WorldWideScience

Sample records for rad53p kinase remains

  1. [PALEOPATHOLOGY OF HUMAN REMAINS].

    Minozzi, Simona; Fornaciari, Gino

    2015-01-01

    Many diseases induce alterations in the human skeleton, leaving traces of their presence in ancient remains. Paleopathological examination of human remains not only allows the study of the history and evolution of the disease, but also the reconstruction of health conditions in the past populations. This paper describes the most interesting diseases observed in skeletal samples from the Roman Imperial Age necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.

  2. Casein kinases

    Issinger, O G

    1993-01-01

    The present review on casein kinases focuses mainly on the possible metabolic role of CK-2, with special emphasis on its behavior in pathological tissues. From these data at least three ways to regulate CK-2 activity emerge: (i) CK-2 activity changes during embryogenesis, being high at certain...

  3. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  4. Kinases and Cancer

    Jonas Cicenas; Egle Zalyte; Amos Bairoch; Pascale Gaudet

    2018-01-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...

  5. And the Dead Remain Behind

    Peter Read

    2013-08-01

    Full Text Available In most cultures the dead and their living relatives are held in a dialogic relationship. The dead have made it clear, while living, what they expect from their descendants. The living, for their part, wish to honour the tombs of their ancestors; at the least, to keep the graves of the recent dead from disrepair. Despite the strictures, the living can fail their responsibilities, for example, by migration to foreign countries. The peripatetic Chinese are one of the few cultures able to overcome the dilemma of the wanderer or the exile. With the help of a priest, an Australian Chinese migrant may summon the soul of an ancestor from an Asian grave to a Melbourne temple, where the spirit, though removed from its earthly vessel, will rest and remain at peace. Amongst cultures in which such practices are not culturally appropriate, to fail to honour the family dead can be exquisitely painful. Violence is the cause of most failure.

  6. Red Assembly: the work remains

    Leslie Witz

    installed. What to do at this limit, at the transgressive encounter between saying yes and no to history, remains the challenge. It is the very challenge of what insistently remains.

  7. Green business will remain green

    Marcan, P.

    2008-01-01

    It all started with two words. Climate change. The carbon dioxide trading scheme, which was the politicians' idea on solving the number one global problem, followed. Four years ago, when the project was begun, there was no data for project initiation. Quotas for polluters mainly from energy production and other energy demanding industries were distributed based on spreadsheets, maximum output and expected future development of economies. Slovak companies have had a chance to profit from these arrangements since 2005. Many of them took advantage of the situation and turned the excessive quotas into an extraordinary profit which often reached hundreds of million Sk. The fact that the price of free quotas offered for sale dropped basically to 0 in 2006 only proved that the initial distribution was too generous. And the market reacted to the first official measurements of emissions. Slovak companies also contributed to this development. However, when planning the maximum emission volumes for 2008-2012 period, in spite of the fact that actual data were available, their expectations were not realistic. A glance at the figures in the proposal of the Ministry of Environment is sufficient to realize that there will be no major change in the future. And so for many Slovak companies business with a green future will remain green for the next five years. The state decided to give to selected companies even more free space as far as emissions are concerned. The most privileged companies can expect quotas increased by tens of percent. (author)

  8. Silicon photonics: some remaining challenges

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  9. Thymidine kinases in archaea

    Clausen, A.R.; Matakos, A.; Sandrini, Michael

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarcha...

  10. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. p21-activated Kinase1(PAK1) can promote ERK activation in a kinase independent manner

    Wang, Zhipeng; Fu, Meng; Wang, Lifeng

    2013-01-01

    204) although phosphorylation of b-Raf (Ser445) and c-Raf (Ser 338) remained unchanged. Furthermore, increased activation of the PAK1 activator Rac1 induced the formation of a triple complex of Rac1, PAK1 and Mek1, independent of the kinase activity of PAK1. These data suggest that PAK1 can stimulate...... MEK activity in a kinase independent manner, probably by serving as a scaffold to facilitate interaction of c-Raf....

  12. Muscle phosphorylase kinase deficiency

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  13. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  14. Pyruvate kinase blood test

    ... medlineplus.gov/ency/article/003357.htm Pyruvate kinase blood test To use the sharing features on this page, ... energy when oxygen levels are low. How the Test is Performed A blood sample is needed. In the laboratory, white blood ...

  15. Fish remains and humankind: part two

    Andrew K G Jones

    1998-07-01

    Full Text Available The significance of aquatic resources to past human groups is not adequately reflected in the published literature - a deficiency which is gradually being acknowledged by the archaeological community world-wide. The publication of the following three papers goes some way to redress this problem. Originally presented at an International Council of Archaeozoology (ICAZ Fish Remains Working Group meeting in York, U.K. in 1987, these papers offer clear evidence of the range of interest in ancient fish remains across the world. Further papers from the York meeting were published in Internet Archaeology 3 in 1997.

  16. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  17. Enterococcus faecalis phosphomevalonate kinase

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  18. Why Agricultural Educators Remain in the Classroom

    Crutchfield, Nina; Ritz, Rudy; Burris, Scott

    2013-01-01

    The purpose of this study was to identify and describe factors that are related to agricultural educator career retention and to explore the relationships between work engagement, work-life balance, occupational commitment, and personal and career factors as related to the decision to remain in the teaching profession. The target population for…

  19. Juveniles' Motivations for Remaining in Prostitution

    Hwang, Shu-Ling; Bedford, Olwen

    2004-01-01

    Qualitative data from in-depth interviews were collected in 1990-1991, 1992, and 2000 with 49 prostituted juveniles remanded to two rehabilitation centers in Taiwan. These data are analyzed to explore Taiwanese prostituted juveniles' feelings about themselves and their work, their motivations for remaining in prostitution, and their difficulties…

  20. Kadav Moun PSA (:60) (Human Remains)

    2010-02-18

    This is an important public health announcement about safety precautions for those handling human remains. Language: Haitian Creole.  Created: 2/18/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 2/18/2010.

  1. The Annuity Puzzle Remains a Puzzle

    Peijnenburg, J.M.J.; Werker, Bas; Nijman, Theo

    We examine incomplete annuity menus and background risk as possible drivers of divergence from full annuitization. Contrary to what is often suggested in the literature, we find that full annuitization remains optimal if saving is possible after retirement. This holds irrespective of whether real or

  2. From Phosphosites to Kinases

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V

    2016-01-01

    Kinases play a pivotal role in propagating the phosphorylation-mediated signaling networks in living cells. With the overwhelming quantities of phosphoproteomics data being generated, the number of identified phosphorylation sites (phosphosites) is ever increasing. Often, proteomics investigations...... sequence motifs, mostly based on large scale in vivo and in vitro experiments. The context of the kinase and the phosphorylated proteins in a biological system is equally important for predicting association between the enzymes and substrates, an aspect that is also being tackled with available...

  3. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.

    Foda, Zachariah H; Shan, Yibing; Kim, Eric T; Shaw, David E; Seeliger, Markus A

    2015-01-20

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity.

  4. Explosives remain preferred methods for platform abandonment

    Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.; Mackey, V. III

    1996-01-01

    Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp's Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they required that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains

  5. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  6. Protein kinase C signaling and cell cycle regulation

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  7. Decomposition Technique for Remaining Useful Life Prediction

    Saha, Bhaskar (Inventor); Goebel, Kai F. (Inventor); Saxena, Abhinav (Inventor); Celaya, Jose R. (Inventor)

    2014-01-01

    The prognostic tool disclosed here decomposes the problem of estimating the remaining useful life (RUL) of a component or sub-system into two separate regression problems: the feature-to-damage mapping and the operational conditions-to-damage-rate mapping. These maps are initially generated in off-line mode. One or more regression algorithms are used to generate each of these maps from measurements (and features derived from these), operational conditions, and ground truth information. This decomposition technique allows for the explicit quantification and management of different sources of uncertainty present in the process. Next, the maps are used in an on-line mode where run-time data (sensor measurements and operational conditions) are used in conjunction with the maps generated in off-line mode to estimate both current damage state as well as future damage accumulation. Remaining life is computed by subtracting the instance when the extrapolated damage reaches the failure threshold from the instance when the prediction is made.

  8. Industry remains stuck in a transitional mode

    Garb, F.A.

    1991-01-01

    The near future for industry remains foggy for several obvious reasons. The shake-up of the Soviet Union and how the pieces will reform remains unclear. How successful efforts are to privatize government oil company operations around the world has yet to be determined. A long sought peace in the Middle East seems to be inching closer, but will this continue? If it does continue, what impact will it have on world energy policy? Will American companies, which are now transferring their attention to foreign E and P, also maintain an interest in domestic activities? Is the U.S. economy really on the upswing? We are told that the worst of the recession is over, but try telling this to thousands of workers in the oil patch who are being released monthly by the big players in domestic operations. This paper reports that 1992 should be a better year than 1991, if measured in opportunity. There are more exploration and acquisition options available, both domestically and internationally, than there have been in years. Probably more opportunities exist than there are players-certainly more than can be funded with current financial resources

  9. Deoxyribonucleoside kinases in mitochondrial DNA depletion.

    Saada-Reisch, Ann

    2004-10-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.

  10. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  11. Shotgun microbial profiling of fossil remains

    Der Sarkissian, Clio; Ermini, Luca; Jónsson, Hákon

    2014-01-01

    the specimen of interest, but instead reflect environmental organisms that colonized the specimen after death. Here, we characterize the microbial diversity recovered from seven c. 200- to 13 000-year-old horse bones collected from northern Siberia. We use a robust, taxonomy-based assignment approach...... to identify the microorganisms present in ancient DNA extracts and quantify their relative abundance. Our results suggest that molecular preservation niches exist within ancient samples that can potentially be used to characterize the environments from which the remains are recovered. In addition, microbial...... community profiling of the seven specimens revealed site-specific environmental signatures. These microbial communities appear to comprise mainly organisms that colonized the fossils recently. Our approach significantly extends the amount of useful data that can be recovered from ancient specimens using...

  12. Some remaining problems in HCDA analysis

    Chang, Y.W.

    1981-01-01

    The safety assessment and licensing of liquid-metal fast breeder reactors (LMFBRs) requires an analysis on the capability of the reactor primary system to sustain the consequences of a hypothetical core-disruptive accident (HCDA). Although computational methods and computer programs developed for HCDA analyses can predict reasonably well the response of the primary containment system, and follow up the phenomena of HCDA from the start of excursion to the time of dynamic equilibrium in the system, there remain areas in the HCDA analysis that merit further analytical and experimental studies. These are the analysis of fluid impact on reactor cover, three-dimensional analysis, the treatment of the perforated plates, material properties under high strain rates and under high temperatures, the treatment of multifield flows, and the treatment of prestressed concrete reactor vessels. The purpose of this paper is to discuss the structural mechanics of HCDA analysis in these areas where improvements are needed

  13. Political, energy events will remain interwoven

    Jones, D.P.

    1991-01-01

    This paper reports that it is possible to discuss the significance of political and energy events separately, but, in truth, they are intricately interwoven. Furthermore, there are those who will argue that since the two are inseparable, the future is not predictable; so why bother in the endeavor. It is possible that the central point of the exercise may have been missed-yes, the future is unpredictable exclamation point However, the objective of prediction is secondary. The objective of understanding the dynamic forces of change is primary exclamation point With this view of recent history, it is perhaps appropriate to pause and think about the future of the petroleum industry. The future as shaped by political, energy, economic, environmental and technological forces will direct our lives and markets during this decade. Most importantly, what will be the direction that successful businesses take to remain competitive in a global environment? These are interesting issues worthy of provocative thoughts and innovative ideas

  14. Nuclear remains an economic and ecologic asset

    Le Ngoc, Boris

    2015-01-01

    The author herein outlines the several benefits of nuclear energy and nuclear industry for France. He first outlines that France possesses 97 per cent of de-carbonated electricity thanks to nuclear energy (77 pc) and renewable energies (20 pc, mainly hydraulic), and that renewable energies must be developed in the building and transport sectors to be able to get rid of the environmentally and financially costly fossil energies. He outlines that reactor maintenance and the nuclear fuel cycle industry are fields of technological leadership for the French nuclear industry which is, after motor industry and aircraft industry, the third industrial sector in France. He indicates that nuclear electricity is to remain the most competitive one, and that nuclear energy and renewable energies must not be opposed to it but considered as complementary in the struggle against climate change, i.e. to reduce greenhouse gas emissions and to get rid of the prevalence of fossil energies

  15. Population cycles: generalities, exceptions and remaining mysteries

    2018-01-01

    Population cycles are one of nature's great mysteries. For almost a hundred years, innumerable studies have probed the causes of cyclic dynamics in snowshoe hares, voles and lemmings, forest Lepidoptera and grouse. Even though cyclic species have very different life histories, similarities in mechanisms related to their dynamics are apparent. In addition to high reproductive rates and density-related mortality from predators, pathogens or parasitoids, other characteristics include transgenerational reduced reproduction and dispersal with increasing-peak densities, and genetic similarity among populations. Experiments to stop cyclic dynamics and comparisons of cyclic and noncyclic populations provide some understanding but both reproduction and mortality must be considered. What determines variation in amplitude and periodicity of population outbreaks remains a mystery. PMID:29563267

  16. Does hypertension remain after kidney transplantation?

    Gholamreza Pourmand

    2015-05-01

    Full Text Available Hypertension is a common complication of kidney transplantation with the prevalence of 80%. Studies in adults have shown a high prevalence of hypertension (HTN in the first three months of transplantation while this rate is reduced to 50- 60% at the end of the first year. HTN remains as a major risk factor for cardiovascular diseases, lower graft survival rates and poor function of transplanted kidney in adults and children. In this retrospective study, medical records of 400 kidney transplantation patients of Sina Hospital were evaluated. Patients were followed monthly for the 1st year, every two months in the 2nd year and every three months after that. In this study 244 (61% patients were male. Mean ± SD age of recipients was 39.3 ± 13.8 years. In most patients (40.8% the cause of end-stage renal disease (ESRD was unknown followed by HTN (26.3%. A total of 166 (41.5% patients had been hypertensive before transplantation and 234 (58.5% had normal blood pressure. Among these 234 individuals, 94 (40.2% developed post-transplantation HTN. On the other hand, among 166 pre-transplant hypertensive patients, 86 patients (56.8% remained hypertensive after transplantation. Totally 180 (45% patients had post-transplantation HTN and 220 patients (55% didn't develop HTN. Based on the findings, the incidence of post-transplantation hypertension is high, and kidney transplantation does not lead to remission of hypertension. On the other hand, hypertension is one of the main causes of ESRD. Thus, early screening of hypertension can prevent kidney damage and reduce further problems in renal transplant recipients.

  17. Tyrosine kinases in rheumatoid arthritis

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  18. The Human Remains from HMS Pandora

    D.P. Steptoe

    2002-04-01

    Full Text Available In 1977 the wreck of HMS Pandora (the ship that was sent to re-capture the Bounty mutineers was discovered off the north coast of Queensland. Since 1983, the Queensland Museum Maritime Archaeology section has carried out systematic excavation of the wreck. During the years 1986 and 1995-1998, more than 200 human bone and bone fragments were recovered. Osteological investigation revealed that this material represented three males. Their ages were estimated at approximately 17 +/-2 years, 22 +/-3 years and 28 +/-4 years, with statures of 168 +/-4cm, 167 +/-4cm, and 166cm +/-3cm respectively. All three individuals were probably Caucasian, although precise determination of ethnicity was not possible. In addition to poor dental hygiene, signs of chronic diseases suggestive of rickets and syphilis were observed. Evidence of spina bifida was seen on one of the skeletons, as were other skeletal anomalies. Various taphonomic processes affecting the remains were also observed and described. Compact bone was observed under the scanning electron microscope and found to be structurally coherent. Profiles of the three skeletons were compared with historical information about the 35 men lost with the ship, but no precise identification could be made. The investigation did not reveal the cause of death. Further research, such as DNA analysis, is being carried out at the time of publication.

  19. SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES

    F. Poux

    2016-10-01

    Full Text Available Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.

  20. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. What remains of the Arrow oil?

    Sergy, G.; Owens, E.

    1993-01-01

    In February 1970, the tanker Arrow became grounded 6.5 km off the north shore of Chedabucto Bay, Nova Scotia, and nearly 72,000 bbl of Bunker C fuel oil were released from the vessel during its subsequent breakup and sinking. The oil was washed ashore in various degrees over an estimated 305 km of the bay's 604-km shoreline, of which only 48 km were cleaned. In addition, the tanker Kurdistan broke in two in pack ice in March 1979 in the Cabot Strait area, spilling ca 54,000 bbl of Bunker C, some of which was later found at 16 locations along the northeast and east shorelines of Chedabucto Bay. In summer 1992, a systematic ground survey of the bay's shorelines was conducted using Environment Canada Shoreline Cleanup Assessment Team (SCAT) procedures. Standard observations were made of oil distribution and width, thickness, and character of the oil residues in 419 coastal segments. Results from the survey are summarized. Oil was found to be present on 13.3 km of the shoreline, with heavy oiling restricted to 1.3 km primarily in the areas of Black Duck Cove and Lennox Passage. Some of this residual oil was identified as coming from the Arrow. Natural weathering processes account for removal of most of the spilled oil from the bay. Oil remaining on the shore was found in areas outside of the zone of physical wave action, in areas of nearshore mixing where fine sediments are not present to weather the oil through biophysical processes, or in crusts formed by oil weathered on the surface. The systematic description of oiled shorelines using the SCAT methodology proved very successful, even for such an old spill. 6 refs

  2. Ghost Remains After Black Hole Eruption

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  3. Regulation of Autophagy by Kinases

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  4. Regulation of Autophagy by Kinases

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  5. Regulation of Autophagy by Kinases

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  6. Regulation of Autophagy by Kinases

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  7. Bacterial Protein-Tyrosine Kinases

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  8. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  9. Receptor-interacting protein (RIP) kinase family

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, incl...

  10. Protein kinase C alpha controls erythropoietin receptor signaling.

    M.M. von Lindern (Marieke); M. Parren-Van Amelsvoort (Martine); T.B. van Dijk (Thamar); E. Deiner; B. Löwenberg (Bob); E. van den Akker (Emile); S. van Emst-de Vries (Sjenet); P.J. Willems (Patrick); H. Beug (Hartmut)

    2000-01-01

    textabstractProtein kinase C (PKC) is implied in the activation of multiple targets of erythropoietin (Epo) signaling, but its exact role in Epo receptor (EpoR) signal transduction and in the regulation of erythroid proliferation and differentiation remained elusive. We

  11. Protein kinase C alpha controls erythropoietin receptor signaling

    von Lindern, M.; Parren-van Amelsvoort, M.; van Dijk, T.; Deiner, E.; van den Akker, E.; van Emst-de Vries, S.; Willems, P.; Beug, H.; Löwenberg, B.

    2000-01-01

    Protein kinase C (PKC) is implied in the activation of multiple targets of erythropoietin (Epo) signaling, but its exact role in Epo receptor (EpoR) signal transduction and in the regulation of erythroid proliferation and differentiation remained elusive. We analyzed the effect of PKC inhibitors

  12. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  13. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface*

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-01-01

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. PMID:26912659

  14. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface.

    Wojcik, John; Lamontanara, Allan Joaquim; Grabe, Grzegorz; Koide, Akiko; Akin, Louesa; Gerig, Barbara; Hantschel, Oliver; Koide, Shohei

    2016-04-15

    Bcr-Abl is a constitutively active kinase that causes chronic myelogenous leukemia. We have shown that a tandem fusion of two designed binding proteins, termed monobodies, directed to the interaction interface between the Src homology 2 (SH2) and kinase domains and to the phosphotyrosine-binding site of the SH2 domain, respectively, inhibits the Bcr-Abl kinase activity. Because the latter monobody inhibits processive phosphorylation by Bcr-Abl and the SH2-kinase interface is occluded in the active kinase, it remained undetermined whether targeting the SH2-kinase interface alone was sufficient for Bcr-Abl inhibition. To address this question, we generated new, higher affinity monobodies with single nanomolar KD values targeting the kinase-binding surface of SH2. Structural and mutagenesis studies revealed the molecular underpinnings of the monobody-SH2 interactions. Importantly, the new monobodies inhibited Bcr-Abl kinase activity in vitro and in cells, and they potently induced cell death in chronic myelogenous leukemia cell lines. This work provides strong evidence for the SH2-kinase interface as a pharmacologically tractable site for allosteric inhibition of Bcr-Abl. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Proteinase K processing of rabbit muscle creatine kinase

    Leydier, C; Andersen, Jens S.; Couthon, F

    1997-01-01

    Proteinase K cleaves selectively both cytosolic and mitochondrial isoforms of creatine kinase leading to the appearance of two fragments, a large N-terminal one (K1) and a small C-terminal peptide (K2) which remain associated together. The loss of enzymatic activity correlates with the extent...... of monomer cleavage. N-terminal sequencing of the K2 fragments from rabbit cytosolic and pig mitochondrial creatine kinase shows that these peptides begin with A328 and A324, respectively. Electrospray ionization mass spectrometry demonstrates that K2 peptide is composed of 53 residues (A328-K380). However...

  16. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  17. Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells*

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-01-01

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945

  18. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-07-27

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.

  19. Targeting the Pim kinases in multiple myeloma.

    Keane, N A

    2015-07-17

    Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. Novel treatment strategies to improve survival are urgently required. The Pims are a small family of serine\\/threonine kinases with increased expression across the hematological malignancies. Pim-2 shows highest expression in MM and constitutes a promising therapeutic target. It is upregulated by the bone marrow microenvironment to mediate proliferation and promote MM survival. Pim-2 also has a key role in the bone destruction typically seen in MM. Additional putative roles of the Pim kinases in MM include trafficking of malignant cells, promoting oncogenic signaling in the hypoxic bone marrow microenvironment and mediating resistance to therapy. A number of Pim inhibitors are now under development with lead compounds entering the clinic. The ATP-competitive Pim inhibitor LGH447 has recently been reported to have single agent activity in MM. It is anticipated that Pim inhibition will be of clinical benefit in combination with standard treatments and\\/or with novel drugs targeting other survival pathways in MM.

  20. Chitin and stress induced protein kinase activation

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  1. Non-Viral Deoxyribonucleoside Kinases

    Christiansen, Louise Slot; Munch-Petersen, Birgitte; Knecht, Wolfgang

    2015-01-01

    Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of gr...

  2. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  3. Protein kinase CK2 in human diseases

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure...

  4. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases.

    Chan, Tung O; Pascal, John M; Armen, Roger S; Rodeck, Ulrich

    2012-02-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.

  5. Autoregulation of kinase dephosphorylation by ATP binding to AGC protein kinases

    Pascal, John M; Armen, Roger S

    2012-01-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families. PMID:22262182

  6. Src kinase regulation by phosphorylation and dephosphorylation

    Roskoski, Robert

    2005-01-01

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPα, PTPε, and PTPλ. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined

  7. Signaling network of the Btk family kinases.

    Qiu, Y; Kung, H J

    2000-11-20

    The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.

  8. Receptor-interacting protein (RIP) kinase family

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research. PMID:20383176

  9. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Oncoprotein protein kinase antibody kit

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  11. Thymidine kinase diversity in bacteria

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  12. KSR1 is a functional protein kinase capable of serine autophosphorylation and direct phosphorylation of MEK1

    Goettel, Jeremy A.; Liang, Dongchun; Hilliard, Valda C.; Edelblum, Karen L.; Broadus, Matthew R.; Gould, Kathleen L.; Hanks, Steven K.; Polk, D. Brent

    2011-01-01

    The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1 -/- colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.

  13. Distinct and Overlapping Functions of TEC Kinase and BTK in B Cell Receptor Signaling.

    de Bruijn, Marjolein J W; Rip, Jasper; van der Ploeg, Esmee K; van Greuningen, Lars W; Ta, Van T B; Kil, Laurens P; Langerak, Anton W; Rimmelzwaan, Guus F; Ellmeier, Wilfried; Hendriks, Rudi W; Corneth, Odilia B J

    2017-04-15

    The Tec tyrosine kinase is expressed in many cell types, including hematopoietic cells, and is a member of the Tec kinase family that also includes Btk. Although the role of Btk in B cells has been extensively studied, the role of Tec kinase in B cells remains largely unclear. It was previously shown that Tec kinase has the ability to partly compensate for loss of Btk activity in B cell differentiation, although the underlying mechanism is unknown. In this study, we confirm that Tec kinase is not essential for normal B cell development when Btk is present, but we also found that Tec-deficient mature B cells showed increased activation, proliferation, and survival upon BCR stimulation, even in the presence of Btk. Whereas Tec deficiency did not affect phosphorylation of phospholipase Cγ or Ca 2+ influx, it was associated with significantly increased activation of the intracellular Akt/S6 kinase signaling pathway upon BCR and CD40 stimulation. The increased S6 kinase phosphorylation in Tec-deficient B cells was dependent on Btk kinase activity, as ibrutinib treatment restored pS6 to wild-type levels, although Btk protein and phosphorylation levels were comparable to controls. In Tec-deficient mice in vivo, B cell responses to model Ags and humoral immunity upon influenza infection were enhanced. Moreover, aged mice lacking Tec kinase developed a mild autoimmune phenotype. Taken together, these data indicate that in mature B cells, Tec and Btk may compete for activation of the Akt signaling pathway, whereby the activating capacity of Btk is limited by the presence of Tec kinase. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  15. A Bayesian Framework for Remaining Useful Life Estimation

    National Aeronautics and Space Administration — The estimation of remaining useful life (RUL) of a faulty component is at the center of system prognostics and health management. It gives operators a potent tool in...

  16. Kinases Involved in Both Autophagy and Mitosis.

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  17. Kinases Involved in Both Autophagy and Mitosis

    Zhiyuan Li

    2017-08-01

    Full Text Available Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases, Aurora kinases, PLK-1 (polo-like kinase 1, BUB1 (budding uninhibited by benzimidazoles 1, MAPKs (mitogen-activated protein kinases, mTORC1 (mechanistic target of rapamycin complex 1, AMPK (AMP-activated protein kinase, PI3K (phosphoinositide-3 kinase and protein kinase B (AKT. By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  18. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. A grammar inference approach for predicting kinase specific phosphorylation sites.

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  20. A Grammar Inference Approach for Predicting Kinase Specific Phosphorylation Sites

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  1. Robotics to Enable Older Adults to Remain Living at Home

    Pearce, Alan J.; Adair, Brooke; Miller, Kimberly; Ozanne, Elizabeth; Said, Catherine; Santamaria, Nick; Morris, Meg E.

    2012-01-01

    Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effec...

  2. LAMMER kinase Kic1 is involved in pre-mRNA processing

    Tang, Zhaohua; Luca, Maria; Portillio, Jessica; Ngo, Benson; Chang, Cathey; Wen, Teresa; Murray, Johanne; Carr, Antony

    2011-01-01

    The LAMMER kinases are conserved through evolution. They play vital roles in cell growth/differentiation, development, and metabolism. One of the best known functions of the kinases in animal cells is the regulation of pre-mRNA splicing. Kic1 is the LAMMER kinase in fission yeast Schizosaccharomyces pombe. Despite the reported pleiotropic effects of kic1 + deletion/overexpression on various cellular processes the involvement of Kic1 in splicing remains elusive. In this study, we demonstrate for the first time that Kic1 not only is required for efficient splicing but also affects mRNA export, providing evidence for the conserved roles of LAMMER kinases in the unicellular context of fission yeast. Consistent with the hypothesis of its direct participation in multiple steps of pre-mRNA processing, Kic1 is predominantly present in the nucleus during interphase. In addition, the kinase activity of Kic1 plays a role in modulating its own cellular partitioning. Interestingly, Kic1 expression oscillates in a cell cycle-dependent manner and the peak level coincides with mitosis and cytokinesis, revealing a potential mechanism for controlling the kinase activity during the cell cycle. The novel information about the in vivo functions and regulation of Kic1 offers insights into the conserved biological roles fundamental to LAMMER kinases in eukaryotes.

  3. Investigating the role of RIO protein kinases in Caenorhabditis elegans.

    Tasha K Mendes

    Full Text Available RIO protein kinases (RIOKs are a relatively conserved family of enzymes implicated in cell cycle control and ribosomal RNA processing. Despite their functional importance, they remain a poorly understood group of kinases in multicellular organisms. Here, we show that the C. elegans genome contains one member of each of the three RIOK sub-families and that each of the genes coding for them has a unique tissue expression pattern. Our analysis showed that the gene encoding RIOK-1 (riok-1 was broadly and strongly expressed. Interestingly, the intestinal expression of riok-1 was dependent upon two putative binding sites for the oxidative and xenobiotic stress response transcription factor SKN-1. RNA interference (RNAi-mediated knock down of riok-1 resulted in germline defects, including defects in germ line stem cell proliferation, oocyte maturation and the production of endomitotic oocytes. Taken together, our findings indicate new functions for RIOK-1 in post mitotic tissues and in reproduction.

  4. In vivo conditions to identify Prkci phosphorylation targets using the analog-sensitive kinase method in zebrafish.

    Elena Cibrián Uhalte

    Full Text Available Protein kinase C iota is required for various cell biological processes including epithelial tissue polarity and organ morphogenesis. To gain mechanistic insight into different roles of this kinase, it is essential to identify specific substrate proteins in their cellular context. The analog-sensitive kinase method provides a powerful tool for the identification of kinase substrates under in vivo conditions. However, it has remained a major challenge to establish screens based on this method in multicellular model organisms. Here, we report the methodology for in vivo conditions using the analog-sensitive kinase method in a genetically-tractable vertebrate model organism, the zebrafish. With this approach, kinase substrates can uniquely be labeled in the developing zebrafish embryo using bulky ATPγS analogs which results in the thiophosphorylation of substrates. The labeling of kinase substrates with a thiophosphoester epitope differs from phosphoesters that are generated by all other kinases and allows for an enrichment of thiophosphopeptides by immunoaffinity purification. This study provides the foundation for using the analog-sensitive kinase method in the context of complex vertebrate development, physiology, or disease.

  5. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins.

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R

    2014-09-01

    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  6. Receptor Tyrosine Kinases in Drosophila Development

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  7. Structural analysis of Staphylococcus aureus serine/threonine kinase PknB.

    Sonja Rakette

    Full Text Available Effective treatment of infections caused by the bacterium Staphylococcus aureus remains a worldwide challenge, in part due to the constant emergence of new strains that are resistant to antibiotics. The serine/threonine kinase PknB is of particular relevance to the life cycle of S. aureus as it is involved in the regulation of purine biosynthesis, autolysis, and other central metabolic processes of the bacterium. We have determined the crystal structure of the kinase domain of PknB in complex with a non-hydrolyzable analog of the substrate ATP at 3.0 Å resolution. Although the purified PknB kinase is active in solution, it crystallized in an inactive, autoinhibited state. Comparison with other bacterial kinases provides insights into the determinants of catalysis, interactions of PknB with ligands, and the pathway of activation.

  8. Forensic considerations when dealing with incinerated human dental remains.

    Reesu, Gowri Vijay; Augustine, Jeyaseelan; Urs, Aadithya B

    2015-01-01

    Establishing the human dental identification process relies upon sufficient post-mortem data being recovered to allow for a meaningful comparison with ante-mortem records of the deceased person. Teeth are the most indestructible components of the human body and are structurally unique in their composition. They possess the highest resistance to most environmental effects like fire, desiccation, decomposition and prolonged immersion. In most natural as well as man-made disasters, teeth may provide the only means of positive identification of an otherwise unrecognizable body. It is imperative that dental evidence should not be destroyed through erroneous handling until appropriate radiographs, photographs, or impressions can be fabricated. Proper methods of physical stabilization of incinerated human dental remains should be followed. The maintenance of integrity of extremely fragile structures is crucial to the successful confirmation of identity. In such situations, the forensic dentist must stabilise these teeth before the fragile remains are transported to the mortuary to ensure preservation of possibly vital identification evidence. Thus, while dealing with any incinerated dental remains, a systematic approach must be followed through each stage of evaluation of incinerated dental remains to prevent the loss of potential dental evidence. This paper presents a composite review of various studies on incinerated human dental remains and discusses their impact on the process of human identification and suggests a step by step approach. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-02-13

    Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection

  10. Development of a remaining lifetime management system for NPPS

    Galvan, J.C.; Regano, M.; Hevia Ruperez, F.

    1994-01-01

    The interest evinced by Spain nuclear power plants in providing a tool to support remaining lifetime management led to UNESA's application to OCIDE in 1992, and the latter's approval, for financing the project to develop a Remaining Lifetime Evaluation System for LWR nuclear power plants. This project is currently being developed under UNESA leadership, and the collaboration of three Spanish engineering companies and a research centre. The paper will describe its objectives, activities, current status and prospects. The project is defined in two phases, the first consisting of the identification and analysis of the main ageing phenomena and their significant parameters and specification of the Remaining Lifetime Evaluation System (RLES), and the second implementation of a pilot application of the RLES to verify its effectiveness. (Author)

  11. Remaining life assessment of a high pressure turbine rotor

    Nguyen, Ninh; Little, Alfie

    2012-01-01

    This paper describes finite element and fracture mechanics based modelling work that provides a useful tool for evaluation of the remaining life of a high pressure (HP) steam turbine rotor that had experienced thermal fatigue cracking. An axis-symmetrical model of a HP rotor was constructed. Steam temperature, pressure and rotor speed data from start ups and shut downs were used for the thermal and stress analysis. Operating history and inspection records were used to benchmark the damage experienced by the rotor. Fracture mechanics crack growth analysis was carried out to evaluate the remaining life of the rotor under themal cyclic loading conditions. The work confirmed that the fracture mechanics approach in conjunction with finite element modelling provides a useful tool for assessing the remaining life of high temperature components in power plants.

  12. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    Diaz Galicia, Miriam Escarlet

    2018-01-01

    is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain

  13. Measuring Kinase Activity-A Global Challenge.

    Cann, Marissa L; McDonald, Ian M; East, Michael P; Johnson, Gary L; Graves, Lee M

    2017-11-01

    The kinase enzymes within a cell, known collectively as the kinome, play crucial roles in many signaling pathways, including survival, motility, differentiation, stress response, and many more. Aberrant signaling through kinase pathways is often linked to cancer, among other diseases. A major area of scientific research involves understanding the relationships between kinases, their targets, and how the kinome adapts to perturbations of the cellular system. This review will discuss many of the current and developing methods for studying kinase activity, and evaluate their applications, advantages, and disadvantages. J. Cell. Biochem. 118: 3595-3606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. On random age and remaining lifetime for populations of items

    Finkelstein, M.; Vaupel, J.

    2015-01-01

    We consider items that are incepted into operation having already a random (initial) age and define the corresponding remaining lifetime. We show that these lifetimes are identically distributed when the age distribution is equal to the equilibrium distribution of the renewal theory. Then we...... develop the population studies approach to the problem and generalize the setting in terms of stationary and stable populations of items. We obtain new stochastic comparisons for the corresponding population ages and remaining lifetimes that can be useful in applications. Copyright (c) 2014 John Wiley...

  15. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  16. Predicting the Remaining Useful Life of Rolling Element Bearings

    Hooghoudt, Jan Otto; Jantunen, E; Yi, Yang

    2018-01-01

    Condition monitoring of rolling element bearings is of vital importance in order to keep the industrial wheels running. In wind industry this is especially important due to the challenges in practical maintenance. The paper presents an attempt to improve the capability of prediction of remaining...

  17. The experiences of remaining nurse tutors during the transformation ...

    The transformation of public services and education in South Africa is part of the political and socioeconomic transition to democracy. Changes are occurring in every fi eld, including that of the health services. A qualitative study was undertaken to investigate the experiences of the remaining nurse tutors at a school of ...

  18. Remaining childless : Causes and consequences from a life course perspective

    Keizer, R.

    2010-01-01

    Little is know about childless individuals in the Netherlands, although currently one out of every five Dutch individuals remains childless. Who are they? How did they end up being childless? How and to what extent are their life outcomes influenced by their childlessness? By focusing on individual

  19. Molecular genetic identification of skeletal remains of apartheid ...

    The Truth and Reconciliation Commission made significant progress in examining abuses committed during the apartheid era in South Africa. Despite information revealed by the commission, a large number of individuals remained missing when the commission closed its proceedings. This provided the impetus for the ...

  20. Palmar, Patellar, and Pedal Human Remains from Pavlov

    Trinkaus, E.; Wojtal, P.; Wilczyński, J.; Sázelová, Sandra; Svoboda, Jiří

    2017-01-01

    Roč. 2017, June (2017), s. 73-101 ISSN 1545-0031 Institutional support: RVO:68081758 Keywords : Gravettian * human remains * isolated bones * anatomically modern humans * Upper Paleolithic Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology http://paleoanthro.org/media/journal/content/PA20170073.pdf

  1. Robotics to Enable Older Adults to Remain Living at Home

    Alan J. Pearce

    2012-01-01

    Full Text Available Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1 what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2 what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving.

  2. Authentic leadership: becoming and remaining an authentic nurse leader.

    Murphy, Lin G

    2012-11-01

    This article explores how chief nurse executives became and remained authentic leaders. Using narrative inquiry, this qualitative study focused on the life stories of participants. Results demonstrate the importance of reframing, reflection in alignment with values, and the courage needed as nurse leaders progress to authenticity.

  3. Robotics to enable older adults to remain living at home.

    Pearce, Alan J; Adair, Brooke; Miller, Kimberly; Ozanne, Elizabeth; Said, Catherine; Santamaria, Nick; Morris, Meg E

    2012-01-01

    Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving.

  4. Dinosaur remains from the type Maastrichtian: An update

    Weishampel, David B.; Mulder, Eric W A; Dortangs, Rudi W.; Jagt, John W M; Jianu, Coralia Maria; Kuypers, Marcel M M; Peeters, Hans H G; Schulp, Anne S.

    1999-01-01

    Isolated cranial and post-cranial remains of hadrosaurid dinosaurs have been collected from various outcrops in the type area of the Maastrichtian stage during the last few years. In the present contribution, dentary and maxillary teeth are recorded from the area for the first time. Post-cranial

  5. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  6. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Safety provision for nuclear power plants during remaining running time

    Rossnagel, Alexander; Hentschel, Anja

    2012-01-01

    With the phasing-out of the industrial use of nuclear energy for the power generation, the risk of the nuclear power plants has not been eliminated in principle, but only for a limited period of time. Therefore, the remaining nine nuclear power plants must also be used for the remaining ten years according to the state of science and technology. Regulatory authorities must substantiate the safety requirements for each nuclear power plant and enforce these requirements by means of various regulatory measures. The consequences of Fukushima must be included in the assessment of the safety level of nuclear power plants in Germany. In this respect, the regulatory authorities have the important tasks to investigate and assess the security risks as well as to develop instructions and orders.

  8. Structural remains at the early mediaeval fort at Raibania, Orissa

    Bratati Sen

    2013-11-01

    Full Text Available The fortifications of mediaeval India occupy an eminent position in the history of military architecture. The present paper deals with the preliminary study of the structural remains at the early mediaeval fort at Raibania in the district of Balasore in Orissa. The fort was built of stone very loosely kept together. The three-walled fortification interspersed by two consecutive moats, a feature evidenced at Raibania, which is unparallel in the history of ancient and mediaeval forts and fortifications in India. Several other structures like the Jay-Chandi Temple Complex, a huge well, numerous tanks and remains of an ancient bridge add to the uniqueness of the Fort in the entire eastern region.

  9. Mineral remains of early life on Earth? On Mars?

    Iberall, Robbins E.; Iberall, A.S.

    1991-01-01

    The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors

  10. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES

    LOFARO, R.; SOO, P.; VILLARAN, M.; GROVE, E.

    2001-01-01

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed

  11. Study on remain actinides recovery in pyro reprocessing

    Suharto, Bambang

    1996-01-01

    The spent fuel reprocessing by dry process called pyro reprocessing have been studied. Most of U, Pu and MA (minor actinides) from the spent fuel will be recovered and be fed back to the reactor as new fuel. Accumulation of remain actinides will be separated by extraction process with liquid cadmium solvent. The research was conducted by computer simulation to calculate the stage number required. The calculation's results showed on the 20 stages extractor more than 99% actinides can be separated. (author)

  12. US GAAP vs. IFRS – A COMPARISON OF REMAINING DIFFERENCES

    Mihelčić, Eva

    2008-01-01

    In spite of the on-going harmonization process, there are still some differences between US GAAP and IFRS. Currently, companies listed on the New York Stock Exchange, which are reporting according to IFRS, must still prepare the reconciliation to US GAAP, to show the financial statements compliant with US GAAP as well. This article presents an overview of the remaining major differences between US GAAP and IFRS, descriptive as well as table-wise. First, the standards compared are shortly intr...

  13. Structural remains at the early mediaeval fort at Raibania, Orissa

    Sen, Bratati

    2013-01-01

    The fortifications of mediaeval India occupy an eminent position in the history of military architecture. The present paper deals with the preliminary study of the structural remains at the early mediaeval fort at Raibania in the district of Balasore in Orissa. The fort was built of stone very loosely kept together. The three-walled fortification interspersed by two consecutive moats, a feature evidenced at Raibania, w...

  14. Neanderthal infant and adult infracranial remains from Marillac (Charente, France).

    Dolores Garralda, María; Maureille, Bruno; Vandermeersch, Bernard

    2014-09-01

    At the site of Marillac, near the Ligonne River in Marillac-le-Franc (Charente, France), a remarkable stratigraphic sequence has yielded a wealth of archaeological information, palaeoenvironmental data, as well as faunal and human remains. Marillac must have been a sinkhole used by Neanderthal groups as a hunting camp during MIS 4 (TL date 57,600 ± 4,600BP), where Quina Mousterian lithics and fragmented bones of reindeer predominate. This article describes three infracranial skeleton fragments. Two of them are from adults and consist of the incomplete shafts of a right radius (Marillac 24) and a left fibula (Marillac 26). The third fragment is the diaphysis of the right femur of an immature individual (Marillac 25), the size and shape of which resembles those from Teshik-Tash and could be assigned to a child of a similar age. The three fossils have been compared with the remains of other Neanderthals or anatomically Modern Humans (AMH). Furthermore, the comparison of the infantile femora, Marillac 25 and Teshik-Tash, with the remains of several European children from the early Middle Ages clearly demonstrates the robustness and rounded shape of both Neanderthal diaphyses. Evidence of peri-mortem manipulations have been identified on all three bones, with spiral fractures, percussion pits and, in the case of the radius and femur, unquestionable cutmarks made with flint implements, probably during defleshing. Traces of periostosis appear on the fibula fragment and on the immature femoral diaphysis, although their aetiology remains unknown. Copyright © 2014 Wiley Periodicals, Inc.

  15. Calibration of C-14 dates: some remaining uncertainties and limitations

    Burleigh, R.

    1975-01-01

    A brief review is presented of the interpretation of radiocarbon dates in terms of calendar years. An outline is given of the factors that make such correlations necessary and of the work that has so far been done to make them possible. The calibration of the C-14 timescale very largely depends at present on the bristlecone pine chronology, but it is clear that many detailed uncertainties still remain. These are discussed. (U.K.)

  16. A rice kinase-protein interaction map.

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E; Ronald, Pamela C; Song, Wen-Yuan

    2009-03-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.

  17. Discovery of inhibitors of bacterial histidine kinases

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based drug discovery approach, we have identified small-molecule histidine-kinase

  18. Prognostic modelling options for remaining useful life estimation by industry

    Sikorska, J. Z.; Hodkiewicz, M.; Ma, L.

    2011-07-01

    Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.

  19. Remaining useful life estimation based on discriminating shapelet extraction

    Malinowski, Simon; Chebel-Morello, Brigitte; Zerhouni, Noureddine

    2015-01-01

    In the Prognostics and Health Management domain, estimating the remaining useful life (RUL) of critical machinery is a challenging task. Various research topics including data acquisition, fusion, diagnostics and prognostics are involved in this domain. This paper presents an approach, based on shapelet extraction, to estimate the RUL of equipment. This approach extracts, in an offline step, discriminative rul-shapelets from an history of run-to-failure data. These rul-shapelets are patterns that are selected for their correlation with the remaining useful life of the equipment. In other words, every selected rul-shapelet conveys its own information about the RUL of the equipment. In an online step, these rul-shapelets are compared to testing units and the ones that match these units are used to estimate their RULs. Therefore, RUL estimation is based on patterns that have been selected for their high correlation with the RUL. This approach is different from classical similarity-based approaches that attempt to match complete testing units (or only late instants of testing units) with training ones to estimate the RUL. The performance of our approach is evaluated on a case study on the remaining useful life estimation of turbofan engines and performance is compared with other similarity-based approaches. - Highlights: • A data-driven RUL estimation technique based on pattern extraction is proposed. • Patterns are extracted for their correlation with the RUL. • The proposed method shows good performance compared to other techniques

  20. Direct dating of Early Upper Palaeolithic human remains from Mladec.

    Wild, Eva M; Teschler-Nicola, Maria; Kutschera, Walter; Steier, Peter; Trinkaus, Erik; Wanek, Wolfgang

    2005-05-19

    The human fossil assemblage from the Mladec Caves in Moravia (Czech Republic) has been considered to derive from a middle or later phase of the Central European Aurignacian period on the basis of archaeological remains (a few stone artefacts and organic items such as bone points, awls, perforated teeth), despite questions of association between the human fossils and the archaeological materials and concerning the chronological implications of the limited archaeological remains. The morphological variability in the human assemblage, the presence of apparently archaic features in some specimens, and the assumed early date of the remains have made this fossil assemblage pivotal in assessments of modern human emergence within Europe. We present here the first successful direct accelerator mass spectrometry radiocarbon dating of five representative human fossils from the site. We selected sample materials from teeth and from one bone for 14C dating. The four tooth samples yielded uncalibrated ages of approximately 31,000 14C years before present, and the bone sample (an ulna) provided an uncertain more-recent age. These data are sufficient to confirm that the Mladec human assemblage is the oldest cranial, dental and postcranial assemblage of early modern humans in Europe and is therefore central to discussions of modern human emergence in the northwestern Old World and the fate of the Neanderthals.

  1. Remaining life diagnosis method and device for nuclear reactor

    Yamamoto, Michiyoshi.

    1996-01-01

    A neutron flux measuring means is inserted from the outside of a reactor pressure vessel during reactor operation to forecast neutron-degradation of materials of incore structural components in the vicinity of portions to be measured based on the measured values, and the remaining life of the reactor is diagnosed by the forecast degraded state. In this case, the neutron fluxes to be measured are desirably fast and/or medium neutron fluxes. As the positions where the measuring means is to be inserted, for example, the vicinity of the structural components at the periphery of the fuel assembly is selected. Aging degradation characteristics of the structural components are determined by using the aging degradation data for the structural materials. The remaining life is analyzed based on obtained aging degradation characteristics and stress evaluation data of the incore structural components at portions to be measured. Neutron irradiation amount of structural components at predetermined positions can be recognized accurately, and appropriate countermeasures can be taken depending on the forecast remaining life thereby enabling to improve the reliability of the reactor. (N.H.)

  2. Postmortem Scavenging of Human Remains by Domestic Cats

    Ananya Suntirukpong, M.D.

    2017-11-01

    Full Text Available Objective: Crime scene investigators, forensic medicine doctors and pathologists, and forensic anthropologists frequently encounter postmortem scavenging of human remains by household pets. Case presentation: The authors present a case report of a partially skeletonized adult male found dead after more than three months in his apartment in Thailand. The body was in an advanced stage of decomposition with nearly complete skeletonization of the head, neck, hands, and feet. The presence of maggots and necrophagous (flesh eating beetles on the body confirmed that insects had consumed much of the soft tissues. Examination of the hand and foot bones revealed canine tooth puncture marks. Evidence of chewing indicated that one or more of the decedent’s three house cats had fed on the body after death. Recognizing and identifying carnivore and rodent activity on the soft flesh and bones of human remains is important in interpreting and reconstructing postmortem damage. Thorough analysis may help explain why skeletal elements are missing, damaged, or out of anatomical position. Conclusion: This report presents a multi-disciplinary approach combining forensic anthropology and forensic medicine in examining and interpreting human remains.

  3. dependent/calmodulin- stimulated protein kinase from moss

    Unknown

    stimulated protein kinase; CDPK, calmodulin domain-like protein kinase; KM14, 14 amino acid synthetic peptide; .... used were obtained from Sigma Chemical Company, USA, ..... Plant chimeric Ca2+/Calmodulin-dependent protein kinase.

  4. The Protein Kinase RSK Family - Roles in Prostate Cancer

    Lannigan, Deborah

    2006-01-01

    The Ser/Thr protein kinase p90-kDa ribosomal S6 kinase (RSK) is an important downstream effector of mitogen-activated protein kinase but its roles in prostate cancer have not been previously examined...

  5. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  6. Glycogen Synthase Kinase-3β

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    cells were quantitated using enzyme immunometric assays. The activity of GSK-3β (serine-9-phosphorylated GSK-3β/total GSK-3β) was lower at baseline compared with follow-up. No significant mean change over time was observed in levels of total GSK-3β and serine-9-phosphorylated GSK-3β. Exploratory......Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...... with emotional lability, subjective mood fluctuations and cognitive function in healthy individuals. Thirty-seven healthy subjects were evaluated with neuropsychological tests and blood samples at baseline and 12-week follow-up. Total GSK-3β and serine-9-phosphorylated GSK-3β in peripheral blood mononuclear...

  7. TYROSINE KINASE INHIBITORS AND PREGNANCY

    Elisabetta Abruzzese

    2014-04-01

    Full Text Available The management of patients with chronic myeloid leukemia (CML during pregnancy has became recently a matter of continuous debate.  The introduction of the Tyrosine Kinase Inhibitors (TKIs in clinical practice has dramatically changed the prognosis of CML patients.  Patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy.  This fact has come the necessity to address issues relating to fertility and pregnancy. Physicians are not infrequently being asked for advice regarding the need for, and or the appropriateness of, stopping treatment in order to conceive. In this report we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for all the approved TKIs, as well as suggest how to manage a planned and/or unplanned pregnancy.

  8. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  9. Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation?

    Darja Lavogina

    2018-04-01

    Full Text Available Protein kinases catalyze phosphorylation, a small yet crucial modification that affects participation of the substrate proteins in the intracellular signaling pathways. The activity of 538 protein kinases encoded in human genome relies upon spatiotemporally controlled mechanisms, ensuring correct progression of virtually all physiological processes on the cellular level—from cell division to cell death. The aberrant functioning of protein kinases is linked to a wide spectrum of major health issues including cancer, cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, etc. Hence, significant effort of scientific community has been dedicated to the dissection of protein kinase pathways in their natural milieu. The combination of recent advances in the field of light microscopy, the wide variety of genetically encoded or synthetic photoluminescent scaffolds, and the techniques for intracellular delivery of cargoes has enabled design of a plethora of probes that can report activation of target protein kinases in human live cells. The question remains: how much do we bias intracellular signaling of protein kinases by monitoring it? This review seeks answers to this question by analyzing different classes of probes according to their general structure, mechanism of recognition of biological target, and optical properties necessary for the reporting of intracellular events.

  10. Tuberculosis remains a challenge despite economic growth in Panama.

    Tarajia, M; Goodridge, A

    2014-03-01

    Tuberculosis (TB) is a disease associated with inequality, and wise investment of economic resources is considered critical to its control. Panama has recently secured its status as an upper-middle-income country with robust economic growth. However, the prioritisation of resources for TB control remains a major challenge. In this article, we highlight areas that urgently require action to effectively reduce TB burden to minimal levels. Our conclusions suggest the need for fund allocation and a multidisciplinary approach to ensure prompt laboratory diagnosis, treatment assurance and workforce reinforcement, complemented by applied and operational research, development and innovation.

  11. Yellow Fever Remains a Potential Threat to Public Health.

    Vasconcelos, Pedro F C; Monath, Thomas P

    2016-08-01

    Yellow fever (YF) remains a serious public health threat in endemic countries. The recent re-emergence in Africa, initiating in Angola and spreading to Democratic Republic of Congo and Uganda, with imported cases in China and Kenya is of concern. There is such a shortage of YF vaccine in the world that the World Health Organization has proposed the use of reduced doses (1/5) during emergencies. In this short communication, we discuss these and other problems including the risk of spread of YF to areas free of YF for decades or never before affected by this arbovirus disease.

  12. The Artificial Leaf: Recent Progress and Remaining Challenges

    Mark D Symes

    2016-12-01

    Full Text Available The prospect of a device that uses solar energy to split water into H2 and O2 is highly attractive in terms of producing hydrogen as a carbon-neutral fuel. In this mini review, key research milestones that have been reached in this field over the last two decades will be discussed, with special focus on devices that use earth-abundant materials. Finally, the remaining challenges in the development of such “artificial leaves” will be highlighted.

  13. Leprosy: ancient disease remains a public health problem nowadays.

    Noriega, Leandro Fonseca; Chiacchio, Nilton Di; Noriega, Angélica Fonseca; Pereira, Gilmayara Alves Abreu Maciel; Vieira, Marina Lino

    2016-01-01

    Despite being an ancient disease, leprosy remains a public health problem in several countries -particularly in India, Brazil and Indonesia. The current operational guidelines emphasize the evaluation of disability from the time of diagnosis and stipulate as fundamental principles for disease control: early detection and proper treatment. Continued efforts are needed to establish and improve quality leprosy services. A qualified primary care network that is integrated into specialized service and the development of educational activities are part of the arsenal in the fight against the disease, considered neglected and stigmatizing.

  14. Studies on protozoa in ancient remains - A Review

    Liesbeth Frías

    2013-02-01

    Full Text Available Paleoparasitological research has made important contributions to the understanding of parasite evolution and ecology. Although parasitic protozoa exhibit a worldwide distribution, recovering these organisms from an archaeological context is still exceptional and relies on the availability and distribution of evidence, the ecology of infectious diseases and adequate detection techniques. Here, we present a review of the findings related to protozoa in ancient remains, with an emphasis on their geographical distribution in the past and the methodologies used for their retrieval. The development of more sensitive detection methods has increased the number of identified parasitic species, promising interesting insights from research in the future.

  15. Encephalitozoon cuniculi in Raw Cow's Milk Remains Infectious After Pasteurization.

    Kváč, Martin; Tomanová, Vendula; Samková, Eva; Koubová, Jana; Kotková, Michaela; Hlásková, Lenka; McEvoy, John; Sak, Bohumil

    2016-02-01

    This study describes the prevalence of Encephalitozoon cuniculi in raw cow's milk and evaluates the effect of different milk pasteurization treatments on E. cuniculi infectivity for severe combined immunodeficient (SCID) mice. Using a nested polymerase chain reaction approach, 1 of 50 milking cows was found to repeatedly shed E. cuniculi in its feces and milk. Under experimental conditions, E. cuniculi spores in milk remained infective for SCID mice following pasteurization treatments at 72 °C for 15 s or 85 °C for 5 s. Based on these findings, pasteurized cow's milk should be considered a potential source of E. cuniculi infection in humans.

  16. "Recent" macrofossil remains from the Lomonosov Ridge, central Arctic Ocean

    Le Duc, Cynthia; de Vernal, Anne; Archambault, Philippe; Brice, Camille; Roberge, Philippe

    2016-04-01

    The examination of surface sediment samples collected from 17 sites along the Lomonosov Ridge at water depths ranging from 737 to 3339 meters during Polarstern Expedition PS87 in 2014 (Stein, 2015), indicates a rich biogenic content almost exclusively dominated by calcareous remains. Amongst biogenic remains, microfossils (planktic and benthic foraminifers, pteropods, ostracods, etc.) dominate but millimetric to centrimetric macrofossils occurred frequently at the surface of the sediment. The macrofossil remains consist of a large variety of taxa, including gastropods, bivalvia, polychaete tubes, scaphopods, echinoderm plates and spines, and fish otoliths. Among the Bivalvia, the most abundant taxa are Portlandia arctica, Hyalopecten frigidus, Cuspidaria glacilis, Policordia densicostata, Bathyarca spp., and Yoldiella spp. Whereas a few specimens are well preserved and apparently pristine, most mollusk shells displayed extensive alteration features. Moreover, most shells were covered by millimeter scale tubes of the serpulid polychaete Spirorbis sp. suggesting transport from low intertidal or subtidal zone. Both the ecological affinity and known geographic distribution of identified bivalvia as named above support the hypothesis of transportation rather than local development. In addition to mollusk shells, more than a hundred fish otoliths were recovered in surface sediments. The otoliths mostly belong to the Gadidae family. Most of them are well preserved and without serpulid tubes attached to their surface, suggesting a local/regional origin, unlike the shell remains. Although recovered at the surface, the macrofaunal assemblages of the Lomonosov Ridge do not necessarily represent the "modern" environments as they may result from reworking and because their occurrence at the surface of the sediment may also be due to winnowing of finer particles. Although the shells were not dated, we suspect that their actual ages may range from modern to several thousands of

  17. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  18. KFC, a Ste20-like kinase with mitogenic potential and capability to activate the SAPK/JNK pathway.

    Yustein, J T; Li, D; Robinson, D; Kung, H J

    2000-02-03

    The Sterile-20 (Ste20) family of serine-threonine kinases has been implicated in the activation of the stress-activated protein kinase pathways. However, the physiological role has remained ambiguous for most of the investigated mammalian Ste20's. Here we report the cloning of a novel Ste20-like kinase, from chicken embryo fibroblast (CEF) cells, which we have named KFC, for Kinase From Chicken. The 898 amino acid full-length KFC protein contains an amino-terminal kinase domain, an adjacent downstream serine-rich region, and a C-terminal tail containing a coiled-coil domain. Here we show that the coiled-coil domain of KFC negatively regulates the intrinsic kinase activity. We have also identified a splice variant of KFC in which there is a 207 nucleotide in-frame deletion. This deletion of 69 amino acids encompasses the serine-rich region. These two isoforms, called KFCL, for full-length, and KFCS for spliced (or short) form, not only differ in structure, but also in biological properties. Stable CEF cells overexpressing KFCL, but not KFCS, have a significant increase in growth rate when compared to parental cells. This mitogenic effect is the first such reported for this family of kinases. Finally, we found that KFC, when activated by truncation of the regulatory C-terminus, has a specific activation of the stress-activated protein kinase (SAPK/JNK) pathway.

  19. A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1

    Blasius, Melanie; Forment, Josep V; Thakkar, Neha

    2011-01-01

    BACKGROUND: The cell-cycle checkpoint kinase Chk1 is essential in mammalian cells due to its roles in controlling processes such as DNA replication, mitosis and DNA-damage responses. Despite its paramount importance, how Chk1 controls these functions remains unclear, mainly because very few Chk1...

  20. Biological significance of the focus on DNA damage checkpoint factors remained after irradiation of ionizing radiation

    Yamauchi, Motohiro; Suzuki, Keiji

    2005-01-01

    This paper reviews recent reports on the focus formation and participation to checkpoint of (such phosphorylated (P-d) as below) ATM and H2AX, MDC1, 53BP1 and NBS1, and discusses their role in DNA damage checkpoint induction mainly around authors' studies. When the cell is irradiated by ionizing radiation, the subtype histone like H2AX is P-d and the formed focus', seen in the nucleus on immuno-fluorographic observation, represents the P-d H2AX at the damaged site of DNA. The role of P-d ATM (the product of causative gene of ataxia-telangiectasia mutation, a protein kinase) has been first shown by laser beam irradiation. Described are discussions on the roles and functions after irradiation in focus formation and DNA damage checkpoint of P-d H2AX (a specific histone product by the radiation like γ-ray as above), P-d ATM, MDC1 (a mediator of DNA damage check point protein 1), 53BP1, (a p53 binding protein) and NBS1 (the product of the causative gene of Nijmegen Breakage Syndrome). Authors have come to point out the remained focal size increase as implications of the efficient repair of damaged DNA, and the second cycled p53 accumulation, of tumor suppression. Thus evaluation of biological significance of these aspects, scarcely noted hitherto, is concluded important. (S.I.)

  1. Fossil human remains from Bolomor Cave (Valencia, Spain).

    Arsuaga, Juan Luis; Fernández Peris, Josep; Gracia-Téllez, Ana; Quam, Rolf; Carretero, José Miguel; Barciela González, Virginia; Blasco, Ruth; Cuartero, Felipe; Sañudo, Pablo

    2012-05-01

    Systematic excavations carried out since 1989 at Bolomor Cave have led to the recovery of four Pleistocene human fossil remains, consisting of a fibular fragment, two isolated teeth, and a nearly complete adult parietal bone. All of these specimens date to the late Middle and early Late Pleistocene (MIS 7-5e). The fibular fragment shows thick cortical bone, an archaic feature found in non-modern (i.e. non-Homo sapiens) members of the genus Homo. Among the dental remains, the lack of a midtrigonid crest in the M(1) represents a departure from the morphology reported for the majority of Neandertal specimens, while the large dimensions and pronounced shoveling of the marginal ridges in the C(1) are similar to other European Middle and late Pleistocene fossils. The parietal bone is very thick, with dimensions that generally fall above Neandertal fossils and resemble more closely the Middle Pleistocene Atapuerca (SH) adult specimens. Based on the presence of archaic features, all the fossils from Bolomor are attributed to the Neandertal evolutionary lineage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Determination of Remaining Useful Life of Gas Turbine Blade

    Meor Said Mior Azman

    2016-01-01

    Full Text Available The aim of this research is to determine the remaining useful life of gas turbine blade, using service-exposed turbine blades. This task is performed using Stress Rupture Test (SRT under accelerated test conditions where the applied stresses to the specimen is between 400 MPa to 600 MPa and the test temperature is 850°C. The study will focus on the creep behaviour of the 52000 hours service-exposed blades, complemented with creep-rupture modelling using JMatPro software and microstructure examination using optical microscope. The test specimens, made up of Ni-based superalloy of the first stage turbine blades, are machined based on International Standard (ISO 24. The results from the SRT will be analyzed using these two main equations – Larson-Miller Parameter and Life Fraction Rule. Based on the results of the remaining useful life analysis, the 52000h service-exposed blade has the condition to operate in the range of another 4751 hr to 18362 hr. The microstructure examinations shows traces of carbide precipitation that deteriorate the grain boundaries that occurs during creep process. Creep-rupture life modelling using JMatPro software has shown good agreement with the accelerated creep rupture test with minimal error.

  3. A method for defleshing human remains using household bleach.

    Mann, Robert W; Berryman, Hugh E

    2012-03-01

    Medical examiners and forensic anthropologists are often faced with the difficult task of removing soft tissue from the human skeleton without damaging the bones, teeth and, in some cases, cartilage. While there are a number of acceptable methods that can be used to remove soft tissue including macerating in water, simmering or boiling, soaking in ammonia, removing with scissors, knife, scalpel or stiff brush, and dermestid beetles, each has its drawback in time, safety, or potential to damage bone. This technical report using the chest plate of a stabbing victim presents a safe and effective alternative method for removing soft tissue from human remains, in particular the chest plate, following autopsy, without damaging or separating the ribs, sternum, and costal cartilage. This method can be used to reveal subtle blunt force trauma to bone, slicing and stabbing injuries, and other forms of trauma obscured by overlying soft tissue. Despite the published cautionary notes, when done properly household bleach (3-6% sodium hypochlorite) is a quick, safe, and effective method for examining cartilage and exposing skeletal trauma by removing soft tissue from human skeletal remains. 2011 American Academy of Forensic Sciences. Published 2011. This article is a U.S. Government work and is in the public domain in the U.S.A.

  4. Duplex Alu Screening for Degraded DNA of Skeletal Human Remains

    Fabian Haß

    2017-10-01

    Full Text Available The human-specific Alu elements, belonging to the class of Short INterspersed Elements (SINEs, have been shown to be a powerful tool for population genetic studies. An earlier study in this department showed that it was possible to analyze Alu presence/absence in 3000-year-old skeletal human remains from the Bronze Age Lichtenstein cave in Lower Saxony, Germany. We developed duplex Alu screening PCRs with flanking primers for two Alu elements, each combined with a single internal Alu primer. By adding an internal primer, the approximately 400–500 bp presence signals of Alu elements can be detected within a range of less than 200 bp. Thus, our PCR approach is suited for highly fragmented ancient DNA samples, whereas NGS analyses frequently are unable to handle repetitive elements. With this analysis system, we examined remains of 12 individuals from the Lichtenstein cave with different degrees of DNA degradation. The duplex PCRs showed fully informative amplification results for all of the chosen Alu loci in eight of the 12 samples. Our analysis system showed that Alu presence/absence analysis is possible in samples with different degrees of DNA degradation and it reduces the amount of valuable skeletal material needed by a factor of four, as compared with a singleplex approach.

  5. On use of radial evanescence remain term in kinematic hardening

    Geyer, P.

    1995-10-01

    A fine modelling of the material' behaviour can be necessary to study the mechanical strength of nuclear power plant' components under cyclic loads. Ratchetting is one of the last phenomena for which numerical models have to be improved. We discuss in this paper on use of radial evanescence remain term in kinematic hardening to improve the description of ratchetting in biaxial loading tests. It's well known that Chaboche elastoplastic model with two non linear kinematic hardening variables initially proposed by Armstrong and Frederick, usually over-predicts accumulation of ratchetting strain. Burlet and Cailletaud proposed in 1987 a non linear kinematic rule with a radial evanescence remain term. The two models lead to identical formulation for proportional loadings. In the case of a biaxial loading test (primary+secondary loading), Burlet and Cailletaud model leads to accommodation, when Chaboche one's leads to ratchetting with a constant increment of strain. So we can have an under-estimate with the first model and an over-estimate with the second. An easy method to improve the description of ratchetting is to combine the two kinematic rules. Such an idea is already used by Delobelle in his model. With analytical results in the case of tension-torsion tests, we show in a first part of the paper, the interest of radial evanescence remain term in the non linear kinematic rule to describe ratchetting: we give the conditions to get adaptation, accommodation or ratchetting and the value of the strain increment in the last case. In the second part of the paper, we propose to modify the elastoplastic Chaboche model by coupling the two types of hardening by means of two scalar parameters which can be identified independently on biaxial loading tests. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. We use the experimental results on the austenitic steel 316L at room

  6. Highly efficient DNA extraction method from skeletal remains

    Irena Zupanič Pajnič

    2011-03-01

    Full Text Available Background: This paper precisely describes the method of DNA extraction developed to acquire high quality DNA from the Second World War skeletal remains. The same method is also used for molecular genetic identification of unknown decomposed bodies in routine forensic casework where only bones and teeth are suitable for DNA typing. We analysed 109 bones and two teeth from WWII mass graves in Slovenia. Methods: We cleaned the bones and teeth, removed surface contaminants and ground the bones into powder, using liquid nitrogen . Prior to isolating the DNA in parallel using the BioRobot EZ1 (Qiagen, the powder was decalcified for three days. The nuclear DNA of the samples were quantified by real-time PCR method. We acquired autosomal genetic profiles and Y-chromosome haplotypes of the bones and teeth with PCR amplification of microsatellites, and mtDNA haplotypes 99. For the purpose of traceability in the event of contamination, we prepared elimination data bases including genetic profiles of the nuclear and mtDNA of all persons who have been in touch with the skeletal remains in any way. Results: We extracted up to 55 ng DNA/g of the teeth, up to 100 ng DNA/g of the femurs, up to 30 ng DNA/g of the tibias and up to 0.5 ng DNA/g of the humerus. The typing of autosomal and YSTR loci was successful in all of the teeth, in 98 % dekalof the femurs, and in 75 % to 81 % of the tibias and humerus. The typing of mtDNA was successful in all of the teeth, and in 96 % to 98 % of the bones. Conclusions: We managed to obtain nuclear DNA for successful STR typing from skeletal remains that were over 60 years old . The method of DNA extraction described here has proved to be highly efficient. We obtained 0.8 to 100 ng DNA/g of teeth or bones and complete genetic profiles of autosomal DNA, Y-STR haplotypes, and mtDNA haplotypes from only 0.5g bone and teeth samples.

  7. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    Almadanim, M. Cecí lia; Alexandre, Bruno M.; Rosa, Margarida T.G.; Sapeta, Helena; Leitã o, Antó nio E.; Ramalho, José C.; Lam, TuKiet T.; Negrã o, Só nia; Abreu, Isabel A.; Oliveira, M. Margarida

    2017-01-01

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here

  8. TMI in perspective: reactor containment stands up, difficult decisions remain

    Corey, G.R.

    1979-01-01

    Commonwealth Edison Co. is increasing its commitment to nuclear energy after reviewing the performance of the Three Mile Island reactor containment systems. Both the reactor vessel and the secondary containment remained intact and no radiation was reported in the soil or water. The public discussion of energy options which followed the accident will benefit both the public and technical community even if there is a temporary slowdown in nuclear power development. The realities of energy supplies have become evident; i.e., that nuclear and coal are the only available options for the short-term. The discussion should also lead to better personnel training, regulatory reforms, risk-sharing insurance, and international standards. The public hysteria triggered by the accident stemmed partly from the combination of unfortunate incidents and the media coverage, which led to hasty conclusions

  9. Oldest Directly Dated Remains of Sheep in China

    Dodson, John; Dodson, Eoin; Banati, Richard; Li, Xiaoqiang; Atahan, Pia; Hu, Songmei; Middleton, Ryan J.; Zhou, Xinying; Nan, Sun

    2014-11-01

    The origins of domesticated sheep (Ovis sp.) in China remain unknown. Previous workers have speculated that sheep may have been present in China up to 7000 years ago, however many claims are based on associations with archaeological material rather than independent dates on sheep material. Here we present 7 radiocarbon dates on sheep bone from Inner Mongolia, Ningxia and Shaanxi provinces. DNA analysis on one of the bones confirms it is Ovis sp. The oldest ages are about 4700 to 4400 BCE and are thus the oldest objectively dated Ovis material in eastern Asia. The graphitisised bone collagen had δ13C values indicating some millet was represented in the diet. This probably indicates sheep were in a domestic setting where millet was grown. The younger samples had δ13C values indicating that even more millet was in the diet, and this was likely related to changes in foddering practices

  10. On use of radial evanescence remain term in kinematic hardening

    Geyer, P.

    1995-01-01

    This paper presents the interest which lies in non-linear kinematic hardening rule with radial evanescence remain term as proposed for modelling multiaxial ratchetting. From analytical calculations in the case of the tension/torsion test, this ratchetting is compared with that proposed by Armstrong and Frederick. A modification is then proposed for Chaboche's elastoplastic model with two non-linear kinematic variables, by coupling the two types of hardening by means of two scalar parameters. Identification of these two parameters returns to speculate on the directions of strain in order to adjust the ratchetting to experimental observations. Using biaxial ratchetting tests on stainless steel 316 L specimens at ambient temperature, it is shown that satisfactory modelling of multiaxial ratchetting is obtained. (author). 4 refs., 5 figs

  11. Psychotherapy for Borderline Personality Disorder: Progress and Remaining Challenges.

    Links, Paul S; Shah, Ravi; Eynan, Rahel

    2017-03-01

    The main purpose of this review was to critically evaluate the literature on psychotherapies for borderline personality disorder (BPD) published over the past 5 years to identify the progress with remaining challenges and to determine priority areas for future research. A systematic review of the literature over the last 5 years was undertaken. The review yielded 184 relevant abstracts, and after applying inclusion criteria, 16 articles were fully reviewed based on the articles' implications for future research and/or clinical practice. Our review indicated that patients with various severities benefited from psychotherapy; more intensive therapies were not significantly superior to less intensive therapies; enhancing emotion regulation processes and fostering more coherent self-identity were important mechanisms of change; therapies had been extended to patients with BPD and posttraumatic stress disorder; and more research was needed to be directed at functional outcomes.

  12. [Alcohol and work: remaining sober and return to work].

    Vittadini, G; Bandirali, M

    2007-01-01

    One of the most complex alcohol-driven problems is the job loss and the subsequent attempts to return to a professional activity. In order to better understand the issue, an epidemiologic investigation was carried out on a group of 162 alcoholics whilst hospitalised in a specialised clinic. The outcome shows the importance of remaining sober to keep or to be returned to one's own job. Unfortunately, local resources at hand, first of all joining an auto-mutual-help group, re still too little known and thus clearly underemployed. Therefore, an informative action within companies is highly desirable. Those alcoholics suffering from serious illnesses, especially mental ones represent a different issue. For these people a higher involvement of public authorities is desirable in creating protected job openings.

  13. Differential Decomposition Among Pig, Rabbit, and Human Remains.

    Dautartas, Angela; Kenyhercz, Michael W; Vidoli, Giovanna M; Meadows Jantz, Lee; Mundorff, Amy; Steadman, Dawnie Wolfe

    2018-03-30

    While nonhuman animal remains are often utilized in forensic research to develop methods to estimate the postmortem interval, systematic studies that directly validate animals as proxies for human decomposition are lacking. The current project compared decomposition rates among pigs, rabbits, and humans at the University of Tennessee's Anthropology Research Facility across three seasonal trials that spanned nearly 2 years. The Total Body Score (TBS) method was applied to quantify decomposition changes and calculate the postmortem interval (PMI) in accumulated degree days (ADD). Decomposition trajectories were analyzed by comparing the estimated and actual ADD for each seasonal trial and by fuzzy cluster analysis. The cluster analysis demonstrated that the rabbits formed one group while pigs and humans, although more similar to each other than either to rabbits, still showed important differences in decomposition patterns. The decomposition trends show that neither nonhuman model captured the pattern, rate, and variability of human decomposition. © 2018 American Academy of Forensic Sciences.

  14. Premortal data in the process of skeletal remains identification

    Marinković Nadica

    2012-01-01

    Full Text Available Background/Aim. The basic task of a forensic examiner during the exhumation of mass graves or in mass accidents is to establish identity of a person. The results obtained through these procedures depend on the level of perceptibility of post mortal changes and they are compared with premortal data obtained from family members of those missing or killed. Experience with exhumations has shown significant differences between the results obtained through exhumation and the premortal data. The aim of the study was to suggest the existance of the difference between premortal data and the results obtained by exhumation regarding the some parameters, as well as to direct premortal data colection to the specific skeletal forms. Methods. We performed comparative analysis of the results of exhumation of skeletal remains in a mass grave and the premortal data concerning the identified persons. The least number of individuals in this mass grave was calculated according to the upper parts of the right femur and it helped in calculating the smallest number of individuals in mass graves to be 48. A total of 27 persons were identified. Sex was determined by metrics and morphology of the pelvis. Personal age in the moment of death was determined by morphology features of groin symphisis and morphology of sternal edge of ribs and other parts of scelets observations. The hight was calculated as average results of length of long bones and Rollet coefficients. Results. There was a complete match in terms of sex and age matched within an interval that could be established based on the skeletal remains. All the other parameters were different, however, which made identification significantly more difficult. Conclusion. The premortal data is an important element of identification process and it should be obtained by the forensic doctor and directed towards more detailed examination of the skeletal system.

  15. Reidentification of avian embryonic remains from the cretaceous of mongolia.

    Varricchio, David J; Balanoff, Amy M; Norell, Mark A

    2015-01-01

    Embryonic remains within a small (4.75 by 2.23 cm) egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT) was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar) 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus) identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.

  16. Reidentification of avian embryonic remains from the cretaceous of mongolia.

    David J Varricchio

    Full Text Available Embryonic remains within a small (4.75 by 2.23 cm egg from the Late Cretaceous, Mongolia are here re-described. High-resolution X-ray computed tomography (HRCT was used to digitally prepare and describe the enclosed embryonic bones. The egg, IGM (Mongolian Institute for Geology, Ulaanbaatar 100/2010, with a three-part shell microstructure, was originally assigned to Neoceratopsia implying extensive homoplasy among eggshell characters across Dinosauria. Re-examination finds the forelimb significantly longer than the hindlimbs, proportions suggesting an avian identification. Additional, postcranial apomorphies (strut-like coracoid, cranially located humeral condyles, olecranon fossa, slender radius relative to the ulna, trochanteric crest on the femur, and ulna longer than the humerus identify the embryo as avian. Presence of a dorsal coracoid fossa and a craniocaudally compressed distal humerus with a strongly angled distal margin support a diagnosis of IGM 100/2010 as an enantiornithine. Re-identification eliminates the implied homoplasy of this tri-laminate eggshell structure, and instead associates enantiornithine birds with eggshell microstructure composed of a mammillary, squamatic, and external zones. Posture of the embryo follows that of other theropods with fore- and hindlimbs folded parallel to the vertebral column and the elbow pointing caudally just dorsal to the knees. The size of the egg and embryo of IGM 100/2010 is similar to the two other Mongolian enantiornithine eggs. Well-ossified skeletons, as in this specimen, characterize all known enantiornithine embryos suggesting precocial hatchlings, comparing closely to late stage embryos of modern precocial birds that are both flight- and run-capable upon hatching. Extensive ossification in enantiornithine embryos may contribute to their relatively abundant representation in the fossil record. Neoceratopsian eggs remain unrecognized in the fossil record.

  17. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA2 Activation.

    Wu, Xiangbing; Walker, Chandler L; Lu, Qingbo; Wu, Wei; Eddelman, Daniel B; Parish, Jonathan M; Xu, Xiao-Ming

    2017-11-01

    Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A 2 (cPLA 2 ), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA 2 . Inhibition of RhoA, Rho kinase and cPLA 2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA 2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA 2 . The immunofluorescence staining showed that ROCK 1 or ROCK 2 , two isoforms of Rho kinase, was co-localized with cPLA 2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK 1 or ROCK 2 bonded directly with cPLA 2 and phospho-cPLA 2 . When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA 2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA 2 activation.

  18. The role of Src kinase in the biology and pathogenesis of Acanthamoeba castellanii

    Siddiqui Ruqaiyyah

    2012-06-01

    Full Text Available Abstract Background Acanthamoeba species are the causative agents of fatal granulomatous encephalitis in humans. Haematogenous spread is thought to be a primary step, followed by blood–brain barrier penetration, in the transmission of Acanthmaoeba into the central nervous system, but the associated molecular mechanisms remain unclear. Here, we evaluated the role of Src, a non-receptor protein tyrosine kinase in the biology and pathogenesis of Acanthamoeba. Methods Amoebistatic and amoebicidal assays were performed by incubating amoeba in the presence of Src kinase-selective inhibitor, PP2 (4-amino-5-(4-chlorophenyl-7-(t-butylpyrazolo[3,4-d]pyrimidine and its inactive analog, PP3 (4-amino-7-phenylpyrazolo[3,4-d]pyrimidine. Using this inhibitor, the role of Src kinase in A. castellanii interactions with Escherichia coli was determined. Zymographic assays were performed to study effects of Src kinase on extracellular proteolytic activities of A. castellanii. The human brain microvascular endothelial cells were used to determine the effects of Src kinase on A. castellanii adhesion to and cytotoxicity of host cells. Results Inhibition of Src kinase using a specific inhibitor, PP2 (4-amino-5-(4 chlorophenyl-7-(t-butylpyrazolo [3,4-d] pyrimidine but not its inactive analog, PP3 (4-amino-7-phenylpyrazolo[3,4-d] pyrimidine, had detrimental effects on the growth of A. castellanii (keratitis isolate, belonging to the T4 genotype. Interestingly, inhibition of Src kinase hampered the phagocytic ability of A. castellanii, as measured by the uptake of non-invasive bacteria, but, on the contrary, invasion by pathogenic bacteria was enhanced. Zymographic assays revealed that inhibition of Src kinases reduced extracellular protease activities of A. castellanii. Src kinase inhibition had no significant effect on A. castellanii binding to and cytotoxicity of primary human brain microvascular endothelial cells, which constitute the blood–brain barrier

  19. Future Remains: Industrial Heritage at the Hanford Plutonium Works

    Freer, Brian

    This dissertation argues that U.S. environmental and historic preservation regulations, industrial heritage projects, history, and art only provide partial frameworks for successfully transmitting an informed story into the long range future about nuclear technology and its related environmental legacy. This argument is important because plutonium from nuclear weapons production is toxic to humans in very small amounts, threatens environmental health, has a half-life of 24, 110 years and because the industrial heritage project at Hanford is the first time an entire U.S. Department of Energy weapons production site has been designated a U.S. Historic District. This research is situated within anthropological interest in industrial heritage studies, environmental anthropology, applied visual anthropology, as well as wider discourses on nuclear studies. However, none of these disciplines is really designed or intended to be a completely satisfactory frame of reference for addressing this perplexing challenge of documenting and conveying an informed story about nuclear technology and its related environmental legacy into the long range future. Others have thought about this question and have made important contributions toward a potential solution. Examples here include: future generations movements concerning intergenerational equity as evidenced in scholarship, law, and amongst Native American groups; Nez Perce and Confederated Tribes of the Umatilla Indian Reservation responses to the Hanford End State Vision and Hanford's Canyon Disposition Initiative; as well as the findings of organizational scholars on the advantages realized by organizations that have a long term future perspective. While these ideas inform the main line inquiry of this dissertation, the principal approach put forth by the researcher of how to convey an informed story about nuclear technology and waste into the long range future is implementation of the proposed Future Remains clause, as

  20. Protein Kinase A in Cancer

    Caretta, Antonio; Mucignat-Caretta, Carla

    2011-01-01

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors

  1. Protein Kinase A in Cancer

    Caretta, Antonio; Mucignat-Caretta, Carla, E-mail: carla.mucignat@unipd.it [Department of Human Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131 Padova (Italy)

    2011-02-28

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors.

  2. Pim kinases are upregulated during Epstein-Barr virus infection and enhance EBNA2 activity

    Rainio, Eeva-Marja; Ahlfors, Helena; Carter, Kara L.; Ruuska, Marja; Matikainen, Sampsa; Kieff, Elliott; Koskinen, Paeivi J.

    2005-01-01

    Latent Epstein-Barr virus (EBV) infection is strongly associated with B-cell proliferative diseases such as Burkitt's lymphoma. Here we show that the oncogenic serine/threonine kinases Pim-1 and Pim-2 enhance the activity of the viral transcriptional activator EBNA2. During EBV infection of primary B-lymphocytes, the mRNA expression levels of pim genes, especially of pim-2, are upregulated and remain elevated in latently infected B-cell lines. Thus, EBV-induced upregulation of Pim kinases and Pim-stimulated EBNA2 transcriptional activity may contribute to the ability of EBV to immortalize B-cells and predispose them to malignant growth

  3. Shiga Toxin Increases Formation of Clathrin-Coated Pits through Syk Kinase

    Utskarpen, Audrun; Massol, Ramiro; van Deurs, Bo

    2010-01-01

    Clathrin-dependent endocytosis is a main entry mechanism for the glycolipid-binding Shiga toxin (Stx), although clathrin-independent pathways are also involved. Binding of Stx to its receptor Gb3 not only is essential for Stx retrograde transport to the endoplasmic reticulum and toxicity but also...... activates signaling through the tyrosine kinase Syk. We previously described that Syk activity is important for Stx entry, but it remained unclear how this kinase modulates endocytosis of Stx. Here we characterized the effects of Stx and Syk on clathrin-coated pit formation. We found that acute treatment...

  4. New Evidence Links Stellar Remains to Oldest Recorded Supernova

    2006-09-01

    Recent observations have uncovered evidence that helps to confirm the identification of the remains of one of the earliest stellar explosions recorded by humans. The new study shows that the supernova remnant RCW 86 is much younger than previously thought. As such, the formation of the remnant appears to coincide with a supernova observed by Chinese astronomers in 185 A.D. The study used data from NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory, "There have been previous suggestions that RCW 86 is the remains of the supernova from 185 A.D.," said Jacco Vink of University of Utrecht, the Netherlands, and lead author of the study. "These new X-ray data greatly strengthen the case." When a massive star runs out of fuel, it collapses on itself, creating a supernova that can outshine an entire galaxy. The intense explosion hurls the outer layers of the star into space and produces powerful shock waves. The remains of the star and the material it encounters are heated to millions of degrees and can emit intense X-ray radiation for thousands of years. Animation of a Massive Star Explosion Animation of a Massive Star Explosion In their stellar forensic work, Vink and colleagues studied the debris in RCW 86 to estimate when its progenitor star originally exploded. They calculated how quickly the shocked, or energized, shell is moving in RCW 86, by studying one part of the remnant. They combined this expansion velocity with the size of the remnant and a basic understanding of how supernovas expand to estimate the age of RCW 86. "Our new calculations tell us the remnant is about 2,000 years old," said Aya Bamba, a coauthor from the Institute of Physical and Chemical Research (RIKEN), Japan. "Previously astronomers had estimated an age of 10,000 years." The younger age for RCW 86 may explain an astronomical event observed almost 2000 years ago. In 185 AD, Chinese astronomers (and possibly the Romans) recorded the appearance of a new

  5. Spot market activity remains weak as prices continue to fall

    Anon.

    1996-01-01

    A summary of financial data for the uranium spot market in November 1996 is provided. Price ranges for the restricted and unrestricted markets, conversion, and separative work are listed, and total market volume and new contracts are noted. Transactions made are briefly described. Deals made and pending in the spot concentrates, medium and long-term, conversion, and markets are listed for U.S. and non-U.S. buyers. Spot market activity increased in November with just over 1.0 million lbs of U3O8 equivalent being transacted compared to October's total of 530,000 lbs of U3O8 equivalent. The restricted uranium spot market price range slipped from $15.50-$15.70/lb U3O8 last month to $14.85/lb - $15.25/lb U3O8 this month. The unrestricted uranium spot market price range also slipped to $14.85/lb - $15.00/lb this month from $15.00/lb - $15.45/lb in October. Spot prices for conversion and separative work units remained at their October levels

  6. Briquettes of plant remains from the greenhouses of Almeria (Spain)

    Callejon-Ferre, A. J.; Lopez-Martinez, J. A.

    2009-07-01

    Since ancient times, plant biomass has been used as a primary fuel, and today, with the impending depletion of fossil fuels, these vegetal sources constitute a cleaner alternative and furthermore have a multitude of uses. The aim of the present study is to design a method of recycling and reuse of plant wastes from intensive agriculture under plastic, by manufacturing briquettes in an environmentally friendly manner. In Almeria (SE Spain), agriculture generates 769,500 t year{sup -}1 of plant remains from greenhouse-grown horticultural crops, a resource currently used for composting and for producing electricity.With the machinery and procedures of the present study, another potential use has been developed by detoxifying and eliminating the plastic wastes of the original biomass for the fabrication of briquettes for fireplaces. The results were slightly inferior to the commercial briquette from other non-horticultural plant materials (no forestry material), specifically 2512 kJ kg{sup -}1, in the least favourable case. On the contrary, the heating value with respect to the two charcoals was significantly lower, with a difference of 12,142 kJ kg{sup -}1. In conclusion; a procedure, applicable in ecological cultivation without agrochemicals or plastic cords, has been developed and tested to reuse and transform plant materials from intensive cultivation into a stable non-toxic product similar to composite logs, applicable in commercial settings or in residential fireplaces. (Author) 48 refs.

  7. Are the alleged remains of Johann Sebastian Bach authentic?

    Zegers, Richard H C; Maas, Mario; Koopman, A Ton G; Maat, George J R

    2009-02-16

    A skeleton alleged to be that of Johann Sebastian Bach (1685-1750) was exhumed from a graveyard in Leipzig, Germany, in 1894, but its authenticity is not established. In 1895, anatomist Wilhelm His concluded from his examination of the skeleton and reconstruction of the face that it most likely belonged to Bach. In 1949, surgeon Wolfgang Rosenthal noticed exostoses on the skeleton and on x-rays of 11 living organists and proposed a condition, Organistenkrankheit, which he interpreted as evidence that the skeleton was Bach's. However, our critical assessment of the remains analysis raises doubts: the localisation of the grave was dubious, and the methods used by His to reconstruct the face are controversial. Also, our study of the pelvic x-rays of 12 living professional organists failed to find evidence for the existence of Organistenkrankheit. We believe it is unlikely that the skeleton is that of Bach; techniques such as DNA analysis might help resolve the question but, to date, church authorities have not approved their use on the skeleton.

  8. Factors influencing home care nurse intention to remain employed.

    Tourangeau, Ann; Patterson, Erin; Rowe, Alissa; Saari, Margaret; Thomson, Heather; MacDonald, Geraldine; Cranley, Lisa; Squires, Mae

    2014-11-01

    To identify factors affecting Canadian home care nurse intention to remain employed (ITR). In developed nations, healthcare continues to shift into community settings. Although considerable research exists on examining nurse ITR in hospitals, similar research related to nurses employed in home care is limited. In the face of a global nursing shortage, it is important to understand the factors influencing nurse ITR across healthcare sectors. A qualitative exploratory descriptive design was used. Focus groups were conducted with home care nurses. Data were analysed using qualitative content analysis. Six categories of influencing factors were identified by home care nurses as affecting ITR: job characteristics; work structures; relationships/communication; work environment; nurse responses to work; and employment conditions. Findings suggest the following factors influence home care nurse ITR: having autonomy; flexible scheduling; reasonable and varied workloads; supportive work relationships; and receiving adequate pay and benefits. Home care nurses did not identify job satisfaction as a single concept influencing ITR. Home care nursing management should support nurse autonomy, allow flexible scheduling, promote reasonable workloads and create opportunities for team building that strengthen supportive relationships among home care nurses and other health team members. © 2013 John Wiley & Sons Ltd.

  9. Carnivoran remains from the Malapa hominin site, South Africa.

    Brian F Kuhn

    Full Text Available Recent discoveries at the new hominin-bearing deposits of Malapa, South Africa, have yielded a rich faunal assemblage associated with the newly described hominin taxon Australopithecus sediba. Dating of this deposit using U-Pb and palaeomagnetic methods has provided an age of 1.977 Ma, being one of the most accurately dated, time constrained deposits in the Plio-Pleistocene of southern Africa. To date, 81 carnivoran specimens have been identified at this site including members of the families Canidae, Viverridae, Herpestidae, Hyaenidae and Felidae. Of note is the presence of the extinct taxon Dinofelis cf. D. barlowi that may represent the last appearance date for this species. Extant large carnivores are represented by specimens of leopard (Panthera pardus and brown hyaena (Parahyaena brunnea. Smaller carnivores are also represented, and include the genera Atilax and Genetta, as well as Vulpes cf. V. chama. Malapa may also represent the first appearance date for Felis nigripes (Black-footed cat. The geochronological age of Malapa and the associated hominin taxa and carnivoran remains provide a window of research into mammalian evolution during a relatively unknown period in South Africa and elsewhere. In particular, the fauna represented at Malapa has the potential to elucidate aspects of the evolution of Dinofelis and may help resolve competing hypotheses about faunal exchange between East and Southern Africa during the late Pliocene or early Pleistocene.

  10. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.

    Johnston, Emma; Stephenson, Mishel

    2016-07-01

    No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = <0.0001). Bone samples from males gave significantly better profiles than samples from females (p = <0.0001). These results are believed to be related to bone density. The findings are important for designing forensic DNA sampling strategies in future victim recovery investigations. © 2016 American Academy of Forensic Sciences.

  11. Using contractors to decommission while remaining as licensee

    Rankine, A.

    1997-01-01

    Over the last few years the role of the United Kingdom Atomic Energy Authority (UKAEA) has changed from one involved in research and development in the field of nuclear power and associated technology, to one of managing the liabilities left over from its previous mission. This period has also seen two significant portions of the organization move to the private sector with sale of the Facilities Services Division to PROCORD and the privatization of AEA Technology. The new UKAEA is therefore a focused liabilities management organization, making the best use of expertise in the private sector in carrying out its mission, but retaining adequate internal resource and expertise to fulful its role and responsibilities as the licensee. UKAEA continues to be committed to giving the highest priority to meeting high standards of safety and environmental protection required of the holder of the Nuclear Site Licence under the Nuclear Installations Act. This paper describes the safety management system within the UKAEA which ensures that UKAEA remains the proper and effective licensee and gives some examples of how this has worked in practice. (author)

  12. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas

    2009-01-01

    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  13. Isoprenoid biosynthesis and mevalonate kinase deficiency

    Henneman, L.

    2011-01-01

    Mevalonaat Kinase Deficiëntie (MKD) is een aangeboren ziekte geassocieerd met heftige koortsaanvallen die drie tot vier dagen aanhouden en gepaard gaan met koude rillingen, gewrichtsklachten, huiduitslag, hoofdpijn, duizeligheid, buikpijn, braken en diarree. De koortsaanvallen treden gemiddeld eens

  14. Expression Profiling of Tyrosine Kinase Genes

    Weier, Heinz

    2000-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  15. MAP kinase cascades in Arabidopsis innate immunity

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  16. Protein Kinases in Human Breast Carcinoma

    Cane, William

    1998-01-01

    .... Rak is a novel nuclear tyrosine that our group has identified in breast cancer tissues and cell lines that has structural homology to the Src tyrosine kinase, with SH2 and SH3 domains at its amino terminus...

  17. Ror receptor tyrosine kinases: orphans no more

    Green, Jennifer L.; Kuntz, Steven G.; Sternberg, Paul W.

    2008-01-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either act...

  18. Mediator kinase module and human tumorigenesis.

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  19. Mineralized remains of morphotypes of filamentous cyanobacteria in carbonaceous meteorites

    Hoover, Richard B.

    2005-09-01

    rocks, living, cryopreserved and fossilized extremophiles and cyanobacteria. These studies have resulted in the detection of mineralized remains of morphotypes of filamentous cyanobacteria, mats and consortia in many carbonaceous meteorites. These well-preserved and embedded microfossils are consistent with the size, morphology and ultra-microstructure of filamentous trichomic prokaryotes and degraded remains of microfibrils of cyanobacterial sheaths. EDAX elemental studies reveal that the forms in the meteorites often have highly carbonized sheaths in close association with permineralized filaments, trichomes, and microbial cells. The eextensive protocols and methodologies that have been developed to protect the samples from contamination and to distinguish recent contaminants from indigenous microfossils are described recent bio-contaminants. Ratios of critical bioelements (C:O, C:N, C:P, and C:S) reveal dramatic differences between microfossils in Earth rocks and meteorites and in the cells, filaments, trichomes, and hormogonia of recently living cyanobacteria. The results of comparative optical, ESEM and FESEM studies and EDAX elemental analyses of recent cyanobacteria (e.g. Calothrix, Oscillatoria, and Lyngbya) of similar size, morphology and microstructure to microfossils found embedded in the Murchison CM2 and the Orgueil CI1 carbonaceous meteorites are presented

  20. Remaining lifetime modeling using State-of-Health estimation

    Beganovic, Nejra; Söffker, Dirk

    2017-08-01

    Technical systems and system's components undergo gradual degradation over time. Continuous degradation occurred in system is reflected in decreased system's reliability and unavoidably lead to a system failure. Therefore, continuous evaluation of State-of-Health (SoH) is inevitable to provide at least predefined lifetime of the system defined by manufacturer, or even better, to extend the lifetime given by manufacturer. However, precondition for lifetime extension is accurate estimation of SoH as well as the estimation and prediction of Remaining Useful Lifetime (RUL). For this purpose, lifetime models describing the relation between system/component degradation and consumed lifetime have to be established. In this contribution modeling and selection of suitable lifetime models from database based on current SoH conditions are discussed. Main contribution of this paper is the development of new modeling strategies capable to describe complex relations between measurable system variables, related system degradation, and RUL. Two approaches with accompanying advantages and disadvantages are introduced and compared. Both approaches are capable to model stochastic aging processes of a system by simultaneous adaption of RUL models to current SoH. The first approach requires a priori knowledge about aging processes in the system and accurate estimation of SoH. An estimation of SoH here is conditioned by tracking actual accumulated damage into the system, so that particular model parameters are defined according to a priori known assumptions about system's aging. Prediction accuracy in this case is highly dependent on accurate estimation of SoH but includes high number of degrees of freedom. The second approach in this contribution does not require a priori knowledge about system's aging as particular model parameters are defined in accordance to multi-objective optimization procedure. Prediction accuracy of this model does not highly depend on estimated SoH. This model

  1. Fibronectin phosphorylation by ecto-protein kinase

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru

    1988-01-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with [γ- 32 ]ATP for 10 min at 37 degree C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with [γ- 32 P]ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation

  2. The PIM kinases in hematological cancers.

    Alvarado, Yesid; Giles, Francis J; Swords, Ronan T

    2012-02-01

    The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.

  3. Clarifying some remaining questions in the anomaly puzzle

    Huang, Xing; Parker, Leonard

    2011-01-01

    We discuss several points that may help to clarify some questions that remain about the anomaly puzzle in supersymmetric theories. In particular, we consider a general N=1 supersymmetric Yang-Mills theory. The anomaly puzzle concerns the question of whether there is a consistent way in the quantized theory to put the R-current and the stress tensor in a single supermultiplet called the supercurrent, even though in the classical theory they are in the same supermultiplet. It was proposed that the classically conserved supercurrent bifurcates into two supercurrents having different anomalies in the quantum regime. The most interesting result we obtain is an explicit expression for the lowest component of one of the two supercurrents in 4-dimensional spacetime, namely the supercurrent that has the energy-momentum tensor as one of its components. This expression for the lowest component is an energy-dependent linear combination of two chiral currents, which itself does not correspond to a classically conserved chiral current. The lowest component of the other supercurrent, namely, the R-current, satisfies the Adler-Bardeen theorem. The lowest component of the first supercurrent has an anomaly, which we show is consistent with the anomaly of the trace of the energy-momentum tensor. Therefore, we conclude that there is no consistent way to construct a single supercurrent multiplet that contains the R-current and the stress tensor in the straightforward way originally proposed. We also discuss and try to clarify some technical points in the derivations of the two supercurrents in the literature. These latter points concern the significance of infrared contributions to the NSVZ β-function and the role of the equations of motion in deriving the two supercurrents. (orig.)

  4. Will southern California remain a premium market for natural gas?

    John, F.E.

    1991-01-01

    Average yearly demand for natural gas in southern California totalled just over 3 billion ft 3 /d in 1991 and is projected to increase to just over 3.2 billion ft 3 /d in 2000 and 3.4 billion ft 3 /d in 2010. In the core residential market, demand is being driven by population growth and offset by conservation measures. In the core commercial and industrial market, demand is driven by employment growth and offset by conservation. In the noncore market, natural gas use is expected to fall from 262 million ft 3 /d in 1991 to 223 million ft 3 /d in 2010. Demand for natural gas for cogeneration is expected to either remain stagnant or decrease. The largest potential for market growth in southern California is for utility electric generation. Demand in this sector is expected to increase from 468 million ft 3 /d in 1991 to 1 billion ft 3 in 2010. Air quality concerns furnish a market opportunity for natural gas vehicles, and a substantial increase in natural gas demand might be obtained from even a modest market share of the region's 10 million vehicles. Existing pipeline capacity is sufficient to supply current average year requirements, and the need for new capacity hinges on the issues of satisfying high-year demand, meeting market growth, and accessing more desirable supply regions. Planned capacity additions of 2,150 million ft 3 /d, if completed, will bring substantial excess capacity to southern California in the late 1990s. The competitive advantages of various producing regions will then be greatly influenced by the rate designs used on the pipelines connecting them to the market. 4 tabs

  5. Neutron activation analysis of the prehistoric and ancient bone remains

    Vasidov, A.; Osinskaya, N.S.; Khatamov, Sh.; Rakhmanova, T.; Akhmadshaev, A.Sh.

    2006-01-01

    Full text: In the work results of the instrumental neutron activation analysis (INAA) of prehistoric bone remains of dinosaurs and ancient bones of bear, archantrop found out on the territory of Uzbekistan are presents. A bone of dinosaur from Mongolia, standard a bone of the person and soils taken from a surface and from of the femoral joint of a dinosaur were also subject to INAA. The INAA method determines of contents of about 30 elements in bones and soils in an interval 0.043-3600 mg / kg. Among found elements Ca (46 %), Sc, Cr, Fe (up to 2.2 g/kg), Ni, Zn, Sr (up to 3.6 g/kg), Sb, Ba, Sb and some others are mainly found in bones. The contents of some elements in bones of dinosaurs reach very high values 280-3200 mg / kg, and are mainly lanthanides La, Ce, Nd, Sm, Eu, Tb, Yb and Lu. In our opinion, lanthanides and some other elements, like As, Br, and Mo in bones were formed as a result of fission of uranium and transuranium elements. Because content of uranium in bones of dinosaurs is very high, up to 180 mg / kg, and those of thorium is 20 mg/ kg. However U and Th in soils are 4.8 mg/kg and 3.7 mg / kg, respectively. The content of uranium in bones of the archantrop is 1.53 mg / kg, while U in standard bone of the human is less than 0,016 mg/kg. (author)

  6. The broad spectrum revisited: evidence from plant remains.

    Weiss, Ehud; Wetterstrom, Wilma; Nadel, Dani; Bar-Yosef, Ofer

    2004-06-29

    The beginning of agriculture is one of the most important developments in human history, with enormous consequences that paved the way for settled life and complex society. Much of the research on the origins of agriculture over the last 40 years has been guided by Flannery's [Flannery, K. V. (1969) in The Domestication and Exploitation of Plants and Animals, eds. Ucko, P. J. & Dimbleby, G. W. (Duckworth, London), pp. 73-100] "broad spectrum revolution" (BSR) hypothesis, which posits that the transition to farming in southwest Asia entailed a period during which foragers broadened their resource base to encompass a wide array of foods that were previously ignored in an attempt to overcome food shortages. Although these resources undoubtedly included plants, nearly all BSR hypothesis-inspired research has focused on animals because of a dearth of Upper Paleolithic archaeobotanical assemblages. Now, however, a collection of >90,000 plant remains, recently recovered from the Stone Age site Ohalo II (23,000 B.P.), Israel, offers insights into the plant foods of the late Upper Paleolithic. The staple foods of this assemblage were wild grasses, pushing back the dietary shift to grains some 10,000 years earlier than previously recognized. Besides the cereals (wild wheat and barley), small-grained grasses made up a large component of the assemblage, indicating that the BSR in the Levant was even broader than originally conceived, encompassing what would have been low-ranked plant foods. Over the next 15,000 years small-grained grasses were gradually replaced by the cereals and ultimately disappeared from the Levantine diet.

  7. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min; Liu, Zhen; Qiu, Wen-Li; Whitham, Steven A.; Qian, Wei-Jun

    2017-09-29

    It is well known that the reactive oxygen species, nitric oxide (NO), can trigger cell death in plants, but the underlying molecular mechanisms are not well understood. Here, we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicon) through inhibiting the phosphoinositide-dependent kinase 1 (PDK1) kinase activity via S-nitrosylation. Biotin-switch assays and LC-MS/MS analyses demonstrated that SlPDK1 was a target of S-nitrosylation modification, which primarily occurred on the cysteine residue at position 128 (Cys128). Accordingly, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione (GSNO) both in vitro and in vivo in a concentration-dependent manner, indicating that SlPDK1 activity is regulated by S-nitrosylation. The inhibition of SlPDK1 kinase activity by GSNO was reversible in the presence of a reducing agent but synergistically enhanced by hydrogen peroxide (H2O2). Mutation of Cys128 to serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys128 is responsible for the inhibition of the kinase activity of SlPDK1. In sum, our results established a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1, a conserved negative regulator of cell death in yeasts, mammals and plants. Nitric oxide (NO) potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen species (ROS) (1). However, the molecular mechanism of the NO-induced cell death remains an enigma. One potential mechanism is that the activity of proteins that control cell death may be altered by a post-translational modification, S-nitrosylation. S-nitrosylation is the addition of the NO moiety to thiol groups, including cysteine (Cys) residues in proteins, to form S-nitrosothiols (SNOs). S-nitrosylation is an enzyme-independent post-translational and labile modification that can function as an on/off switch of protein activity (2- 4). Thousands of diverse

  8. The Right to Remain Silent in Criminal Trial

    Gianina Anemona Radu

    2013-05-01

    Full Text Available A person's right not to incriminate oneself or to remain silent and not contribute to their own incrimination is a basic requirement of due process, although the right not to testify against oneself is not expressly guaranteed. This legal right is intended to protect the accused/ the defendant against the authorities’ abusive coercion. The scope of the right not to incriminate oneself is related to criminal matter under the Convention, and thus susceptible or applicable to criminal proceedings concerning all types of crimes as a guarantee to a fair trial. The European Court of Justice ruled that despite the fact that art. 6 paragraph 2 of the Convention does not expressly mention the right not to incriminate oneself and the right not to contribute to their own incrimination (nemo tenetur are ipsum accusare these are generally recognized international rules that are in consistence with the notion of “fair trial” stipulated in art. 6. By virtue of the right to silence, the person charged with a crime is free to answer the questions or not, as he/she believes it is in his/her interest. Therefore, the right to silence involves not only the right not to testify against oneself, but also the right of the accused/ defendant not to incriminate oneself. Thus, the accused/defendant cannot be compelled to assist in the production of evidence and cannot be sanctioned for failing to provide certain documents or other evidence. Obligation to testify against personal will, under the constraint of a fine or any other form of coercion constitutes an interference with the negative aspect of the right to freedom of expression which must be necessary in a democratic society. It is essential to clarify certain issues as far as this right is concerned. First of all, the statutory provision in question is specific to adversarial systems, which are found mainly in Anglo-Saxon countries and are totally different from that underlying the current Romanian Criminal

  9. AIDS, individual behaviour and the unexplained remaining variation.

    Katz, Alison

    2002-01-01

    From the start of the AIDS pandemic, individual behaviour has been put forward, implicitly or explicitly, as the main explanatory concept for understanding the epidemiology of HIV infection and in particular for the rapid spread and high prevalence in sub-Saharan Africa. This has had enormous implications for the international response to AIDS and has heavily influenced public health policy and strategy and the design of prevention and care interventions at national, community and individual level. It is argued that individual behaviour alone cannot possibly account for the enormous variation in HIV prevalence between population groups, countries and regions and that the unexplained remaining variation has been neglected by the international AIDS community. Biological vulnerability to HIV due to seriously deficient immune systems has been ignored as a determinant of the high levels of infection in certain populations. This is in sharp contrast to well proven public health approaches to other infectious diseases. In particular, it is argued that poor nutrition and co-infection with the myriad of other diseases of poverty including tuberculosis, malaria, leishmaniasis and parasitic infections, have been neglected as root causes of susceptibility, infectiousness and high rates of transmission of HIV at the level of populations. Vulnerability in terms of non-biological factors such as labour migration, prostitution, exchange of sex for survival, population movements due to war and violence, has received some attention but the solutions proposed to these problems are also inappropriately focused on individual behaviour and suffer from the same neglect of economic and political root causes. As the foundation for the international community's response to the AIDS pandemic, explanations of HIV/AIDS epidemiology in terms of individual behaviour are not only grossly inadequate, they are highly stigmatising and may in some cases, be racist. They have diverted attention from

  10. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus

    Olivares-Illana, Vanesa; Meyer, Philippe; Bechet, Emmanuelle

    2008-01-01

    Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly...... understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus...... be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high...

  11. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  12. Evolutionary divergence in the catalytic activity of the CAM-1, ROR1 and ROR2 kinase domains.

    Travis W Bainbridge

    Full Text Available Receptor tyrosine kinase-like orphan receptors (ROR 1 and 2 are atypical members of the receptor tyrosine kinase (RTK family and have been associated with several human diseases. The vertebrate RORs contain an ATP binding domain that deviates from the consensus amino acid sequence, although the impact of this deviation on catalytic activity is not known and the kinase function of these receptors remains controversial. Recently, ROR2 was shown to signal through a Wnt responsive, β-catenin independent pathway and suppress a canonical Wnt/β-catenin signal. In this work we demonstrate that both ROR1 and ROR2 kinase domains are catalytically deficient while CAM-1, the C. elegans homolog of ROR, has an active tyrosine kinase domain, suggesting a divergence in the signaling processes of the ROR family during evolution. In addition, we show that substitution of the non-consensus residues from ROR1 or ROR2 into CAM-1 and MuSK markedly reduce kinase activity, while restoration of the consensus residues in ROR does not restore robust kinase function. We further demonstrate that the membrane-bound extracellular domain alone of either ROR1 or ROR2 is sufficient for suppression of canonical Wnt3a signaling, and that this domain can also enhance Wnt5a suppression of Wnt3a signaling. Based on these data, we conclude that human ROR1 and ROR2 are RTK-like pseudokinases.

  13. Non-degradative Ubiquitination of Protein Kinases.

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  14. A systematic evaluation of protein kinase a-a-kinase anchoring protein interaction motifs

    Burgers, Pepijn P|info:eu-repo/dai/nl/341566551; van der Heyden, Marcel A G; Kok, Bart; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Scholten, Arjen|info:eu-repo/dai/nl/313939780

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  15. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  16. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    The adiponectin/phosphatidylinositol 3-kinase/protein kinase B (ADP/PI3k/Akt) signal transduction pathway has an important role in promoting cell survival. This study was designed to determine if the ADP/PI3K/Akt signaling pathway has a role in the mechanism of ischemia–reperfusion injury in vivo. Sprague–Dawley rats ...

  17. Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro

    Engel, M; Issinger, O G; Lascu, I

    1994-01-01

    We have investigated phosphorylation of human nucleoside diphosphate kinase (NDPK) and of homologous NDPK from different species by human casein kinase 2 (CK-2). The human NDPK isotypes A and B were phosphorylated by CK-2 in vitro both when the purified proteins and total lysate of HL-60 leukemia...

  18. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.

    Ting-Lei Gu

    Full Text Available Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23 of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.

  19. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  20. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-01-01

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance

  1. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus.

    Vanesa Olivares-Illana

    2008-06-01

    Full Text Available Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function.

  2. Inhibition of protein kinase C induces differentiation in Neuro-2a cells

    Minana, M.D.; Felipo, V.; Grisolia, S.

    1990-01-01

    1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinase C, induced neuritogenesis in Neuro-2a cells, whereas N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), which inhibits more efficiently cAMP- and cGMP-dependent protein kinases, did not. The effect, noticeable after 3 hr, was maximum (13-fold increase at 500 μM H7) between 1 and 3 days and was maintained over 2 months. In controls, 90% of the cells were undifferentiated, whereas after 3 hr with 500 μM H7 only 25% of the cells remained undifferentiated. DNA synthesis decreased as the number of differentiated cells increased. Differentiation is also functional since acetylcholinesterase activity increased ∼7-fold after 48 hr with 500 μM H7. Phorbol 12-myristate 13-acetate, a specific activator of protein kinase C, prevented or reversed the induction of neuritogenesis and the inhibition of DNA synthesis by H7. There is a good correlation between the level of protein kinase C and the percentage of differentiated cells. The results indicate that protein kinase C may play a key role in the control of differentiation of neural cells. Some possible clinical implications are briefly discussed

  3. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  4. 76 FR 14057 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    2011-03-15

    ...: University of Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park... Anthropology Department, Human Remains Repository, Laramie, WY. The human remains and associated funerary... the human remains was made by University of Wyoming, Anthropology Department, Human Remains Repository...

  5. Bruton tyrosine kinase inhibition in chronic lymphocytic leukemia.

    Maddocks, Kami; Jones, Jeffrey A

    2016-04-01

    Chronic lymphocytic leukemia (CLL) is the most common adult leukemia and remains incurable outside of the setting of allogeneic stem cell transplant. While the standard therapy for both initial and relapsed CLL has traditionally included monoclonal antibody therapy in combination with chemotherapy, there are patients with high-risk disease features including unmutated IgVH, del(11q22) and del(17p13) that are associated with poor overall responses to these therapies with short time to relapse and shortened overall survival. Additionally, many of these therapies have a high rate of infectious toxicity in a population already at increased risk. Targeting the B-cell receptor (BCR) signaling pathway has emerged as a promising therapeutic advance in a variety of B-cell malignancies, including CLL. Bruton agammaglobulinemia tyrosine kinase (Btk) is a tyrosine kinase in the BCR pathway critical to the survival of both normal and malignant B cells and inhibition of this kinase has shown to block the progression of CLL. Ibrutinib, a first in class oral inhibitor of Btk, has shown promise as a very effective agent in the treatment of CLL-in both relapsed and upfront therapy, alone and in combination with other therapies, and in patients of all-risk disease-which has led to its approval in relapsed CLL and as frontline therapy in patients with the high-risk del(17p13) disease. Several studies are ongoing to evaluate the efficacy and safety of ibrutinib in combination with chemotherapy as frontline treatment for CLL and investigation into newer-generation Btk inhibitors is also underway. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Link between Protein Kinase CK2 and Atypical Kinase Rio1

    Konrad Kubiński

    2017-02-01

    Full Text Available The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors.

  7. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  8. Mechanism of polyphosphate kinase from Propionibacterium shermanii

    Robinson, N.A.

    1986-01-01

    Polyphosphate kinase, which catalyzes the reaction shown below, is one of two enzymes which have been reported to catalyze the synthesis of polyphosphate. Purification performed by ammonium sulfate precipitation (0-40% fraction) was followed by chromatography. The enzyme represents 70% of the protein in the hydroxylapatite pool and is stable at this level of purity. The subunit molecular weight was determined by SDS polyacrylamide gel analysis, (83,000 +/- 3000), nondenaturing polyacrylamide gel electrophoresis, (80,000 and 86,000 daltons), gel filtration (Biogel A 0.5m column was 85,000 +/- 4000.) Polyphosphate kinase appears to be a monomeric enzyme of ∼83,000 daltons. Four assays were developed for polyphosphate kinase. Basic proteins such as polylysine stimulate the synthesis of polyphosphate, these proteins cause precipitation of polyphosphate kinase from relatively impure enzyme extracts: Synthesized polyphosphate interacts noncovalently with the basic protein-enzyme precipitate. Efficient synthesis of polyphosphate requires the addition of either phosphate or short chain polyphosphate. Synthesis did occur at 1/10 the rate when neither of these two compounds were included. Initiation, elongation, and termination events of polyphosphate synthesis were examined. Short chain polyphosphate acts as a primer, with [ 32 P] short-chain polyphosphate incorporation into long chain polyphosphate by the kinase

  9. Radioimmunoassay of bovine heart protein kinase

    Fleischer, N.; Rosen, O.M.; Reichlin, M.

    1976-01-01

    Immunization of guinea pigs with bovine cardiac cAMP-dependent protein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) resulted in the development of precipitating antibodies to the cAMP-binding subunit of the enzyme. Both the phosphorylated and nonphosphorylated cAMP-binding protein of the protein kinase reacted with the antiserum. A radioimmunoassay was developed that detects 10 ng of holoenzyme and permits measurement of enzyme concentrations in bovine cardiac muscle. Bovine liver, kidney, brain, and skeletal muscle contain protein kinases which are immunologically identical to those found in bovine cardiac muscle. However, the proportion of immunoreactive enzyme activity differed for each tissue. All of the immunologically nonreactive enzyme in skeletal muscle and heart was separable from immunoreactive enzyme by chromatography on DEAE-cellulose. Rat tissues and pig heart contained protein kinase activity that cross reacted immunologically in a nonparallel fashion with bovine cardiac enzyme. These results indicate that cAMP-dependent protein kinases within and between species are immunologically heterogeneous

  10. The target landscape of clinical kinase drugs.

    Klaeger, Susan; Heinzlmeir, Stephanie; Wilhelm, Mathias; Polzer, Harald; Vick, Binje; Koenig, Paul-Albert; Reinecke, Maria; Ruprecht, Benjamin; Petzoldt, Svenja; Meng, Chen; Zecha, Jana; Reiter, Katrin; Qiao, Huichao; Helm, Dominic; Koch, Heiner; Schoof, Melanie; Canevari, Giulia; Casale, Elena; Depaolini, Stefania Re; Feuchtinger, Annette; Wu, Zhixiang; Schmidt, Tobias; Rueckert, Lars; Becker, Wilhelm; Huenges, Jan; Garz, Anne-Kathrin; Gohlke, Bjoern-Oliver; Zolg, Daniel Paul; Kayser, Gian; Vooder, Tonu; Preissner, Robert; Hahne, Hannes; Tõnisson, Neeme; Kramer, Karl; Götze, Katharina; Bassermann, Florian; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Walch, Axel; Greif, Philipp A; Schneider, Sabine; Felder, Eduard Rudolf; Ruland, Juergen; Médard, Guillaume; Jeremias, Irmela; Spiekermann, Karsten; Kuster, Bernhard

    2017-12-01

    Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Janus kinase inhibitors: jackpot or potluck?

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  12. Protocols for the Design of Kinase-focused Compound Libraries.

    Jacoby, Edgar; Wroblowski, Berthold; Buyck, Christophe; Neefs, Jean-Marc; Meyer, Christophe; Cummings, Maxwell D; van Vlijmen, Herman

    2018-05-01

    Protocols for the design of kinase-focused compound libraries are presented. Kinase-focused compound libraries can be differentiated based on the design goal. Depending on whether the library should be a discovery library specific for one particular kinase, a general discovery library for multiple distinct kinase projects, or even phenotypic screening, there exists today a variety of in silico methods to design candidate compound libraries. We address the following scenarios: 1) Datamining of SAR databases and kinase focused vendor catalogues; 2) Predictions and virtual screening; 3) Structure-based design of combinatorial kinase inhibitors; 4) Design of covalent kinase inhibitors; 5) Design of macrocyclic kinase inhibitors; and 6) Design of allosteric kinase inhibitors and activators. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring

    Andrs, M.; Kobarecny, J.; Jun, D.; Hodný, Zdeněk; Bartek, Jiří; Kuca, K.

    2015-01-01

    Roč. 58, č. 1 (2015), s. 41-71 ISSN 0022-2623 R&D Projects: GA MŠk(CZ) CZ.1.07/2.3.00/30.0044 Grant - others:University Hospital Hradec Kralove(CZ) 00179906; Faculty of Military Health Sciences, University of Defence(CZ) SV/FVZ201402 Institutional support: RVO:68378050 Keywords : DEPENDENT PROTEIN-KINASE * STRAND BREAK REPAIR * SELECTIVE PI3K-BETA INHIBITORS * TELANGIECTASIA MUTATED KINASE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.589, year: 2015

  14. SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.

    Abdi, Abdirahman; Eschenlauer, Sylvain; Reininger, Luc; Doerig, Christian

    2010-10-01

    Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.

  15. Targeting phosphoinositide 3-kinase δ for allergic asthma.

    Rowan, Wendy C; Smith, Janet L; Affleck, Karen; Amour, Augustin

    2012-02-01

    Chronic inflammation in the lung has long been linked to the pathogenesis of asthma. Central to this airway inflammation is a T-cell response to allergens, with Th2 cytokines driving the differentiation, survival and function of the major inflammatory cells involved in the allergic cascade. PI3Kδ (phosphoinositide 3-kinase δ) is a lipid kinase, expressed predominantly in leucocytes, where it plays a critical role in immune receptor signalling. A selective PI3Kδ inhibitor is predicted to block T-cell activation in the lung, reducing the production of pro-inflammatory Th2 cytokines. PI3Kδ is also involved in B-cell and mast cell activation. Therefore the inhibition of PI3Kδ should dampen down the inflammatory cascade involved in the asthmatic response through a wide breadth of pharmacology. Current anti-inflammatory therapies, which are based on corticosteroids, are effective in controlling inflammation in mild asthmatics, but moderate/severe asthmatic patients remain poorly controlled, experiencing recurrent exacerbations. Corticosteroids have no effect on mast cell degranulation and do not act directly on B-cells, so, overall, a PI3Kδ inhibitor has the potential to deliver improvements in onset of action, efficacy and reduced exacerbations in moderate/severe asthmatics. Additionally, PI3Kδ inhibition is expected to block effects of Th17 cells, which are increasingly implicated in steroid-insensitive asthma.

  16. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  17. Protein Kinases in Shaping Plant Architecture.

    Wu, Juan; Wang, Bo; Xin, Xiaoyun; Ren, Dongtao

    2018-02-13

    Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. The Role of PAS Kinase in PASsing the Glucose Signal

    Julianne H. Grose

    2010-06-01

    Full Text Available PAS kinase is an evolutionarily conserved nutrient responsive protein kinase that regulates glucose homeostasis. Mammalian PAS kinase is activated by glucose in pancreatic beta cells, and knockout mice are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet. Yeast PAS kinase is regulated by both carbon source and cell integrity stress and stimulates the partitioning of glucose toward structural carbohydrate biosynthesis. In our current model for PAS kinase regulation, a small molecule metabolite binds the sensory PAS domain and activates the enzyme. Although bona fide PAS kinase substrates are scarce, in vitro substrate searches provide putative targets for exploration.

  19. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  20. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors.

    Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard

    2009-09-01

    This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.

  1. Nitric Oxide Binds to and Modulates the Activity of a Pollen Specific Arabidopsis Diacylglycerol Kinase

    Wong, Aloysius Tze

    2014-06-01

    Nitric oxide (NO) is an important signaling molecule in plants. In the pollen of Arabidopsis thaliana, NO causes re-orientation of the growing tube and this response is mediated by 3′,5′-cyclic guanosine monophosphate (cGMP). However, in plants, NO-sensors have remained somewhat elusive. Here, the findings of an NO-binding candidate, Arabidopsis thaliana DIACYLGLYCEROL KINASE 4 (ATDGK4; AT5G57690) is presented. In addition to the annotated diacylglycerol kinase domain, this molecule also harbors a predicted heme-NO/oxygen (H-NOX) binding site and a guanylyl cyclase (GC) catalytic domain which have been identified based on the alignment of functionally conserved amino acid residues across species. A 3D model of the molecule was constructed, and from which the locations of the kinase catalytic center, the ATP-binding site, the GC and H-NOX domains were estimated. Docking of ATP to the kinase catalytic center was also modeled. The recombinant ATDGK4 demonstrated kinase activity in vitro, catalyzing the ATP-dependent conversion of sn-1,2-diacylglycerol (DAG) to phosphatidic acid (PA). This activity was inhibited by the mammalian DAG kinase inhibitor R59949 and importantly also by the NO donors diethylamine NONOate (DEA NONOate) and sodium nitroprusside (SNP). Recombinant ATDGK4 also has GC activity in vitro, catalyzing the conversion of guanosine-5\\'-triphosphate (GTP) to cGMP. The catalytic domains of ATDGK4 kinase and GC may be independently regulated since the kinase but not the GC, was inhibited by NO while Ca2+ only stimulates the GC. It is likely that the DAG kinase product, PA, causes the release of Ca2+ from the intracellular stores and Ca2+ in turn activates the GC domain of ATDGK4 through a feedback mechanism. Analysis of publicly available microarray data has revealed that ATDGK4 is highly expressed in the pollen. Here, the pollen tubes of mis-expressing atdgk4 recorded slower growth rates than the wild-type (Col-0) and importantly, they showed altered

  2. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  3. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.

    Shim, Won-Bo; Dunkle, Larry D

    2003-09-01

    The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.

  4. Myosin light chain kinase phosphorylation in tracheal smooth muscle

    Stull, J.T.; Hsu, L.C.; Tansey, M.G.; Kamm, K.E.

    1990-01-01

    Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32 P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+

  5. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    the critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP......Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...

  6. Time Remains

    Gryb, Sean; Thebault, Karim

    2014-01-01

    On one popular view, the general covariance of gravity implies that change is relational in a strong sense, such that all it is for a physical degree of freedom to change is for it to vary with regard to a second physical degree of freedom. At a quantum level, this view of change as relative variation leads to a fundamentally timeless formalism for quantum gravity. Here, we will show how one may avoid this acute 'problem of time'. Under our view, duration is still regarded as relative, but te...

  7. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation.

    Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S

    2017-03-01

    Biochemical and physical modifications during the freeze-thaw process adversely influence the restoration of energy-dependent sperm functions required for fertilization. Resveratrol, a phytoalexin, has been introduced to activate 5' AMP-activated protein kinase which is a cell energy sensor and a cell metabolism regulator. The cryoprotection of resveratrol on sperm cryoinjury via activation of AMP-activated protein kinase also remains to be elucidated. Our aim, thus, was to investigate: (i) the presence and intracellular localization of AMP-activated protein kinase protein; (ii) whether resveratrol may exert a protective effect on certain functional properties of fresh and post-thaw human spermatozoa through modulation of AMP-activated protein kinase. Spermatozoa from normozoospermic men were incubated with or without different concentrations of Compound C as an AMP-activated protein kinase inhibitor or resveratrol as an AMP-activated protein kinase activator for different lengths of time and were then cryopreserved. AMP-activated protein kinase is expressed essentially in the entire flagellum and the post-equatorial region. Viability of fresh spermatozoa was not significantly affected by the presence of Compound C or resveratrol. However, although Compound C caused a potent inhibition of spermatozoa motility parameters, resveratrol did not induce negative effect, except a significant reduction in motility at 25 μm for 1 h. Furthermore, resveratrol significantly increased AMP-activated protein kinase phosphorylation and mitochondrial membrane potential and decreased reactive oxygen species and apoptosis-like changes in frozen-thawed spermatozoa. Nevertheless, it was not able to compensate decreased sperm viability and motility parameters following cryopreservation. In contrast, Compound C showed opposite effects to resveratrol on AMP-activated protein kinase phosphorylation, reactive oxygen species, apoptosis-like changes, mitochondrial membrane potential, and

  8. Side-effects of protein kinase inhibitors on ion channels

    2013-11-06

    Nov 6, 2013 ... with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders. Several strategies .... family, the β-adrenergic receptor kinase (βARK), the ribosomal S6 ..... urinary bladder smooth muscle cells. While no ...

  9. Creatine kinase activity is associated with blood pressure

    Brewster, Lizzy M.; Mairuhu, Gideon; Bindraban, Navin R.; Koopmans, Richard P.; Clark, Joseph F.; van Montfrans, Gert A.

    2006-01-01

    BACKGROUND: We previously hypothesized that high activity of creatine kinase, the central regulatory enzyme of energy metabolism, facilitates the development of high blood pressure. Creatine kinase rapidly provides adenosine triphosphate to highly energy-demanding processes, including cardiovascular

  10. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  11. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Knecht, Wolfgang; Mikkelsen, N.E.; Clausen, A.R.

    2009-01-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 angstrom resolution...

  12. Allosteric small-molecule kinase inhibitors

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  13. Plant PA signaling via diacylglycerol kinase

    Arisz, S.A.; Testerink, C.; Munnik, T.

    2009-01-01

    Accumulating evidence suggests that phosphatidic acid (PA) plays a pivotal role in the plant's response to environmental signals. Besides phospholipase D (PLD) activity, PA can also be generated by diacylglycerol kinase (DGK). To establish which metabolic route is activated, a differential

  14. Nonorthologous gene displacement of phosphomevalonate kinase

    Houten, S. M.; Waterham, H. R.

    2001-01-01

    Phosphomevalonate kinase (PMK; EC 2.7.4.2) catalyzes the phosphorylation of 5-phosphomevalonate into 5-diphosphomevalonate, an essential step in isoprenoid biosynthesis via the mevalonate pathway. So far, two nonorthologous genes encoding PMK have been described, the Saccharomyces cerevisiae ERG8

  15. Casein kinase-2 structure-function relationship

    Boldyreff, B; Meggio, F; Pinna, L A

    1992-01-01

    Nine mutants of human casein kinase-2 beta subunit have been created and assayed for their ability to assemble with the catalytic alpha subunit to give, at a 1:1 molar ratio, a fully competent CK-2 holoenzyme as judged by the following criteria: 1) the generation of an active heterotetrameric form...

  16. Mitogen-activated protein kinases mediate Mycobacterium ...

    2012-01-19

    Jan 19, 2012 ... CD44, an adhesion molecule, has been reported to be a binding site for ... receptors in mediating mitogen-activated protein kinase activation. ... surface expression and tumour necrosis factor-alpha levels, ... Abbreviations used: Abs, antibodies; ANOVA, analysis of variance; AP-1, activator protein -1; BCG, ...

  17. Kinase-Centric Computational Drug Development

    Kooistra, Albert J.; Volkamer, Andrea

    2017-01-01

    Kinases are among the most studied drug targets in industry and academia, due to their involvement in a majority of cellular processes and, upon dysregulation, in a variety of diseases including cancer, inflammation, and autoimmune disorders. The high interest in this druggable protein family

  18. Kinases involved in Rec8 phosphorylation revealed

    Anger, Martin

    2010-01-01

    Roč. 9, č. 14 (2010), s. 2708-2708 ISSN 1538-4101 Institutional research plan: CEZ:AV0Z50450515 Keywords : kinases * Rec8 * meisosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.999, year: 2010

  19. Gene regulation by MAP kinase cascades

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...

  20. Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1

    Rao, Feng; Xu, Jing; Fu, Chenglai; Cha, Jiyoung Y.; Gadalla, Moataz M.; Xu, Risheng; Barrow, James C.; Snyder, Solomon H.

    2015-01-01

    Inositol pyrophosphates are messenger molecules incorporating the energetic pyrophosphate bond. Although they have been implicated in diverse biologic processes, their physiologic functions remain enigmatic. We show that the catalytic activity of inositol hexakisphosphate kinase 2 (IP6K2), one of the principal enzymes generating the inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate), mediates cancer cell migration and tumor metastasis both in cell culture and intact mice. In th...

  1. Progranulin and the receptor tyrosine kinase EphA2, partners in crime?

    Chitramuthu, Babykumari; Bateman, Andrew

    2016-01-01

    Progranulin is a secreted protein with roles in tumorigenesis, inflammation, and neurobiology, but its signaling receptors have remained unclear. In this issue, Neill et al. (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201603079) identify the tyrosine kinase EphA2 as a strong candidate for such a receptor, providing insight into progranulin and EphA2 signaling. PMID:27903608

  2. Preparation of kinase-biased compounds in the search for lead inhibitors of kinase targets.

    Lai, Justine Y Q; Langston, Steven; Adams, Ruth; Beevers, Rebekah E; Boyce, Richard; Burckhardt, Svenja; Cobb, James; Ferguson, Yvonne; Figueroa, Eva; Grimster, Neil; Henry, Andrew H; Khan, Nawaz; Jenkins, Kerry; Jones, Mark W; Judkins, Robert; Major, Jeremy; Masood, Abid; Nally, James; Payne, Helen; Payne, Lloyd; Raphy, Gilles; Raynham, Tony; Reader, John; Reader, Valérie; Reid, Alison; Ruprah, Parminder; Shaw, Michael; Sore, Hannah; Stirling, Matthew; Talbot, Adam; Taylor, Jess; Thompson, Stephen; Wada, Hiroki; Walker, David

    2005-05-01

    This work describes the preparation of approximately 13,000 compounds for rapid identification of hits in high-throughput screening (HTS). These compounds were designed as potential serine/threonine or tyrosine kinase inhibitors. The library consists of various scaffolds, e.g., purines, oxindoles, and imidazoles, whereby each core scaffold generally includes the hydrogen bond acceptor/donor properties known to be important for kinase binding. Several of these are based upon literature kinase templates, or adaptations of them to provide novelty. The routes to their preparation are outlined. A variety of automation techniques were used to prepare >500 compounds per scaffold. Where applicable, scavenger resins were employed to remove excess reagents and when necessary, preparative high performance liquid chromatography (HPLC) was used for purification. These compounds were screened against an 'in-house' kinase panel. The success rate in HTS was significantly higher than the corporate compound collection. Copyright (c) 2004 Wiley Periodicals, Inc.

  3. Kinase detection with gallium nitride based high electron mobility transistors.

    Makowski, Matthew S; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  4. Diversity, classification and function of the plant protein kinase superfamily

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  5. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration.

    Qian-Shi Zhang

    Full Text Available Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1, also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5, after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1, the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93, or the downstream target, c-Jun N-terminal kinase (SP600125 also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580 had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration.

  6. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration

    Zhang, Qian-Shi; Kurpad, Deepa S.; Mahoney, My G.; Steinbeck, Marla J.

    2017-01-01

    Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration. PMID:29045420

  7. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  8. Characterization of cortactin as an in vivo protein kinase D substrate: interdependence of sites and potentiation by Src

    de Kimpe, Line; Janssens, Katrien; Derua, Rita; Armacki, Milena; Goicoechea, Silvia; Otey, Carol; Waelkens, Etienne; Vandoninck, Sandy; Vandenheede, Jackie R.; Seufferlein, Thomas; van Lint, Johan

    2009-01-01

    Protein Kinase D (PKD) has been implicated in the regulation of actin turnover at the leading edge, invasion and migration. In particular, a complex between cortactin, paxillin and PKD in the invadopodia of invasive breast cancer cells has been described earlier, but so far this complex remained ill

  9. The Roles of Protein Kinases in Learning and Memory

    Giese, Karl Peter; Mizuno, Keiko

    2013-01-01

    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  10. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study

    Kim, Pora; Jia, Peilin; Zhao, Zhongming

    2018-01-01

    Abstract Assessing the impact of kinase in gene fusion is essential for both identifying driver fusion genes (FGs) and developing molecular targeted therapies. Kinase domain retention is a crucial factor in kinase fusion genes (KFGs), but such a systematic investigation has not been done yet. To this end, we analyzed kinase domain retention (KDR) status in chimeric protein sequences of 914 KFGs covering 312 kinases across 13 major cancer types. Based on 171 kinase domain-retained KFGs including 101 kinases, we studied their recurrence, kinase groups, fusion partners, exon-based expression depth, short DNA motifs around the break points and networks. Our results, such as more KDR than 5′-kinase fusion genes, combinatorial effects between 3′-KDR kinases and their 5′-partners and a signal transduction-specific DNA sequence motif in the break point intronic sequences, supported positive selection on 3′-kinase fusion genes in cancer. We introduced a degree-of-frequency (DoF) score to measure the possible number of KFGs of a kinase. Interestingly, kinases with high DoF scores tended to undergo strong gene expression alteration at the break points. Furthermore, our KDR gene fusion network analysis revealed six of the seven kinases with the highest DoF scores (ALK, BRAF, MET, NTRK1, NTRK3 and RET) were all observed in thyroid carcinoma. Finally, we summarized common features of ‘effective’ (highly recurrent) kinases in gene fusions such as expression alteration at break point, redundant usage in multiple cancer types and 3′-location tendency. Collectively, our findings are useful for prioritizing driver kinases and FGs and provided insights into KFGs’ clinical implications. PMID:28013235

  11. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer.

    Angus, Steven P; Zawistowski, Jon S; Johnson, Gary L

    2018-01-06

    Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.

  12. Kinase-loaded magnetic beads for sequential in vitro phosphorylation of peptides and proteins.

    Hromadkova, Lenka; Kupcik, Rudolf; Vajrychova, Marie; Prikryl, Petr; Charvatova, Andrea; Jankovicova, Barbora; Ripova, Daniela; Bilkova, Zuzana; Slovakova, Marcela

    2018-01-15

    Post-translational modifications, including phosphorylation, greatly impact the physiological function of proteins, especially those that are natively unfolded and implicated in many neurodegenerative diseases. However, structural and functional studies of such proteins require fully defined phosphorylation, including those that are not physiological. Thus, the kinases ERK2 and GSK-3β were immobilized to various superparamagnetic beads with carboxylic, aldehyde, Ni 2+ , or Co 3+ functional groups, with a view to efficiently phosphorylate peptides and proteins in vitro. Full phosphorylation of specific synthetic peptides confirmed that beads were successfully loaded with kinases. Remarkably, enzymes covalently immobilized on carboxylated SeraMag beads remained active upon reuse, with residual activity after 10 uses 99.5 ± 0.34% for GSK-3β and 36.2 ± 2.01% for ERK2. The beads were also used to sequentially phosphorylate recombinant tau, which in vivo is a biomarker of Alzheimer's disease. Thus, a system consisting of two fully active kinases immobilized to magnetic beads is demonstrated for the first time. In comparison to soluble enzymes, the beads are easier to handle, reusable, and thus low-cost. Importantly, these beads are also convenient to remove from reactions to minimize contamination of phosphorylated products or to exchange with other kinases.

  13. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  15. Roles of Apicomplexan protein kinases at each life cycle stage.

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  17. Telocinobufagin inhibits the epithelial-mesenchymal transition of breast cancer cells through the phosphoinositide 3-kinase/protein kinase B/extracellular signal-regulated kinase/Snail signaling pathway.

    Gao, Yuxue; Shi, Lihong; Cao, Zhen; Zhu, Xuetao; Li, Feng; Wang, Ruyan; Xu, Jinyuan; Zhong, Jinyi; Zhang, Baogang; Lu, Shijun

    2018-05-01

    Telocinobufagin (TBG), an active ingredient of Venenumbufonis , exhibits an immunomodulatory activity. However, its antimetastatic activity in breast cancer remains unknown. The present study investigated whether TBG prevents breast cancer metastasis and evaluated its regulatory mechanism. TBG inhibited the migration and invasion of 4T1 breast cancer cells. Furthermore, TBG triggered the collapse of F-actin filaments in breast cancer. The epithelial-mesenchymal transition (EMT) markers, vimentin and fibronectin, were downregulated following TBG treatment. However, E-cadherin was upregulated following TBG treatment. Snail, a crucial transcriptional factor of EMT, was downregulated following TBG treatment. Signaling pathway markers, including phosphorylated protein kinase B (P-Akt), p-mechanistic target of rapamycin (mTOR) and p-extracellular signal-regulated kinase (ERK), were decreased following TBG treatment. The same results were obtained from in vivo experiments. In conclusion, in vitro and in vivo experiments reveal that TBG inhibited migration, invasion and EMT via the phosphoinositide 3-kinase (PI3K)/Akt/ERK/Snail signaling pathway in breast cancer.

  18. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  19. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  20. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  1. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  2. Src family kinases in chronic kidney disease.

    Wang, Jun; Zhuang, Shougang

    2017-09-01

    Src family kinases (SFKs) belong to nonreceptor protein tyrosine kinases and have been implicated in the regulation of numerous cellular processes, including cell proliferation, differentiation, migration and invasion, and angiogenesis. The role and mechanisms of SFKs in tumorgenesis have been extensively investigated, and some SFK inhibitors are currently under clinical trials for tumor treatment. Recent studies have also demonstrated the importance of SFKs in regulating the development of various fibrosis-related chronic diseases (e.g., idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, and systemic sclerosis). In this article, we summarize the roles of SFKs in various chronic kidney diseases, including glomerulonephritis, diabetic nephropathy, human immunodeficiency virus-associated nephropathy, autosomal dominant form of polycystic kidney disease, and obesity-associated kidney disease, and discuss the mechanisms involved. Copyright © 2017 the American Physiological Society.

  3. Tyrosine kinase signalling in breast cancer

    Hynes, Nancy E

    2000-01-01

    Cells are continuously exposed to diverse stimuli ranging from soluble endocrine and paracrine factors to signalling molecules on neighbouring cells. Receptors of the tyrosine kinase family play an important role in the integration and interpretation of these external stimuli, allowing a cell to respond appropriately to its environment. The activation of receptor tyrosine kinases (RTKs) is tightly controlled, allowing a normal cell to correctly integrate its external environment with internal signal transduction pathways. In contrast, due to numerous molecular alterations arising during the course of malignancy, a tumour is characterized by an abnormal response to its environment, which allows cancer cells to evade the normal mechanisms controlling cellular proliferation. Alterations in the expression of various RTKs, in their activation, and in the signalling molecules lying downstream of the receptors play important roles in the development of cancer. This topic is the major focus of the thematic review section of this issue of Breast Cancer Research

  4. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Boura, Evzen; Nencka, Radim

    2015-01-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine

  5. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Boura, Evzen, E-mail: boura@uochb.cas.cz; Nencka, Radim, E-mail: nencka@uochb.cas.cz

    2015-10-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.

  6. Ror receptor tyrosine kinases: orphans no more.

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  7. Aurora kinase inhibitors: Progress towards the clinic

    Kollareddy, M.; Zheleva, D.; Dzubak, P.; Brahmkshatriya, Pathik; Lepšík, Martin; Hajduch, M.

    2012-01-01

    Roč. 30, č. 6 (2012), s. 2411-2432 ISSN 0167-6997 Grant - others:GA ČR(CZ) GA301/08/1649; GA ČR(CZ) GD303/09/H048 Program:GA; GD Institutional research plan: CEZ:AV0Z40550506 Keywords : Aurora kinases * cancer * inhibitors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2012

  8. MAP kinases in inflammatory bowel disease

    Coskun, Mehmet; Olsen, Jørgen; Seidelin, Jakob Benedict

    2011-01-01

    The mammalian family of mitogen-activated protein kinases (MAPKs) is activated by diverse extracellular and intracellular stimuli, and thereby they play an essential role in connecting cell-surface receptors to changes in transcriptional programs. The MAPK signaling pathways regulate a wide range...... these signaling pathways have been exploited for the development of therapeutics and discuss the current knowledge of potential MAPK inhibitors and their anti-inflammatory effects in clinical trials related to IBD....

  9. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Bouřa, Evžen; Nencka, Radim

    2015-01-01

    Roč. 337, č. 2 (2015), s. 136-145 ISSN 0014-4827 R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302; GA ČR GA15-09310S EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : phosphatidylinositol 4-kinase * inhibitor * crystal structure * virus Subject RIV: CC - Organic Chemistry Impact factor: 3.378, year: 2015

  10. Molecular Imaging of the ATM Kinase Activity

    Williams, Terence M. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Nyati, Shyam [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Ross, Brian D. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Rehemtulla, Alnawaz, E-mail: alnawaz@umich.edu [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  11. Protein kinase C signaling and cell cycle regulation

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  12. 76 FR 14058 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    2011-03-15

    ...: University of Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park... in the possession and control of the University of Wyoming Anthropology Department, Human Remains... made by University of Wyoming, Anthropology Department, Human Remains Repository, professional staff in...

  13. Mechanisms of polyphosphate glucokinase and polyphosphate kinase reactions

    Pepin, C.A.; Robinson, N.A.; Wood, H.G.

    1986-01-01

    Polyphosphate glucokinase [poly(P)GK] catalyzes the following reaction: poly(P)/sub n/ + glucose → poly(P)/sub n-1/ + G-6-P. With long chain poly(P) [n=750 to 400] the mechanism appeared to be processive, in which there is phosphorylation of glucose without release of intermediate sizes of the poly(P) until the chain is about 100, thereafter there were intermediate sizes formed apparently by a non-processive process. Poly(P) kinase catalyzes the following reaction: ATP + poly(P)/sub n/ ↔ ADP + poly(P)/sub n + 1/. Using short chain 32 [P] poly(P) as a primer and non-radioactive ATP, long chain poly(P) is formed processively. The resulting chain has a short length labeled with 32 [P] contributed by the primer on one end and the remainder is made up of unlabeled (P) from the ATP. The authors have used this 32 [P] poly(P) as a substrate with poly(P)GK. If the mechanism of the poly(P)GK were initially processive, there would be a 50% chance the phosphate would be utilized from the unlabeled end and 50% of the 32 [P] would remain in the shortened chain. However, all the 32 [P] was lost when 20% of the poly(P) was converted to G-6-P. In contrast, with poly(P) kinase, the % of poly(P) utilized was equivalent to the % of 32 [P] converted to ATP, which is consistent with a strictly processive mechanism. Even though the mechanism of poly(P)GK appeared to be processive with long chains, the on and off rate of poly(P) from the enzyme is such that there is random removal of (P) from both ends of the poly(P) chain

  14. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  15. CIKS, a connection to Ikappa B kinase and stress-activated protein kinase.

    Leonardi, A; Chariot, A; Claudio, E; Cunningham, K; Siebenlist, U

    2000-09-12

    Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-kappaB and AP-1/ATF families. Activation of NF-kappaB factors is thought to be mediated primarily via IkappaB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKalpha and IKKbeta are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-kappaB essential modulator)/IKKgamma. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKgamma in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-kappaB-dependent reporter. Activation of NF-kappaB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.

  16. CIKS, a connection to IκB kinase and stress-activated protein kinase

    Leonardi, Antonio; Chariot, Alain; Claudio, Estefania; Cunningham, Kirk; Siebenlist, Ulrich

    2000-01-01

    Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins. PMID:10962033

  17. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B.

    Tchankouo-Nguetcheu, Stéphane; Udinotti, Mario; Durand, Marjorie; Meng, Tzu-Ching; Taouis, Mohammed; Rabinow, Leonard

    2014-10-01

    PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.

  18. The Pim kinases: new targets for drug development.

    Swords, Ronan; Kelly, Kevin; Carew, Jennifer; Nawrocki, Stefan; Mahalingam, Devalingam; Sarantopoulos, John; Bearss, David; Giles, Francis

    2011-12-01

    The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to cancer development and progression. They were first recognized as pro-viral integration sites for the Moloney Murine Leukemia virus. Unlike other kinases, they possess a hinge region which creates a unique binding pocket for ATP. Absence of a regulatory domain means that these proteins are constitutively active once transcribed. Pim kinases are critical downstream effectors of the ABL (ableson), JAK2 (janus kinase 2), and Flt-3 (FMS related tyrosine kinase 1) oncogenes and are required by them to drive tumorigenesis. Recent investigations have established that the Pim kinases function as effective inhibitors of apoptosis and when overexpressed, produce resistance to the mTOR (mammalian target of rapamycin) inhibitor, rapamycin . Overexpression of the PIM kinases has been reported in several hematological and solid tumors (PIM 1), myeloma, lymphoma, leukemia (PIM 2) and adenocarcinomas (PIM 3). As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Novel small molecule inhibitors of the human Pim kinases have been designed and are currently undergoing preclinical evaluation.

  19. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.

    Gao, Jianjiong; Thelen, Jay J; Dunker, A Keith; Xu, Dong

    2010-12-01

    Reversible protein phosphorylation is one of the most pervasive post-translational modifications, regulating diverse cellular processes in various organisms. High throughput experimental studies using mass spectrometry have identified many phosphorylation sites, primarily from eukaryotes. However, the vast majority of phosphorylation sites remain undiscovered, even in well studied systems. Because mass spectrometry-based experimental approaches for identifying phosphorylation events are costly, time-consuming, and biased toward abundant proteins and proteotypic peptides, in silico prediction of phosphorylation sites is potentially a useful alternative strategy for whole proteome annotation. Because of various limitations, current phosphorylation site prediction tools were not well designed for comprehensive assessment of proteomes. Here, we present a novel software tool, Musite, specifically designed for large scale predictions of both general and kinase-specific phosphorylation sites. We collected phosphoproteomics data in multiple organisms from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates local sequence similarities to known phosphorylation sites, protein disorder scores, and amino acid frequencies. Application of Musite on several proteomes yielded tens of thousands of phosphorylation site predictions at a high stringency level. Cross-validation tests show that Musite achieves some improvement over existing tools in predicting general phosphorylation sites, and it is at least comparable with those for predicting kinase-specific phosphorylation sites. In Musite V1.0, we have trained general prediction models for six organisms and kinase-specific prediction models for 13 kinases or kinase families. Although the current pretrained models were not correlated with any particular cellular conditions, Musite provides a unique functionality for training customized prediction models

  20. PAK4 crystal structures suggest unusual kinase conformational movements.

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  1. A framework for classification of prokaryotic protein kinases.

    Nidhi Tyagi

    Full Text Available BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular

  2. Ribosomal S6 Kinase Cooperates with Casein Kinase 2 to Modulate the Drosophila Circadian Molecular Oscillator

    Akten, Bikem; Tangredi, Michelle M.; Jauch, Eike; Roberts, Mary A.; Ng, Fanny; Raabe, Thomas; Jackson, F. Rob

    2009-01-01

    There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system. In mammals, RSK1 is a light- and clock-regulated kinase known to be activated by the MAPK pathway, but there is no direct evidence that it functions as a component of the circadian system. Here, we show that Drosophila S6KII RNA displays rhythms in abundance, indicative of circadian control. Importantly, an S6KII null mutant exhibits a short-period circadian phenotype that can be rescued by expression of the wild-type gene in clock neurons, indicating a role for S6KII in the molecular oscillator. Peak PER clock protein expression is elevated in the mutant, indicative of enhanced stability, whereas per mRNA level is decreased, consistent with enhanced feedback repression. Gene reporter assays show that decreased S6KII is associated with increased PER repression. Surprisingly, we demonstrate a physical interaction between S6KII and the Casein Kinase 2 regulatory subunit (CK2β), suggesting a functional relationship between the two kinases. In support of such a relationship, there are genetic interactions between S6KII and CK2 mutations, in vivo, which indicate that CK2 activity is required for S6KII action. We propose that the two kinases cooperate within clock neurons to fine-tune circadian period, improving the precision of the clock mechanism. PMID:19144847

  3. Partial purification and characterization of a wortmannin-sensitive and insulin-stimulated protein kinase that activates heart 6-phosphofructo-2-kinase.

    Deprez, J; Bertrand, L; Alessi, D R; Krause, U; Hue, L; Rider, M H

    2000-01-01

    A wortmannin-sensitive and insulin-stimulated protein kinase (WISK), which phosphorylates and activates cardiac 6-phosphofructo-2-kinase (PFK-2), was partially purified from perfused rat hearts. Immunoblotting showed that WISK was devoid of protein kinase B (PKB), serum- and glucocorticoid-regulated protein kinase and protein kinase Czeta (PKCzeta). Comparison of the inhibition of WISK, PKCalpha and PKCzeta by different protein kinase inhibitors suggested that WISK was not a member of the PKC...

  4. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism

    Ard, Ryan; Mulatz, Kirk; Abramovici, Hanan

    2012-01-01

    , but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα......GDI and was required for efficient interaction of PKCα and RhoA. DGKζ-null fibroblasts had condensed F-actin bundles and altered focal adhesion distribution, indicative of aberrant RhoA signaling. Two targets of the RhoA effector ROCK showed reduced phosphorylation in DGKζ-null cells. Collectively our findings suggest...

  5. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-01-01

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-α-stimulated monocytes to endothelial cells and suppressed the TNF-α induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-α-induced nuclear factor-κB activation, which was attenuated by pretreatment with N G -nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: ► Puerarin induced the phosphorylation of eNOS and the production of NO. ► Puerarin activated eNOS through ER-dependent PI3-kinase and Ca 2+ -dependent AMPK. ► Puerarin-induced NO was involved in the inhibition of NF-kB activation. ► Puerarin may help for prevention of vascular dysfunction and diabetes.

  6. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  7. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  8. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Ibrutinib (PCI-32765), the first BTK (Bruton's tyrosine kinase) inhibitor in clinical trials.

    Brown, Jennifer R

    2013-03-01

    Ibrutinib is a potent covalent kinase inhibitor that targets BTK. BTK, or Bruton's tyrosine kinase, is an obvious target for therapy of B cell diseases because inactivating mutations lead to B cell aplasia in humans and the disease X-linked agammaglobulinemia. Ibrutinib has modest cytotoxicity against CLL cells in vitro but also blocks trophic stimuli from the microenvironment. As with other inhibitors of the BCR pathway, ibrutinib causes rapid nodal reduction and response associated with rapid increase in lymphocytosis, which then returns to baseline over time. The ORR of ibrutinib in relapsed refractory CLL is 67 % with PFS 88 % at 15 months. In a cohort of untreated patients 65 years and over, the estimated 15 month PFS is 96 %. Registration trials have been initiated, and the difficult task that remains is to determine where in the course of CLL therapy this drug will have the greatest impact and benefit for patients.

  10. A high-throughput screening assay for eukaryotic elongation factor 2 kinase inhibitors

    Ting Xiao

    2016-10-01

    Full Text Available Eukaryotic elongation factor 2 kinase (eEF2K inhibitors may aid in the development of new therapeutic agents to combat cancer. Purified human eEF2K was obtained from an Escherichia coli expression system and a luminescence-based high-throughput screening (HTS assay was developed using MH-1 peptide as the substrate. The luminescent readouts correlated with the amount of adenosine triphosphate remaining in the kinase reaction. This method was applied to a large-scale screening campaign against a diverse compound library and subsequent confirmation studies. Nine initial hits showing inhibitory activities on eEF2K were identified from 56,000 synthetic compounds during the HTS campaign, of which, five were chosen to test their effects in cancer cell lines.

  11. Distribution of serine/threonine kinase SAD-B in mouse peripheral nerve synapse.

    Hagiwara, Akari; Harada, Kenu; Hida, Yamato; Kitajima, Isao; Ohtsuka, Toshihisa

    2011-05-11

    The serine/threonine kinase SAD regulates neural functions such as axon/dendrite polarization and neurotransmitter release. In the vertebrate central nervous system, SAD-B, a homolog of Caenorhabditis elegans SAD-1, is associated with synaptic vesicles and the active zone cytomatrix in nerve terminals. However, the distribution of SAD-B in the peripheral nervous system remains elusive. Here, we show that SAD-B is specifically localized to neuromuscular junctions. Although the active zone protein bassoon showed a punctated signal indicating its localization to motor end plates, SAD-B shows relatively diffuse localization indicating its association with both the active zone and synaptic vesicles. Therefore, SAD kinase may regulate neurotransmitter release from motor end plates in a similar manner to its regulation of neurotransmitter release in the central nervous system.

  12. Physical and functional interactions between ZIP kinase and UbcH5

    Ohbayashi, Norihiko; Okada, Katsuya; Kawakami, Shiho; Togi, Sumihito; Sato, Noriko; Ikeda, Osamu; Kamitani, Shinya; Muromoto, Ryuta; Sekine, Yuichi; Kawai, Taro; Akira, Shizuo; Matsuda, Tadashi

    2008-01-01

    Zipper-interacting protein kinase (ZIPK) is a widely expressed serine/threonine kinase that has been implicated in cell death and transcriptional regulation, but its mechanism of regulation remains unknown. In our previous study, we showed that leukemia inhibitory factor stimulated threonine-265 phosphorylation of ZIPK, thereby leading to phosphorylation and activation of signal transducer and activator of transcription 3. Here, we identified UbcH5c as a novel ZIPK-binding partner by yeast two-hybrid screening. Importantly, we found that UbcH5c induced ubiquitination of ZIPK. Small-interfering RNA-mediated reduction of endogenous UbcH5 expression decreased ZIPK ubiquitination. Furthermore, coexpression of UbcH5c with ZIPK influenced promyelocytic leukemia protein nuclear body (PML-NB) formation. These results suggest that UbcH5 regulates ZIPK accumulation in PML-NBs by interacting with ZIPK and stimulating its ubiquitination

  13. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C.

    Catarsi, S; Drapeau, P

    1997-08-01

    Tyrosine kinases and phosphatases are abundant in the nervous system, where they signal cellular differentiation, mediate the responses to growth factors, and direct neurite outgrowth during development. Tyrosine phosphorylation can also alter ion channel activity, but its physiological significance remains unclear. In an identified leech mechanosensory neuron, the ubiquitous neuromodulator serotonin increases the activity of a cation channel by activating protein kinase C (PKC), resulting in membrane depolarization and modulation of the receptive field properties. We observed that the effects on isolated neurons and channels were blocked by inhibiting tyrosine phosphatases. Serotonergic stimulation of PKC thus activates a tyrosine phosphatase activity associated with the channels, which reverses their constitutive inhibition by tyrosine phosphorylation, representing a novel form of neuromodulation.

  14. Protein kinase M ζ and the maintenance of long-term memory.

    Zhang, Yang; Zong, Wei; Zhang, Lei; Ma, Yuanye; Wang, Jianhong

    2016-10-01

    Although various molecules have been found to mediate the processes of memory acquisition and consolidation, the molecular mechanism to maintain memory still remains elusive. In recent years, a molecular pathway focusing on protein kinase Mζ (PKMζ) has become of interest to researchers because of its potential role in long-term memory maintenance. PKMζ is an isoform of protein kinase C (PKC) and has a related structure that influences its function in maintaining memory. Considerable evidence has been gathered on PKMζ activity, including loss of function studies using PKMζ inhibitors, such as PKMζ inhibitory peptide (ZIP), suggesting PKMζ plays an important role in long-term memory maintenance. This review provides an overview of the role of PKMζ in long-term memory and outlines the molecular structure of PKMζ, the molecular mechanism of PKMζ in long-term memory maintenance and future directions of PKMζ research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms.

    Durocher, D; Taylor, I A; Sarbassova, D; Haire, L F; Westcott, S L; Jackson, S P; Smerdon, S J; Yaffe, M B

    2000-11-01

    Forkhead-associated (FHA) domains are a class of ubiquitous signaling modules that appear to function through interactions with phosphorylated target molecules. We have used oriented peptide library screening to determine the optimal phosphopeptide binding motifs recognized by several FHA domains, including those within a number of DNA damage checkpoint kinases, and determined the X-ray structure of Rad53p-FHA1, in complex with a phospho-threonine peptide, at 1.6 A resolution. The structure reveals a striking similarity to the MH2 domains of Smad tumor suppressor proteins and reveals a mode of peptide binding that differs from SH2, 14-3-3, or PTB domain complexes. These results have important implications for DNA damage signaling and CHK2-dependent tumor suppression, and they indicate that FHA domains play important and unsuspected roles in S/T kinase signaling mechanisms in prokaryotes and eukaryotes.

  16. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  17. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  18. Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer

    Richard L. Schroeder

    2014-09-01

    Full Text Available The human epidermal growth factor receptor 2 (HER2 is a member of the erbB class of tyrosine kinase receptors. These proteins are normally expressed at the surface of healthy cells and play critical roles in the signal transduction cascade in a myriad of biochemical pathways responsible for cell growth and differentiation. However, it is widely known that amplification and subsequent overexpression of the HER2 encoding oncogene results in unregulated cell proliferation in an aggressive form of breast cancer known as HER2-positive breast cancer. Existing therapies such as trastuzumab (Herceptin® and lapatinib (Tyverb/Tykerb®, a monoclonal antibody inhibitor and a dual EGFR/HER2 kinase inhibitor, respectively, are currently used in the treatment of HER2-positive cancers, although issues with high recurrence and acquired resistance still remain. Small molecule tyrosine kinase inhibitors provide attractive therapeutic targets, as they are able to block cell signaling associated with many of the proposed mechanisms for HER2 resistance. In this regard we aim to present a review on the available HER2 tyrosine kinase inhibitors, as well as those currently in development. The use of tyrosine kinase inhibitors as sequential or combinatorial therapeutic strategies with other HER family inhibitors is also discussed.

  19. The secret life of kinases: functions beyond catalysis.

    Rauch, Jens

    2011-10-28

    Abstract Protein phosphorylation participates in the regulation of all fundamental biological processes, and protein kinases have been intensively studied. However, while the focus was on catalytic activities, accumulating evidence suggests that non-catalytic properties of protein kinases are essential, and in some cases even sufficient for their functions. These non-catalytic functions include the scaffolding of protein complexes, the competition for protein interactions, allosteric effects on other enzymes, subcellular targeting, and DNA binding. This rich repertoire often is used to coordinate phosphorylation events and enhance the specificity of substrate phosphorylation, but also can adopt functions that do not rely on kinase activity. Here, we discuss such kinase independent functions of protein and lipid kinases focussing on kinases that play a role in the regulation of cell proliferation, differentiation, apoptosis, and motility.

  20. Transgenic Analysis of the Leishmania MAP Kinase MPK10 Reveals an Auto-inhibitory Mechanism Crucial for Stage-Regulated Activity and Parasite Viability

    Cayla, M.; Rachidi, N.; Leclercq, O.

    2014-01-01

    Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even...... though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage...... at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10...

  1. SH2 domains: modulators of nonreceptor tyrosine kinase activity

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-01-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed ...

  2. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases

    Johansson, K.; Ramaswamy, S.; Ljungcrantz, C.

    2001-01-01

    Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides and activate a number of medically important nucleoside analogs. Here we report the structure of the Drosophila deoxyribonucleoside kinase with deoxycytidine bound at the nucleoside binding site and that of the human deoxyguanosine ki......; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases....

  3. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Knecht, Wolfgang [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Mikkelsen, Nils Egil [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Clausen, Anders Ranegaard [Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden); Willer, Mette [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Gojkovic, Zoran [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Piskur, Jure, E-mail: Jure.Piskur@cob.lu.se [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden)

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  4. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    Naik, M U; Benedikz, Eirikur; Hernandez, I

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region...

  5. Peptide substrates for Rho-associated kinase 2 (Rho-kinase 2/ROCK2.

    Jeong-Hun Kang

    Full Text Available Peptide substrates sensitive for a certain protein kinase could be important for new-drug development and to understand the mechanism of diseases. Rho-associated kinase (Rho-kinase/ROCK is a serine/threonine kinase, and plays an important part in cardiovascular disease, migration and invasion of tumor cells, and in neurological disorders. The purpose of this study was to find substrates with high affinity and sensitivity for ROCK2. We synthesized 136 peptide substrates from protein substrates for ROCK2 with different lengths and charged peptides. Incorporation of (32P [counts per minute (CPM] for each peptide substrate was determined by the radiolabel assay using [γ-(32P]ATP. When the top five peptide substrates showing high CPMs (R4, R22, R133, R134, and R135 were phosphorylated by other enzymes (PKA, PKCα, and ERK1, R22, R133, and R135 displayed the highest CPM level for ROCK2 compared with other enzymes, whereas R4 and R134 showed similar CPM levels for ROCK2 and PKCα. We hypothesize that R22, R133, and R135 can be useful peptide substrates for ROCK2.

  6. Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis.

    Amador, Erick; López-Pacheco, Karla; Morales, Nataly; Coria, Roberto; López-Villaseñor, Imelda

    2017-04-01

    Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.

  7. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...

  8. Structures of down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition

    Soundararajan, M.; Roos, A.K.; Savitsky, P.

    2013-01-01

    Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK sub...

  9. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    Ikeda, Kikuko; Nakayama, Yuji; Togashi, Yuuki; Obata, Yuuki; Kuga, Takahisa; Kasahara, Kousuke; Fukumoto, Yasunori; Yamaguchi, Naoto

    2008-01-01

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification

  10. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Inger Lindin

    2014-03-01

    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  11. Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.

    Shinohara, Hidefumi; Matsubayashi, Yoshikatsu

    2017-01-01

    Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.

  12. How protein kinases co-ordinate mitosis in animal cells.

    Ma, Hoi Tang; Poon, Randy Y C

    2011-04-01

    Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.

  13. SH2 domains: modulators of nonreceptor tyrosine kinase activity.

    Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan

    2009-12-01

    The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2-kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix alphaC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.

  14. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.

    Saadat U Aleem

    Full Text Available The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.

  15. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation of replic......Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation...... of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted...

  16. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    by the addition of protein kinase CK2 suggest that at least one of the T-antigen-associated protein kinases is CK2 or a protein-kinase-CK2-related enzyme. The association of recombinant CK2 with T antigen was strongly confirmed by in vitro binding studies. Experiments with temperature-sensitive SV40-transformed......The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... show that immuno-purified T antigen from SV40-transformed cells and from baculovirus-infected insect cells is tightly associated with a protein kinase that phosphorylates T antigen in vitro. In the presence of heparin or a peptide resembling a protein kinase CK2 recognition site, the phosphorylation...

  17. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  18. Radioimmunoassay of creatine kinase BB isoenzyme

    Jianguo, Geng [Shanghai Medical Univ. (China). Zhongshan Hospital; and others

    1988-11-01

    A radioimmunoassay of creatine kinase BB isoenzyme (CK-BB) was developed by using CK-BB purified from human brain. The CK-BB antiserum was raised by immunizing rabbite and {sup 125}I-CK-BB iodinated with Bolton-Hunter reagent. The affinity constant was 3.0 x 10{sup 9} mol/L. No cross reactions with creatine kinase MM isoenzyme and neuron-specific enolase were found. The measuring range was 3.5 x 10{sup -8} {approx} 1.2 x 10{sup -5} mmol/L, the average recovery rate 97.5%, with the inter and intrassay CV 3.1% and 12%, respectively. The average serum CK-BB concentration in 83 normal persons was 1.5 x 10{sup -7} +- 8.1 x 10{sup -8} mmol/L, quite different from the values of acute myocardial infarction (5.2 x 10{sup -6} +- 1.2 x 10{sup -4} mmol/L, n = 28) and cerebral vascular accident (8.4 x 10{sup -4} +- 5.0 x 10{sup -4} mmol/L, n = 10).

  19. Radioimmunoassay of creatine kinase BB isoenzyme

    Geng Jianguo

    1988-01-01

    A radioimmunoassay of creatine kinase BB isoenzyme (CK-BB) was developed by using CK-BB purified from human brain. The CK-BB antiserum was raised by immunizing rabbite and 125 I-CK-BB iodinated with Bolton-Hunter reagent. The affinity constant was 3.0 x 10 9 mol/L. No cross reactions with creatine kinase MM isoenzyme and neuron-specific enolase were found. The measuring range was 3.5 x 10 -8 ∼ 1.2 x 10 -5 mmol/L, the average recovery rate 97.5%, with the inter and intrassay CV 3.1% and 12%, respectively. The average serum CK-BB concentration in 83 normal persons was 1.5 x 10 -7 +- 8.1 x 10 -8 mmol/L, quite different from the values of acute myocardial infarction (5.2 x 10 -6 +- 1.2 x 10 -4 mmol/L, n = 28) and cerebral vascular accident (8.4 x 10 -4 +- 5.0 x 10 -4 mmol/L, n = 10)

  20. Activation of oocyte phosphatidylinositol kinase by polyamines

    Allende, J.E.; Carrasco, D.; Allende, C.C.

    1987-01-01

    Membrane bound phosphatidylinositol is phosphorylated by a specific membrane enzyme to form phosphatidylinositol 4 phosphate (PIP) which in turn is again phosphorylated to generate phosphatidylinositol 4,5 biphosphate (PIPP). The regulation of phosphatidylinositol phosphorylation and hydrolysis is relevant to the possible role of inositol phosphates as second messengers of hormone action. The membranes of Xenopus laevis oocytes contain a phosphatidylinositol kinase that can generate radioactive PIP after incubation with [ 32 ATP]. The radioactive product is extracted with methanol-chloroform and isolated by thin layer chromatography. The oocyte enzyme has an app Km for ATP of 80 μM and cannot use GTP as a phosphate donor. The formation of PIP is greatly stimulated by the addition of synthetic peptides containing clusters of polylysine at concentrations 0.5 mM. A similar effect is observed with a lysine rich peptide that corresponds to the 14 amino acids of the carboxyl terminus of the Kirstein ras 2 protein and also by polyornithine. Polyarginine and histone H 1 have much lower effects. Peptides containing polylysine clusters have also been found to affect the activity of other key membrane enzymes such as protein kinases and adenylate cyclase

  1. Kinome profiling of Arabidopsis using arrays of kinase consensus substrates

    Pieterse Corné MJ

    2007-02-01

    Full Text Available Abstract Background Kinome profiling aims at the parallel analysis of kinase activities in a cell. Novel developed arrays containing consensus substrates for kinases are used to assess those kinase activities. The arrays described in this paper were already used to determine kinase activities in mammalian systems, but since substrates from many organisms are present we decided to test these arrays for the determination of kinase activities in the model plant species Arabidopsis thaliana. Results Kinome profiling using Arabidopsis cell extracts resulted in the labelling of many consensus peptides by kinases from the plant, indicating the usefulness of this kinome profiling tool for plants. Method development showed that fresh and frozen plant material could be used to make cell lysates containing active kinases. Dilution of the plant extract increased the signal to noise ratio and non-radioactive ATP enhances full development of spot intensities. Upon infection of Arabidopsis with an avirulent strain of the bacterial pathogen Pseudomonas syringae pv. tomato, we could detect differential kinase activities by measuring phosphorylation of consensus peptides. Conclusion We show that kinome profiling on arrays with consensus substrates can be used to monitor kinase activities in plants. In a case study we show that upon infection with avirulent P. syringae differential kinase activities can be found. The PepChip can for example be used to purify (unknown kinases that play a role in P. syringae infection. This paper shows that kinome profiling using arrays of consensus peptides is a valuable new tool to study signal-transduction in plants. It complements the available methods for genomics and proteomics research.

  2. 75 FR 5108 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    2010-02-01

    ... Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park Service... funerary objects in the possession and control of the University of Wyoming, Anthropology Department, Human... of Wyoming, Anthropology Department, Human Remains Repository professional staff in consultation with...

  3. Metabolic control by S6 kinases depends on dietary lipids.

    Tamara R Castañeda

    Full Text Available Targeted deletion of S6 kinase (S6K 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system. Analysis of S6K phosphorylation in vivo and in vitro showed that dietary lipids activate S6K, and this effect is not dependent upon amino acids. Comparison of male mice lacking S6K1 and 2 (S6K-dko with wt controls showed that S6K-dko mice are protected against obesity and glucose intolerance induced by a high-fat diet. S6K-dko mice fed a high-fat diet had increased energy expenditure, improved glucose tolerance, lower fat mass gain, and changes in markers of lipid metabolism. Importantly, however, these metabolic phenotypes were dependent upon dietary lipids, with no such effects observed in S6K-dko mice fed a fat-free diet. These changes appear to be mediated via modulation of cellular metabolism in skeletal muscle, as shown by the expression of genes involved in energy metabolism. Taken together, our results suggest that the metabolic functions of S6K in vivo play a key role as a molecular interface connecting dietary lipids to the endogenous control of energy metabolism.

  4. 25 CFR 291.15 - How long do Class III gaming procedures remain in effect?

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How long do Class III gaming procedures remain in effect... ENTERPRISES CLASS III GAMING PROCEDURES § 291.15 How long do Class III gaming procedures remain in effect? Class III gaming procedures remain in effect for the duration specified in the procedures or until...

  5. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  6. Mummified remains from the Archaeological Museum in Zagreb, Croatia - Reviewing peculiarities and limitations of human and non-human radiological identification and analysis in mummified remains.

    Petaros, Anja; Janković, Ivor; Cavalli, Fabio; Ivanac, Gordana; Brkljačić, Boris; Čavka, Mislav

    2015-10-01

    Forensic protocols and medico-legal techniques are increasingly being employed in investigations of museological material. The final findings of such investigations may reveal interesting facts on historical figures, customs and habits, as well as provide meaningful data for forensic use. Herein we present a case review where forensic experts were requested to identify taxonomic affinities, stage of preservation and provide skeletal analysis of mummified non-human archaeological remains, and verify whether two mummified hands are human or not. The manuscript offers a short review on the process and particularities of radiological species identification, the impact of post-mortem changes in the analysis and imaging of mummified remains as well as the macroscopical interpretation of trauma, pathology and authenticity in mummified remains, which can all turn useful when dealing with forensic cases. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  7. Creatine kinase isozyme expression in embryonic chicken heart

    Lamers, W. H.; Geerts, W. J.; Moorman, A. F.; Dottin, R. P.

    1989-01-01

    The distribution pattern of creatine kinase (EC 2.7.3.2) isozymes in developing chicken heart was studied by immunohistochemistry. Creatine kinase M, which is absent from adult heart, is transiently expressed between 4 and 11 days of incubation. During that period, numerous muscular cells in the

  8. Role of Bruton's tyrosine kinase in B cells and malignancies

    Pal Singh, S. (Simar); F. Dammeijer (Floris); R.W. Hendriks (Rudi)

    2018-01-01

    textabstractBruton's tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked

  9. Oral protein kinase c β inhibition using ruboxistaurin

    Aiello, Lloyd Paul; Vignati, Louis; Sheetz, Matthew J

    2011-01-01

    To evaluate efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with moderately severe to very severe nonproliferative diabetic retinopathy from the Protein Kinase C β Inhibitor-Diabetic Retinopathy Study and Protein Kinase C β Inhibitor-Diabetic Retinopathy Study 2 ruboxi...

  10. Enhanced expression of a calcium-dependent protein kinase

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss ...

  11. Molecular cloning and characterization of a novel human kinase ...

    throughput cDNA sequencing. It encodes a protein of 341 amino acids, which shows 69% identity with the human kinase CLIK1 (AAL99353), which was suggested to be the CLP-36 interacting kinase. Bioinformatics analysis suggests that the ...

  12. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

    Tavanti, E.; Sero, V.; Vella, S.; Fanelli, M.; Michelacci, F.; Landuzzi, L.; Magagnoli, G.; Versteeg, R.; Picci, P.; Hattinger, C. M.; Serra, M.

    2013-01-01

    Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell

  13. ATR kinase regulates its attenuation via PPM1D phosphatase ...

    In eukaryotes, in response to replication stress, DNA damage response kinase, ATR is activated, whose signalling abrogationleads to cell lethality due to aberrant fork remodelling and excessive origin firing. Here we report that inhibition ofATR kinase activity specifically during replication stress recovery results in persistent ...

  14. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  15. Review of the Dinosaur Remains from the Middle Jurassic of Scotland, UK

    Neil D. L. Clark

    2018-02-01

    Full Text Available Dinosaurs are rare from the Middle Jurassic worldwide. The Isle of Skye, is the only place in Scotland thus far to have produced dinosaur remains. These remains consist mainly of footprints, but also several bones and teeth. These Bajocian and Bathonian remains represent an important collection of a basal eusauropod, early examples of non-neosauropod and possible basal titanosauriform eusauropods, and theropod remains that may belong to an early coelurosaur and a possible megalosaurid, basal tyrannosauroid, or dromaeosaurid. The footprints from here also suggest a rich and diverse dinosaur fauna for which further better diagnosable remains are likely to be found.

  16. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana.

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi

    2017-07-22

    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4 IKD ). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4 IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4 IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4 IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4 IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-01-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A) + RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G 2 phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  18. Infralimbic cortex Rho-kinase inhibition causes antidepressant-like activity in rats.

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2015-03-03

    Depression is one of the most common psychiatric disorders in the world; however, its mechanisms remain unclear. Recently, a new signal-transduction pathway, namely Rho/Rho-kinase signalling, has been suggested to be involved in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However there is no evidence showing the involvement of Rho-kinase pathway in depression. In addition, the infralimbic cortex, rodent equivalent to subgenual cingulate cortex has been shown to be responsible for emotional responses. Thus, in the present study, intracranial guide cannulae were stereotaxically implanted bilaterally into the infralimbic cortex, and the effects of repeated microinjections of a Rho-kinase (ROCK) inhibitor Y-27632 (10 nmol) were investigated in rats. Y-27632 significantly decreased immobility time and increased swimming and climbing behaviors when compared to fluoxetine (10 μg) and saline groups in the forced swim test. In addition, Y-27632 treatment did not affect spontaneous locomotor activity and forelimb use in the open-field and cylinder tests respectively; but it enhanced limb placing accuracy in the ladder rung walking test. Our results suggest that Y-27632 could be a potentially active antidepressant agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  20. Altered expression of Aurora kinases in Arabidopsis results in aneu- and polyploidization.

    Demidov, Dmitri; Lermontova, Inna; Weiss, Oda; Fuchs, Joerg; Rutten, Twan; Kumke, Katrin; Sharbel, Timothy F; Van Damme, Daniel; De Storme, Nico; Geelen, Danny; Houben, Andreas

    2014-11-01

    Aurora is an evolutionary conserved protein kinase family involved in monitoring of chromosome segregation via phosphorylation of different substrates. In plants, however, the involvement of Aurora proteins in meiosis and in sensing microtubule attachment remains to be proven, although the downstream components leading to the targeting of spindle assembly checkpoint signals to anaphase-promoting complex have been described. To analyze the three members of Aurora family (AtAurora1, -2, and -3) of Arabidopsis we employed different combinations of T-DNA insertion mutants and/or RNAi transformants. Meiotic defects and the formation of unreduced pollen were revealed including plants with an increased ploidy level. The effect of reduced expression of Aurora was mimicked by application of the ATP-competitive Aurora inhibitor II. In addition, strong overexpression of any member of the AtAurora family is not possible. Only tagged or truncated forms of Aurora kinases can be overexpressed. Expression of truncated AtAurora1 resulted in a high number of aneuploids in Arabidopsis, while expression of AtAurora1-TAPi construct in tobacco resulted in 4C (possible tetraploid) progeny. In conclusion, our data demonstrate an essential role of Aurora kinases in the monitoring of meiosis in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Growth Inhibition by Bupivacaine Is Associated with Inactivation of Ribosomal Protein S6 Kinase 1

    Beigh, Mushtaq Ahmad; Showkat, Mehvish; Bashir, Basharat; Bashir, Asma; Hussain, Mahboob ul; Andrabi, Khurshid Iqbal

    2014-01-01

    Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation. PMID:24605337

  2. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  3. Diacylglycerol kinase β promotes dendritic outgrowth and spine maturation in developing hippocampal neurons

    Otani Koichi

    2009-08-01

    Full Text Available Abstract Background Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to phosphatidic acid and comprises multiple isozymes of distinct properties. Of DGKs, mRNA signal for DGKβ is strongly detected in the striatum, and one of the transcripts derived from the human DGKβ locus is annotated in GenBank as being differentially expressed in bipolar disorder patients. Recently, we have reported that DGKβ is expressed in medium spiny neurons of the striatum and is highly concentrated at the perisynapse of dendritic spines. However, it remains elusive how DGKβ is implicated in pathophysiological role in neurons at the cellular level. Results In the present study, we investigated the expression and subcellular localization of DGKβ in the hippocampus, together with its functional implication using transfected hippocampal neurons. DGKβ is expressed not only in projection neurons but also in interneurons and is concentrated at perisynaptic sites of asymmetrical synapses. Overexpression of wild-type DGKβ promotes dendrite outgrowth at 7 d in vitro (DIV and spine maturation at 14 DIV in transfected hippocampal neurons, although its kinase-dead mutant has no effect. Conclusion In the hippocampus, DGKβ is expressed in both projection neurons and interneurons and is accumulated at the perisynapse of dendritic spines in asymmetrical synapses. Transfection experiments suggest that DGKβ may be involved in the molecular machineries of dendrite outgrowth and spinogenesis through its kinase activity.

  4. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory. Copyright © 2011 S. Karger AG, Basel.

  5. STK33 kinase activity is nonessential in KRAS-dependent cancer cells.

    Babij, Carol; Zhang, Yihong; Kurzeja, Robert J; Munzli, Anke; Shehabeldin, Amro; Fernando, Manory; Quon, Kim; Kassner, Paul D; Ruefli-Brasse, Astrid A; Watson, Vivienne J; Fajardo, Flordeliza; Jackson, Angela; Zondlo, James; Sun, Yu; Ellison, Aaron R; Plewa, Cherylene A; San, Miguel Tisha; Robinson, John; McCarter, John; Schwandner, Ralf; Judd, Ted; Carnahan, Josette; Dussault, Isabelle

    2011-09-01

    Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors. As expected, KRAS downregulation decreased the survival of KRAS-dependent cells. In contrast, STK33 downregulation or dominant mutant overexpression had no effect on KRAS signaling or survival of these cells. Similarly, a synthetic lethal siRNA screen conducted in a broad panel of KRAS wild-type or mutant cells identified KRAS but not STK33 as essential for survival. We also obtained similar negative results using small molecule inhibitors of the STK33 kinase identified by high-throughput screening. Taken together, our findings refute earlier proposals that STK33 inhibition may be a useful therapeutic approach to target human KRAS mutant tumors. ©2011 AACR.

  6. Purification of the alpha and beta subunits of phosphorylase kinase for structural studies

    Sotiroudis, T.G.; Heilmeyer, L.M.G. Jr.; Crabb, J.W.

    1987-01-01

    Structural analysis of the alpha (Mr, 132,000) and beta (Mr, 113,000) subunits of phosphorylase kinase may provide clues to their yet unknown functions however purification remains problematic. Preparative RP-HPLC procedures yield inconveniently large, dilute solutions and concentration steps are required prior to subunit modification and fragmentation. Concentration of the β subunit usually results in significant losses due to insolubility. Using preparative SDS-polyacrylamide gel electrophoresis, they have purified the α, 7 , and β subunits from rabbit muscle phosphorylase kinase in a soluble and concentrated form suitable for structural studies. Phosphorylase kinase labelled with fluorescein isothiocyanate in the α and α' subunits and fully 14 C-S-carboxymethylated was fractionated on a 5% acrylamide Laemmli slab gel. The subunit bands were visualized by fluorescence and by SDS precipitation then excised and electroeluted in the presence of SDS using an ELUTRAP device. From 4.5 mg of enzyme applied to a 4.5 mm thick gel about 70% of the α subunit and about 90% of the β subunit were typically recovered in less than 1 ml with overnight elution

  7. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity.

    Stefely, Jonathan A; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G; Kemmerer, Zachary A; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E; Ulbrich, Arne; Hutchins, Paul D; Wilkerson, Emily M; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S; Guo, Xiao; Freiberger, Elyse C; Reutenauer, Laurence; Jochem, Adam; Chergova, Maya; Johnson, Isabel E; Lohman, Danielle C; Rush, Matthew J P; Kwiecien, Nicholas W; Singh, Pankaj K; Schlagowski, Anna I; Floyd, Brendan J; Forsman, Ulrika; Sindelar, Pavel J; Westphall, Michael S; Pierrel, Fabien; Zoll, Joffrey; Dal Peraro, Matteo; Kannan, Natarajan; Bingman, Craig A; Coon, Joshua J; Isope, Philippe; Puccio, Hélène; Pagliarini, David J

    2016-08-18

    The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach

    John Fredy Castro-Alvarez

    2014-09-01

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia worldwide. One of the main pathological changes that occurs in AD is the intracellular accumulation of hyperphosphorylated Tau protein in neurons. Cyclin-dependent kinase 5 (CDK5 is one of the major kinases involved in Tau phosphorylation, directly phosphorylating various residues and simultaneously regulating various substrates such as kinases and phosphatases that influence Tau phosphorylation in a synergistic and antagonistic way. It remains unknown how the interaction between CDK5 and its substrates promotes Tau phosphorylation, and systemic approaches are needed that allow an analysis of all the proteins involved. In this review, the role of the CDK5 signaling pathway in Tau hyperphosphorylation is described, an in silico model of the CDK5 signaling pathway is presented. The relationship among these theoretical and computational models shows that the regulation of Tau phosphorylation by PP2A and GSK3β is essential under basal conditions and also describes the leading role of CDK5 under excitotoxic conditions, where silencing of CDK5 can generate changes in these enzymes to reverse a pathological condition that simulates AD.

  9. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of

  10. Evidence that phosphorylation by the mitotic kinase Cdk1 promotes ICER monoubiquitination and nuclear delocalization

    Memin, Elisabeth, E-mail: molinac@mail.montclair.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103 (United States); Genzale, Megan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103 (United States); Crow, Marni; Molina, Carlos A. [Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ, 07043 (United States)

    2011-10-15

    In contrast to normal prostatic cells, the transcriptional repressor Inducible cAMP Early Repressor (ICER) is undetected in the nuclei of prostate cancer cells. The molecular mechanisms for ICER abnormal expression in prostate cancer cells remained largely unknown. In this report data is presented demonstrating that ICER is phosphorylated by the mitotic kinase cdk1. Phosphorylation of ICER on a discrete residue targeted ICER to be monoubiquitinated. Different from unphosphorylated, phosphorylated and polyubiquitinated ICER, monoubiquitinated ICER was found to be cytosolic. Taken together, these results hinted on a mechanism for the observed abnormal subcellular localization of ICER in human prostate tumors.

  11. The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover

    Monaghan, Jacqueline; Matschi, Susanne; Shorinola, Oluwaseyi

    2014-01-01

    Plant perception of pathogen-associated molecular patterns (PAMPs) triggers a phosphorylation relay leading to PAMP-triggered immunity (PTI). Despite increasing knowledge of PTI signaling, how immune homeostasis is maintained remains largely unknown. Here we describe a forward-genetic screen...... the plasma-membrane-associated cytoplasmic kinase BIK1, an important convergent substrate of multiple pattern recognition receptor (PRR) complexes. We find that BIK1 is rate limiting in PTI signaling and that it is continuously turned over to maintain cellular homeostasis. We further show that CPK28...

  12. Cerebellar Ataxia and Coenzyme Q Deficiency Through Loss of Unorthodox Kinase Activity

    Stefely, Jonathan A.; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G.; Kemmerer, Zachary A.; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E.; Ulbrich, Arne; Hutchins, Paul D.; Wilkerson, Emily M.; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S.; Guo, Xiao

    2016-01-01

    The UbiB protein kinase-like (PKL) family is widespread—comprising one-quarter of microbial PKLs and five human homologs—yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical ana...

  13. Sphingosine kinase 2-deficiency mediated changes in spinal pain processing

    Jastrow eCanlas

    2015-08-01

    Full Text Available Chronic pain is one of the most burdensome health issues facing the planet (as costly as diabetes and cancer combined, and in desperate need for new diagnostic targets leading to better therapies. The bioactive lipid sphingosine 1-phosphate (S1P and its receptors have recently been shown to modulate nociceptive signalling at the level of peripheral nociceptors and central neurons. However, the exact role of S1P generating enzymes, in particular sphingosine kinase 2 (Sphk2, in nociception remains unknown. We found that both sphingosine kinases, Sphk1 and Sphk2, were expressed in spinal cord with higher levels of Sphk2 mRNA compared to Sphk1. All three Sphk2 mRNA-isoforms were present with the Sphk2.1 mRNA showing the highest relative expression. Mice deficient in Sphk2 (Sphk2-/- showed in contrast to mice deficient in Sphk1 (Sphk1-/- substantially lower spinal S1P levels compared to wild-type C57BL/6 mice. In the formalin model of acute peripheral inflammatory pain, Sphk2-/- mice showed facilitation of nociceptive transmission during the late response, whereas responses to early acute pain, and the number of c-Fos immunoreactive dorsal horn neurons were not different between Sphk2-/- and wild-type mice. Chronic peripheral inflammation (CPI caused a bilateral increase in mechanical sensitivity in Sphk2-/- mice. Additionally, CPI increased the relative mRNA expression of P2X4 receptor, brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral spinal cord of wild-type but not Sphk2-/- mice. Similarly, Sphk2-/- mice showed in contrast to wild-type no CPI-dependent increase in areas of the dorsal horn immunoreactive for the microglia marker Iba-1 and the astrocyte marker GFAP. Our results suggest that the tightly regulated cell signalling enzyme Sphk2 may be a key component for facilitation of nociceptive circuits in the CNS leading to central sensitization and pain memory formation.

  14. Tyrosine kinases, drugs, and Shigella flexneri dissemination.

    Dragoi, Ana-Maria; Agaisse, Hervé

    2014-01-01

    Shigella flexneri is an enteropathogenic bacterium responsible for approximately 100 million cases of severe dysentery each year. S. flexneri colonization of the human colonic epithelium is supported by direct spread from cell to cell, which relies on actin-based motility. We have recently uncovered that, in intestinal epithelial cells, S. flexneri actin-based motility is regulated by the Bruton's tyrosine kinase (Btk). Consequently, treatment with Ibrutinib, a specific Btk inhibitor currently used in the treatment of B-cell malignancies, effectively impaired S. flexneri spread from cell to cell. Thus, therapeutic intervention capitalizing on drugs interfering with host factors supporting the infection process may represent an effective alternative to treatments with antimicrobial compounds.

  15. 2-Aminopyridine-Based Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Inhibitors: Assessment of Mechanism-Based Safety.

    Dow, Robert L; Ammirati, Mark; Bagley, Scott W; Bhattacharya, Samit K; Buckbinder, Leonard; Cortes, Christian; El-Kattan, Ayman F; Ford, Kristen; Freeman, Gary B; Guimarães, Cristiano R W; Liu, Shenping; Niosi, Mark; Skoura, Athanasia; Tess, David

    2018-04-12

    Studies have linked the serine-threonine kinase MAP4K4 to the regulation of a number of biological processes and/or diseases, including diabetes, cancer, inflammation, and angiogenesis. With a majority of the members of our lead series (e.g., 1) suffering from time-dependent inhibition (TDI) of CYP3A4, we sought design avenues that would eliminate this risk. One such approach arose from the observation that carboxylic acid-based intermediates employed in our discovery efforts retained high MAP4K4 inhibitory potency and were devoid of the TDI risk. The medicinal chemistry effort that led to the discovery of this central nervous system-impaired inhibitor together with its preclinical safety profile is described.

  16. SAD-B kinase regulates pre-synaptic vesicular dynamics at hippocampal Schaffer collateral synapses and affects contextual fear memory.

    Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa

    2016-01-01

    Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International

  17. Protein kinase substrate identification on functional protein arrays

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  18. Src protein-tyrosine kinase structure and regulation

    Roskoski, Robert

    2004-01-01

    Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPα displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the αD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu 4 Tyr)

  19. Structural studies of Schistosoma mansoni adenylate kinases

    Marques, I.A.; Pereira, H.M.; Garrat, R.C.

    2012-01-01

    Full text: Parasitic diseases are a major cause of death in developing countries, however receive little or no attention from pharmaceutical companies for the development of novel therapies. In this respect, the Center for Structural Molecular Biology (CBME) of the Institute of Physics of Sao Carlos (IFSC / USP) has developed expertise in all stages of the development of active compounds against target enzymes from parasitic diseases. The present work focuses on the adenylate kinase enzymes (ADK's) from Schistosoma mansoni. These enzymes are widely distributed and catalyze the reaction of phosphoryl exchange between nucleotides in the reaction 2ADP to ATP + AMP, which is critical for the cells life cycle. Due to the particular property of the reaction catalyzed, the ADK's are recognized as reporters of the cells energetic state, translating small changes in the balance between ATP and ADP into a large change in concentration of AMP. The genome of S. mansoni was recently sequenced by the Sanger Center in England. On performing searches for genes encoding adenylate kinases we found two such genes. The corresponding gene products were named ADK1 (197 residues) and ADK2 (239 residues), and the two sequences share only 28 percent identity. Both have been cloned into the pET-28a(+)vector, expressed in E. coli and purified. Preliminary tests of activity have been performed only for ADK1 showing it to be catalytically active. Crystallization trials were performed for both proteins and thus far, crystals of ADK1 have been obtained which diffract to 2.05 at the LNLS beamline MX2 and the structure solved by molecular replacement. Understanding, at the atomic level, the function of these enzymes may help in the development of specific inhibitors and may provide tools for developing diagnostic tests for schistosomiasis. (author)

  20. Hybrid and rogue kinases encoded in the genomes of model eukaryotes.

    Ramaswamy Rakshambikai

    Full Text Available The highly modular nature of protein kinases generates diverse functional roles mediated by evolutionary events such as domain recombination, insertion and deletion of domains. Usually domain architecture of a kinase is related to the subfamily to which the kinase catalytic domain belongs. However outlier kinases with unusual domain architectures serve in the expansion of the functional space of the protein kinase family. For example, Src kinases are made-up of SH2 and SH3 domains in addition to the kinase catalytic domain. A kinase which lacks these two domains but retains sequence characteristics within the kinase catalytic domain is an outlier that is likely to have modes of regulation different from classical src kinases. This study defines two types of outlier kinases: hybrids and rogues depending on the nature of domain recombination. Hybrid kinases are those where the catalytic kinase domain belongs to a kinase subfamily but the domain architecture is typical of another kinase subfamily. Rogue kinases are those with kinase catalytic domain characteristic of a kinase subfamily but the domain architecture is typical of neither that subfamily nor any other kinase subfamily. This report provides a consolidated set of such hybrid and rogue kinases gleaned from six eukaryotic genomes-S.cerevisiae, D. melanogaster, C.elegans, M.musculus, T.rubripes and H.sapiens-and discusses their functions. The presence of such kinases necessitates a revisiting of the classification scheme of the protein kinase family using full length sequences apart from classical classification using solely the sequences of kinase catalytic domains. The study of these kinases provides a good insight in engineering signalling pathways for a desired output. Lastly, identification of hybrids and rogues in pathogenic protozoa such as P.falciparum sheds light on possible strategies in host-pathogen interactions.

  1. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    2017-01-01

    v e V ia b il it y Figure 8. PC3-LN4 cells in normoxia or hypoxia were treated with Pim inhibitors. Left panel shows a Western blot and the...3728-36, PMID 25241892 4. Warfel, NA, Kraft, AS. Pim kinase (and Akt) biology and signaling in tumors. Pharmacol Ther. 2015 Jul; 151: 41 - 9. doi: 10.1016...Associated Fibroblast Biology in Prostate Cancer These studies will accelerate and significantly advance the rational development of targeted agents

  2. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  3. Creatine kinase and creatine kinase subunit-B in coronary sinus blood in pacing-induced angina pectoris

    Bagger, J P; Ingerslev, J; Heinsvig, E M

    1982-01-01

    In nine out of 10 patients with angiographic documented coronary artery disease, pacing-induced angina pectoris provoked myocardial production of lactate, whereas no significant release of either creatine kinase or creatine kinase subunit-B to coronary sinus and peripheral venous blood could...

  4. Identifying kinase dependency in cancer cells by integrating high-throughput drug screening and kinase inhibition data.

    Ryall, Karen A; Shin, Jimin; Yoo, Minjae; Hinz, Trista K; Kim, Jihye; Kang, Jaewoo; Heasley, Lynn E; Tan, Aik Choon

    2015-12-01

    Targeted kinase inhibitors have dramatically improved cancer treatment, but kinase dependency for an individual patient or cancer cell can be challenging to predict. Kinase dependency does not always correspond with gene expression and mutation status. High-throughput drug screens are powerful tools for determining kinase dependency, but drug polypharmacology can make results difficult to interpret. We developed Kinase Addiction Ranker (KAR), an algorithm that integrates high-throughput drug screening data, comprehensive kinase inhibition data and gene expression profiles to identify kinase dependency in cancer cells. We applied KAR to predict kinase dependency of 21 lung cancer cell lines and 151 leukemia patient samples using published datasets. We experimentally validated KAR predictions of FGFR and MTOR dependence in lung cancer cell line H1581, showing synergistic reduction in proliferation after combining ponatinib and AZD8055. KAR can be downloaded as a Python function or a MATLAB script along with example inputs and outputs at: http://tanlab.ucdenver.edu/KAR/. aikchoon.tan@ucdenver.edu. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  6. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression.

    Isakov, Noah

    2018-02-01

    The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its

  7. Odin (ANKS1A is a Src family kinase target in colorectal cancer cells

    Feller Stephan M

    2008-10-01

    Full Text Available Abstract Background Src family kinases (SFK are implicated in the development of some colorectal cancers (CRC. One SFK member, Lck, is not detectable in normal colonic epithelium, but becomes aberrantly expressed in a subset of CRCs. Although SFK have been extensively studied in fibroblasts and different types of immune cells, their physical and functional targets in many epithelial cancers remain poorly characterised. Results 64 CRC cell lines were tested for expression of Lck. SW620 CRC cells, which express high levels of Lck and also contain high basal levels of tyrosine phosphorylated (pY proteins, were then analysed to identify novel SFK targets. Since SH2 domains of SFK are known to often bind substrates after phosphorylation by the kinase domain, the LckSH2 was compared with 14 other SH2s for suitability as affinity chromatography reagent. Mass spectrometric analyses of LckSH2-purified pY proteins subsequently identified several proteins readily known as SFK kinase substrates, including cortactin, Tom1L1 (SRCASM, GIT1, vimentin and AFAP1L2 (XB130. Additional proteins previously reported as substrates of other tyrosine kinase were also detected, including the EGF and PDGF receptor target Odin. Odin was further analysed and found to contain substantially less pY upon inhibition of SFK activity in SW620 cells, indicating that it is a formerly unknown SFK target in CRC cells. Conclusion Rapid identification of known and novel SFK targets in CRC cells is feasible with SH2 domain affinity chromatography. The elucidation of new SFK targets like Odin in epithelial cancer cells is expected to lead to novel insight into cancer cell signalling mechanisms and may also serve to indicate new biomarkers for monitoring tumor cell responses to drug treatments.

  8. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas.

    Polte, T R; Hanks, S K

    1995-11-07

    The focal adhesion kinase (FAK) has been implicated in integrin-mediated signaling events and in the mechanism of cell transformation by the v-Src and v-Crk oncoproteins. To gain further insight into FAK signaling pathways, we used a two-hybrid screen to identify proteins that interact with mouse FAK. The screen identified two proteins that interact with FAK via their Src homology 3 (SH3) domains: a v-Crk-associated tyrosine kinase substrate (Cas), p130Cas, and a still uncharacterized protein, FIPSH3-2, which contains an SH3 domain closely related to that of p130Cas. These SH3 domains bind to the same proline-rich region of FAK (APPKPSR) encompassing residues 711-717. The mouse p130Cas amino acid sequence was deduced from cDNA clones, revealing an overall high degree of similarity to the recently reported rat sequence. Coimmunoprecipitation experiments confirmed that p130Cas and FAK are associated in mouse fibroblasts. The stable interaction between p130Cas and FAK emerges as a likely key element in integrin-mediated signal transduction and further represents a direct molecular link between the v-Src and v-Crk oncoproteins. The Src family kinase Fyn, whose Src homology 2 (SH2) domain binds to the major FAK autophosphorylation site (tyrosine 397), was also identified in the two-hybrid screen.

  9. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2.

    Konopatskaya, Olga; Matthews, Sharon A; Harper, Matthew T; Gilio, Karen; Cosemans, Judith M E M; Williams, Christopher M; Navarro, Maria N; Carter, Deborah A; Heemskerk, Johan W M; Leitges, Michael; Cantrell, Doreen; Poole, Alastair W

    2011-07-14

    Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.

  10. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment.

    Jauch, Ralf; Cho, Min-Kyu; Jäkel, Stefan; Netter, Catharina; Schreiter, Kay; Aicher, Babette; Zweckstetter, Markus; Jäckle, Herbert; Wahl, Markus C

    2006-09-06

    Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.

  11. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  12. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...

  13. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    Marzec, Michal; Zhang, Qian; Goradia, Ami

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report th...

  14. In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac

    Kortenoeven, Marleen; Trimpert, Christiane; van den Brand, Michiel

    2012-01-01

    kinase A (PKA) inhibitor H89. Moreover, phosphorylation of the cAMP-responsive element binding protein (CREB) and CRE-dependent transcription was observed after short-term dDAVP stimulation. With 4 days of dDAVP, AQP2 transcription remained elevated, but this was not blocked by H89, and CRE...

  15. The primary defect in glycogen synthase activity is not based on increased glycogen synthase kinase-3a activity in diabetic myotubes

    Gaster, Michael; Brusgaard, Klaus; Handberg, Aa.

    2004-01-01

    The mechanism responsible for the diminished activation of glycogen synthase (GS) in diabetic myotubes remains unclear, but may involve increased activity and/or expression of glycogen synthase kinase-3 (GSK-3). In myotubes established from type 2 diabetic and healthy control subjects we determined...

  16. Nucleoporin 62 and Ca(2+)/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells.

    Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M

    2016-02-15

    Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non

  17. Data-driven remaining useful life prognosis techniques stochastic models, methods and applications

    Si, Xiao-Sheng; Hu, Chang-Hua

    2017-01-01

    This book introduces data-driven remaining useful life prognosis techniques, and shows how to utilize the condition monitoring data to predict the remaining useful life of stochastic degrading systems and to schedule maintenance and logistics plans. It is also the first book that describes the basic data-driven remaining useful life prognosis theory systematically and in detail. The emphasis of the book is on the stochastic models, methods and applications employed in remaining useful life prognosis. It includes a wealth of degradation monitoring experiment data, practical prognosis methods for remaining useful life in various cases, and a series of applications incorporated into prognostic information in decision-making, such as maintenance-related decisions and ordering spare parts. It also highlights the latest advances in data-driven remaining useful life prognosis techniques, especially in the contexts of adaptive prognosis for linear stochastic degrading systems, nonlinear degradation modeling based pro...

  18. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  19. The NDR kinase scaffold HYM1/MO25 is essential for MAK2 map kinase signaling in Neurospora crassa.

    Anne Dettmann

    2012-09-01

    Full Text Available Cell communication is essential for eukaryotic development, but our knowledge of molecules and mechanisms required for intercellular communication is fragmentary. In particular, the connection between signal sensing and regulation of cell polarity is poorly understood. In the filamentous ascomycete Neurospora crassa, germinating spores mutually attract each other and subsequently fuse. During these tropic interactions, the two communicating cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. The MAK2 MAP kinase cascade mediates cell-cell signaling. Here, we show that the conserved scaffolding protein HYM1/MO25 controls the cell shape-regulating NDR kinase module as well as the signal-receiving MAP kinase cascade. HYM1 functions as an integral part of the COT1 NDR kinase complex to regulate the interaction with its upstream kinase POD6 and thereby COT1 activity. In addition, HYM1 interacts with NRC1, MEK2, and MAK2, the three kinases of the MAK2 MAP kinase cascade, and co-localizes with MAK2 at the apex of growing cells. During cell fusion, the three kinases of the MAP kinase module as well as HYM1 are recruited to the point of cell-cell contact. hym-1 mutants phenocopy all defects observed for MAK2 pathway mutants by abolishing MAK2 activity. An NRC1-MEK2 fusion protein reconstitutes MAK2 signaling in hym-1, while constitutive activation of NRC1 and MEK2 does not. These data identify HYM1 as a novel regulator of the NRC1-MEK2-MAK2 pathway, which may coordinate NDR and MAP kinase signaling during cell polarity and intercellular communication.

  20. Blue Light-excited Light-Oxygen-Voltage-sensing Domain 2 (LOV2) Triggers a Rearrangement of the Kinase Domain to Induce Phosphorylation Activity in Arabidopsis Phototropin1.

    Oide, Mao; Okajima, Koji; Kashojiya, Sachiko; Takayama, Yuki; Oroguchi, Tomotaka; Hikima, Takaaki; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-09-16

    Phototropin1 is a blue light (BL) receptor in plants and shows BL-dependent kinase activation. The BL-excited light-oxygen-voltage-sensing domain 2 (LOV2) is primarily responsible for the activation of the kinase domain; however, the molecular mechanism by which conformational changes in LOV2 are transmitted to the kinase domain remains unclear. Here, we investigated BL-induced structural changes of a minimum functional fragment of Arabidopsis phototropin1 composed of LOV2, the kinase domain, and a linker connecting the two domains using small-angle x-ray scattering (SAXS). The fragment existed as a dimer and displayed photoreversible SAXS changes reflected in the radii of gyration of 42.9 Å in the dark and 48.8 Å under BL irradiation. In the dark, the molecular shape reconstructed from the SAXS profiles appeared as two bean-shaped lobes in a twisted arrangement that was 170 Å long, 80 Å wide, and 50 Å thick. The molecular shape under BL became slightly elongated from that in the dark. By fitting the crystal structure of the LOV2 dimer and a homology model of the kinase domain to their inferred shapes, the BL-dependent change could be interpreted as the positional shift in the kinase domain relative to that of the LOV2 dimer. In addition, we found that lysine 475, a functionally important residue, in the N-terminal region of LOV2 plays a critical role in transmitting the structural changes in LOV2 to the kinase domain. The interface between the domains is critical for signaling, suitably changing the structure to activate the kinase in response to conformational changes in the adjoining LOV2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. RhoA/Rho-Kinase in the Cardiovascular System.

    Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio

    2016-01-22

    Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.

  2. Kinase inhibition by the Jamaican ball moss, Tillandsia recurvata L.

    Lowe, Henry I C; Watson, Charah T; Badal, Simone; Toyang, Ngeh J; Bryant, Joseph

    2012-10-01

    This research was undertaken in order to investigate the inhibitory potential of the Jamaican ball moss, Tillandsia recurvata against several kinases. The inhibition of these kinases has emerged as a potential solution to restoring the tight regulation of normal cellular growth, the loss of which leads to cancer cell formation. Kinase inhibition was investigated using competition binding (to the ATP sites) assays, which have been previously established and authenticated. Four hundred and fifty one kinases were tested against the Jamaican ball moss extract and a dose-response was tested on 40 kinases, which were inhibited by more than 35% compared to the control. Out of the 40 kinases, the Jamaican ball moss selectively inhibited 5 (CSNK2A2, MEK5, GAK, FLT and DRAK1) and obtained Kd(50)s were below 20 μg/ml. Since MEK5 and GAK kinases have been associated with aggressive prostate cancer, the inhibitory properties of the ball moss against them, coupled with its previously found bioactivity towards the PC-3 cell line, makes it promising in the arena of drug discovery towards prostate cancer.

  3. Structure of the intact ATM/Tel1 kinase

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-05-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.

  4. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  5. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Regulatory role of tumor necrosis factor receptor-associated factor 6 in breast cancer by activating the protein kinase B/glycogen synthase kinase 3β signaling pathway.

    Shen, Hongyu; Li, Liangpeng; Yang, Sujin; Wang, Dandan; Zhou, Siying; Chen, Xiu; Tang, Jinhai

    2017-08-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an endogenous adaptor of innate and adaptive immune responses, and serves a crucial role in tumor necrosis factor receptor and toll‑like/interleukin‑1 receptor signaling. Although studies have demonstrated that TRAF6 has oncogenic activity, its potential contributions to breast cancer in human remains largely uninvestigated. The present study examined the expression levels and function of TRAF6 in breast carcinoma (n=32) and adjacent healthy (n=25) tissue samples. Compared with adjacent healthy tissues, TRAF6 protein expression levels were significantly upregulated in breast cancer tissues. Reverse transcription‑quantitative polymerase chain reaction analysis revealed a significant upregulation of the cellular proliferative marker Ki‑67 and proliferation cell nuclear antigen expression levels in breast carcinoma specimens. Furthermore, protein expression levels of the accessory molecule, transforming growth factor β‑activated kinase 1 (TAK1), were significantly increased in breast cancer patients, as detected by western blot analysis. As determined by MTT assay, TRAF6 exerted profoundly proliferative effects in the MCF‑7 breast cancer cell line; however, these detrimental effects were ameliorated by TAK1 inhibition. Notably, protein kinase B (AKT)/glycogen synthase kinase (GSK)3β phosphorylation levels were markedly upregulated in breast cancer samples, compared with adjacent healthy tissues. In conclusion, an altered TRAF6‑TAK1 axis and its corresponding downstream AKT/GSK3β signaling molecules may contribute to breast cancer progression. Therefore, TRAF6 may represent a potential therapeutic target for the treatment of breast cancer.

  7. The 'retro-design' concept for novel kinase inhibitors.

    Müller, Gerhard; Sennhenn, Peter C; Woodcock, Timothy; Neumann, Lars

    2010-07-01

    Protein kinases are among the most attractive therapeutic targets for a broad range of diseases. This feature review highlights and classifies the main design principles employed to generate active and selective kinase inhibitors. In particular, emphasis is focused on a fragment-based lead-generation approach, which constitutes a novel design method for developing type II kinase inhibitors with distinct binding kinetic attributes. This 'retro-design' strategy relies on a customized fragment library, and contrasts the traditional approach used in the design of type II inhibitors.

  8. Second-generation inhibitors of Bruton tyrosine kinase

    Jingjing Wu

    2016-09-01

    Full Text Available Abstract Bruton tyrosine kinase (BTK is a critical effector molecule for B cell development and plays a major role in lymphoma genesis. Ibrutinib is the first-generation BTK inhibitor. Ibrutinib has off-target effects on EGFR, ITK, and Tec family kinases, which explains the untoward effects of ibrutinib. Resistance to ibrutinib was also reported. The C481S mutation in the BTK kinase domain was reported to be a major mechanism of resistance to ibrutinib. This review summarizes the clinical development of novel BTK inhibitors, ACP-196 (acalabrutinib, ONO/GS-4059, and BGB-3111.

  9. Nucleolin (C23), a physiological substrate for casein kinase II

    Schneider, H R; Issinger, O G

    1988-01-01

    Nucleolin (C23), a 110 kDa phosphoprotein, which is mainly found in the nucleolus has been shown to be a physiological substrate for casein kinase II (CKII). Nucleolin was identified and characterized by immunodetection using an anti-nucleolin antibody. Phosphopeptide patterns from nucleolin...... phosphorylated by purified casein kinase II and of phosphorylated nucleolin which had been isolated from tumor cells grown in the presence of [32P]-o-phosphate, were identical. The partial tryptic digest revealed nine phosphopeptides. Nucleolin isolated from Krebs II mouse ascites cells was phosphorylated...... by purified casein kinase II with about two moles phosphate per one mole of nucleolin....

  10. Heat Shock Proteins and Mitogen-activated Protein Kinases in Steatotic Livers Undergoing Ischemia-Reperfusion: Some Answers

    Massip-Salcedo, Marta; Casillas-Ramirez, Araní; Franco-Gou, Rosah; Bartrons, Ramón; Ben Mosbah, Ismail; Serafin, Anna; Roselló-Catafau, Joan; Peralta, Carmen

    2006-01-01

    Ischemic preconditioning protects steatotic livers against ischemia-reperfusion (I/R) injury, but just how this is achieved is poorly understood. Here, I/R or preconditioning plus I/R was induced in steatotic and nonsteatotic livers followed by investigating the effect of pharmacological treatments that modulate heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs). MAPKs, HSPs, protein kinase C, and transaminase levels were measured after reperfusion. We report that preconditioning increased HSP72 and heme-oxygenase-1 (HO-1) at 6 and 24 hours of reperfusion, respectively. Unlike nonsteatotic livers, steatotic livers benefited from HSP72 activators (geranylgeranylacetone) throughout reperfusion. This protection seemed attributable to HO-1 induction. In steatotic livers, preconditioning and geranylgeranylacetone treatment (which are responsible for HO-1 induction) increased protein kinase C activity. HO-1 activators (cobalt(III) protoporphyrin IX) protected both liver types. Preconditioning reduced p38 MAPK and c-Jun N-terminal kinase (JNK), resulting in HSP72 induction though HO-1 remained unmodified. Like HSP72, both p38 and JNK appeared not to be crucial in preconditioning, and inhibitors of p38 (SB203580) and JNK (SP600125) were less effective against hepatic injury than HO-1 activators. These results provide new data regarding the mechanisms of preconditioning and may pave the way to the development of new pharmacological strategies in liver surgery. PMID:16651615

  11. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein

    Mariano, Andrea C.; Andrade, Maxuel O.; Santos, Anesia A.; Carolino, Sonia M.B.; Oliveira, Marli L.; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H.; Fontes, Elizabeth P.B.

    2004-01-01

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed

  12. Structures of the inactive and active states of RIP2 kinase inform on the mechanism of activation.

    Erika Pellegrini

    Full Text Available Innate immune receptors NOD1 and NOD2 are activated by bacterial peptidoglycans leading to recruitment of adaptor kinase RIP2, which, upon phosphorylation and ubiquitination, becomes a scaffold for downstream effectors. The kinase domain (RIP2K is a pharmaceutical target for inflammatory diseases caused by aberrant NOD2-RIP2 signalling. Although structures of active RIP2K in complex with inhibitors have been reported, the mechanism of RIP2K activation remains to be elucidated. Here we analyse RIP2K activation by combining crystal structures of the active and inactive states with mass spectrometric characterization of their phosphorylation profiles. The active state has Helix αC inwardly displaced and the phosphorylated Activation Segment (AS disordered, whilst in the inactive state Helix αC is outwardly displaced and packed against the helical, non-phosphorylated AS. Biophysical measurements show that the active state is a stable dimer whilst the inactive kinase is in a monomer-dimer equilibrium, consistent with the observed structural differences at the dimer interface. We conclude that RIP2 kinase auto-phosphorylation is intimately coupled to dimerization, similar to the case of BRAF. Our results will help drug design efforts targeting RIP2 as a potential treatment for NOD2-RIP2 related inflammatory diseases.

  13. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons.

    Tzu Lin

    2015-11-01

    Full Text Available During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.

  14. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  15. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    Boulbes, Delphine R.; Arold, Stefan T.; Chauhan, Gaurav B.; Blachno, Korina V.; Deng, Nanfu; Chang, Wei-Chao; Jin, Quanri; Huang, Tzu-Hsuan; Hsu, Jung-Mao; Brady, Samuel W.; Bartholomeusz, Chandra; Ladbury, John E.; Stone, Steve; Yu, Dihua; Hung, Mien-Chie; Esteva, Francisco J.

    2014-01-01

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  16. Career Motivation in Newly Licensed Registered Nurses: What Makes Them Remain

    Banks, Zarata Mann; Bailey, Jessica H.

    2010-01-01

    Despite vast research on newly licensed registered nurses (RNs), we don't know why some newly licensed registered nurses remain in their current jobs and others leave the nursing profession early in their career. Job satisfaction, the most significant factor emerging from the literature, plays a significant role in nurses' decisions to remain in…

  17. Stable isotopes, niche partitioning and the paucity of elasmosaur remains in the Maastrichtian type area

    Schulp, Anne S.; Janssen, Renée; Van Baal, Remy R.; Jagt, John W M; Mulder, Eric W A; Vonhof, Hubert B.

    2017-01-01

    Remains of elasmosaurid plesiosaurs are exceedingly rare in the type-Maastrichtian strata (Late Cretaceous, southeast Netherlands and northeast Belgium), in stark contrast to relatively common skeletal remains of mosasaurs. Here, we present an analysis of δ13C stable isotope values for tooth enamel

  18. 20 CFR 408.330 - How long will your application remain in effect?

    2010-04-01

    ... effect? 408.330 Section 408.330 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SPECIAL BENEFITS FOR CERTAIN WORLD WAR II VETERANS Filing Applications Filing Your Application § 408.330 How long will your application remain in effect? Your application for SVB will remain in effect from the date it is filed until...

  19. Structural Studies of Archaealthermophilic Adenylate Kinase; TOPICAL

    Konisky, J.

    2002-01-01

    Through this DOE-sponsored program Konisky has studied the evolution and molecular biology of microbes that live in extreme environments. The emphasis of this work has been the determination of the structural features of thermophilic enzymes that allow them to function optimally at near 100 C. The laboratory has focused on a comparative study of adenylate kinase (ADK), an enzyme that functions to interconvert adenine nucleotides. Because of the close phylogenetic relatedness of members of the Methanococci, differences in the structure of their ADKs will be dominated by structural features that reflect contributions to their optimal temperature for activity, rather than differences due to phylogenetic divergence. We have cloned, sequenced and modeled the secondary structure for several methanococcal ADKs. Using molecular modeling threading approaches that are based on the solved structure for the porcine ADK, we have also proposed a general low resolution three dimensional structure for each of the methanococcal enzymes. These analyses have allowed us to propose structural features that confer hyperthermoactivity to those enzymes functioning in the hyperthermophilic members of the Methanococci. Using protein engineering methodologies, we have tested our hypotheses by examining the effects of selective structural changes on thermoactivity. Despite possessing between 68-81% sequence identity, the methanococcal AKs had significantly different stability against thermal denaturation, with melting points ranging from 69-103 C. The construction of several chimerical AKs by linking regions of the MVO and MJA AKs demonstrated the importance of cooperative interactions between amino- and carboxyl-terminal regions in influencing thermostability. Addition of MJA terminal fragments to the MVO AK increased thermal stability approximately 20 C while maintaining 88% of the mesophilic sequence. Further analysis using structural models suggested that hydrophobic interactions are

  20. Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine

    Xiaochen Zhang

    2017-01-01

    Full Text Available To predict the remaining life of ball screw, a screw remaining life prediction method based on quantum genetic algorithm (QGA and support vector machine (SVM is proposed. A screw accelerated test bench is introduced. Accelerometers are installed to monitor the performance degradation of ball screw. Combined with wavelet packet decomposition and isometric mapping (Isomap, the sensitive feature vectors are obtained and stored in database. Meanwhile, the sensitive feature vectors are randomly chosen from the database and constitute training samples and testing samples. Then the optimal kernel function parameter and penalty factor of SVM are searched with the method of QGA. Finally, the training samples are used to train optimized SVM while testing samples are adopted to test the prediction accuracy of the trained SVM so the screw remaining life prediction model can be got. The experiment results show that the screw remaining life prediction model could effectively predict screw remaining life.

  1. "SINCE I MUST PLEASE THOSE BELOW": HUMAN SKELETAL REMAINS RESEARCH AND THE LAW.

    Holland, Thomas D

    2015-01-01

    The ethics of non-invasive scientific research on human skeletal remains are poorly articulated and lack a single, definitive analogue in western law. Laws governing invasive research on human fleshed remains, as well as bio-ethical principles established for research on living subjects, provide effective models for the establishment of ethical guidelines for non-invasive research on human skeletal remains. Specifically, non-invasive analysis of human remains is permissible provided that the analysis and collection of resulting data (1) are accomplished with respect for the dignity of the individual, (2) do not violate the last-known desire of the deceased, (3) do not adversely impact the right of the next of kin to perform a ceremonious and decent disposal of the remains, and (4) do not unduly or maliciously violate the privacy interests of the next of kin.

  2. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283.

    Curry, Jayne; Angove, Hayley; Fazal, Lynsey; Lyons, John; Reule, Matthias; Thompson, Neil; Wallis, Nicola

    2009-06-15

    Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.

  3. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead.

    Huang, Tsai-Lien; Huang, Hao-Jen

    2008-04-01

    Lead (Pb2+) is a cytotoxic metal ion in plants, the mechanism of which is not yet established. The aim of this study is to investigate the signalling pathways that are activated by elevated concentrations of Pb2+ in rice roots. Root growth was stunted and cell death was accelerated when exposed to different dosages of Pb2+ during extended time periods. Using ROS-sensitive dye and Ca2+ indicator, we demonstrated that Pb2+ induced ROS production and Ca2+ accumulation, respectively. In addition, Pb2+ elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analysis, 40- and 42-kDa MBP kinases that were activated by Pb2+ were identified to be mitogen-activated protein (MAP) kinases. Pre-treatment of rice roots with an antioxidant and a NADPH oxidase inhibitor, glutathione (GSH) and diphenylene iodonium (DPI), effectively reduced Pb2+-induced cell death and MAP kinase activation. Moreover, calcium-dependent protein kinase (CDPK) antagonist, W7, attenuated Pb2+-induced cell death and MAP kinase activation. These results suggested that the ROS and CDPK may function in the Pb2+-triggered cell death and MAP kinase signalling pathway in rice roots.

  4. Potassium sensing histidine kinase in Bacillus subtilis.

    López, Daniel; Gontang, Erin A; Kolter, Roberto

    2010-01-01

    The soil-dwelling organism Bacillus subtilis is able to form multicellular aggregates known as biofilms. It was recently reported that the process of biofilm formation is activated in response to the presence of various, structurally diverse small-molecule natural products. All of these small-molecule natural products made pores in the membrane of the bacterium, causing the leakage of potassium cations from the cytoplasm of the cell. The potassium cation leakage was sensed by the membrane histidine kinase KinC, triggering the genetic pathway to the production of the extracellular matrix that holds cells within the biofilm. This chapter presents the methodology used to characterize the leakage of cytoplasmic potassium as the signal that induces biofilm formation in B. subtilis via activation of KinC. Development of novel techniques to monitor activation of gene expression in microbial populations led us to discover the differentiation of a subpopulation of cells specialized to produce the matrix that holds all cells together within the biofilm. This phenomenon of cell differentiation was previously missed by conventional techniques used to monitor transcriptional gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Substrate analysis of the Pneumocystis carinii protein kinases PcCbk1 and PcSte20 using yeast proteome microarrays provides a novel method for Pneumocystis signalling biology.

    Kottom, Theodore J; Limper, Andrew H

    2011-10-01

    Pneumocystis carinii (Pc) undergoes morphological transitions between cysts and trophic forms. We have previously described two Pc serine/threonine kinases, termed PcCbk1 and PcSte20, with PcSte20 belonging to a family of kinases involved in yeast mating, while PcCbk1 is a member of a group of protein kinases involved in regulation of cell cycle, shape, and proliferation. As Pc remains genetically intractable, knowledge on specific substrates phosphorylated by these kinases remains limited. Utilizing the phylogenetic relatedness of Pc to Saccharomyces cerevisiae, we interrogated a yeast proteome microarray containing >4000 purified protein based peptides, leading to the identification of 18 potential PcCbk1 and 15 PcSte20 substrates (Z-score > 3.0). A number of these potential protein substrates are involved in bud site selection, polarized growth, and response to mating α factor and pseudohyphal and invasive growth. Full-length open reading frames suggested by the PcCbk1 and PcSte20 protoarrays were amplified and expressed. These five proteins were used as substrates for PcCbk1 or PcSte20, with each being highly phosphorylated by the respective kinase. Finally, to demonstrate the utility of this method to identify novel PcCbk1 and PcSte20 substrates, we analysed DNA sequence data from the partially complete Pc genome database and detected partial sequence information of potential PcCbk1 kinase substrates PcPxl1 and PcInt1. We additionally identified the potential PcSte20 kinase substrate PcBdf2. Full-length Pc substrates were cloned and expressed in yeast, and shown to be phosphorylated by the respective Pc kinases. In conclusion, the yeast protein microarray represents a novel crossover technique for identifying unique potential Pc kinase substrates. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    Sayed, M; Kim, S O; Salh, B S

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears...

  7. New protein kinase inhibitors in breast cancer: afatinib and neratinib.

    Zhang, Xiaosong; Munster, Pamela N

    2014-06-01

    Human epidermal growth factor receptor (HER) 2 is overexpressed in 20 - 25% of breast cancers, and has historically been a poor prognostic marker. The introduction of trastuzumab, the first fully humanized monoclonal antibody targeting HER2, has drastically changed the outcomes of metastatic breast cancers. However, despite initial response, most patients develop resistance. Recent data suggest that strategies targeting more than one member of HER family may circumvent trastuzumab resistance and confer synergistic effects. Following a literature search on PubMed, national meetings and clinicaltrials.gov using 'afatinib', 'neratinib', 'HER2' and 'breast cancer' as keywords, we critically analyzed the different HER2-targeted therapies for their drug development and evidence-based therapeutic strategies. Afatinib and neratinib, two second-generation tyrosine kinase inhibitors (TKIs) that irreversibly inhibit more than one HER family member, are being actively investigated in clinical trials either as monotherapy or in combination. We reviewed the efficacy and optimal use of these agents in various settings, such as systemic therapy for advanced breast cancer including brain metastases, and neoadjuvant therapy in early-stage breast cancer. HER2-targeted therapies have been widely used and greatly improved the outcome of HER2-positive breast cancer. Despite the accelerated advancement in recent years, several crucial questions remain unanswered, such as how to treat a prior resistance or affect a sanctuary site, that is, CNS metastasis. The novel next-generation TKIs, afatinib and neratinib, were rationally designed to overcome the resistance by targeting multiple HER family members and irreversibly binding the targets. In spite of the encouraging results of the afatinib and neratinib monotherapies, they have not been proven more efficacious in the combination therapies yet, even though multicenter international trials are still ongoing. The key tasks in the future are

  8. Regulation of glycogen synthase kinase-3 during bipolar mania treatment.

    Li, Xiaohong; Liu, Min; Cai, Zhuoji; Wang, Gang; Li, Xiaohua

    2010-11-01

    Bipolar disorder is a debilitating psychiatric illness presenting with recurrent mania and depression. The pathophysiology of bipolar disorder is poorly understood, and molecular targets in the treatment of bipolar disorder remain to be identified. Preclinical studies have suggested that glycogen synthase kinase-3 (GSK3) is a potential therapeutic target in bipolar disorder, but evidence of abnormal GSK3 in human bipolar disorder and its response to treatment is still lacking. This study was conducted in acutely ill type I bipolar disorder subjects who were hospitalized for a manic episode. The protein level and the inhibitory serine phosphorylation of GSK3 in peripheral blood mononuclear cells of bipolar manic and healthy control subjects were compared, and the response of GSK3 to antimanic treatment was evaluated. The levels of GSK3α and GSK3β in this group of bipolar manic subjects were higher than healthy controls. Symptom improvement during an eight-week antimanic treatment with lithium, valproate, and atypical antipsychotics was accompanied by a significant increase in the inhibitory serine phosphorylation of GSK3, but not the total level of GSK3, whereas concomitant electroconvulsive therapy treatment during a manic episode appeared to dampen the response of GSK3 to pharmacological treatment. Results of this study suggest that GSK3 can be modified during the treatment of bipolar mania. This finding in human bipolar disorder is in agreement with preclinical data suggesting that inhibition of GSK3 by increasing serine phosphorylation is a response of GSK3 to psychotropics used in bipolar disorder, supporting the notion that GSK3 is a promising molecular target in the pharmacological treatment of bipolar disorder. © 2010 John Wiley and Sons A/S.

  9. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  10. Decontamination and management of human remains following incidents of hazardous chemical release.

    Hauschild, Veronique D; Watson, Annetta; Bock, Robert

    2012-01-01

    To provide specific guidance and resources for systematic and orderly decontamination of human remains resulting from a chemical terrorist attack or accidental chemical release. A detailed review and health-based decision criteria protocol is summarized. Protocol basis and logic are derived from analyses of compound-specific toxicological data and chemical/physical characteristics. Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present, such as sites of transportation accidents, terrorist operations, or medical examiner processing points. Guidance is developed from data-characterizing controlled experiments with laboratory animals, fabrics, and materiel. Logic and specific procedures for decontamination and management of remains, protection of mortuary affairs personnel, and decision criteria to determine when remains are sufficiently decontaminated are presented. Established procedures as well as existing materiel and available equipment for decontamination and verification provide reasonable means to mitigate chemical hazards from chemically exposed remains. Unique scenarios such as those involving supralethal concentrations of certain liquid chemical warfare agents may prove difficult to decontaminate but can be resolved in a timely manner by application of the characterized systematic approaches. Decision criteria and protocols to "clear" decontaminated remains for transport and processing are also provided. Once appropriate decontamination and verification have been accomplished, normal procedures for management of remains and release can be followed.

  11. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  12. Engineering and Functional Analysis of Mitotic Kinases Through Chemical Genetics.

    Jones, Mathew J K; Jallepalli, Prasad V

    2016-01-01

    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.

  13. Localization of two mammalian cyclin dependent kinases during mammalian meiosis

    Ashley, T.; Walpita, D.; de rooij, D. G.

    2001-01-01

    Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids)

  14. Adenosine monophosphate-activated protein kinase from the mud ...

    2016-12-01

    Dec 1, 2016 ... to the understanding of the molecular mechanism of acclimation to cold hardiness in S. ... have shown that the stress associated with cold temperature ..... vation by cyclic-AMP-dependent protein kinase, studied using.

  15. Profiling bacterial kinase activity using a genetic circuit

    van der Helm, Eric; Bech, Rasmus; Lehning, Christina Eva

    Phosphorylation is a post-translational modification that regulates the activity of several key proteins in bacteria and eukaryotes. Accordingly, a variety of tools has been developed to measure kinase activity. To couple phosphorylation to an in vivo fluorescent readout we used the Bacillus...... subtilis kinase PtkA, transmembrane activator TkmA and the repressor FatR to construct a genetic circuit in E. coli. By tuning the repressor and kinase expression level at the same time, we were able to show a 4.2-fold increase in signal upon kinase induction. We furthermore validated that the previously...... reported FatR Y45E mutation1 attenuates operator repression. This genetic circuit provides a starting point for computational protein design and a metagenomic library-screening tool....

  16. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    Jaouani Mouna

    2015-09-26

    Sep 26, 2015 ... to several mutations at the Pyruvate Kinase gene (PKLR) located on chromosome .... Tunisians (Fig. 2) [21]. The screening of whole PKLR gene revealed the presence of ..... newborns: the pitfalls of diagnosis. J Pediatr 2007 ...

  17. Protein kinase A regulatory subunit distribution in medulloblastoma

    Mucignat-Caretta, Carla; Denaro, Luca; Redaelli, Marco; D'Avella, Domenico; Caretta, Antonio

    2010-01-01

    Previous studies showed a differential distribution of the four regulatory subunits of cAMP-dependent protein kinases inside the brain, that changed in rodent gliomas: therefore, the distribution of these proteins inside the brain can give information on the functional state of the cells. Our goal was to examine human brain tumors to provide evidence for a differential distribution of protein kinase A in different tumors. The distribution of detergent insoluble regulatory (R1 and R2) and catalytic subunits of cAMP dependent kinases was examined in pediatric brain tumors by immunohistochemistry and fluorescent cAMP analogues binding. R2 is organized in large single dots in medulloblastomas, while it has a different appearance in other tumors. Fluorescent cAMP labelling was observed only in medulloblastoma. A different distribution of cAMP dependent protein kinases has been observed in medulloblastoma

  18. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  19. Receptor tyrosine kinase signaling: a view from quantitative proteomics

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2009-01-01

    Growth factor receptor signaling via receptor tyrosine kinases (RTKs) is one of the basic cellular communication principals found in all metazoans. Extracellular signals are transferred via membrane spanning receptors into the cytoplasm, reversible tyrosine phosphorylation being the hallmark of all...

  20. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    Weier, Heinz-Ulrich

    2001-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  1. Tyrosine Kinase Gene Expression Profiling in Prostate Cancer

    Weier, Heinz-Ulrich

    2002-01-01

    ... of these genes parallels the progression of tumors to a more malignant phenotype. We developed a DNA micro-array based screening system to monitor the level of expression of tyrosine kinase (tk...

  2. Expression, purification and kinase activity analysis of maize ...

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... Kinase activity is essential for a protein kinase to perform its biological function. In previous study we have cloned a novel plant SnRK2 subfamily gene from maize and named it as ZmSPK1. In this study the. cDNA of ZmSPK1 with dHA-His6 tag was amplified by PCR and was subcloned into the yeast.

  3. Janus Associated Kinases Inhibitors in the Pharmacological Thera

    Daniela Santos1

    2017-01-01

    Full Text Available Janus associated kinases inhibitors are a new strategy for the treatment of different clinical conditions like immunologic, inflammatory and oncology disorders. The aim of this study was to perform a review of all Janus associated kinases inhibitors available in national and international pharmaceutical market, their therapeutic indications and adverse effects, and the potential indications for investigation of those already available in the pharmaceutical market. It was also performed a review of the main new Janus associated kinases inhibitors that are still in clinical research. A literature review was conducted by consulting the summary of product characteristics of Janus associated kinases inhibitors available in the pharmaceutical market and a research in the bibliographic database PubMed using the terms «JAK inhibitors», «Janus associated kinases inhibitors» and «Janus kinases inhibitors». Ninety-five publications were included in the present review, published from January 2014 to January 2015. Drug databases of the European Medicines Agency and United States Food and Drug Administration were also consulted to search for Janus associated kinases inhibitors authorized in clinical practice. Currently, ruxolitinib and tofacitinib are available in the pharmaceutical market and oclatinib is approved as a veterinary medicinal product. Both drugs approved for human use have major adverse effects at hematological and immunological levels, which enhance the importance of the pharmacist’s role in the monitoring of patients involved in these treatments. However, several molecules are in pre-clinical and clinical studies trying to prove its potential in the treatment of several immunologic, inflammatory and oncology disorders. Thus, it is still necessary to deepen the knowledge in this area in order to overcome the risks of therapy with these agents. These risks weighed against the benefits of its clinical use have compromised the progress of

  4. Structural analysis of the Csk homologous kinase CHK

    Mulhern, T.; Chong, Y.-P.; Cheng, H.-C.

    2003-01-01

    Full text: CHK (Csk homologous kinase) is an intracellular protein tyrosine kinase, which is highly expressed in the haematopoietic system and the brain. The in vivo role of CHK is to specifically phosphorylate and deactivate the Src family of protein tyrosine kinases. The members of the Src family: Src, Blk, Fyn, Fgr, Hck, Lck, Lyn, Yes and Yrk are major players in numerous cell signalling pathways and exquisitely tuned control of Src family activity is fundamental to many processes in normal cells (reviewed in Lowell and Soriano, 1996). For example, the Src family kinase Fyn is highly expressed in the brain and its activity is vital for memory and learning. In the haematopoietic system, the Src family kinase Hck controls cytoskeletal reorganization, cell motility and immunologic activation. While the Csk family enzymes are closely related to the Src proteins (∼37% identity), the x-ray crystal structures of Src (Xu et al., 1997) and Csk (Ogawa et al., 2002) do display several important differences. Unlike Src, the Csk the SH2 and SH3 domains do not bind intramolecular ligands and they adopt a strikingly different disposition to that observed in Src. Another interesting feature is that the linkers between the SH3 and SH2 domains and between the SH2 and kinase domains, are in intimate contact with the N-lobe of kinase and both appear to play important roles in regulation of the kinase activity. However, the structural and functional basis of how this can be altered is still unclear. We describe the results of biochemical analyses of CHK mediated deactivation of Hck, which suggest that in addition to direct tail-phosphorylation, protein-protein interactions are important. We also describe heteronuclear NMR studies of the structure and ligand binding properties of the CHK SH2 and SH3 domains with a particular emphasis on the transmission of regulatory signals from the ligand binding sites to the interdomain linkers

  5. High-throughput screening to identify inhibitors which stabilize inactive kinase conformations in p38 alpha

    Simard, J.R.; Grutter, C.; Pawar, V.; Aust, B.; Wolf, A.; Rabiller, M.; Wulfert, S.; Robubi, A.; Kluter, S.; Ottmann, C.; Rauh, D.

    2009-01-01

    Small molecule kinase inhibitors are an attractive means to modulate kinase activities in medicinal chemistry and chemical biology research. In the physiological setting of a cell, kinase function is orchestrated by a plethora of regulatory processes involving the structural transition of kinases

  6. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  7. Identification of the protein kinase C phosphorylation site in neuromodulin

    Apel, E.D.; Byford, M.F.; Au, D.; Walsh, K.A.; Storm, D.R.

    1990-01-01

    Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin and the authors have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar K m values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [γ- 32 P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32 P-labeled tryptic peptide was generated from phosphorylated neuromodulin. They conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmoculin to neuromodulin. The proximity of serine-41 to the calmodulin binding domain in neuromodulin very likely explains the effect of phosphorylation on the affinity of neuromodulin for calmodulin

  8. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  9. Crystal structure of human protein kinase CK2

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  10. Putative tyrosine kinases expressed in K-562 human leukemia cells

    Partanen, J.; Maekelae, T.P.; Lehvaeslaiho, H.; Alitalo, K.; Alitalo, R.

    1990-01-01

    Tyrosine phosphorylation is important in the transmission of growth and differentiation signals; known tyrosine kinases include several oncoproteins and growth factor receptors. Interestingly, some differentiated cell types, such as erythrocytes and platelets contain high amounts of phosphotyrosine. The authors analyzed tyrosine kinases expressed in the K-562 chronic myelogenous leukemia cell line, which has a bipotential erythroid and megakaryoblastoid differentiation capacity. Analysis of 359 polymerase chain reaction-amplified cDNA clones led to the identification of 14 different tyrosine kinase-related sequences (JTK1-14). Two of the clones (JTK2 and JTK4) represent unusual members of the fibroblast growth factor receptor gene family, and the clones JTK5, JTK11, and JTK14 may also belong to the family of receptor tyrosine kinases but lack a close relationship to any known tyrosine kinase. Each of these different genes has its own characteristic expression pattern in K-562 cells and several other human tumor cell lines. In addition, the JTK11 and JTK14 mRNAs are induced during the megakaryoblastoid differentiation of K-562 cells. These tyrosine kinases may have a role in the differentiation of megakaryoblasts or in the physiology of platelets

  11. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    M Kasim Diril

    2016-09-01

    Full Text Available The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.

  12. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    Diril, M Kasim; Bisteau, Xavier; Kitagawa, Mayumi; Caldez, Matias J; Wee, Sheena; Gunaratne, Jayantha; Lee, Sang Hyun; Kaldis, Philipp

    2016-09-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.

  13. SH2-dependent autophosphorylation within the Tec family kinase Itk.

    Joseph, Raji E; Severin, Andrew; Min, Lie; Fulton, D Bruce; Andreotti, Amy H

    2009-08-07

    The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.

  14. Predictors of patients remaining anovulatory during clomiphene citrate induction of ovulation in normogonadotropic oligoamenorrheic infertility

    B. Imani (Babak); M.J.C. Eijkemans (René); E.R. te Velde (Egbert); J.D.F. Habbema (Dik); B.C.J.M. Fauser (Bart)

    1998-01-01

    textabstractThe diagnostic criteria used to identify patients suffering from polycystic ovary syndrome remain controversial. The present prospective longitudinal follow-up study was designed to identify whether certain criteria assessed during standardized initial

  15. BTC method for evaluation of remaining strength and service life of bridge cables.

    2011-09-01

    "This report presents the BTC method; a comprehensive state-of-the-art methodology for evaluation of remaining : strength and residual life of bridge cables. The BTC method is a probability-based, proprietary, patented, and peerreviewed : methodology...

  16. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity.

    Kim, Dennis H; Feinbaum, Rhonda; Alloing, Geneviève; Emerson, Fred E; Garsin, Danielle A; Inoue, Hideki; Tanaka-Hino, Miho; Hisamoto, Naoki; Matsumoto, Kunihiro; Tan, Man-Wah; Ausubel, Frederick M

    2002-07-26

    A genetic screen for Caenorhabditis elegans mutants with enhanced susceptibility to killing by Pseudomonas aeruginosa led to the identification of two genes required for pathogen resistance: sek-1, which encodes a mitogen-activated protein (MAP) kinase kinase, and nsy-1, which encodes a MAP kinase kinase kinase. RNA interference assays and biochemical analysis established that a p38 ortholog, pmk-1, functions as the downstream MAP kinase required for pathogen defense. These data suggest that this MAP kinase signaling cassette represents an ancient feature of innate immune responses in evolutionarily diverse species.

  17. Cognitive bias in forensic anthropology: visual assessment of skeletal remains is susceptible to confirmation bias.

    Nakhaeizadeh, Sherry; Dror, Itiel E; Morgan, Ruth M

    2014-05-01

    An experimental study was designed to examine cognitive biases within forensic anthropological non-metric methods in assessing sex, ancestry and age at death. To investigate examiner interpretation, forty-one non-novice participants were semi randomly divided into three groups. Prior to conducting the assessment of the skeletal remains, two of the groups were given different extraneous contextual information regarding the sex, ancestry and age at death of the individual. The third group acted as a control group with no extraneous contextual information. The experiment was designed to investigate if the interpretation and conclusions of the skeletal remains would differ amongst participants within the three groups, and to assess whether the examiners would confirm or disagree with the given extraneous context when establishing a biological profile. The results revealed a significant biasing effect within the three groups, demonstrating a strong confirmation bias in the assessment of sex, ancestry and age at death. In assessment of sex, 31% of the participants in the control group concluded that the skeleton remains were male. In contrast, in the group that received contextual information that the remains were male, 72% concluded that the remains were male, and in the participant group where the context was that the remains were of a female, 0% of the participants concluded that the remains were male. Comparable results showing bias were found in assessing ancestry and age at death. These data demonstrate that cognitive bias can impact forensic anthropological non-metric methods on skeletal remains and affects the interpretation and conclusions of the forensic scientists. This empirical study is a step in establishing an evidence base approach for dealing with cognitive issues in forensic anthropological assessments, so as to enhance this valuable forensic science discipline. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights

  18. An analysis of the alleged skeletal remains of Carin Göring.

    Anna Kjellström

    Full Text Available In 1991, treasure hunters found skeletal remains in an area close to the destroyed country residence of former Nazi leader Hermann Göring in northeastern Berlin. The remains, which were believed to belong to Carin Göring, who was buried at the site, were examined to determine whether it was possible to make a positive identification. The anthropological analysis showed that the remains come from an adult woman. The DNA analysis of several bone elements showed female sex, and a reference sample from Carin's son revealed mtDNA sequences identical to the remains. The profile has one nucleotide difference from the Cambridge reference sequence (rCRS, the common variant 263G. A database search resulted in a frequency of this mtDNA sequence of about 10% out of more than 7,000 European haplotypes. The mtDNA sequence found in the ulna, the cranium and the reference sample is, thus, very common among Europeans. Therefore, nuclear DNA analysis was attempted. The remains as well as a sample from Carin's son were successfully analysed for the three nuclear markers TH01, D7S820 and D8S1179. The nuclear DNA analysis of the two samples revealed one shared allele for each of the three markers, supporting a mother and son relationship. This genetic information together with anthropological and historical files provides an additional piece of circumstantial evidence in our efforts to identify the remains of Carin Göring.

  19. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  20. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inê s CR; Willige, Bjö rn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  1. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  2. Transgene expression of Drosophila melanogaster nucleoside kinase reverses mitochondrial thymidine kinase 2 deficiency.

    Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A; Kuiper, Raoul V; Curbo, Sophie; Karlsson, Anna

    2013-02-15

    A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK(+/-) transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK(+/-)TK2(-/-) mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK(+/-)TK2(-/-) mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency.

  3. Transgene Expression of Drosophila melanogaster Nucleoside Kinase Reverses Mitochondrial Thymidine Kinase 2 Deficiency*♦

    Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A.; Kuiper, Raoul V.; Curbo, Sophie; Karlsson, Anna

    2013-01-01

    A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK+/− transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK+/−TK2−/− mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK+/−TK2−/− mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency. PMID:23288848

  4. Prodrugs of herpes simplex thymidine kinase inhibitors.

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  5. Resveratrol stimulates AMP kinase activity in neurons.

    Dasgupta, Biplab; Milbrandt, Jeffrey

    2007-04-24

    Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.

  6. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    David E Garcia

    Full Text Available The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2 from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3 and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.

  7. Vital role of protein kinase C-related kinase (PRK1) in the formation and stability of neurites during hypoxia

    Thauerer, Bettina; zur Nedden, Stephanie; Baier-Bitterlich, Gabriele

    2010-01-01

    Exposure of pheochromocytoma (PC12) cells to hypoxia (1% O2) favors differentiation at the expense of cell viability. Additional incubation with nerve growth factor (NGF) and guanosine, a purine nucleoside with neurotrophin characteristics, rescued cell viability and further enhanced the extension of neurites. In parallel, an increase in the activity of protein kinase C-related kinase (PRK1), which is known to be involved in regulation of the actin cytoskeleton, was observed in hypoxic cells....

  8. Discovery of aminofurazan-azabenzimidazoles as inhibitors of Rho-kinase with high kinase selectivity and antihypertensive activity.

    Stavenger, Robert A; Cui, Haifeng; Dowdell, Sarah E; Franz, Robert G; Gaitanopoulos, Dimitri E; Goodman, Krista B; Hilfiker, Mark A; Ivy, Robert L; Leber, Jack D; Marino, Joseph P; Oh, Hye-Ja; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Zhang, Daohua; Zhao, Yongdong; Jolivette, Larry J; Head, Martha S; Semus, Simon F; Elkins, Patricia A; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Doe, Christopher P; Bentley, Ross; Chen, Zunxuan X; Hu, Erding; Lee, Dennis

    2007-01-11

    The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.

  9. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  10. Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice.

    Ikeda, Shohei; Satoh, Kimio; Kikuchi, Nobuhiro; Miyata, Satoshi; Suzuki, Kota; Omura, Junichi; Shimizu, Toru; Kobayashi, Kenta; Kobayashi, Kazuto; Fukumoto, Yoshihiro; Sakata, Yasuhiko; Shimokawa, Hiroaki

    2014-06-01

    Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood, and hence therapeutic targets of the disorder remain to be elucidated. Thus, we aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure overload. To induce pressure overload to respective ventricles, we performed pulmonary artery constriction or transverse aortic constriction in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly upregulated in the RV with pulmonary artery constriction compared with the LV with transverse aortic constriction. Then, we examined the responses of both ventricles to chronic pressure overload in vivo. We demonstrated that compared with transverse aortic constriction, pulmonary artery constriction caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform), and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure overload. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase showed resistance to pressure overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, dominant-negative Rho-kinase mice showed a significantly improved long-term survival in both pulmonary artery constriction and transverse aortic constriction as compared with littermate controls. These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans. © 2014 American Heart Association, Inc.

  11. Effect of starvation, diabetes and insulin on the casein kinase 2 from rat liver cytosol.

    Martos, C; Plana, M; Guasch, M D; Itarte, E

    1985-01-01

    Starvation, diabetes and insulin did not alter the concentration of casein kinases in rat liver cytosol. However, the Km for casein of casein kinase 2 from diabetic rats was about 2-fold lower than that from control animals. Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats. Starvation did not affect the kinetic constants of casein kinases. The effect of diabetes on casein kinase 2 persisted after partia...

  12. Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae

    Elbing, Karin; McCartney, Rhonda R.; Schmidt, Martin C.

    2006-01-01

    Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The identities of proteins associated with the Snf1-activating kinases were determined by peptide mass fingerpr...

  13. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  14. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A. (UPENN-MED)

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  15. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase.

    Gajiwala, Ketan S; Grodsky, Neil; Bolaños, Ben; Feng, Junli; Ferre, RoseAnn; Timofeevski, Sergei; Xu, Meirong; Murray, Brion W; Johnson, Ted W; Stewart, Al

    2017-09-22

    The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Work-related factors influencing home care nurse intent to remain employed.

    Tourangeau, Ann E; Patterson, Erin; Saari, Margaret; Thomson, Heather; Cranley, Lisa

    Health care is shifting out of hospitals into community settings. In Ontario, Canada, home care organizations continue to experience challenges recruiting and retaining nurses. However, factors influencing home care nurse retention that can be modified remain largely unexplored. Several groups of factors have been identified as influencing home care nurse intent to remain employed including job characteristics, work structures, relationships and communication, work environment, responses to work, and conditions of employment. The aim of this study was to test and refine a model that identifies which factors are related to home care nurse intentions to remain employed for the next 5 years with their current home care employer organization. A cross-sectional survey design was implemented to test and refine a hypothesized model of home care nurse intent to remain employed. Logistic regression was used to determine which factors influence home care nurse intent to remain employed. Home care nurse intent to remain employed for the next 5 years was associated with increasing age, higher nurse-evaluated quality of care, having greater variety of patients, experiencing greater meaningfulness of work, having greater income stability, having greater continuity of client care, experiencing more positive relationships with supervisors, experiencing higher work-life balance, and being more satisfied with salary and benefits. Home care organizations can promote home care nurse intent to remain employed by (a) ensuring nurses have adequate training and resources to provide quality client care, (b) improving employment conditions to increase income stability and satisfaction with pay and benefits, (c) ensuring manageable workloads to facilitate improved work-life balance, and (d) ensuring leaders are accessible and competent.

  17. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    Amanda Tse

    Full Text Available Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib and promiscuous (Bosutinib, Dasatinib kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations

  18. Blue light-excited LOV1 and LOV2 domains cooperatively regulate the kinase activity of full-length phototropin2 from Arabidopsis.

    Oide, Mao; Okajima, Koji; Nakagami, Hirofumi; Kato, Takayuki; Sekiguchi, Yuki; Oroguchi, Tomotaka; Hikima, Takaaki; Yamamoto, Masaki; Nakasako, Masayoshi

    2018-01-19

    Phototropin2 (phot2) is a blue-light (BL) receptor that regulates BL-dependent activities for efficient photosynthesis in plants. phot2 comprises two BL-receiving light-oxygen-voltage-sensing domains (LOV1 and LOV2) and a kinase domain. BL-excited LOV2 is thought to be primarily responsible for the BL-dependent activation of the kinase. However, the molecular mechanisms by which small BL-induced conformational changes in the LOV2 domain are transmitted to the kinase remain unclear. Here, we used full-length wild-type and mutant phot2 proteins from Arabidopsis to study their molecular properties in the dark and under BL irradiation. Phosphorylation assays and absorption measurements indicated that the LOV1 domain assists the thermal relaxation of BL-excited LOV2 and vice versa. Using small-angle X-ray scattering and electron microscopy, we observed that phot2 forms a dimer and has a rod shape with a maximum length of 188 Å and a radius of gyration of 44 Å. Under BL, phot2 displayed large conformational changes that bent the rod shape. By superimposing the crystal structures of the LOV1 dimer, LOV2, and a homology model of the kinase to the observed changes, we inferred that the BL-dependent change consisted of positional shifts of both LOV2 and the kinase relative to LOV1. Furthermore, phot2 mutants lacking the photocycle in LOV1 or LOV2 still exhibited conformational changes under BL, suggesting that LOV1 and LOV2 cooperatively contribute to the conformational changes that activate the kinase. These results suggest that BL-activated LOV1 contributes to the kinase activity of phot2. We discuss the possible intramolecular interactions and signaling mechanisms in phot2. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  20. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling

    Ungureanu, Daniela; Wu, Jinhua; Pekkala, Tuija

    2011-01-01

    Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased...... JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling....... Notably, different MPN mutations abrogated JH2 activity in cells, and in MPN (V617F) patient cells phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized...

  1. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulat...

  2. Involvement of Rho kinase in the pathogenesis of acute pulmonary embolism-induced polystyrene microspheres in rats.

    Toba, M; Nagaoka, T; Morio, Y; Sato, K; Uchida, K; Homma, N; Takahashi, K

    2010-03-01

    Acute pulmonary embolism (PE) is a life-threatening disease, and several vasoconstrictors, including endothelin-1 (ET-1), play a key role in vasoconstriction and hypoxemia during the development of PE. Rho kinase is activated by various vasoconstrictors resulting in vascular contraction and remodeling. Recent evidence has revealed an important role of Rho kinase in the pathogenesis of systemic and pulmonary vascular diseases. However, contribution of Rho kinase in PE remains unclear. We thus investigated the role of Rho kinase in the PE rat model induced by intrajugular administration of polystyrene microspheres (mean diameter, 26 microm). At 6 h following the administration of microspheres (1.5 ml/kg), right ventricular systolic pressure (RVSP) was higher in the PE than in the control rats (15.8 +/- 1.6 vs. 32.9 +/- 7.5 mmHg). Arterial oxygen tension was lower (92.3 +/- 12.5 vs. 66.0 +/- 17.7 Torr), and alveolar-arterial difference in oxygen partial pressure was higher (3.9 +/- 3.8 vs. 36.5 +/- 26.9 Torr) in the PE rats. Western blotting analysis revealed upregulation and downregulation in expression of vascular cell adhesion molecule-1 and endothelial nitric oxide synthase in lungs from the PE rats, respectively, and radioimmunoassay demonstrated an increase in plasma ET-1 levels. Lung Rho kinase alpha expression was greater in the PE rats. At 5 h following administration of microspheres (0.75 ml/kg), intravenous Rho kinase inhibitors HA1077 and Y27632 (3 mg/kg each) attenuated elevation of RVSP (22.0 +/- 3.7, 17.1 +/- 3.2, 14.3 +/- 2.6 mmHg, PE, PE+HA1077, PE+Y27632) and the severity of hypoxemia (66.3 +/- 16.2, 94.9 +/- 23.0, 89.1 +/- 8.5 Torr, PE, PE+HA1077, PE+Y27632) in the PE rats. These results suggest that pulmonary endothelial dysfunction and activation of Rho kinase may contribute to the potentiation of vasoconstriction and hypoxemia in the PE rats.

  3. New paleoradiological investigations of ancient human remains from North West Lombardy archaeological excavations

    Licata, Marta; Borgo, Melania; Armocida, Giuseppe; Nicosia, Luca; Ferioli, Elena

    2016-01-01

    Since its birth in 1895, radiology has been used to study ancient mummies. The purpose of this article is to present paleoradiological investigations conducted on several medieval human remains in Varese province. Anthropological (generic identification) and paleopathological analyses were carried out with the support of diagnostic imaging (X-ray and CT scans). Human remains were discovered during excavations of medieval archaeological sites in northwest Lombardy. Classical physical anthropological methods were used for the macroscopic identification of the human remains. X-ray and CT scans were performed on the same scanner (16-layer Hitachi Eclos 16 X-ray equipment). Radiological analysis permitted investigating (1) the sex, (2) age of death, (3) type of trauma, (4) therapeutic interventions and (5) osteomas in ancient human remains. In particular, X-ray and CT examinations showed dimorphic facial traits on the mummified skull, and the same radiological approaches allowed determining the age at death from a mummified lower limb. CT analyses allow investigating different types of traumatic lesions in skulls and postcranial skeleton portions and reconstructing the gait and functional outcomes of a fractured femur. Moreover, one case of possible Gardner's syndrome (GS) was postulated from observing multiple osteomas in an ancient skull. Among the medical tests available to the clinician, radiology is the most appropriate first-line procedure for a diagnostic approach to ancient human remains because it can be performed without causing any significant damage to the specimen. (orig.)

  4. New paleoradiological investigations of ancient human remains from North West Lombardy archaeological excavations

    Licata, Marta; Borgo, Melania; Armocida, Giuseppe; Nicosia, Luca; Ferioli, Elena [University of Insubria (Varese), Department of Biotechnology and Life Sciences, Varese (Italy)

    2016-03-15

    Since its birth in 1895, radiology has been used to study ancient mummies. The purpose of this article is to present paleoradiological investigations conducted on several medieval human remains in Varese province. Anthropological (generic identification) and paleopathological analyses were carried out with the support of diagnostic imaging (X-ray and CT scans). Human remains were discovered during excavations of medieval archaeological sites in northwest Lombardy. Classical physical anthropological methods were used for the macroscopic identification of the human remains. X-ray and CT scans were performed on the same scanner (16-layer Hitachi Eclos 16 X-ray equipment). Radiological analysis permitted investigating (1) the sex, (2) age of death, (3) type of trauma, (4) therapeutic interventions and (5) osteomas in ancient human remains. In particular, X-ray and CT examinations showed dimorphic facial traits on the mummified skull, and the same radiological approaches allowed determining the age at death from a mummified lower limb. CT analyses allow investigating different types of traumatic lesions in skulls and postcranial skeleton portions and reconstructing the gait and functional outcomes of a fractured femur. Moreover, one case of possible Gardner's syndrome (GS) was postulated from observing multiple osteomas in an ancient skull. Among the medical tests available to the clinician, radiology is the most appropriate first-line procedure for a diagnostic approach to ancient human remains because it can be performed without causing any significant damage to the specimen. (orig.)

  5. The potential and biological test on cloned cassava crop remains on local sheep

    Ginting, R.; Umar, S.; Hanum, C.

    2018-02-01

    This research aims at knowing the potential of cloned cassava crop remains dry matter and the impact of the feeding of the cloned cassava crop remains based complete feed on the consumption, the body weight gain, and the feed conversion of the local male sheep with the average of initial body weight of 7.75±1.75 kg. The design applied in the first stage research was random sampling method with two frames of tile and the second stage research applied Completely Randomized Design (CRD) with three (3) treatments and four (4) replicates. These treatments consisted of P1 (100% grass); P2 (50% grass, 50% complete feed pellet); P3 (100% complete feed from the raw material of cloned cassava crop remaining). Statistical tests showed that the feeding of complete feed whose raw material was from cloned cassava crop remains gave a highly significant impact on decreasing feed consumption, increasing body weight, lowering feed conversion, and increasing crude protein digestibility. The conclusion is that the cloned cassava crop remains can be used as complete sheep feed to replace green grass and can give the best result.

  6. Remaining useful life prediction of degrading systems subjected to imperfect maintenance: Application to draught fans

    Wang, Zhao-Qiang; Hu, Chang-Hua; Si, Xiao-Sheng; Zio, Enrico

    2018-02-01

    Current degradation modeling and remaining useful life prediction studies share a common assumption that the degrading systems are not maintained or maintained perfectly (i.e., to an as-good-as new state). This paper concerns the issues of how to model the degradation process and predict the remaining useful life of degrading systems subjected to imperfect maintenance activities, which can restore the health condition of a degrading system to any degradation level between as-good-as new and as-bad-as old. Toward this end, a nonlinear model driven by Wiener process is first proposed to characterize the degradation trajectory of the degrading system subjected to imperfect maintenance, where negative jumps are incorporated to quantify the influence of imperfect maintenance activities on the system's degradation. Then, the probability density function of the remaining useful life is derived analytically by a space-scale transformation, i.e., transforming the constructed degradation model with negative jumps crossing a constant threshold level to a Wiener process model crossing a random threshold level. To implement the proposed method, unknown parameters in the degradation model are estimated by the maximum likelihood estimation method. Finally, the proposed degradation modeling and remaining useful life prediction method are applied to a practical case of draught fans belonging to a kind of mechanical systems from steel mills. The results reveal that, for a degrading system subjected to imperfect maintenance, our proposed method can obtain more accurate remaining useful life predictions than those of the benchmark model in literature.

  7. The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant.

    Been, Ella; Hovers, Erella; Ekshtain, Ravid; Malinski-Buller, Ariel; Agha, Nuha; Barash, Alon; Mayer, Daniella E Bar-Yosef; Benazzi, Stefano; Hublin, Jean-Jacques; Levin, Lihi; Greenbaum, Noam; Mitki, Netta; Oxilia, Gregorio; Porat, Naomi; Roskin, Joel; Soudack, Michalle; Yeshurun, Reuven; Shahack-Gross, Ruth; Nir, Nadav; Stahlschmidt, Mareike C; Rak, Yoel; Barzilai, Omry

    2017-06-07

    The late Middle Palaeolithic (MP) settlement patterns in the Levant included the repeated use of caves and open landscape sites. The fossil record shows that two types of hominins occupied the region during this period-Neandertals and Homo sapiens. Until recently, diagnostic fossil remains were found only at cave sites. Because the two populations in this region left similar material cultural remains, it was impossible to attribute any open-air site to either species. In this study, we present newly discovered fossil remains from intact archaeological layers of the open-air site 'Ein Qashish, in northern Israel. The hominin remains represent three individuals: EQH1, a nondiagnostic skull fragment; EQH2, an upper right third molar (RM 3 ); and EQH3, lower limb bones of a young Neandertal male. EQH2 and EQH3 constitute the first diagnostic anatomical remains of Neandertals at an open-air site in the Levant. The optically stimulated luminescence ages suggest that Neandertals repeatedly visited 'Ein Qashish between 70 and 60 ka. The discovery of Neandertals at open-air sites during the late MP reinforces the view that Neandertals were a resilient population in the Levant shortly before Upper Palaeolithic Homo sapiens populated the region.

  8. A Stabilized Demethoxyviridin Derivative Inhibits PI3 kinase

    Yuan, Hushan; Pupo, Monica T.; Blois, Joe; Smith, Adam; Weissleder, Ralph; Clardy, Jon; Josephson, Lee

    2009-01-01

    The viridins like demethoxyviridin (Dmv) and wortmannin (Wm) are nanomolar inhibitors of the PI3 kinases, a family of enzymes that play key roles in a host of regulatory processes. Central to the use of these compounds to investigate the role of PI3 kinase in biological systems, or as scaffolds for drug development, are the interrelated issues of stability, chemical reactivity, and bioactivity as inhibitors of PI3 kinase. We found that Dmv was an even more potent inhibitor of PI3 kinase than Wm. However, Dmv was notably less stable than Wm in PBS, with a half-life of 26 min vs Wm’s half-life of 3470 min. Dmv, like Wm, disappeared in culture media with a half-life of less than 1 min. To overcome Dmv’s instability, it was esterified at the C1 position, and then reacted with glycine at the C20 position. The resulting Dmv derivative, termed SA-DmvC20-Gly had a half-life of 218 min in PBS and 64 min in culture media. SA-DmvC20-Gly underwent an exchange reaction at the C20 position with N-acetyl lysine in a manner similar to a WmC20 derivative, WmC20-Proline. SA-DmvC20-Gly inhibited PI3 kinase with an IC50 of 44 nM, compared to Wm’s IC50 of 12 nM. These results indicate that the stability of Dmv can be manipulated by reactions at the C1 and C20 positions, while substantially maintaining its ability to inhibit PI3 kinase. Our results indicate it may be possible to obtain stabilized Dmv derivatives for use as PI3 kinase inhibitors in biological systems. PMID:19523825

  9. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  10. Exceptional disfavor for proline at the P + 1 position among AGC and CAMK kinases establishes reciprocal specificity between them and the proline-directed kinases.

    Zhu, Guozhi; Fujii, Koichi; Belkina, Natalya; Liu, Yin; James, Michael; Herrero, Juan; Shaw, Stephen

    2005-03-18

    To precisely regulate critical signaling pathways, two kinases that phosphorylate distinct sites on the same protein substrate must have mutually exclusive specificity. Evolution could assure this by designing families of kinase such as basophilic kinases and proline-directed kinase with distinct peptide specificity; their reciprocal peptide specificity would have to be very complete, since recruitment of substrate allows phosphorylation of even rather poor phosphorylation sites in a protein. Here we report a powerful evolutionary strategy that assures distinct substrates for basophilic kinases (PKA, PKG and PKC (AGC) and calmodulin-dependent protein kinase (CAMK)) and proline-directed kinase, namely by the presence or absence of proline at the P + 1 position in substrates. Analysis of degenerate and non-degenerate peptides by in vitro kinase assays reveals that proline at the P + 1 position in substrates functions as a "veto" residue in substrate recognition by AGC and CAMK kinases. Furthermore, analysis of reported substrates of two typical basophilic kinases, protein kinase C and protein kinase A, shows the lowest occurrence of proline at the P + 1 position. Analysis of crystal structures and sequence conservation provides a molecular basis for this disfavor and illustrate its generality.

  11. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity.

    Postma, Jelle; Liebrand, Thomas W H; Bi, Guozhi; Evrard, Alexandre; Bye, Ruby R; Mbengue, Malick; Kuhn, Hannah; Joosten, Matthieu H A J; Robatzek, Silke

    2016-04-01

    The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the SUPPRESSOR OF BIR1 (SOBIR1) RLK contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. We employed live-cell imaging, gene silencing and coimmunoprecipitation to investigate the requirement of associated kinases for functioning and ligand-induced subcellular trafficking of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. Our research shows that after elicitation with matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) associates with Cf-4 and Cf-9. BAK1/SERK3 is required for the effector-triggered hypersensitive response and resistance of tomato against C. fulvum. Furthermore, Cf-4 interacts with SOBIR1 at the plasma membrane and is recruited to late endosomes upon Avr4 trigger, also depending on BAK1/SERK3. These observations indicate that RLP-mediated resistance and endocytosis require ligand-induced recruitment of BAK1/SERK3, reminiscent of BAK1/SERK3 interaction and subcellular fate of the FLAGELLIN SENSING 2 (FLS2) RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for initiation of resistance and endocytosis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  13. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  14. Properties and effects of remaining carbon from waste plastics gasifying on iron scale reduction.

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2011-06-01

    The carbonous activities of three kinds of carbon-bearing materials gasified from plastics were tested with coal coke as reference. The results showed that the carbonous activities of these remaining carbon-bearing materials were higher than that of coal-coke. Besides, the fractal analyses showed that the porosities of remaining carbon-bearing materials were higher than that of coal-coke. It revealed that these kinds of remaining carbon-bearing materials are conducive to improve the kinetics conditions of gas-solid phase reaction in iron scale reduction. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  15. Some social and forensic aspects of exhumation and reinterment of industrial revolution remains.

    Duff, E J; Johnson, J S

    1974-03-23

    The aetiological aspects of exhumed remains from two burial sites were examined using 1839 and 1879 as years of comparison. We tried to discover whether the sample of recovered remains was representative of those buried. The state of the remains varied according to the type of soil and coffin material in which they were buried. At the earlier date most deaths were caused by infectious lesions rather than degenerative ones and 76% of those who died were below employable age-whereas in 1879 the commonest causes of death were tuberculosis ("phthisis") and bronchitis, and 42% died before they could be employed. The registration of deaths were recorded more accurately at the later date, and it was easier to build up a picture of the age, sex, and occupation of the people who died.

  16. Ethical Issues Surrounding the Use of Modern Human Remains for Research in South Africa.

    Briers, N; Dempers, J J

    2017-02-01

    Chapter 8 of the South African National Health Act 61 of 2003 (NHA) that deals with the donation of human tissue was promulgated in 2012. The new Act is perceived to impose restrictions on low-risk research involving human remains. This study aimed to identify the issues raised by a research ethics committee (REC) when reviewing protocols where human remains are used as data source. REC minutes from 2009 to 2014 were reviewed, and issues raised by the committee were categorized. In total, 127 protocols submitted to the committee over 6 years involved human remains. Queries relating to science (22.2%) and administration (18.9%) were the most common, whereas queries relating to legal issues constituted only 10.2%. Ethical issues centered on informed consent regarding sensitive topics such as HIV, DNA, and deceased children. The change in legislation did not change the number or type of legal issues identified by the REC.

  17. Updated Estimates of the Remaining Market Potential of the U.S. ESCO Industry

    Larsen, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.; Carvallo Bodelon, Juan Pablo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.; Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.; Murphy, Sean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.; Stuart, Elizabeth [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.

    2017-04-01

    The energy service company (ESCO) industry has a well-established track record of delivering energy and economic savings in the public and institutional buildings sector, primarily through the use of performance-based contracts. The ESCO industry often provides (or helps arrange) private sector financing to complete public infrastructure projects with little or no up-front cost to taxpayers. In 2014, total U.S. ESCO industry revenue was estimated at $5.3 billion. ESCOs expect total industry revenue to grow to $7.6 billion in 2017—a 13% annual growth rate from 2015-2017. Researchers at Lawrence Berkeley National Laboratory (LBNL) were asked by the U.S. Department of Energy Federal Energy Management Program (FEMP) to update and expand our estimates of the remaining market potential of the U.S. ESCO industry. We define remaining market potential as the aggregate amount of project investment by ESCOs that is technically possible based on the types of projects that ESCOS have historically implemented in the institutional, commercial, and industrial sectors using ESCO estimates of current market penetration in those sectors. In this analysis, we report U.S. ESCO industry remaining market potential under two scenarios: (1) a base case and (2) a case “unfettered” by market, bureaucratic, and regulatory barriers. We find that there is significant remaining market potential for the U.S. ESCO industry under both the base and unfettered cases. For the base case, we estimate a remaining market potential of $92-$201 billion ($2016). We estimate a remaining market potential of $190-$333 billion for the unfettered case. It is important to note, however, that there is considerable uncertainty surrounding the estimates for both the base and unfettered cases.

  18. Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains

    Wales, Nathan; Andersen, Kenneth; Cappellini, Enrico

    2014-01-01

    Ancient DNA (aDNA) recovered from archaeobotanical remains can provide key insights into many prominent archaeological research questions, including processes of domestication, past subsistence strategies, and human interactions with the environment. However, it is often difficult to isolate a...... extracted from non-charred ancient plant remains. Based upon the criteria of resistance to enzymatic inhibition, behavior in quantitative real-time PCR, replication fidelity, and compatibility with aDNA damage, we conclude these polymerases have nuanced properties, requiring researchers to make educated...... on the interactions between humans and past plant communities....

  19. Material aging and degradation detection and remaining life assessment for plant life management

    Ramuhalli, P.; Henager, C.H. Jr.; Griffin, J.W.; Meyer, R.M.; Coble, J.B.; Pitman, S.G.; Bond, L.J.

    2012-01-01

    One of the major factors that may impact long-term operations is structural material degradation. Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long-term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided. (author)

  20. A Study on Generic Representation of Skeletal Remains Replication of Prehistoric Burial

    C.-W. Shao

    2015-08-01

    Full Text Available Generic representation of skeletal remains from burials consists of three dimensions which include physical anthropologists, replication technicians, and promotional educators. For the reason that archaeological excavation is irreversible and disruptive, detail documentation and replication technologies are surely needed for many purposes. Unearthed bones during the process of 3D digital scanning need to go through reverse procedure, 3D scanning, digital model superimposition, rapid prototyping, mould making, and the integrated errors generated from the presentation of colours and textures are important issues for the presentation of replicate skeleton remains among professional decisions conducted by physical anthropologists, subjective determination of makers, and the expectations of viewers. This study presents several cases and examines current issues on display and replication technologies for human skeletal remains of prehistoric burials. This study documented detail colour changes of human skeleton over time for the reference of reproduction. The tolerance errors of quantification and required technical qualification is acquired according to the precision of 3D scanning, the specification requirement of rapid prototyping machine, and the mould making process should following the professional requirement for physical anthropological study. Additionally, the colorimeter is adopted to record and analyse the “colour change” of the human skeletal remains from wet to dry condition. Then, the “colure change” is used to evaluate the “real” surface texture and colour presentation of human skeletal remains, and to limit the artistic presentation among the human skeletal remains reproduction. The“Lingdao man No.1”, is a well preserved burial of early Neolithic period (8300 B.P. excavated from Liangdao-Daowei site, Matsu, Taiwan , as the replicating object for this study. In this study, we examined the reproduction procedures step by

  1. Assessment of the potential for exploitation of the remaining reserves of coal in Poland

    Wodarski, K.; Bijanska, J.

    2014-01-01

    In mining areas belonging to the Polish mining companies, there is a significant amount of coal, contained in remaining reserves, that have not been exploited so far. For years, the mines have been evaluating the possibility of its exploitation, since it would expand its resource base and would extend its useful life. In addition, exploitation of the remaining reserves can minimize stress concentration zones in the soil, the rebel y improving conditions for maintenance of excavations and limiting the risk of shock rock. (Author)

  2. Anks3 alters the sub-cellular localization of the Nek7 kinase

    Ramachandran, Haribaskar; Engel, Christina; Müller, Barbara [Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg (Germany); Dengjel, Jörn [Department of Dermatology, University Freiburg Medical Center and Center of Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg (Germany); Walz, Gerd [Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg (Germany); Center for Biological Signaling Studies (BIOSS), Albertstr. 19, 79104 Freiburg (Germany); Yakulov, Toma A., E-mail: toma.antonov.yakulov@uniklinik-freiburg.de [Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Str. 55, 79106 Freiburg (Germany)

    2015-08-28

    Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease, and a frequent cause of end-stage renal failure in children. To date, 17 NPH-associated gene products (NPHPs) have been identified. Most NPHPs participate in large multi-protein complexes that localize to the cilium and/or basal body; however, the precise composition of these complexes and their biological function remain largely unknown. We recently observed that the ankyrin repeat protein Anks3 interacts with the NPH family member Anks6. Both Anks3 and Anks6 form complexes with multiple other NPHPs, suggesting that both proteins function in similar or overlapping signaling pathways. Here, we show that Anks3, but not Anks6 interacted with the NIMA-related kinase Nek7, and was heavily modified in the presence of Nek7, resulting in an approximately 20 kD increase in molecular weight. Although mass spectrometry revealed increased serine and threonine phosphorylation of Anks3 primarily within the N-terminal ankyrin repeats also required for Nek7 interaction, the molecular weight increase occurred even in the presence of a kinase-dead Nek7 mutant, indicating that this modification was not caused by Nek7-dependent Anks3 phosphorylation. Furthermore, the Anks3 modification was specific for Nek7, and did not occur in the presence of Nek8. Importantly, Anks3 retained Nek7 in the cytoplasm, suggesting that, Nek7 triggers the modification of Anks3, which in turn prevents the nuclear localization of Nek7. - Highlights: • Anks3 interacted with Nek7 kinase, and was heavily modified in the presence of Nek7. • Anks3 N-terminal ankyrin repeats, but not SAM domain required for Nek7 interaction. • Nek7 increased Ser/Thr phosphorylation of Anks3 primarily within ankyrin domain. • Interaction with Anks3 led to cytoplasmic retention and nuclear exclusion of Nek7.

  3. Roles of protein kinase R in cancer: Potential as a therapeutic target.

    Watanabe, Takao; Imamura, Takeshi; Hiasa, Yoichi

    2018-04-01

    Double-stranded (ds) RNA-dependent protein kinase (PKR) is a ubiquitously expressed serine/threonine protein kinase. It was initially identified as an innate immune antiviral protein induced by interferon (IFN) and activated by dsRNA. PKR is recognized as a key executor of antiviral host defense. Moreover, it contributes to inflammation and immune regulation through several signaling pathways. In addition to IFN and dsRNA, PKR is activated by multiple stimuli and regulates various signaling pathways including the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells pathways. PKR was initially thought to be a tumor suppressor as a result of its ability to suppress cell growth and interact with major tumor suppressor genes. However, in several types of malignant disease, such as colon and breast cancers, its role remains controversial. In hepatocellular carcinoma, hepatitis C virus (HCV) is the main cause of liver cancer, and PKR inhibits HCV replication, indicating its role as a tumor suppressor. However, PKR is overexpressed in cirrhotic patients, and acts as a tumor promoter through enhancement of cancer cell growth by mediating MAPK or signal transducer and activator of transcription pathways. Moreover, PKR is reportedly required for the activation of inflammasomes and influences metabolic disorders. In the present review, we introduce the multifaceted roles of PKR such as antiviral function, tumor cell growth, regulation of inflammatory immune responses, and maintaining metabolic homeostasis; and discuss future perspectives on PKR biology including its potential as a therapeutic target for liver cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.

    Vilarinho, Sílvia; Sari, Sinan; Yilmaz, Güldal; Stiegler, Amy L; Boggon, Titus J; Jain, Dhanpat; Akyol, Gulen; Dalgic, Buket; Günel, Murat; Lifton, Richard P

    2016-06-01

    Despite advances in the diagnosis and management of idiopathic noncirrhotic portal hypertension, its pathogenesis remains elusive. Insight may be gained from study of early-onset familial idiopathic noncirrhotic portal hypertension, in which Mendelian mutations may account for disease. We performed exome sequencing of eight subjects from six kindreds with onset of portal hypertension of indeterminate etiology during infancy or childhood. Three subjects from two consanguineous families shared the identical rare homozygous p.N46S mutation in DGUOK, a deoxyguanosine kinase required for mitochondrial DNA replication; haplotype sharing demonstrated that the mutation in the two families was inherited from a remote common ancestor. All three affected subjects had stable portal hypertension with noncirrhotic liver disease for 6-16 years of follow-up. This mutation impairs adenosine triphosphate binding and reduces catalytic activity. Loss-of-function mutations in DGUOK have previously been implicated in cirrhosis and liver failure but not in isolated portal hypertension. Interestingly, treatment of patients with human immunodeficiency viral infection with the nucleoside analogue didanosine is known to cause portal hypertension in a subset of patients and lowers deoxyguanosine kinase levels in vitro; the current findings implicate these effects on deoxyguanosine kinase in the causal mechanism. Our findings provide new insight into the mechanisms mediating inherited and acquired noncirrhotic portal hypertension, expand the phenotypic spectrum of DGUOK deficiency, and provide a new genetic test for a specific cause of idiopathic noncirrhotic portal hypertension. (Hepatology 2016;63:1977-1986). © 2016 by the American Association for the Study of Liver Diseases.

  5. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency.

    Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M

    2017-01-24

    A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.

  6. NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development.

    Debora Schmitz-Rohmer

    Full Text Available Studies of mammalian tissue culture cells indicate that the conserved and distinct NDR isoforms, NDR1 and NDR2, play essential cell biological roles. However, mice lacking either Ndr1 or Ndr2 alone develop normally. Here, we studied the physiological consequences of inactivating both NDR1 and NDR2 in mice, showing that the lack of both Ndr1/Ndr2 (called Ndr1/2-double null mutants causes embryonic lethality. In support of compensatory roles for NDR1 and NDR2, total protein and activating phosphorylation levels of the remaining NDR isoform were elevated in mice lacking either Ndr1 or Ndr2. Mice retaining one single wild-type Ndr allele were viable and fertile. Ndr1/2-double null embryos displayed multiple phenotypes causing a developmental delay from embryonic day E8.5 onwards. While NDR kinases are not required for notochord formation, the somites of Ndr1/2-double null embryos were smaller, irregularly shaped and unevenly spaced along the anterior-posterior axis. Genes implicated in somitogenesis were down-regulated and the normally symmetric expression of Lunatic fringe, a component of the Notch pathway, showed a left-right bias in the last forming somite in 50% of all Ndr1/2-double null embryos. In addition, Ndr1/2-double null embryos developed a heart defect that manifests itself as pericardial edemas, obstructed heart tubes and arrest of cardiac looping. The resulting cardiac insufficiency is the likely cause of the lethality of Ndr1/2-double null embryos around E10. Taken together, we show that NDR kinases compensate for each other in vivo in mouse embryos, explaining why mice deficient for either Ndr1 or Ndr2 are viable. Ndr1/2-double null embryos show defects in somitogenesis and cardiac looping, which reveals their essential functions and shows that the NDR kinases are critically required during the early phase of organogenesis.

  7. Soluble TAM receptor tyrosine kinases in rheumatoid arthritis: correlation with disease activity and bone destruction.

    Xu, L; Hu, F; Zhu, H; Liu, X; Shi, L; Li, Y; Zhong, H; Su, Y

    2018-04-01

    The TAM receptor tyrosine kinases (TAM RTK) are a subfamily of receptor tyrosine kinases, the role of which in autoimmune diseases such as systemic lupus erythematosus has been well explored, while their functions in rheumatoid arthritis (RA) remain largely unknown. In this study, we investigated the role of soluble TAM receptor tyrosine kinases (sAxl/sMer/sTyro3) in patients with RA. A total of 306 RA patients, 100 osteoarthritis (OA) patients and 120 healthy controls (HCs) were enrolled into this study. The serum concentrations of sAxl/sMer/sTyro3 were measured by enzyme-linked immunosorbent assay (ELISA), then the associations between sAxl/sMer/sTyro3 levels and clinical features of RA patients were analysed. We also investigated whether sTyro3 could promote osteoclast differentiation in vitro in RA patients. The results showed that compared with healthy controls (HCs), sTyro3 levels in the serum of RA patients were elevated remarkably and sMer levels were decreased significantly, whereas there was no difference between HCs and RA patients on sAxl levels. The sTyro3 levels were correlated weakly but positively with white blood cells (WBC), immunoglobulin (Ig)M, rheumatoid factor (RF), swollen joint counts, tender joint counts, total sharp scores and joint erosion scores. Conversely, there were no significant correlations between sMer levels and the above indices. Moreover, RA patients with high disease activity also showed higher sTyro3 levels. In-vitro osteoclast differentiation assay showed further that tartrate-resistant acid phosphatase (TRAP) + osteoclasts were increased significantly in the presence of sTyro3. Collectively, our study indicated that serum sTyro3 levels were elevated in RA patients and correlated positively with disease activity and bone destruction, which may serve as an important participant in RA pathogenesis. © 2017 British Society for Immunology.

  8. The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase

    Kenyon Colin P

    2012-08-01

    Full Text Available Abstract Background It has been demonstrated that the adenyl moiety of ATP plays a direct role in the regulation of ATP binding and/or phosphoryl transfer within a range of kinase and synthetase enzymes. The role of the C8-H of ATP in the binding and/or phosphoryl transfer on the enzyme activity of a number of kinase and synthetase enzymes has been elucidated. The intrinsic catalysis rate mediated by each kinase enzyme is complex, yielding apparent KM values ranging from less than 0.4 μM to more than 1 mM for ATP in the various kinases. Using a combination of ATP deuterated at the C8 position (C8D-ATP as a molecular probe with site directed mutagenesis (SDM of conserved amino acid residues in shikimate kinase and adenylate kinase active sites, we have elucidated a mechanism by which the ATP C8-H is induced to be labile in the broader kinase family. We have demonstrated the direct role of the C8-H in the rate of ATP consumption, and the direct role played by conserved Thr residues interacting with the C8-H. The mechanism by which the vast range in KM might be achieved is also suggested by these findings. Results We have demonstrated the mechanism by which the enzyme activities of Group 2 kinases, shikimate kinase (SK and adenylate kinase 1 (AK1, are controlled by the C8-H of ATP. Mutations of the conserved threonine residues associated with the labile C8-H cause the enzymes to lose their saturation kinetics over the concentration range tested. The relationship between the role C8-H of ATP in the reaction mechanism and the ATP concentration as they influence the saturation kinetics of the enzyme activity is also shown. The SDM clearly identified the amino acid residues involved in both the catalysis and regulation of phosphoryl transfer in SK and AK1 as mediated by C8H-ATP. Conclusions The data outlined serves to demonstrate the “push” mechanism associated with the control of the saturation kinetics of Group 2 kinases mediated by ATP C8-H. It

  9. Effects of obesity on protein kinase C, brain creatine kinase, transcription, and autophagy in cochlea.

    Hwang, Juen-Haur

    2017-06-01

    Diet-induced obesity (DIO) has been shown to exacerbate hearing degeneration via increased hypoxia, inflammatory responses, and cell loss via both caspase-dependent and caspase-independent apoptosis signaling pathways. This study aimed to investigate the effects of DIO on the mRNA expressions of protein kinase c-β (PKC-β), brain creatine kinase (CKB), transcription modification genes, and autophagy-related genes in the cochlea of CD/1 mice. Sixteen 4-week-old male CD/1 mice were randomly divided into 2 groups. For 16 weeks, the DIO group was fed a high fat diet (60% kcal fat) and the controls were fed a standard diet. Morphometry, biochemistry, auditory brainstem response thresholds, omental fat, and histopathology of the cochlea were compared. Results showed that body weight, body length, body-mass index, omental fat, plasma triglyceride, and auditory brainstem response thresholds were significantly elevated in the DIO group compared with those of the control group. The ratio of vessel wall thickness to radius in the stria vascularis was significantly higher in the DIO group. The cell densities in the spiral ganglion, but not in the spiral prominence, of the cochlea were significantly lower in the DIO group. The expression of histone deacetylation gene 1 (HDAC1) was significantly higher in the DIO group than the control group. However, the expressions of PKC-β, CKB, HDAC3, histone acetyltransferase gene (P300), lysosome-associated membrane protein 2 (Lamp2), and light chain 3 (Lc3) genes were not significantly different between two groups. These results suggest that DIO might exacerbate hearing degeneration possibly via increased HDAC1 gene expression in the cochlea of CD/1 mice.

  10. Kinase inhibitors: a new class of antirheumatic drugs

    Kyttaris VC

    2012-09-01

    Full Text Available Vasileios C KyttarisDivision of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USAAbstract: The outlook for patients with rheumatoid arthritis has improved significantly over the last three decades with the use of disease-modifying antirheumatic drugs. However, despite the use of methotrexate, cytokine inhibitors, and molecules targeting T and B cells, a percentage of patients do not respond or lose their response over time. The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. In the past decade, small molecules targeting several kinases, such as p38 MAPK, Syk, and JAK have been developed. Several p38 MAPK inhibitors proved ineffective in treating rheumatoid arthritis. The Syk inhibitor, fostamatinib, proved superior to placebo in Phase II trials and is currently under Phase III investigation. Tofacitinib, a JAK1/3 inhibitor, was shown to be efficacious in two Phase III trials, while VX-509, a JAK3 inhibitor, showed promising results in a Phase II trial. Fostamatinib and tofacitinib were associated with increased rates of infection, elevation of liver enzymes, and neutropenia. Moreover, fostamatinib caused elevations of blood pressure and diarrhea, while tofacitinib was associated with an increase in creatinine and elevation of lipid levels.Keywords: rheumatoid arthritis, kinase inhibitors, mitogen-activated phosphokinase p38, spleen tyrosine kinase, Janus kinases

  11. Cloning and expression of human deoxycytidine kinase cDNA

    Chottiner, E.G.; Shewach, D.S.; Datta, N.S.; Ashcraft, E.; Gribbin, D.; Ginsburg, D.; Fox, I.H.; Mitchell, B.S.

    1991-01-01

    Deoxycytidine (dCyd) kinase is required for the phosphorylation of several deoxyribonucleosides and certain nucleoside analogs widely employed as antiviral and chemotherapeutic agents. Detailed analysis of this enzyme has been limited, however, by its low abundance and instability. Using oligonucleotides based on primary amino acid sequence derived from purified dCyd kinase, the authors have screened T-lymphoblast cDNA libraries and identified a cDNA sequence that encodes a 30.5-kDa protein corresponding to the subunit molecular mass of the purified protein. Expression of the cDNA in Escherichia coli results in a 40-fold increase in dCyd kinase activity over control levels. Northern blot analysis reveals a single 2.8-kilobase mRNA expressed in T lymphoblasts at 5- to 10-fold higher levels than in B lymphoblasts, and decreased dCyd kinase mRNA levels are present in T-lymphoblast cell lines resistant to arabinofuranosylcytosine and dideoxycytidine. These findings document that this cDNA encodes the T-lymphoblast dCyd kinase responsible for the phosphorylation of dAdo and dGuo as well as dCyd and arabinofuranosylcytosine

  12. Fragment-based approaches to the discovery of kinase inhibitors.

    Mortenson, Paul N; Berdini, Valerio; O'Reilly, Marc

    2014-01-01

    Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.

  13. The long and the short of SAD-1 kinase.

    Kim, Joanne S M; Hung, Wesley; Zhen, Mei

    2010-05-01

    The Ser/Thr SAD kinases are evolutionarily conserved, critical regulators of neural development. Exciting findings in recent years have significantly advanced our understanding of the mechanism through which SAD kinases regulate neural development. Mammalian SAD-A and SAD-B, activated by a master kinase LKB1, regulate microtubule dynamics and polarize neurons. In C. elegans, the sad-1 gene encodes two isoforms, namely the long and the short, which exhibit overlapping and yet distinct functions in neuronal polarity and synaptic organization. Surprisingly, our most recent findings in C. elegans revealed a SAD-1-independent LKB1 activity in neuronal polarity. We also found that the long SAD-1 isoform directly interacts with a STRADalpha pseudokinase, STRD-1, to regulate neuronal polarity and synaptic organization. We elaborate here a working model of SAD-1 in which the two isoforms dimer/oligomerize to form a functional complex, and STRD-1 clusters and localizes the SAD-1 complex to synapses. While the mechanistic difference between the vertebrate and invertebrate SAD kinases may be puzzling, a recent discovery of the functionally distinct SAD-B isoforms predicts that the difference likely arises from our incomplete understanding of the SAD kinase mechanism and may eventually be reconciled as the revelation continues.

  14. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  15. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  16. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  17. Functions of Aurora kinase C in meiosis and cancer

    Suzanne M. Quartuccio

    2015-08-01

    Full Text Available The mammalian genome encodes three Aurora kinase protein family members: A, B, and C. While Aurora kinase A (AURKA and B (AURKB are found in cells throughout the body, significant protein levels of Aurora kinase C (AURKC are limited to cells that undergo meiosis (sperm and oocyte. Despite its discovery nearly 15 years ago, we know little about the function of AURKC compared to that of the other 2 Aurora kinases. This lack of understanding can be attributed to the high sequence homology between AURKB and AURKC preventing the use of standard approaches to understand non-overlapping and meiosis I (MI-specific functions of the two kinases. Recent evidence has revealed distinct functions of AURKC in meiosis and may aid in our understanding of why chromosome segregation during MI often goes awry in oocytes. Many cancers aberrantly express AURKC, but because we do not fully understand AURKC function in its normal cellular context, it is difficult to predict the biological significance of this expression on the disease. Here, we consolidate and update what is known about AURKC signaling in meiotic cells to better understand why it has oncogenic potential.

  18. Purification and characterization of a thylakoid protein kinase

    Coughlan, S.J.; Hind, G.

    1986-01-01

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs

  19. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA.

    Schaenzer, Adam J; Wlodarchak, Nathan; Drewry, David H; Zuercher, William J; Rose, Warren E; Striker, Rob; Sauer, John-Demian

    2017-10-13

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial P enicillin-binding-protein A nd S erine/ T hreonine kinase- A ssociated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.

  20. Remaining life assessment and plant life extension in high temperature components of power and petrochemical plant

    Fleming, A.

    2003-01-01

    This paper explains the reasons why plant life can so easily be extended beyond the original design life. It details the means by which plant life extension is normally achieved, a structured plan for achieving such plant life extension at reasonable cost and some of the key techniques used in assessing the remaining life and discusses the simple repair options available. (author)