, S. K.

    2017-12-01

    There are relatively few studies of active lava flows of an andesitic rather than basaltic composition. The flow field at El Reventador volcano, Ecuador is a good example, but observations are hampered by persistent cloud cover. We use high resolution satellite radar from Radarsat-2 and TanDEM-X to map the dimensions of 43 lava flows extruded between 9 Feb 2012 and 24 Aug 2016. Flow height is measured using the width of radar shadow cast by steep sided features, or the difference in radar phase between two sensors separated in space. The cumulative volume of erupted material was 44.8M m3 dense rock equivalent with an average rate of 0.31 ± 0.02 m3s-1, similar to the long term average. The flows were mostly emplaced over durations shorter than the satellite repeat interval of 24 days and ranged in length from 0.3 to 1.7 km. We use the dimensions of the levees to estimate the flow yield strengths and compare measurements of diversions around barriers with observations from laboratory experiments. The rate of effusion, flow length and flow volume all decrease with time, and simple physics-based models can be equally well fit by a closed reservoir depressurising during the eruption with no magma recharge, or an open reservoir with a time-constant magma recharge rate of up to 0.35 ± 0.01 m3s-1. We propose that the conduit acts as magma capacitor and individual flows are volume-limited. Emplaced flows are subsiding at rates proportional to lava thickness that decay with time following a square-root relationship. Radar observations, such as those presented here, could be used to map and measure properties of evolving lava flow fields at other remote or difficult to monitor volcanoes. Physics-based models can be run into the future, but a sudden increase in flow length in 2017 seen by Sentinel illustrates that changes in magma supply can cause rapid changes in behavior, which remain challenging to forecast.

  10. Model-based cartilage thickness measurement in the submillimeter range

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  11. Investigating nearby exoplanets via interstellar radar

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  12. Research and development cooperation project on environmental measurement using laser radar (environmental network) in fiscal 1993; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku (kankyo network)

    NONE

    1994-03-01

    For the purpose of contributing to the research cooperation project on the development of a laser radar for environmental measurement, the paper surveyed the present and future trend of the environment related information network in Indonesia. The survey was conducted in terms of a name of the network, the main administration body, the number of users, the utilization status, the use protocol, details of service, domestic mode installation sites and the main administration body, accounting system, types of the network used, reliability and stability of network, limitations on the use and details of the limitation, etc. The plan for expanding telecommunication equipment is being advanced in a very quick tempo. However, there are many problems in digitalization, and it is feared that the plan will be delayed. As to telecommunication quality and connection quality, the telecommunication completion rate, SCR, is very low, approximately 24% on average, which is equal to that around 1990 in Japan. The business service for users is all bureaucratic since they have a lot of applications for the installation piling up with no exception to the rule of developing countries. 23 figs., 10 tabs.

  13. Research and development cooperation project on environmental measurement using laser radar in fiscal 1995 (environmental network); Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku (kankyo network)

    NONE

    1996-03-01

    As a part of the cooperative work with Indonesia of R and D of a laser radar for environmental measurement, the paper described the development of an environmental network. The field survey was conducted in April, July and December 1995 and in March 1996. For the investigational research, five meetings of the committee and four times of group work were held. The Asian environmental network was studied in terms of its arrangement, operation and management, and the overall network/path control design were being prepared. To make the persons concerned abroad and in Japan understood the APEC Osaka Conference held in November 1995, a homepage APEC `95 Kansai was opened using WWW (World Wide Web, a decentralized hyper media system which can dispatch information to the whole world by network using hyper text). Moreover, in connection with this, a homepage was opened of CICC (Center of the International Cooperation for Computerization, a center controlling the whole Asian environmental information network system where E-mail and data are exchangeable with Indonesia via Tokyo NOC (Network Operation Center)). 49 figs., 8 tabs.

  14. Research and development cooperation project on environmental measurement using laser radar in fiscal 1994 (environmental network); Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku (kankyo network)

    NONE

    1995-03-01

    Under the R and D of a laser radar for environmental measurement which are conducted in cooperation with Indonesia, the paper reported the R and D of the environmental network in fiscal 1994. Four field surveys were made, and the following were conducted: proposal of a technical system, adjustment of the Asian environmental information network with BPPT and LIPI which are organs on the Indonesian side, installation of/technical discussion on network equipment, etc. There is IPTEKNET as a plan of a nationwide network of the scientific technology information service in Indonesia. The analytical design phase of this system converged in 1992, and the predicted investment amount in the coming five years is expected to be 6.7 million US dollars. As the future Asian environmental information network work, planned are connection between BPPT and Tokyo CC and connection at BPPT between the Asian environmental information network and IPTEKNET. Network managers at sites are very skillful, and therefore, the thorough cooperative work is anticipated. 24 figs.

  15. Quantum radar

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  16. Lifetime measurements in the picosecond range: achievements and perspectives

    Kruecken, R.

    2000-01-01

    Recent developments in the measurement of lifetimes in the picosecond range using the recoil distance method (RDM) are reviewed. Results from recent RDM experiments on superdeformed bands in the mass-190 region, shears, bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. New experimental devices for lifetime experiments at Yale, such as the New Yale Plunger Device (N.Y.P.D.), the SPEctrometer for Doppler-shift Experiments at Yale (SPEEDY) and the plans for the gas-filled recoil separator SASSYER are presented. Perspectives for the use of the RDM technique in the study of exotic nuclei and its potential use with radioactive beams are discussed. (author)

  17. Picosecond X-ray streak camera dynamic range measurement

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  18. AN INDUCTION SENSOR FOR MEASURING CURRENTS OF NANOSECOND RANGE

    S. P. Shalamov

    2016-11-01

    Full Text Available Purpose. A current meter based on the principle of electromagnetic induction is designed to register the current flowing in the rod lightning. The aim of the article is to describe the way of increasing the sensitivity of the converter by means of their serial communication. Methodology. The recorded current is in the nanosecond range. If compared with other methods, meters based on the principle of electromagnetic induction have several advantages, such as simplicity of construction, reliability, low cost, no need in a power source, relatively high sensitivity. Creation of such a meter is necessary, because in some cases there is no possibility to use a shunt. Transient properties of a meter are determined by the number of turns and the constant of integration. Sensitivity is determined by measuring the number of turns, the coil sectional area, the core material and the integration constant. For measuring the magnetic field pulses with a rise time of 5 ns to 50 ns a meter has turns from 5 to 15. The sensitivity of such a meter is low. When the number of turns is increased, the output signal and the front increase. Earlier described dependencies were used to select the main parameters of the converter. It was based on generally accepted and widely known equivalent circuit. The experience of created earlier pulse magnetic field meters was considered both for measuring the magnetic fields, and large pulse current. Originality. Series connection of converters has the property of a long line. The level of the transient response of the meter is calculated. The influence of parasitic parameters on the type of meter transient response is examined. The shown construction was not previously described. Practical value. The results of meter implementation are given. The design peculiarities of the given measuring instruments are shown.

  19. Radar Remote Sensing

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  20. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  1. Radar Chart

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  2. Ship Detection and Measurement of Ship Motion by Multi-Aperture Synthetic Aperture Radar

    2014-06-01

    otherwise they would break. Both transverse and torsional modes are present and are driven by the ship structure, the shape of the sea surface, bow slamming...used, the ship’s loading and the ship’s operation [11], [16]. Very large vessels are the most flexible . The schematic shown in Figure 4 [12] provides...different orientations and thin (with respect to a radar wavelength) rods and cables act as linear diffraction centers. The orientation of the

  3. Measured long-range repulsive Casimir–Lifshitz forces

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  4. Measured long-range repulsive Casimir-Lifshitz forces.

    Munday, J N; Capasso, Federico; Parsegian, V Adrian

    2009-01-08

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.

  5. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  6. Rotational temperature of N2+ (0,2 ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements

    D. Lummerzheim

    2008-05-01

    Full Text Available High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES which forms part of the Spectrographic Imaging Facility (SIF, located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2, which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR. Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K and the energy lowest (1 keV. In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular

  7. Determination of radar MTF

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  8. To the question on accuracy of forest heights’ measurements by the TanDEM-X radar interferometry data

    T. N. Chimitdorzhiev

    2016-08-01

    Full Text Available The paper presents the validation results of the InSAR method for determining the forest canopy height, based on TanDEM-X and ALOS PALSAR data. The research conducted on the territory of the Baikal-Kudara forest area of the Republic of Buryatia (52°10'N, 106°48'E. Forest vegetation is represented mainly by conifers – pine, and spruce, with a small admixture of deciduous trees – aspen, birch, etc. The forest vegetation height was determined by subtracting the digital elevation model (DEM of the digital terrain model (DTM. DEM is built according to the L-band (wavelength of 23.5 cm ALOS PALSAR satellite with horizontal co-polarization mode. In the investigation it was assumed that a radar signal of ALOS PALSAR passes all forest thickness and reflected from the underlying surface, made it possible to recover terrain under forest canopy. DTM has been built using the TanDEM-X data (wavelength 3 cm. In this case, it was assumed that the radar echoes scattered from a some virtual phase centers of scattering surface, which characterizes the upper limit of the continuous forest canopy. To check the accuracy of satellite definitions of forest height in study area were made high-precision geodetic measurement of trees heights using electronic total station and the coordinates of geographic control points using differential GPS receivers. The discrepancy between the satellite and ground-based measurements at 11 test sites did not exceed 2 m, which is mainly due to the difference in measurement techniques: height of individual trees by ground methods and continuous forest canopy height using radar interferometry.

  9. Recalculation of an artificially released avalanche with SAMOS and validation with measurements from a pulsed Doppler radar

    R. Sailer

    2002-01-01

    Full Text Available A joint experiment was carried out on 10 February 1999 by the Swiss Federal Institute for Snow and Avalanche Research (SFISAR and the Austrian Institute for Avalanche and Torrent Research (AIATR, of the Federal Office and Re-search Centre for Forests, BFW to measure forces and velocities at the full scale experimental site CRÊTA BESSE in VALLÉE DE LA SIONNE, Canton du Valais, Switzerland. A huge avalanche could be released artificially, which permitted extensive investigations (dynamic measurements, im-provement of measurement systems, simulation model verification, design of protective measures, etc.. The results of the velocity measurements from the dual frequency pulsed Doppler avalanche radar of the AIATR and the recalculation with the numerical simulation model SAMOS are explained in this paper.

  10. Physical measurements for ion range verification in charged particle therapy

    Testa, M.

    2010-10-01

    This PhD thesis reports on the experimental investigation of the prompt photons created during the fragmentation of the carbon beam used in particle therapy. Two series of experiments have been performed at the GANIL and GSI facilities with 95 MeV/u and 305 MeV/u 12 C 6+ ion beams stopped in PMMA and water phantoms. In both experiments a clear correlation was obtained between the C-ion range and the prompt photon profile. A major issue of these measurements is the discrimination between the prompt photon signal (which is correlated with the ion path) and a vast neutron background uncorrelated with the Bragg-Peak position. Two techniques are employed to allow for this photon-neutron discrimination: the time-of-flight (TOF) and the pulse-shape-discrimination (PSD). The TOF technique allowed demonstrating the correlation of the prompt photon production and the primary ion path while the PSD technique brought great insights to better understand the photon and neutron contribution in TOF spectra. In this work we demonstrated that a collimated set-up detecting prompt photons by means of TOF measurements, could allow real-time control of the longitudinal position of the Bragg-peak under clinical conditions. In the second part of the PhD thesis a simulation study was performed with Geant4 Monte Carlo code to assess the influence of the main design parameters on the efficiency and spatial resolution achievable with a multidetector and multi-collimated Prompt Gamma Camera. Several geometrical configurations for both collimators and stack of detectors have been systematically studied and the considerations on the main design constraints are reported. (author)

  11. Radar observations of Mercury

    Harmon, J.K.; Campbell, D.B.

    1988-01-01

    Some of the radar altimetry profiles of Mercury obtained on the basis of data from the Arecibo Observatory are presented. In these measurements, the delay-Doppler method was used to measure altitudes along the Doppler equator, rather than to map radar reflectivity. The profiles, derived from observations made over a 6-yr period, provide extensive coverage over a restricted equatorial band and permit the identification of radar signatures for features as small as 50-km diameter craters and 1-km-high arcuate scarps. The data allowed identification of large-scale topographic features such as smooth plains subsidence zones and major highland regions

  12. The impact of ambient dose rate measuring network and precipitation radar system for detection of environmental radioactivity released by accident

    Bleher, M; Stoehlker, U.

    2003-01-01

    For the surveillance of environmental radioactivity, the German measuring network of BfS consists of more than 2000 stations where the ambient gamma dose rate is continuously measured. This network is a helpful tool to detect and localise enhanced environmental contamination from artificial radionuclides. The threshold for early warning is so low, that already an additional dose rate contribution of 0,07 μGy/h is detectable. However, this threshold is frequently exceeded due to precipitation events caused by washout of natural activity in air. Therefore, the precipitation radar system of the German Weather Service provides valuable information on the problem, whether the increase of the ambient dose rate is due to natural or man-made events. In case of an accidental release, the data of this radar system show small area precipitation events and potential local hot spots not detected by the measuring network. For the phase of cloud passage, the ambient dose rate measuring network provides a reliable database for the evaluation of the current situation and its further development. It is possible to compare measured data for dose rate with derived intervention levels for countermeasures like ''sheltering''. Thus, critical regions can be identified and it is possible to verify implemented countermeasures. During and after this phase of cloud passage the measured data of the monitoring network help to adapt the results of the national decision support systems PARK and RODOS. Therefore, it is necessary to derive the actual additional contribution to the ambient dose rate. Map representations of measured dose rate are rapidly available and helpful to optimise measurement strategies of mobile systems and collection strategies for samples of agricultural products. (orig.)

  13. Signal processing in noise waveform radar

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  14. Analysis of rainfall intensities using very dense network measurements and radar information for the Brno area during the period 2003-2009

    Salek, Milan; Stepanek, Petr; Zahradnicek, Pavel [Czech Hydrometeorological Institute, Brno (Czech Republic)

    2012-02-15

    This study presents a data quality control and spatial analysis of maximum precipitation sums of various durations for the area of the city of Brno, using a dense network of automatic gauge stations and radar information. The measurements of 18 stations in the area of Brno, Czech Republic were established for the purposes of better management of the city sewerage system. Before evaluation of the measurements, quality control was executed on the daily, hourly and 15-minute precipitation sums. All suspicious data were compared with radar measurements and erroneous input data were removed. From this quality controlled data, the maxima of precipitation sums for durations of 5, 10, 15 and 60 minutes were calculated for the given time frames (months, seasons and years) and were spatially analyzed. The role of spatial precipitation estimates using weather radar data for hourly rainfall accumulations has been investigated as well. It is revealed that radar measurements show rather little improvement of the areal precipitation estimates when such a dense gauge network is available in real time, but it would be hard to replace radar measurements by any other source of data for successful quality control of the rain-gauge data, especially in summer months. (orig.)

  15. Multiple hypothesis clustering in radar plot extraction

    Huizing, A.G.; Theil, A.; Dorp, Ph. van; Ligthart, L.P.

    1995-01-01

    False plots and plots with inaccurate range and Doppler estimates may severely degrade the performance of tracking algorithms in radar systems. This paper describes how a multiple hypothesis clustering technique can be applied to mitigate the problems involved in plot extraction. The measures of

  16. Improved Laser Vibration Radar

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  17. Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.

    2011-01-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  18. Experimental measurement and theoretical modeling of microwave scattering and the structure of the sea surface influencing radar observations from space

    Arnold, David; Kong, J. A.

    1992-01-01

    The electromagnetic (EM) bias 'epsilon' is an error present in radar altimetry of the ocean due to the nonuniform reflection from wave troughs and crests. The EM bias is defined as the difference between the mean reflecting surface and the mean sea surface. A knowledge of the EM bias is necessary to permit error reduction in mean sea level measurements by satellite radar altimeters. Direct measurements of the EM bias were made from a Shell Offshore oil production platform in the Gulf of Mexico for a six month period during 1989 and 1990. Measurements of the EM bias were made at 5 and 14 Ghz. During the EM bias experiments by Melville et al., a wire wave gauge was used to obtain the modulation of the high frequency waves by the low frequency waves. It became apparent that the EM bias was primarily caused by the modulation of the short waves. This was reported by Arnold et al. The EM bias is explained using physical optics scattering and an empirical model for the short wave modulation. Measurements of the short wave modulation using a wire wave gauge demonstrated a linear dependence of the normalized bias on the short wave modulation strength, M. The theory accurately predicts this dependence by the relation epsilon = -alphaMH sub 1/3. The wind speed dependence of the normalized bias is explained by the dependence of the short wave modulation strength on the wind speed. While other effects such as long wave tilt and curvature will have an effect on the bias, the primary cause of the bias is shown to be due to the short wave modulation. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to estimate the EM bias. The estimated EM bias will be compared to measurements at C and Ku bands.

  19. Radar cross section

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  20. The Construction and Calibration of a LADAR (Laser Detection and Ranging) Cross-Section Measurement Range

    1985-12-01

    resonator optics consist of two porro prisms which are oriented 900 from one another about the cavity’s optical axis. In other words, the roof edges of each... prism are perpendicular to one another. The Nd:YAG laser rod measures 5 mm in diameter by 75 mm long and is optically pumped by a Xenon flashlamp. Q...Switching of the laser is performed by a Pockels Cell. A dielectric polarizer is sealed between two right angle prisms which are joined symetrically

  1. Use of radars to monitor stream discharge by noncontact methods

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    . Time series of surface velocity obtained by different radars in the Cowlitz River experiment also show small‐amplitude pulsations not found in stage records that reflect tidal energy at the gauging station. Noncontact discharge measurements made during a flood on 30 January 2004 agreed with the rated discharge to within 5%. Measurement at both field sites confirm that lognormal velocity profiles exist for a wide range of flows in these rivers, and mean velocity is approximately 0.85 times measured surface velocity. Noncontact methods of flow measurement appear to (1) be as accurate as conventional methods, (2) obtain data when standard contact methods are dangerous or cannot be obtained, and (3) provide insight into flow dynamics not available from detailed stage records alone.

  2. Planetary Radar

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  3. Measurements on the extended range of the wake

    Kumbartzki, G.J.; Kroesing, G; Neuburger, H.

    1981-01-01

    The Coulomb explosion of H 2 + -ions at 28 MeV is used to probe the wake over a range of about 400 A in Al. Preliminary results give food agreement with the wavelength prediction of the simple plasma oscillation wake model. (author)

  4. Ground penetrating radar measurements at the ONKALO research tunnel and eastern part of the Olkiluoto investigation area at July 2006

    Sipola, V.; Tarvainen, A.-M.

    2007-04-01

    Ground Penetrating Radar (GPR) measurements were carried out at ONKALO research site in summer 2006. Measurements included 400 metres of measurements inside ONKALO access tunnel and about 1800 metres of measurements on the ground, at the eastern parts of Olkiluoto investigation area. The purpose of the measurements done inside the access tunnel was to investigate, whether it would be possible to locate deformation structures or long fractures in the rock mass below the tunnel. The purpose of the measurements made on top of the ground was to investigate, whether it would be possible to locate glacio-isostatic faults from the soils. A secondary target was to try and locate the rock surface. The chosen part of ONKALO tunnel was measured using five different frequencies, which enabled comparing the results to each other. It also enabled getting a higher resolution picture of the top rock, than what would have been possible using only one low-frequency antenna. The on-the-ground measurements were measured using only one frequency. (orig.)

  5. Extending the range of turbidity measurement using polarimetry

    Baba, Justin S.

    2017-11-21

    Turbidity measurements are obtained by directing a polarized optical beam to a scattering sample. Scattered portions of the beam are measured in orthogonal polarization states to determine a scattering minimum and a scattering maximum. These values are used to determine a degree of polarization of the scattered portions of the beam, and concentrations of scattering materials or turbidity can be estimated using the degree of polarization. Typically, linear polarizations are used, and scattering is measured along an axis that orthogonal to the direction of propagation of the polarized optical beam.

  6. Light Detection and Ranging (LIDAR) From Space - Laser Altimeters

    Sun, Xiaoli

    2016-01-01

    Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.

  7. Simultaneous measurements from the Millstone Hill radar and the Active satellite during the SAID/SAR arc event of the March 1990 CEDAR storm

    M. Förster

    Full Text Available During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event and the occurrence of a stable auroral red (SAR arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700-870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; Magnetospheric physics (plasmasphere.

  8. Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow

    Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen

    2016-08-01

    Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.

  9. Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow

    Borup, Morten; Grum, Morten; Linde, Jens Jørgen

    2016-01-01

    estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable......Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling...... overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5–30 min of rain data recorded by multiple rain gauges and propagating the rainfall...

  10. Radar Polarimetry: Theory, Analysis, and Applications

    Hubbert, John Clark

    delta is present. Algorithms are presented for estimating delta and K_{DP} from range profiles of Psi_ {CO}. Also discussed are procedures for the estimation and interpretation of other radar measurables such as reflectivity, Z_{HH}, differential reflectivity, Z_{DR }, the magnitude of the copolar correlation coefficient, rho_{HV}(0), and Doppler spectrum width, sigma _{v}. The techniques are again illustrated with data collected by POLDIRAD.

  11. Intensity autocorrelation measurements of frequency combs in the terahertz range

    Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme

    2017-09-01

    We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.

  12. Determination of the range of control limits in radioimmunoassay measurements

    Fiori, A.M.C.

    1981-01-01

    A grouping technique is proposed for control limits in radioimmunoassay measurements. It has the advantage of working with control limits of 99.7% without the inconvenience of the confidence intervals. The method is practical and simple. It provides considerable flexibility for the processing of data. As the number of samples increases, the control limits become better defined. (author) [es

  13. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  14. Lifetime measurements in the 10-13 s range

    Bellini, Dzh.; Foa, L.; Dzhordzhi, M.

    1984-01-01

    Semiconducting detectors used in experimental high energy physics are described. Performances of Ge- and Si detectors and telescopes developed on their base as well as some problems associated with separation of coherent and incoherent events are described in detail. New fields are considered of semiconductor detector application: lifetime measurements of heavy particles decaying via weak interaction, such as D-mesons as well as the procedure of determination of the meson production and disintegration point with a space resolution enabling one to measure the length of meson path. The space resolution of detectors operating as proportional chambeps approaches 10-20 μm. Principles of devising the electronics for active target processors are described, solid state detectors being used for the latter

  15. High Dynamic Range Nonlinear Measurement using Analog Cancellation

    2012-10-01

    shield around sensitive areas. The target may also be sensitive to radiated coupling from the system and will benefit from a shield box or Faraday ... cage , if it is not already enclosed. On the shared measurement path and through the target, cross-channel coupling cannot be prevented, so low-PIM...testing is desired, traditional filtering is recommended, as the primary benefits of the analog canceller are effectively nullified. 2.4 Wideband

  16. Temperature measurement in the liquid helium range at pressure

    Itskevich, E.S.; Krajdenov, V.F.

    1978-01-01

    The use of bronze and germanium resistance thermometers and the use of a (Au + 0.07 % Fe)-Cu thermocouple for temperature measurements from 1.5 to 4.2 K in the hydrostatic compression of up to 10 kbar are considered. To this aim, the thermometer resistance as a function of temperature and pressure is measured. It is revealed that pressure does not change the thermometric response of the bronze resistance thermometer but only shifts it to the region of lower temperatures. The identical investigations of the germanium resistance thermometer shows that strong temperature dependence and the shift of its thermometric response under the influence of pressure make the use of germanium resistance thermometers in high-pressure chambers very inconvenient. The results of the analysis of the (Au + 0.07 % Fe) - Cu thermocouple shows that with a 2 per cent accuracy the thermocouple Seebeck coefficient does not depend on pressure. It permits to use this thermocouple for temperature measurements at high pressures

  17. An approach to combine radar and gauge based rainfall data under consideration of their qualities in low mountain ranges of Saxony

    N. Jatho

    2010-03-01

    Full Text Available An approach to combine gauge and radar data and additional quality information is presented. The development was focused on the improvement of the diagnostic for temporal (one hour and spatial (1×1 km2 highly resolved precipitation data. The method is embedded in an online tool and was applied to the target area Saxony, Germany. The aim of the tool is to provide accurate spatial rainfall estimates. The results can be used for rainfall run-off modelling, e.g. in a flood management system.

    Quality information allows a better assessment of the input data and the resulting precipitation field. They are stored in corresponding fields and represent the static and dynamic uncertainties of radar and gauge data. Objective combination of various precipitation and quality fields is realised using a cost function.

    The findings of cross validation reveal that the proposed combination method merged the benefits and disadvantages of interpolated gauge and radar data and leads to mean estimates. The sampling point validation implies that the presented method slightly overestimated the areal rain as well as the high rain intensities in case of convective and advective events, while the results of pure interpolation method performed better. In general, the use of presented cost function avoids false rainfall amount in areas of low input data quality and improves the reliability in areas of high data quality. It is obvious that the combined product includes the small-scale variability of radar, which is seen as the important benefit of the presented combination approach. Local improvements of the final rain field are possible due to consideration of gauges that were not used for radar calibration, e.g. in topographic distinct regions.

  18. Wind and turbulence measurements by the Middle and Upper Atmosphere Radar (MUR: comparison of techniques

    A. A. Praskovsky

    2004-11-01

    Full Text Available The structure-function-based method (referred to as UCAR-STARS, a technique for estimating mean horizontal winds, variances of three turbulent velocity components and horizontal momentum flux was applied to the Middle and Upper atmosphere Radar (MUR operating in spaced antenna (SA profiling mode. The method is discussed and compared with the Holloway and Doviak (HAD correlation-function-based technique. Mean horizontal winds are estimated with the STARS and HAD techniques; the Doppler Beam Swinging (DBS method is used as a reference for evaluating the SA techniques. Reasonable agreement between SA and DBS techniques is found at heights from 5km to approximately 11km, where signal-to-noise ratio was rather high. The STARS and HAD produced variances of vertical turbulent velocity are found to be in fair agreement. They are affected by beam-broadening in a different way than the DBS-produced spectral width, and to a much lesser degree. Variances of horizontal turbulent velocity components and horizontal momentum flux are estimated with the STARS method, and strong anisotropy of turbulence is found. These characteristics cannot be estimated with correlation-function-based SA methods, which could make UCAR-STARS a useful alternative to traditional SA techniques.

  19. Web-based Tools for Educators: Outreach Activities of the Polar Radar for Ice Sheet Measurements (PRISM) Project

    Braaten, D. A.; Holvoet, J. F.; Gogineni, S.

    2003-12-01

    The Radar Systems and Remote Sensing Laboratory at the University of Kansas (KU) has implemented extensive outreach activities focusing on Polar Regions as part of the Polar Radar for Ice Sheet Measurements (PRISM) project. The PRISM project is developing advanced intelligent remote sensing technology that involves radar systems, an autonomous rover, and communications systems to measure detailed ice sheet characteristics, and to determine bed conditions (frozen or wet) below active ice sheets in both Greenland and Antarctica. These measurements will provide a better understanding of the response of polar ice sheets to global climate change and the resulting impact the ice sheets will have on sea level rise. Many of the research and technological development aspects of the PRISM project, such as robotics, radar systems, climate change and exploration of harsh environments, can kindle an excitement and interest in students about science and technology. These topics form the core of our K-12 education and training outreach initiatives, which are designed to capture the imagination of young students, and prompt them to consider an educational path that will lead them to scientific or engineering careers. The K-12 PRISM outreach initiatives are being developed and implemented in a collaboration with the Advanced Learning Technology Program (ALTec) of the High Plains Regional Technology in Education Consortium (HPR*TEC). ALTec is associated with the KU School of Education, and is a well-established educational research center that develops and hosts web tools to enable teachers nationwide to network, collaborate, and share resources with other teachers. An example of an innovative and successful web interface developed by ALTec is called TrackStar. Teachers can use TrackStar over the Web to develop interactive, resource-based lessons (called tracks) on-line for their students. Once developed, tracks are added to the TrackStar database and can be accessed and modified

  20. Radar network communication through sensing of frequency hopping

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  1. Research and development of environment measuring laser radar. 6. Follow-up; Kankyo keisokuyo laser radar no kenkyu kaihatsu. 6. Follow up

    NONE

    1999-03-01

    In an effort to extend cooperation for reducing pollution in urban areas in the Asia-Pacific Region, a laser radar system was constructed in the city of Djakarta, Indonesia, in 1996, and a follow-up started in fiscal 1997. The aim is to collect information necessary for atmospheric environment improvement through observing pollutant distribution and movement in the upper atmospheric layers over the city. Mie-scattering lidar (laser infrared radar) observation has uninterruptedly been on since the summer of 1997, the system collecting data about Djakarta's atmospheric boundary structure throughout the year. The data indicate great changes in the atmospheric boundary structure between the dry and rainy seasons. The result of intensified observation conducted in the dry season shows that the altitude that the mixed layer reaches in the inland region is higher in the daytime and lower in the nighttime. It is necessary to compare the result with atmospheric pollution data collected on the ground surface and determine the relationship between the behavior of pollutants and the circulation of land-and-sea breeze. The data of September, 1997, reveal an aerosol layer at altitudes of 2km and higher, and this is attributed to forest fires. The result of intensified observation conducted in the dry season of 1998 is also stated. (NEDO)

  2. A review of array radars

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  3. Laser radar: historical prospective-from the East to the West

    Molebny, Vasyl; McManamon, Paul; Steinvall, Ove; Kobayashi, Takao; Chen, Weibiao

    2017-03-01

    This article discusses the history of laser radar development in America, Europe, and Asia. Direct detection laser radar is discussed for range finding, designation, and topographic mapping of Earth and of extraterrestrial objects. Coherent laser radar is discussed for environmental applications, such as wind sensing and for synthetic aperture laser radar development. Gated imaging is discussed through scattering layers for military, medical, and security applications. Laser microradars have found applications in intravascular studies and in ophthalmology for vision correction. Ghost laser radar has emerged as a new technology in theoretical and simulation applications. Laser radar is now emerging as an important technology for applications such as self-driving cars and unmanned aerial vehicles. It is also used by police to measure speed, and in gaming, such as the Microsoft Kinect.

  4. Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar

    Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even

    2017-04-01

    The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.

  5. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high-frequency ground penetrating radar (GPR) measurements at the laboratory scale

    Mount, Gregory J.; Comas, Xavier

    2014-10-01

    Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.

  6. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    Mount, G. J.; Comas, X.

    2015-12-01

    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  7. Applying volumetric weather radar data for rainfall runoff modeling: The importance of error correction.

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.; Delobbe, L.; Weerts, A.; Reggiani, P.

    2009-04-01

    In the current study half a year of volumetric radar data for the period October 1, 2002 until March 31, 2003 is being analyzed which was sampled at 5 minutes intervals by C-band Doppler radar situated at an elevation of 600 m in the southern Ardennes region, Belgium. During this winter half year most of the rainfall has a stratiform character. Though radar and raingauge will never sample the same amount of rainfall due to differences in sampling strategies, for these stratiform situations differences between both measuring devices become even larger due to the occurrence of a bright band (the point where ice particles start to melt intensifying the radar reflectivity measurement). For these circumstances the radar overestimates the amount of precipitation and because in the Ardennes bright bands occur within 1000 meter from the surface, it's detrimental effects on the performance of the radar can already be observed at relatively close range (e.g. within 50 km). Although the radar is situated at one of the highest points in the region, very close to the radar clutter is a serious problem. As a result both nearby and farther away, using uncorrected radar results in serious errors when estimating the amount of precipitation. This study shows the effect of carefully correcting for these radar errors using volumetric radar data, taking into account the vertical reflectivity profile of the atmosphere, the effects of attenuation and trying to limit the amount of clutter. After applying these correction algorithms, the overall differences between radar and raingauge are much smaller which emphasizes the importance of carefully correcting radar rainfall measurements. The next step is to assess the effect of using uncorrected and corrected radar measurements on rainfall-runoff modeling. The 1597 km2 Ourthe catchment lies within 60 km of the radar. Using a lumped hydrological model serious improvement in simulating observed discharges is found when using corrected radar

  8. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-01-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable “normal-glow” mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O 2 at C 3 Π(v = 2)←X 3 Σ(v′ = 0) transitions. The Boltzmann plots from analyses of the O 2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ∼1150 K to ∼1350 K within the discharge area. The measurements had an accuracy of ∼±50 K.

  9. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-06-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable "normal-glow" mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O2 at C3Π(v = 2)←X3Σ(v' = 0) transitions. The Boltzmann plots from analyses of the O2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ˜1150 K to ˜1350 K within the discharge area. The measurements had an accuracy of ˜±50 K.

  10. Coherent Doppler Laser Radar: Technology Development and Applications

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  11. Radar Cross Section (RCS) Certification for Static and Dynamic RCS Measurement Facilities. Volume 2: DOD RCS Demonstration Program Results

    2001-01-01

    ...) 46 Test Group, in cooperation with the RCC/SMSG Radar Committee, the demonstration program described herein was entirely successful and should lay the groundwork for similar technical or laboratory...

  12. Compact Range Facility

    Federal Laboratory Consortium — FUNCTION: Measures electrical properties and characteristics of antenna systems and performs radar cross section (RCS) measurements of objects. These data are used...

  13. Accurate determination of gain and radiation patterns by radar cross-section measurements

    Appel-Hansen, Jørgen

    1979-01-01

    Using a two-port network and geometrical interpretation of equations involved in antenna scattering, it can be derived that antenna characteristics may be determined in properly designed scattering measurements. As an alternative to this approach it is shown that measurement procedures for gain a...

  14. Ground penetrating radar

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  15. Imaging of concrete specimens using inverse synthetic aperture radar

    Rhim, Hong C.; Buyukozturk, Oral

    2000-01-01

    Radar Measurement results of laboratory size concrete specimens are presented in this paper. The purpose of this research work is to study various aspects of the radar method in an effort to develop an improved radar system for nondestructive testing of concrete structures. The radar system used for the study is an Inverse Synthetic Aperture Radar (ISAR), which is capable of transmitting microwaves at three different frequency ranges of 2-3.4, 3.4-5.8, and 8-12 GHz. Radar measurement setup is such that the radar is locates 14.4 m away from a concrete target to satisfy a far-field criterion. The concrete target is rotated for 20 degrees during the measurements for the generation of two-dimensional (cross-range) imagery. Concrete targets used for the measurements have the dimensions of 305 mm (width)x305 mm (height)x92 mm (thickness) with different inside configurations. Comparisons are made for dry and wet specimens, specimens with and without inclusions. Each specimen is made to model various situations that a concrete structure can have in reality. Results show that center frequency, frequency bandwidth, and polarization of the incident wave have different effects on identifying the thickness or inclusions inside concrete specimens. Results also suggest that a certain combination of measurement parameters is suitable for a specific application area. Thus, measurement parameters can be optimized for a specific problem. The findings are presented and discussed in details in the paper. Signal processing schemes implemented for imaging of the specimens are also discussed

  16. Weather Radar Stations

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  17. German Radar Observation Shuttle Experiment (ROSE)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  18. Combined incoherent scatter radar and Fabry-Perot interferometer measurements of frictional heating effects over Millstone Hill during March 7-10, 1989

    Hagan, M.E.; Sipler, D.P.

    1991-01-01

    The authors introduce a methodology to calculate the effects of frictional heating associated with geomagnetic activity using simultaneous incoherent scatter radar and Fabry-Perot interferometer measurements. Vector measurements of ion drift from radar backscatter and neutral wind from optical shifts in the atomic oxygen red line over Millstone Hill, Massachusetts (43 degree N) for the nights of March 7-10, 1989 are presented and are characterized by the magnetic storm activity which prevailed. They combine these measurements to calculate differences in the ion and neutral velocity fields which approach 350 m/s during the most geomagnetically active period that they monitored near 01 UT on March 9. This velocity difference results in a 110 degree K heating of the ion gas at that time

  19. Meteor detection on ST (MST) radars

    Avery, S.K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described

  20. Crosshole investigations - results from borehole radar investigations

    Olsson, O.; Falk, L.; Sandberg, E.; Forslund, O.; Lundmark, L.

    1987-05-01

    A new borehole radar system has been designed, built and tested. The system consists of borehole transmitter and receiver probes, a signal control unit for communication with the borehole probes, and a computer unit for storage and display of data. The system can be used both in singlehole and crosshole modes and probing ranges of 115 m and 300 m, respectively, have been obtained at Stripa. The borehole radar is a short pulse system which uses center frequencies in the range 20 to 60 MHz. Single hole reflection measurements have been used to identify fracture zones and to determine their position and orientation. The travel time and amplitude of the first arrival measured in a crosshole experiment can be used as input data in a tomographic analysis. (orig./DG)

  1. Radar ornithology and the conservation of migratory birds

    Sidney A. Gauthreaux; Carroll G. Belser

    2005-01-01

    It is possible to study with surveillance radar the movements of migrating birds in the atmosphere at different spatial scales. At a spatial scale within a range of 6 kilometers, high-resolution, 3-centimeter wavelength surveillance radar (e.g. BIRDRAD) can detect the departure of migrants from different types of habitat within a few kilometers of the radar. The radar...

  2. GLACIER MONITORING SYSTEM IN COLOMBIA - complementing glaciological measurements with laser-scanning and ground-penetrating radar surveys

    Ceballos, Jorge; Micheletti, Natan; Rabatel, Antoine; Mölg, Nico; Zemp, Michael

    2015-04-01

    Colombia (South America) has six small glaciers (total glacierized area of 45 Km2); their geographical location, close to zero latitude, makes them very sensitive to climate changes. An extensive monitoring program is being performed since 2006 on two glaciers, with international cooperation supports. This presentation summarizes the results of glacier changes in Colombia and includes the latest results obtained within the CATCOS Project - Phase 1 (Capacity Building and Twinning for Climate Observing Systems) signed between Colombia and Switzerland, and within the Joint Mixte Laboratory GREAT-ICE (IRD - France), with the application of LiDAR technology and GPR-based ice thickness measurements at Conejeras Glacier. Conejeras Glacier (Lat. N. 4° 48' 56"; Long. W. 75° 22' 22"; Alt. Max. 4915m.; Alt. Min. 4730m. Area 0.2 Km2) is located on the north-western side of Santa Isabel Volcano. This glacier belongs to global glacier monitoring network of the World Glacier Monitoring Service (WGMS-ID: 2721). The surface mass balance is calculated monthly using the direct glaciological method. Between April 2006 and May 2014, Conejeras Glacier showed a cumulative loss of -21 m w.e. The CATCOS Project allowed to improve the glacier monitoring system in Colombia with two main actions: (1) a terrestrial laser scanner survey (RIEGL VZ-6000 terrestrial laser scanner, property of Universities of Lausanne and Fribourg); and (2) ice thickness measurements (Blue System Integration Ltd. Ice Penetrating Radar of property of IRD). The terrestrial laser-scanning survey allowed to realize an accurate digital terrain model of the glacier surface with 13 million points and a decimetric resolution. Ice thickness measurements showed an average glacier thickness of 22 meters and a maximum of 52 meters.

  3. Multiple Convective Cell Identification and Tracking Algorithm for documenting time-height evolution of measured polarimetric radar and lightning properties

    Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.

    2017-12-01

    A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.

  4. Feasibility of borehole radar measurements to monitor water/steam fronts in EOR applications

    Miorali, M.; Slob, E.C.; Arts, R.J.

    2009-01-01

    A technique capable of capturing the dynamic of the reservoir fluids in the proximity of production wells would provide enormous benefit to the reservoir management; in fact, monitoring can be used to develop a feedback loop between measurements and control technologies to optimize the production.

  5. Detection of Weather Radar Clutter

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  6. CW Laser radar for combustion diagnostics

    Malmqvist Elin

    2018-01-01

    Full Text Available A CW-laser radar system developed for combustion diagnostics is described. The system is based on triangulation to attain range information. A portable system has been constructed and here we show some result from measurements in various flames, for example Rayleigh scattering thermometry and monitoring of particle distributions with high temporal and spatial resolution. The concept can equally well be based on pulsed lasers, allowing suppression of background emission through gated detection.

  7. Errors due to random noise in velocity measurement using incoherent-scatter radar

    P. J. S. Williams

    1996-12-01

    Full Text Available The random-noise errors involved in measuring the Doppler shift of an 'incoherent-scatter' spectrum are predicted theoretically for all values of Te/Ti from 1.0 to 3.0. After correction has been made for the effects of convolution during transmission and reception and the additional errors introduced by subtracting the average of the background gates, the rms errors can be expressed by a simple semi-empirical formula. The observed errors are determined from a comparison of simultaneous EISCAT measurements using an identical pulse code on several adjacent frequencies. The plot of observed versus predicted error has a slope of 0.991 and a correlation coefficient of 99.3%. The prediction also agrees well with the mean of the error distribution reported by the standard EISCAT analysis programme.

  8. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  9. Compressive laser ranging.

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  10. Disaggregating radar-derived rainfall measurements in East Azarbaijan, Iran, using a spatial random-cascade model

    Fouladi Osgouei, Hojjatollah; Zarghami, Mahdi; Ashouri, Hamed

    2017-07-01

    The availability of spatial, high-resolution rainfall data is one of the most essential needs in the study of water resources. These data are extremely valuable in providing flood awareness for dense urban and industrial areas. The first part of this paper applies an optimization-based method to the calibration of radar data based on ground rainfall gauges. Then, the climatological Z-R relationship for the Sahand radar, located in the East Azarbaijan province of Iran, with the help of three adjacent rainfall stations, is obtained. The new climatological Z-R relationship with a power-law form shows acceptable statistical performance, making it suitable for radar-rainfall estimation by the Sahand radar outputs. The second part of the study develops a new heterogeneous random-cascade model for spatially disaggregating the rainfall data resulting from the power-law model. This model is applied to the radar-rainfall image data to disaggregate rainfall data with coverage area of 512 × 512 km2 to a resolution of 32 × 32 km2. Results show that the proposed model has a good ability to disaggregate rainfall data, which may lead to improvement in precipitation forecasting, and ultimately better water-resources management in this arid region, including Urmia Lake.

  11. Extended Target Recognition in Cognitive Radar Networks

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  12. Progress in coherent laser radar

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  13. Mesospheric Temperatures and Winds measured by a VHF Meteor Radar at King Sejong Station (62.2S, 58.8W), Antarctica

    Kim, Yongha; Kim, Jeong-Han; Jee, Geonwha; Lee, Chang-Sup

    2010-05-01

    A VHF radar at King Sejong Station, Antarctica has been measuring meteor echoes since March 2007. Temperatures near the mesopause are derived from meteor decay times with an improved method of selecting meteor echo samples, and compared with airglow temperatures simultaneously observed by a spectral airglow temperature imager (SATI). The temperatures derived from meteor decay times are mostly consistent with the rotational temperatures of SATI OH(6-2) and O2(0-1) emissions from March through October. During southern summer when SATI cannot be operated due to brief night time, the meteor radar observation shows cold mesospheric temperatures, significantly lower than the CIRA86 model. The meteor radar observation also provides wind field information between 80 and 100 km of altitude. The measured meridional winds seem to follow the summer pole to winter pole circulation, and thus are correlated with the measured seasonal temperature change. However, the correlation between meridional winds and temperatures is not found in day by day base, as a previous study reported. Tidal characteristics of both zonal and meridional winds will also be compared with those of other Antarctic stations.

  14. Comparisons of some scattering theories with recent scatterometer measurements. [sea roughness radar model

    Fung, A. K.; Dome, G.; Moore, R. K.

    1977-01-01

    The paper compares the predictions of two different types of sea scatter theories with recent scatterometer measurements which indicate the variations of the backscattering coefficient with polarization, incident angle, wind speed, and azimuth angle. Wright's theory (1968) differs from that of Chan and Fung (1977) in two major aspects: (1) Wright uses Phillips' sea spectrum (1966) while Chan and Fung use that of Mitsuyasu and Honda, and (2) Wright uses a modified slick sea slope distribution by Cox and Munk (1954) while Chan and Fung use the slick sea slope distribution of Cox and Munk defined with respect to the plane perpendicular to the look direction. Satisfactory agreements between theory and experimental data are obtained when Chan and Fung's model is used to explain the wind and azimuthal dependence of the scattering coefficient.

  15. Measurement of sediments thickness by ground penetrating radar; Denjihaho wo mochiita kotei taisekibutsu soatsu no sokutei

    Nozawa, E [Tokyo Electric Power Co. Inc., Tokyo (Japan); Inagaki, M

    1997-05-27

    An attempt was made to measure thickness of a layer of reservoir bottom sediments by utilizing the electromagnetic reflection method. Because water is a substance difficult for electromagnetic waves to permeate, considerations were given on to suppress attenuation to a minimum, and improve receiving sensitivity. The test used monocycle pulses with a central frequency of 200 MHz. In order to generate stabilized pulses with little unnecessary reflection, an antenna as large as it can be fitted into a rubber boat was employed. In order to acquire referential data, the test was carried out by using simultaneously a sound wave exploration device. The lake at which the test was carried out is a regulating reservoir with a size of about 250 m {times} 150 m, with its bottom made of concrete slab. This means that the lake consists of a three-layer structure comprising water, soil deposits, and concrete bottom from the water surface. According to an example of acquired electromagnetic exploration records, boundary reflection of water and sediments was observed clearly at water depths of 2 to 3 m as a shallow portion and 5 to 6 m as a deep portion. Reflection between the sediments and the bottom plate was also observed sufficiently distinctly. 3 refs., 8 figs.

  16. Airborne lidar measurements to investigate the impact of long-range transported dust on shallow marine trade wind convection

    Gross, S.; Gutleben, M.; Wirth, M.; Ewald, F.

    2017-12-01

    Aerosols and clouds are still main contributors to uncertainties in estimates and interpretation of the Earth's changing energy budget. Their interaction with the Earth's radiation budged has a direct component by scattering and absorbing solar and terrestrial radiation, and an indirect component, e.g. as aerosols modify the properties and thus the life-time of clouds or by changing the atmosphere's stability. Up to know now sufficient understanding in aerosol-cloud interaction and climate feedback is achieved. Thus studies with respect to clouds, aerosols, their interaction and influence on the radiation budged are highly demanded. In August 2016 the NARVAL-II (Next-generation airborne remote sensing for validation studies) mission took place. Measurements with a combined active (high spectral resolution and water vapor differential absorption lidar and cloud radar) and passive remote sensing (microwave radiometer, hyper spectral imager, radiation measurements) payload were performed with the German high altitude and long-range research aircraft HALO over the subtropical North-Atlantic Ocean to study shallow marine convection during the wet and dusty season. With this, NARVAL-II is follow-up of the NARVAL-I mission which took place during the dry and dust free season in December 2013. During NARVAL-II the measurement flights were designed the way to sample dust influenced areas as well as dust free areas in the trades. One main objective was to investigate the optical and macro physical properties of the dust layer, differences in cloud occurrence in dusty and non-dusty areas, and to study the influence of aerosols on the cloud properties and formation. This allows comparisons of cloud and aerosol distribution as well as their environment between the dry and the wet season, and of cloud properties and distribution with and without the influence of long-range transported dust across the Atlantic Ocean. In our presentation we will give an overview of the NARVAL

  17. Mapping of a Hydrological Ice Sheet Drainage Basin on the West Greenland Ice Sheet Margin from ERS-1/2 SAR Interferometry, Ice-Radar Measurement, and Modelling

    Ahlstrøm, Andreas P.; Bøggild, C.E.; Stenseng, L.

    2002-01-01

    importance of the potential of the ice overburden pressure compared to the bedrock topography. The meltwater run-off for the basin delineations was modelled with an energy-balance model calibrated with observed ice-sheet ablation and compared to a 25 year time series of measured basin run-off. The standard......The hydrological ice-sheet basin draining into the Tasersiaq lake, West Greenland (66°13'N, 50°30'W), was delineated, First using standard digital elevation models (DEMs) for ice-sheet surface and bedrock, and subsequently using a new high-resolution dataset, with a surface DEM derived from repeat......-track interferometric synthetic aperture radar (SAR) and a bedrock topography derived from an airborne 60 MHz ice-penetrating radar. The extent of the delineation was calculated from a water-pressure potential as a function of the ice-sheet surface and bedrock elevations and a hydraulic factor κ describing the relative...

  18. Prime mission results of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the version 5 GPM standard products

    Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.

    2017-09-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.

  19. Field-aligned currents and ionospheric parameters deduced from EISCAT radar measurements in the post-midnight sector

    M. Sugino

    2002-09-01

    Full Text Available Attempting to derive the field-aligned current (FAC density using the EISCAT radar and to understand the role of the ionosphere on closing FACs, we conducted special radar experiments with the EISCAT radar on 9 October 1999. In order to derive the gradient of the ionospheric conductivity (grad S and the divergence of the electric field (div E nearly simultaneously, a special experiment employed an EISCAT radar mode which let the transmitting antenna sequentially point to four directions within 10 min; two pairs of the four directions formed two orthogonal diagonals of a square.  Our analysis of the EISCAT radar data disclosed that SP div E and E · grad SP produced FACs with the same direction inside a stable broad arc around 05:00 MLT, when the EISCAT radar presumably crossed the boundary between the large-scale upward and downward current regions. In the most successfully observed case, in which the conductances and the electric field were spatially varying with little temporal variations, the contribution of SP div E was nearly twice as large as that of E · grad SP . On the other hand, the contribution of (b × E · grad SH was small and not effective in closing FACs. The present EISCAT radar mode along with auroral images also enables us to focus on the temporal or spatial variation of high electric fields associated with auroral arcs. In the present experiment, the electric field associated with a stable arc was confined in a spatially restricted region, within ~ 100 km from the arc, with no distinct depletion of electron density. We also detected a region of the high arc-associated electric field, accompanied by the depletion of electron density above 110 km. Using auroral images, this region was identified as a dark spot with a spatial scale of over 150 × 150 km. The dark spot and the electron depletion were likely in existence for a limited time of a few minutes.Key words. Ionosphere (auroral ionosphere; electric fields and currents

  20. Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results

    Kantha, Lakshmi; Lawrence, Dale; Luce, Hubert; Hashiguchi, Hiroyuki; Tsuda, Toshitaka; Wilson, Richard; Mixa, Tyler; Yabuki, Masanori

    2017-12-01

    The Shigaraki unmanned aerial vehicle (UAV)-Radar Experiment (ShUREX) is an international (USA-Japan-France) observational campaign, whose overarching goal is to demonstrate the utility of small, lightweight, inexpensive, autonomous UAVs in probing and monitoring the lower troposphere and to promote synergistic use of UAVs and very high frequency (VHF) radars. The 2-week campaign lasting from June 1 to June 14, 2015, was carried out at the Middle and Upper Atmosphere (MU) Observatory in Shigaraki, Japan. During the campaign, the DataHawk UAV, developed at the University of Colorado, Boulder, and equipped with high-frequency response cold wire and pitot tube sensors (as well as an iMET radiosonde), was flown near and over the VHF-band MU radar. Measurements in the atmospheric column in the immediate vicinity of the radar were obtained. Simultaneous and continuous operation of the radar in range imaging mode enabled fine-scale structures in the atmosphere to be visualized by the radar. It also permitted the UAV to be commanded to sample interesting structures, guided in near real time by the radar images. This overview provides a description of the ShUREX campaign and some interesting but preliminary results of the very first simultaneous and intensive probing of turbulent structures by UAVs and the MU radar. The campaign demonstrated the validity and utility of the radar range imaging technique in obtaining very high vertical resolution ( 20 m) images of echo power in the atmospheric column, which display evolving fine-scale atmospheric structures in unprecedented detail. The campaign also permitted for the very first time the evaluation of the consistency of turbulent kinetic energy dissipation rates in turbulent structures inferred from the spectral broadening of the backscattered radar signal and direct, in situ measurements by the high-frequency response velocity sensor on the UAV. The data also enabled other turbulence parameters such as the temperature

  1. Correlations between Venus nightside near infrared emissions measured by VIRTIS/Venus Express and Magellan radar data

    Mueller, N.; Helbert, J.; Hashimoto, G. L.; Tsang, C. C. C.; Erard, S.; Piccioni, G.; Drossart, P.

    2008-09-01

    Background The Venus Express Spacecraft images the nightside thermal emissions using the VIRTIS imaging spectrometer. At 1.02 micron thermal emission from the surface is penetrates the atmosphere but the signal is attenuated by scattering and absorption [1, 2]. Although the measured flux at top of the atmosphere is nonlinearly related to the original emission of the surface, it is still positively correlated with the product of surface temperature and surface emissivity [3]. The surface temperature of Venus is relatively well constrained as a monotonous function of altitude. Emissivity at 1 micron depends strongly on surface composition, in particular abundance of mafic minerals [3]. Mapping the thermal emission of the surface of Venus therefore supplements radar data as it allows to infer relative variation of surface composition. Data Processing This study examines the correlation of VIRTIS images showing a signal of the surface with all known parameters that govern radiance and applies semi empirical relations to remove the respective influences. 1. Stray sunlight is removed by subtraction of a spectrum template scaled to fit radiance at 1.4 ¹m [2] 2. Limb darkening is accounted for using a linear phase function consistent with results of radiative transfer modeling [4]. 3. Cloud opacity is determined from 1.31 ¹m and applied to 1.02 ¹m while accounting for multiple reflections between lower atmosphere and clouds [3]. Result is brightness temperature of thermal emission below the cloud deck but above the lowest 20 km of the atmosphere. 4. Influence of surface temperature and lower atmosphere absorption is determined by correlation of VIRTIS declouded brightness temperature and Magellan Topography data [5]. To further reduce the influence of cloud contrast and increase the signal of the surface, all suitable VIRTIS observations are map projected and stacked to create a map of the southern hemisphere of Venus. Observations and Interpretation As expected from

  2. Aercibo S-band radar program

    Campbell, D.B.

    1988-01-01

    The high powered 12.6 cm wavelength radar on the 1000-ft Arecibo reflector is utilized for a number of solar system studies. Chief among these are: (1) surface reflectivity mapping of Venus, Mercury and the Moon. Resolutions achievable on Venus are less than 1.5 km over some areas, for Mercury about 30 km and for the Moon 200 m at present, (2) high time resolution ranging measurements to the surfaces of the terrestrial planets. These measurements are used to obtain profiles and scattering parameters in the equatorial region. They can also be used to test relativistic and gravitational theories by monitoring the rate of advance of the perihelion of the orbit of Mercury and placing limits on the stability of the gravitational constant, (3) measurements of the orbital parameters, figure, spin vector and surface properties of asteroids and comets, and (4) observations of the Galilean Satellites of Jupiter and the satellites of Mars, Phobos and Deimos. The Galilean Satellites of Jupiter were re-observed with the 12.6 cm radar for the first time since 1981. Much more accurate measurements of the scattering properties of the three icy satellites were obtained that generally confirmed previous observations. Unambiguous measurements of the cross section and circular polarizations ratio of Io were also obtained for the first time. The radar scattering properties of four mainbelt asteroids and one near-earth asteroid were studied

  3. Prospective IS-MST radar. Potential and diagnostic capabilities

    Potekhin A.P.

    2016-09-01

    Full Text Available In the next few years, a new radar is planned to be built near Irkutsk. It should have capabilities of incoherent scatter (IS radars and mesosphere-stratosphere-troposphere (MST radars [Zherebtsov et al., 2011]. The IS-MST radar is a phased array of two separated antenna panels with a multichannel digital receiving system, which allows detailed space-time processing of backscattered signal. This paper describes characteristics, configuration, and capabilities of the antenna and transceiver systems of this radar. We estimate its potential in basic operating modes to study the ionosphere by the IS method at heights above 100 km and the atmosphere with the use of signals scattered from refractive index fluctuations, caused by turbulent mixing at heights below 100 km. The modeling shows that the radar will allow us to regularly measure neutral atmosphere parameters at heights up to 26 km as well as to observe mesosphere summer echoes at heights near 85 km in the presence of charged ice particles (an increase in Schmidt number and mesosphere winter echoes at heights near 65 km with increasing background electron density. Evaluation of radar resources at the IS mode in two height ranges 100–600 and 600–2000 km demonstrates that in the daytime and with the accumulation time of 10 min, the upper boundaries of electron density and ionospheric plasma temperature are ~1500 and ~1300 km respectively, with the standard deviation of no more than 10 %. The upper boundary of plasma drift velocity is ~1100 km with the standard deviation of 45 m/s. The estimation of interferometric capabilities of the MST radar shows that it has a high sensitivity to objects of angular size near 7.5 arc min, and its potential accuracy in determining target angles can reach 40 arc sec.

  4. Method of high precision interval measurement in pulse laser ranging system

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  5. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.

    2017-12-01

    Accurate characterization of uncertainties in space-borne precipitation estimates is critical for many applications including water budget studies or prediction of natural hazards at the global scale. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the high quality and high resolution NEXRAD-based precipitation estimates derived from the NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. A surface reference is derived from the MRMS suite of products to be accurate with known uncertainty bounds and measured at a resolution below the pixel sizes of any GPM estimate, providing great flexibility in matching to grid scales or footprints. It provides an independent and consistent reference research framework for directly evaluating GPM precipitation products across a large number of meteorological regimes as a function of resolution, accuracy and sample size. The consistency of the ground and space-based sensors in term of precipitation detection, typology and quantification are systematically evaluated. Satellite precipitation retrievals are further investigated in terms of precipitation distributions, systematic biases and random errors, influence of precipitation sub-pixel variability and comparison between satellite products. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. non uniform beam filling for DPR) sensors are investigated. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates. Precipitation features previously used to analyze Level II satellite estimates under various precipitation processes are now intoduced for Level III to test several assumptions in the IMERG algorithm. Specifically, the contribution of Level II is

  6. Joint application of ground penetrating radar and electrical resistivity measurements for characterization of subsurface stratigraphy in Southwestern Nigeria

    Adepelumi, A A; Fayemi, O

    2012-01-01

    The frequent building collapses in Nigeria have been attributed to a lack of pre-construction investigations, which assist engineers in obtaining in situ geotechnical information. Further, the structural subsurface settings are often ignored or investigation is haphazardly carried out. To address this issue and demonstrate the importance of such a survey, a combination of ground penetrating radar (GPR) and vertical electrical sounding (VES) data were acquired in a part of Southwestern Nigeria. A 200 MHz antenna was used for the data acquisition along four traverses. The data were subjected to standard GPR processing techniques, and attribute analysis such as instantaneous frequency, amplitude and phase. Also, for comparative and engineering characterization purposes, longitudinal conductance and coefficient of anisotropy were computed from the VES results and used for determining the competency of the bedrocks. From the GPR results, it was observed that the mapped subsurface is characterized as erosional truncated at a low angle, which is southerly dipping and includes tangential reflections. Further, stratified rocks dipping at an angle of 32° occur between 1.0 and 4.5 m depth in all of the GPR sections; these strata were truncated by topsoil at shallow depths. Also, some of the sections depict ancient channel structures that have a dimension of 70 m × 40 m. The resistivity data suggest that the study area is characterized by four distinct geoelectric sequences. These comprise topsoil which is composed of clay-like sand to lateritic clay whose thickness ranges between 0.25 and 8.12 m, weathered bedrock with a thickness between 3.84 and 12.61 m, stratified bedrock with a thickness between 0.33 and 7.51 m, and fresh bedrock. These results reveal a complex subsurface geology and this characterizes the study area. The area has low to moderate longitudinal conductance and coefficient of anisotropy values, which suggest that incompetent to semi-competent bedrock

  7. Interception of LPI radar signals

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  8. Multi-function radar emitter identification based on stochastic syntax-directed translation schema

    Liu, Haijun; Yu, Hongqi; Sun, Zhaolin; Diao, Jietao

    2014-01-01

    To cope with the problem of emitter identification caused by the radar words’ uncertainty of measured multi-function radar emitters, this paper proposes a new identification method based on stochastic syntax-directed translation schema (SSDTS). This method, which is deduced from the syntactic modeling of multi-function radars, considers the probabilities of radar phrases appearance in different radar modes as well as the probabilities of radar word errors occurrence in different radar phrases...

  9. Simultaneous optical and meteor head echo measurements using the Middle Atmosphere Alomar Radar System (MAARSY): Data collection and preliminary analysis

    Brown, P.; Stober, G.; Schult, C.; Krzeminski, Z.; Cooke, W.; Chau, J. L.

    2017-07-01

    The initial results of a two year simultaneous optical-radar meteor campaign are described. Analysis of 105 double-station optical meteors having plane of sky intersection angles greater than 5° and trail lengths in excess of 2 km also detected by the Middle Atmosphere Alomar Radar System (MAARSY) as head echoes was performed. These events show a median deviation in radiants between radar and optical determinations of 1.5°, with 1/3 of events having radiant agreement to less than one degree. MAARSY tends to record average speeds roughly 0.5 km/s and 1.3 km higher than optical records, in part due to the higher sensitivity of MAARSY as compared to the optical instruments. More than 98% of all head echoes are not detected with the optical system. Using this non-detection ratio and the known limiting sensitivity of the cameras, we estimate that the limiting meteoroid detection mass of MAARSY is in the 10-9-10-10 kg (astronomical limiting meteor magnitudes of +11 to +12) appropriate to speeds from 30 to 60 km/s. There is a clear trend of higher peak RCS for brighter meteors between 35 and -30 dBsm. For meteors with similar magnitudes, the MAARSY head echo radar cross-section is larger at higher speeds. Brighter meteors at fixed heights and similar speeds have consistently, on average, larger RCS values, in accordance with established scattering theory. However, our data show RCS ∝ v/2, much weaker than the normally assumed RCS ∝ v3, a consequence of our requiring head echoes to also be detectable optically. Most events show a smooth variation of RCS with height broadly following the light production behavior. A significant minority of meteors show large variations in RCS relative to the optical light curve over common height intervals, reflecting fragmentation or possibly differential ablation. No optically detected meteor occurring in the main radar beam and at times when the radar was collecting head echo data went unrecorded by MAARSY. Thus there does not

  10. Temperature sheets and aspect sensitive radar echoes

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  11. Temperature sheets and aspect sensitive radar echoes

    H. Luce

    2001-08-01

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  12. Range measurements of keV hydrogen ions in solid oxygen and carbon monoxide

    Schou, J.; Soerensen, H.; Andersen, H.H.; Nielsen, M.; Rune, J.

    1984-01-01

    Ranges of 1.3-3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen. The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees with that previously found for solid nitrogen. (orig.)

  13. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands.

    Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi; Lee, Bang Yeon

    2017-07-18

    FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.

  14. Radar principles for the nonspecialist, 3rd edition

    Toomay, John

    2004-01-01

    Radar Principles for the Non-specialist, Third Edition continues its popular tradition: to distill the very complex technology of radar into its fundamentals, tying them to the laws of nature on one end and to the most modern and complex systems on the other. It starts with electromagnetic propagation, describes a radar of the utmost simplicity, and derives the radar range equation from that simple radar. Once the range equation is available, the book attacks the meaning of each term in it, moving through antennas, detection and tracking, radar cross-section, waveforms andsignal proces

  15. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  16. Combining C- and X-band Weather Radars for Improving Precipitation Estimates over Urban Areas

    Nielsen, Jesper Ellerbæk

    of future system state. Accurate and reliable weather radar measurements are, therefore, important for future developments and achievements within urban drainage. This PhD study investigates two types of weather radars. Both systems are in operational use in Denmark today. A network of meteorological C...... individually and owned by local water utility companies. Although the two radar systems use similar working principles, the systems have significant differences regarding technology, temporal resolution, spatial resolution, range and scanning strategy. The focus of the research was to combine the precipitation...

  17. A new ground-penetrating radar system for remote site characterization

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  18. RADAR PPI Scope Overlay

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  19. Development of source range measurement instrument in Xi'an pulsed reactor

    Wang Li

    2002-01-01

    Source range measurement instrument in Xi'an pulsed reactor is key equipment of low-side measuring in source range. At the same time, it is also weighty component of out-of-pile neutron-flux level observation system. The authors have done some researching and renovating based on the similar type devices used in nuclear reactor to improve the meter sensitivity, measuring range, noise proof features, reliability in running and maintainability which belong to the main performance index of the instrument. The design ideas, configurations, working principle, performance indexes, technique features and effect in utilizing are introduced briefly

  20. Advances in bistatic radar

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  1. Design, Performance and Optimization for Multimodal Radar Operation

    Surendra S. Bhat

    2012-09-01

    Full Text Available This paper describes the underlying methodology behind an adaptive multimodal radar sensor that is capable of progressively optimizing its range resolution depending upon the target scattering features. It consists of a test-bed that enables the generation of linear frequency modulated waveforms of various bandwidths. This paper discusses a theoretical approach to optimizing the bandwidth used by the multimodal radar. It also discusses the various experimental results obtained from measurement. The resolution predicted from theory agrees quite well with that obtained from experiments for different target arrangements.

  2. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  3. The NASA Polarimetric Radar (NPOL)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  4. Introduction to sensors for ranging and imaging

    Brooker, Graham

    2009-01-01

    ""This comprehensive text-reference provides a solid background in active sensing technology. It is concerned with active sensing, starting with the basics of time-of-flight sensors (operational principles, components), and going through the derivation of the radar range equation and the detection of echo signals, both fundamental to the understanding of radar, sonar and lidar imaging. Several chapters cover signal propagation of both electromagnetic and acoustic energy, target characteristics, stealth, and clutter. The remainder of the book introduces the range measurement process, active ima

  5. Quantitative measurement of precipitation using radar in comparison with ground-level measurements, taking orographic influences into account; Quantitative Niederschlagsmessung mit Radar im Vergleich mit Bodenmessungen in orographisch gegliedertem Gelaende

    Gysi, H. [Radar-Info, Karlsruhe (Germany)

    1998-01-01

    The methods of correction applied to the determination of the spatial distribution of precipitation on the basis of the volumes established by the Karlsruhe C-band precipitation radar distinctly enhance the quality of statements regarding precipitation intensities and their time integration both in summer and winter. (orig./KW) [Deutsch] Die fuer die Bestimmung der raeumlichen Niederschlagsverteilung aus Volumendaten des Karlsruher C-Band Niederschlagradars angewandten Korrekturverfahren verbessern sowohl im Sommer als auch im Winter deutlich die Qualitaet und quantitative Aussagekraft der dargestellten Niederschlagsintensitaeten und deren zeitlichen Integrationen. (orig./KW)

  6. Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements

    Barshan, B; Baskent, D

    Two novel methods for surface profile extraction based on multiple ultrasonic range measurements are described and compared. One of the methods employs morphological processing techniques, whereas the other employs a spatial voting scheme followed by simple thresholding. Morphological processing

  7. Spacecraft Trajectory Estimation Using a Sampled-Data Extended Kalman Filter with Range-Only Measurements

    Erwin, R. S; Bernstein, Dennis S

    2005-01-01

    .... In this paper we use a sampled-data extended Kalman Filter to estimate the trajectory or a target satellite when only range measurements are available from a constellation or orbiting spacecraft...

  8. Radar Scan Methods in Modern Multifunctional Radars

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  9. The Development of a Tactical-Level Full Range Leadership Measurement Instrument

    2010-03-01

    full range leadership theory has become established as the predominant and most widely researched theory on leadership . The most commonly used survey...instrument to assess full range leadership theory is the Multifactor Leadership Questionnaire, originally developed by Bass in 1985. Although much...existing literature to develop a new full range leadership theory measurement instrument that effectively targets low- to mid-level supervisors, or

  10. Range and number-of-levels effects in derived and stated measures of attribute importance

    Verlegh, PWJ; Schifferstein, HNJ; Wittink, DR

    We study how the range of variation and the number of ttribute levels affect five measures of attribute importance: full profile conjoint estimates, ranges in attribute level attractiveness ratings. regression coefficients. graded paired comparisons. and self-reported ratings, We find that all

  11. Frequency-Modulated Continuous-Wave Fm-Cw Radar for Evaluation of Refractory Structures Used in Glass Manufacturing Furnaces

    Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.

    2009-03-01

    A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.

  12. Hardware test program for evaluation of baseline range/range rate sensor concept

    Pernic, E.

    1985-01-01

    The test program Phase II effort provides additional design information in terms of range and range rate (R/R) sensor performance when observing and tracking a typical spacecraft target. The target used in the test program was a one-third scale model of the Hubble Space Telescope (HST) available at the MSFC test site where the tests were performed. A modified Bendix millimeter wave radar served as the R/R sensor test bed for evaluation of range and range rate tracking performance, and generation of radar signature characteristics of the spacecraft target. A summary of program test results and conclusions are presented along with detailed description of the Bendix test bed radar with accompaning instrumentation. The MSFC test site and facilities are described. The test procedures used to establish background levels, and the calibration procedures used in the range accuracy tests and RCS (radar cross section) signature measurements, are presented and a condensed version of the daily log kept during the 5 September through 17 September test period is also presented. The test program results are given starting with the RCS signature measurements, then continuing with range measurement accuracy test results and finally the range and range rate tracking accuracy test results.

  13. Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic Zone (Chile) measured by satellite radar interferometry

    Feigl, K.; Ali, T.; Singer, B. S.; Pesicek, J. D.; Thurber, C. H.; Jicha, B. R.; Lara, L. E.; Hildreth, E. W.; Fierstein, J.; Williams-Jones, G.; Unsworth, M. J.; Keranen, K. M.

    2011-12-01

    The Laguna del Maule (LdM) volcanic field of the Andean Southern Volcanic Zone extends over 500 square kilometers and comprises more than 130 individual vents. As described by Hildreth et al. (2010), the history has been defined from sixty-eight Ar/Ar and K-Ar dates. Silicic eruptions have occurred throughout the past 3.7 Ma, including welded ignimbrite associated with caldera formation at 950 ka, small rhyolitic eruptions between 336 and 38 ka, and a culminating ring of 36 post-glacial rhyodacite and rhyolite coulees and domes that encircle the lake. Dating of five post-glacial flows implies that these silicic eruptions occurred within the last 25 kyr. Field relations indicate that initial eruptions comprised modest volumes of mafic rhyodacite magma that were followed by larger volumes of high silica rhyolite. The post-glacial flare-up of silicic magmatism from vents distributed around the lake, is unprecedented in the history of this volcanic field. Using satellite radar interferometry (InSAR), Fournier et al. (2010) measured uplift at a rate of more than 180 mm/year between 2007 and 2008 in a round pattern centered on the west side of LdM. More recent InSAR observations suggest that rapid uplift has continued from 2008 through early 2011. In contrast, Fournier et al. found no measurable deformation in an interferogram spanning 2003 through 2004. In this study, we model the deformation field using the General Inversion of Phase Technique (GIPhT), as described by Feigl and Thurber (2009). Two different models fit the data. The first model assumes a sill at ~5 km depth has been inflating at a rate of more than 20 million cubic meters per year since 2007. The second model assumes that the water level in the lake dropped at a rate of 20 m/yr from January 2007 through February 2010, thus reducing the load on an elastic simulation of the crust. The rate of intrusion inferred from InSAR is an order of magnitude higher than the average rate derived from well-dated arc

  14. An emittance measurement system for a wide range of bunch charges

    Dunham, B.; Engwall, D.; Hofler, A.; Keesee, M.; Legg, R.

    1997-01-01

    As a part of the emittance measurements planned for the FEL injector at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the authors have developed an emittance measurement system that covers the wide dynamic range of bunch charges necessary to fully characterize the high-DC-voltage photocathode gun. The measurements are carried out with a variant of the classical two-slit method using a slit to sample the beam in conjunction with a wire scanner to measure the transmitted beam profile. The use of commercial, ultra-low noise picoammeters makes it possible to cover the wide range of desired bunch charges, with the actual measurements made over the range of 0.25 pC to 125 pC. The entire system, including its integration into the EPICS control system, is discussed

  15. A new method for estimating the probable maximum hail loss of a building portfolio based on hailfall intensity determined by radar measurements

    Aller, D.; Hohl, R.; Mair, F.; Schiesser, H.-H.

    2003-04-01

    Extreme hailfall can cause massive damage to building structures. For the insurance and reinsurance industry it is essential to estimate the probable maximum hail loss of their portfolio. The probable maximum loss (PML) is usually defined with a return period of 1 in 250 years. Statistical extrapolation has a number of critical points, as historical hail loss data are usually only available from some events while insurance portfolios change over the years. At the moment, footprints are derived from historical hail damage data. These footprints (mean damage patterns) are then moved over a portfolio of interest to create scenario losses. However, damage patterns of past events are based on the specific portfolio that was damaged during that event and can be considerably different from the current spread of risks. A new method for estimating the probable maximum hail loss to a building portfolio is presented. It is shown that footprints derived from historical damages are different to footprints of hail kinetic energy calculated from radar reflectivity measurements. Based on the relationship between radar-derived hail kinetic energy and hail damage to buildings, scenario losses can be calculated. A systematic motion of the hail kinetic energy footprints over the underlying portfolio creates a loss set. It is difficult to estimate the return period of losses calculated with footprints derived from historical damages being moved around. To determine the return periods of the hail kinetic energy footprints over Switzerland, 15 years of radar measurements and 53 years of agricultural hail losses are available. Based on these data, return periods of several types of hailstorms were derived for different regions in Switzerland. The loss set is combined with the return periods of the event set to obtain an exceeding frequency curve, which can be used to derive the PML.

  16. Tsunami Arrival Detection with High Frequency (HF Radar

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  17. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    Ali Sabir

    2015-01-01

    Full Text Available Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  18. SMAP RADAR Calibration and Validation

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  19. Antenna characteristics and air-ground interface deembedding methods for stepped-frequency ground-penetrating radar measurements

    Karlsen, Brian; Larsen, Jan; Jakobsen, Kaj Bjarne

    2000-01-01

    The result from field-tests using a Stepped-Frequency Ground Penetrating Radar (SF-GPR) and promising antenna and air-ground deembedding methods for a SF-GPR is presented. A monostatic S-band rectangular waveguide antenna was used in the field-tests. The advantages of the SF-GPR, e.g., amplitude...... and phase information in the SF-GPR signal, is used to deembed the characteristics of the antenna. We propose a new air-to-ground interface deembedding technique based on Principal Component Analysis which enables enhancement of the SF-GPR signal from buried objects, e.g., anti-personal landmines...

  20. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors

    Sun, Honghao; Almdal, Kristoffer; Andresen, Thomas Lars

    2011-01-01

    Conventional optical nanoparticle pH sensors that are designed for ratiometric measurements in cells have been based on utilizing one sensor fluorophore and one reference fluorophore in each nanoparticle, which results in a relatively narrow dynamic measurement range. This results in substantial...

  1. Classification and correction of the radar bright band with polarimetric radar

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  2. 3D electrical method and step continuous wave radar method for Nojima site. Results of measurement of resistivity at trench site; Nojima danso ni okeru sanjigenhi teikoho to step shiki renzokuha chika radar ho tansa. Trench chosa chiten deno hiteiko sokutei kekka

    Suzuki, K; Oda, Y; Tank, K [Central Research Institute of Electric Power Industry, Tokyo (Japan); Hayashi, H [Kawasaki Geological Engineering Co. Ltd., Tokyo (Japan); Jomori, A [Japan Crust Research, Tokyo (Japan)

    1996-05-01

    Several surveys were carried out near the Nojima fault, including three-dimensional resistivity measurement and underground radar survey at the Ogura area, underground radar survey at the Hirabayashi area, and resistivity measurement in the vicinity of the trench at the Nashinomoto area, in order to investigate in detail the underground structures at a depth up to several tens meters from the ground surface. Resistivity was measured by an automatic analyzer capable of simultaneously measuring potential levels at 14 channels which can cover 112 measuring points at the largest. At the Ogura area, the boundary planes of the resistivity structures are continuously detected in the direction of the fault moving during the earthquake period. The underground radar measurement results suggest accumulated displacement of strata at a depth of around 25m in the Osaka Strata and flexible structures. At the Hirabayashi area, the underground radar analysis detects discrete sections in the reflection planes at the fault position, but no reflection planes of high continuity. At the Nashinomoto area, the clay stratum detected in the fault by excavating the trenches are found to be low in resistivity by the resistivity measurement. 4 refs., 11 figs., 2 tabs.

  3. Monitoring of rain water storage in forests with satellite radar

    de Jong, JJM; Klaassen, W; Kuiper, PJC

    2002-01-01

    The sensitivity of radar backscatter to the amount of intercepted rain in temperate deciduous forests is analyzed to determine the feasibility of retrieval of this parameter from satellite radar data. A backscatter model is validated with X-band radar measurements of a single tree exposed to rain. A good agreement between simulation and measurements is observed and this demonstrates the ability of radar to measure the amount of intercepted rain. The backscatter model is next applied to simula...

  4. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.

    Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A

    2010-08-10

    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

  5. Radar and Lidar Radar DEM

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  6. Forestry applications of ground-penetrating radar

    Lorenzo, H.; Perez-Gracia, V.; Novo, A.; Armesto, J.

    2010-07-01

    Ground-penetrating radar (GPR) is a geophysical and close-range remote sensing technique based on the use of radar pulses to obtain cross-section images of underground features. This method is characterized by the transmission of an electromagnetic short length pulse (1-2 ns), presenting a centre frequency ranging from 10 MHz to 2.5 GHz. The principles of GPR operation are based on the ability of low frequency radar waves to penetrate into a non-conductive medium, usually subsoil, but also walls, concrete or wood. Those waves are detected after suffering a reflection in electromagnetic discontinuities of the propagation medium. Therefore, this is a suitable method to study changes in those physical properties, and also to characterize different mediums and the reflective targets providing information about their physical properties. The aim of this work is to describe and demonstrate different applications of GPR in forestry, showing the obtained results together with their interpretation. Firstly, in this paper, it is illustrated how GPR is able to map shallow bedrock, subsoil stratigraphy and also to estimate shallow water table depth. Secondly, different tree trunks as well as dry timber are analyzed, evaluating the different radar data obtained in each particular case, and observing differences in their electromagnetic properties related to the GPR response. Finally, several measurements were taken in order to analyze the use of GPR to detect tree root systems using polarimetric techniques, being possible to detect medium and big size roots, together with groups of small roots. (Author) 39 refs.

  7. Ultra-wideband radar sensors and networks

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  8. Determination of meteoroid physical properties from tristatic radar observations

    J. Kero

    2008-08-01

    Full Text Available In this work we give a review of the meteor head echo observations carried out with the tristatic 930 MHz EISCAT UHF radar system during four 24 h runs between 2002 and 2005 and compare these with earlier observations. A total number of 410 tristatic meteors were observed. We describe a method to determine the position of a compact radar target in the common volume monitored by the three receivers and demonstrate its applicability for meteor studies. The inferred positions of the meteor targets have been utilized to estimate their velocities, decelerations and directions of arrival as well as their radar cross sections with unprecedented accuracy. The velocity distribution of the meteoroids is bimodal with peaks at 35–40 km/s and 55–60 km/s, and ranges from 19–70 km/s. The estimated masses are between 10−9–10−5.5 kg. There are very few detections below 30 km/s. The observations are clearly biased to high-velocity meteoroids, but not so biased against slow meteoroids as has been presumed from previous tristatic measurements. Finally, we discuss how the radial deceleration observed with a monostatic radar depends on the meteoroid velocity and the angle between the trajectory and the beam. The finite beamwidth leads to underestimated meteoroid masses if radial velocity and deceleration of meteoroids approaching the radar are used as estimates of the true quantities in a momentum equation of motion.

  9. Wind turbine clutter mitigation in coastal UHF radar.

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  10. An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz

    Kim, Dan Bee; Lee, Hyung Kew; Kim, Wan-Seop

    2017-01-01

    This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF–1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z -matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10 −6 –10 −5 , proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range. (paper)

  11. Radar Polarimetry and Interferometry (La polarimetrie et l'interferometrie radar) (CD-ROM)

    Keydel, W; Boerner, W. M; Pottier, E; Lee, J. S; Ferro-Famil, L; Hellmann, M; Cloude, S. R

    2005-01-01

    ...: Scientists and engineers already engaged in the fields of radar surveillance, reconnaissance and scattering measurements, for instance, generally gain their specialist knowledge in both polarimetry...

  12. Note: long range and accurate measurement of deep trench microstructures by a specialized scanning tunneling microscope.

    Ju, Bing-Feng; Chen, Yuan-Liu; Zhang, Wei; Zhu, Wule; Jin, Chao; Fang, F Z

    2012-05-01

    A compact but practical scanning tunneling microscope (STM) with high aspect ratio and high depth capability has been specially developed. Long range scanning mechanism with tilt-adjustment stage is adopted for the purpose of adjusting the probe-sample relative angle to compensate the non-parallel effects. A periodical trench microstructure with a pitch of 10 μm has been successfully imaged with a long scanning range up to 2.0 mm. More innovatively, a deep trench with depth and step height of 23.0 μm has also been successfully measured, and slope angle of the sidewall can approximately achieve 67°. The probe can continuously climb the high step and exploring the trench bottom without tip crashing. The new STM could perform long range measurement for the deep trench and high step surfaces without image distortion. It enables accurate measurement and quality control of periodical trench microstructures.

  13. Minimum redundancy MIMO radars

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  14. Implementation and validation of the ISMAR High Frequency Coastal Radar Network in the Gulf of Manfredonia (Mediterranean Sea)

    Corgnati, Lorenzo; Mantovani, Carlo; Griffa, Annalisa

    2017-01-01

    are disseminated via a THREDDS catalog supporting OGC compliant distributions and protocols for data visualization, metadata interrogation and data download. HF radar velocity data were validated using in situ velocity measurements by GPS-tracked surface drifters deployed within the radar footprint. The results...... show a good agreement, with the root mean square (rms) of the difference between radial velocities from HF radar and drifters ranging between 20% - 50% of the drifter velocity rms. The HF radar data have also been compared with subsurface velocity profiles from an upward looking Acoustic Doppler...... are considered. Results show that, at least in the considered period, the velocity in the water column is well correlated, and there is a good agreement between surface HF radar and ADCP data (correlations between 0.95 - 0.75). The Gulf of Manfredonia network has been instrumental to the set up of a core...

  15. Penn State Radar Systems: Implementation and Observations

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  16. Impedance measurements on a fast transition-edge sensor for optical and near-infrared range

    Taralli, E; Portesi, C; Lolli, L; Monticone, E; Rajteri, M; Novikov, I; Beyer, J

    2010-01-01

    Impedance measurements of superconducting transition-edge sensors (TESs) are a powerful tool to obtain information about the TES thermal and electrical properties. We apply this technique to a 20 μm x 20 μm Ti/Au TES, suitable for application in the optical and near-infrared range, and extend the measurements up to 250 kHz in order to obtain a complete frequency response in the complex plane. From these measurements we obtain important thermal and electrical device parameters such as heat capacity C, thermal conductance G and effective thermal time constant τ eff that will be compared with the corresponding values obtained from noise measurements.

  17. Assessment of health status by molecular measures in adults ranging from middle-aged to old

    Waaijer, M. E. C.; Westendorp, R. G. J.; Goldeck, D.

    2017-01-01

    In addition to measures already used in clinical practice, molecular measures have been proposed to assess health status, but these have not yet been introduced into clinical practice. We aimed to test the association of functional capacity measures used in current practice and molecular measures...... with age and health status. The cohort consisted of 178 middle-aged to old participants of the Leiden Longevity Study (range 42-82years). We tested associations between functional capacity measures (physical tests: grip strength, 4-meter walk, chair stand test; cognitive tests: Stroop test, digit symbol...... substitution test and 15-picture learning test) with age and with cardiovascular or metabolic disease as a measure of the health status. These associations with age and health status were also tested for molecular measures (C reactive protein (CRP), numbers of senescent p16INK4a positive cells in the epidermis...

  18. Evaluation of Soil Loss and Erosion Control Measures on Ranges and Range Structures at Installations in Temperate Climates

    2006-06-01

    Soil Loss Equation ( USLE ) and the Revised Universal Soil Loss Equation (RUSLE) continue to be widely accepted methods for estimating sediment loss...range areas. Therefore, a generalized design methodology using the Universal Soil Loss Equation ( USLE ) is presented to accommodate the variations...constructed use the slope most suitable to the area topography (3:1 or 4:1). Step 4: Using the Universal Soil Loss equation, USLE , find the values of A

  19. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement.

    Lin, Hui; Gao, Jian; Mei, Qing; He, Yunbo; Liu, Junxiu; Wang, Xingjin

    2016-04-04

    It is a challenge for any optical method to measure objects with a large range of reflectivity variation across the surface. Image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. This paper presents a new adaptive digital fringe projection technique which avoids image saturation and has a high signal to noise ratio (SNR) in the three-dimensional (3-D) shape measurement of objects that has a large range of reflectivity variation across the surface. Compared to previous high dynamic range 3-D scan methods using many exposures and fringe pattern projections, which consumes a lot of time, the proposed technique uses only two preliminary steps of fringe pattern projection and image capture to generate the adapted fringe patterns, by adaptively adjusting the pixel-wise intensity of the projected fringe patterns based on the saturated pixels in the captured images of the surface being measured. For the bright regions due to high surface reflectivity and high illumination by the ambient light and surfaces interreflections, the projected intensity is reduced just to be low enough to avoid image saturation. Simultaneously, the maximum intensity of 255 is used for those dark regions with low surface reflectivity to maintain high SNR. Our experiments demonstrate that the proposed technique can achieve higher 3-D measurement accuracy across a surface with a large range of reflectivity variation.

  20. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory

    Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

    2005-03-18

    Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

  1. Smartphone-based accelerometry is a valid tool for measuring dynamic changes in knee extension range of motion

    Støve, Morten Pallisgaard; Palsson, Thorvaldur Skuli; Hirata, Rogerio Pessoto

    2018-01-01

    Introduction: Measurement of static joint range of motion is used extensively in orthopaedic and rehabilitative communities to benchmark treatment efficacy. Static measures are, however, insufficient in providing detailed information about patient impairments. Dynamic range of motion measures cou...

  2. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites

    Ciufolini, I.

    1986-01-01

    We describe a new method of measuring the Lense-Thirring relativistic nodal drag using LAGEOS together with another high-altitude, laser-ranged, similar satellite with appropriately chosen orbital parameters. We propose, for this purpose, that a future satellite such as LAGEOS II have an inclination supplementary to that of LAGEOS. The experiment proposed here would provide a method for experimental verification of the general relativistic formulation of Mach's principle and measurement of the gravitomagnetic field

  3. Reconstruction of energetic electron spectra in the upper atmosphere: balloon observations of auroral X-rays coordinated with measurements from the EISCAT radar

    Olafsson, K.J.

    1990-08-01

    Energetic electron precipitation in the auroral zone has been studied using coordinated auroral X-ray measurements from balloons, altitude profiles of the ionospheric electron density measured by the EISCAT radar above the balloons, and cosmic noise absorption data from the Scandinavian riometer network. The data were obtained during the Coordinated EISCAT and Balloon Observations (CEBO) campaign in August 1984. The energy spectral variations of both the X-ray fluxes and the primary precipitating electrons were examined for two precipitation events in the morning sector. As far as reasonably can be concluded from observations of magnetic activity in the auroral zone, and from the temporal development of the energy spectra, the two precipitation events can be interpreted in the frame of present models of energetic electron precipitation on the mordning side of the auroral zone. 96 refs., 70 figs., 11 tabs

  4. Sea clutter scattering, the K distribution and radar performance

    Ward, Keith; Watts, Simon

    2013-01-01

    Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd Edition gives an authoritative account of our current understanding of radar sea clutter. Topics covered include the characteristics of radar sea clutter, modelling radar scattering by the ocean surface, statistical models of sea clutter, the simulation of clutter and other random processes, detection of small targets in sea clutter, imaging ocean surface features, radar detection performance calculations, CFAR detection, and the specification and measurement of radar performance. The calculation of the performance of pract

  5. Alpha Beam Energy Determination Using a Range Measuring Device for Radioisotope Production

    Choi, Jun Yong; Kim, Byeon Gil; Hong, Seung Pyo; Kim, Ran Young; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    The threshold energy of the {sup 209}Bi(α,3n){sup 210} At reaction is at about 30MeV. Our laboratory suggested an energy measurement method to confirm the proton-beam's energy by using a range measurement device. The experiment was performed energy measurement of alpha beam. The alpha beam of energy 29 MeV has been extracted from the cyclotron for the production of {sup 211}At. This device was composed of four parts: an absorber, a drive shaft, and a servo motor and a Faraday cup. The drive shaft was mounted on the absorber and connects with the axis of the servo motor and rotates linearly and circularly by this servo motor. A Faraday cup is for measuring the beam flux. As this drive shaft rotates, the thickness of the absorber varies depending on the rotation angle of the absorber. The energy of the alpha particle accelerated and extracted from MC-50 cyclotron was calculated with the measurement of the particle range in Al foil and using ASTAR, SRIM, MCNPX software. There were a little discrepancy between the expected energy and the calculated energy within the 0.5MeV error range. We have a plan to make an experiment with various alpha particle energies and another methodology, for example, the cross section measurement of the nuclear reaction.

  6. Varying the item format improved the range of measurement in patient-reported outcome measures assessing physical function

    Liegl, Gregor; Gandek, Barbara; Fischer, H. Felix

    2017-01-01

    precision between the short forms using different item formats. Results: Sufficient unidimensionality of all short-form items and the original PF item bank was supported. Compared to formats A and B, format C increased the range of reliable measurement by about 0.5 standard deviations on the positive side...

  7. Long-range correlations of serial FEV1 measurements in emphysematous patients and normal subjects

    Dirksen, A; Holstein-Rathlou, N H; Madsen, F

    1998-01-01

    are autocorrelated. The purpose of this study was to describe the correlation structure in time series of FEV1 measurements. Nineteen patients with severe alpha1-antitrypsin deficiency (phenotype PiZ) and moderate to severe emphysema and two subjects with normal lungs were followed for several years with daily self......In obstructive lung disease the annual change in lung function is usually estimated from serial measurements of forced expiratory volume in 1 s (FEV1). Frequent measurements in each patient may not improve this estimate because data are not statistically independent; i.e., the measurements...... measurements show long-range correlations. The practical implication is that FEV1 need not be measured more often than once every 3 mo in studies of the long-term trends in lung function....

  8. Ground clutter cancellation in incoherent radars: solutions for EISCAT Svalbard radar

    T. Turunen

    2000-09-01

    Full Text Available Incoherent scatter radars measure ionosphere parameters using modified Thomson scatter from free electrons in the target (see e.g. Hagfors, 1997. The integrated cross section of the ionospheric scatterers is extremely small and the measurements can easily be disturbed by signals returned by unwanted targets. Ground clutter signals, entering via the antenna side lobes, can render measurements at the nearest target ranges totally impossible. The EISCAT Svalbard Radar (ESR, which started measurements in 1996, suffers from severe ground clutter and the ionosphere cannot be measured in any simple manner at ranges less than about 120–150 km, depending on the modulation employed. If the target and clutter signals have different, and clearly identifiable, properties then, in principle, there are always ways to eliminate the clutter. In incoherent scatter measurements, differences in the coherence times of the wanted and unwanted signals can be used for clutter cancellation. The clutter cancellation must be applied to all modulations, usually alternating codes in modern experiments, used for shorter ranges. Excellent results have been obtained at the ESR using a simple pulse-to-pulse clutter subtraction method, but there are also other possibilities.Key words: Radio science (ionospheric physics; signal processing; instruments and techniques

  9. Baking enables McLeod gauge to measure in ultrahigh vacuum range

    Kreisman, W. S.

    1965-01-01

    Accurate measurements in the ultrahigh vacuum range by a conventional McLeod gage requires degassing of the gage's glass walls. A closed system, in which mercury is forced into the gage by gravity alone, and in which the gage components are baked out for long periods, is used to achieve this degassing.

  10. Calibration Standards for Surface Topography Measuring Systems down to Nanometric Range

    Trumpold, H.; De Chiffre, Leonardo; Andreasen, Jan Lasson

    compression and injection moulded plastic negatives and Ni-negatives have been made from which again Ni-positives were produced. The replication processes showed negligible deviations from the Pt and Pa values compared to the primary standards. An important prerequisite is the cleanliness of the surfaces......Background For the precise and accurate measurement of surface topography a whole range of surface detection systems is available. With their application in research and production problems arise due to the lack of traceable standard artefacts for the instrument calibration in X, Y and Z directions...... and for the calibration of filters. Existing ISO standards on calibration specimens are inadequate and limited in that they only cover contacting instruments and only partially the measuring ranges for these instruments. The whole range of non-contacting instruments are not covered despite their increasing use...

  11. Scintillator-CCD camera system light output response to dosimetry parameters for proton beam range measurement

    Daftari, Inder K., E-mail: idaftari@radonc.ucsf.edu [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States); Castaneda, Carlos M.; Essert, Timothy [Crocker Nuclear Laboratory,1 Shields Avenue, University of California-Davis, Davis, CA 95616 (United States); Phillips, Theodore L.; Mishra, Kavita K. [Department of Radiation Oncology, 1600 Divisadero Street, Suite H1031, University of California-San Francisco, San Francisco, CA 94143 (United States)

    2012-09-11

    The purpose of this study is to investigate the luminescence light output response in a plastic scintillator irradiated by a 67.5 MeV proton beam using various dosimetry parameters. The relationship of the visible scintillator light with the beam current or dose rate, aperture size and the thickness of water in the water-column was studied. The images captured on a CCD camera system were used to determine optimal dosimetry parameters for measuring the range of a clinical proton beam. The method was developed as a simple quality assurance tool to measure the range of the proton beam and compare it to (a) measurements using two segmented ionization chambers and water column between them, and (b) with an ionization chamber (IC-18) measurements in water. We used a block of plastic scintillator that measured 5 Multiplication-Sign 5 Multiplication-Sign 5 cm{sup 3} to record visible light generated by a 67.5 MeV proton beam. A high-definition digital video camera Moticam 2300 connected to a PC via USB 2.0 communication channel was used to record images of scintillation luminescence. The brightness of the visible light was measured while changing beam current and aperture size. The results were analyzed to obtain the range and were compared with the Bragg peak measurements with an ionization chamber. The luminescence light from the scintillator increased linearly with the increase of proton beam current. The light output also increased linearly with aperture size. The relationship between the proton range in the scintillator and the thickness of the water column showed good linearity with a precision of 0.33 mm (SD) in proton range measurement. For the 67.5 MeV proton beam utilized, the optimal parameters for scintillator light output response were found to be 15 nA (16 Gy/min) and an aperture size of 15 mm with image integration time of 100 ms. The Bragg peak depth brightness distribution was compared with the depth dose distribution from ionization chamber measurements

  12. Comet radar explorer

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p

  13. Sixteenth International Laser Radar Conference, Part 1

    Mccormick, M.P.

    1992-07-01

    This publication contains extended abstracts of papers presented at the 16th International Laser Radar Conference. One-hundred ninety-five papers were presented in both oral and poster sessions. The topics of the conference sessions were: (1) Mt. Pinatubo Volcanic Dust Layer Observations; (2) Global Change/Ozone Measurements; (3) GLOBE/LAWS/LITE; (4) Mesospheric Measurements and Measurement Systems; (5) Middle Atmosphere; (6) Wind Measurements and Measurement Systems; (7) Imaging and Ranging; (8) Water Vapor Measurements; (9) Systems and Facilities; and (10) Laser Devices and Technology. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations relating to global change to the development of new lidar systems and technology

  14. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station

    Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas

    2018-02-01

    The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.

  15. Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide

    Ke, Peng; Sun, Honghao; Liu, Mingxing

    2016-01-01

    A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental pH-s......H-sensitive fluorophores in a same nanoparticle. The authors believe that this triple fluorescent pH sensor provides a new tool to pH measurements that can have application in cellular uptake mechanism study and new nanomedicine design.......A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental p...

  16. LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 mu mol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based...... for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used...... measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized "sensing chemistry" that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded...

  17. An extended set-value observer for position estimation using single range measurements

    Marcal, Jose; Jouffroy, Jerome; Fossen, Thor I.

    the observability of the system is briefly discussed and an extended set-valued observer is presented, with some discussion about the effect of the measurements noise on the final solution. This observer estimates bounds in the errors assuming that the exogenous signals are bounded, providing a safe region......The ability of estimating the position of an underwater vehicle from single range measurements is important in applications where one transducer marks an important geographical point, when there is a limitation in the size or cost of the vehicle, or when there is a failure in a system...... of transponders. The knowledge of the bearing of the vehicle and the range measurements from a single location can provide a solution which is sensitive to the trajectory that the vehicle is following, since there is no complete constraint on the position estimate with a single beacon. In this paper...

  18. Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs

    Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.

    1980-01-01

    In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.

  19. Smartphone Photography as a Tool to Measure Knee Range of Motion.

    Mica, Megan Conti; Wagner, Eric R; Shin, Alexander Y

    2018-01-01

    The objective of this study was to validate measuring knee range of motion (ROM) from smartphone photography. Thirty-two participants (64 knees) obtained smartphone photographs of knee flexion and extension. Surgeons obtained the same photographs and goniometric measurement of ROM. ROM was measured using Adobe Photoshop. Goniometer versus digital measurements, participant versus surgeon photographs, and interobserver measurements were analyzed. The average difference in goniometer and digital photograph measurements was 5°. The interclass correlation was .642(L) and .656(R). The Bland-Altman plots demonstrated that 29/32 digital measurements were within the 95% confidence interval (CI). Participants' versus researchers' photographs averaged a 2° difference. The interclass correlation was .924(L) and .91(R). Bland-Altman plots demonstrated that 31/32 measurements were within the 95% CI. Interobserver reliability averaged aROMdifference of 5°. The concordance coefficients were .647(L) and .723(R). Bland-Altman plots demonstrated that 30 of 32 digital measurements were within the 95% CI. Measuring knee ROM using smartphone digital photography is valid and reliable. (Journal of Surgical Orthopaedic Advances 27(1):52-57, 2018).

  20. Adaptive radar resource management

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  1. High-precision positioning of radar scatterers

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  2. Wind energy applications of synthetic aperture radar

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy plan...

  3. Classification of Agricultural Crops in Radar Images

    Hoogeboom, P.

    1983-01-01

    For the past few years an accurate X-band SLAR system with digital recording has been available in The Netherlands. The images of this system are corrected to indicate radar backscatter coefficients (gamma) instead of arbitrary greytones. In 1980 a radar measurement campaign was organized in the

  4. Approach for measuring the chemistry of individual particles in the size range critical for cloud formation.

    Zauscher, Melanie D; Moore, Meagan J K; Lewis, Gregory S; Hering, Susanne V; Prather, Kimberly A

    2011-03-15

    Aerosol particles, especially those ranging from 50 to 200 nm, strongly impact climate by serving as nuclei upon which water condenses and cloud droplets form. However, the small number of analytical methods capable of measuring the composition of particles in this size range, particularly at the individual particle level, has limited our knowledge of cloud condensation nuclei (CCN) composition and hence our understanding of aerosols effect on climate. To obtain more insight into particles in this size range, we developed a method which couples a growth tube (GT) to an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS), a combination that allows in situ measurements of the composition of individual particles as small as 38 nm. The growth tube uses water to grow particles to larger sizes so they can be optically detected by the UF-ATOFMS, extending the size range to below 100 nm with no discernible changes in particle composition. To gain further insight into the temporal variability of aerosol chemistry and sources, the GT-UF-ATOFMS was used for online continuous measurements over a period of 3 days.

  5. The use of Ground Penetrating Radar in coastal research, archeaological investigations, lake studies, peat layer measurments and applied research in Estonia

    Vilumaa, Kadri; Tõnisson, Hannes; Orviku, Kaarel

    2014-05-01

    Ground Penetrating Radar (GPR) is mainly used for scientific research in coastal geology in the Institute of Ecology at Tallinn University. We currently use SIR-3000 radar with 100, 270 , 300 and 500 MHz antennae. Our main targets have been detecting the thickness of soil and sand layers and finding out the layers in coastal sediments which reflect extreme storm events. Our GPR studies in various settings have suggested that the internal structures of the ridge-dune complexes are dominated by numerous layers dipping in various directions. Such information helps us to reconstruct and understand prevailing processes during their formation (e.g. seaward dipping lamination in coastal ridge-dune complexes indicating cross-shore and wave-induced transport of the sediments). Currently, we are trying to elaborate methodology for distinguishing the differences between aeolian and wave transported sediments by using GPR. However, paludified landscapes (often covered by water), very rough surface (numerous bushes and soft surface), moderate micro topography has slowed this process significantly. Moreover, we have been able to use GPR during the winter period (applied on ice or snow) and compare the quality of our results with the measurements taken during the summer period. We have found that smooth surface (in winter) helps detecting very strong signal differences (border between different sediment types - sand, peat, silt, etc.) but reduces the quality of the signal to the level where the detection of sedimentation patterns within one material (e.g. tilted layers in sand) is difficult. We have carried out several other science-related studies using GPR. These studies include determining the thickness of peat layer in bogs (to calculate the volume of accumulated peat or to find most suitable locations for coring), measuring the thickness of mud and gyttja layer in lakes (to find most suitable locations for coring, reconstructing initial water level of the lake or calculating

  6. Radar Image, Hokkaido, Japan

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers (62

  7. The determination of time-stationary two-dimensional convection patterns with single-station radars

    Freeman, M.P.; Ruohoniemi, J.M.; Greenwald, R.A.

    1991-01-01

    At the present time, most ground-based radar estimations of ionospheric convection use observations from single-station facilities. This approach requires certain assumptions as to the spatial and/or temporal uniformity of the convection. In this paper the authors present a critical examination of the accuracy of these vector velocity determinations, using realistic modeled flow patterns that are time-stationary but not spatially uniform. They find that under certain circumstances the actual and inferred flow fields show considerable discrepancy, sometimes not even agreeing in the sense of flow direction. Specifically, they show that the natural curvature present in ionospheric convection on varying spatial scales can introduce significant error in the velocity estimate, particularly when the radius of curvature of the flow structure is less than or equal to the radar range to the scattering volume. The presence of flow curvature cannot be detected by radars which determine velocities from measurements in two viewing directions, and it might not be detected by radars using azimuth scanning techniques. Thus they argue that every effort should be made to measure the ionospheric convection by bidirectional or multidirectional observations of a common ionospheric volume and that a synthesis of coherent and incoherent radar observations from different sites is preferable to multidirectional single-station observations using either radar alone. These conclusions are applicable to any Doppler measurement technique and are equally valid for high-latitude wind patterns using Fabry-Perot interferometer techniques

  8. Novel gravimetric measurement technique for quantitative volume calibration in the sub-microliter range

    Liang, Dong; Zengerle, Roland; Steinert, Chris; Ernst, Andreas; Koltay, Peter; Bammesberger, Stefan; Tanguy, Laurent

    2013-01-01

    We present a novel measurement method based on the gravimetric principles adapted from the ASTM E542 and ISO 4787 standards for quantitative volume determination in the sub-microliter range. Such a method is particularly important for the calibration of non-contact micro dispensers as well as other microfluidic devices. The novel method is based on the linear regression analysis of continuously monitored gravimetric results and therefore is referred to as ‘gravimetric regression method (GRM)’. In this context, the regression analysis is necessary to compensate the mass loss due to evaporation that is significant for very small dispensing volumes. A full assessment of the measurement uncertainty of GRM is presented and results in a standard measurement uncertainty around 6 nl for dosage volumes in the range from 40 nl to 1 µl. The GRM has been experimentally benchmarked with a dual-dye ratiometric photometric method (Artel Inc., Westbrook, ME, USA), which can provide traceability of measurement to the International System of Units (SI) through reference standards maintained by NIST. Good precision (max. CV = 2.8%) and consistency (bias around 7 nl in the volume range from 40 to 400 nl) have been observed comparing the two methods. Based on the ASTM and ISO standards on the one hand and the benchmark with the photometric method on the other hand, two different approaches for establishing traceability for the GRM are discussed. (paper)

  9. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  10. Hydrologic applications of weather radar

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  11. Feasibility of antenna-to-antenna isolation measurements at S-band in the Facility for Antenna and Radar-cross-section Measurements (FARM)

    Brock, Billy C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-01-01

    Frequency-domain antenna-coupling measurements performed in the compact-range room of the FARM, will actually be dominated by reflected components from the ceiling, floor, walls, etc., not the direct freespace coupling. Consequently, signal processing must be applied to the frequency-domain data to extract the direct free-space coupling. The analysis presented above demonstrates that it is possible to do so successfully.

  12. 10.23  Mcps laser pseudo-code ranging system with 0.33  mm (1σ) pseudo-range measurement precision.

    Yu, Xiaonan; Tong, Shoufeng; Zhang, Lei; Dong, Yan; Zhao, Xin; Qiao, Yue

    2017-07-01

    The inter-satellite laser link is the backbone of the next inter-satellite information network, and ranging and communication are the main functions of the inter-satellite laser link. This study focuses on the inter-satellite laser ranging based on the pseudo-code correlation technology. In this paper, several typical laser-ranging methods have been compared and we determined that the laser pseudo-code ranging architecture is more suitable for the inter-satellite laser communication link. The pseudo-code ranging system is easy to combine with a digital communication system, and we used it to calculate integer ambiguity by modulating the time information. The main challenge of the ranging system is range precision, which is the main focus of this paper. First, the framework of the pseudo-code ranging system is introduced; the ranging architecture of dual one-way ranging is used to eliminate the clock error between the two transceivers, and then the uncertainty of the phase detector is analyzed. In the analysis, the carrier to noise ratio and the ranging code rate are constrained by the laser communication link margin and the electronic hardware limitation. Therefore, the relationship between the sampling depth and the phase detector uncertainty is verified. A series of optical fiber channel laser pseudo-code ranging experiments demonstrated the effects of sampling depth on the ranging precision. By adjusting the depth of storage, such as the depth of 1.6 Mb, we obtained a pseudo-range measurement precision of 0.33 mm (1σ), which is equivalent to 0.0001 times code subdivision of 10.23 Mcps pseudo-code. This paper has achieved high precision in a pseudo-range measurements, which is the foundation of the inter-satellite laser link.

  13. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  14. Novel birefringence interrogation for Sagnac loop interferometer sensor with unlimited linear measurement range.

    He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan

    2017-03-20

    A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.

  15. Forward scatter radar for detection of moving people inside buildings

    Wit, J.J.M. de; Rossum, W.L. van

    2017-01-01

    Through-wall radar offers capabilities that allow an important contribution to inside-building awareness, such as target detection and tracking. However, reliable radar tracking of people inside a building is not a trivial task. In monostatic operation, radar measures the backscatter from people

  16. Forward scatter radar for remote intelligence of building interiors

    Rossum, W.L. van; Wit, J.J.M. de

    2017-01-01

    Through-wall radar allows for remote intelligence of building interiors including stand-off detection and tracking of persons inside a building. However, reliable radar tracking of people inside a building is not trivial. Conventional, monostatic through-wall radar measures the backscatter of moving

  17. Vertical Pointing Weather Radar for Built-up Urban Areas

    Rasmussen, Michael R.; Thorndahl, Søren; Schaarup-Jensen, Kjeld

    2008-01-01

      A cost effective vertical pointing X-band weather radar (VPR) has been tested for measurement of precipitation in urban areas. Stationary tests indicate that the VPR performs well compared to horizontal weather radars, such as the local area weather radars (LAWR). The test illustrated...

  18. Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser

    Jang, Yoon-Soo; Lee, Keunwoo; Han, Seongheum; Lee, Joohyung; Kim, Young-Jin; Kim, Seung-Woo

    2014-12-01

    We revisit the method of synthetic wavelength interferometry (SWI) for absolute measurement of long distances using the radio-frequency harmonics of the pulse repetition rate of a mode-locked femtosecond laser. Our intention here is to extend the nonambiguity range (NAR) of the SWI method using a coarse virtual wavelength synthesized by shifting the pulse repetition rate. The proposed concept of NAR extension is experimentally verified by measuring a ˜13-m distance with repeatability of 9.5 μm (root-mean-square). The measurement precision is estimated to be 31.2 μm in comparison with an incremental He-Ne laser interferometer. This extended SWI method is found to be well suited for long-distance measurements demanded in the fields of large-scale precision engineering, geodetic survey, and future space missions.

  19. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  20. Potentiometric Measurement of Transition Ranges and Titration Errors for Acid/Base Indicators

    Flowers, Paul A.

    1997-07-01

    Sophomore analytical chemistry courses typically devote a substantial amount of lecture time to acid/base equilibrium theory, and usually include at least one laboratory project employing potentiometric titrations. In an effort to provide students a laboratory experience that more directly supports their classroom discussions on this important topic, an experiment involving potentiometric measurement of transition ranges and titration errors for common acid/base indicators has been developed. The pH and visually-assessed color of a millimolar strong acid/base system are monitored as a function of added titrant volume, and the resultant data plotted to permit determination of the indicator's transition range and associated titration error. Student response is typically quite positive, and the measured quantities correlate reasonably well to literature values.

  1. Measurement range of phase retrieval in optical surface and wavefront metrology

    Brady, Gregory R.; Fienup, James R.

    2009-01-01

    Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates

  2. A liquid crystalline medium for measuring residual dipolar couplings over a wide range of temperatures

    Wang Hong; Eberstadt, Matthias; Olejniczak, Edward T.; Meadows, Robert P.; Fesik, Stephen W. [Abbott Laboratories (United States)

    1998-10-15

    A mixture of dilauroyl phosphatidylcholine (DLPC) and 3-(cholamidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO) in water forms disc shaped bicelles that become ordered at high magnetic fields over a wide range of temperatures. As illustrated for the FK506 binding protein (FKBP), large residual dipolar couplings can be measured for proteins dissolved in low concentrations (5% w/v) of a DLPC/CHAPSO medium at a molar ratio of 4.2:1. This system is especially useful for measuring residual dipolar couplings for molecules that are only stable at low temperatures.

  3. Runoff Calculation by Neural Networks Using Radar Rainfall Data

    岡田, 晋作; 四俵, 正俊

    1997-01-01

    Neural networks, are used to calculate runoff from weather radar data and ground rain gauge data. Compared to usual runoff models, it is easier to use radar data in neural network runoff calculation. Basically you can use the radar data directly, or without transforming them into rainfall, as the input of the neural network. A situation with the difficulty of ground measurement is supposed. To cover the area lacking ground rain gauge, radar data are used. In case that the distribution of grou...

  4. Is goniometry suitable for measuring ankle range of motion in female ballet dancers? An initial comparison with radiographic measurement.

    Russell, Jeffrey A; Shave, Ruth M; Kruse, David W; Nevill, Alan M; Koutedakis, Yiannis; Wyon, Matthew A

    2011-06-01

    Female ballet dancers require extreme ankle motion to attain the demi-plié (weight-bearing full dorsiflexion [DF]) and en pointe (weight-bearing full plantar flexion [PF]) positions of ballet. However, techniques for assessing this amount of motion have not yet received sufficient scientific scrutiny. Therefore, the purpose of this study was to examine possible differences between weight-bearing goniometric and radiographic ankle range of motion measurements in female ballet dancers. Ankle range of motion in 8 experienced female ballet dancers was assessed by goniometry and 2 radiographic measurement methods. The latter were performed on 3 mediolateral x-rays, in demi-plié, neutral, and en pointe positions; one of them used the same landmarks as goniometry. DF values were not significantly different among the methods, but PF values were (P ballet dancers and suggest that goniometry may not be ideal for assessing ankle range of motion in these individuals. Therefore, further research is needed to standardize how DF and PF are measured in ballet dancers. Diagnostic, Level I.

  5. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  6. Tonopah Test Range - Index

    Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Photos Header Facebook Twitter YouTube Flickr RSS Tonopah Test Range Top TTR_TOC Tonopah is the testing range of choice for all national security missions. Tonopah Test Range (TTR) provides research and

  7. Time Biases in laser ranging measurements; impacts on geodetic products (Reference Frame and Orbitography)

    Belli, A.; Exertier, P.; Lemoine, F. G.; Chinn, D. S.; Zelensky, N. P.

    2017-12-01

    The GGOS objectives are to maintain a geodetic network with an accuracy of 1 mm and a stability of 0.1 mm per year. For years, the laser ranging technique, which provide very accurate absolute distances to geodetic targets enable to determine the scale factor as well as coordinates of the geocenter. In order to achieve this goal, systematic errors appearing in the laser ranging measurements must be considered and solved. In addition to Range Bias (RB), which is the primary source of uncertainty of the technique, Time Bias (TB) has been recently detected by using the Time Transfer by Laser Link (T2L2) space instrument capability on-board the satellite Jason-2. Instead of determining TB through the precise orbit determination that is applied to commonly used geodetic targets like LAGEOS to estimate global geodetic products, we have developed, independently, a dedicated method to transfer time between remote satellite laser ranging stations. As a result, the evolving clock phase shift to UTC of around 30 stations has been determined under the form of time series of time bias per station from 2008 to 2016 with an accuracy of 3-4 ns. It demonstrated the difficulty, in terms of Time & Frequency used technologies, to locally maintain accuracy and long term stability at least in the range of 100 ns that is the current requirement for time measurements (UTC) for the laser ranging technique. Because some laser ranging stations oftently exceed this limit (from 100 ns to a few μs) we have been studying these effects first on the precision orbit determination itself, second on the station positioning. We discuss the impact of TB on LAGEOS and Jason-2 orbits, which appears to affect the along-track component essentially. We also investigate the role of TB in global geodetic parameters as the station coordinates. Finally, we propose to provide the community with time series of time bias of laser ranging stations, under the form of a data- handling-file in order to be included in

  8. A High Dynamic-Range Beam Position Measurement System for ELSA-2

    Balleyguier, P; Guimbal, P; Borrion, H

    2003-01-01

    New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.

  9. Identification of long-range transport of aerosols over Austria using EARLINET lidar measurements

    Camelia, Talianu

    2018-04-01

    The aims of the study is to identify the paths of the long-range transported aerosols over Austria and their potential origin, and to estimate their properties, using lidar measurements from EARLINET stations closest to Austria from Germany and Romania and aerosol transport models. As of now, there is no lidar station in Austria. The study is part of a project to estimate the usefulness of a lidar station located in Vienna, Austria.

  10. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    N. F. Arnold

    1998-10-01

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  11. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground-based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well-suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory-oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego-motion makes use of the Fourier-Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real-world data from a vehicle moving at 30 km/h over a 2.5 km course.

  12. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    N. F. Arnold

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.

    Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  13. Radar Weather Observation

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  14. ISTEF Laser Radar Program

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  15. Weather Radar Impact Zones

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  16. Novel radar techniques and applications

    Klemm, Richard; Lombardo, Pierfrancesco; Nickel, Ulrich

    2017-01-01

    Novel Radar Techniques and Applications presents the state-of-the-art in advanced radar, with emphasis on ongoing novel research and development and contributions from an international team of leading radar experts. This volume covers: Real aperture array radar; Imaging radar and Passive and multistatic radar.

  17. Electron density values of various human tissues: in vitro Compton scatter measurements and calculated ranges

    Shrimpton, P.C.

    1981-01-01

    Accurate direct measurements of electron density have been performed on specimens from 10 different tissue types of the human body, representing the major organs, using a Compton scatter technique. As a supplement to these experimental values, calculations have been carried out to determine the electron densities expected for these tissue types. The densities observed are in good agreement with the broad ranges deduced from the basic data previously published. The results of both the in vitro sample measurements and the approximate calculations indicate that the electron density of most normal healthy soft tissue can be expected to fall within the fairly restricted range of +- 5% around 3.4 X 10 23 electrons per cm 3 . The obvious exception to this generalisation is the result for lung tissue, which falls considerably below this range owing to the high air content inherent in its construction. In view of such an overall limited variation with little difference between tissues, it would appear that electron density alone is likely to be a rather poor clinical parameter for tissue analysis, with high accuracy and precision being essential in any in vivo Compton measurements for imaging or diagnosis on specific organs. (author)

  18. Millimeter wave radars raise weapon IQ

    Lerner, E. J.

    1985-02-01

    The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.

  19. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  20. On the theory of SODAR measurement techniques[SOund Detection And Ranging

    Antoniou, I.; Joergensen, H.E. [Risoe National Lab. (Denmark); Ormel, F. [Energy Research Center of the Netherlands (Netherlands); Bradley, S.; Huenerbein, S. von [University of Salford (United Kingdom); Emeis, S. [Forschungszentrum Karlsruhe GmbH (Germany); Warmbier, G. [GWU-Umwelttechnik Gmbh (Germany)

    2003-04-01

    The need for alternative means to measure the wind speed for wind energy purposes has increased with the increase of the size of wind turbines. The cost and the technical difficulties for performing wind speed measurements has also increased with the size of the wind turbines, since it is demanded that the wind speed has to be measured at the rotor centre of the turbine and the size of both the rotor and the hub height have grown following the increase in the size of the wind turbines. The SODAR (SOund Detection And Ranging) is an alternative to the use of cup anemometers and offers the possibility of measuring both the wind speed distribution with height and the wind direction. At the same time the SODAR presents a number of serious drawbacks such as the low number of measurements per time period, the dependence of the ability to measure on the atmospheric conditions and the difficulty of measuring at higher wind speeds due to either background noise or the neutral condition of the atmosphere. Within the WISE project (EU project number NNE5-2001-297), a number of work packages have been defined in order to deal with the SODAR. The present report is the result of the work package 1. Within this package the objective has been to present and achieve the following: 1) An accurate theoretic model that describes all the relevant aspects of the interaction of the sound beam with the atmosphere in the level of detail needed for wind energy applications. 2) Understanding of dependence of SODAR performance on hard- and software configuration. 3) Quantification of principal difference between SODAR wind measurement and wind speed measurements with cup anemometers with regard to power performance measurements.